fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r256-csrt-152732582900155
Last Updated
June 26, 2018

About the Execution of LoLA for Peterson-COL-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15918.280 3569830.00 3706993.00 4926.50 ?FFT?FTFFFFTFFFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.........................................................................................
/home/mcc/execution
total 208K
-rw-r--r-- 1 mcc users 3.5K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 19K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.4K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.0K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.3K May 26 09:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K May 26 09:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.9K May 26 09:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.4K May 26 09:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.5K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 105 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 343 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 15K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.6K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.7K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 46K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is Peterson-COL-6, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r256-csrt-152732582900155
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Peterson-COL-6-LTLCardinality-00
FORMULA_NAME Peterson-COL-6-LTLCardinality-01
FORMULA_NAME Peterson-COL-6-LTLCardinality-02
FORMULA_NAME Peterson-COL-6-LTLCardinality-03
FORMULA_NAME Peterson-COL-6-LTLCardinality-04
FORMULA_NAME Peterson-COL-6-LTLCardinality-05
FORMULA_NAME Peterson-COL-6-LTLCardinality-06
FORMULA_NAME Peterson-COL-6-LTLCardinality-07
FORMULA_NAME Peterson-COL-6-LTLCardinality-08
FORMULA_NAME Peterson-COL-6-LTLCardinality-09
FORMULA_NAME Peterson-COL-6-LTLCardinality-10
FORMULA_NAME Peterson-COL-6-LTLCardinality-11
FORMULA_NAME Peterson-COL-6-LTLCardinality-12
FORMULA_NAME Peterson-COL-6-LTLCardinality-13
FORMULA_NAME Peterson-COL-6-LTLCardinality-14
FORMULA_NAME Peterson-COL-6-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1527436032807

info: Time: 3600 - MCC
===========================================================================================
prep: translating Peterson-COL-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating Peterson-COL-6 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ Peterson-COL-6 @ 3568 seconds
lola: LoLA will run for 3568 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 3486/65536 symbol table entries, 6 collisions
lola: preprocessing...
lola: Size of bit vector: 1372
lola: finding significant places
lola: 1372 places, 2114 transitions, 1345 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 3297 transition conflict sets
lola: TASK
lola: reading formula from Peterson-COL-6-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p965 + p923 <= p672 + p673 + p674 + p675 + p676 + p677 + p679 + p680 + p681 + p682 + p683 + p684 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p700 + p701 + p702 + p703 + p704 + p705 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p706 + p699 + p692 + p685 + p678)
lola: after: (p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p965 + p923 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= p672 + p673 + p674 + p675 + p676 + p677 + p679 + p680 + p681 + p682 + p683 + p684 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p700 + p701 + p702 + p703 + p704 + p705 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p706 + p699 + p692 + p685 + p678)
lola: after: (p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p1371 + p1370 + p1369 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1358)
lola: after: (0 <= 6)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1371 + p1370 + p1369 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1358)
lola: after: (0 <= 4)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p672 + p673 + p674 + p675 + p676 + p677 + p679 + p680 + p681 + p682 + p683 + p684 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p700 + p701 + p702 + p703 + p704 + p705 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p706 + p699 + p692 + p685 + p678 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)
lola: after: (6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1371 + p1370 + p1369 + p1368 + p1367 + p1366 + p1365 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1358)
lola: after: (0 <= 4)
lola: always true
lola: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629))))) : A (G (F (X ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99))))) : A (G (F ((p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 <= p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671)))) : A (X ((G ((3 <= p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350)) U (2 <= p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357)))) : A (F (F (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p960 + p961 + p962 + p963 + p964 + p966 + p967 + p968 + p969 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p965 + p923 <= 6)))))) : A ((G (G ((2 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629))) U ((p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6) U (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)))) : A (G (TRUE)) : A ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)) : A ((G (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755))) U (TRUE U (6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99)))) : A (X ((p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p149 + p150 + p151 + p152 + p153 + p154 + p155 + p156 + p157 + p158 + p159 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p180 + p181 + p182 + p183 + p184 + p185 + p186 + p187 + p188 + p189 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p225 + p226 + p227 + p228 + p229 + p230 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p267 + p268 + p269 + p270 + p271 + p272 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p290 + p291 + p292 + p293 + p98 + p97 + p96 + p95 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p82 + p81 + p80 + p79 + p78 + p77 + p76 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p19 + p75 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p40 + p74 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p73 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p57 + p58 + p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p41 + p83 + p99))) : A (G (G ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))) : A (G (G (X (G (TRUE))))) : A (G (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629)))) : A (F (G (X (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629)))))) : A (X ((2 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056))) : A (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755)))
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:371
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:434
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA Peterson-COL-6-LTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p148 + p... (shortened)
lola: processed formula length: 1952
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: processed formula length: 2143
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 275343 markings, 483730 edges, 55069 markings/sec, 0 secs
lola: 550789 markings, 968114 edges, 55089 markings/sec, 5 secs
lola: 828669 markings, 1453831 edges, 55576 markings/sec, 10 secs
lola: 1100312 markings, 1931593 edges, 54329 markings/sec, 15 secs
lola: 1352120 markings, 2387079 edges, 50362 markings/sec, 20 secs
lola: 1638375 markings, 2867231 edges, 57251 markings/sec, 25 secs
lola: 1912524 markings, 3348795 edges, 54830 markings/sec, 30 secs
lola: 2182654 markings, 3814614 edges, 54026 markings/sec, 35 secs
