About the Execution of LoLA for Peterson-COL-6
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15918.280 | 3569830.00 | 3706993.00 | 4926.50 | ?FFT?FTFFFFTFFFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........................................................................................
/home/mcc/execution
total 208K
-rw-r--r-- 1 mcc users 3.5K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.4K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.0K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.3K May 26 09:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K May 26 09:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.9K May 26 09:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.4K May 26 09:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.5K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 105 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 343 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 15K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.7K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 46K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is Peterson-COL-6, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r256-csrt-152732582900155
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Peterson-COL-6-LTLCardinality-00
FORMULA_NAME Peterson-COL-6-LTLCardinality-01
FORMULA_NAME Peterson-COL-6-LTLCardinality-02
FORMULA_NAME Peterson-COL-6-LTLCardinality-03
FORMULA_NAME Peterson-COL-6-LTLCardinality-04
FORMULA_NAME Peterson-COL-6-LTLCardinality-05
FORMULA_NAME Peterson-COL-6-LTLCardinality-06
FORMULA_NAME Peterson-COL-6-LTLCardinality-07
FORMULA_NAME Peterson-COL-6-LTLCardinality-08
FORMULA_NAME Peterson-COL-6-LTLCardinality-09
FORMULA_NAME Peterson-COL-6-LTLCardinality-10
FORMULA_NAME Peterson-COL-6-LTLCardinality-11
FORMULA_NAME Peterson-COL-6-LTLCardinality-12
FORMULA_NAME Peterson-COL-6-LTLCardinality-13
FORMULA_NAME Peterson-COL-6-LTLCardinality-14
FORMULA_NAME Peterson-COL-6-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1527436032807
info: Time: 3600 - MCC
===========================================================================================
prep: translating Peterson-COL-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating Peterson-COL-6 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ Peterson-COL-6 @ 3568 seconds
lola: LoLA will run for 3568 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 3486/65536 symbol table entries, 6 collisions
lola: preprocessing...
lola: Size of bit vector: 1372
lola: finding significant places
lola: 1372 places, 2114 transitions, 1345 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 3297 transition conflict sets
lola: TASK
lola: reading formula from Peterson-COL-6-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p965 + p923 <= p672 + p673 + p674 + p675 + p676 + p677 + p679 + p680 + p681 + p682 + p683 + p684 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p700 + p701 + p702 + p703 + p704 + p705 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p706 + p699 + p692 + p685 + p678)
lola: after: (p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p965 + p923 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= p672 + p673 + p674 + p675 + p676 + p677 + p679 + p680 + p681 + p682 + p683 + p684 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p700 + p701 + p702 + p703 + p704 + p705 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p706 + p699 + p692 + p685 + p678)
lola: after: (p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p1371 + p1370 + p1369 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1358)
lola: after: (0 <= 6)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1371 + p1370 + p1369 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1358)
lola: after: (0 <= 4)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p672 + p673 + p674 + p675 + p676 + p677 + p679 + p680 + p681 + p682 + p683 + p684 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p700 + p701 + p702 + p703 + p704 + p705 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p706 + p699 + p692 + p685 + p678 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)
lola: after: (6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1371 + p1370 + p1369 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1358)
lola: after: (0 <= 4)
lola: always true
lola: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629))))) : A (G (F (X ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99))))) : A (G (F ((p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 <= p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671)))) : A (X ((G ((3 <= p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350)) U (2 <= p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357)))) : A (F (F (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p965 + p923 <= 6)))))) : A ((G (G ((2 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629))) U ((p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6) U (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)))) : A (G (TRUE)) : A ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)) : A ((G (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755))) U (TRUE U (6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)))) : A (X ((p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99))) : A (G (G ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))) : A (G (G (X (G (TRUE))))) : A (G (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629)))) : A (F (G (X (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629)))))) : A (X ((2 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056))) : A (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755)))
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:434
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
FORMULA Peterson-COL-6-LTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p... (shortened)
lola: processed formula length: 1952
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: processed formula length: 2143
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 275343 markings, 483730 edges, 55069 markings/sec, 0 secs
lola: 550789 markings, 968114 edges, 55089 markings/sec, 5 secs
lola: 828669 markings, 1453831 edges, 55576 markings/sec, 10 secs
lola: 1100312 markings, 1931593 edges, 54329 markings/sec, 15 secs
lola: 1352120 markings, 2387079 edges, 50362 markings/sec, 20 secs
lola: 1638375 markings, 2867231 edges, 57251 markings/sec, 25 secs
lola: 1912524 markings, 3348795 edges, 54830 markings/sec, 30 secs
lola: 2182654 markings, 3814614 edges, 54026 markings/sec, 35 secs
lola: 2445986 markings, 4315321 edges, 52666 markings/sec, 40 secs
lola: 2717041 markings, 4797983 edges, 54211 markings/sec, 45 secs
lola: 2981270 markings, 5267804 edges, 52846 markings/sec, 50 secs
lola: 3252324 markings, 5746498 edges, 54211 markings/sec, 55 secs
lola: 3520954 markings, 6223695 edges, 53726 markings/sec, 60 secs
lola: 3771210 markings, 6721611 edges, 50051 markings/sec, 65 secs
lola: 4016089 markings, 7208782 edges, 48976 markings/sec, 70 secs
lola: 4255727 markings, 7686900 edges, 47928 markings/sec, 75 secs
lola: 4493056 markings, 8164141 edges, 47466 markings/sec, 80 secs
lola: 4763016 markings, 8649014 edges, 53992 markings/sec, 85 secs
lola: 5024141 markings, 9121770 edges, 52225 markings/sec, 90 secs
lola: 5280618 markings, 9585827 edges, 51295 markings/sec, 95 secs
lola: 5564504 markings, 10057884 edges, 56777 markings/sec, 100 secs
lola: 5832192 markings, 10509135 edges, 53538 markings/sec, 105 secs
