fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r256-csrt-152732582800091
Last Updated
June 26, 2018

About the Execution of LoLA for NeoElection-PT-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
961.540 3569695.00 3717439.00 687.80 TFFTFTFFTTT?TTTT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
...............................................
/home/mcc/execution
total 13M
-rw-r--r-- 1 mcc users 164K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 400K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 321K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 880K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 30K May 26 09:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 79K May 26 09:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 54K May 26 09:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 147K May 26 09:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 296K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 667K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 451K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 1.3M May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 106K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 202K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 7.3M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-PT-6, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r256-csrt-152732582800091
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-6-LTLCardinality-00
FORMULA_NAME NeoElection-PT-6-LTLCardinality-01
FORMULA_NAME NeoElection-PT-6-LTLCardinality-02
FORMULA_NAME NeoElection-PT-6-LTLCardinality-03
FORMULA_NAME NeoElection-PT-6-LTLCardinality-04
FORMULA_NAME NeoElection-PT-6-LTLCardinality-05
FORMULA_NAME NeoElection-PT-6-LTLCardinality-06
FORMULA_NAME NeoElection-PT-6-LTLCardinality-07
FORMULA_NAME NeoElection-PT-6-LTLCardinality-08
FORMULA_NAME NeoElection-PT-6-LTLCardinality-09
FORMULA_NAME NeoElection-PT-6-LTLCardinality-10
FORMULA_NAME NeoElection-PT-6-LTLCardinality-11
FORMULA_NAME NeoElection-PT-6-LTLCardinality-12
FORMULA_NAME NeoElection-PT-6-LTLCardinality-13
FORMULA_NAME NeoElection-PT-6-LTLCardinality-14
FORMULA_NAME NeoElection-PT-6-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1527430556564

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-PT-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-PT-6 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking LTLCardinality @ NeoElection-PT-6 @ 3569 seconds
lola: LoLA will run for 3569 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 13265/65536 symbol table entries, 1397 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8435 transitions, 1197 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 2401 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-PT-6-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0 <= P-stage_2_SEC + P-stage_3_NEG + P-stage_5_SEC + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_SEC + P-stage_3_SEC + P-stage_0_SEC + P-stage_1_NEG + P-stage_2_PRIM + P-stage_6_NEG + P-stage_4_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_2_NEG + P-stage_3_PRIM + P-stage_4_SEC + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_NEG + P-stage_1_PRIM)
lola: after: (P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0 <= 6)
lola: LP says that atomic proposition is always true: (P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (2 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_1_3_CO + P-negotiation_5_6_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_0_5_DONE + P-negotiation_5_0_NONE + P-negotiation_5_6_NONE + P-negotiation_5_3_DONE + P-negotiation_3_4_DONE + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_1_5_DONE + P-negotiation_2_6_CO + P-negotiation_0_2_CO + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_2_1_NONE + P-negotiation_0_1_NONE + P-negotiation_6_2_DONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_2_CO + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_2_4_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_3_6_CO + P-negotiation_0_6_NONE + P-negotiation_1_6_DONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_3_5_DONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_1_3_NONE + P-negotiation_3_6_DONE + P-negotiation_5_4_DONE + P-negotiation_3_4_CO + P-negotiation_3_2_NONE + P-negotiation_1_0_CO + P-negotiation_0_0_DONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_2_5_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_4_1_CO + P-negotiation_6_1_CO + P-negotiation_5_2_DONE + P-negotiation_3_3_DONE + P-negotiation_6_5_NONE + P-negotiation_1_4_DONE + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_0_4_CO + P-negotiation_6_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_4_6_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_6_5_DONE + P-negotiation_3_0_CO + P-negotiation_6_6_CO + P-negotiation_5_4_CO + P-negotiation_1_1_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_6_2_NONE + P-negotiation_4_3_NONE + P-negotiation_2_4_NONE + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_0_0_NONE + P-negotiation_0_5_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_5_2_CO + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_1_4_CO + P-negotiation_6_6_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_2_6_DONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_1_3_DONE)
lola: after: (0 <= 33)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6)
lola: after: (30 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_1_3_CO + P-negotiation_5_6_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_0_5_DONE + P-negotiation_5_0_NONE + P-negotiation_5_6_NONE + P-negotiation_5_3_DONE + P-negotiation_3_4_DONE + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_1_5_DONE + P-negotiation_2_6_CO + P-negotiation_0_2_CO + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_2_1_NONE + P-negotiation_0_1_NONE + P-negotiation_6_2_DONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_2_CO + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_2_4_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_3_6_CO + P-negotiation_0_6_NONE + P-negotiation_1_6_DONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_3_5_DONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_1_3_NONE + P-negotiation_3_6_DONE + P-negotiation_5_4_DONE + P-negotiation_3_4_CO + P-negotiation_3_2_NONE + P-negotiation_1_0_CO + P-negotiation_0_0_DONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_2_5_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_4_1_CO + P-negotiation_6_1_CO + P-negotiation_5_2_DONE + P-negotiation_3_3_DONE + P-negotiation_6_5_NONE + P-negotiation_1_4_DONE + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_0_4_CO + P-negotiation_6_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_4_6_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_6_5_DONE + P-negotiation_3_0_CO + P-negotiation_6_6_CO + P-negotiation_5_4_CO + P-negotiation_1_1_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_6_2_NONE + P-negotiation_4_3_NONE + P-negotiation_2_4_NONE + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_0_0_NONE + P-negotiation_0_5_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_5_2_CO + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_1_4_CO + P-negotiation_6_6_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_2_6_DONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_1_3_DONE)
lola: after: (0 <= 34)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6)
