About the Execution of LoLA for NeoElection-PT-4
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
175.170 | 3727.00 | 6674.00 | 21.60 | FTFFFTFTTTTTTTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
...............................................................................
/home/mcc/execution
total 3.9M
-rw-r--r-- 1 mcc users 65K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 162K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 73K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 213K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 78K May 26 09:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 188K May 26 09:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 48K May 26 09:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 131K May 26 09:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 88K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 215K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 114K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 319K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 36K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 74K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 2.1M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-PT-4, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r256-csrt-152732582800087
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-4-LTLCardinality-00
FORMULA_NAME NeoElection-PT-4-LTLCardinality-01
FORMULA_NAME NeoElection-PT-4-LTLCardinality-02
FORMULA_NAME NeoElection-PT-4-LTLCardinality-03
FORMULA_NAME NeoElection-PT-4-LTLCardinality-04
FORMULA_NAME NeoElection-PT-4-LTLCardinality-05
FORMULA_NAME NeoElection-PT-4-LTLCardinality-06
FORMULA_NAME NeoElection-PT-4-LTLCardinality-07
FORMULA_NAME NeoElection-PT-4-LTLCardinality-08
FORMULA_NAME NeoElection-PT-4-LTLCardinality-09
FORMULA_NAME NeoElection-PT-4-LTLCardinality-10
FORMULA_NAME NeoElection-PT-4-LTLCardinality-11
FORMULA_NAME NeoElection-PT-4-LTLCardinality-12
FORMULA_NAME NeoElection-PT-4-LTLCardinality-13
FORMULA_NAME NeoElection-PT-4-LTLCardinality-14
FORMULA_NAME NeoElection-PT-4-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1527430381418
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-PT-4 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-PT-4 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking LTLCardinality @ NeoElection-PT-4 @ 3570 seconds
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 4170/65536 symbol table entries, 89 collisions
lola: preprocessing...
lola: Size of bit vector: 1830
lola: finding significant places
lola: 1830 places, 2340 transitions, 515 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 895 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-PT-4-LTLCardinality.task
lola: LP says that atomic proposition is always false: (2 <= P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_2 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_3_3_AI_1 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_1_4_AI_4 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_1_4_AI_1 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_1_0_AskP_4 + P-network_1_0_AskP_3 + P-network_1_0_AskP_2 + P-network_1_0_AskP_1 + P-network_4_3_RP_4 + P-network_4_3_RP_3 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_3_RP_2 + P-network_4_3_RP_1 + P-network_2_4_RP_4 + P-network_2_4_RP_3 + P-network_2_4_RP_2 + P-network_2_4_RP_1 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_1 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_4_1_AskP_1 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_4_1_AI_4 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_1_AI_1 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_4 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_2_2_AI_1 + P-network_0_3_AI_4 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_0_4_AI_1 + P-network_3_2_RP_4 + P-network_0_4_AI_2 + P-network_3_2_RP_3 + P-network_0_4_AI_3 + P-network_3_2_RP_2 + P-network_0_4_AI_4 + P-network_3_2_RP_1 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_1_3_RP_4 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_3_4_AnnP_2 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AnnP_1 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_3_3_RI_4 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_3_0_AI_4 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_3_0_AI_1 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_1_4_RI_4 + P-network_1_4_RI_3 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_1_4_RI_2 + P-network_1_4_RI_1 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_4_0_RP_1 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_4 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_2_1_RP_3 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_0_2_RP_4 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_0_2_RP_3 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_0_2_RP_2 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_RP_1 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_4_1_RI_4 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_4_1_RI_1 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_2_2_RI_4 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_2_2_RI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_4_AskP_1 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_1 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_4_0_AskP_0 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_4 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_3_3_RI_2 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_3 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_0_0_AskP_2 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_0 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_0 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_1_AI_4 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_2_2_RI_2 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_RI_4 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_1_3_AskP_0 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_3 + P-poll__networl_4_3_AI_2 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_1 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_4_4_AskP_0 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_2_1_AI_0 + P-poll__networl_3_4_RP_4 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_3_4_RP_3 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_3_4_RP_0 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_0_0_RI_4 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_4_AskP_0 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4)
lola: after: (P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_2 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_3_3_AI_1 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_1_4_AI_4 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_1_4_AI_1 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_1_0_AskP_4 + P-network_1_0_AskP_3 + P-network_1_0_AskP_2 + P-network_1_0_AskP_1 + P-network_4_3_RP_4 + P-network_4_3_RP_3 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_3_RP_2 + P-network_4_3_RP_1 + P-network_2_4_RP_4 + P-network_2_4_RP_3 + P-network_2_4_RP_2 + P-network_2_4_RP_1 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_1 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_4_1_AskP_1 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_4_1_AI_4 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_1_AI_1 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_4 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_2_2_AI_1 + P-network_0_3_AI_4 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_0_4_AI_1 + P-network_3_2_RP_4 + P-network_0_4_AI_2 + P-network_3_2_RP_3 + P-network_0_4_AI_3 + P-network_3_2_RP_2 + P-network_0_4_AI_4 + P-network_3_2_RP_1 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_1_3_RP_4 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_3_4_AnnP_2 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AnnP_1 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_3_3_RI_4 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_3_0_AI_4 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_3_0_AI_1 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_1_4_RI_4 + P-network_1_4_RI_3 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_1_4_RI_2 + P-network_1_4_RI_1 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_4_0_RP_1 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_4 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_2_1_RP_3 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_0_2_RP_4 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_0_2_RP_3 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_0_2_RP_2 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_RP_1 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_4_1_RI_4 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_4_1_RI_1 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_2_2_RI_4 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_2_2_RI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_4_AskP_1 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0)