lola: 2445986 markings, 4315321 edges, 52666 markings/sec, 40 secs
lola: 2717041 markings, 4797983 edges, 54211 markings/sec, 45 secs
lola: 2981270 markings, 5267804 edges, 52846 markings/sec, 50 secs
lola: 3252324 markings, 5746498 edges, 54211 markings/sec, 55 secs
lola: 3520954 markings, 6223695 edges, 53726 markings/sec, 60 secs
lola: 3771210 markings, 6721611 edges, 50051 markings/sec, 65 secs
lola: 4016089 markings, 7208782 edges, 48976 markings/sec, 70 secs
lola: 4255727 markings, 7686900 edges, 47928 markings/sec, 75 secs
lola: 4493056 markings, 8164141 edges, 47466 markings/sec, 80 secs
lola: 4763016 markings, 8649014 edges, 53992 markings/sec, 85 secs
lola: 5024141 markings, 9121770 edges, 52225 markings/sec, 90 secs
lola: 5280618 markings, 9585827 edges, 51295 markings/sec, 95 secs
lola: 5564504 markings, 10057884 edges, 56777 markings/sec, 100 secs
lola: 5832192 markings, 10509135 edges, 53538 markings/sec, 105 secs
lola: 6061936 markings, 10984971 edges, 45949 markings/sec, 110 secs
lola: 6317081 markings, 11461133 edges, 51029 markings/sec, 115 secs
lola: 6589122 markings, 11931755 edges, 54408 markings/sec, 120 secs
lola: 6848144 markings, 12400994 edges, 51804 markings/sec, 125 secs
lola: 7118697 markings, 12870684 edges, 54111 markings/sec, 130 secs
lola: 7413013 markings, 13336412 edges, 58863 markings/sec, 135 secs
lola: 7643274 markings, 13815547 edges, 46052 markings/sec, 140 secs
lola: 7882347 markings, 14253794 edges, 47815 markings/sec, 145 secs
lola: 8106264 markings, 14704110 edges, 44783 markings/sec, 150 secs
lola: 8317925 markings, 15135955 edges, 42332 markings/sec, 155 secs
lola: 8559721 markings, 15572805 edges, 48359 markings/sec, 160 secs
lola: 8809287 markings, 16060206 edges, 49913 markings/sec, 165 secs
lola: 9075414 markings, 16531552 edges, 53225 markings/sec, 170 secs
lola: 9341791 markings, 17007494 edges, 53275 markings/sec, 175 secs
lola: 9594887 markings, 17465312 edges, 50619 markings/sec, 180 secs
lola: 9846806 markings, 17935102 edges, 50384 markings/sec, 185 secs
lola: 10134933 markings, 18391933 edges, 57625 markings/sec, 190 secs
lola: 10372365 markings, 18860854 edges, 47486 markings/sec, 195 secs
lola: 10603886 markings, 19322899 edges, 46304 markings/sec, 200 secs
lola: 10863649 markings, 19776632 edges, 51953 markings/sec, 205 secs
lola: 11107566 markings, 20233454 edges, 48783 markings/sec, 210 secs
lola: 11362098 markings, 20712192 edges, 50906 markings/sec, 215 secs
lola: 11621803 markings, 21168322 edges, 51941 markings/sec, 220 secs
lola: 11885119 markings, 21629921 edges, 52663 markings/sec, 225 secs
lola: 12146519 markings, 22094406 edges, 52280 markings/sec, 230 secs
lola: 12386219 markings, 22568816 edges, 47940 markings/sec, 235 secs
lola: 12680507 markings, 23038671 edges, 58858 markings/sec, 240 secs
lola: 12938224 markings, 23506383 edges, 51543 markings/sec, 245 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown unknown unknown unknown unknown unknown yes no unknown unknown unknown unknown unknown unknown unknown unknown
lola: memory consumption: 2817436 KB
lola: time consumption: 262 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 3 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (((2 <= p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357) OR (G ((3 <= p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (((2 <= p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357) OR (G ((3 <= p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 +... (shortened)
lola: processed formula length: 2505
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 15 markings, 14 edges

FORMULA Peterson-COL-6-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 4 will run for 275 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 +... (shortened)
lola: processed formula length: 2012
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 51 markings, 51 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 300 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 8 markings, 7 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 330 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((2 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((2 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: processed formula length: 68
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 51 markings, 51 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 367 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (G ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)))
lola: processed formula length: 68
lola: 32 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: formula 0: (p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 <= 0)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to Peterson-COL-6-LTLCardinality-7-0.sara
lola: state equation: calling and running sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 413 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (G ((2 <= p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755)))
lola: processed formula length: 306
lola: 32 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: formula 0: (p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 <= 1)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges

FORMULA Peterson-COL-6-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 472 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p39... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p39... (shortened)
lola: processed formula length: 2070
lola: 32 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: formula 0: (p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p523 + p524 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p561 + p562 + p563 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 <= 0)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: ========================================
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 551 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + ... (shortened)
lola: processed formula length: 2074
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 42 markings, 43 edges

FORMULA Peterson-COL-6-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 11 will run for 661 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 +... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 +... (shortened)
lola: processed formula length: 1964
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 29 markings, 29 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 826 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: processed formula length: 2124
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 43665 markings, 89558 edges, 8733 markings/sec, 0 secs
lola: 94611 markings, 198959 edges, 10189 markings/sec, 5 secs
lola: 148852 markings, 319452 edges, 10848 markings/sec, 10 secs
lola: 221381 markings, 509351 edges, 14506 markings/sec, 15 secs
lola: 288918 markings, 690019 edges, 13507 markings/sec, 20 secs
lola: 365984 markings, 892912 edges, 15413 markings/sec, 25 secs
lola: 452659 markings, 1123191 edges, 17335 markings/sec, 30 secs
lola: 536097 markings, 1347631 edges, 16688 markings/sec, 35 secs
lola: 606162 markings, 1532365 edges, 14013 markings/sec, 40 secs
lola: 688584 markings, 1764667 edges, 16484 markings/sec, 45 secs
lola: 767755 markings, 1982848 edges, 15834 markings/sec, 50 secs
lola: 842417 markings, 2180534 edges, 14932 markings/sec, 55 secs
lola: 917330 markings, 2382076 edges, 14983 markings/sec, 60 secs
lola: 1004752 markings, 2619516 edges, 17484 markings/sec, 65 secs
lola: 1101586 markings, 2861395 edges, 19367 markings/sec, 70 secs
lola: 1189120 markings, 3102027 edges, 17507 markings/sec, 75 secs
lola: 1272132 markings, 3327247 edges, 16602 markings/sec, 80 secs
lola: 1341594 markings, 3519728 edges, 13892 markings/sec, 85 secs
lola: 1421535 markings, 3732331 edges, 15988 markings/sec, 90 secs
lola: 1500076 markings, 3949317 edges, 15708 markings/sec, 95 secs
