fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r256-csrt-152732582800075
Last Updated
June 26, 2018

About the Execution of LoLA for NeoElection-COL-5

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
14027.790 3569836.00 3724272.00 554.60 TTF?TFFTT?FFFFFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
................
/home/mcc/execution
total 244K
-rw-r--r-- 1 mcc users 3.4K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.7K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.6K May 26 09:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K May 26 09:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K May 26 09:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.6K May 26 09:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.7K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 108 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 346 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.2K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 89K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-COL-5, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r256-csrt-152732582800075
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-5-LTLCardinality-00
FORMULA_NAME NeoElection-COL-5-LTLCardinality-01
FORMULA_NAME NeoElection-COL-5-LTLCardinality-02
FORMULA_NAME NeoElection-COL-5-LTLCardinality-03
FORMULA_NAME NeoElection-COL-5-LTLCardinality-04
FORMULA_NAME NeoElection-COL-5-LTLCardinality-05
FORMULA_NAME NeoElection-COL-5-LTLCardinality-06
FORMULA_NAME NeoElection-COL-5-LTLCardinality-07
FORMULA_NAME NeoElection-COL-5-LTLCardinality-08
FORMULA_NAME NeoElection-COL-5-LTLCardinality-09
FORMULA_NAME NeoElection-COL-5-LTLCardinality-10
FORMULA_NAME NeoElection-COL-5-LTLCardinality-11
FORMULA_NAME NeoElection-COL-5-LTLCardinality-12
FORMULA_NAME NeoElection-COL-5-LTLCardinality-13
FORMULA_NAME NeoElection-COL-5-LTLCardinality-14
FORMULA_NAME NeoElection-COL-5-LTLCardinality-15