lola: after: (0 <= 30)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 <= P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_4_T_5 + P-masterState_4_T_6 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_6 + P-masterState_3_T_5 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_5_F_5 + P-masterState_5_F_4 + P-masterState_5_F_3 + P-masterState_5_F_2 + P-masterState_5_F_1 + P-masterState_5_F_0 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_4_F_4 + P-masterState_4_F_5 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_6 + P-masterState_2_F_6 + P-masterState_5_F_6 + P-masterState_0_F_6 + P-masterState_3_F_6 + P-masterState_1_T_6 + P-masterState_6_F_6)
lola: after: (24 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-network_6_0_AnsP_1 <= P-network_5_2_AskP_6)
lola: after: (P-network_6_0_AnsP_1 <= 0)
lola: LP says that atomic proposition is always true: (P-network_6_0_AnsP_1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_0_6_AnnP_0 <= P-masterList_6_5_6)
lola: after: (P-network_0_6_AnnP_0 <= 0)
lola: LP says that atomic proposition is always true: (P-network_0_6_AnnP_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_3_1_AI_1 <= P-network_1_6_RI_2)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_5_1_RI_2 <= P-network_2_2_AskP_5)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-polling_1 <= P-poll__networl_4_2_RP_3)
lola: after: (P-polling_1 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_6_1_AnsP_4 <= P-network_3_1_AnsP_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_0_1_RI_0 <= P-poll__networl_6_5_AI_3)
lola: after: (P-network_0_1_RI_0 <= 0)
lola: LP says that atomic proposition is always true: (P-network_0_1_RI_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_4_AskP_2 <= P-network_3_3_AI_5)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_4_2_RI_6 <= P-masterList_0_5_3)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_6_1_AI_5 <= P-poll__networl_6_3_RP_3)
lola: after: (0 <= 0)
lola: always true
lola: A (G (G (TRUE))) : A ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6)) : A (FALSE) : A (TRUE) : A (F (FALSE)) : A (X ((G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6)) U X ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 <= P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0))))) : A (F ((F (TRUE) U G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6))))) : A (X ((TRUE U X (FALSE)))) : A (G (TRUE)) : A (F (F (G (X (TRUE))))) : A (G ((F (TRUE) U F (TRUE)))) : A (X (G (F ((P-polling_1 <= 0))))) : A (X (F (F (F (TRUE))))) : A (F (G (G (F (TRUE))))) : A ((X (F (TRUE)) U TRUE)) : A (G (G (G (X (TRUE)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-6-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6)
lola: processed formula length: 200
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
========================================
FORMULA NeoElection-PT-6-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-PT-6-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 4 will run for 295 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-6-LTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 7 will run for 394 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-6-LTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 8 will run for 443 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 507 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 591 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 710 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 887 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((X ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 <= P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0)) OR (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((X ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 <= P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0)) OR (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-... (shortened)
lola: processed formula length: 692
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 9 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 55 markings, 84 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1183 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1775 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((P-polling_1 <= 0))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((P-polling_1 <= 0))))
lola: processed formula length: 30
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 10134 markings, 13954 edges, 2027 markings/sec, 0 secs
lola: 18929 markings, 26416 edges, 1759 markings/sec, 5 secs
lola: 29846 markings, 50994 edges, 2183 markings/sec, 10 secs
lola: 42042 markings, 82541 edges, 2439 markings/sec, 15 secs
lola: 52806 markings, 107231 edges, 2153 markings/sec, 20 secs
lola: 64697 markings, 128001 edges, 2378 markings/sec, 25 secs
lola: 76781 markings, 147332 edges, 2417 markings/sec, 30 secs
lola: 87147 markings, 166164 edges, 2073 markings/sec, 35 secs
lola: 99197 markings, 188572 edges, 2410 markings/sec, 40 secs
lola: 110167 markings, 209001 edges, 2194 markings/sec, 45 secs
lola: 121398 markings, 229779 edges, 2246 markings/sec, 50 secs
lola: 132659 markings, 249416 edges, 2252 markings/sec, 55 secs
lola: 144290 markings, 272979 edges, 2326 markings/sec, 60 secs
lola: 157370 markings, 301037 edges, 2616 markings/sec, 65 secs
lola: 169214 markings, 318842 edges, 2369 markings/sec, 70 secs
lola: 180622 markings, 342768 edges, 2282 markings/sec, 75 secs
lola: 192843 markings, 371817 edges, 2444 markings/sec, 80 secs
lola: 204832 markings, 391298 edges, 2398 markings/sec, 85 secs
lola: 216799 markings, 413447 edges, 2393 markings/sec, 90 secs
lola: 229296 markings, 436573 edges, 2499 markings/sec, 95 secs
lola: 243008 markings, 461626 edges, 2742 markings/sec, 100 secs
lola: 253139 markings, 476037 edges, 2026 markings/sec, 105 secs
lola: 265399 markings, 504846 edges, 2452 markings/sec, 110 secs
lola: 278214 markings, 535488 edges, 2563 markings/sec, 115 secs
lola: 290255 markings, 555646 edges, 2408 markings/sec, 120 secs
lola: 302052 markings, 576535 edges, 2359 markings/sec, 125 secs
lola: 314206 markings, 599926 edges, 2431 markings/sec, 130 secs
lola: 326311 markings, 622383 edges, 2421 markings/sec, 135 secs
lola: 337588 markings, 640859 edges, 2255 markings/sec, 140 secs
lola: 350943 markings, 671853 edges, 2671 markings/sec, 145 secs
lola: 362411 markings, 689159 edges, 2294 markings/sec, 150 secs
lola: 375355 markings, 720791 edges, 2589 markings/sec, 155 secs
lola: 386427 markings, 739630 edges, 2214 markings/sec, 160 secs
lola: 398781 markings, 763166 edges, 2471 markings/sec, 165 secs
lola: 411822 markings, 786949 edges, 2608 markings/sec, 170 secs
lola: 421827 markings, 804098 edges, 2001 markings/sec, 175 secs
lola: 434867 markings, 837913 edges, 2608 markings/sec, 180 secs
lola: 447238 markings, 860789 edges, 2474 markings/sec, 185 secs
lola: 458600 markings, 884460 edges, 2272 markings/sec, 190 secs
lola: 470155 markings, 906841 edges, 2311 markings/sec, 195 secs
lola: 482272 markings, 931572 edges, 2423 markings/sec, 200 secs
lola: 494861 markings, 955058 edges, 2518 markings/sec, 205 secs
lola: 507771 markings, 985184 edges, 2582 markings/sec, 210 secs
lola: 519720 markings, 1008833 edges, 2390 markings/sec, 215 secs
lola: 533159 markings, 1034536 edges, 2688 markings/sec, 220 secs
lola: 542516 markings, 1050432 edges, 1871 markings/sec, 225 secs
lola: 551648 markings, 1065950 edges, 1826 markings/sec, 230 secs
lola: 562592 markings, 1095277 edges, 2189 markings/sec, 235 secs
lola: 574576 markings, 1131752 edges, 2397 markings/sec, 240 secs
lola: 586660 markings, 1166010 edges, 2417 markings/sec, 245 secs
lola: 598093 markings, 1196233 edges, 2287 markings/sec, 250 secs