lola: 6061936 markings, 10984971 edges, 45949 markings/sec, 110 secs
lola: 6317081 markings, 11461133 edges, 51029 markings/sec, 115 secs
lola: 6589122 markings, 11931755 edges, 54408 markings/sec, 120 secs
lola: 6848144 markings, 12400994 edges, 51804 markings/sec, 125 secs
lola: 7118697 markings, 12870684 edges, 54111 markings/sec, 130 secs
lola: 7413013 markings, 13336412 edges, 58863 markings/sec, 135 secs
lola: 7643274 markings, 13815547 edges, 46052 markings/sec, 140 secs
lola: 7882347 markings, 14253794 edges, 47815 markings/sec, 145 secs
lola: 8106264 markings, 14704110 edges, 44783 markings/sec, 150 secs
lola: 8317925 markings, 15135955 edges, 42332 markings/sec, 155 secs
lola: 8559721 markings, 15572805 edges, 48359 markings/sec, 160 secs
lola: 8809287 markings, 16060206 edges, 49913 markings/sec, 165 secs
lola: 9075414 markings, 16531552 edges, 53225 markings/sec, 170 secs
lola: 9341791 markings, 17007494 edges, 53275 markings/sec, 175 secs
lola: 9594887 markings, 17465312 edges, 50619 markings/sec, 180 secs
lola: 9846806 markings, 17935102 edges, 50384 markings/sec, 185 secs
lola: 10134933 markings, 18391933 edges, 57625 markings/sec, 190 secs
lola: 10372365 markings, 18860854 edges, 47486 markings/sec, 195 secs
lola: 10603886 markings, 19322899 edges, 46304 markings/sec, 200 secs
lola: 10863649 markings, 19776632 edges, 51953 markings/sec, 205 secs
lola: 11107566 markings, 20233454 edges, 48783 markings/sec, 210 secs
lola: 11362098 markings, 20712192 edges, 50906 markings/sec, 215 secs
lola: 11621803 markings, 21168322 edges, 51941 markings/sec, 220 secs
lola: 11885119 markings, 21629921 edges, 52663 markings/sec, 225 secs
lola: 12146519 markings, 22094406 edges, 52280 markings/sec, 230 secs
lola: 12386219 markings, 22568816 edges, 47940 markings/sec, 235 secs
lola: 12680507 markings, 23038671 edges, 58858 markings/sec, 240 secs
lola: 12938224 markings, 23506383 edges, 51543 markings/sec, 245 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown unknown unknown unknown unknown unknown yes no unknown unknown unknown unknown unknown unknown unknown unknown
lola: memory consumption: 2817436 KB
lola: time consumption: 262 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 3 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (((2 <= p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357) OR (G ((3 <= p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (((2 <= p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357) OR (G ((3 <= p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 +... (shortened)
lola: processed formula length: 2505
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 15 markings, 14 edges
FORMULA Peterson-COL-6-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 4 will run for 275 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 +... (shortened)
lola: processed formula length: 2012
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 51 markings, 51 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 300 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 8 markings, 7 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 330 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((2 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((2 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: processed formula length: 68
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 51 markings, 51 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 367 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (G ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: processed formula length: 68
lola: 32 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: formula 0: (p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 <= 0)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to Peterson-COL-6-LTLCardinality-7-0.sara
lola: state equation: calling and running sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 413 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755)))
lola: processed formula length: 306
lola: 32 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: formula 0: (p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 <= 1)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
FORMULA Peterson-COL-6-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 472 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p39... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p39... (shortened)
lola: processed formula length: 2070
lola: 32 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: formula 0: (p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 <= 0)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 551 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + ... (shortened)
lola: processed formula length: 2074
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 42 markings, 43 edges
FORMULA Peterson-COL-6-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 11 will run for 661 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 +... (shortened)
lola: processed formula length: 1964
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 29 markings, 29 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 826 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: processed formula length: 2124
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 43665 markings, 89558 edges, 8733 markings/sec, 0 secs
lola: 94611 markings, 198959 edges, 10189 markings/sec, 5 secs
lola: 148852 markings, 319452 edges, 10848 markings/sec, 10 secs
lola: 221381 markings, 509351 edges, 14506 markings/sec, 15 secs
lola: 288918 markings, 690019 edges, 13507 markings/sec, 20 secs
lola: 365984 markings, 892912 edges, 15413 markings/sec, 25 secs
lola: 452659 markings, 1123191 edges, 17335 markings/sec, 30 secs
lola: 536097 markings, 1347631 edges, 16688 markings/sec, 35 secs
lola: 606162 markings, 1532365 edges, 14013 markings/sec, 40 secs
lola: 688584 markings, 1764667 edges, 16484 markings/sec, 45 secs
lola: 767755 markings, 1982848 edges, 15834 markings/sec, 50 secs
lola: 842417 markings, 2180534 edges, 14932 markings/sec, 55 secs
lola: 917330 markings, 2382076 edges, 14983 markings/sec, 60 secs
lola: 1004752 markings, 2619516 edges, 17484 markings/sec, 65 secs
lola: 1101586 markings, 2861395 edges, 19367 markings/sec, 70 secs
lola: 1189120 markings, 3102027 edges, 17507 markings/sec, 75 secs
lola: 1272132 markings, 3327247 edges, 16602 markings/sec, 80 secs
lola: 1341594 markings, 3519728 edges, 13892 markings/sec, 85 secs
lola: 1421535 markings, 3732331 edges, 15988 markings/sec, 90 secs
lola: 1500076 markings, 3949317 edges, 15708 markings/sec, 95 secs
lola: 1582074 markings, 4164405 edges, 16400 markings/sec, 100 secs
lola: 1667694 markings, 4389171 edges, 17124 markings/sec, 105 secs
lola: 1749247 markings, 4601915 edges, 16311 markings/sec, 110 secs
lola: 1837864 markings, 4829565 edges, 17723 markings/sec, 115 secs
lola: 1918056 markings, 5053535 edges, 16038 markings/sec, 120 secs
lola: 2001761 markings, 5277368 edges, 16741 markings/sec, 125 secs
lola: 2081471 markings, 5490742 edges, 15942 markings/sec, 130 secs
lola: 2160146 markings, 5710293 edges, 15735 markings/sec, 135 secs
lola: 2244912 markings, 5941458 edges, 16953 markings/sec, 140 secs
lola: 2328578 markings, 6175766 edges, 16733 markings/sec, 145 secs
lola: 2409210 markings, 6393327 edges, 16126 markings/sec, 150 secs
lola: 2488108 markings, 6608706 edges, 15780 markings/sec, 155 secs
lola: 2572801 markings, 6830547 edges, 16939 markings/sec, 160 secs
lola: 2656075 markings, 7060628 edges, 16655 markings/sec, 165 secs
lola: 2741146 markings, 7289388 edges, 17014 markings/sec, 170 secs
