About the Execution of LoLA for NeoElection-PT-6
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
961.540 | 3569695.00 | 3717439.00 | 687.80 | TFFTFTFFTTT?TTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
...............................................
/home/mcc/execution
total 13M
-rw-r--r-- 1 mcc users 164K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 400K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 321K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 880K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 30K May 26 09:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 79K May 26 09:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 54K May 26 09:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 147K May 26 09:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 296K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 667K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 451K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 1.3M May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 106K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 202K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 7.3M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-PT-6, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r256-csrt-152732582800091
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-6-LTLCardinality-00
FORMULA_NAME NeoElection-PT-6-LTLCardinality-01
FORMULA_NAME NeoElection-PT-6-LTLCardinality-02
FORMULA_NAME NeoElection-PT-6-LTLCardinality-03
FORMULA_NAME NeoElection-PT-6-LTLCardinality-04
FORMULA_NAME NeoElection-PT-6-LTLCardinality-05
FORMULA_NAME NeoElection-PT-6-LTLCardinality-06
FORMULA_NAME NeoElection-PT-6-LTLCardinality-07
FORMULA_NAME NeoElection-PT-6-LTLCardinality-08
FORMULA_NAME NeoElection-PT-6-LTLCardinality-09
FORMULA_NAME NeoElection-PT-6-LTLCardinality-10
FORMULA_NAME NeoElection-PT-6-LTLCardinality-11
FORMULA_NAME NeoElection-PT-6-LTLCardinality-12
FORMULA_NAME NeoElection-PT-6-LTLCardinality-13
FORMULA_NAME NeoElection-PT-6-LTLCardinality-14
FORMULA_NAME NeoElection-PT-6-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1527430556564
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-PT-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-PT-6 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking LTLCardinality @ NeoElection-PT-6 @ 3569 seconds
lola: LoLA will run for 3569 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 13265/65536 symbol table entries, 1397 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8435 transitions, 1197 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 2401 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-PT-6-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0 <= P-stage_2_SEC + P-stage_3_NEG + P-stage_5_SEC + P-stage_4_PRIM + P-stage_1_SEC + P-stage_6_SEC + P-stage_3_SEC + P-stage_0_SEC + P-stage_1_NEG + P-stage_2_PRIM + P-stage_6_NEG + P-stage_4_NEG + P-stage_5_PRIM + P-stage_0_PRIM + P-stage_2_NEG + P-stage_3_PRIM + P-stage_4_SEC + P-stage_5_NEG + P-stage_6_PRIM + P-stage_0_NEG + P-stage_1_PRIM)
lola: after: (P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0 <= 6)
lola: LP says that atomic proposition is always true: (P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0)
lola: after: (2 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_1_3_CO + P-negotiation_5_6_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_0_5_DONE + P-negotiation_5_0_NONE + P-negotiation_5_6_NONE + P-negotiation_5_3_DONE + P-negotiation_3_4_DONE + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_1_5_DONE + P-negotiation_2_6_CO + P-negotiation_0_2_CO + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_2_1_NONE + P-negotiation_0_1_NONE + P-negotiation_6_2_DONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_2_CO + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_2_4_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_3_6_CO + P-negotiation_0_6_NONE + P-negotiation_1_6_DONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_3_5_DONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_1_3_NONE + P-negotiation_3_6_DONE + P-negotiation_5_4_DONE + P-negotiation_3_4_CO + P-negotiation_3_2_NONE + P-negotiation_1_0_CO + P-negotiation_0_0_DONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_2_5_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_4_1_CO + P-negotiation_6_1_CO + P-negotiation_5_2_DONE + P-negotiation_3_3_DONE + P-negotiation_6_5_NONE + P-negotiation_1_4_DONE + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_0_4_CO + P-negotiation_6_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_4_6_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_6_5_DONE + P-negotiation_3_0_CO + P-negotiation_6_6_CO + P-negotiation_5_4_CO + P-negotiation_1_1_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_6_2_NONE + P-negotiation_4_3_NONE + P-negotiation_2_4_NONE + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_0_0_NONE + P-negotiation_0_5_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_5_2_CO + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_1_4_CO + P-negotiation_6_6_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_2_6_DONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_1_3_DONE)
lola: after: (0 <= 33)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6)
lola: after: (30 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_1_3_CO + P-negotiation_5_6_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_0_5_DONE + P-negotiation_5_0_NONE + P-negotiation_5_6_NONE + P-negotiation_5_3_DONE + P-negotiation_3_4_DONE + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_1_5_DONE + P-negotiation_2_6_CO + P-negotiation_0_2_CO + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_2_1_NONE + P-negotiation_0_1_NONE + P-negotiation_6_2_DONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_2_CO + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_2_4_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_3_6_CO + P-negotiation_0_6_NONE + P-negotiation_1_6_DONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_3_5_DONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_1_3_NONE + P-negotiation_3_6_DONE + P-negotiation_5_4_DONE + P-negotiation_3_4_CO + P-negotiation_3_2_NONE + P-negotiation_1_0_CO + P-negotiation_0_0_DONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_2_5_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_4_1_CO + P-negotiation_6_1_CO + P-negotiation_5_2_DONE + P-negotiation_3_3_DONE + P-negotiation_6_5_NONE + P-negotiation_1_4_DONE + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_0_4_CO + P-negotiation_6_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_4_6_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_6_5_DONE + P-negotiation_3_0_CO + P-negotiation_6_6_CO + P-negotiation_5_4_CO + P-negotiation_1_1_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_6_2_NONE + P-negotiation_4_3_NONE + P-negotiation_2_4_NONE + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_0_0_NONE + P-negotiation_0_5_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_5_2_CO + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_1_4_CO + P-negotiation_6_6_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_2_6_DONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_1_3_DONE)
lola: after: (0 <= 34)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6)