lola: 608169 markings, 1215253 edges, 2015 markings/sec, 255 secs
lola: 618674 markings, 1234887 edges, 2101 markings/sec, 260 secs
lola: 629526 markings, 1257469 edges, 2170 markings/sec, 265 secs
lola: 639957 markings, 1280497 edges, 2086 markings/sec, 270 secs
lola: 650846 markings, 1305156 edges, 2178 markings/sec, 275 secs
lola: 661539 markings, 1328991 edges, 2139 markings/sec, 280 secs
lola: 672926 markings, 1354896 edges, 2277 markings/sec, 285 secs
lola: 683263 markings, 1377032 edges, 2067 markings/sec, 290 secs
lola: 693872 markings, 1399694 edges, 2122 markings/sec, 295 secs
lola: 704388 markings, 1420000 edges, 2103 markings/sec, 300 secs
lola: 713907 markings, 1440868 edges, 1904 markings/sec, 305 secs
lola: 725369 markings, 1475426 edges, 2292 markings/sec, 310 secs
lola: 736159 markings, 1500177 edges, 2158 markings/sec, 315 secs
lola: 747217 markings, 1520127 edges, 2212 markings/sec, 320 secs
lola: 756672 markings, 1538480 edges, 1891 markings/sec, 325 secs
lola: 769300 markings, 1576241 edges, 2526 markings/sec, 330 secs
lola: 780447 markings, 1603959 edges, 2229 markings/sec, 335 secs
lola: 791655 markings, 1624983 edges, 2242 markings/sec, 340 secs
lola: 801710 markings, 1646960 edges, 2011 markings/sec, 345 secs
lola: 812593 markings, 1671272 edges, 2177 markings/sec, 350 secs
lola: 823379 markings, 1696008 edges, 2157 markings/sec, 355 secs
lola: 834177 markings, 1719471 edges, 2160 markings/sec, 360 secs
lola: 845921 markings, 1743849 edges, 2349 markings/sec, 365 secs
lola: 854906 markings, 1756309 edges, 1797 markings/sec, 370 secs
lola: 862714 markings, 1768483 edges, 1562 markings/sec, 375 secs
lola: 872374 markings, 1783515 edges, 1932 markings/sec, 380 secs
lola: 885847 markings, 1817167 edges, 2695 markings/sec, 385 secs
lola: 898720 markings, 1854989 edges, 2575 markings/sec, 390 secs
lola: 912879 markings, 1894321 edges, 2832 markings/sec, 395 secs
lola: 924057 markings, 1918931 edges, 2236 markings/sec, 400 secs
lola: 937130 markings, 1945196 edges, 2615 markings/sec, 405 secs
lola: 949037 markings, 1966138 edges, 2381 markings/sec, 410 secs
lola: 961338 markings, 1987903 edges, 2460 markings/sec, 415 secs
lola: 973654 markings, 2011519 edges, 2463 markings/sec, 420 secs
lola: 985662 markings, 2033696 edges, 2402 markings/sec, 425 secs
lola: 995353 markings, 2053374 edges, 1938 markings/sec, 430 secs
lola: 1007556 markings, 2076455 edges, 2441 markings/sec, 435 secs
lola: 1017338 markings, 2091524 edges, 1956 markings/sec, 440 secs
lola: 1024939 markings, 2102617 edges, 1520 markings/sec, 445 secs
lola: 1033116 markings, 2114201 edges, 1635 markings/sec, 450 secs
lola: 1044355 markings, 2142897 edges, 2248 markings/sec, 455 secs
lola: 1056065 markings, 2175135 edges, 2342 markings/sec, 460 secs
lola: 1067716 markings, 2203407 edges, 2330 markings/sec, 465 secs
lola: 1078720 markings, 2229721 edges, 2201 markings/sec, 470 secs
lola: 1090597 markings, 2249100 edges, 2375 markings/sec, 475 secs
lola: 1102951 markings, 2269147 edges, 2471 markings/sec, 480 secs
lola: 1113367 markings, 2289450 edges, 2083 markings/sec, 485 secs
lola: 1126571 markings, 2314721 edges, 2641 markings/sec, 490 secs
lola: 1135930 markings, 2327981 edges, 1872 markings/sec, 495 secs
lola: 1148123 markings, 2359142 edges, 2439 markings/sec, 500 secs
lola: 1160393 markings, 2387191 edges, 2454 markings/sec, 505 secs
lola: 1172997 markings, 2408288 edges, 2521 markings/sec, 510 secs
lola: 1182860 markings, 2428315 edges, 1973 markings/sec, 515 secs
lola: 1195491 markings, 2452389 edges, 2526 markings/sec, 520 secs
lola: 1205204 markings, 2467530 edges, 1943 markings/sec, 525 secs
lola: 1215657 markings, 2488161 edges, 2091 markings/sec, 530 secs
lola: 1228716 markings, 2523354 edges, 2612 markings/sec, 535 secs
lola: 1239852 markings, 2546010 edges, 2227 markings/sec, 540 secs
lola: 1251577 markings, 2565695 edges, 2345 markings/sec, 545 secs
lola: 1263390 markings, 2589052 edges, 2363 markings/sec, 550 secs
lola: 1275358 markings, 2610580 edges, 2394 markings/sec, 555 secs
lola: 1285200 markings, 2626141 edges, 1968 markings/sec, 560 secs
lola: 1298096 markings, 2661717 edges, 2579 markings/sec, 565 secs
lola: 1309005 markings, 2683376 edges, 2182 markings/sec, 570 secs
lola: 1321554 markings, 2703511 edges, 2510 markings/sec, 575 secs
lola: 1329679 markings, 2715972 edges, 1625 markings/sec, 580 secs
lola: 1338491 markings, 2729463 edges, 1762 markings/sec, 585 secs
lola: 1349035 markings, 2752716 edges, 2109 markings/sec, 590 secs
lola: 1361206 markings, 2787839 edges, 2434 markings/sec, 595 secs
lola: 1374056 markings, 2823758 edges, 2570 markings/sec, 600 secs
lola: 1385571 markings, 2851795 edges, 2303 markings/sec, 605 secs
lola: 1397034 markings, 2873103 edges, 2293 markings/sec, 610 secs
lola: 1408016 markings, 2892176 edges, 2196 markings/sec, 615 secs
lola: 1418890 markings, 2912304 edges, 2175 markings/sec, 620 secs
lola: 1428948 markings, 2932451 edges, 2012 markings/sec, 625 secs
lola: 1438793 markings, 2953057 edges, 1969 markings/sec, 630 secs
lola: 1449525 markings, 2974802 edges, 2146 markings/sec, 635 secs
lola: 1460079 markings, 2997247 edges, 2111 markings/sec, 640 secs
lola: 1470775 markings, 3018026 edges, 2139 markings/sec, 645 secs
lola: 1481300 markings, 3039175 edges, 2105 markings/sec, 650 secs
lola: 1490928 markings, 3056883 edges, 1926 markings/sec, 655 secs
lola: 1500344 markings, 3073221 edges, 1883 markings/sec, 660 secs
lola: 1511691 markings, 3105717 edges, 2269 markings/sec, 665 secs
lola: 1522315 markings, 3129855 edges, 2125 markings/sec, 670 secs
lola: 1533914 markings, 3149807 edges, 2320 markings/sec, 675 secs
lola: 1541547 markings, 3161730 edges, 1527 markings/sec, 680 secs
lola: 1551010 markings, 3182242 edges, 1893 markings/sec, 685 secs
lola: 1562951 markings, 3216337 edges, 2388 markings/sec, 690 secs
lola: 1572814 markings, 3238368 edges, 1973 markings/sec, 695 secs
lola: 1582813 markings, 3255892 edges, 2000 markings/sec, 700 secs
lola: 1593016 markings, 3275360 edges, 2041 markings/sec, 705 secs
lola: 1603069 markings, 3296646 edges, 2011 markings/sec, 710 secs
lola: 1613394 markings, 3317992 edges, 2065 markings/sec, 715 secs
lola: 1624373 markings, 3339933 edges, 2196 markings/sec, 720 secs
lola: 1635721 markings, 3362737 edges, 2270 markings/sec, 725 secs
lola: 1644135 markings, 3375413 edges, 1683 markings/sec, 730 secs
lola: 1655474 markings, 3404983 edges, 2268 markings/sec, 735 secs
lola: 1668045 markings, 3436599 edges, 2514 markings/sec, 740 secs
lola: 1679955 markings, 3457386 edges, 2382 markings/sec, 745 secs
lola: 1689299 markings, 3475624 edges, 1869 markings/sec, 750 secs
lola: 1701610 markings, 3498334 edges, 2462 markings/sec, 755 secs
lola: 1711443 markings, 3516494 edges, 1967 markings/sec, 760 secs
lola: 1721167 markings, 3535922 edges, 1945 markings/sec, 765 secs
lola: 1731595 markings, 3555330 edges, 2086 markings/sec, 770 secs
lola: 1739637 markings, 3566711 edges, 1608 markings/sec, 775 secs
lola: 1747487 markings, 3578020 edges, 1570 markings/sec, 780 secs
lola: 1756278 markings, 3593232 edges, 1758 markings/sec, 785 secs
lola: 1767321 markings, 3623371 edges, 2209 markings/sec, 790 secs
lola: 1779063 markings, 3655262 edges, 2348 markings/sec, 795 secs
lola: 1789010 markings, 3677272 edges, 1989 markings/sec, 800 secs
lola: 1799652 markings, 3703088 edges, 2128 markings/sec, 805 secs
lola: 1809581 markings, 3719335 edges, 1986 markings/sec, 810 secs
lola: 1820411 markings, 3736789 edges, 2166 markings/sec, 815 secs
lola: 1830764 markings, 3755778 edges, 2071 markings/sec, 820 secs