lola: 2829936 markings, 7522496 edges, 17758 markings/sec, 175 secs
lola: 2917267 markings, 7758729 edges, 17466 markings/sec, 180 secs
lola: 3004126 markings, 7999838 edges, 17372 markings/sec, 185 secs
lola: 3091922 markings, 8242093 edges, 17559 markings/sec, 190 secs
lola: 3183747 markings, 8588335 edges, 18365 markings/sec, 195 secs
lola: 3259485 markings, 8786839 edges, 15148 markings/sec, 200 secs
lola: 3333303 markings, 8980848 edges, 14764 markings/sec, 205 secs
lola: 3403537 markings, 9170034 edges, 14047 markings/sec, 210 secs
lola: 3505552 markings, 9552146 edges, 20403 markings/sec, 215 secs
lola: 3560432 markings, 9688919 edges, 10976 markings/sec, 220 secs
lola: 3611318 markings, 9798502 edges, 10177 markings/sec, 225 secs
lola: 3668360 markings, 9925407 edges, 11408 markings/sec, 230 secs
lola: 3733463 markings, 10098199 edges, 13021 markings/sec, 235 secs
lola: 3802997 markings, 10284092 edges, 13907 markings/sec, 240 secs
lola: 3899824 markings, 10537600 edges, 19365 markings/sec, 245 secs
lola: 3972435 markings, 10731460 edges, 14522 markings/sec, 250 secs
lola: 4043278 markings, 10920878 edges, 14169 markings/sec, 255 secs
lola: 4107980 markings, 11098465 edges, 12940 markings/sec, 260 secs
lola: 4179877 markings, 11285994 edges, 14379 markings/sec, 265 secs
lola: 4245196 markings, 11468156 edges, 13064 markings/sec, 270 secs
lola: 4317080 markings, 11662135 edges, 14377 markings/sec, 275 secs
lola: 4393577 markings, 11862435 edges, 15299 markings/sec, 280 secs
lola: 4466046 markings, 12053302 edges, 14494 markings/sec, 285 secs
lola: 4541752 markings, 12258709 edges, 15141 markings/sec, 290 secs
lola: 4618202 markings, 12462328 edges, 15290 markings/sec, 295 secs
lola: 4701811 markings, 12674063 edges, 16722 markings/sec, 300 secs
lola: 4765407 markings, 12851905 edges, 12719 markings/sec, 305 secs
lola: 4833096 markings, 13041021 edges, 13538 markings/sec, 310 secs
lola: 4900112 markings, 13222354 edges, 13403 markings/sec, 315 secs
lola: 4963164 markings, 13396372 edges, 12610 markings/sec, 320 secs
lola: 5034697 markings, 13581091 edges, 14307 markings/sec, 325 secs
lola: 5103033 markings, 13773193 edges, 13667 markings/sec, 330 secs
lola: 5176794 markings, 13969051 edges, 14752 markings/sec, 335 secs
lola: 5242059 markings, 14151754 edges, 13053 markings/sec, 340 secs
lola: 5311203 markings, 14337324 edges, 13829 markings/sec, 345 secs
lola: 5379879 markings, 14521072 edges, 13735 markings/sec, 350 secs
lola: 5450708 markings, 14706680 edges, 14166 markings/sec, 355 secs
lola: 5515651 markings, 14886231 edges, 12989 markings/sec, 360 secs
lola: 5584156 markings, 15069006 edges, 13701 markings/sec, 365 secs
lola: 5656537 markings, 15266300 edges, 14476 markings/sec, 370 secs
lola: 5729022 markings, 15460523 edges, 14497 markings/sec, 375 secs
lola: 5806622 markings, 15662109 edges, 15520 markings/sec, 380 secs
lola: 5880560 markings, 15867654 edges, 14788 markings/sec, 385 secs
lola: 5953033 markings, 16064805 edges, 14495 markings/sec, 390 secs
lola: 6026744 markings, 16265794 edges, 14742 markings/sec, 395 secs
lola: 6097922 markings, 16463078 edges, 14236 markings/sec, 400 secs
lola: 6174980 markings, 16669162 edges, 15412 markings/sec, 405 secs
lola: 6255628 markings, 16881020 edges, 16130 markings/sec, 410 secs
lola: 6333160 markings, 17092407 edges, 15506 markings/sec, 415 secs
lola: 6412870 markings, 17302431 edges, 15942 markings/sec, 420 secs
lola: 6489788 markings, 17512567 edges, 15384 markings/sec, 425 secs
lola: 6563141 markings, 17716207 edges, 14671 markings/sec, 430 secs
lola: 6649680 markings, 18026545 edges, 17308 markings/sec, 435 secs
lola: 6726248 markings, 18257689 edges, 15314 markings/sec, 440 secs
lola: 6800653 markings, 18452323 edges, 14881 markings/sec, 445 secs
lola: 6874651 markings, 18648419 edges, 14800 markings/sec, 450 secs
lola: 6945687 markings, 18841932 edges, 14207 markings/sec, 455 secs
lola: 7050424 markings, 19239653 edges, 20947 markings/sec, 460 secs
lola: 7094719 markings, 19334100 edges, 8859 markings/sec, 465 secs
lola: 7143893 markings, 19440138 edges, 9835 markings/sec, 470 secs
lola: 7199762 markings, 19564973 edges, 11174 markings/sec, 475 secs
lola: 7272268 markings, 19755182 edges, 14501 markings/sec, 480 secs
lola: 7341057 markings, 19935619 edges, 13758 markings/sec, 485 secs
lola: 7413699 markings, 20127484 edges, 14528 markings/sec, 490 secs
lola: 7489342 markings, 20328822 edges, 15129 markings/sec, 495 secs
lola: 7588664 markings, 20591014 edges, 19864 markings/sec, 500 secs
lola: 7659614 markings, 20776200 edges, 14190 markings/sec, 505 secs
lola: 7741825 markings, 20996830 edges, 16442 markings/sec, 510 secs
lola: 7815615 markings, 21204064 edges, 14758 markings/sec, 515 secs
lola: 7892142 markings, 21414807 edges, 15305 markings/sec, 520 secs
lola: 7976845 markings, 21643378 edges, 16941 markings/sec, 525 secs
lola: 8055639 markings, 21862077 edges, 15759 markings/sec, 530 secs
lola: 8135520 markings, 22073504 edges, 15976 markings/sec, 535 secs
lola: 8212559 markings, 22284738 edges, 15408 markings/sec, 540 secs
lola: 8304949 markings, 22521642 edges, 18478 markings/sec, 545 secs
lola: 8384613 markings, 22727887 edges, 15933 markings/sec, 550 secs
lola: 8464255 markings, 22958653 edges, 15928 markings/sec, 555 secs
lola: 8548725 markings, 23178740 edges, 16894 markings/sec, 560 secs
lola: 8631531 markings, 23399874 edges, 16561 markings/sec, 565 secs
lola: 8716588 markings, 23630716 edges, 17011 markings/sec, 570 secs
lola: 8800779 markings, 23856984 edges, 16838 markings/sec, 575 secs
lola: 8887047 markings, 24078490 edges, 17254 markings/sec, 580 secs
lola: 8966394 markings, 24296690 edges, 15869 markings/sec, 585 secs
lola: 9049946 markings, 24527320 edges, 16710 markings/sec, 590 secs
lola: 9130367 markings, 24749863 edges, 16084 markings/sec, 595 secs
lola: 9211922 markings, 24964273 edges, 16311 markings/sec, 600 secs
lola: 9296763 markings, 25189070 edges, 16968 markings/sec, 605 secs
lola: 9381161 markings, 25419587 edges, 16880 markings/sec, 610 secs
lola: 9460787 markings, 25633686 edges, 15925 markings/sec, 615 secs
lola: 9540839 markings, 25855177 edges, 16010 markings/sec, 620 secs
lola: 9626694 markings, 26081495 edges, 17171 markings/sec, 625 secs
lola: 9709550 markings, 26308711 edges, 16571 markings/sec, 630 secs
lola: 9790765 markings, 26525896 edges, 16243 markings/sec, 635 secs
lola: 9875402 markings, 26748911 edges, 16927 markings/sec, 640 secs
lola: 9963204 markings, 26983360 edges, 17560 markings/sec, 645 secs
lola: 10049655 markings, 27217376 edges, 17290 markings/sec, 650 secs
lola: 10135313 markings, 27458839 edges, 17132 markings/sec, 655 secs
lola: 10229445 markings, 27755498 edges, 18826 markings/sec, 660 secs
lola: 10315898 markings, 28048278 edges, 17291 markings/sec, 665 secs
lola: 10392745 markings, 28248227 edges, 15369 markings/sec, 670 secs
lola: 10464784 markings, 28443596 edges, 14408 markings/sec, 675 secs
lola: 10570306 markings, 28837607 edges, 21104 markings/sec, 680 secs
lola: 10619813 markings, 28951186 edges, 9901 markings/sec, 685 secs
lola: 10671164 markings, 29062269 edges, 10270 markings/sec, 690 secs
lola: 10728664 markings, 29190224 edges, 11500 markings/sec, 695 secs
lola: 10802386 markings, 29383661 edges, 14744 markings/sec, 700 secs
lola: 10875528 markings, 29575026 edges, 14628 markings/sec, 705 secs
lola: 10948673 markings, 29770923 edges, 14629 markings/sec, 710 secs
lola: 11015929 markings, 29948666 edges, 13451 markings/sec, 715 secs
lola: 11108075 markings, 30192273 edges, 18429 markings/sec, 720 secs