lola: place invariant simplifies atomic proposition
lola: before: (P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_1_3_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_2_1_NONE + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_3_4_DONE + P-negotiation_0_2_CO + P-negotiation_1_2_CO + P-negotiation_2_4_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_3_NONE + P-negotiation_3_1_DONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_3_2_NONE + P-negotiation_4_0_CO + P-negotiation_0_0_DONE + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_1_4_NONE + P-negotiation_3_4_CO + P-negotiation_1_0_CO + P-negotiation_2_2_NONE + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_4_1_CO + P-negotiation_3_3_DONE + P-negotiation_3_0_CO + P-negotiation_1_4_DONE + P-negotiation_0_4_CO + P-negotiation_1_1_DONE + P-negotiation_4_2_CO + P-negotiation_3_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_1_1_CO + P-negotiation_0_0_NONE + P-negotiation_4_3_NONE + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_2_4_NONE + P-negotiation_4_1_NONE + P-negotiation_2_2_CO + P-negotiation_0_3_CO + P-negotiation_3_3_CO + P-negotiation_1_4_CO + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_0_4_NONE + P-negotiation_2_3_NONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_3_DONE <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_1 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_4_0_AskP_0 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_4 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_3_3_RI_2 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_3 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_0_0_AskP_2 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_0 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_0 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_1_AI_4 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_2_2_RI_2 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_RI_4 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_1_3_AskP_0 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_3 + P-poll__networl_4_3_AI_2 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_1 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_4_4_AskP_0 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_2_1_AI_0 + P-poll__networl_3_4_RP_4 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_3_4_RP_3 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_3_4_RP_0 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_0_0_RI_4 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_4_AskP_0 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4)
lola: after: (16 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1)
lola: LP says that atomic proposition is always false: (16 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1)
lola: LP says that atomic proposition is always false: (3 <= P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4)
lola: LP says that atomic proposition is always false: (2 <= P-electedPrimary_0 + P-electedPrimary_1 + P-electedPrimary_2 + P-electedPrimary_3 + P-electedPrimary_4)
lola: place invariant simplifies atomic proposition
lola: before: (P-stage_2_SEC + P-stage_3_NEG + P-stage_4_PRIM + P-stage_1_SEC + P-stage_3_SEC + P-stage_0_SEC + P-stage_1_NEG + P-stage_2_PRIM + P-stage_4_NEG + P-stage_0_PRIM + P-stage_2_NEG + P-stage_3_PRIM + P-stage_4_SEC + P-stage_0_NEG + P-stage_1_PRIM <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4)
lola: after: (4 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4)
lola: LP says that atomic proposition is always true: (P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_3 <= P-electedPrimary_0 + P-electedPrimary_1 + P-electedPrimary_2 + P-electedPrimary_3 + P-electedPrimary_4)
lola: LP says that atomic proposition is always false: (2 <= P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_3)
lola: LP says that atomic proposition is always false: (3 <= P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_4)
lola: after: (0 <= P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_4)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-sendAnnPs__broadcasting_3_3 <= P-poll__networl_4_0_RI_0)
lola: after: (P-sendAnnPs__broadcasting_3_3 <= 0)
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_3_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_0_1_AskP_1 <= P-network_2_2_RP_1)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_3_RI_1 <= P-poll__networl_2_0_RI_4)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_2_AI_3 <= P-poll__networl_2_3_RI_1)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_3_2_RI_3 <= P-network_2_3_AnsP_1)
lola: after: (0 <= P-network_2_3_AnsP_1)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_2_AI_1 <= P-poll__networl_0_4_AskP_1)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_0_3_AnnP_0 <= P-poll__networl_2_0_AskP_3)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_2_2_AnnP_4 <= P-poll__networl_3_0_RI_0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_2_3_AI_4 <= P-poll__networl_4_0_RI_1)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_0_2_AnsP_4 <= P-poll__networl_1_2_RP_1)
lola: after: (P-network_0_2_AnsP_4 <= 0)
lola: LP says that atomic proposition is always true: (P-network_0_2_AnsP_4 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_0_RI_1 <= P-poll__networl_1_3_AnsP_1)
lola: after: (0 <= P-poll__networl_1_3_AnsP_1)
lola: always true
lola: A (G (F (X (G (FALSE))))) : A (F (X (((P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1) U TRUE)))) : A ((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4)) : A ((FALSE U F (F (FALSE)))) : A (G (F (G (G (FALSE))))) : A (X (((4 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4) U X (TRUE)))) : A (G (G ((FALSE U FALSE)))) : A (F (G (F (TRUE)))) : A (X (X (TRUE))) : A (X (F ((TRUE U TRUE)))) : A (X (X (F (X (TRUE))))) : A (G (G (TRUE))) : A (TRUE) : A (X (G ((TRUE U TRUE)))) : A (X (G (G (TRUE)))) : A ((X (TRUE) U F (X (TRUE))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:142
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:410
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 223 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-0 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4)
lola: processed formula length: 144
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-3 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 446 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (((4 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4) U X (TRUE))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (((4 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4) U X (TRUE))))
lola: processed formula length: 165
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 5 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 25 markings, 36 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1189 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1783 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
FORMULA NeoElection-PT-4-LTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 15 will run for 3567 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 68 rewrites
lola: closed formula file NeoElection-PT-4-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 5 markings, 4 edges
lola: ========================================
FORMULA NeoElection-PT-4-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: RESULT
lola:
SUMMARY: no yes no no no yes no yes yes yes yes yes yes yes yes yes
lola:
preliminary result: no yes no no no yes no yes yes yes yes yes yes yes yes yes
lola: memory consumption: 22468 KB
lola: time consumption: 3 seconds
BK_STOP 1527430385145
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-4"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-4.tgz
mv NeoElection-PT-4 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-PT-4, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r256-csrt-152732582800087"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;