lola: 1841652 markings, 3777545 edges, 2178 markings/sec, 825 secs
lola: 1851669 markings, 3793930 edges, 2003 markings/sec, 830 secs
lola: 1861516 markings, 3812679 edges, 1969 markings/sec, 835 secs
lola: 1872974 markings, 3843191 edges, 2292 markings/sec, 840 secs
lola: 1883235 markings, 3863865 edges, 2052 markings/sec, 845 secs
lola: 1893402 markings, 3880965 edges, 2033 markings/sec, 850 secs
lola: 1901591 markings, 3897307 edges, 1638 markings/sec, 855 secs
lola: 1911439 markings, 3916747 edges, 1970 markings/sec, 860 secs
lola: 1920974 markings, 3933175 edges, 1907 markings/sec, 865 secs
lola: 1928063 markings, 3943495 edges, 1418 markings/sec, 870 secs
lola: 1937188 markings, 3964649 edges, 1825 markings/sec, 875 secs
lola: 1948685 markings, 3995197 edges, 2299 markings/sec, 880 secs
lola: 1958326 markings, 4015392 edges, 1928 markings/sec, 885 secs
lola: 1967484 markings, 4030420 edges, 1832 markings/sec, 890 secs
lola: 1976452 markings, 4046994 edges, 1794 markings/sec, 895 secs
lola: 1986108 markings, 4066281 edges, 1931 markings/sec, 900 secs
lola: 1997173 markings, 4085307 edges, 2213 markings/sec, 905 secs
lola: 2005269 markings, 4097097 edges, 1619 markings/sec, 910 secs
lola: 2015447 markings, 4120328 edges, 2036 markings/sec, 915 secs
lola: 2027052 markings, 4149435 edges, 2321 markings/sec, 920 secs
lola: 2037914 markings, 4172664 edges, 2172 markings/sec, 925 secs
lola: 2048947 markings, 4190718 edges, 2207 markings/sec, 930 secs
lola: 2060227 markings, 4211590 edges, 2256 markings/sec, 935 secs
lola: 2072111 markings, 4233708 edges, 2377 markings/sec, 940 secs
lola: 2083555 markings, 4255752 edges, 2289 markings/sec, 945 secs
lola: 2095757 markings, 4277747 edges, 2440 markings/sec, 950 secs
lola: 2107552 markings, 4303791 edges, 2359 markings/sec, 955 secs
lola: 2120714 markings, 4327963 edges, 2632 markings/sec, 960 secs
lola: 2129352 markings, 4342235 edges, 1728 markings/sec, 965 secs
lola: 2140228 markings, 4369087 edges, 2175 markings/sec, 970 secs
lola: 2150731 markings, 4388650 edges, 2101 markings/sec, 975 secs
lola: 2161203 markings, 4408240 edges, 2094 markings/sec, 980 secs
lola: 2171590 markings, 4428029 edges, 2077 markings/sec, 985 secs
lola: 2183598 markings, 4449649 edges, 2402 markings/sec, 990 secs
lola: 2192854 markings, 4464798 edges, 1851 markings/sec, 995 secs
lola: 2204714 markings, 4493741 edges, 2372 markings/sec, 1000 secs
lola: 2216052 markings, 4515943 edges, 2268 markings/sec, 1005 secs
lola: 2226880 markings, 4535318 edges, 2166 markings/sec, 1010 secs
lola: 2238131 markings, 4556248 edges, 2250 markings/sec, 1015 secs
lola: 2249722 markings, 4577970 edges, 2318 markings/sec, 1020 secs
lola: 2260653 markings, 4600581 edges, 2186 markings/sec, 1025 secs
lola: 2272061 markings, 4619701 edges, 2282 markings/sec, 1030 secs
lola: 2283850 markings, 4646965 edges, 2358 markings/sec, 1035 secs
lola: 2294970 markings, 4666787 edges, 2224 markings/sec, 1040 secs
lola: 2306210 markings, 4688059 edges, 2248 markings/sec, 1045 secs
lola: 2316560 markings, 4704998 edges, 2070 markings/sec, 1050 secs
lola: 2328588 markings, 4736841 edges, 2406 markings/sec, 1055 secs
lola: 2339416 markings, 4757345 edges, 2166 markings/sec, 1060 secs
lola: 2350076 markings, 4779427 edges, 2132 markings/sec, 1065 secs
lola: 2361483 markings, 4800663 edges, 2281 markings/sec, 1070 secs
lola: 2373678 markings, 4827140 edges, 2439 markings/sec, 1075 secs
lola: 2385319 markings, 4853469 edges, 2328 markings/sec, 1080 secs
lola: 2396806 markings, 4876472 edges, 2297 markings/sec, 1085 secs
lola: 2409389 markings, 4900382 edges, 2517 markings/sec, 1090 secs
lola: 2418477 markings, 4916296 edges, 1818 markings/sec, 1095 secs
lola: 2429076 markings, 4945801 edges, 2120 markings/sec, 1100 secs
lola: 2441528 markings, 4984297 edges, 2490 markings/sec, 1105 secs
lola: 2453085 markings, 5015146 edges, 2311 markings/sec, 1110 secs
lola: 2463738 markings, 5037514 edges, 2131 markings/sec, 1115 secs
lola: 2475126 markings, 5059067 edges, 2278 markings/sec, 1120 secs
lola: 2484159 markings, 5080929 edges, 1807 markings/sec, 1125 secs
lola: 2495991 markings, 5107298 edges, 2366 markings/sec, 1130 secs
lola: 2507286 markings, 5133354 edges, 2259 markings/sec, 1135 secs
lola: 2517433 markings, 5157321 edges, 2029 markings/sec, 1140 secs
lola: 2528841 markings, 5181985 edges, 2282 markings/sec, 1145 secs
lola: 2540017 markings, 5203395 edges, 2235 markings/sec, 1150 secs
lola: 2551704 markings, 5238002 edges, 2337 markings/sec, 1155 secs
lola: 2562963 markings, 5264236 edges, 2252 markings/sec, 1160 secs
lola: 2573196 markings, 5283213 edges, 2047 markings/sec, 1165 secs
lola: 2583664 markings, 5311764 edges, 2094 markings/sec, 1170 secs
lola: 2594854 markings, 5342073 edges, 2238 markings/sec, 1175 secs
lola: 2605059 markings, 5361616 edges, 2041 markings/sec, 1180 secs
lola: 2614425 markings, 5383877 edges, 1873 markings/sec, 1185 secs
lola: 2625387 markings, 5408357 edges, 2192 markings/sec, 1190 secs
lola: 2636241 markings, 5433463 edges, 2171 markings/sec, 1195 secs
lola: 2647534 markings, 5456772 edges, 2259 markings/sec, 1200 secs
lola: 2656702 markings, 5470742 edges, 1834 markings/sec, 1205 secs
lola: 2666406 markings, 5486052 edges, 1941 markings/sec, 1210 secs
lola: 2678550 markings, 5519050 edges, 2429 markings/sec, 1215 secs
lola: 2691288 markings, 5556015 edges, 2548 markings/sec, 1220 secs
lola: 2703484 markings, 5585043 edges, 2439 markings/sec, 1225 secs
lola: 2715451 markings, 5611948 edges, 2393 markings/sec, 1230 secs
lola: 2727238 markings, 5632799 edges, 2357 markings/sec, 1235 secs
lola: 2738330 markings, 5652816 edges, 2218 markings/sec, 1240 secs
lola: 2750314 markings, 5676623 edges, 2397 markings/sec, 1245 secs
lola: 2760399 markings, 5696115 edges, 2017 markings/sec, 1250 secs
lola: 2772176 markings, 5719642 edges, 2355 markings/sec, 1255 secs
lola: 2781685 markings, 5734617 edges, 1902 markings/sec, 1260 secs
lola: 2790465 markings, 5747334 edges, 1756 markings/sec, 1265 secs
lola: 2801830 markings, 5778538 edges, 2273 markings/sec, 1270 secs
lola: 2814548 markings, 5812353 edges, 2544 markings/sec, 1275 secs
lola: 2825420 markings, 5837417 edges, 2174 markings/sec, 1280 secs
lola: 2836899 markings, 5857487 edges, 2296 markings/sec, 1285 secs
lola: 2848957 markings, 5877911 edges, 2412 markings/sec, 1290 secs
lola: 2860862 markings, 5902192 edges, 2381 markings/sec, 1295 secs
lola: 2871542 markings, 5919425 edges, 2136 markings/sec, 1300 secs
lola: 2883867 markings, 5951704 edges, 2465 markings/sec, 1305 secs
lola: 2896009 markings, 5975605 edges, 2428 markings/sec, 1310 secs
lola: 2906479 markings, 5995514 edges, 2094 markings/sec, 1315 secs
lola: 2917698 markings, 6018180 edges, 2244 markings/sec, 1320 secs
lola: 2927343 markings, 6033451 edges, 1929 markings/sec, 1325 secs
lola: 2938529 markings, 6061748 edges, 2237 markings/sec, 1330 secs
lola: 2949956 markings, 6088967 edges, 2285 markings/sec, 1335 secs
lola: 2961112 markings, 6107856 edges, 2231 markings/sec, 1340 secs
lola: 2972817 markings, 6131417 edges, 2341 markings/sec, 1345 secs
lola: 2983395 markings, 6149677 edges, 2116 markings/sec, 1350 secs
lola: 2995153 markings, 6178988 edges, 2352 markings/sec, 1355 secs
lola: 3007355 markings, 6204666 edges, 2440 markings/sec, 1360 secs
lola: 3018875 markings, 6223489 edges, 2304 markings/sec, 1365 secs
lola: 3027699 markings, 6237454 edges, 1765 markings/sec, 1370 secs
lola: 3037951 markings, 6261944 edges, 2050 markings/sec, 1375 secs
lola: 3050142 markings, 6297385 edges, 2438 markings/sec, 1380 secs
lola: 3061552 markings, 6324486 edges, 2282 markings/sec, 1385 secs