lola: 11185490 markings, 30396771 edges, 15483 markings/sec, 725 secs
lola: 11251767 markings, 30574509 edges, 13255 markings/sec, 730 secs
lola: 11318818 markings, 30754998 edges, 13410 markings/sec, 735 secs
lola: 11370159 markings, 30904695 edges, 10268 markings/sec, 740 secs
lola: 11432475 markings, 31076494 edges, 12463 markings/sec, 745 secs
lola: 11497561 markings, 31252614 edges, 13017 markings/sec, 750 secs
lola: 11562942 markings, 31422193 edges, 13076 markings/sec, 755 secs
lola: 11631528 markings, 31607346 edges, 13717 markings/sec, 760 secs
lola: 11702620 markings, 31797612 edges, 14218 markings/sec, 765 secs
lola: 11777990 markings, 31988349 edges, 15074 markings/sec, 770 secs
lola: 11843458 markings, 32163594 edges, 13094 markings/sec, 775 secs
lola: 11905008 markings, 32337512 edges, 12310 markings/sec, 780 secs
lola: 11972736 markings, 32521291 edges, 13546 markings/sec, 785 secs
lola: 12038720 markings, 32694906 edges, 13197 markings/sec, 790 secs
lola: 12107160 markings, 32877589 edges, 13688 markings/sec, 795 secs
lola: 12168896 markings, 33047368 edges, 12347 markings/sec, 800 secs
lola: 12232101 markings, 33228262 edges, 12641 markings/sec, 805 secs
lola: 12295000 markings, 33401266 edges, 12580 markings/sec, 810 secs
lola: 12360898 markings, 33574175 edges, 13180 markings/sec, 815 secs
lola: 12431201 markings, 33756281 edges, 14061 markings/sec, 820 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown yes unknown unknown yes no unknown no no yes no no no no
lola: memory consumption: 2436012 KB
lola: time consumption: 1089 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 826 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((F ((6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p... (shortened)
lola: processed formula length: 4231
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 29 markings, 29 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1239 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 ... (shortened)
lola: processed formula length: 2364
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 99 markings, 101 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 2479 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6) U (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p10... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6) U (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p10... (shortened)
lola: processed formula length: 6294
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 7 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 27 markings, 27 edges
lola: ========================================
FORMULA Peterson-COL-6-LTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: processed formula length: 2143
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 262229 markings, 451836 edges, 52446 markings/sec, 0 secs
lola: 522765 markings, 912226 edges, 52107 markings/sec, 5 secs
lola: 771614 markings, 1357364 edges, 49770 markings/sec, 10 secs
lola: 1050783 markings, 1830685 edges, 55834 markings/sec, 15 secs
lola: 1292837 markings, 2288979 edges, 48411 markings/sec, 20 secs
lola: 1576441 markings, 2757039 edges, 56721 markings/sec, 25 secs
lola: 1832811 markings, 3220511 edges, 51274 markings/sec, 30 secs
lola: 2091042 markings, 3649158 edges, 51646 markings/sec, 35 secs
lola: 2328578 markings, 4089504 edges, 47507 markings/sec, 40 secs
lola: 2572686 markings, 4549119 edges, 48822 markings/sec, 45 secs
lola: 2822195 markings, 4984516 edges, 49902 markings/sec, 50 secs
lola: 3076610 markings, 5435965 edges, 50883 markings/sec, 55 secs
lola: 3345622 markings, 5893126 edges, 53802 markings/sec, 60 secs
lola: 3571254 markings, 6325458 edges, 45126 markings/sec, 65 secs
lola: 3806983 markings, 6791443 edges, 47146 markings/sec, 70 secs
lola: 4036638 markings, 7250951 edges, 45931 markings/sec, 75 secs
lola: 4265078 markings, 7708135 edges, 45688 markings/sec, 80 secs
lola: 4481134 markings, 8145086 edges, 43211 markings/sec, 85 secs
lola: 4736989 markings, 8599429 edges, 51171 markings/sec, 90 secs
lola: 4980507 markings, 9030531 edges, 48704 markings/sec, 95 secs
lola: 5212918 markings, 9456408 edges, 46482 markings/sec, 100 secs
lola: 5481474 markings, 9919516 edges, 53711 markings/sec, 105 secs
lola: 5758968 markings, 10360445 edges, 55499 markings/sec, 110 secs
lola: 5977339 markings, 10817515 edges, 43674 markings/sec, 115 secs
lola: 6206006 markings, 11244736 edges, 45733 markings/sec, 120 secs
lola: 6450440 markings, 11691791 edges, 48887 markings/sec, 125 secs
lola: 6701784 markings, 12143790 edges, 50269 markings/sec, 130 secs
lola: 6962734 markings, 12617374 edges, 52190 markings/sec, 135 secs
lola: 7260170 markings, 13104696 edges, 59487 markings/sec, 140 secs
lola: 7537456 markings, 13588895 edges, 55457 markings/sec, 145 secs
lola: 7772312 markings, 14064094 edges, 46971 markings/sec, 150 secs
lola: 8027725 markings, 14549293 edges, 51083 markings/sec, 155 secs
lola: 8268591 markings, 15030774 edges, 48173 markings/sec, 160 secs
lola: 8515221 markings, 15499771 edges, 49326 markings/sec, 165 secs
lola: 8745906 markings, 15956938 edges, 46137 markings/sec, 170 secs
lola: 9002252 markings, 16406345 edges, 51269 markings/sec, 175 secs
lola: 9263520 markings, 16863093 edges, 52254 markings/sec, 180 secs
lola: 9521615 markings, 17322381 edges, 51619 markings/sec, 185 secs
lola: 9762994 markings, 17801448 edges, 48276 markings/sec, 190 secs
lola: 10051222 markings, 18265397 edges, 57646 markings/sec, 195 secs
lola: 10300386 markings, 18707318 edges, 49833 markings/sec, 200 secs
lola: 10510732 markings, 19140847 edges, 42069 markings/sec, 205 secs
lola: 10745253 markings, 19565621 edges, 46904 markings/sec, 210 secs
lola: 10984361 markings, 19990316 edges, 47822 markings/sec, 215 secs
lola: 11219579 markings, 20420627 edges, 47044 markings/sec, 220 secs
lola: 11456673 markings, 20865753 edges, 47419 markings/sec, 225 secs
lola: 11715475 markings, 21323392 edges, 51760 markings/sec, 230 secs
lola: 11971944 markings, 21783983 edges, 51294 markings/sec, 235 secs
lola: 12220818 markings, 22240134 edges, 49775 markings/sec, 240 secs
lola: 12465439 markings, 22694400 edges, 48924 markings/sec, 245 secs
lola: 12747554 markings, 23142197 edges, 56423 markings/sec, 250 secs
lola: 12983655 markings, 23604223 edges, 47220 markings/sec, 255 secs
lola: 13210535 markings, 24060481 edges, 45376 markings/sec, 260 secs
lola: 13470584 markings, 24509403 edges, 52010 markings/sec, 265 secs
lola: 13710596 markings, 24964358 edges, 48002 markings/sec, 270 secs
lola: 13971116 markings, 25416473 edges, 52104 markings/sec, 275 secs
lola: 14206182 markings, 25894003 edges, 47013 markings/sec, 280 secs
lola: 14429494 markings, 26347005 edges, 44662 markings/sec, 285 secs
lola: 14657522 markings, 26807894 edges, 45606 markings/sec, 290 secs
lola: 14928846 markings, 27256023 edges, 54265 markings/sec, 295 secs
lola: 15171703 markings, 27688595 edges, 48571 markings/sec, 300 secs
lola: 15409402 markings, 28111229 edges, 47540 markings/sec, 305 secs
lola: 15652254 markings, 28534139 edges, 48570 markings/sec, 310 secs
lola: 15895266 markings, 28954963 edges, 48602 markings/sec, 315 secs
lola: 16129087 markings, 29382145 edges, 46764 markings/sec, 320 secs
lola: 16365007 markings, 29802917 edges, 47184 markings/sec, 325 secs
lola: 16598871 markings, 30224863 edges, 46773 markings/sec, 330 secs
lola: 16830243 markings, 30686521 edges, 46274 markings/sec, 335 secs
lola: 17051602 markings, 31120140 edges, 44272 markings/sec, 340 secs
lola: 17288537 markings, 31543407 edges, 47387 markings/sec, 345 secs