lola: 1582074 markings, 4164405 edges, 16400 markings/sec, 100 secs
lola: 1667694 markings, 4389171 edges, 17124 markings/sec, 105 secs
lola: 1749247 markings, 4601915 edges, 16311 markings/sec, 110 secs
lola: 1837864 markings, 4829565 edges, 17723 markings/sec, 115 secs
lola: 1918056 markings, 5053535 edges, 16038 markings/sec, 120 secs
lola: 2001761 markings, 5277368 edges, 16741 markings/sec, 125 secs
lola: 2081471 markings, 5490742 edges, 15942 markings/sec, 130 secs
lola: 2160146 markings, 5710293 edges, 15735 markings/sec, 135 secs
lola: 2244912 markings, 5941458 edges, 16953 markings/sec, 140 secs
lola: 2328578 markings, 6175766 edges, 16733 markings/sec, 145 secs
lola: 2409210 markings, 6393327 edges, 16126 markings/sec, 150 secs
lola: 2488108 markings, 6608706 edges, 15780 markings/sec, 155 secs
lola: 2572801 markings, 6830547 edges, 16939 markings/sec, 160 secs
lola: 2656075 markings, 7060628 edges, 16655 markings/sec, 165 secs
lola: 2741146 markings, 7289388 edges, 17014 markings/sec, 170 secs
lola: 2829936 markings, 7522496 edges, 17758 markings/sec, 175 secs
lola: 2917267 markings, 7758729 edges, 17466 markings/sec, 180 secs
lola: 3004126 markings, 7999838 edges, 17372 markings/sec, 185 secs
lola: 3091922 markings, 8242093 edges, 17559 markings/sec, 190 secs
lola: 3183747 markings, 8588335 edges, 18365 markings/sec, 195 secs
lola: 3259485 markings, 8786839 edges, 15148 markings/sec, 200 secs
lola: 3333303 markings, 8980848 edges, 14764 markings/sec, 205 secs
lola: 3403537 markings, 9170034 edges, 14047 markings/sec, 210 secs
lola: 3505552 markings, 9552146 edges, 20403 markings/sec, 215 secs
lola: 3560432 markings, 9688919 edges, 10976 markings/sec, 220 secs
lola: 3611318 markings, 9798502 edges, 10177 markings/sec, 225 secs
lola: 3668360 markings, 9925407 edges, 11408 markings/sec, 230 secs
lola: 3733463 markings, 10098199 edges, 13021 markings/sec, 235 secs
lola: 3802997 markings, 10284092 edges, 13907 markings/sec, 240 secs
lola: 3899824 markings, 10537600 edges, 19365 markings/sec, 245 secs
lola: 3972435 markings, 10731460 edges, 14522 markings/sec, 250 secs
lola: 4043278 markings, 10920878 edges, 14169 markings/sec, 255 secs
lola: 4107980 markings, 11098465 edges, 12940 markings/sec, 260 secs
lola: 4179877 markings, 11285994 edges, 14379 markings/sec, 265 secs
lola: 4245196 markings, 11468156 edges, 13064 markings/sec, 270 secs
lola: 4317080 markings, 11662135 edges, 14377 markings/sec, 275 secs
lola: 4393577 markings, 11862435 edges, 15299 markings/sec, 280 secs
lola: 4466046 markings, 12053302 edges, 14494 markings/sec, 285 secs
lola: 4541752 markings, 12258709 edges, 15141 markings/sec, 290 secs
lola: 4618202 markings, 12462328 edges, 15290 markings/sec, 295 secs
lola: 4701811 markings, 12674063 edges, 16722 markings/sec, 300 secs
lola: 4765407 markings, 12851905 edges, 12719 markings/sec, 305 secs
lola: 4833096 markings, 13041021 edges, 13538 markings/sec, 310 secs
lola: 4900112 markings, 13222354 edges, 13403 markings/sec, 315 secs
lola: 4963164 markings, 13396372 edges, 12610 markings/sec, 320 secs
lola: 5034697 markings, 13581091 edges, 14307 markings/sec, 325 secs
lola: 5103033 markings, 13773193 edges, 13667 markings/sec, 330 secs
lola: 5176794 markings, 13969051 edges, 14752 markings/sec, 335 secs
lola: 5242059 markings, 14151754 edges, 13053 markings/sec, 340 secs
lola: 5311203 markings, 14337324 edges, 13829 markings/sec, 345 secs
lola: 5379879 markings, 14521072 edges, 13735 markings/sec, 350 secs
lola: 5450708 markings, 14706680 edges, 14166 markings/sec, 355 secs
lola: 5515651 markings, 14886231 edges, 12989 markings/sec, 360 secs
lola: 5584156 markings, 15069006 edges, 13701 markings/sec, 365 secs
lola: 5656537 markings, 15266300 edges, 14476 markings/sec, 370 secs
lola: 5729022 markings, 15460523 edges, 14497 markings/sec, 375 secs
lola: 5806622 markings, 15662109 edges, 15520 markings/sec, 380 secs
lola: 5880560 markings, 15867654 edges, 14788 markings/sec, 385 secs
lola: 5953033 markings, 16064805 edges, 14495 markings/sec, 390 secs
lola: 6026744 markings, 16265794 edges, 14742 markings/sec, 395 secs
lola: 6097922 markings, 16463078 edges, 14236 markings/sec, 400 secs
lola: 6174980 markings, 16669162 edges, 15412 markings/sec, 405 secs
lola: 6255628 markings, 16881020 edges, 16130 markings/sec, 410 secs
lola: 6333160 markings, 17092407 edges, 15506 markings/sec, 415 secs
lola: 6412870 markings, 17302431 edges, 15942 markings/sec, 420 secs
lola: 6489788 markings, 17512567 edges, 15384 markings/sec, 425 secs
lola: 6563141 markings, 17716207 edges, 14671 markings/sec, 430 secs
lola: 6649680 markings, 18026545 edges, 17308 markings/sec, 435 secs
lola: 6726248 markings, 18257689 edges, 15314 markings/sec, 440 secs
lola: 6800653 markings, 18452323 edges, 14881 markings/sec, 445 secs
lola: 6874651 markings, 18648419 edges, 14800 markings/sec, 450 secs
lola: 6945687 markings, 18841932 edges, 14207 markings/sec, 455 secs
lola: 7050424 markings, 19239653 edges, 20947 markings/sec, 460 secs
lola: 7094719 markings, 19334100 edges, 8859 markings/sec, 465 secs
lola: 7143893 markings, 19440138 edges, 9835 markings/sec, 470 secs
lola: 7199762 markings, 19564973 edges, 11174 markings/sec, 475 secs
lola: 7272268 markings, 19755182 edges, 14501 markings/sec, 480 secs
lola: 7341057 markings, 19935619 edges, 13758 markings/sec, 485 secs
lola: 7413699 markings, 20127484 edges, 14528 markings/sec, 490 secs
lola: 7489342 markings, 20328822 edges, 15129 markings/sec, 495 secs
lola: 7588664 markings, 20591014 edges, 19864 markings/sec, 500 secs
lola: 7659614 markings, 20776200 edges, 14190 markings/sec, 505 secs
lola: 7741825 markings, 20996830 edges, 16442 markings/sec, 510 secs
lola: 7815615 markings, 21204064 edges, 14758 markings/sec, 515 secs
lola: 7892142 markings, 21414807 edges, 15305 markings/sec, 520 secs
lola: 7976845 markings, 21643378 edges, 16941 markings/sec, 525 secs
lola: 8055639 markings, 21862077 edges, 15759 markings/sec, 530 secs
lola: 8135520 markings, 22073504 edges, 15976 markings/sec, 535 secs
lola: 8212559 markings, 22284738 edges, 15408 markings/sec, 540 secs
lola: 8304949 markings, 22521642 edges, 18478 markings/sec, 545 secs
lola: 8384613 markings, 22727887 edges, 15933 markings/sec, 550 secs
lola: 8464255 markings, 22958653 edges, 15928 markings/sec, 555 secs
lola: 8548725 markings, 23178740 edges, 16894 markings/sec, 560 secs
lola: 8631531 markings, 23399874 edges, 16561 markings/sec, 565 secs
lola: 8716588 markings, 23630716 edges, 17011 markings/sec, 570 secs
lola: 8800779 markings, 23856984 edges, 16838 markings/sec, 575 secs
lola: 8887047 markings, 24078490 edges, 17254 markings/sec, 580 secs
lola: 8966394 markings, 24296690 edges, 15869 markings/sec, 585 secs
lola: 9049946 markings, 24527320 edges, 16710 markings/sec, 590 secs
lola: 9130367 markings, 24749863 edges, 16084 markings/sec, 595 secs
lola: 9211922 markings, 24964273 edges, 16311 markings/sec, 600 secs
lola: 9296763 markings, 25189070 edges, 16968 markings/sec, 605 secs
lola: 9381161 markings, 25419587 edges, 16880 markings/sec, 610 secs
lola: 9460787 markings, 25633686 edges, 15925 markings/sec, 615 secs
lola: 9540839 markings, 25855177 edges, 16010 markings/sec, 620 secs
lola: 9626694 markings, 26081495 edges, 17171 markings/sec, 625 secs
lola: 9709550 markings, 26308711 edges, 16571 markings/sec, 630 secs
lola: 9790765 markings, 26525896 edges, 16243 markings/sec, 635 secs
lola: 9875402 markings, 26748911 edges, 16927 markings/sec, 640 secs
lola: 9963204 markings, 26983360 edges, 17560 markings/sec, 645 secs
lola: 10049655 markings, 27217376 edges, 17290 markings/sec, 650 secs
lola: 10135313 markings, 27458839 edges, 17132 markings/sec, 655 secs
lola: 10229445 markings, 27755498 edges, 18826 markings/sec, 660 secs
lola: 10315898 markings, 28048278 edges, 17291 markings/sec, 665 secs
lola: 10392745 markings, 28248227 edges, 15369 markings/sec, 670 secs