lola: 3073058 markings, 6351229 edges, 2301 markings/sec, 1390 secs
lola: 3083754 markings, 6370014 edges, 2139 markings/sec, 1395 secs
lola: 3094895 markings, 6392441 edges, 2228 markings/sec, 1400 secs
lola: 3106765 markings, 6417453 edges, 2374 markings/sec, 1405 secs
lola: 3118360 markings, 6441426 edges, 2319 markings/sec, 1410 secs
lola: 3129656 markings, 6465397 edges, 2259 markings/sec, 1415 secs
lola: 3141053 markings, 6488678 edges, 2279 markings/sec, 1420 secs
lola: 3151873 markings, 6506917 edges, 2164 markings/sec, 1425 secs
lola: 3163682 markings, 6539848 edges, 2362 markings/sec, 1430 secs
lola: 3175196 markings, 6564146 edges, 2303 markings/sec, 1435 secs
lola: 3185445 markings, 6581416 edges, 2050 markings/sec, 1440 secs
lola: 3195240 markings, 6604760 edges, 1959 markings/sec, 1445 secs
lola: 3206380 markings, 6633706 edges, 2228 markings/sec, 1450 secs
lola: 3216833 markings, 6654681 edges, 2091 markings/sec, 1455 secs
lola: 3227011 markings, 6675230 edges, 2036 markings/sec, 1460 secs
lola: 3238482 markings, 6699050 edges, 2294 markings/sec, 1465 secs
lola: 3249652 markings, 6722830 edges, 2234 markings/sec, 1470 secs
lola: 3261281 markings, 6745375 edges, 2326 markings/sec, 1475 secs
lola: 3271089 markings, 6766027 edges, 1962 markings/sec, 1480 secs
lola: 3283786 markings, 6799720 edges, 2539 markings/sec, 1485 secs
lola: 3294971 markings, 6819985 edges, 2237 markings/sec, 1490 secs
lola: 3305502 markings, 6840666 edges, 2106 markings/sec, 1495 secs
lola: 3316082 markings, 6860628 edges, 2116 markings/sec, 1500 secs
lola: 3326277 markings, 6881207 edges, 2039 markings/sec, 1505 secs
lola: 3335936 markings, 6898937 edges, 1932 markings/sec, 1510 secs
lola: 3343493 markings, 6910255 edges, 1511 markings/sec, 1515 secs
lola: 3352407 markings, 6925660 edges, 1783 markings/sec, 1520 secs
lola: 3362700 markings, 6955525 edges, 2059 markings/sec, 1525 secs
lola: 3374271 markings, 6984912 edges, 2314 markings/sec, 1530 secs
lola: 3383181 markings, 7006301 edges, 1782 markings/sec, 1535 secs
lola: 3392595 markings, 7023626 edges, 1883 markings/sec, 1540 secs
lola: 3403081 markings, 7040709 edges, 2097 markings/sec, 1545 secs
lola: 3412640 markings, 7059141 edges, 1912 markings/sec, 1550 secs
lola: 3424390 markings, 7082026 edges, 2350 markings/sec, 1555 secs
lola: 3432909 markings, 7096020 edges, 1704 markings/sec, 1560 secs
lola: 3443814 markings, 7124612 edges, 2181 markings/sec, 1565 secs
lola: 3454341 markings, 7146055 edges, 2105 markings/sec, 1570 secs
lola: 3464501 markings, 7164550 edges, 2032 markings/sec, 1575 secs
lola: 3474203 markings, 7184910 edges, 1940 markings/sec, 1580 secs
lola: 3483697 markings, 7201125 edges, 1899 markings/sec, 1585 secs
lola: 3492769 markings, 7220276 edges, 1814 markings/sec, 1590 secs
lola: 3503284 markings, 7246436 edges, 2103 markings/sec, 1595 secs
lola: 3512403 markings, 7266431 edges, 1824 markings/sec, 1600 secs
lola: 3522357 markings, 7283591 edges, 1991 markings/sec, 1605 secs
lola: 3532815 markings, 7304969 edges, 2092 markings/sec, 1610 secs
lola: 3546633 markings, 7327825 edges, 2764 markings/sec, 1615 secs
lola: 3555936 markings, 7342439 edges, 1861 markings/sec, 1620 secs
lola: 3566348 markings, 7358435 edges, 2082 markings/sec, 1625 secs
lola: 3579362 markings, 7391934 edges, 2603 markings/sec, 1630 secs
lola: 3592433 markings, 7429351 edges, 2614 markings/sec, 1635 secs
lola: 3607314 markings, 7463917 edges, 2976 markings/sec, 1640 secs
lola: 3620910 markings, 7494714 edges, 2719 markings/sec, 1645 secs
lola: 3631698 markings, 7513712 edges, 2158 markings/sec, 1650 secs
lola: 3645167 markings, 7536088 edges, 2694 markings/sec, 1655 secs
lola: 3654161 markings, 7553479 edges, 1799 markings/sec, 1660 secs
lola: 3667108 markings, 7579308 edges, 2589 markings/sec, 1665 secs
lola: 3680883 markings, 7607937 edges, 2755 markings/sec, 1670 secs
lola: 3694613 markings, 7635149 edges, 2746 markings/sec, 1675 secs
lola: 3706312 markings, 7658089 edges, 2340 markings/sec, 1680 secs
lola: 3720476 markings, 7687121 edges, 2833 markings/sec, 1685 secs
lola: 3731107 markings, 7704712 edges, 2126 markings/sec, 1690 secs
lola: 3744163 markings, 7735276 edges, 2611 markings/sec, 1695 secs
lola: 3758474 markings, 7771204 edges, 2862 markings/sec, 1700 secs
lola: 3772155 markings, 7794289 edges, 2736 markings/sec, 1705 secs
lola: 3782298 markings, 7810149 edges, 2029 markings/sec, 1710 secs
lola: 3794889 markings, 7837930 edges, 2518 markings/sec, 1715 secs
lola: 3808217 markings, 7872842 edges, 2666 markings/sec, 1720 secs
lola: 3819970 markings, 7897248 edges, 2351 markings/sec, 1725 secs
lola: 3832043 markings, 7918361 edges, 2415 markings/sec, 1730 secs
lola: 3843846 markings, 7941776 edges, 2361 markings/sec, 1735 secs
lola: 3858021 markings, 7970830 edges, 2835 markings/sec, 1740 secs
lola: 3870344 markings, 7995038 edges, 2465 markings/sec, 1745 secs
lola: 3885876 markings, 8025487 edges, 3106 markings/sec, 1750 secs
lola: 3895331 markings, 8040315 edges, 1891 markings/sec, 1755 secs
lola: 3906558 markings, 8060690 edges, 2245 markings/sec, 1760 secs
lola: 3919158 markings, 8096377 edges, 2520 markings/sec, 1765 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no no yes no yes unknown no yes yes yes unknown yes yes yes yes
lola: memory consumption: 757176 KB
lola: time consumption: 1793 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1776 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6))))
lola: processed formula length: 149
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 410 markings, 411 edges
lola: ========================================

FORMULA NeoElection-PT-6-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: A (G (F ((P-polling_1 <= 0))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((P-polling_1 <= 0))))
lola: processed formula length: 30
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 10917 markings, 15094 edges, 2183 markings/sec, 0 secs
lola: 20427 markings, 28627 edges, 1902 markings/sec, 5 secs
lola: 33445 markings, 60573 edges, 2604 markings/sec, 10 secs
lola: 46631 markings, 93337 edges, 2637 markings/sec, 15 secs
lola: 58757 markings, 118389 edges, 2425 markings/sec, 20 secs
lola: 70907 markings, 137788 edges, 2430 markings/sec, 25 secs
lola: 82691 markings, 157694 edges, 2357 markings/sec, 30 secs
lola: 94563 markings, 180158 edges, 2374 markings/sec, 35 secs
lola: 106923 markings, 203185 edges, 2472 markings/sec, 40 secs
lola: 119313 markings, 225949 edges, 2478 markings/sec, 45 secs
lola: 131772 markings, 248177 edges, 2492 markings/sec, 50 secs
lola: 143486 markings, 270773 edges, 2343 markings/sec, 55 secs
lola: 157186 markings, 300744 edges, 2740 markings/sec, 60 secs
lola: 169580 markings, 319369 edges, 2479 markings/sec, 65 secs
lola: 181439 markings, 344985 edges, 2372 markings/sec, 70 secs
lola: 194225 markings, 373988 edges, 2557 markings/sec, 75 secs
lola: 206265 markings, 393862 edges, 2408 markings/sec, 80 secs
lola: 218501 markings, 416547 edges, 2447 markings/sec, 85 secs
lola: 230719 markings, 439197 edges, 2444 markings/sec, 90 secs
lola: 244139 markings, 463193 edges, 2684 markings/sec, 95 secs
lola: 253594 markings, 476676 edges, 1891 markings/sec, 100 secs
lola: 265698 markings, 505587 edges, 2421 markings/sec, 105 secs
lola: 278496 markings, 535957 edges, 2560 markings/sec, 110 secs
lola: 290345 markings, 555779 edges, 2370 markings/sec, 115 secs
lola: 302094 markings, 576615 edges, 2350 markings/sec, 120 secs
lola: 314257 markings, 600045 edges, 2433 markings/sec, 125 secs
lola: 326295 markings, 622332 edges, 2408 markings/sec, 130 secs