lola: 17518375 markings, 31966902 edges, 45968 markings/sec, 350 secs
lola: 17765885 markings, 32414890 edges, 49502 markings/sec, 355 secs
lola: 18027763 markings, 32872263 edges, 52376 markings/sec, 360 secs
lola: 18271598 markings, 33332355 edges, 48767 markings/sec, 365 secs
lola: 18530428 markings, 33779116 edges, 51766 markings/sec, 370 secs
lola: 18773258 markings, 34248767 edges, 48566 markings/sec, 375 secs
lola: 19003701 markings, 34713556 edges, 46089 markings/sec, 380 secs
lola: 19271761 markings, 35169692 edges, 53612 markings/sec, 385 secs
lola: 19530162 markings, 35628387 edges, 51680 markings/sec, 390 secs
lola: 19787499 markings, 36088470 edges, 51467 markings/sec, 395 secs
lola: 20026143 markings, 36550058 edges, 47729 markings/sec, 400 secs
lola: 20279437 markings, 37008327 edges, 50659 markings/sec, 405 secs
lola: 20526261 markings, 37467681 edges, 49365 markings/sec, 410 secs
lola: 20782644 markings, 37922519 edges, 51277 markings/sec, 415 secs
lola: 21024024 markings, 38389777 edges, 48276 markings/sec, 420 secs
lola: 21286241 markings, 38835299 edges, 52443 markings/sec, 425 secs
lola: 21532131 markings, 39291994 edges, 49178 markings/sec, 430 secs
lola: 21751971 markings, 39735394 edges, 43968 markings/sec, 435 secs
lola: 21970857 markings, 40178837 edges, 43777 markings/sec, 440 secs
lola: 22221452 markings, 40587609 edges, 50119 markings/sec, 445 secs
lola: 22483950 markings, 41009120 edges, 52500 markings/sec, 450 secs
lola: 22709980 markings, 41442621 edges, 45206 markings/sec, 455 secs
lola: 22919014 markings, 41866235 edges, 41807 markings/sec, 460 secs
lola: 23139803 markings, 42295301 edges, 44158 markings/sec, 465 secs
lola: 23391890 markings, 42747356 edges, 50417 markings/sec, 470 secs
lola: 23652054 markings, 43201510 edges, 52033 markings/sec, 475 secs
lola: 23909929 markings, 43655873 edges, 51575 markings/sec, 480 secs
lola: 24165460 markings, 44110669 edges, 51106 markings/sec, 485 secs
lola: 24415335 markings, 44565141 edges, 49975 markings/sec, 490 secs
lola: 24682848 markings, 45014211 edges, 53503 markings/sec, 495 secs
lola: 24922980 markings, 45467140 edges, 48026 markings/sec, 500 secs
lola: 25169191 markings, 45904084 edges, 49242 markings/sec, 505 secs
lola: 25393166 markings, 46322496 edges, 44795 markings/sec, 510 secs
lola: 25618885 markings, 46740690 edges, 45144 markings/sec, 515 secs
lola: 25852981 markings, 47168173 edges, 46819 markings/sec, 520 secs
lola: 26085043 markings, 47625427 edges, 46412 markings/sec, 525 secs
lola: 26295319 markings, 48053314 edges, 42055 markings/sec, 530 secs
lola: 26550373 markings, 48479934 edges, 51011 markings/sec, 535 secs
lola: 26808856 markings, 48913429 edges, 51697 markings/sec, 540 secs
lola: 27050912 markings, 49341848 edges, 48411 markings/sec, 545 secs
lola: 27305112 markings, 49758829 edges, 50840 markings/sec, 550 secs
lola: 27561186 markings, 50194503 edges, 51215 markings/sec, 555 secs
lola: 27787434 markings, 50627681 edges, 45250 markings/sec, 560 secs
lola: 28000316 markings, 51048922 edges, 42576 markings/sec, 565 secs
lola: 28230951 markings, 51467436 edges, 46127 markings/sec, 570 secs
lola: 28457069 markings, 51876601 edges, 45224 markings/sec, 575 secs
lola: 28687514 markings, 52298767 edges, 46089 markings/sec, 580 secs
lola: 28914888 markings, 52713073 edges, 45475 markings/sec, 585 secs
lola: 29154685 markings, 53134005 edges, 47959 markings/sec, 590 secs
lola: 29383646 markings, 53560496 edges, 45792 markings/sec, 595 secs
lola: 29626271 markings, 53970902 edges, 48525 markings/sec, 600 secs
lola: 29855335 markings, 54387653 edges, 45813 markings/sec, 605 secs
lola: 30082016 markings, 54814224 edges, 45336 markings/sec, 610 secs
lola: 30325324 markings, 55226743 edges, 48662 markings/sec, 615 secs
lola: 30555516 markings, 55640080 edges, 46038 markings/sec, 620 secs
lola: 30772688 markings, 56073127 edges, 43434 markings/sec, 625 secs
lola: 31028066 markings, 56503062 edges, 51076 markings/sec, 630 secs
lola: 31280024 markings, 56936057 edges, 50392 markings/sec, 635 secs
lola: 31514209 markings, 57371477 edges, 46837 markings/sec, 640 secs
lola: 31765048 markings, 57811177 edges, 50168 markings/sec, 645 secs
lola: 31986316 markings, 58248604 edges, 44254 markings/sec, 650 secs
lola: 32204388 markings, 58683932 edges, 43614 markings/sec, 655 secs
lola: 32439436 markings, 59105404 edges, 47010 markings/sec, 660 secs
lola: 32686990 markings, 59544567 edges, 49511 markings/sec, 665 secs
lola: 32934894 markings, 59996905 edges, 49581 markings/sec, 670 secs
lola: 33193390 markings, 60447337 edges, 51699 markings/sec, 675 secs
lola: 33440107 markings, 60894889 edges, 49343 markings/sec, 680 secs
lola: 33688748 markings, 61342102 edges, 49728 markings/sec, 685 secs
lola: 33913545 markings, 61765716 edges, 44959 markings/sec, 690 secs
lola: 34130592 markings, 62193504 edges, 43409 markings/sec, 695 secs
lola: 34389205 markings, 62634112 edges, 51723 markings/sec, 700 secs
lola: 34661938 markings, 63086871 edges, 54547 markings/sec, 705 secs
lola: 34898888 markings, 63548026 edges, 47390 markings/sec, 710 secs
lola: 35153902 markings, 64007371 edges, 51003 markings/sec, 715 secs
lola: 35397835 markings, 64444195 edges, 48787 markings/sec, 720 secs
lola: 35640218 markings, 64890882 edges, 48477 markings/sec, 725 secs
lola: 35905197 markings, 65362585 edges, 52996 markings/sec, 730 secs
lola: 36152611 markings, 65837705 edges, 49483 markings/sec, 735 secs
lola: 36424428 markings, 66290812 edges, 54363 markings/sec, 740 secs
lola: 36676181 markings, 66754265 edges, 50351 markings/sec, 745 secs
lola: 36914255 markings, 67226088 edges, 47615 markings/sec, 750 secs
lola: 37169219 markings, 67658269 edges, 50993 markings/sec, 755 secs
lola: 37420838 markings, 68058965 edges, 50324 markings/sec, 760 secs
lola: 37645846 markings, 68477837 edges, 45002 markings/sec, 765 secs
lola: 37878351 markings, 68932425 edges, 46501 markings/sec, 770 secs
lola: 38117252 markings, 69419694 edges, 47780 markings/sec, 775 secs
lola: 38352890 markings, 69896384 edges, 47128 markings/sec, 780 secs
lola: 38593291 markings, 70381357 edges, 48080 markings/sec, 785 secs
lola: 38826647 markings, 70858585 edges, 46671 markings/sec, 790 secs
lola: 39064071 markings, 71336665 edges, 47485 markings/sec, 795 secs
lola: 39293754 markings, 71810556 edges, 45937 markings/sec, 800 secs
lola: 39526183 markings, 72264011 edges, 46486 markings/sec, 805 secs
lola: 39749239 markings, 72721616 edges, 44611 markings/sec, 810 secs
lola: 39970936 markings, 73173519 edges, 44339 markings/sec, 815 secs
lola: 40200568 markings, 73631815 edges, 45926 markings/sec, 820 secs
lola: 40427212 markings, 74095305 edges, 45329 markings/sec, 825 secs
lola: 40651925 markings, 74554757 edges, 44943 markings/sec, 830 secs
lola: 40882088 markings, 75019763 edges, 46033 markings/sec, 835 secs
lola: 41120319 markings, 75500233 edges, 47646 markings/sec, 840 secs
lola: 41375582 markings, 75970628 edges, 51053 markings/sec, 845 secs
lola: 41610082 markings, 76392486 edges, 46900 markings/sec, 850 secs
lola: 41842740 markings, 76810486 edges, 46532 markings/sec, 855 secs
lola: 42073523 markings, 77230414 edges, 46157 markings/sec, 860 secs
lola: 42304857 markings, 77646642 edges, 46267 markings/sec, 865 secs
lola: 42532223 markings, 78086183 edges, 45473 markings/sec, 870 secs
lola: 42794474 markings, 78504248 edges, 52450 markings/sec, 875 secs
lola: 43025902 markings, 78917809 edges, 46286 markings/sec, 880 secs
lola: 43244422 markings, 79367631 edges, 43704 markings/sec, 885 secs
lola: 43493824 markings, 79839253 edges, 49880 markings/sec, 890 secs