lola: after: (0 <= 30)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 <= P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_4_T_5 + P-masterState_4_T_6 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_6 + P-masterState_3_T_5 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_5_F_5 + P-masterState_5_F_4 + P-masterState_5_F_3 + P-masterState_5_F_2 + P-masterState_5_F_1 + P-masterState_5_F_0 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_4_F_4 + P-masterState_4_F_5 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_6 + P-masterState_2_F_6 + P-masterState_5_F_6 + P-masterState_0_F_6 + P-masterState_3_F_6 + P-masterState_1_T_6 + P-masterState_6_F_6)
lola: after: (24 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-network_6_0_AnsP_1 <= P-network_5_2_AskP_6)
lola: after: (P-network_6_0_AnsP_1 <= 0)
lola: LP says that atomic proposition is always true: (P-network_6_0_AnsP_1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_0_6_AnnP_0 <= P-masterList_6_5_6)
lola: after: (P-network_0_6_AnnP_0 <= 0)
lola: LP says that atomic proposition is always true: (P-network_0_6_AnnP_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_3_1_AI_1 <= P-network_1_6_RI_2)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_5_1_RI_2 <= P-network_2_2_AskP_5)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-polling_1 <= P-poll__networl_4_2_RP_3)
lola: after: (P-polling_1 <= 0)
lola: LP says that atomic proposition is always true: (P-poll__networl_6_1_AnsP_4 <= P-network_3_1_AnsP_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_0_1_RI_0 <= P-poll__networl_6_5_AI_3)
lola: after: (P-network_0_1_RI_0 <= 0)
lola: LP says that atomic proposition is always true: (P-network_0_1_RI_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_4_AskP_2 <= P-network_3_3_AI_5)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_4_2_RI_6 <= P-masterList_0_5_3)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_6_1_AI_5 <= P-poll__networl_6_3_RP_3)
lola: after: (0 <= 0)
lola: always true
lola: A (G (G (TRUE))) : A ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6)) : A (FALSE) : A (TRUE) : A (F (FALSE)) : A (X ((G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6)) U X ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 <= P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0))))) : A (F ((F (TRUE) U G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6))))) : A (X ((TRUE U X (FALSE)))) : A (G (TRUE)) : A (F (F (G (X (TRUE))))) : A (G ((F (TRUE) U F (TRUE)))) : A (X (G (F ((P-polling_1 <= 0))))) : A (X (F (F (F (TRUE))))) : A (F (G (G (F (TRUE))))) : A ((X (F (TRUE)) U TRUE)) : A (G (G (G (X (TRUE)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-6-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6)
lola: processed formula length: 200
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
========================================
FORMULA NeoElection-PT-6-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-PT-6-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 4 will run for 295 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-6-LTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 7 will run for 394 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-6-LTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 8 will run for 443 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 507 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 591 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 710 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 887 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((X ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 <= P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0)) OR (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((X ((P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 <= P-electedSecondary_6 + P-electedSecondary_5 + P-electedSecondary_4 + P-electedSecondary_3 + P-electedSecondary_2 + P-electedSecondary_1 + P-electedSecondary_0)) OR (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-... (shortened)
lola: processed formula length: 692
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 9 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 55 markings, 84 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1183 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 7 markings, 6 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1775 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((P-polling_1 <= 0))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((P-polling_1 <= 0))))
lola: processed formula length: 30
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 10134 markings, 13954 edges, 2027 markings/sec, 0 secs
lola: 18929 markings, 26416 edges, 1759 markings/sec, 5 secs
lola: 29846 markings, 50994 edges, 2183 markings/sec, 10 secs
lola: 42042 markings, 82541 edges, 2439 markings/sec, 15 secs
lola: 52806 markings, 107231 edges, 2153 markings/sec, 20 secs
lola: 64697 markings, 128001 edges, 2378 markings/sec, 25 secs
lola: 76781 markings, 147332 edges, 2417 markings/sec, 30 secs
lola: 87147 markings, 166164 edges, 2073 markings/sec, 35 secs
lola: 99197 markings, 188572 edges, 2410 markings/sec, 40 secs
lola: 110167 markings, 209001 edges, 2194 markings/sec, 45 secs
lola: 121398 markings, 229779 edges, 2246 markings/sec, 50 secs
lola: 132659 markings, 249416 edges, 2252 markings/sec, 55 secs
lola: 144290 markings, 272979 edges, 2326 markings/sec, 60 secs
lola: 157370 markings, 301037 edges, 2616 markings/sec, 65 secs
lola: 169214 markings, 318842 edges, 2369 markings/sec, 70 secs
lola: 180622 markings, 342768 edges, 2282 markings/sec, 75 secs
lola: 192843 markings, 371817 edges, 2444 markings/sec, 80 secs
lola: 204832 markings, 391298 edges, 2398 markings/sec, 85 secs
lola: 216799 markings, 413447 edges, 2393 markings/sec, 90 secs
lola: 229296 markings, 436573 edges, 2499 markings/sec, 95 secs
lola: 243008 markings, 461626 edges, 2742 markings/sec, 100 secs
lola: 253139 markings, 476037 edges, 2026 markings/sec, 105 secs
lola: 265399 markings, 504846 edges, 2452 markings/sec, 110 secs
lola: 278214 markings, 535488 edges, 2563 markings/sec, 115 secs
lola: 290255 markings, 555646 edges, 2408 markings/sec, 120 secs
lola: 302052 markings, 576535 edges, 2359 markings/sec, 125 secs
lola: 314206 markings, 599926 edges, 2431 markings/sec, 130 secs
lola: 326311 markings, 622383 edges, 2421 markings/sec, 135 secs
lola: 337588 markings, 640859 edges, 2255 markings/sec, 140 secs
lola: 350943 markings, 671853 edges, 2671 markings/sec, 145 secs
lola: 362411 markings, 689159 edges, 2294 markings/sec, 150 secs
lola: 375355 markings, 720791 edges, 2589 markings/sec, 155 secs
lola: 386427 markings, 739630 edges, 2214 markings/sec, 160 secs
lola: 398781 markings, 763166 edges, 2471 markings/sec, 165 secs
lola: 411822 markings, 786949 edges, 2608 markings/sec, 170 secs
lola: 421827 markings, 804098 edges, 2001 markings/sec, 175 secs
lola: 434867 markings, 837913 edges, 2608 markings/sec, 180 secs
lola: 447238 markings, 860789 edges, 2474 markings/sec, 185 secs
lola: 458600 markings, 884460 edges, 2272 markings/sec, 190 secs
lola: 470155 markings, 906841 edges, 2311 markings/sec, 195 secs
lola: 482272 markings, 931572 edges, 2423 markings/sec, 200 secs
lola: 494861 markings, 955058 edges, 2518 markings/sec, 205 secs
lola: 507771 markings, 985184 edges, 2582 markings/sec, 210 secs
lola: 519720 markings, 1008833 edges, 2390 markings/sec, 215 secs
lola: 533159 markings, 1034536 edges, 2688 markings/sec, 220 secs
lola: 542516 markings, 1050432 edges, 1871 markings/sec, 225 secs
lola: 551648 markings, 1065950 edges, 1826 markings/sec, 230 secs
lola: 562592 markings, 1095277 edges, 2189 markings/sec, 235 secs
lola: 574576 markings, 1131752 edges, 2397 markings/sec, 240 secs
lola: 586660 markings, 1166010 edges, 2417 markings/sec, 245 secs