lola: 337666 markings, 641067 edges, 2274 markings/sec, 135 secs
lola: 351022 markings, 671976 edges, 2671 markings/sec, 140 secs
lola: 362689 markings, 689557 edges, 2333 markings/sec, 145 secs
lola: 375969 markings, 722119 edges, 2656 markings/sec, 150 secs
lola: 387724 markings, 742021 edges, 2351 markings/sec, 155 secs
lola: 400288 markings, 765876 edges, 2513 markings/sec, 160 secs
lola: 413083 markings, 788865 edges, 2559 markings/sec, 165 secs
lola: 423548 markings, 808908 edges, 2093 markings/sec, 170 secs
lola: 436713 markings, 842506 edges, 2633 markings/sec, 175 secs
lola: 448663 markings, 863760 edges, 2390 markings/sec, 180 secs
lola: 460564 markings, 888260 edges, 2380 markings/sec, 185 secs
lola: 471714 markings, 909848 edges, 2230 markings/sec, 190 secs
lola: 484028 markings, 936050 edges, 2463 markings/sec, 195 secs
lola: 496390 markings, 957553 edges, 2472 markings/sec, 200 secs
lola: 509816 markings, 988663 edges, 2685 markings/sec, 205 secs
lola: 520912 markings, 1011072 edges, 2219 markings/sec, 210 secs
lola: 533979 markings, 1035988 edges, 2613 markings/sec, 215 secs
lola: 541754 markings, 1049084 edges, 1555 markings/sec, 220 secs
lola: 549858 markings, 1062929 edges, 1621 markings/sec, 225 secs
lola: 558861 markings, 1083481 edges, 1801 markings/sec, 230 secs
lola: 570482 markings, 1119282 edges, 2324 markings/sec, 235 secs
lola: 582832 markings, 1156026 edges, 2470 markings/sec, 240 secs
lola: 593460 markings, 1184188 edges, 2126 markings/sec, 245 secs
lola: 605129 markings, 1209400 edges, 2334 markings/sec, 250 secs
lola: 615774 markings, 1229328 edges, 2129 markings/sec, 255 secs
lola: 626973 markings, 1251887 edges, 2240 markings/sec, 260 secs
lola: 637364 markings, 1274547 edges, 2078 markings/sec, 265 secs
lola: 647717 markings, 1298306 edges, 2071 markings/sec, 270 secs
lola: 659014 markings, 1323463 edges, 2259 markings/sec, 275 secs
lola: 671670 markings, 1351956 edges, 2531 markings/sec, 280 secs
lola: 682668 markings, 1375421 edges, 2200 markings/sec, 285 secs
lola: 693550 markings, 1398934 edges, 2176 markings/sec, 290 secs
lola: 704615 markings, 1420401 edges, 2213 markings/sec, 295 secs
lola: 715109 markings, 1444544 edges, 2099 markings/sec, 300 secs
lola: 726698 markings, 1478023 edges, 2318 markings/sec, 305 secs
lola: 737818 markings, 1503143 edges, 2224 markings/sec, 310 secs
lola: 748713 markings, 1522790 edges, 2179 markings/sec, 315 secs
lola: 758820 markings, 1544720 edges, 2021 markings/sec, 320 secs
lola: 771577 markings, 1582885 edges, 2551 markings/sec, 325 secs
lola: 782338 markings, 1607606 edges, 2152 markings/sec, 330 secs
lola: 793312 markings, 1628553 edges, 2195 markings/sec, 335 secs
lola: 803872 markings, 1651861 edges, 2112 markings/sec, 340 secs
lola: 814978 markings, 1676757 edges, 2221 markings/sec, 345 secs
lola: 826546 markings, 1702910 edges, 2314 markings/sec, 350 secs
lola: 838192 markings, 1727315 edges, 2329 markings/sec, 355 secs
lola: 849085 markings, 1748160 edges, 2179 markings/sec, 360 secs
lola: 858834 markings, 1761976 edges, 1950 markings/sec, 365 secs
lola: 868332 markings, 1777380 edges, 1900 markings/sec, 370 secs
lola: 880164 markings, 1802204 edges, 2366 markings/sec, 375 secs
lola: 893922 markings, 1839805 edges, 2752 markings/sec, 380 secs
lola: 907443 markings, 1878836 edges, 2704 markings/sec, 385 secs
lola: 919904 markings, 1909860 edges, 2492 markings/sec, 390 secs
lola: 931732 markings, 1936549 edges, 2366 markings/sec, 395 secs
lola: 944112 markings, 1957770 edges, 2476 markings/sec, 400 secs
lola: 956830 markings, 1979581 edges, 2544 markings/sec, 405 secs
lola: 967399 markings, 1999297 edges, 2114 markings/sec, 410 secs
lola: 980392 markings, 2024139 edges, 2599 markings/sec, 415 secs
lola: 990789 markings, 2043229 edges, 2079 markings/sec, 420 secs
lola: 1002119 markings, 2065778 edges, 2266 markings/sec, 425 secs
lola: 1012774 markings, 2085086 edges, 2131 markings/sec, 430 secs
lola: 1021465 markings, 2097517 edges, 1738 markings/sec, 435 secs
lola: 1030480 markings, 2110298 edges, 1803 markings/sec, 440 secs
lola: 1041891 markings, 2136364 edges, 2282 markings/sec, 445 secs
lola: 1054112 markings, 2169984 edges, 2444 markings/sec, 450 secs
lola: 1066962 markings, 2202290 edges, 2570 markings/sec, 455 secs
lola: 1078077 markings, 2228774 edges, 2223 markings/sec, 460 secs
lola: 1090219 markings, 2248473 edges, 2428 markings/sec, 465 secs
lola: 1102532 markings, 2268487 edges, 2463 markings/sec, 470 secs
lola: 1113419 markings, 2289586 edges, 2177 markings/sec, 475 secs
lola: 1127190 markings, 2315876 edges, 2754 markings/sec, 480 secs
lola: 1136835 markings, 2329285 edges, 1929 markings/sec, 485 secs
lola: 1149536 markings, 2362867 edges, 2540 markings/sec, 490 secs
lola: 1162023 markings, 2389916 edges, 2497 markings/sec, 495 secs
lola: 1174727 markings, 2411350 edges, 2541 markings/sec, 500 secs
lola: 1186049 markings, 2434068 edges, 2264 markings/sec, 505 secs
lola: 1198750 markings, 2458154 edges, 2540 markings/sec, 510 secs
lola: 1207800 markings, 2471256 edges, 1810 markings/sec, 515 secs
lola: 1219186 markings, 2498102 edges, 2277 markings/sec, 520 secs
lola: 1231440 markings, 2528197 edges, 2451 markings/sec, 525 secs
lola: 1243569 markings, 2552122 edges, 2426 markings/sec, 530 secs
lola: 1254853 markings, 2571825 edges, 2257 markings/sec, 535 secs
lola: 1267642 markings, 2597327 edges, 2558 markings/sec, 540 secs
lola: 1278812 markings, 2615522 edges, 2234 markings/sec, 545 secs
lola: 1290283 markings, 2640393 edges, 2294 markings/sec, 550 secs
lola: 1303213 markings, 2673574 edges, 2586 markings/sec, 555 secs
lola: 1317776 markings, 2697604 edges, 2913 markings/sec, 560 secs
lola: 1327914 markings, 2713229 edges, 2028 markings/sec, 565 secs
lola: 1336417 markings, 2726396 edges, 1701 markings/sec, 570 secs
lola: 1346092 markings, 2744250 edges, 1935 markings/sec, 575 secs
lola: 1358155 markings, 2779110 edges, 2413 markings/sec, 580 secs
lola: 1371086 markings, 2815075 edges, 2586 markings/sec, 585 secs
lola: 1382162 markings, 2841467 edges, 2215 markings/sec, 590 secs
lola: 1394366 markings, 2868479 edges, 2441 markings/sec, 595 secs
lola: 1405286 markings, 2887351 edges, 2184 markings/sec, 600 secs
lola: 1416699 markings, 2907848 edges, 2283 markings/sec, 605 secs
lola: 1427976 markings, 2930554 edges, 2255 markings/sec, 610 secs
lola: 1439089 markings, 2953714 edges, 2223 markings/sec, 615 secs
lola: 1450672 markings, 2977461 edges, 2317 markings/sec, 620 secs
lola: 1463300 markings, 3003526 edges, 2526 markings/sec, 625 secs
lola: 1473160 markings, 3023245 edges, 1972 markings/sec, 630 secs
lola: 1483187 markings, 3043327 edges, 2005 markings/sec, 635 secs
lola: 1493012 markings, 3060205 edges, 1965 markings/sec, 640 secs
lola: 1502280 markings, 3078589 edges, 1854 markings/sec, 645 secs
lola: 1513777 markings, 3111104 edges, 2299 markings/sec, 650 secs
lola: 1524512 markings, 3133798 edges, 2147 markings/sec, 655 secs
lola: 1535798 markings, 3152658 edges, 2257 markings/sec, 660 secs
lola: 1545044 markings, 3167055 edges, 1849 markings/sec, 665 secs
lola: 1556756 markings, 3199183 edges, 2342 markings/sec, 670 secs
lola: 1568945 markings, 3231020 edges, 2438 markings/sec, 675 secs
lola: 1580063 markings, 3250959 edges, 2224 markings/sec, 680 secs
lola: 1591477 markings, 3272367 edges, 2283 markings/sec, 685 secs
lola: 1603044 markings, 3296601 edges, 2313 markings/sec, 690 secs
lola: 1615137 markings, 3321645 edges, 2419 markings/sec, 695 secs
lola: 1626764 markings, 3344858 edges, 2325 markings/sec, 700 secs
lola: 1637996 markings, 3366074 edges, 2246 markings/sec, 705 secs