lola: 43737375 markings, 80299344 edges, 48710 markings/sec, 895 secs
lola: 43972544 markings, 80749790 edges, 47034 markings/sec, 900 secs
lola: 44217733 markings, 81189571 edges, 49038 markings/sec, 905 secs
lola: 44448502 markings, 81586442 edges, 46154 markings/sec, 910 secs
lola: 44694316 markings, 82020490 edges, 49163 markings/sec, 915 secs
lola: 44925366 markings, 82475144 edges, 46210 markings/sec, 920 secs
lola: 45197314 markings, 82923814 edges, 54390 markings/sec, 925 secs
lola: 45452226 markings, 83362920 edges, 50982 markings/sec, 930 secs
lola: 45672951 markings, 83818755 edges, 44145 markings/sec, 935 secs
lola: 45886996 markings, 84227463 edges, 42809 markings/sec, 940 secs
lola: 46100230 markings, 84634495 edges, 42647 markings/sec, 945 secs
lola: 46327114 markings, 85031265 edges, 45377 markings/sec, 950 secs
lola: 46576411 markings, 85491828 edges, 49859 markings/sec, 955 secs
lola: 46846949 markings, 85944159 edges, 54108 markings/sec, 960 secs
lola: 47094475 markings, 86406373 edges, 49505 markings/sec, 965 secs
lola: 47332073 markings, 86874229 edges, 47520 markings/sec, 970 secs
lola: 47611034 markings, 87346018 edges, 55792 markings/sec, 975 secs
lola: 47860419 markings, 87811727 edges, 49877 markings/sec, 980 secs
lola: 48111976 markings, 88283312 edges, 50311 markings/sec, 985 secs
lola: 48370303 markings, 88722805 edges, 51665 markings/sec, 990 secs
lola: 48593037 markings, 89144735 edges, 44547 markings/sec, 995 secs
lola: 48815400 markings, 89556601 edges, 44473 markings/sec, 1000 secs
lola: 49067070 markings, 89994493 edges, 50334 markings/sec, 1005 secs
lola: 49315528 markings, 90451358 edges, 49692 markings/sec, 1010 secs
lola: 49570394 markings, 90911235 edges, 50973 markings/sec, 1015 secs
lola: 49810750 markings, 91370619 edges, 48071 markings/sec, 1020 secs
lola: 50037743 markings, 91834951 edges, 45399 markings/sec, 1025 secs
lola: 50263460 markings, 92291778 edges, 45143 markings/sec, 1030 secs
lola: 50507137 markings, 92757566 edges, 48735 markings/sec, 1035 secs
lola: 50746997 markings, 93222993 edges, 47972 markings/sec, 1040 secs
lola: 51054476 markings, 93657152 edges, 61496 markings/sec, 1045 secs
lola: 51312742 markings, 94101961 edges, 51653 markings/sec, 1050 secs
lola: 51559296 markings, 94538306 edges, 49311 markings/sec, 1055 secs
lola: 51787074 markings, 94996433 edges, 45556 markings/sec, 1060 secs
lola: 52074370 markings, 95417559 edges, 57459 markings/sec, 1065 secs
lola: 52340114 markings, 95846038 edges, 53149 markings/sec, 1070 secs
lola: 52579843 markings, 96279699 edges, 47946 markings/sec, 1075 secs
lola: 52829458 markings, 96733495 edges, 49923 markings/sec, 1080 secs
lola: 53066043 markings, 97205972 edges, 47317 markings/sec, 1085 secs
lola: 53289680 markings, 97654555 edges, 44727 markings/sec, 1090 secs
lola: 53511939 markings, 98102463 edges, 44452 markings/sec, 1095 secs
lola: 53723100 markings, 98527942 edges, 42232 markings/sec, 1100 secs
lola: 53972646 markings, 98941800 edges, 49909 markings/sec, 1105 secs
lola: 54206230 markings, 99383182 edges, 46717 markings/sec, 1110 secs
lola: 54470317 markings, 99840847 edges, 52817 markings/sec, 1115 secs
lola: 54725746 markings, 100285736 edges, 51086 markings/sec, 1120 secs
lola: 54968528 markings, 100723956 edges, 48556 markings/sec, 1125 secs
lola: 55197747 markings, 101169513 edges, 45844 markings/sec, 1130 secs
lola: 55449117 markings, 101621081 edges, 50274 markings/sec, 1135 secs
lola: 55692593 markings, 102076077 edges, 48695 markings/sec, 1140 secs
lola: 55944485 markings, 102523132 edges, 50378 markings/sec, 1145 secs
lola: 56178761 markings, 102982206 edges, 46855 markings/sec, 1150 secs
lola: 56432371 markings, 103434514 edges, 50722 markings/sec, 1155 secs
lola: 56672964 markings, 103892388 edges, 48119 markings/sec, 1160 secs
lola: 56926766 markings, 104342052 edges, 50760 markings/sec, 1165 secs
lola: 57175179 markings, 104794123 edges, 49683 markings/sec, 1170 secs
lola: 57409988 markings, 105248589 edges, 46962 markings/sec, 1175 secs
lola: 57677496 markings, 105712422 edges, 53502 markings/sec, 1180 secs
lola: 57922878 markings, 106169090 edges, 49076 markings/sec, 1185 secs
lola: 58159170 markings, 106607544 edges, 47258 markings/sec, 1190 secs
lola: 58367537 markings, 107032170 edges, 41673 markings/sec, 1195 secs
lola: 58575489 markings, 107454369 edges, 41590 markings/sec, 1200 secs
lola: 58831373 markings, 107892954 edges, 51177 markings/sec, 1205 secs
lola: 59103228 markings, 108322061 edges, 54371 markings/sec, 1210 secs
lola: 59369006 markings, 108753692 edges, 53156 markings/sec, 1215 secs
lola: 59613767 markings, 109207337 edges, 48952 markings/sec, 1220 secs
lola: 59838203 markings, 109661830 edges, 44887 markings/sec, 1225 secs
lola: 60068551 markings, 110118576 edges, 46070 markings/sec, 1230 secs
lola: 60320195 markings, 110569712 edges, 50329 markings/sec, 1235 secs
lola: 60595431 markings, 110994543 edges, 55047 markings/sec, 1240 secs
lola: 60864337 markings, 111422595 edges, 53781 markings/sec, 1245 secs
lola: 61110749 markings, 111880414 edges, 49282 markings/sec, 1250 secs
lola: 61343138 markings, 112338822 edges, 46478 markings/sec, 1255 secs
lola: 61579110 markings, 112812029 edges, 47194 markings/sec, 1260 secs
lola: 61820090 markings, 113299013 edges, 48196 markings/sec, 1265 secs
lola: 62057136 markings, 113772994 edges, 47409 markings/sec, 1270 secs
lola: 62293463 markings, 114252924 edges, 47265 markings/sec, 1275 secs
lola: 62521652 markings, 114724314 edges, 45638 markings/sec, 1280 secs
lola: 62758245 markings, 115196382 edges, 47319 markings/sec, 1285 secs
lola: 62995154 markings, 115681434 edges, 47382 markings/sec, 1290 secs
lola: 63227604 markings, 116149796 edges, 46490 markings/sec, 1295 secs
lola: 63452576 markings, 116595932 edges, 44994 markings/sec, 1300 secs
lola: 63670836 markings, 117045404 edges, 43652 markings/sec, 1305 secs
lola: 63893019 markings, 117491793 edges, 44437 markings/sec, 1310 secs
lola: 64115926 markings, 117947702 edges, 44581 markings/sec, 1315 secs
lola: 64337152 markings, 118393164 edges, 44245 markings/sec, 1320 secs
lola: 64558113 markings, 118847829 edges, 44192 markings/sec, 1325 secs
lola: 64783507 markings, 119303210 edges, 45079 markings/sec, 1330 secs
lola: 65029467 markings, 119765817 edges, 49192 markings/sec, 1335 secs
lola: 65300482 markings, 120219112 edges, 54203 markings/sec, 1340 secs
lola: 65554469 markings, 120671140 edges, 50797 markings/sec, 1345 secs
lola: 65806083 markings, 121123662 edges, 50323 markings/sec, 1350 secs
lola: 66067202 markings, 121573542 edges, 52224 markings/sec, 1355 secs
lola: 66325341 markings, 122045225 edges, 51628 markings/sec, 1360 secs
lola: 66573505 markings, 122484668 edges, 49633 markings/sec, 1365 secs
lola: 66820362 markings, 122921452 edges, 49371 markings/sec, 1370 secs
lola: 67053157 markings, 123386471 edges, 46559 markings/sec, 1375 secs
lola: 67261397 markings, 123806207 edges, 41648 markings/sec, 1380 secs
lola: 67495810 markings, 124228144 edges, 46883 markings/sec, 1385 secs
lola: 67736651 markings, 124657074 edges, 48168 markings/sec, 1390 secs
lola: 67980474 markings, 125103252 edges, 48765 markings/sec, 1395 secs
lola: 68228146 markings, 125552049 edges, 49534 markings/sec, 1400 secs
lola: 68480344 markings, 126001465 edges, 50440 markings/sec, 1405 secs
lola: 68722740 markings, 126445517 edges, 48479 markings/sec, 1410 secs
lola: 68970387 markings, 126892039 edges, 49529 markings/sec, 1415 secs
lola: 69195286 markings, 127348608 edges, 44980 markings/sec, 1420 secs
lola: 69450687 markings, 127804093 edges, 51080 markings/sec, 1425 secs