lola: 598093 markings, 1196233 edges, 2287 markings/sec, 250 secs
lola: 608169 markings, 1215253 edges, 2015 markings/sec, 255 secs
lola: 618674 markings, 1234887 edges, 2101 markings/sec, 260 secs
lola: 629526 markings, 1257469 edges, 2170 markings/sec, 265 secs
lola: 639957 markings, 1280497 edges, 2086 markings/sec, 270 secs
lola: 650846 markings, 1305156 edges, 2178 markings/sec, 275 secs
lola: 661539 markings, 1328991 edges, 2139 markings/sec, 280 secs
lola: 672926 markings, 1354896 edges, 2277 markings/sec, 285 secs
lola: 683263 markings, 1377032 edges, 2067 markings/sec, 290 secs
lola: 693872 markings, 1399694 edges, 2122 markings/sec, 295 secs
lola: 704388 markings, 1420000 edges, 2103 markings/sec, 300 secs
lola: 713907 markings, 1440868 edges, 1904 markings/sec, 305 secs
lola: 725369 markings, 1475426 edges, 2292 markings/sec, 310 secs
lola: 736159 markings, 1500177 edges, 2158 markings/sec, 315 secs
lola: 747217 markings, 1520127 edges, 2212 markings/sec, 320 secs
lola: 756672 markings, 1538480 edges, 1891 markings/sec, 325 secs
lola: 769300 markings, 1576241 edges, 2526 markings/sec, 330 secs
lola: 780447 markings, 1603959 edges, 2229 markings/sec, 335 secs
lola: 791655 markings, 1624983 edges, 2242 markings/sec, 340 secs
lola: 801710 markings, 1646960 edges, 2011 markings/sec, 345 secs
lola: 812593 markings, 1671272 edges, 2177 markings/sec, 350 secs
lola: 823379 markings, 1696008 edges, 2157 markings/sec, 355 secs
lola: 834177 markings, 1719471 edges, 2160 markings/sec, 360 secs
lola: 845921 markings, 1743849 edges, 2349 markings/sec, 365 secs
lola: 854906 markings, 1756309 edges, 1797 markings/sec, 370 secs
lola: 862714 markings, 1768483 edges, 1562 markings/sec, 375 secs
lola: 872374 markings, 1783515 edges, 1932 markings/sec, 380 secs
lola: 885847 markings, 1817167 edges, 2695 markings/sec, 385 secs
lola: 898720 markings, 1854989 edges, 2575 markings/sec, 390 secs
lola: 912879 markings, 1894321 edges, 2832 markings/sec, 395 secs
lola: 924057 markings, 1918931 edges, 2236 markings/sec, 400 secs
lola: 937130 markings, 1945196 edges, 2615 markings/sec, 405 secs
lola: 949037 markings, 1966138 edges, 2381 markings/sec, 410 secs
lola: 961338 markings, 1987903 edges, 2460 markings/sec, 415 secs
lola: 973654 markings, 2011519 edges, 2463 markings/sec, 420 secs
lola: 985662 markings, 2033696 edges, 2402 markings/sec, 425 secs
lola: 995353 markings, 2053374 edges, 1938 markings/sec, 430 secs
lola: 1007556 markings, 2076455 edges, 2441 markings/sec, 435 secs
lola: 1017338 markings, 2091524 edges, 1956 markings/sec, 440 secs
lola: 1024939 markings, 2102617 edges, 1520 markings/sec, 445 secs
lola: 1033116 markings, 2114201 edges, 1635 markings/sec, 450 secs
lola: 1044355 markings, 2142897 edges, 2248 markings/sec, 455 secs
lola: 1056065 markings, 2175135 edges, 2342 markings/sec, 460 secs
lola: 1067716 markings, 2203407 edges, 2330 markings/sec, 465 secs
lola: 1078720 markings, 2229721 edges, 2201 markings/sec, 470 secs
lola: 1090597 markings, 2249100 edges, 2375 markings/sec, 475 secs
lola: 1102951 markings, 2269147 edges, 2471 markings/sec, 480 secs
lola: 1113367 markings, 2289450 edges, 2083 markings/sec, 485 secs
lola: 1126571 markings, 2314721 edges, 2641 markings/sec, 490 secs
lola: 1135930 markings, 2327981 edges, 1872 markings/sec, 495 secs
lola: 1148123 markings, 2359142 edges, 2439 markings/sec, 500 secs
lola: 1160393 markings, 2387191 edges, 2454 markings/sec, 505 secs
lola: 1172997 markings, 2408288 edges, 2521 markings/sec, 510 secs
lola: 1182860 markings, 2428315 edges, 1973 markings/sec, 515 secs
lola: 1195491 markings, 2452389 edges, 2526 markings/sec, 520 secs
lola: 1205204 markings, 2467530 edges, 1943 markings/sec, 525 secs
lola: 1215657 markings, 2488161 edges, 2091 markings/sec, 530 secs
lola: 1228716 markings, 2523354 edges, 2612 markings/sec, 535 secs
lola: 1239852 markings, 2546010 edges, 2227 markings/sec, 540 secs
lola: 1251577 markings, 2565695 edges, 2345 markings/sec, 545 secs
lola: 1263390 markings, 2589052 edges, 2363 markings/sec, 550 secs
lola: 1275358 markings, 2610580 edges, 2394 markings/sec, 555 secs
lola: 1285200 markings, 2626141 edges, 1968 markings/sec, 560 secs
lola: 1298096 markings, 2661717 edges, 2579 markings/sec, 565 secs
lola: 1309005 markings, 2683376 edges, 2182 markings/sec, 570 secs
lola: 1321554 markings, 2703511 edges, 2510 markings/sec, 575 secs
lola: 1329679 markings, 2715972 edges, 1625 markings/sec, 580 secs
lola: 1338491 markings, 2729463 edges, 1762 markings/sec, 585 secs
lola: 1349035 markings, 2752716 edges, 2109 markings/sec, 590 secs
lola: 1361206 markings, 2787839 edges, 2434 markings/sec, 595 secs
lola: 1374056 markings, 2823758 edges, 2570 markings/sec, 600 secs
lola: 1385571 markings, 2851795 edges, 2303 markings/sec, 605 secs
lola: 1397034 markings, 2873103 edges, 2293 markings/sec, 610 secs
lola: 1408016 markings, 2892176 edges, 2196 markings/sec, 615 secs
lola: 1418890 markings, 2912304 edges, 2175 markings/sec, 620 secs
lola: 1428948 markings, 2932451 edges, 2012 markings/sec, 625 secs
lola: 1438793 markings, 2953057 edges, 1969 markings/sec, 630 secs
lola: 1449525 markings, 2974802 edges, 2146 markings/sec, 635 secs
lola: 1460079 markings, 2997247 edges, 2111 markings/sec, 640 secs
lola: 1470775 markings, 3018026 edges, 2139 markings/sec, 645 secs
lola: 1481300 markings, 3039175 edges, 2105 markings/sec, 650 secs
lola: 1490928 markings, 3056883 edges, 1926 markings/sec, 655 secs
lola: 1500344 markings, 3073221 edges, 1883 markings/sec, 660 secs
lola: 1511691 markings, 3105717 edges, 2269 markings/sec, 665 secs
lola: 1522315 markings, 3129855 edges, 2125 markings/sec, 670 secs
lola: 1533914 markings, 3149807 edges, 2320 markings/sec, 675 secs
lola: 1541547 markings, 3161730 edges, 1527 markings/sec, 680 secs
lola: 1551010 markings, 3182242 edges, 1893 markings/sec, 685 secs
lola: 1562951 markings, 3216337 edges, 2388 markings/sec, 690 secs
lola: 1572814 markings, 3238368 edges, 1973 markings/sec, 695 secs
lola: 1582813 markings, 3255892 edges, 2000 markings/sec, 700 secs
lola: 1593016 markings, 3275360 edges, 2041 markings/sec, 705 secs
lola: 1603069 markings, 3296646 edges, 2011 markings/sec, 710 secs
lola: 1613394 markings, 3317992 edges, 2065 markings/sec, 715 secs
lola: 1624373 markings, 3339933 edges, 2196 markings/sec, 720 secs
lola: 1635721 markings, 3362737 edges, 2270 markings/sec, 725 secs
lola: 1644135 markings, 3375413 edges, 1683 markings/sec, 730 secs
lola: 1655474 markings, 3404983 edges, 2268 markings/sec, 735 secs
lola: 1668045 markings, 3436599 edges, 2514 markings/sec, 740 secs
lola: 1679955 markings, 3457386 edges, 2382 markings/sec, 745 secs
lola: 1689299 markings, 3475624 edges, 1869 markings/sec, 750 secs
lola: 1701610 markings, 3498334 edges, 2462 markings/sec, 755 secs
lola: 1711443 markings, 3516494 edges, 1967 markings/sec, 760 secs
lola: 1721167 markings, 3535922 edges, 1945 markings/sec, 765 secs
lola: 1731595 markings, 3555330 edges, 2086 markings/sec, 770 secs
lola: 1739637 markings, 3566711 edges, 1608 markings/sec, 775 secs
lola: 1747487 markings, 3578020 edges, 1570 markings/sec, 780 secs
lola: 1756278 markings, 3593232 edges, 1758 markings/sec, 785 secs
lola: 1767321 markings, 3623371 edges, 2209 markings/sec, 790 secs
lola: 1779063 markings, 3655262 edges, 2348 markings/sec, 795 secs
lola: 1789010 markings, 3677272 edges, 1989 markings/sec, 800 secs
lola: 1799652 markings, 3703088 edges, 2128 markings/sec, 805 secs
lola: 1809581 markings, 3719335 edges, 1986 markings/sec, 810 secs
lola: 1820411 markings, 3736789 edges, 2166 markings/sec, 815 secs
lola: 1830764 markings, 3755778 edges, 2071 markings/sec, 820 secs