lola: 1647732 markings, 3382421 edges, 1947 markings/sec, 710 secs
lola: 1661041 markings, 3420395 edges, 2662 markings/sec, 715 secs
lola: 1673001 markings, 3445330 edges, 2392 markings/sec, 720 secs
lola: 1684433 markings, 3465469 edges, 2286 markings/sec, 725 secs
lola: 1695351 markings, 3486637 edges, 2184 markings/sec, 730 secs
lola: 1706569 markings, 3507323 edges, 2244 markings/sec, 735 secs
lola: 1715115 markings, 3524963 edges, 1709 markings/sec, 740 secs
lola: 1726444 markings, 3546412 edges, 2266 markings/sec, 745 secs
lola: 1736101 markings, 3561688 edges, 1931 markings/sec, 750 secs
lola: 1743778 markings, 3572782 edges, 1535 markings/sec, 755 secs
lola: 1752251 markings, 3584799 edges, 1695 markings/sec, 760 secs
lola: 1762958 markings, 3611513 edges, 2141 markings/sec, 765 secs
lola: 1774000 markings, 3641936 edges, 2208 markings/sec, 770 secs
lola: 1785830 markings, 3672482 edges, 2366 markings/sec, 775 secs
lola: 1795189 markings, 3694561 edges, 1872 markings/sec, 780 secs
lola: 1805677 markings, 3712850 edges, 2098 markings/sec, 785 secs
lola: 1815864 markings, 3729253 edges, 2037 markings/sec, 790 secs
lola: 1826266 markings, 3747084 edges, 2080 markings/sec, 795 secs
lola: 1836774 markings, 3768079 edges, 2102 markings/sec, 800 secs
lola: 1848186 markings, 3789018 edges, 2282 markings/sec, 805 secs
lola: 1856714 markings, 3800984 edges, 1706 markings/sec, 810 secs
lola: 1868101 markings, 3831281 edges, 2277 markings/sec, 815 secs
lola: 1878868 markings, 3856768 edges, 2153 markings/sec, 820 secs
lola: 1890315 markings, 3875399 edges, 2289 markings/sec, 825 secs
lola: 1900337 markings, 3894461 edges, 2004 markings/sec, 830 secs
lola: 1910983 markings, 3915760 edges, 2129 markings/sec, 835 secs
lola: 1921311 markings, 3933638 edges, 2066 markings/sec, 840 secs
lola: 1929339 markings, 3945375 edges, 1606 markings/sec, 845 secs
lola: 1940065 markings, 3972745 edges, 2145 markings/sec, 850 secs
lola: 1950916 markings, 3998943 edges, 2170 markings/sec, 855 secs
lola: 1961138 markings, 4020128 edges, 2044 markings/sec, 860 secs
lola: 1971383 markings, 4037318 edges, 2049 markings/sec, 865 secs
lola: 1981297 markings, 4057153 edges, 1983 markings/sec, 870 secs
lola: 1994040 markings, 4080813 edges, 2549 markings/sec, 875 secs
lola: 2004138 markings, 4095515 edges, 2020 markings/sec, 880 secs
lola: 2015462 markings, 4120388 edges, 2265 markings/sec, 885 secs
lola: 2028043 markings, 4150884 edges, 2516 markings/sec, 890 secs
lola: 2040167 markings, 4176476 edges, 2425 markings/sec, 895 secs
lola: 2052258 markings, 4196206 edges, 2418 markings/sec, 900 secs
lola: 2063689 markings, 4218190 edges, 2286 markings/sec, 905 secs
lola: 2075508 markings, 4240198 edges, 2364 markings/sec, 910 secs
lola: 2087536 markings, 4263070 edges, 2406 markings/sec, 915 secs
lola: 2098583 markings, 4281751 edges, 2209 markings/sec, 920 secs
lola: 2110916 markings, 4310870 edges, 2467 markings/sec, 925 secs
lola: 2123186 markings, 4331608 edges, 2454 markings/sec, 930 secs
lola: 2133939 markings, 4354736 edges, 2151 markings/sec, 935 secs
lola: 2145378 markings, 4379862 edges, 2288 markings/sec, 940 secs
lola: 2156107 markings, 4398698 edges, 2146 markings/sec, 945 secs
lola: 2168020 markings, 4421211 edges, 2383 markings/sec, 950 secs
lola: 2180005 markings, 4444061 edges, 2397 markings/sec, 955 secs
lola: 2190119 markings, 4459086 edges, 2023 markings/sec, 960 secs
lola: 2201797 markings, 4487919 edges, 2336 markings/sec, 965 secs
lola: 2212719 markings, 4510581 edges, 2184 markings/sec, 970 secs
lola: 2223190 markings, 4528203 edges, 2094 markings/sec, 975 secs
lola: 2234559 markings, 4549512 edges, 2274 markings/sec, 980 secs
lola: 2245686 markings, 4570604 edges, 2225 markings/sec, 985 secs
lola: 2256212 markings, 4590449 edges, 2105 markings/sec, 990 secs
lola: 2268451 markings, 4614394 edges, 2448 markings/sec, 995 secs
lola: 2278939 markings, 4636712 edges, 2098 markings/sec, 1000 secs
lola: 2289479 markings, 4656381 edges, 2108 markings/sec, 1005 secs
lola: 2300702 markings, 4677600 edges, 2245 markings/sec, 1010 secs
lola: 2312225 markings, 4698186 edges, 2305 markings/sec, 1015 secs
lola: 2322944 markings, 4723148 edges, 2144 markings/sec, 1020 secs
lola: 2334465 markings, 4748073 edges, 2304 markings/sec, 1025 secs
lola: 2345069 markings, 4769141 edges, 2121 markings/sec, 1030 secs
lola: 2356424 markings, 4791839 edges, 2271 markings/sec, 1035 secs
lola: 2367795 markings, 4816307 edges, 2274 markings/sec, 1040 secs
lola: 2379249 markings, 4839058 edges, 2291 markings/sec, 1045 secs
lola: 2391116 markings, 4864749 edges, 2373 markings/sec, 1050 secs
lola: 2403189 markings, 4888911 edges, 2415 markings/sec, 1055 secs
lola: 2413799 markings, 4908327 edges, 2122 markings/sec, 1060 secs
lola: 2423239 markings, 4926820 edges, 1888 markings/sec, 1065 secs
lola: 2435173 markings, 4964994 edges, 2387 markings/sec, 1070 secs
lola: 2446821 markings, 4996005 edges, 2330 markings/sec, 1075 secs
lola: 2458731 markings, 5027630 edges, 2382 markings/sec, 1080 secs
lola: 2468853 markings, 5047115 edges, 2024 markings/sec, 1085 secs
lola: 2478731 markings, 5067899 edges, 1976 markings/sec, 1090 secs
lola: 2489013 markings, 5092368 edges, 2056 markings/sec, 1095 secs
lola: 2500486 markings, 5117870 edges, 2295 markings/sec, 1100 secs
lola: 2512564 markings, 5145187 edges, 2416 markings/sec, 1105 secs
lola: 2523075 markings, 5168792 edges, 2102 markings/sec, 1110 secs
lola: 2534655 markings, 5193894 edges, 2316 markings/sec, 1115 secs
lola: 2544238 markings, 5214252 edges, 1917 markings/sec, 1120 secs
lola: 2556199 markings, 5249849 edges, 2392 markings/sec, 1125 secs
lola: 2568015 markings, 5273975 edges, 2363 markings/sec, 1130 secs
lola: 2576789 markings, 5289981 edges, 1755 markings/sec, 1135 secs
lola: 2587966 markings, 5324634 edges, 2235 markings/sec, 1140 secs
lola: 2597505 markings, 5347306 edges, 1908 markings/sec, 1145 secs
lola: 2606604 markings, 5365232 edges, 1820 markings/sec, 1150 secs
lola: 2616636 markings, 5388926 edges, 2006 markings/sec, 1155 secs
lola: 2626345 markings, 5410772 edges, 1942 markings/sec, 1160 secs
lola: 2636130 markings, 5433268 edges, 1957 markings/sec, 1165 secs
lola: 2646941 markings, 5455923 edges, 2162 markings/sec, 1170 secs
lola: 2655443 markings, 5468459 edges, 1700 markings/sec, 1175 secs
lola: 2664144 markings, 5482250 edges, 1740 markings/sec, 1180 secs
lola: 2675070 markings, 5508899 edges, 2185 markings/sec, 1185 secs
lola: 2686253 markings, 5542658 edges, 2237 markings/sec, 1190 secs
lola: 2698068 markings, 5572961 edges, 2363 markings/sec, 1195 secs
lola: 2709111 markings, 5600438 edges, 2209 markings/sec, 1200 secs
lola: 2720204 markings, 5620832 edges, 2219 markings/sec, 1205 secs
lola: 2731448 markings, 5640004 edges, 2249 markings/sec, 1210 secs
lola: 2740729 markings, 5657876 edges, 1856 markings/sec, 1215 secs
lola: 2753299 markings, 5682096 edges, 2514 markings/sec, 1220 secs
lola: 2761776 markings, 5699242 edges, 1695 markings/sec, 1225 secs
lola: 2772583 markings, 5720353 edges, 2161 markings/sec, 1230 secs
lola: 2780781 markings, 5733222 edges, 1640 markings/sec, 1235 secs
lola: 2788723 markings, 5744711 edges, 1588 markings/sec, 1240 secs
lola: 2798259 markings, 5768061 edges, 1907 markings/sec, 1245 secs
lola: 2809945 markings, 5800384 edges, 2337 markings/sec, 1250 secs
lola: 2819975 markings, 5822508 edges, 2006 markings/sec, 1255 secs
lola: 2831283 markings, 5848124 edges, 2262 markings/sec, 1260 secs
lola: 2842768 markings, 5866979 edges, 2297 markings/sec, 1265 secs
lola: 2853314 markings, 5886912 edges, 2109 markings/sec, 1270 secs