lola: 69699584 markings, 128242870 edges, 49779 markings/sec, 1430 secs
lola: 69952879 markings, 128690097 edges, 50659 markings/sec, 1435 secs
lola: 70196749 markings, 129143854 edges, 48774 markings/sec, 1440 secs
lola: 70437202 markings, 129594256 edges, 48091 markings/sec, 1445 secs
lola: 70685710 markings, 130039910 edges, 49702 markings/sec, 1450 secs
lola: 70930396 markings, 130487621 edges, 48937 markings/sec, 1455 secs
lola: 71164204 markings, 130941899 edges, 46762 markings/sec, 1460 secs
lola: 71420199 markings, 131376544 edges, 51199 markings/sec, 1465 secs
lola: 71669635 markings, 131820281 edges, 49887 markings/sec, 1470 secs
lola: 71900596 markings, 132283434 edges, 46192 markings/sec, 1475 secs
lola: 72123867 markings, 132737178 edges, 44654 markings/sec, 1480 secs
lola: 72366680 markings, 133189732 edges, 48563 markings/sec, 1485 secs
lola: 72607563 markings, 133636370 edges, 48177 markings/sec, 1490 secs
lola: 72858062 markings, 134106283 edges, 50100 markings/sec, 1495 secs
lola: 73124485 markings, 134573418 edges, 53285 markings/sec, 1500 secs
lola: 73378061 markings, 135028500 edges, 50715 markings/sec, 1505 secs
lola: 73636807 markings, 135477599 edges, 51749 markings/sec, 1510 secs
lola: 73883407 markings, 135924601 edges, 49320 markings/sec, 1515 secs
lola: 74120555 markings, 136363892 edges, 47430 markings/sec, 1520 secs
lola: 74357863 markings, 136797184 edges, 47462 markings/sec, 1525 secs
lola: 74574138 markings, 137224872 edges, 43255 markings/sec, 1530 secs
lola: 74836364 markings, 137673722 edges, 52445 markings/sec, 1535 secs
lola: 75108339 markings, 138129638 edges, 54395 markings/sec, 1540 secs
lola: 75351159 markings, 138597186 edges, 48564 markings/sec, 1545 secs
lola: 75599617 markings, 139046365 edges, 49692 markings/sec, 1550 secs
lola: 75823369 markings, 139448443 edges, 44750 markings/sec, 1555 secs
lola: 75966674 markings, 139702091 edges, 28661 markings/sec, 1560 secs
lola: 75973282 markings, 139717199 edges, 1322 markings/sec, 1565 secs
lola: 75978331 markings, 139724899 edges, 1010 markings/sec, 1570 secs
lola: 75979644 markings, 139727593 edges, 263 markings/sec, 1575 secs
lola: 76005251 markings, 139774833 edges, 5121 markings/sec, 1580 secs
lola: 76028263 markings, 139820302 edges, 4602 markings/sec, 1585 secs
lola: Child process aborted or communication problem between parent and child process
FORMULA Peterson-COL-6-LTLCardinality-0 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: processed formula length: 2124
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 43740 markings, 89697 edges, 8748 markings/sec, 0 secs
lola: 95762 markings, 201420 edges, 10404 markings/sec, 5 secs
lola: 152360 markings, 327750 edges, 11320 markings/sec, 10 secs
lola: 226287 markings, 521552 edges, 14785 markings/sec, 15 secs
lola: 296379 markings, 707762 edges, 14018 markings/sec, 20 secs
lola: 373315 markings, 912235 edges, 15387 markings/sec, 25 secs
lola: 459673 markings, 1140627 edges, 17272 markings/sec, 30 secs
lola: 544628 markings, 1368957 edges, 16991 markings/sec, 35 secs
lola: 615397 markings, 1557670 edges, 14154 markings/sec, 40 secs
lola: 694095 markings, 1781778 edges, 15740 markings/sec, 45 secs
lola: 775038 markings, 2003880 edges, 16189 markings/sec, 50 secs
lola: 848464 markings, 2196009 edges, 14685 markings/sec, 55 secs
lola: 921614 markings, 2393612 edges, 14630 markings/sec, 60 secs
lola: 1012315 markings, 2636805 edges, 18140 markings/sec, 65 secs
lola: 1106449 markings, 2873669 edges, 18827 markings/sec, 70 secs
lola: 1193441 markings, 3115490 edges, 17398 markings/sec, 75 secs
lola: 1273936 markings, 3332888 edges, 16099 markings/sec, 80 secs
lola: 1344622 markings, 3528992 edges, 14137 markings/sec, 85 secs
lola: 1424621 markings, 3740945 edges, 16000 markings/sec, 90 secs
lola: 1500712 markings, 3951240 edges, 15218 markings/sec, 95 secs
lola: 1584509 markings, 4170505 edges, 16759 markings/sec, 100 secs
lola: 1669052 markings, 4392371 edges, 16909 markings/sec, 105 secs
lola: 1750565 markings, 4605174 edges, 16303 markings/sec, 110 secs
lola: 1838876 markings, 4832392 edges, 17662 markings/sec, 115 secs
lola: 1919370 markings, 5057245 edges, 16099 markings/sec, 120 secs
lola: 2004108 markings, 5284628 edges, 16948 markings/sec, 125 secs
lola: 2083784 markings, 5496599 edges, 15935 markings/sec, 130 secs
lola: 2163569 markings, 5719350 edges, 15957 markings/sec, 135 secs
lola: 2248352 markings, 5951843 edges, 16957 markings/sec, 140 secs
lola: 2332576 markings, 6185690 edges, 16845 markings/sec, 145 secs
lola: 2413817 markings, 6408211 edges, 16248 markings/sec, 150 secs
lola: 2496407 markings, 6628807 edges, 16518 markings/sec, 155 secs
lola: 2579596 markings, 6849865 edges, 16638 markings/sec, 160 secs
lola: 2666038 markings, 7085594 edges, 17288 markings/sec, 165 secs
lola: 2748760 markings, 7310033 edges, 16544 markings/sec, 170 secs
lola: 2833021 markings, 7531920 edges, 16852 markings/sec, 175 secs
lola: 2920515 markings, 7767591 edges, 17499 markings/sec, 180 secs
lola: 3006742 markings, 8006971 edges, 17245 markings/sec, 185 secs
lola: 3096354 markings, 8260561 edges, 17922 markings/sec, 190 secs
lola: 3186095 markings, 8593032 edges, 17948 markings/sec, 195 secs
lola: 3262598 markings, 8795054 edges, 15301 markings/sec, 200 secs
lola: 3337603 markings, 8992897 edges, 15001 markings/sec, 205 secs
lola: 3410153 markings, 9190348 edges, 14510 markings/sec, 210 secs
lola: 3521182 markings, 9608714 edges, 22206 markings/sec, 215 secs
lola: 3566876 markings, 9702856 edges, 9139 markings/sec, 220 secs
lola: 3618798 markings, 9814445 edges, 10384 markings/sec, 225 secs
lola: 3678658 markings, 9952716 edges, 11972 markings/sec, 230 secs
lola: 3743824 markings, 10123304 edges, 13033 markings/sec, 235 secs
lola: 3823951 markings, 10336204 edges, 16025 markings/sec, 240 secs
lola: 3913118 markings, 10571204 edges, 17833 markings/sec, 245 secs
lola: 3987101 markings, 10769147 edges, 14797 markings/sec, 250 secs
lola: 4056666 markings, 10955792 edges, 13913 markings/sec, 255 secs
lola: 4119174 markings, 11131285 edges, 12502 markings/sec, 260 secs
lola: 4192932 markings, 11322025 edges, 14752 markings/sec, 265 secs
lola: 4260777 markings, 11512724 edges, 13569 markings/sec, 270 secs
lola: 4332407 markings, 11705573 edges, 14326 markings/sec, 275 secs
lola: 4411033 markings, 11906845 edges, 15725 markings/sec, 280 secs
lola: 4486162 markings, 12105615 edges, 15026 markings/sec, 285 secs
lola: 4558714 markings, 12306381 edges, 14510 markings/sec, 290 secs
lola: 4639267 markings, 12513912 edges, 16111 markings/sec, 295 secs
lola: 4719001 markings, 12720450 edges, 15947 markings/sec, 300 secs
lola: 4778526 markings, 12888183 edges, 11905 markings/sec, 305 secs
lola: 4849703 markings, 13082701 edges, 14235 markings/sec, 310 secs
lola: 4919173 markings, 13271461 edges, 13894 markings/sec, 315 secs
lola: 4984204 markings, 13457153 edges, 13006 markings/sec, 320 secs
lola: 5063019 markings, 13662720 edges, 15763 markings/sec, 325 secs
lola: 5140050 markings, 13869393 edges, 15406 markings/sec, 330 secs
lola: 5209073 markings, 14061155 edges, 13805 markings/sec, 335 secs
lola: 5280083 markings, 14252573 edges, 14202 markings/sec, 340 secs
lola: 5351661 markings, 14446684 edges, 14316 markings/sec, 345 secs
lola: 5426381 markings, 14641040 edges, 14944 markings/sec, 350 secs
lola: 5497098 markings, 14839553 edges, 14143 markings/sec, 355 secs
lola: 5575515 markings, 15042812 edges, 15683 markings/sec, 360 secs
lola: 5645389 markings, 15233023 edges, 13975 markings/sec, 365 secs