lola: 1841652 markings, 3777545 edges, 2178 markings/sec, 825 secs
lola: 1851669 markings, 3793930 edges, 2003 markings/sec, 830 secs
lola: 1861516 markings, 3812679 edges, 1969 markings/sec, 835 secs
lola: 1872974 markings, 3843191 edges, 2292 markings/sec, 840 secs
lola: 1883235 markings, 3863865 edges, 2052 markings/sec, 845 secs
lola: 1893402 markings, 3880965 edges, 2033 markings/sec, 850 secs
lola: 1901591 markings, 3897307 edges, 1638 markings/sec, 855 secs
lola: 1911439 markings, 3916747 edges, 1970 markings/sec, 860 secs
lola: 1920974 markings, 3933175 edges, 1907 markings/sec, 865 secs
lola: 1928063 markings, 3943495 edges, 1418 markings/sec, 870 secs
lola: 1937188 markings, 3964649 edges, 1825 markings/sec, 875 secs
lola: 1948685 markings, 3995197 edges, 2299 markings/sec, 880 secs
lola: 1958326 markings, 4015392 edges, 1928 markings/sec, 885 secs
lola: 1967484 markings, 4030420 edges, 1832 markings/sec, 890 secs
lola: 1976452 markings, 4046994 edges, 1794 markings/sec, 895 secs
lola: 1986108 markings, 4066281 edges, 1931 markings/sec, 900 secs
lola: 1997173 markings, 4085307 edges, 2213 markings/sec, 905 secs
lola: 2005269 markings, 4097097 edges, 1619 markings/sec, 910 secs
lola: 2015447 markings, 4120328 edges, 2036 markings/sec, 915 secs
lola: 2027052 markings, 4149435 edges, 2321 markings/sec, 920 secs
lola: 2037914 markings, 4172664 edges, 2172 markings/sec, 925 secs
lola: 2048947 markings, 4190718 edges, 2207 markings/sec, 930 secs
lola: 2060227 markings, 4211590 edges, 2256 markings/sec, 935 secs
lola: 2072111 markings, 4233708 edges, 2377 markings/sec, 940 secs
lola: 2083555 markings, 4255752 edges, 2289 markings/sec, 945 secs
lola: 2095757 markings, 4277747 edges, 2440 markings/sec, 950 secs
lola: 2107552 markings, 4303791 edges, 2359 markings/sec, 955 secs
lola: 2120714 markings, 4327963 edges, 2632 markings/sec, 960 secs
lola: 2129352 markings, 4342235 edges, 1728 markings/sec, 965 secs
lola: 2140228 markings, 4369087 edges, 2175 markings/sec, 970 secs
lola: 2150731 markings, 4388650 edges, 2101 markings/sec, 975 secs
lola: 2161203 markings, 4408240 edges, 2094 markings/sec, 980 secs
lola: 2171590 markings, 4428029 edges, 2077 markings/sec, 985 secs
lola: 2183598 markings, 4449649 edges, 2402 markings/sec, 990 secs
lola: 2192854 markings, 4464798 edges, 1851 markings/sec, 995 secs
lola: 2204714 markings, 4493741 edges, 2372 markings/sec, 1000 secs
lola: 2216052 markings, 4515943 edges, 2268 markings/sec, 1005 secs
lola: 2226880 markings, 4535318 edges, 2166 markings/sec, 1010 secs
lola: 2238131 markings, 4556248 edges, 2250 markings/sec, 1015 secs
lola: 2249722 markings, 4577970 edges, 2318 markings/sec, 1020 secs
lola: 2260653 markings, 4600581 edges, 2186 markings/sec, 1025 secs
lola: 2272061 markings, 4619701 edges, 2282 markings/sec, 1030 secs
lola: 2283850 markings, 4646965 edges, 2358 markings/sec, 1035 secs
lola: 2294970 markings, 4666787 edges, 2224 markings/sec, 1040 secs
lola: 2306210 markings, 4688059 edges, 2248 markings/sec, 1045 secs
lola: 2316560 markings, 4704998 edges, 2070 markings/sec, 1050 secs
lola: 2328588 markings, 4736841 edges, 2406 markings/sec, 1055 secs
lola: 2339416 markings, 4757345 edges, 2166 markings/sec, 1060 secs
lola: 2350076 markings, 4779427 edges, 2132 markings/sec, 1065 secs
lola: 2361483 markings, 4800663 edges, 2281 markings/sec, 1070 secs
lola: 2373678 markings, 4827140 edges, 2439 markings/sec, 1075 secs
lola: 2385319 markings, 4853469 edges, 2328 markings/sec, 1080 secs
lola: 2396806 markings, 4876472 edges, 2297 markings/sec, 1085 secs
lola: 2409389 markings, 4900382 edges, 2517 markings/sec, 1090 secs
lola: 2418477 markings, 4916296 edges, 1818 markings/sec, 1095 secs
lola: 2429076 markings, 4945801 edges, 2120 markings/sec, 1100 secs
lola: 2441528 markings, 4984297 edges, 2490 markings/sec, 1105 secs
lola: 2453085 markings, 5015146 edges, 2311 markings/sec, 1110 secs
lola: 2463738 markings, 5037514 edges, 2131 markings/sec, 1115 secs
lola: 2475126 markings, 5059067 edges, 2278 markings/sec, 1120 secs
lola: 2484159 markings, 5080929 edges, 1807 markings/sec, 1125 secs
lola: 2495991 markings, 5107298 edges, 2366 markings/sec, 1130 secs
lola: 2507286 markings, 5133354 edges, 2259 markings/sec, 1135 secs
lola: 2517433 markings, 5157321 edges, 2029 markings/sec, 1140 secs
lola: 2528841 markings, 5181985 edges, 2282 markings/sec, 1145 secs
lola: 2540017 markings, 5203395 edges, 2235 markings/sec, 1150 secs
lola: 2551704 markings, 5238002 edges, 2337 markings/sec, 1155 secs
lola: 2562963 markings, 5264236 edges, 2252 markings/sec, 1160 secs
lola: 2573196 markings, 5283213 edges, 2047 markings/sec, 1165 secs
lola: 2583664 markings, 5311764 edges, 2094 markings/sec, 1170 secs
lola: 2594854 markings, 5342073 edges, 2238 markings/sec, 1175 secs
lola: 2605059 markings, 5361616 edges, 2041 markings/sec, 1180 secs
lola: 2614425 markings, 5383877 edges, 1873 markings/sec, 1185 secs
lola: 2625387 markings, 5408357 edges, 2192 markings/sec, 1190 secs
lola: 2636241 markings, 5433463 edges, 2171 markings/sec, 1195 secs
lola: 2647534 markings, 5456772 edges, 2259 markings/sec, 1200 secs
lola: 2656702 markings, 5470742 edges, 1834 markings/sec, 1205 secs
lola: 2666406 markings, 5486052 edges, 1941 markings/sec, 1210 secs
lola: 2678550 markings, 5519050 edges, 2429 markings/sec, 1215 secs
lola: 2691288 markings, 5556015 edges, 2548 markings/sec, 1220 secs
lola: 2703484 markings, 5585043 edges, 2439 markings/sec, 1225 secs
lola: 2715451 markings, 5611948 edges, 2393 markings/sec, 1230 secs
lola: 2727238 markings, 5632799 edges, 2357 markings/sec, 1235 secs
lola: 2738330 markings, 5652816 edges, 2218 markings/sec, 1240 secs
lola: 2750314 markings, 5676623 edges, 2397 markings/sec, 1245 secs
lola: 2760399 markings, 5696115 edges, 2017 markings/sec, 1250 secs
lola: 2772176 markings, 5719642 edges, 2355 markings/sec, 1255 secs
lola: 2781685 markings, 5734617 edges, 1902 markings/sec, 1260 secs
lola: 2790465 markings, 5747334 edges, 1756 markings/sec, 1265 secs
lola: 2801830 markings, 5778538 edges, 2273 markings/sec, 1270 secs
lola: 2814548 markings, 5812353 edges, 2544 markings/sec, 1275 secs
lola: 2825420 markings, 5837417 edges, 2174 markings/sec, 1280 secs
lola: 2836899 markings, 5857487 edges, 2296 markings/sec, 1285 secs
lola: 2848957 markings, 5877911 edges, 2412 markings/sec, 1290 secs
lola: 2860862 markings, 5902192 edges, 2381 markings/sec, 1295 secs
lola: 2871542 markings, 5919425 edges, 2136 markings/sec, 1300 secs
lola: 2883867 markings, 5951704 edges, 2465 markings/sec, 1305 secs
lola: 2896009 markings, 5975605 edges, 2428 markings/sec, 1310 secs
lola: 2906479 markings, 5995514 edges, 2094 markings/sec, 1315 secs
lola: 2917698 markings, 6018180 edges, 2244 markings/sec, 1320 secs
lola: 2927343 markings, 6033451 edges, 1929 markings/sec, 1325 secs
lola: 2938529 markings, 6061748 edges, 2237 markings/sec, 1330 secs
lola: 2949956 markings, 6088967 edges, 2285 markings/sec, 1335 secs
lola: 2961112 markings, 6107856 edges, 2231 markings/sec, 1340 secs
lola: 2972817 markings, 6131417 edges, 2341 markings/sec, 1345 secs
lola: 2983395 markings, 6149677 edges, 2116 markings/sec, 1350 secs
lola: 2995153 markings, 6178988 edges, 2352 markings/sec, 1355 secs
lola: 3007355 markings, 6204666 edges, 2440 markings/sec, 1360 secs
lola: 3018875 markings, 6223489 edges, 2304 markings/sec, 1365 secs
lola: 3027699 markings, 6237454 edges, 1765 markings/sec, 1370 secs
lola: 3037951 markings, 6261944 edges, 2050 markings/sec, 1375 secs
lola: 3050142 markings, 6297385 edges, 2438 markings/sec, 1380 secs
lola: 3061552 markings, 6324486 edges, 2282 markings/sec, 1385 secs