lola: 2865875 markings, 5911242 edges, 2512 markings/sec, 1275 secs
lola: 2875610 markings, 5929542 edges, 1947 markings/sec, 1280 secs
lola: 2886520 markings, 5957701 edges, 2182 markings/sec, 1285 secs
lola: 2898128 markings, 5979210 edges, 2322 markings/sec, 1290 secs
lola: 2907297 markings, 5997312 edges, 1834 markings/sec, 1295 secs
lola: 2919378 markings, 6021194 edges, 2416 markings/sec, 1300 secs
lola: 2928030 markings, 6034453 edges, 1730 markings/sec, 1305 secs
lola: 2939318 markings, 6063815 edges, 2258 markings/sec, 1310 secs
lola: 2950338 markings, 6089606 edges, 2204 markings/sec, 1315 secs
lola: 2961247 markings, 6108093 edges, 2182 markings/sec, 1320 secs
lola: 2972710 markings, 6131185 edges, 2293 markings/sec, 1325 secs
lola: 2982463 markings, 6148356 edges, 1951 markings/sec, 1330 secs
lola: 2991710 markings, 6169596 edges, 1849 markings/sec, 1335 secs
lola: 3002564 markings, 6196616 edges, 2171 markings/sec, 1340 secs
lola: 3014500 markings, 6216514 edges, 2387 markings/sec, 1345 secs
lola: 3022406 markings, 6229258 edges, 1581 markings/sec, 1350 secs
lola: 3030351 markings, 6241558 edges, 1589 markings/sec, 1355 secs
lola: 3040119 markings, 6268504 edges, 1954 markings/sec, 1360 secs
lola: 3051251 markings, 6300396 edges, 2226 markings/sec, 1365 secs
lola: 3061699 markings, 6324934 edges, 2090 markings/sec, 1370 secs
lola: 3072906 markings, 6350956 edges, 2241 markings/sec, 1375 secs
lola: 3082877 markings, 6368431 edges, 1994 markings/sec, 1380 secs
lola: 3093502 markings, 6389377 edges, 2125 markings/sec, 1385 secs
lola: 3103675 markings, 6411279 edges, 2035 markings/sec, 1390 secs
lola: 3113847 markings, 6432123 edges, 2034 markings/sec, 1395 secs
lola: 3125235 markings, 6455721 edges, 2278 markings/sec, 1400 secs
lola: 3135415 markings, 6476739 edges, 2036 markings/sec, 1405 secs
lola: 3146386 markings, 6498338 edges, 2194 markings/sec, 1410 secs
lola: 3155595 markings, 6516500 edges, 1842 markings/sec, 1415 secs
lola: 3167606 markings, 6549004 edges, 2402 markings/sec, 1420 secs
lola: 3180020 markings, 6572627 edges, 2483 markings/sec, 1425 secs
lola: 3188347 markings, 6585889 edges, 1665 markings/sec, 1430 secs
lola: 3199086 markings, 6615562 edges, 2148 markings/sec, 1435 secs
lola: 3209827 markings, 6642141 edges, 2148 markings/sec, 1440 secs
lola: 3219562 markings, 6659564 edges, 1947 markings/sec, 1445 secs
lola: 3229975 markings, 6681642 edges, 2083 markings/sec, 1450 secs
lola: 3241131 markings, 6704610 edges, 2231 markings/sec, 1455 secs
lola: 3252829 markings, 6728882 edges, 2340 markings/sec, 1460 secs
lola: 3262997 markings, 6748098 edges, 2034 markings/sec, 1465 secs
lola: 3272482 markings, 6770298 edges, 1897 markings/sec, 1470 secs
lola: 3283804 markings, 6799749 edges, 2264 markings/sec, 1475 secs
lola: 3293868 markings, 6818008 edges, 2013 markings/sec, 1480 secs
lola: 3302334 markings, 6834833 edges, 1693 markings/sec, 1485 secs
lola: 3313437 markings, 6855708 edges, 2221 markings/sec, 1490 secs
lola: 3321904 markings, 6873161 edges, 1693 markings/sec, 1495 secs
lola: 3333384 markings, 6895165 edges, 2296 markings/sec, 1500 secs
lola: 3340730 markings, 6906171 edges, 1469 markings/sec, 1505 secs
lola: 3348343 markings, 6917143 edges, 1523 markings/sec, 1510 secs
lola: 3357527 markings, 6940433 edges, 1837 markings/sec, 1515 secs
lola: 3368443 markings, 6970680 edges, 2183 markings/sec, 1520 secs
lola: 3377310 markings, 6989492 edges, 1773 markings/sec, 1525 secs
lola: 3387246 markings, 7014422 edges, 1987 markings/sec, 1530 secs
lola: 3396859 markings, 7030510 edges, 1923 markings/sec, 1535 secs
lola: 3406594 markings, 7046851 edges, 1947 markings/sec, 1540 secs
lola: 3416234 markings, 7066395 edges, 1928 markings/sec, 1545 secs
lola: 3426165 markings, 7084637 edges, 1986 markings/sec, 1550 secs
lola: 3435015 markings, 7102356 edges, 1770 markings/sec, 1555 secs
lola: 3445178 markings, 7128214 edges, 2033 markings/sec, 1560 secs
lola: 3455190 markings, 7147421 edges, 2002 markings/sec, 1565 secs
lola: 3464813 markings, 7165414 edges, 1925 markings/sec, 1570 secs
lola: 3474343 markings, 7185231 edges, 1906 markings/sec, 1575 secs
lola: 3483490 markings, 7200793 edges, 1829 markings/sec, 1580 secs
lola: 3491904 markings, 7217734 edges, 1683 markings/sec, 1585 secs
lola: 3502353 markings, 7244986 edges, 2090 markings/sec, 1590 secs
lola: 3511220 markings, 7264381 edges, 1773 markings/sec, 1595 secs
lola: 3520549 markings, 7280162 edges, 1866 markings/sec, 1600 secs
lola: 3530466 markings, 7300218 edges, 1983 markings/sec, 1605 secs
lola: 3543400 markings, 7323127 edges, 2587 markings/sec, 1610 secs
lola: 3552555 markings, 7336958 edges, 1831 markings/sec, 1615 secs
lola: 3561339 markings, 7350833 edges, 1757 markings/sec, 1620 secs
lola: 3574225 markings, 7377132 edges, 2577 markings/sec, 1625 secs
lola: 3586413 markings, 7411960 edges, 2438 markings/sec, 1630 secs
lola: 3600475 markings, 7450232 edges, 2812 markings/sec, 1635 secs
lola: 3612097 markings, 7476576 edges, 2324 markings/sec, 1640 secs
lola: 3623695 markings, 7499671 edges, 2320 markings/sec, 1645 secs
lola: 3635249 markings, 7519609 edges, 2311 markings/sec, 1650 secs
lola: 3647261 markings, 7540129 edges, 2402 markings/sec, 1655 secs
lola: 3655640 markings, 7556418 edges, 1676 markings/sec, 1660 secs
lola: 3668847 markings, 7582636 edges, 2641 markings/sec, 1665 secs
lola: 3681173 markings, 7608421 edges, 2465 markings/sec, 1670 secs
lola: 3693547 markings, 7633258 edges, 2475 markings/sec, 1675 secs
lola: 3704381 markings, 7654132 edges, 2167 markings/sec, 1680 secs
lola: 3718547 markings, 7683262 edges, 2833 markings/sec, 1685 secs
lola: 3729393 markings, 7701988 edges, 2169 markings/sec, 1690 secs
lola: 3741132 markings, 7726116 edges, 2348 markings/sec, 1695 secs
lola: 3755318 markings, 7763271 edges, 2837 markings/sec, 1700 secs
lola: 3769025 markings, 7789084 edges, 2741 markings/sec, 1705 secs
lola: 3780443 markings, 7807153 edges, 2284 markings/sec, 1710 secs
lola: 3790716 markings, 7826829 edges, 2055 markings/sec, 1715 secs
lola: 3805937 markings, 7868932 edges, 3044 markings/sec, 1720 secs
lola: 3817115 markings, 7892067 edges, 2236 markings/sec, 1725 secs
lola: 3829327 markings, 7912983 edges, 2442 markings/sec, 1730 secs
lola: 3838208 markings, 7930141 edges, 1776 markings/sec, 1735 secs
lola: 3852976 markings, 7960834 edges, 2954 markings/sec, 1740 secs
lola: 3865795 markings, 7986121 edges, 2564 markings/sec, 1745 secs
lola: 3880022 markings, 8014914 edges, 2845 markings/sec, 1750 secs
lola: 3892428 markings, 8035591 edges, 2481 markings/sec, 1755 secs
lola: 3902186 markings, 8050954 edges, 1952 markings/sec, 1760 secs
lola: 3914536 markings, 8083116 edges, 2470 markings/sec, 1765 secs
lola: 3929108 markings, 8121537 edges, 2914 markings/sec, 1770 secs
lola: time limit reached - aborting
lola:
preliminary result: yes no no yes no yes no no yes yes yes unknown yes yes yes yes
lola:
preliminary result: yes no no yes no yes no no yes yes yes unknown yes yes yes yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes no no yes no yes no no yes yes yes unknown yes yes yes yes
lola: memory consumption: 756636 KB
lola: time consumption: 3569 seconds
lola: memory consumption: 756636 KB
lola: time consumption: 3569 seconds

BK_STOP 1527434126259

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-6"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-6.tgz
mv NeoElection-PT-6 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-PT-6, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r256-csrt-152732582800091"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;