lola: 10464784 markings, 28443596 edges, 14408 markings/sec, 675 secs
lola: 10570306 markings, 28837607 edges, 21104 markings/sec, 680 secs
lola: 10619813 markings, 28951186 edges, 9901 markings/sec, 685 secs
lola: 10671164 markings, 29062269 edges, 10270 markings/sec, 690 secs
lola: 10728664 markings, 29190224 edges, 11500 markings/sec, 695 secs
lola: 10802386 markings, 29383661 edges, 14744 markings/sec, 700 secs
lola: 10875528 markings, 29575026 edges, 14628 markings/sec, 705 secs
lola: 10948673 markings, 29770923 edges, 14629 markings/sec, 710 secs
lola: 11015929 markings, 29948666 edges, 13451 markings/sec, 715 secs
lola: 11108075 markings, 30192273 edges, 18429 markings/sec, 720 secs
lola: 11185490 markings, 30396771 edges, 15483 markings/sec, 725 secs
lola: 11251767 markings, 30574509 edges, 13255 markings/sec, 730 secs
lola: 11318818 markings, 30754998 edges, 13410 markings/sec, 735 secs
lola: 11370159 markings, 30904695 edges, 10268 markings/sec, 740 secs
lola: 11432475 markings, 31076494 edges, 12463 markings/sec, 745 secs
lola: 11497561 markings, 31252614 edges, 13017 markings/sec, 750 secs
lola: 11562942 markings, 31422193 edges, 13076 markings/sec, 755 secs
lola: 11631528 markings, 31607346 edges, 13717 markings/sec, 760 secs
lola: 11702620 markings, 31797612 edges, 14218 markings/sec, 765 secs
lola: 11777990 markings, 31988349 edges, 15074 markings/sec, 770 secs
lola: 11843458 markings, 32163594 edges, 13094 markings/sec, 775 secs
lola: 11905008 markings, 32337512 edges, 12310 markings/sec, 780 secs
lola: 11972736 markings, 32521291 edges, 13546 markings/sec, 785 secs
lola: 12038720 markings, 32694906 edges, 13197 markings/sec, 790 secs
lola: 12107160 markings, 32877589 edges, 13688 markings/sec, 795 secs
lola: 12168896 markings, 33047368 edges, 12347 markings/sec, 800 secs
lola: 12232101 markings, 33228262 edges, 12641 markings/sec, 805 secs
lola: 12295000 markings, 33401266 edges, 12580 markings/sec, 810 secs
lola: 12360898 markings, 33574175 edges, 13180 markings/sec, 815 secs
lola: 12431201 markings, 33756281 edges, 14061 markings/sec, 820 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown yes unknown unknown yes no unknown no no yes no no no no
lola: memory consumption: 2436012 KB
lola: time consumption: 1089 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 826 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((F ((6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((6 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p120 + p121 + p122 + p123 + p124 + p125 + p126 + p127 + p128 + p129 + p130 + p131 + p132 + p133 + p134 + p135 + p136 + p137 + p138 + p139 + p140 + p141 + p142 + p143 + p144 + p145 + p146 + p147 + p... (shortened)
lola: processed formula length: 4231
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 29 markings, 29 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1239 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p390 + p391 ... (shortened)
lola: processed formula length: 2364
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 99 markings, 101 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 2479 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((((p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6) U (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p10... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((p294 + p295 + p296 + p297 + p298 + p299 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p309 + p310 + p311 + p312 + p313 + p314 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 <= 6) U (2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p100 + p101 + p102 + p103 + p104 + p10... (shortened)
lola: processed formula length: 6294
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 7 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 27 markings, 27 edges
lola: ========================================

FORMULA Peterson-COL-6-LTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((1 <= p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056)) U X (F ((1 <= p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p351 + p352 + p353 + p354 + p355 + p356 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p3... (shortened)
lola: processed formula length: 2143
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 262229 markings, 451836 edges, 52446 markings/sec, 0 secs
lola: 522765 markings, 912226 edges, 52107 markings/sec, 5 secs
lola: 771614 markings, 1357364 edges, 49770 markings/sec, 10 secs
lola: 1050783 markings, 1830685 edges, 55834 markings/sec, 15 secs
lola: 1292837 markings, 2288979 edges, 48411 markings/sec, 20 secs
lola: 1576441 markings, 2757039 edges, 56721 markings/sec, 25 secs
lola: 1832811 markings, 3220511 edges, 51274 markings/sec, 30 secs
lola: 2091042 markings, 3649158 edges, 51646 markings/sec, 35 secs
lola: 2328578 markings, 4089504 edges, 47507 markings/sec, 40 secs
lola: 2572686 markings, 4549119 edges, 48822 markings/sec, 45 secs
lola: 2822195 markings, 4984516 edges, 49902 markings/sec, 50 secs
lola: 3076610 markings, 5435965 edges, 50883 markings/sec, 55 secs
lola: 3345622 markings, 5893126 edges, 53802 markings/sec, 60 secs
lola: 3571254 markings, 6325458 edges, 45126 markings/sec, 65 secs
lola: 3806983 markings, 6791443 edges, 47146 markings/sec, 70 secs
lola: 4036638 markings, 7250951 edges, 45931 markings/sec, 75 secs
lola: 4265078 markings, 7708135 edges, 45688 markings/sec, 80 secs
lola: 4481134 markings, 8145086 edges, 43211 markings/sec, 85 secs
lola: 4736989 markings, 8599429 edges, 51171 markings/sec, 90 secs
lola: 4980507 markings, 9030531 edges, 48704 markings/sec, 95 secs
lola: 5212918 markings, 9456408 edges, 46482 markings/sec, 100 secs
lola: 5481474 markings, 9919516 edges, 53711 markings/sec, 105 secs
lola: 5758968 markings, 10360445 edges, 55499 markings/sec, 110 secs
lola: 5977339 markings, 10817515 edges, 43674 markings/sec, 115 secs
lola: 6206006 markings, 11244736 edges, 45733 markings/sec, 120 secs
lola: 6450440 markings, 11691791 edges, 48887 markings/sec, 125 secs
lola: 6701784 markings, 12143790 edges, 50269 markings/sec, 130 secs
lola: 6962734 markings, 12617374 edges, 52190 markings/sec, 135 secs
lola: 7260170 markings, 13104696 edges, 59487 markings/sec, 140 secs
lola: 7537456 markings, 13588895 edges, 55457 markings/sec, 145 secs
lola: 7772312 markings, 14064094 edges, 46971 markings/sec, 150 secs
lola: 8027725 markings, 14549293 edges, 51083 markings/sec, 155 secs
lola: 8268591 markings, 15030774 edges, 48173 markings/sec, 160 secs
lola: 8515221 markings, 15499771 edges, 49326 markings/sec, 165 secs
lola: 8745906 markings, 15956938 edges, 46137 markings/sec, 170 secs
lola: 9002252 markings, 16406345 edges, 51269 markings/sec, 175 secs
lola: 9263520 markings, 16863093 edges, 52254 markings/sec, 180 secs
lola: 9521615 markings, 17322381 edges, 51619 markings/sec, 185 secs
lola: 9762994 markings, 17801448 edges, 48276 markings/sec, 190 secs
lola: 10051222 markings, 18265397 edges, 57646 markings/sec, 195 secs
lola: 10300386 markings, 18707318 edges, 49833 markings/sec, 200 secs
lola: 10510732 markings, 19140847 edges, 42069 markings/sec, 205 secs
lola: 10745253 markings, 19565621 edges, 46904 markings/sec, 210 secs
lola: 10984361 markings, 19990316 edges, 47822 markings/sec, 215 secs
lola: 11219579 markings, 20420627 edges, 47044 markings/sec, 220 secs
lola: 11456673 markings, 20865753 edges, 47419 markings/sec, 225 secs
lola: 11715475 markings, 21323392 edges, 51760 markings/sec, 230 secs
lola: 11971944 markings, 21783983 edges, 51294 markings/sec, 235 secs
lola: 12220818 markings, 22240134 edges, 49775 markings/sec, 240 secs
lola: 12465439 markings, 22694400 edges, 48924 markings/sec, 245 secs
lola: 12747554 markings, 23142197 edges, 56423 markings/sec, 250 secs
lola: 12983655 markings, 23604223 edges, 47220 markings/sec, 255 secs
lola: 13210535 markings, 24060481 edges, 45376 markings/sec, 260 secs
lola: 13470584 markings, 24509403 edges, 52010 markings/sec, 265 secs