lola: 3073058 markings, 6351229 edges, 2301 markings/sec, 1390 secs
lola: 3083754 markings, 6370014 edges, 2139 markings/sec, 1395 secs
lola: 3094895 markings, 6392441 edges, 2228 markings/sec, 1400 secs
lola: 3106765 markings, 6417453 edges, 2374 markings/sec, 1405 secs
lola: 3118360 markings, 6441426 edges, 2319 markings/sec, 1410 secs
lola: 3129656 markings, 6465397 edges, 2259 markings/sec, 1415 secs
lola: 3141053 markings, 6488678 edges, 2279 markings/sec, 1420 secs
lola: 3151873 markings, 6506917 edges, 2164 markings/sec, 1425 secs
lola: 3163682 markings, 6539848 edges, 2362 markings/sec, 1430 secs
lola: 3175196 markings, 6564146 edges, 2303 markings/sec, 1435 secs
lola: 3185445 markings, 6581416 edges, 2050 markings/sec, 1440 secs
lola: 3195240 markings, 6604760 edges, 1959 markings/sec, 1445 secs
lola: 3206380 markings, 6633706 edges, 2228 markings/sec, 1450 secs
lola: 3216833 markings, 6654681 edges, 2091 markings/sec, 1455 secs
lola: 3227011 markings, 6675230 edges, 2036 markings/sec, 1460 secs
lola: 3238482 markings, 6699050 edges, 2294 markings/sec, 1465 secs
lola: 3249652 markings, 6722830 edges, 2234 markings/sec, 1470 secs
lola: 3261281 markings, 6745375 edges, 2326 markings/sec, 1475 secs
lola: 3271089 markings, 6766027 edges, 1962 markings/sec, 1480 secs
lola: 3283786 markings, 6799720 edges, 2539 markings/sec, 1485 secs
lola: 3294971 markings, 6819985 edges, 2237 markings/sec, 1490 secs
lola: 3305502 markings, 6840666 edges, 2106 markings/sec, 1495 secs
lola: 3316082 markings, 6860628 edges, 2116 markings/sec, 1500 secs
lola: 3326277 markings, 6881207 edges, 2039 markings/sec, 1505 secs
lola: 3335936 markings, 6898937 edges, 1932 markings/sec, 1510 secs
lola: 3343493 markings, 6910255 edges, 1511 markings/sec, 1515 secs
lola: 3352407 markings, 6925660 edges, 1783 markings/sec, 1520 secs
lola: 3362700 markings, 6955525 edges, 2059 markings/sec, 1525 secs
lola: 3374271 markings, 6984912 edges, 2314 markings/sec, 1530 secs
lola: 3383181 markings, 7006301 edges, 1782 markings/sec, 1535 secs
lola: 3392595 markings, 7023626 edges, 1883 markings/sec, 1540 secs
lola: 3403081 markings, 7040709 edges, 2097 markings/sec, 1545 secs
lola: 3412640 markings, 7059141 edges, 1912 markings/sec, 1550 secs
lola: 3424390 markings, 7082026 edges, 2350 markings/sec, 1555 secs
lola: 3432909 markings, 7096020 edges, 1704 markings/sec, 1560 secs
lola: 3443814 markings, 7124612 edges, 2181 markings/sec, 1565 secs
lola: 3454341 markings, 7146055 edges, 2105 markings/sec, 1570 secs
lola: 3464501 markings, 7164550 edges, 2032 markings/sec, 1575 secs
lola: 3474203 markings, 7184910 edges, 1940 markings/sec, 1580 secs
lola: 3483697 markings, 7201125 edges, 1899 markings/sec, 1585 secs
lola: 3492769 markings, 7220276 edges, 1814 markings/sec, 1590 secs
lola: 3503284 markings, 7246436 edges, 2103 markings/sec, 1595 secs
lola: 3512403 markings, 7266431 edges, 1824 markings/sec, 1600 secs
lola: 3522357 markings, 7283591 edges, 1991 markings/sec, 1605 secs
lola: 3532815 markings, 7304969 edges, 2092 markings/sec, 1610 secs
lola: 3546633 markings, 7327825 edges, 2764 markings/sec, 1615 secs
lola: 3555936 markings, 7342439 edges, 1861 markings/sec, 1620 secs
lola: 3566348 markings, 7358435 edges, 2082 markings/sec, 1625 secs
lola: 3579362 markings, 7391934 edges, 2603 markings/sec, 1630 secs
lola: 3592433 markings, 7429351 edges, 2614 markings/sec, 1635 secs
lola: 3607314 markings, 7463917 edges, 2976 markings/sec, 1640 secs
lola: 3620910 markings, 7494714 edges, 2719 markings/sec, 1645 secs
lola: 3631698 markings, 7513712 edges, 2158 markings/sec, 1650 secs
lola: 3645167 markings, 7536088 edges, 2694 markings/sec, 1655 secs
lola: 3654161 markings, 7553479 edges, 1799 markings/sec, 1660 secs
lola: 3667108 markings, 7579308 edges, 2589 markings/sec, 1665 secs
lola: 3680883 markings, 7607937 edges, 2755 markings/sec, 1670 secs
lola: 3694613 markings, 7635149 edges, 2746 markings/sec, 1675 secs
lola: 3706312 markings, 7658089 edges, 2340 markings/sec, 1680 secs
lola: 3720476 markings, 7687121 edges, 2833 markings/sec, 1685 secs
lola: 3731107 markings, 7704712 edges, 2126 markings/sec, 1690 secs
lola: 3744163 markings, 7735276 edges, 2611 markings/sec, 1695 secs
lola: 3758474 markings, 7771204 edges, 2862 markings/sec, 1700 secs
lola: 3772155 markings, 7794289 edges, 2736 markings/sec, 1705 secs
lola: 3782298 markings, 7810149 edges, 2029 markings/sec, 1710 secs
lola: 3794889 markings, 7837930 edges, 2518 markings/sec, 1715 secs
lola: 3808217 markings, 7872842 edges, 2666 markings/sec, 1720 secs
lola: 3819970 markings, 7897248 edges, 2351 markings/sec, 1725 secs
lola: 3832043 markings, 7918361 edges, 2415 markings/sec, 1730 secs
lola: 3843846 markings, 7941776 edges, 2361 markings/sec, 1735 secs
lola: 3858021 markings, 7970830 edges, 2835 markings/sec, 1740 secs
lola: 3870344 markings, 7995038 edges, 2465 markings/sec, 1745 secs
lola: 3885876 markings, 8025487 edges, 3106 markings/sec, 1750 secs
lola: 3895331 markings, 8040315 edges, 1891 markings/sec, 1755 secs
lola: 3906558 markings, 8060690 edges, 2245 markings/sec, 1760 secs
lola: 3919158 markings, 8096377 edges, 2520 markings/sec, 1765 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes no no yes no yes unknown no yes yes yes unknown yes yes yes yes
lola: memory consumption: 757176 KB
lola: time consumption: 1793 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1776 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((1 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6))))
lola: processed formula length: 149
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 410 markings, 411 edges
lola: ========================================
FORMULA NeoElection-PT-6-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: A (G (F ((P-polling_1 <= 0))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((P-polling_1 <= 0))))
lola: processed formula length: 30
lola: 66 rewrites
lola: closed formula file NeoElection-PT-6-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 10917 markings, 15094 edges, 2183 markings/sec, 0 secs
lola: 20427 markings, 28627 edges, 1902 markings/sec, 5 secs
lola: 33445 markings, 60573 edges, 2604 markings/sec, 10 secs
lola: 46631 markings, 93337 edges, 2637 markings/sec, 15 secs
lola: 58757 markings, 118389 edges, 2425 markings/sec, 20 secs
lola: 70907 markings, 137788 edges, 2430 markings/sec, 25 secs
lola: 82691 markings, 157694 edges, 2357 markings/sec, 30 secs
lola: 94563 markings, 180158 edges, 2374 markings/sec, 35 secs
lola: 106923 markings, 203185 edges, 2472 markings/sec, 40 secs
lola: 119313 markings, 225949 edges, 2478 markings/sec, 45 secs
lola: 131772 markings, 248177 edges, 2492 markings/sec, 50 secs
lola: 143486 markings, 270773 edges, 2343 markings/sec, 55 secs
lola: 157186 markings, 300744 edges, 2740 markings/sec, 60 secs
lola: 169580 markings, 319369 edges, 2479 markings/sec, 65 secs
lola: 181439 markings, 344985 edges, 2372 markings/sec, 70 secs
lola: 194225 markings, 373988 edges, 2557 markings/sec, 75 secs
lola: 206265 markings, 393862 edges, 2408 markings/sec, 80 secs
lola: 218501 markings, 416547 edges, 2447 markings/sec, 85 secs
lola: 230719 markings, 439197 edges, 2444 markings/sec, 90 secs
lola: 244139 markings, 463193 edges, 2684 markings/sec, 95 secs
lola: 253594 markings, 476676 edges, 1891 markings/sec, 100 secs
lola: 265698 markings, 505587 edges, 2421 markings/sec, 105 secs
lola: 278496 markings, 535957 edges, 2560 markings/sec, 110 secs
lola: 290345 markings, 555779 edges, 2370 markings/sec, 115 secs
lola: 302094 markings, 576615 edges, 2350 markings/sec, 120 secs
lola: 314257 markings, 600045 edges, 2433 markings/sec, 125 secs