lola: 5713024 markings, 15420552 edges, 13527 markings/sec, 370 secs
lola: 5789263 markings, 15617618 edges, 15248 markings/sec, 375 secs
lola: 5865509 markings, 15826394 edges, 15249 markings/sec, 380 secs
lola: 5940984 markings, 16029822 edges, 15095 markings/sec, 385 secs
lola: 6013941 markings, 16230315 edges, 14591 markings/sec, 390 secs
lola: 6086345 markings, 16433181 edges, 14481 markings/sec, 395 secs
lola: 6164303 markings, 16640907 edges, 15592 markings/sec, 400 secs
lola: 6244292 markings, 16851005 edges, 15998 markings/sec, 405 secs
lola: 6321969 markings, 17066261 edges, 15535 markings/sec, 410 secs
lola: 6404333 markings, 17279940 edges, 16473 markings/sec, 415 secs
lola: 6484177 markings, 17496814 edges, 15969 markings/sec, 420 secs
lola: 6560390 markings, 17708485 edges, 15243 markings/sec, 425 secs
lola: 6647548 markings, 18014307 edges, 17432 markings/sec, 430 secs
lola: 6726126 markings, 18257425 edges, 15716 markings/sec, 435 secs
lola: 6803118 markings, 18460006 edges, 15398 markings/sec, 440 secs
lola: 6879477 markings, 18660823 edges, 15272 markings/sec, 445 secs
lola: 6952623 markings, 18860238 edges, 14629 markings/sec, 450 secs
lola: 7056923 markings, 19256362 edges, 20860 markings/sec, 455 secs
lola: 7102010 markings, 19349607 edges, 9017 markings/sec, 460 secs
lola: 7152451 markings, 19458966 edges, 10088 markings/sec, 465 secs
lola: 7212033 markings, 19596198 edges, 11916 markings/sec, 470 secs
lola: 7285107 markings, 19788782 edges, 14615 markings/sec, 475 secs
lola: 7358181 markings, 19981191 edges, 14615 markings/sec, 480 secs
lola: 7427945 markings, 20164738 edges, 13953 markings/sec, 485 secs
lola: 7509289 markings, 20381021 edges, 16269 markings/sec, 490 secs
lola: 7599871 markings, 20623350 edges, 18116 markings/sec, 495 secs
lola: 7674206 markings, 20819407 edges, 14867 markings/sec, 500 secs
lola: 7763334 markings, 21053633 edges, 17826 markings/sec, 505 secs
lola: 7836790 markings, 21264631 edges, 14691 markings/sec, 510 secs
lola: 7912294 markings, 21466577 edges, 15101 markings/sec, 515 secs
lola: 7994959 markings, 21696905 edges, 16533 markings/sec, 520 secs
lola: 8081688 markings, 21928412 edges, 17346 markings/sec, 525 secs
lola: 8151218 markings, 22120602 edges, 13906 markings/sec, 530 secs
lola: 8235085 markings, 22346293 edges, 16773 markings/sec, 535 secs
lola: 8332646 markings, 22590331 edges, 19512 markings/sec, 540 secs
lola: 8403808 markings, 22784577 edges, 14232 markings/sec, 545 secs
lola: 8493768 markings, 23027415 edges, 17992 markings/sec, 550 secs
lola: 8570337 markings, 23236807 edges, 15314 markings/sec, 555 secs
lola: 8654338 markings, 23462014 edges, 16800 markings/sec, 560 secs
lola: 8734189 markings, 23679855 edges, 15970 markings/sec, 565 secs
lola: 8823914 markings, 23913019 edges, 17945 markings/sec, 570 secs
lola: 8899857 markings, 24118111 edges, 15189 markings/sec, 575 secs
lola: 8979322 markings, 24333575 edges, 15893 markings/sec, 580 secs
lola: 9060330 markings, 24557940 edges, 16202 markings/sec, 585 secs
lola: 9139783 markings, 24773246 edges, 15891 markings/sec, 590 secs
lola: 9216670 markings, 24976572 edges, 15377 markings/sec, 595 secs
lola: 9299618 markings, 25196830 edges, 16590 markings/sec, 600 secs
lola: 9382328 markings, 25422334 edges, 16542 markings/sec, 605 secs
lola: 9460686 markings, 25633367 edges, 15672 markings/sec, 610 secs
lola: 9536669 markings, 25844090 edges, 15197 markings/sec, 615 secs
lola: 9618767 markings, 26062964 edges, 16420 markings/sec, 620 secs
lola: 9702955 markings, 26288884 edges, 16838 markings/sec, 625 secs
lola: 9785788 markings, 26510871 edges, 16567 markings/sec, 630 secs
lola: 9870231 markings, 26735532 edges, 16889 markings/sec, 635 secs
lola: 9957464 markings, 26968984 edges, 17447 markings/sec, 640 secs
lola: 10042568 markings, 27199545 edges, 17021 markings/sec, 645 secs
lola: 10127112 markings, 27436102 edges, 16909 markings/sec, 650 secs
lola: 10215354 markings, 27693689 edges, 17648 markings/sec, 655 secs
lola: 10302758 markings, 28011488 edges, 17481 markings/sec, 660 secs
lola: 10378923 markings, 28212189 edges, 15233 markings/sec, 665 secs
lola: 10448462 markings, 28397279 edges, 13908 markings/sec, 670 secs
lola: 10536931 markings, 28699648 edges, 17694 markings/sec, 675 secs
lola: 10605287 markings, 28920405 edges, 13671 markings/sec, 680 secs
lola: 10655044 markings, 29026829 edges, 9951 markings/sec, 685 secs
lola: 10708062 markings, 29142971 edges, 10604 markings/sec, 690 secs
lola: 10777720 markings, 29318918 edges, 13932 markings/sec, 695 secs
lola: 10851757 markings, 29514438 edges, 14807 markings/sec, 700 secs
lola: 10925343 markings, 29709716 edges, 14717 markings/sec, 705 secs
lola: 10992920 markings, 29889821 edges, 13515 markings/sec, 710 secs
lola: 11070728 markings, 30096642 edges, 15562 markings/sec, 715 secs
lola: 11162623 markings, 30336782 edges, 18379 markings/sec, 720 secs
lola: 11229902 markings, 30516450 edges, 13456 markings/sec, 725 secs
lola: 11292852 markings, 30684908 edges, 12590 markings/sec, 730 secs
lola: 11351305 markings, 30849340 edges, 11691 markings/sec, 735 secs
lola: 11409300 markings, 31010512 edges, 11599 markings/sec, 740 secs
lola: 11471678 markings, 31188288 edges, 12476 markings/sec, 745 secs
lola: 11542682 markings, 31367428 edges, 14201 markings/sec, 750 secs
lola: 11609526 markings, 31545159 edges, 13369 markings/sec, 755 secs
lola: 11676272 markings, 31723906 edges, 13349 markings/sec, 760 secs
lola: 11742122 markings, 31899143 edges, 13170 markings/sec, 765 secs
lola: 11816833 markings, 32087056 edges, 14942 markings/sec, 770 secs
lola: 11868171 markings, 32238046 edges, 10268 markings/sec, 775 secs
lola: 11934822 markings, 32418175 edges, 13330 markings/sec, 780 secs
lola: 12004496 markings, 32597751 edges, 13935 markings/sec, 785 secs
lola: 12062324 markings, 32757625 edges, 11566 markings/sec, 790 secs
lola: 12128222 markings, 32937548 edges, 13180 markings/sec, 795 secs
lola: 12187603 markings, 33102230 edges, 11876 markings/sec, 800 secs
lola: 12251424 markings, 33280519 edges, 12764 markings/sec, 805 secs
lola: 12315699 markings, 33449572 edges, 12855 markings/sec, 810 secs
lola: 12378305 markings, 33617975 edges, 12521 markings/sec, 815 secs
lola: 12444030 markings, 33793968 edges, 13145 markings/sec, 820 secs
lola: 12514910 markings, 33980176 edges, 14176 markings/sec, 825 secs
lola: 12580510 markings, 34151176 edges, 13120 markings/sec, 830 secs
lola: 12645852 markings, 34329736 edges, 13068 markings/sec, 835 secs
lola: 12713224 markings, 34504676 edges, 13474 markings/sec, 840 secs
lola: 12778504 markings, 34679992 edges, 13056 markings/sec, 845 secs
lola: 12843713 markings, 34863732 edges, 13042 markings/sec, 850 secs
lola: 12908943 markings, 35044736 edges, 13046 markings/sec, 855 secs
lola: 12979164 markings, 35230808 edges, 14044 markings/sec, 860 secs
lola: 13041205 markings, 35403708 edges, 12408 markings/sec, 865 secs
lola: 13105191 markings, 35578703 edges, 12797 markings/sec, 870 secs
lola: time limit reached - aborting
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola: memory consumption: 2577516 KB
lola: time consumption: 3568 seconds
lola: memory consumption: 2577516 KB
lola: time consumption: 3568 seconds
BK_STOP 1527439602637
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Peterson-COL-6"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Peterson-COL-6.tgz
mv Peterson-COL-6 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is Peterson-COL-6, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r256-csrt-152732582900155"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;