lola: 13710596 markings, 24964358 edges, 48002 markings/sec, 270 secs
lola: 13971116 markings, 25416473 edges, 52104 markings/sec, 275 secs
lola: 14206182 markings, 25894003 edges, 47013 markings/sec, 280 secs
lola: 14429494 markings, 26347005 edges, 44662 markings/sec, 285 secs
lola: 14657522 markings, 26807894 edges, 45606 markings/sec, 290 secs
lola: 14928846 markings, 27256023 edges, 54265 markings/sec, 295 secs
lola: 15171703 markings, 27688595 edges, 48571 markings/sec, 300 secs
lola: 15409402 markings, 28111229 edges, 47540 markings/sec, 305 secs
lola: 15652254 markings, 28534139 edges, 48570 markings/sec, 310 secs
lola: 15895266 markings, 28954963 edges, 48602 markings/sec, 315 secs
lola: 16129087 markings, 29382145 edges, 46764 markings/sec, 320 secs
lola: 16365007 markings, 29802917 edges, 47184 markings/sec, 325 secs
lola: 16598871 markings, 30224863 edges, 46773 markings/sec, 330 secs
lola: 16830243 markings, 30686521 edges, 46274 markings/sec, 335 secs
lola: 17051602 markings, 31120140 edges, 44272 markings/sec, 340 secs
lola: 17288537 markings, 31543407 edges, 47387 markings/sec, 345 secs
lola: 17518375 markings, 31966902 edges, 45968 markings/sec, 350 secs
lola: 17765885 markings, 32414890 edges, 49502 markings/sec, 355 secs
lola: 18027763 markings, 32872263 edges, 52376 markings/sec, 360 secs
lola: 18271598 markings, 33332355 edges, 48767 markings/sec, 365 secs
lola: 18530428 markings, 33779116 edges, 51766 markings/sec, 370 secs
lola: 18773258 markings, 34248767 edges, 48566 markings/sec, 375 secs
lola: 19003701 markings, 34713556 edges, 46089 markings/sec, 380 secs
lola: 19271761 markings, 35169692 edges, 53612 markings/sec, 385 secs
lola: 19530162 markings, 35628387 edges, 51680 markings/sec, 390 secs
lola: 19787499 markings, 36088470 edges, 51467 markings/sec, 395 secs
lola: 20026143 markings, 36550058 edges, 47729 markings/sec, 400 secs
lola: 20279437 markings, 37008327 edges, 50659 markings/sec, 405 secs
lola: 20526261 markings, 37467681 edges, 49365 markings/sec, 410 secs
lola: 20782644 markings, 37922519 edges, 51277 markings/sec, 415 secs
lola: 21024024 markings, 38389777 edges, 48276 markings/sec, 420 secs
lola: 21286241 markings, 38835299 edges, 52443 markings/sec, 425 secs
lola: 21532131 markings, 39291994 edges, 49178 markings/sec, 430 secs
lola: 21751971 markings, 39735394 edges, 43968 markings/sec, 435 secs
lola: 21970857 markings, 40178837 edges, 43777 markings/sec, 440 secs
lola: 22221452 markings, 40587609 edges, 50119 markings/sec, 445 secs
lola: 22483950 markings, 41009120 edges, 52500 markings/sec, 450 secs
lola: 22709980 markings, 41442621 edges, 45206 markings/sec, 455 secs
lola: 22919014 markings, 41866235 edges, 41807 markings/sec, 460 secs
lola: 23139803 markings, 42295301 edges, 44158 markings/sec, 465 secs
lola: 23391890 markings, 42747356 edges, 50417 markings/sec, 470 secs
lola: 23652054 markings, 43201510 edges, 52033 markings/sec, 475 secs
lola: 23909929 markings, 43655873 edges, 51575 markings/sec, 480 secs
lola: 24165460 markings, 44110669 edges, 51106 markings/sec, 485 secs
lola: 24415335 markings, 44565141 edges, 49975 markings/sec, 490 secs
lola: 24682848 markings, 45014211 edges, 53503 markings/sec, 495 secs
lola: 24922980 markings, 45467140 edges, 48026 markings/sec, 500 secs
lola: 25169191 markings, 45904084 edges, 49242 markings/sec, 505 secs
lola: 25393166 markings, 46322496 edges, 44795 markings/sec, 510 secs
lola: 25618885 markings, 46740690 edges, 45144 markings/sec, 515 secs
lola: 25852981 markings, 47168173 edges, 46819 markings/sec, 520 secs
lola: 26085043 markings, 47625427 edges, 46412 markings/sec, 525 secs
lola: 26295319 markings, 48053314 edges, 42055 markings/sec, 530 secs
lola: 26550373 markings, 48479934 edges, 51011 markings/sec, 535 secs
lola: 26808856 markings, 48913429 edges, 51697 markings/sec, 540 secs
lola: 27050912 markings, 49341848 edges, 48411 markings/sec, 545 secs
lola: 27305112 markings, 49758829 edges, 50840 markings/sec, 550 secs
lola: 27561186 markings, 50194503 edges, 51215 markings/sec, 555 secs
lola: 27787434 markings, 50627681 edges, 45250 markings/sec, 560 secs
lola: 28000316 markings, 51048922 edges, 42576 markings/sec, 565 secs
lola: 28230951 markings, 51467436 edges, 46127 markings/sec, 570 secs
lola: 28457069 markings, 51876601 edges, 45224 markings/sec, 575 secs
lola: 28687514 markings, 52298767 edges, 46089 markings/sec, 580 secs
lola: 28914888 markings, 52713073 edges, 45475 markings/sec, 585 secs
lola: 29154685 markings, 53134005 edges, 47959 markings/sec, 590 secs
lola: 29383646 markings, 53560496 edges, 45792 markings/sec, 595 secs
lola: 29626271 markings, 53970902 edges, 48525 markings/sec, 600 secs
lola: 29855335 markings, 54387653 edges, 45813 markings/sec, 605 secs
lola: 30082016 markings, 54814224 edges, 45336 markings/sec, 610 secs
lola: 30325324 markings, 55226743 edges, 48662 markings/sec, 615 secs
lola: 30555516 markings, 55640080 edges, 46038 markings/sec, 620 secs
lola: 30772688 markings, 56073127 edges, 43434 markings/sec, 625 secs
lola: 31028066 markings, 56503062 edges, 51076 markings/sec, 630 secs
lola: 31280024 markings, 56936057 edges, 50392 markings/sec, 635 secs
lola: 31514209 markings, 57371477 edges, 46837 markings/sec, 640 secs
lola: 31765048 markings, 57811177 edges, 50168 markings/sec, 645 secs
lola: 31986316 markings, 58248604 edges, 44254 markings/sec, 650 secs
lola: 32204388 markings, 58683932 edges, 43614 markings/sec, 655 secs
lola: 32439436 markings, 59105404 edges, 47010 markings/sec, 660 secs
lola: 32686990 markings, 59544567 edges, 49511 markings/sec, 665 secs
lola: 32934894 markings, 59996905 edges, 49581 markings/sec, 670 secs
lola: 33193390 markings, 60447337 edges, 51699 markings/sec, 675 secs
lola: 33440107 markings, 60894889 edges, 49343 markings/sec, 680 secs
lola: 33688748 markings, 61342102 edges, 49728 markings/sec, 685 secs
lola: 33913545 markings, 61765716 edges, 44959 markings/sec, 690 secs
lola: 34130592 markings, 62193504 edges, 43409 markings/sec, 695 secs
lola: 34389205 markings, 62634112 edges, 51723 markings/sec, 700 secs
lola: 34661938 markings, 63086871 edges, 54547 markings/sec, 705 secs
lola: 34898888 markings, 63548026 edges, 47390 markings/sec, 710 secs
lola: 35153902 markings, 64007371 edges, 51003 markings/sec, 715 secs
lola: 35397835 markings, 64444195 edges, 48787 markings/sec, 720 secs
lola: 35640218 markings, 64890882 edges, 48477 markings/sec, 725 secs
lola: 35905197 markings, 65362585 edges, 52996 markings/sec, 730 secs
lola: 36152611 markings, 65837705 edges, 49483 markings/sec, 735 secs
lola: 36424428 markings, 66290812 edges, 54363 markings/sec, 740 secs
lola: 36676181 markings, 66754265 edges, 50351 markings/sec, 745 secs
lola: 36914255 markings, 67226088 edges, 47615 markings/sec, 750 secs
lola: 37169219 markings, 67658269 edges, 50993 markings/sec, 755 secs
lola: 37420838 markings, 68058965 edges, 50324 markings/sec, 760 secs
lola: 37645846 markings, 68477837 edges, 45002 markings/sec, 765 secs
lola: 37878351 markings, 68932425 edges, 46501 markings/sec, 770 secs
lola: 38117252 markings, 69419694 edges, 47780 markings/sec, 775 secs
lola: 38352890 markings, 69896384 edges, 47128 markings/sec, 780 secs
lola: 38593291 markings, 70381357 edges, 48080 markings/sec, 785 secs
lola: 38826647 markings, 70858585 edges, 46671 markings/sec, 790 secs
lola: 39064071 markings, 71336665 edges, 47485 markings/sec, 795 secs
lola: 39293754 markings, 71810556 edges, 45937 markings/sec, 800 secs
lola: 39526183 markings, 72264011 edges, 46486 markings/sec, 805 secs
lola: 39749239 markings, 72721616 edges, 44611 markings/sec, 810 secs
lola: 39970936 markings, 73173519 edges, 44339 markings/sec, 815 secs
lola: 40200568 markings, 73631815 edges, 45926 markings/sec, 820 secs
lola: 40427212 markings, 74095305 edges, 45329 markings/sec, 825 secs
lola: 40651925 markings, 74554757 edges, 44943 markings/sec, 830 secs