lola: 326295 markings, 622332 edges, 2408 markings/sec, 130 secs
lola: 337666 markings, 641067 edges, 2274 markings/sec, 135 secs
lola: 351022 markings, 671976 edges, 2671 markings/sec, 140 secs
lola: 362689 markings, 689557 edges, 2333 markings/sec, 145 secs
lola: 375969 markings, 722119 edges, 2656 markings/sec, 150 secs
lola: 387724 markings, 742021 edges, 2351 markings/sec, 155 secs
lola: 400288 markings, 765876 edges, 2513 markings/sec, 160 secs
lola: 413083 markings, 788865 edges, 2559 markings/sec, 165 secs
lola: 423548 markings, 808908 edges, 2093 markings/sec, 170 secs
lola: 436713 markings, 842506 edges, 2633 markings/sec, 175 secs
lola: 448663 markings, 863760 edges, 2390 markings/sec, 180 secs
lola: 460564 markings, 888260 edges, 2380 markings/sec, 185 secs
lola: 471714 markings, 909848 edges, 2230 markings/sec, 190 secs
lola: 484028 markings, 936050 edges, 2463 markings/sec, 195 secs
lola: 496390 markings, 957553 edges, 2472 markings/sec, 200 secs
lola: 509816 markings, 988663 edges, 2685 markings/sec, 205 secs
lola: 520912 markings, 1011072 edges, 2219 markings/sec, 210 secs
lola: 533979 markings, 1035988 edges, 2613 markings/sec, 215 secs
lola: 541754 markings, 1049084 edges, 1555 markings/sec, 220 secs
lola: 549858 markings, 1062929 edges, 1621 markings/sec, 225 secs
lola: 558861 markings, 1083481 edges, 1801 markings/sec, 230 secs
lola: 570482 markings, 1119282 edges, 2324 markings/sec, 235 secs
lola: 582832 markings, 1156026 edges, 2470 markings/sec, 240 secs
lola: 593460 markings, 1184188 edges, 2126 markings/sec, 245 secs
lola: 605129 markings, 1209400 edges, 2334 markings/sec, 250 secs
lola: 615774 markings, 1229328 edges, 2129 markings/sec, 255 secs
lola: 626973 markings, 1251887 edges, 2240 markings/sec, 260 secs
lola: 637364 markings, 1274547 edges, 2078 markings/sec, 265 secs
lola: 647717 markings, 1298306 edges, 2071 markings/sec, 270 secs
lola: 659014 markings, 1323463 edges, 2259 markings/sec, 275 secs
lola: 671670 markings, 1351956 edges, 2531 markings/sec, 280 secs
lola: 682668 markings, 1375421 edges, 2200 markings/sec, 285 secs
lola: 693550 markings, 1398934 edges, 2176 markings/sec, 290 secs
lola: 704615 markings, 1420401 edges, 2213 markings/sec, 295 secs
lola: 715109 markings, 1444544 edges, 2099 markings/sec, 300 secs
lola: 726698 markings, 1478023 edges, 2318 markings/sec, 305 secs
lola: 737818 markings, 1503143 edges, 2224 markings/sec, 310 secs
lola: 748713 markings, 1522790 edges, 2179 markings/sec, 315 secs
lola: 758820 markings, 1544720 edges, 2021 markings/sec, 320 secs
lola: 771577 markings, 1582885 edges, 2551 markings/sec, 325 secs
lola: 782338 markings, 1607606 edges, 2152 markings/sec, 330 secs
lola: 793312 markings, 1628553 edges, 2195 markings/sec, 335 secs
lola: 803872 markings, 1651861 edges, 2112 markings/sec, 340 secs
lola: 814978 markings, 1676757 edges, 2221 markings/sec, 345 secs
lola: 826546 markings, 1702910 edges, 2314 markings/sec, 350 secs
lola: 838192 markings, 1727315 edges, 2329 markings/sec, 355 secs
lola: 849085 markings, 1748160 edges, 2179 markings/sec, 360 secs
lola: 858834 markings, 1761976 edges, 1950 markings/sec, 365 secs
lola: 868332 markings, 1777380 edges, 1900 markings/sec, 370 secs
lola: 880164 markings, 1802204 edges, 2366 markings/sec, 375 secs
lola: 893922 markings, 1839805 edges, 2752 markings/sec, 380 secs
lola: 907443 markings, 1878836 edges, 2704 markings/sec, 385 secs
lola: 919904 markings, 1909860 edges, 2492 markings/sec, 390 secs
lola: 931732 markings, 1936549 edges, 2366 markings/sec, 395 secs
lola: 944112 markings, 1957770 edges, 2476 markings/sec, 400 secs
lola: 956830 markings, 1979581 edges, 2544 markings/sec, 405 secs
lola: 967399 markings, 1999297 edges, 2114 markings/sec, 410 secs
lola: 980392 markings, 2024139 edges, 2599 markings/sec, 415 secs
lola: 990789 markings, 2043229 edges, 2079 markings/sec, 420 secs
lola: 1002119 markings, 2065778 edges, 2266 markings/sec, 425 secs
lola: 1012774 markings, 2085086 edges, 2131 markings/sec, 430 secs
lola: 1021465 markings, 2097517 edges, 1738 markings/sec, 435 secs
lola: 1030480 markings, 2110298 edges, 1803 markings/sec, 440 secs
lola: 1041891 markings, 2136364 edges, 2282 markings/sec, 445 secs
lola: 1054112 markings, 2169984 edges, 2444 markings/sec, 450 secs
lola: 1066962 markings, 2202290 edges, 2570 markings/sec, 455 secs
lola: 1078077 markings, 2228774 edges, 2223 markings/sec, 460 secs
lola: 1090219 markings, 2248473 edges, 2428 markings/sec, 465 secs
lola: 1102532 markings, 2268487 edges, 2463 markings/sec, 470 secs
lola: 1113419 markings, 2289586 edges, 2177 markings/sec, 475 secs
lola: 1127190 markings, 2315876 edges, 2754 markings/sec, 480 secs
lola: 1136835 markings, 2329285 edges, 1929 markings/sec, 485 secs
lola: 1149536 markings, 2362867 edges, 2540 markings/sec, 490 secs
lola: 1162023 markings, 2389916 edges, 2497 markings/sec, 495 secs
lola: 1174727 markings, 2411350 edges, 2541 markings/sec, 500 secs
lola: 1186049 markings, 2434068 edges, 2264 markings/sec, 505 secs
lola: 1198750 markings, 2458154 edges, 2540 markings/sec, 510 secs
lola: 1207800 markings, 2471256 edges, 1810 markings/sec, 515 secs
lola: 1219186 markings, 2498102 edges, 2277 markings/sec, 520 secs
lola: 1231440 markings, 2528197 edges, 2451 markings/sec, 525 secs
lola: 1243569 markings, 2552122 edges, 2426 markings/sec, 530 secs
lola: 1254853 markings, 2571825 edges, 2257 markings/sec, 535 secs
lola: 1267642 markings, 2597327 edges, 2558 markings/sec, 540 secs
lola: 1278812 markings, 2615522 edges, 2234 markings/sec, 545 secs
lola: 1290283 markings, 2640393 edges, 2294 markings/sec, 550 secs
lola: 1303213 markings, 2673574 edges, 2586 markings/sec, 555 secs
lola: 1317776 markings, 2697604 edges, 2913 markings/sec, 560 secs
lola: 1327914 markings, 2713229 edges, 2028 markings/sec, 565 secs
lola: 1336417 markings, 2726396 edges, 1701 markings/sec, 570 secs
lola: 1346092 markings, 2744250 edges, 1935 markings/sec, 575 secs
lola: 1358155 markings, 2779110 edges, 2413 markings/sec, 580 secs
lola: 1371086 markings, 2815075 edges, 2586 markings/sec, 585 secs
lola: 1382162 markings, 2841467 edges, 2215 markings/sec, 590 secs
lola: 1394366 markings, 2868479 edges, 2441 markings/sec, 595 secs
lola: 1405286 markings, 2887351 edges, 2184 markings/sec, 600 secs
lola: 1416699 markings, 2907848 edges, 2283 markings/sec, 605 secs
lola: 1427976 markings, 2930554 edges, 2255 markings/sec, 610 secs
lola: 1439089 markings, 2953714 edges, 2223 markings/sec, 615 secs
lola: 1450672 markings, 2977461 edges, 2317 markings/sec, 620 secs
lola: 1463300 markings, 3003526 edges, 2526 markings/sec, 625 secs
lola: 1473160 markings, 3023245 edges, 1972 markings/sec, 630 secs
lola: 1483187 markings, 3043327 edges, 2005 markings/sec, 635 secs
lola: 1493012 markings, 3060205 edges, 1965 markings/sec, 640 secs
lola: 1502280 markings, 3078589 edges, 1854 markings/sec, 645 secs
lola: 1513777 markings, 3111104 edges, 2299 markings/sec, 650 secs
lola: 1524512 markings, 3133798 edges, 2147 markings/sec, 655 secs
lola: 1535798 markings, 3152658 edges, 2257 markings/sec, 660 secs
lola: 1545044 markings, 3167055 edges, 1849 markings/sec, 665 secs
lola: 1556756 markings, 3199183 edges, 2342 markings/sec, 670 secs
lola: 1568945 markings, 3231020 edges, 2438 markings/sec, 675 secs
lola: 1580063 markings, 3250959 edges, 2224 markings/sec, 680 secs
lola: 1591477 markings, 3272367 edges, 2283 markings/sec, 685 secs
lola: 1603044 markings, 3296601 edges, 2313 markings/sec, 690 secs
lola: 1615137 markings, 3321645 edges, 2419 markings/sec, 695 secs
lola: 1626764 markings, 3344858 edges, 2325 markings/sec, 700 secs
lola: 1637996 markings, 3366074 edges, 2246 markings/sec, 705 secs
lola: 1647732 markings, 3382421 edges, 1947 markings/sec, 710 secs
lola: 1661041 markings, 3420395 edges, 2662 markings/sec, 715 secs
lola: 1673001 markings, 3445330 edges, 2392 markings/sec, 720 secs
lola: 1684433 markings, 3465469 edges, 2286 markings/sec, 725 secs
lola: 1695351 markings, 3486637 edges, 2184 markings/sec, 730 secs
lola: 1706569 markings, 3507323 edges, 2244 markings/sec, 735 secs
lola: 1715115 markings, 3524963 edges, 1709 markings/sec, 740 secs
lola: 1726444 markings, 3546412 edges, 2266 markings/sec, 745 secs
lola: 1736101 markings, 3561688 edges, 1931 markings/sec, 750 secs
lola: 1743778 markings, 3572782 edges, 1535 markings/sec, 755 secs
lola: 1752251 markings, 3584799 edges, 1695 markings/sec, 760 secs
lola: 1762958 markings, 3611513 edges, 2141 markings/sec, 765 secs
lola: 1774000 markings, 3641936 edges, 2208 markings/sec, 770 secs
lola: 1785830 markings, 3672482 edges, 2366 markings/sec, 775 secs
lola: 1795189 markings, 3694561 edges, 1872 markings/sec, 780 secs
lola: 1805677 markings, 3712850 edges, 2098 markings/sec, 785 secs
lola: 1815864 markings, 3729253 edges, 2037 markings/sec, 790 secs
lola: 1826266 markings, 3747084 edges, 2080 markings/sec, 795 secs
lola: 1836774 markings, 3768079 edges, 2102 markings/sec, 800 secs
lola: 1848186 markings, 3789018 edges, 2282 markings/sec, 805 secs
lola: 1856714 markings, 3800984 edges, 1706 markings/sec, 810 secs
lola: 1868101 markings, 3831281 edges, 2277 markings/sec, 815 secs
lola: 1878868 markings, 3856768 edges, 2153 markings/sec, 820 secs
lola: 1890315 markings, 3875399 edges, 2289 markings/sec, 825 secs
lola: 1900337 markings, 3894461 edges, 2004 markings/sec, 830 secs
lola: 1910983 markings, 3915760 edges, 2129 markings/sec, 835 secs
lola: 1921311 markings, 3933638 edges, 2066 markings/sec, 840 secs
lola: 1929339 markings, 3945375 edges, 1606 markings/sec, 845 secs
lola: 1940065 markings, 3972745 edges, 2145 markings/sec, 850 secs
lola: 1950916 markings, 3998943 edges, 2170 markings/sec, 855 secs
lola: 1961138 markings, 4020128 edges, 2044 markings/sec, 860 secs
lola: 1971383 markings, 4037318 edges, 2049 markings/sec, 865 secs
lola: 1981297 markings, 4057153 edges, 1983 markings/sec, 870 secs
lola: 1994040 markings, 4080813 edges, 2549 markings/sec, 875 secs
lola: 2004138 markings, 4095515 edges, 2020 markings/sec, 880 secs
lola: 2015462 markings, 4120388 edges, 2265 markings/sec, 885 secs
lola: 2028043 markings, 4150884 edges, 2516 markings/sec, 890 secs
lola: 2040167 markings, 4176476 edges, 2425 markings/sec, 895 secs
lola: 2052258 markings, 4196206 edges, 2418 markings/sec, 900 secs
lola: 2063689 markings, 4218190 edges, 2286 markings/sec, 905 secs
lola: 2075508 markings, 4240198 edges, 2364 markings/sec, 910 secs
lola: 2087536 markings, 4263070 edges, 2406 markings/sec, 915 secs
lola: 2098583 markings, 4281751 edges, 2209 markings/sec, 920 secs
lola: 2110916 markings, 4310870 edges, 2467 markings/sec, 925 secs
lola: 2123186 markings, 4331608 edges, 2454 markings/sec, 930 secs
lola: 2133939 markings, 4354736 edges, 2151 markings/sec, 935 secs
lola: 2145378 markings, 4379862 edges, 2288 markings/sec, 940 secs
lola: 2156107 markings, 4398698 edges, 2146 markings/sec, 945 secs
lola: 2168020 markings, 4421211 edges, 2383 markings/sec, 950 secs
lola: 2180005 markings, 4444061 edges, 2397 markings/sec, 955 secs
lola: 2190119 markings, 4459086 edges, 2023 markings/sec, 960 secs
lola: 2201797 markings, 4487919 edges, 2336 markings/sec, 965 secs
lola: 2212719 markings, 4510581 edges, 2184 markings/sec, 970 secs
lola: 2223190 markings, 4528203 edges, 2094 markings/sec, 975 secs
lola: 2234559 markings, 4549512 edges, 2274 markings/sec, 980 secs
lola: 2245686 markings, 4570604 edges, 2225 markings/sec, 985 secs
lola: 2256212 markings, 4590449 edges, 2105 markings/sec, 990 secs
lola: 2268451 markings, 4614394 edges, 2448 markings/sec, 995 secs
lola: 2278939 markings, 4636712 edges, 2098 markings/sec, 1000 secs
lola: 2289479 markings, 4656381 edges, 2108 markings/sec, 1005 secs
lola: 2300702 markings, 4677600 edges, 2245 markings/sec, 1010 secs
lola: 2312225 markings, 4698186 edges, 2305 markings/sec, 1015 secs
lola: 2322944 markings, 4723148 edges, 2144 markings/sec, 1020 secs
lola: 2334465 markings, 4748073 edges, 2304 markings/sec, 1025 secs
lola: 2345069 markings, 4769141 edges, 2121 markings/sec, 1030 secs
lola: 2356424 markings, 4791839 edges, 2271 markings/sec, 1035 secs
lola: 2367795 markings, 4816307 edges, 2274 markings/sec, 1040 secs
lola: 2379249 markings, 4839058 edges, 2291 markings/sec, 1045 secs
lola: 2391116 markings, 4864749 edges, 2373 markings/sec, 1050 secs
lola: 2403189 markings, 4888911 edges, 2415 markings/sec, 1055 secs
lola: 2413799 markings, 4908327 edges, 2122 markings/sec, 1060 secs
lola: 2423239 markings, 4926820 edges, 1888 markings/sec, 1065 secs
lola: 2435173 markings, 4964994 edges, 2387 markings/sec, 1070 secs
lola: 2446821 markings, 4996005 edges, 2330 markings/sec, 1075 secs
lola: 2458731 markings, 5027630 edges, 2382 markings/sec, 1080 secs
lola: 2468853 markings, 5047115 edges, 2024 markings/sec, 1085 secs
lola: 2478731 markings, 5067899 edges, 1976 markings/sec, 1090 secs
lola: 2489013 markings, 5092368 edges, 2056 markings/sec, 1095 secs
lola: 2500486 markings, 5117870 edges, 2295 markings/sec, 1100 secs
lola: 2512564 markings, 5145187 edges, 2416 markings/sec, 1105 secs
lola: 2523075 markings, 5168792 edges, 2102 markings/sec, 1110 secs
lola: 2534655 markings, 5193894 edges, 2316 markings/sec, 1115 secs
lola: 2544238 markings, 5214252 edges, 1917 markings/sec, 1120 secs
lola: 2556199 markings, 5249849 edges, 2392 markings/sec, 1125 secs
lola: 2568015 markings, 5273975 edges, 2363 markings/sec, 1130 secs
lola: 2576789 markings, 5289981 edges, 1755 markings/sec, 1135 secs
lola: 2587966 markings, 5324634 edges, 2235 markings/sec, 1140 secs
lola: 2597505 markings, 5347306 edges, 1908 markings/sec, 1145 secs
lola: 2606604 markings, 5365232 edges, 1820 markings/sec, 1150 secs
lola: 2616636 markings, 5388926 edges, 2006 markings/sec, 1155 secs
lola: 2626345 markings, 5410772 edges, 1942 markings/sec, 1160 secs
lola: 2636130 markings, 5433268 edges, 1957 markings/sec, 1165 secs
lola: 2646941 markings, 5455923 edges, 2162 markings/sec, 1170 secs
lola: 2655443 markings, 5468459 edges, 1700 markings/sec, 1175 secs
lola: 2664144 markings, 5482250 edges, 1740 markings/sec, 1180 secs
lola: 2675070 markings, 5508899 edges, 2185 markings/sec, 1185 secs
lola: 2686253 markings, 5542658 edges, 2237 markings/sec, 1190 secs
lola: 2698068 markings, 5572961 edges, 2363 markings/sec, 1195 secs
lola: 2709111 markings, 5600438 edges, 2209 markings/sec, 1200 secs
lola: 2720204 markings, 5620832 edges, 2219 markings/sec, 1205 secs
lola: 2731448 markings, 5640004 edges, 2249 markings/sec, 1210 secs
lola: 2740729 markings, 5657876 edges, 1856 markings/sec, 1215 secs
lola: 2753299 markings, 5682096 edges, 2514 markings/sec, 1220 secs
lola: 2761776 markings, 5699242 edges, 1695 markings/sec, 1225 secs
lola: 2772583 markings, 5720353 edges, 2161 markings/sec, 1230 secs
lola: 2780781 markings, 5733222 edges, 1640 markings/sec, 1235 secs
lola: 2788723 markings, 5744711 edges, 1588 markings/sec, 1240 secs
lola: 2798259 markings, 5768061 edges, 1907 markings/sec, 1245 secs
lola: 2809945 markings, 5800384 edges, 2337 markings/sec, 1250 secs
lola: 2819975 markings, 5822508 edges, 2006 markings/sec, 1255 secs
lola: 2831283 markings, 5848124 edges, 2262 markings/sec, 1260 secs
lola: 2842768 markings, 5866979 edges, 2297 markings/sec, 1265 secs
lola: 2853314 markings, 5886912 edges, 2109 markings/sec, 1270 secs