lola: 40882088 markings, 75019763 edges, 46033 markings/sec, 835 secs
lola: 41120319 markings, 75500233 edges, 47646 markings/sec, 840 secs
lola: 41375582 markings, 75970628 edges, 51053 markings/sec, 845 secs
lola: 41610082 markings, 76392486 edges, 46900 markings/sec, 850 secs
lola: 41842740 markings, 76810486 edges, 46532 markings/sec, 855 secs
lola: 42073523 markings, 77230414 edges, 46157 markings/sec, 860 secs
lola: 42304857 markings, 77646642 edges, 46267 markings/sec, 865 secs
lola: 42532223 markings, 78086183 edges, 45473 markings/sec, 870 secs
lola: 42794474 markings, 78504248 edges, 52450 markings/sec, 875 secs
lola: 43025902 markings, 78917809 edges, 46286 markings/sec, 880 secs
lola: 43244422 markings, 79367631 edges, 43704 markings/sec, 885 secs
lola: 43493824 markings, 79839253 edges, 49880 markings/sec, 890 secs
lola: 43737375 markings, 80299344 edges, 48710 markings/sec, 895 secs
lola: 43972544 markings, 80749790 edges, 47034 markings/sec, 900 secs
lola: 44217733 markings, 81189571 edges, 49038 markings/sec, 905 secs
lola: 44448502 markings, 81586442 edges, 46154 markings/sec, 910 secs
lola: 44694316 markings, 82020490 edges, 49163 markings/sec, 915 secs
lola: 44925366 markings, 82475144 edges, 46210 markings/sec, 920 secs
lola: 45197314 markings, 82923814 edges, 54390 markings/sec, 925 secs
lola: 45452226 markings, 83362920 edges, 50982 markings/sec, 930 secs
lola: 45672951 markings, 83818755 edges, 44145 markings/sec, 935 secs
lola: 45886996 markings, 84227463 edges, 42809 markings/sec, 940 secs
lola: 46100230 markings, 84634495 edges, 42647 markings/sec, 945 secs
lola: 46327114 markings, 85031265 edges, 45377 markings/sec, 950 secs
lola: 46576411 markings, 85491828 edges, 49859 markings/sec, 955 secs
lola: 46846949 markings, 85944159 edges, 54108 markings/sec, 960 secs
lola: 47094475 markings, 86406373 edges, 49505 markings/sec, 965 secs
lola: 47332073 markings, 86874229 edges, 47520 markings/sec, 970 secs
lola: 47611034 markings, 87346018 edges, 55792 markings/sec, 975 secs
lola: 47860419 markings, 87811727 edges, 49877 markings/sec, 980 secs
lola: 48111976 markings, 88283312 edges, 50311 markings/sec, 985 secs
lola: 48370303 markings, 88722805 edges, 51665 markings/sec, 990 secs
lola: 48593037 markings, 89144735 edges, 44547 markings/sec, 995 secs
lola: 48815400 markings, 89556601 edges, 44473 markings/sec, 1000 secs
lola: 49067070 markings, 89994493 edges, 50334 markings/sec, 1005 secs
lola: 49315528 markings, 90451358 edges, 49692 markings/sec, 1010 secs
lola: 49570394 markings, 90911235 edges, 50973 markings/sec, 1015 secs
lola: 49810750 markings, 91370619 edges, 48071 markings/sec, 1020 secs
lola: 50037743 markings, 91834951 edges, 45399 markings/sec, 1025 secs
lola: 50263460 markings, 92291778 edges, 45143 markings/sec, 1030 secs
lola: 50507137 markings, 92757566 edges, 48735 markings/sec, 1035 secs
lola: 50746997 markings, 93222993 edges, 47972 markings/sec, 1040 secs
lola: 51054476 markings, 93657152 edges, 61496 markings/sec, 1045 secs
lola: 51312742 markings, 94101961 edges, 51653 markings/sec, 1050 secs
lola: 51559296 markings, 94538306 edges, 49311 markings/sec, 1055 secs
lola: 51787074 markings, 94996433 edges, 45556 markings/sec, 1060 secs
lola: 52074370 markings, 95417559 edges, 57459 markings/sec, 1065 secs
lola: 52340114 markings, 95846038 edges, 53149 markings/sec, 1070 secs
lola: 52579843 markings, 96279699 edges, 47946 markings/sec, 1075 secs
lola: 52829458 markings, 96733495 edges, 49923 markings/sec, 1080 secs
lola: 53066043 markings, 97205972 edges, 47317 markings/sec, 1085 secs
lola: 53289680 markings, 97654555 edges, 44727 markings/sec, 1090 secs
lola: 53511939 markings, 98102463 edges, 44452 markings/sec, 1095 secs
lola: 53723100 markings, 98527942 edges, 42232 markings/sec, 1100 secs
lola: 53972646 markings, 98941800 edges, 49909 markings/sec, 1105 secs
lola: 54206230 markings, 99383182 edges, 46717 markings/sec, 1110 secs
lola: 54470317 markings, 99840847 edges, 52817 markings/sec, 1115 secs
lola: 54725746 markings, 100285736 edges, 51086 markings/sec, 1120 secs
lola: 54968528 markings, 100723956 edges, 48556 markings/sec, 1125 secs
lola: 55197747 markings, 101169513 edges, 45844 markings/sec, 1130 secs
lola: 55449117 markings, 101621081 edges, 50274 markings/sec, 1135 secs
lola: 55692593 markings, 102076077 edges, 48695 markings/sec, 1140 secs
lola: 55944485 markings, 102523132 edges, 50378 markings/sec, 1145 secs
lola: 56178761 markings, 102982206 edges, 46855 markings/sec, 1150 secs
lola: 56432371 markings, 103434514 edges, 50722 markings/sec, 1155 secs
lola: 56672964 markings, 103892388 edges, 48119 markings/sec, 1160 secs
lola: 56926766 markings, 104342052 edges, 50760 markings/sec, 1165 secs
lola: 57175179 markings, 104794123 edges, 49683 markings/sec, 1170 secs
lola: 57409988 markings, 105248589 edges, 46962 markings/sec, 1175 secs
lola: 57677496 markings, 105712422 edges, 53502 markings/sec, 1180 secs
lola: 57922878 markings, 106169090 edges, 49076 markings/sec, 1185 secs
lola: 58159170 markings, 106607544 edges, 47258 markings/sec, 1190 secs
lola: 58367537 markings, 107032170 edges, 41673 markings/sec, 1195 secs
lola: 58575489 markings, 107454369 edges, 41590 markings/sec, 1200 secs
lola: 58831373 markings, 107892954 edges, 51177 markings/sec, 1205 secs
lola: 59103228 markings, 108322061 edges, 54371 markings/sec, 1210 secs
lola: 59369006 markings, 108753692 edges, 53156 markings/sec, 1215 secs
lola: 59613767 markings, 109207337 edges, 48952 markings/sec, 1220 secs
lola: 59838203 markings, 109661830 edges, 44887 markings/sec, 1225 secs
lola: 60068551 markings, 110118576 edges, 46070 markings/sec, 1230 secs
lola: 60320195 markings, 110569712 edges, 50329 markings/sec, 1235 secs
lola: 60595431 markings, 110994543 edges, 55047 markings/sec, 1240 secs
lola: 60864337 markings, 111422595 edges, 53781 markings/sec, 1245 secs
lola: 61110749 markings, 111880414 edges, 49282 markings/sec, 1250 secs
lola: 61343138 markings, 112338822 edges, 46478 markings/sec, 1255 secs
lola: 61579110 markings, 112812029 edges, 47194 markings/sec, 1260 secs
lola: 61820090 markings, 113299013 edges, 48196 markings/sec, 1265 secs
lola: 62057136 markings, 113772994 edges, 47409 markings/sec, 1270 secs
lola: 62293463 markings, 114252924 edges, 47265 markings/sec, 1275 secs
lola: 62521652 markings, 114724314 edges, 45638 markings/sec, 1280 secs
lola: 62758245 markings, 115196382 edges, 47319 markings/sec, 1285 secs
lola: 62995154 markings, 115681434 edges, 47382 markings/sec, 1290 secs
lola: 63227604 markings, 116149796 edges, 46490 markings/sec, 1295 secs
lola: 63452576 markings, 116595932 edges, 44994 markings/sec, 1300 secs
lola: 63670836 markings, 117045404 edges, 43652 markings/sec, 1305 secs
lola: 63893019 markings, 117491793 edges, 44437 markings/sec, 1310 secs
lola: 64115926 markings, 117947702 edges, 44581 markings/sec, 1315 secs
lola: 64337152 markings, 118393164 edges, 44245 markings/sec, 1320 secs
lola: 64558113 markings, 118847829 edges, 44192 markings/sec, 1325 secs
lola: 64783507 markings, 119303210 edges, 45079 markings/sec, 1330 secs
lola: 65029467 markings, 119765817 edges, 49192 markings/sec, 1335 secs
lola: 65300482 markings, 120219112 edges, 54203 markings/sec, 1340 secs
lola: 65554469 markings, 120671140 edges, 50797 markings/sec, 1345 secs
lola: 65806083 markings, 121123662 edges, 50323 markings/sec, 1350 secs
lola: 66067202 markings, 121573542 edges, 52224 markings/sec, 1355 secs
lola: 66325341 markings, 122045225 edges, 51628 markings/sec, 1360 secs
lola: 66573505 markings, 122484668 edges, 49633 markings/sec, 1365 secs
lola: 66820362 markings, 122921452 edges, 49371 markings/sec, 1370 secs
lola: 67053157 markings, 123386471 edges, 46559 markings/sec, 1375 secs
lola: 67261397 markings, 123806207 edges, 41648 markings/sec, 1380 secs
lola: 67495810 markings, 124228144 edges, 46883 markings/sec, 1385 secs
lola: 67736651 markings, 124657074 edges, 48168 markings/sec, 1390 secs