lola: 2865875 markings, 5911242 edges, 2512 markings/sec, 1275 secs
lola: 2875610 markings, 5929542 edges, 1947 markings/sec, 1280 secs
lola: 2886520 markings, 5957701 edges, 2182 markings/sec, 1285 secs
lola: 2898128 markings, 5979210 edges, 2322 markings/sec, 1290 secs
lola: 2907297 markings, 5997312 edges, 1834 markings/sec, 1295 secs
lola: 2919378 markings, 6021194 edges, 2416 markings/sec, 1300 secs
lola: 2928030 markings, 6034453 edges, 1730 markings/sec, 1305 secs
lola: 2939318 markings, 6063815 edges, 2258 markings/sec, 1310 secs
lola: 2950338 markings, 6089606 edges, 2204 markings/sec, 1315 secs
lola: 2961247 markings, 6108093 edges, 2182 markings/sec, 1320 secs
lola: 2972710 markings, 6131185 edges, 2293 markings/sec, 1325 secs
lola: 2982463 markings, 6148356 edges, 1951 markings/sec, 1330 secs
lola: 2991710 markings, 6169596 edges, 1849 markings/sec, 1335 secs
lola: 3002564 markings, 6196616 edges, 2171 markings/sec, 1340 secs
lola: 3014500 markings, 6216514 edges, 2387 markings/sec, 1345 secs
lola: 3022406 markings, 6229258 edges, 1581 markings/sec, 1350 secs
lola: 3030351 markings, 6241558 edges, 1589 markings/sec, 1355 secs
lola: 3040119 markings, 6268504 edges, 1954 markings/sec, 1360 secs
lola: 3051251 markings, 6300396 edges, 2226 markings/sec, 1365 secs
lola: 3061699 markings, 6324934 edges, 2090 markings/sec, 1370 secs
lola: 3072906 markings, 6350956 edges, 2241 markings/sec, 1375 secs
lola: 3082877 markings, 6368431 edges, 1994 markings/sec, 1380 secs
lola: 3093502 markings, 6389377 edges, 2125 markings/sec, 1385 secs
lola: 3103675 markings, 6411279 edges, 2035 markings/sec, 1390 secs
lola: 3113847 markings, 6432123 edges, 2034 markings/sec, 1395 secs
lola: 3125235 markings, 6455721 edges, 2278 markings/sec, 1400 secs
lola: 3135415 markings, 6476739 edges, 2036 markings/sec, 1405 secs
lola: 3146386 markings, 6498338 edges, 2194 markings/sec, 1410 secs
lola: 3155595 markings, 6516500 edges, 1842 markings/sec, 1415 secs
lola: 3167606 markings, 6549004 edges, 2402 markings/sec, 1420 secs
lola: 3180020 markings, 6572627 edges, 2483 markings/sec, 1425 secs
lola: 3188347 markings, 6585889 edges, 1665 markings/sec, 1430 secs
lola: 3199086 markings, 6615562 edges, 2148 markings/sec, 1435 secs
lola: 3209827 markings, 6642141 edges, 2148 markings/sec, 1440 secs
lola: 3219562 markings, 6659564 edges, 1947 markings/sec, 1445 secs
lola: 3229975 markings, 6681642 edges, 2083 markings/sec, 1450 secs
lola: 3241131 markings, 6704610 edges, 2231 markings/sec, 1455 secs
lola: 3252829 markings, 6728882 edges, 2340 markings/sec, 1460 secs
lola: 3262997 markings, 6748098 edges, 2034 markings/sec, 1465 secs
lola: 3272482 markings, 6770298 edges, 1897 markings/sec, 1470 secs
lola: 3283804 markings, 6799749 edges, 2264 markings/sec, 1475 secs
lola: 3293868 markings, 6818008 edges, 2013 markings/sec, 1480 secs
lola: 3302334 markings, 6834833 edges, 1693 markings/sec, 1485 secs
lola: 3313437 markings, 6855708 edges, 2221 markings/sec, 1490 secs
lola: 3321904 markings, 6873161 edges, 1693 markings/sec, 1495 secs
lola: 3333384 markings, 6895165 edges, 2296 markings/sec, 1500 secs
lola: 3340730 markings, 6906171 edges, 1469 markings/sec, 1505 secs
lola: 3348343 markings, 6917143 edges, 1523 markings/sec, 1510 secs
lola: 3357527 markings, 6940433 edges, 1837 markings/sec, 1515 secs
lola: 3368443 markings, 6970680 edges, 2183 markings/sec, 1520 secs
lola: 3377310 markings, 6989492 edges, 1773 markings/sec, 1525 secs
lola: 3387246 markings, 7014422 edges, 1987 markings/sec, 1530 secs
lola: 3396859 markings, 7030510 edges, 1923 markings/sec, 1535 secs
lola: 3406594 markings, 7046851 edges, 1947 markings/sec, 1540 secs
lola: 3416234 markings, 7066395 edges, 1928 markings/sec, 1545 secs
lola: 3426165 markings, 7084637 edges, 1986 markings/sec, 1550 secs
lola: 3435015 markings, 7102356 edges, 1770 markings/sec, 1555 secs
lola: 3445178 markings, 7128214 edges, 2033 markings/sec, 1560 secs
lola: 3455190 markings, 7147421 edges, 2002 markings/sec, 1565 secs
lola: 3464813 markings, 7165414 edges, 1925 markings/sec, 1570 secs
lola: 3474343 markings, 7185231 edges, 1906 markings/sec, 1575 secs
lola: 3483490 markings, 7200793 edges, 1829 markings/sec, 1580 secs
lola: 3491904 markings, 7217734 edges, 1683 markings/sec, 1585 secs
lola: 3502353 markings, 7244986 edges, 2090 markings/sec, 1590 secs
lola: 3511220 markings, 7264381 edges, 1773 markings/sec, 1595 secs
lola: 3520549 markings, 7280162 edges, 1866 markings/sec, 1600 secs
lola: 3530466 markings, 7300218 edges, 1983 markings/sec, 1605 secs
lola: 3543400 markings, 7323127 edges, 2587 markings/sec, 1610 secs
lola: 3552555 markings, 7336958 edges, 1831 markings/sec, 1615 secs
lola: 3561339 markings, 7350833 edges, 1757 markings/sec, 1620 secs
lola: 3574225 markings, 7377132 edges, 2577 markings/sec, 1625 secs
lola: 3586413 markings, 7411960 edges, 2438 markings/sec, 1630 secs
lola: 3600475 markings, 7450232 edges, 2812 markings/sec, 1635 secs
lola: 3612097 markings, 7476576 edges, 2324 markings/sec, 1640 secs
lola: 3623695 markings, 7499671 edges, 2320 markings/sec, 1645 secs
lola: 3635249 markings, 7519609 edges, 2311 markings/sec, 1650 secs
lola: 3647261 markings, 7540129 edges, 2402 markings/sec, 1655 secs
lola: 3655640 markings, 7556418 edges, 1676 markings/sec, 1660 secs
lola: 3668847 markings, 7582636 edges, 2641 markings/sec, 1665 secs
lola: 3681173 markings, 7608421 edges, 2465 markings/sec, 1670 secs
lola: 3693547 markings, 7633258 edges, 2475 markings/sec, 1675 secs
lola: 3704381 markings, 7654132 edges, 2167 markings/sec, 1680 secs
lola: 3718547 markings, 7683262 edges, 2833 markings/sec, 1685 secs
lola: 3729393 markings, 7701988 edges, 2169 markings/sec, 1690 secs
lola: 3741132 markings, 7726116 edges, 2348 markings/sec, 1695 secs
lola: 3755318 markings, 7763271 edges, 2837 markings/sec, 1700 secs
lola: 3769025 markings, 7789084 edges, 2741 markings/sec, 1705 secs
lola: 3780443 markings, 7807153 edges, 2284 markings/sec, 1710 secs
lola: 3790716 markings, 7826829 edges, 2055 markings/sec, 1715 secs
lola: 3805937 markings, 7868932 edges, 3044 markings/sec, 1720 secs
lola: 3817115 markings, 7892067 edges, 2236 markings/sec, 1725 secs
lola: 3829327 markings, 7912983 edges, 2442 markings/sec, 1730 secs
lola: 3838208 markings, 7930141 edges, 1776 markings/sec, 1735 secs
lola: 3852976 markings, 7960834 edges, 2954 markings/sec, 1740 secs
lola: 3865795 markings, 7986121 edges, 2564 markings/sec, 1745 secs
lola: 3880022 markings, 8014914 edges, 2845 markings/sec, 1750 secs
lola: 3892428 markings, 8035591 edges, 2481 markings/sec, 1755 secs
lola: 3902186 markings, 8050954 edges, 1952 markings/sec, 1760 secs
lola: 3914536 markings, 8083116 edges, 2470 markings/sec, 1765 secs
lola: 3929108 markings, 8121537 edges, 2914 markings/sec, 1770 secs
lola: time limit reached - aborting
lola:
preliminary result: yes no no yes no yes no no yes yes yes unknown yes yes yes yes
lola:
preliminary result: yes no no yes no yes no no yes yes yes unknown yes yes yes yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes no no yes no yes no no yes yes yes unknown yes yes yes yes
lola: memory consumption: 756636 KB
lola: time consumption: 3569 seconds
lola: memory consumption: 756636 KB
lola: time consumption: 3569 seconds
BK_STOP 1527434126259
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-6"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-6.tgz
mv NeoElection-PT-6 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-PT-6, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r256-csrt-152732582800091"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;