lola: 67980474 markings, 125103252 edges, 48765 markings/sec, 1395 secs
lola: 68228146 markings, 125552049 edges, 49534 markings/sec, 1400 secs
lola: 68480344 markings, 126001465 edges, 50440 markings/sec, 1405 secs
lola: 68722740 markings, 126445517 edges, 48479 markings/sec, 1410 secs
lola: 68970387 markings, 126892039 edges, 49529 markings/sec, 1415 secs
lola: 69195286 markings, 127348608 edges, 44980 markings/sec, 1420 secs
lola: 69450687 markings, 127804093 edges, 51080 markings/sec, 1425 secs
lola: 69699584 markings, 128242870 edges, 49779 markings/sec, 1430 secs
lola: 69952879 markings, 128690097 edges, 50659 markings/sec, 1435 secs
lola: 70196749 markings, 129143854 edges, 48774 markings/sec, 1440 secs
lola: 70437202 markings, 129594256 edges, 48091 markings/sec, 1445 secs
lola: 70685710 markings, 130039910 edges, 49702 markings/sec, 1450 secs
lola: 70930396 markings, 130487621 edges, 48937 markings/sec, 1455 secs
lola: 71164204 markings, 130941899 edges, 46762 markings/sec, 1460 secs
lola: 71420199 markings, 131376544 edges, 51199 markings/sec, 1465 secs
lola: 71669635 markings, 131820281 edges, 49887 markings/sec, 1470 secs
lola: 71900596 markings, 132283434 edges, 46192 markings/sec, 1475 secs
lola: 72123867 markings, 132737178 edges, 44654 markings/sec, 1480 secs
lola: 72366680 markings, 133189732 edges, 48563 markings/sec, 1485 secs
lola: 72607563 markings, 133636370 edges, 48177 markings/sec, 1490 secs
lola: 72858062 markings, 134106283 edges, 50100 markings/sec, 1495 secs
lola: 73124485 markings, 134573418 edges, 53285 markings/sec, 1500 secs
lola: 73378061 markings, 135028500 edges, 50715 markings/sec, 1505 secs
lola: 73636807 markings, 135477599 edges, 51749 markings/sec, 1510 secs
lola: 73883407 markings, 135924601 edges, 49320 markings/sec, 1515 secs
lola: 74120555 markings, 136363892 edges, 47430 markings/sec, 1520 secs
lola: 74357863 markings, 136797184 edges, 47462 markings/sec, 1525 secs
lola: 74574138 markings, 137224872 edges, 43255 markings/sec, 1530 secs
lola: 74836364 markings, 137673722 edges, 52445 markings/sec, 1535 secs
lola: 75108339 markings, 138129638 edges, 54395 markings/sec, 1540 secs
lola: 75351159 markings, 138597186 edges, 48564 markings/sec, 1545 secs
lola: 75599617 markings, 139046365 edges, 49692 markings/sec, 1550 secs
lola: 75823369 markings, 139448443 edges, 44750 markings/sec, 1555 secs
lola: 75966674 markings, 139702091 edges, 28661 markings/sec, 1560 secs
lola: 75973282 markings, 139717199 edges, 1322 markings/sec, 1565 secs
lola: 75978331 markings, 139724899 edges, 1010 markings/sec, 1570 secs
lola: 75979644 markings, 139727593 edges, 263 markings/sec, 1575 secs
lola: 76005251 markings, 139774833 edges, 5121 markings/sec, 1580 secs
lola: 76028263 markings, 139820302 edges, 4602 markings/sec, 1585 secs
lola: Child process aborted or communication problem between parent and child process

FORMULA Peterson-COL-6-LTLCardinality-0 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 ... (shortened)
lola: processed formula length: 2124
lola: 30 rewrites
lola: closed formula file Peterson-COL-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 43740 markings, 89697 edges, 8748 markings/sec, 0 secs
lola: 95762 markings, 201420 edges, 10404 markings/sec, 5 secs
lola: 152360 markings, 327750 edges, 11320 markings/sec, 10 secs
lola: 226287 markings, 521552 edges, 14785 markings/sec, 15 secs
lola: 296379 markings, 707762 edges, 14018 markings/sec, 20 secs
lola: 373315 markings, 912235 edges, 15387 markings/sec, 25 secs
lola: 459673 markings, 1140627 edges, 17272 markings/sec, 30 secs
lola: 544628 markings, 1368957 edges, 16991 markings/sec, 35 secs
lola: 615397 markings, 1557670 edges, 14154 markings/sec, 40 secs
lola: 694095 markings, 1781778 edges, 15740 markings/sec, 45 secs
lola: 775038 markings, 2003880 edges, 16189 markings/sec, 50 secs
lola: 848464 markings, 2196009 edges, 14685 markings/sec, 55 secs
lola: 921614 markings, 2393612 edges, 14630 markings/sec, 60 secs
lola: 1012315 markings, 2636805 edges, 18140 markings/sec, 65 secs
lola: 1106449 markings, 2873669 edges, 18827 markings/sec, 70 secs
lola: 1193441 markings, 3115490 edges, 17398 markings/sec, 75 secs
lola: 1273936 markings, 3332888 edges, 16099 markings/sec, 80 secs
lola: 1344622 markings, 3528992 edges, 14137 markings/sec, 85 secs
lola: 1424621 markings, 3740945 edges, 16000 markings/sec, 90 secs
lola: 1500712 markings, 3951240 edges, 15218 markings/sec, 95 secs
lola: 1584509 markings, 4170505 edges, 16759 markings/sec, 100 secs
lola: 1669052 markings, 4392371 edges, 16909 markings/sec, 105 secs
lola: 1750565 markings, 4605174 edges, 16303 markings/sec, 110 secs
lola: 1838876 markings, 4832392 edges, 17662 markings/sec, 115 secs
lola: 1919370 markings, 5057245 edges, 16099 markings/sec, 120 secs
lola: 2004108 markings, 5284628 edges, 16948 markings/sec, 125 secs
lola: 2083784 markings, 5496599 edges, 15935 markings/sec, 130 secs
lola: 2163569 markings, 5719350 edges, 15957 markings/sec, 135 secs
lola: 2248352 markings, 5951843 edges, 16957 markings/sec, 140 secs
lola: 2332576 markings, 6185690 edges, 16845 markings/sec, 145 secs
lola: 2413817 markings, 6408211 edges, 16248 markings/sec, 150 secs
lola: 2496407 markings, 6628807 edges, 16518 markings/sec, 155 secs
lola: 2579596 markings, 6849865 edges, 16638 markings/sec, 160 secs
lola: 2666038 markings, 7085594 edges, 17288 markings/sec, 165 secs
lola: 2748760 markings, 7310033 edges, 16544 markings/sec, 170 secs
lola: 2833021 markings, 7531920 edges, 16852 markings/sec, 175 secs
lola: 2920515 markings, 7767591 edges, 17499 markings/sec, 180 secs
lola: 3006742 markings, 8006971 edges, 17245 markings/sec, 185 secs
lola: 3096354 markings, 8260561 edges, 17922 markings/sec, 190 secs
lola: 3186095 markings, 8593032 edges, 17948 markings/sec, 195 secs
lola: 3262598 markings, 8795054 edges, 15301 markings/sec, 200 secs
lola: 3337603 markings, 8992897 edges, 15001 markings/sec, 205 secs
lola: 3410153 markings, 9190348 edges, 14510 markings/sec, 210 secs
lola: 3521182 markings, 9608714 edges, 22206 markings/sec, 215 secs
lola: 3566876 markings, 9702856 edges, 9139 markings/sec, 220 secs
lola: 3618798 markings, 9814445 edges, 10384 markings/sec, 225 secs
lola: 3678658 markings, 9952716 edges, 11972 markings/sec, 230 secs
lola: 3743824 markings, 10123304 edges, 13033 markings/sec, 235 secs
lola: 3823951 markings, 10336204 edges, 16025 markings/sec, 240 secs
lola: 3913118 markings, 10571204 edges, 17833 markings/sec, 245 secs
lola: 3987101 markings, 10769147 edges, 14797 markings/sec, 250 secs
lola: 4056666 markings, 10955792 edges, 13913 markings/sec, 255 secs
lola: 4119174 markings, 11131285 edges, 12502 markings/sec, 260 secs
lola: 4192932 markings, 11322025 edges, 14752 markings/sec, 265 secs
lola: 4260777 markings, 11512724 edges, 13569 markings/sec, 270 secs
lola: 4332407 markings, 11705573 edges, 14326 markings/sec, 275 secs
lola: 4411033 markings, 11906845 edges, 15725 markings/sec, 280 secs
lola: 4486162 markings, 12105615 edges, 15026 markings/sec, 285 secs
lola: 4558714 markings, 12306381 edges, 14510 markings/sec, 290 secs
lola: 4639267 markings, 12513912 edges, 16111 markings/sec, 295 secs
lola: 4719001 markings, 12720450 edges, 15947 markings/sec, 300 secs
lola: 4778526 markings, 12888183 edges, 11905 markings/sec, 305 secs
lola: 4849703 markings, 13082701 edges, 14235 markings/sec, 310 secs
lola: 4919173 markings, 13271461 edges, 13894 markings/sec, 315 secs
lola: 4984204 markings, 13457153 edges, 13006 markings/sec, 320 secs
lola: 5063019 markings, 13662720 edges, 15763 markings/sec, 325 secs
lola: 5140050 markings, 13869393 edges, 15406 markings/sec, 330 secs
lola: 5209073 markings, 14061155 edges, 13805 markings/sec, 335 secs
lola: 5280083 markings, 14252573 edges, 14202 markings/sec, 340 secs
lola: 5351661 markings, 14446684 edges, 14316 markings/sec, 345 secs
lola: 5426381 markings, 14641040 edges, 14944 markings/sec, 350 secs
lola: 5497098 markings, 14839553 edges, 14143 markings/sec, 355 secs
lola: 5575515 markings, 15042812 edges, 15683 markings/sec, 360 secs
lola: 5645389 markings, 15233023 edges, 13975 markings/sec, 365 secs
lola: 5713024 markings, 15420552 edges, 13527 markings/sec, 370 secs
lola: 5789263 markings, 15617618 edges, 15248 markings/sec, 375 secs
lola: 5865509 markings, 15826394 edges, 15249 markings/sec, 380 secs
lola: 5940984 markings, 16029822 edges, 15095 markings/sec, 385 secs
lola: 6013941 markings, 16230315 edges, 14591 markings/sec, 390 secs
lola: 6086345 markings, 16433181 edges, 14481 markings/sec, 395 secs
lola: 6164303 markings, 16640907 edges, 15592 markings/sec, 400 secs
lola: 6244292 markings, 16851005 edges, 15998 markings/sec, 405 secs
lola: 6321969 markings, 17066261 edges, 15535 markings/sec, 410 secs
lola: 6404333 markings, 17279940 edges, 16473 markings/sec, 415 secs
lola: 6484177 markings, 17496814 edges, 15969 markings/sec, 420 secs
lola: 6560390 markings, 17708485 edges, 15243 markings/sec, 425 secs
lola: 6647548 markings, 18014307 edges, 17432 markings/sec, 430 secs
lola: 6726126 markings, 18257425 edges, 15716 markings/sec, 435 secs
lola: 6803118 markings, 18460006 edges, 15398 markings/sec, 440 secs
lola: 6879477 markings, 18660823 edges, 15272 markings/sec, 445 secs
lola: 6952623 markings, 18860238 edges, 14629 markings/sec, 450 secs
lola: 7056923 markings, 19256362 edges, 20860 markings/sec, 455 secs
lola: 7102010 markings, 19349607 edges, 9017 markings/sec, 460 secs
lola: 7152451 markings, 19458966 edges, 10088 markings/sec, 465 secs
lola: 7212033 markings, 19596198 edges, 11916 markings/sec, 470 secs
lola: 7285107 markings, 19788782 edges, 14615 markings/sec, 475 secs
lola: 7358181 markings, 19981191 edges, 14615 markings/sec, 480 secs
lola: 7427945 markings, 20164738 edges, 13953 markings/sec, 485 secs
lola: 7509289 markings, 20381021 edges, 16269 markings/sec, 490 secs
lola: 7599871 markings, 20623350 edges, 18116 markings/sec, 495 secs
lola: 7674206 markings, 20819407 edges, 14867 markings/sec, 500 secs
lola: 7763334 markings, 21053633 edges, 17826 markings/sec, 505 secs
lola: 7836790 markings, 21264631 edges, 14691 markings/sec, 510 secs
lola: 7912294 markings, 21466577 edges, 15101 markings/sec, 515 secs
lola: 7994959 markings, 21696905 edges, 16533 markings/sec, 520 secs
lola: 8081688 markings, 21928412 edges, 17346 markings/sec, 525 secs
lola: 8151218 markings, 22120602 edges, 13906 markings/sec, 530 secs
lola: 8235085 markings, 22346293 edges, 16773 markings/sec, 535 secs
lola: 8332646 markings, 22590331 edges, 19512 markings/sec, 540 secs
lola: 8403808 markings, 22784577 edges, 14232 markings/sec, 545 secs
lola: 8493768 markings, 23027415 edges, 17992 markings/sec, 550 secs
lola: 8570337 markings, 23236807 edges, 15314 markings/sec, 555 secs
lola: 8654338 markings, 23462014 edges, 16800 markings/sec, 560 secs
lola: 8734189 markings, 23679855 edges, 15970 markings/sec, 565 secs
lola: 8823914 markings, 23913019 edges, 17945 markings/sec, 570 secs
lola: 8899857 markings, 24118111 edges, 15189 markings/sec, 575 secs
lola: 8979322 markings, 24333575 edges, 15893 markings/sec, 580 secs
lola: 9060330 markings, 24557940 edges, 16202 markings/sec, 585 secs
lola: 9139783 markings, 24773246 edges, 15891 markings/sec, 590 secs
lola: 9216670 markings, 24976572 edges, 15377 markings/sec, 595 secs
lola: 9299618 markings, 25196830 edges, 16590 markings/sec, 600 secs
lola: 9382328 markings, 25422334 edges, 16542 markings/sec, 605 secs
lola: 9460686 markings, 25633367 edges, 15672 markings/sec, 610 secs
lola: 9536669 markings, 25844090 edges, 15197 markings/sec, 615 secs
lola: 9618767 markings, 26062964 edges, 16420 markings/sec, 620 secs
lola: 9702955 markings, 26288884 edges, 16838 markings/sec, 625 secs
lola: 9785788 markings, 26510871 edges, 16567 markings/sec, 630 secs
lola: 9870231 markings, 26735532 edges, 16889 markings/sec, 635 secs
lola: 9957464 markings, 26968984 edges, 17447 markings/sec, 640 secs
lola: 10042568 markings, 27199545 edges, 17021 markings/sec, 645 secs
lola: 10127112 markings, 27436102 edges, 16909 markings/sec, 650 secs
lola: 10215354 markings, 27693689 edges, 17648 markings/sec, 655 secs
lola: 10302758 markings, 28011488 edges, 17481 markings/sec, 660 secs
lola: 10378923 markings, 28212189 edges, 15233 markings/sec, 665 secs
lola: 10448462 markings, 28397279 edges, 13908 markings/sec, 670 secs
lola: 10536931 markings, 28699648 edges, 17694 markings/sec, 675 secs
lola: 10605287 markings, 28920405 edges, 13671 markings/sec, 680 secs
lola: 10655044 markings, 29026829 edges, 9951 markings/sec, 685 secs
lola: 10708062 markings, 29142971 edges, 10604 markings/sec, 690 secs
lola: 10777720 markings, 29318918 edges, 13932 markings/sec, 695 secs
lola: 10851757 markings, 29514438 edges, 14807 markings/sec, 700 secs
lola: 10925343 markings, 29709716 edges, 14717 markings/sec, 705 secs
lola: 10992920 markings, 29889821 edges, 13515 markings/sec, 710 secs
lola: 11070728 markings, 30096642 edges, 15562 markings/sec, 715 secs
lola: 11162623 markings, 30336782 edges, 18379 markings/sec, 720 secs
lola: 11229902 markings, 30516450 edges, 13456 markings/sec, 725 secs
lola: 11292852 markings, 30684908 edges, 12590 markings/sec, 730 secs
lola: 11351305 markings, 30849340 edges, 11691 markings/sec, 735 secs
lola: 11409300 markings, 31010512 edges, 11599 markings/sec, 740 secs
lola: 11471678 markings, 31188288 edges, 12476 markings/sec, 745 secs
lola: 11542682 markings, 31367428 edges, 14201 markings/sec, 750 secs
lola: 11609526 markings, 31545159 edges, 13369 markings/sec, 755 secs
lola: 11676272 markings, 31723906 edges, 13349 markings/sec, 760 secs
lola: 11742122 markings, 31899143 edges, 13170 markings/sec, 765 secs
lola: 11816833 markings, 32087056 edges, 14942 markings/sec, 770 secs
lola: 11868171 markings, 32238046 edges, 10268 markings/sec, 775 secs
lola: 11934822 markings, 32418175 edges, 13330 markings/sec, 780 secs
lola: 12004496 markings, 32597751 edges, 13935 markings/sec, 785 secs
lola: 12062324 markings, 32757625 edges, 11566 markings/sec, 790 secs
lola: 12128222 markings, 32937548 edges, 13180 markings/sec, 795 secs
lola: 12187603 markings, 33102230 edges, 11876 markings/sec, 800 secs
lola: 12251424 markings, 33280519 edges, 12764 markings/sec, 805 secs
lola: 12315699 markings, 33449572 edges, 12855 markings/sec, 810 secs
lola: 12378305 markings, 33617975 edges, 12521 markings/sec, 815 secs
lola: 12444030 markings, 33793968 edges, 13145 markings/sec, 820 secs
lola: 12514910 markings, 33980176 edges, 14176 markings/sec, 825 secs
lola: 12580510 markings, 34151176 edges, 13120 markings/sec, 830 secs
lola: 12645852 markings, 34329736 edges, 13068 markings/sec, 835 secs
lola: 12713224 markings, 34504676 edges, 13474 markings/sec, 840 secs
lola: 12778504 markings, 34679992 edges, 13056 markings/sec, 845 secs
lola: 12843713 markings, 34863732 edges, 13042 markings/sec, 850 secs
lola: 12908943 markings, 35044736 edges, 13046 markings/sec, 855 secs
lola: 12979164 markings, 35230808 edges, 14044 markings/sec, 860 secs
lola: 13041205 markings, 35403708 edges, 12408 markings/sec, 865 secs
lola: 13105191 markings, 35578703 edges, 12797 markings/sec, 870 secs
lola: time limit reached - aborting
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown no no yes unknown no yes no no no no yes no no no no
lola: memory consumption: 2577516 KB
lola: time consumption: 3568 seconds
lola: memory consumption: 2577516 KB
lola: time consumption: 3568 seconds

BK_STOP 1527439602637

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Peterson-COL-6"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/Peterson-COL-6.tgz
mv Peterson-COL-6 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is Peterson-COL-6, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r256-csrt-152732582900155"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;