=== Now, execution of the tool begins

BK_START 1527429967972

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-5 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-5 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ NeoElection-COL-5 @ 3568 seconds
lola: LoLA will run for 3568 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 7836/65536 symbol table entries, 1634 collisions
lola: preprocessing...
lola: Size of bit vector: 3090
lola: finding significant places
lola: 3090 places, 4746 transitions, 816 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 1668 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-5-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (p1600 + p1599 + p1598 + p1597 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1588 + p1587 + p1586 + p1585 + p1584 + p1583 + p1582 + p1581 + p1580 + p1579 + p1578 + p1576 + p1575 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1568 + p1567 + p1566 + p1564 + p1563 + p1562 + p1561 + p1560 + p1559 + p1558 + p1557 + p1556 + p1555 + p1554 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1546 + p1545 + p1544 + p1543 + p1542 + p1540 + p1539 + p1538 + p1537 + p1536 + p1535 + p1534 + p1533 + p1532 + p1531 + p1530 + p1541 + p1553 + p1565 + p1577 + p1589 + p1601 <= p2910 + p2911 + p2912 + p2913 + p2914 + p2915)
lola: after: (5 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p779 + p778 + p777 + p200 + p201 + p202 + p203 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p1000 + p398 + p1001 + p397 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p374 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p373 + p372 + p371 + p370 + p369 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p368 + p367 + p366 + p365 + p364 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p363 + p362 + p361 + p360 + p359 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p1104 + p338 + p1105 + p337 + p1106 + p336 + p1107 + p335 + p1108 + p1109 + p334 + p333 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p1140 + p322 + p1141 + p321 + p1142 + p320 + p1143 + p319 + p1144 + p318 + p1145 + p317 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p225 + p224 + p223 + p222 + p221 + p220 + p219 + p218 + p217 + p216 + p700 + p701 + p702 + p215 + p214 + p213 + p212 + p211 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p210 + p209 + p208 + p207 + p206 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p205 + p204 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p116 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p115 + p114 + p113 + p112 + p111 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p110 + p109 + p108 + p107 + p106 + p105 + p104 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p103 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p102 + p101 + p100 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 + p2315 + p2317 + p2318 + p2319 + p2320 + p2321 + p2314 + p2323 + p2324 + p2325 + p2326 + p2327 + p2313 + p2312 + p2311 + p2335 + p2336 + p2337 + p2338 + p2339 + p2341 + p2342 + p2343 + p2344 + p2345 + p2347 + p2348 + p2349 + p2350 + p2351 + p2353 + p2354 + p2355 + p2356 + p2357 + p2359 + p2309 + p2360 + p2361 + p2308 + p2362 + p2307 + p2363 + p2306 + p2305 + p2303 + p2302 + p2301 + p2300 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p2380 + p2381 + p2383 + p2384 + p2385 + p2386 + p2387 + p2389 + p2390 + p2391 + p2392 + p2393 + p2395 + p2396 + p2397 + p2398 + p2399 + p2407 + p2408 + p2409 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2425 + p2426 + p2427 + p2428 + p2429 + p2431 + p2432 + p2433 + p2434 + p2435 + p2443 + p2444 + p2445 + p2446 + p2447 + p2449 + p2450 + p2451 + p2452 + p2453 + p2455 + p2456 + p2457 + p2458 + p2459 + p2461 + p2462 + p2463 + p2464 + p2465 + p2467 + p2468 + p2469 + p2470 + p2471 + p2479 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p2491 + p2492 + p2493 + p2494 + p2495 + p2497 + p2498 + p2499 + p2299 + p2291 + p2290 + p2289 + p2288 + p2287 + p2285 + p2500 + p2501 + p2284 + p2503 + p2504 + p2505 + p2506 + p2507 + p2283 + p2282 + p2281 + p2279 + p2278 + p2277 + p2276 + p2275 + p2273 + p2272 + p2271 + p2270 + p2515 + p2516 + p2517 + p2518 + p2519 + p2269 + p2521 + p2522 + p2523 + p2524 + p2525 + p2267 + p2527 + p2528 + p2529 + p2530 + p2531 + p2266 + p2533 + p2534 + p2535 + p2536 + p2537 + p2265 + p2264 + p2539 + p2263 + p2255 + p2540 + p2541 + p2254 + p2542 + p2253 + p2543 + p2252 + p2251 + p2249 + p2248 + p2247 + p2246 + p2245 + p2551 + p2552 + p2553 + p2554 + p2555 + p2243 + p2557 + p2558 + p2559 + p2560 + p2561 + p2242 + p2563 + p2564 + p2565 + p2566 + p2567 + p2241 + p2569 + p2570 + p2571 + p2572 + p2573 + p2240 + p2239 + p2575 + p2237 + p2576 + p2236 + p2577 + p2235 + p2578 + p2234 + p2579 + p2233 + p2231 + p2230 + p2229 + p2228 + p2227 + p2219 + p2587 + p2588 + p2589 + p2590 + p2591 + p2218 + p2593 + p2594 + p2595 + p2596 + p2597 + p2217 + p2599 + p2216 + p2215 + p2213 + p2212 + p2211 + p2210 + p2600 + p2601 + p2602 + p2603 + p2605 + p2606 + p2607 + p2608 + p2609 + p2209 + p2611 + p2612 + p2613 + p2614 + p2615 + p2207 + p2206 + p2205 + p2204 + p2203 + p2201 + p2200 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p2630 + p2631 + p2632 + p2633 + p2635 + p2636 + p2637 + p2638 + p2639 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2659 + p2660 + p2661 + p2662 + p2663 + p2665 + p2666 + p2667 + p2668 + p2669 + p2671 + p2672 + p2673 + p2674 + p2675 + p2677 + p2678 + p2679 + p2680 + p2681 + p2683 + p2684 + p2685 + p2686 + p2687 + p2695 + p2696 + p2697 + p2698 + p2699 + p2199 + p2198 + p2197 + p2195 + p2701 + p2702 + p2703 + p2704 + p2705 + p2194 + p2707 + p2708 + p2709 + p2710 + p2711 + p2193 + p2713 + p2714 + p2715 + p2716 + p2717 + p2192 + p2719 + p2720 + p2721 + p2722 + p2723 + p2191 + p2183 + p2182 + p2181 + p2180 + p2179 + p2177 + p2731 + p2732 + p2733 + p2734 + p2735 + p2176 + p2737 + p2738 + p2739 + p2740 + p2741 + p2175 + p2743 + p2744 + p2745 + p2746 + p2747 + p2174 + p2749 + p2750 + p2751 + p2752 + p2753 + p2173 + p2755 + p2756 + p2757 + p2758 + p2759 + p2171 + p2170 + p2169 + p2168 + p2167 + p2165 + p2164 + p2767 + p2768 + p2769 + p2770 + p2771 + p2163 + p2773 + p2774 + p2775 + p2776 + p2777 + p2162 + p2779 + p2780 + p2781 + p2782 + p2783 + p2161 + p2785 + p2786 + p2787 + p2788 + p2789 + p2159 + p2791 + p2792 + p2793 + p2794 + p2795 + p2158 + p2157 + p2156 + p2155 + p2147 + p2146 + p2145 + p2144 + p2143 + p2141 + p2140 + p2139 + p2138 + p2137 + p2135 + p2134 + p2133 + p2132 + p2131 + p2129 + p2128 + p2127 + p2803 + p2804 + p2805 + p2806 + p2807 + p2126 + p2809 + p2810 + p2811 + p2812 + p2813 + p2125 + p2815 + p2816 + p2817 + p2818 + p2819 + p2123 + p2821 + p2822 + p2823 + p2824 + p2825 + p2122 + p2827 + p2828 + p2829 + p2830 + p2831 + p2121 + p2120 + p2119 + p2111 + p2110 + p2839 + p2840 + p2841 + p2842 + p2843 + p2845 + p2846 + p2847 + p2848 + p2849 + p2851 + p2852 + p2853 + p2854 + p2855 + p2857 + p2858 + p2859 + p2860 + p2861 + p2863 + p2864 + p2109 + p2865 + p2108 + p2866 + p2107 + p2867 + p2105 + p2104 + p2103 + p2102 + p2101 + p2875 + p2876 + p2877 + p2878 + p2879 + p2881 + p2882 + p2883 + p2884 + p2885 + p2887 + p2888 + p2889 + p2890 + p2891 + p2893 + p2894 + p2895 + p2896 + p2897 + p2099 + p2098 + p2097 + p2096 + p2095 + p2093 + p2092 + p2091 + p2090 + p2089 + p2087 + p2086 + p2085 + p2084 + p2083 + p2075 + p2074 + p2073 + p2072 + p2071 + p2069 + p2068 + p1603 + p2067 + p1604 + p1605 + p2066 + p1606 + p2065 + p1607 + p2063 + p2062 + p2061 + p2060 + p2059 + p2057 + p2056 + p2055 + p2054 + p2053 + p2051 + p2050 + p1615 + p2049 + p1616 + p1617 + p2048 + p1618 + p1619 + p2047 + p2039 + p2038 + p2037 + p2036 + p2035 + p2033 + p2032 + p1621 + p2031 + p1622 + p1623 + p2030 + p1624 + p2029 + p1625 + p2027 + p2026 + p1627 + p2025 + p1628 + p1629 + p2024 + p1630 + p2023 + p1631 + p2021 + p2020 + p1633 + p2019 + p1634 + p1635 + p2018 + p1636 + p2017 + p1637 + p2015 + p1639 + p2014 + p2013 + p1640 + p1641 + p2012 + p1642 + p2011 + p1643 + p2003 + p2002 + p2001 + p2000 + p1651 + p1652 + p1653 + p1654 + p1655 + p1657 + p1658 + p1659 + p1660 + p1661 + p1663 + p1664 + p1665 + p1666 + p1667 + p1669 + p1670 + p1671 + p1672 + p1673 + p1999 + p1675 + p1676 + p1677 + p1678 + p1679 + p1997 + p1996 + p1995 + p1994 + p1993 + p1991 + p1990 + p1687 + p1688 + p1689 + p1690 + p1691 + p1989 + p1693 + p1694 + p1695 + p1696 + p1697 + p1988 + p1699 + p1700 + p1701 + p1702 + p1703 + p1987 + p1705 + p1706 + p1707 + p1708 + p1709 + p1985 + p1711 + p1712 + p1713 + p1714 + p1715 + p1984 + p1983 + p1982 + p1981 + p1979 + p1978 + p1977 + p1723 + p1724 + p1725 + p1726 + p1727 + p1976 + p1729 + p1730 + p1731 + p1732 + p1733 + p1975 + p1735 + p1736 + p1737 + p1738 + p1739 + p1967 + p1741 + p1742 + p1743 + p1744 + p1745 + p1966 + p1747 + p1748 + p1749 + p1750 + p1751 + p1965 + p1964 + p1963 + p1961 + p1960 + p1959 + p1958 + p1759 + p1760 + p1761 + p1762 + p1763 + p1957 + p1765 + p1766 + p1767 + p1768 + p1769 + p1955 + p1771 + p1772 + p1773 + p1774 + p1775 + p1954 + p1777 + p1778 + p1779 + p1780 + p1781 + p1953 + p1783 + p1784 + p1785 + p1786 + p1787 + p1952 + p1951 + p1949 + p1948 + p1947 + p1946 + p1945 + p1795 + p1796 + p1797 + p1798 + p1799 + p1943 + p1801 + p1802 + p1803 + p1804 + p1805 + p1942 + p1807 + p1808 + p1809 + p1810 + p1811 + p1941 + p1813 + p1814 + p1815 + p1816 + p1817 + p1940 + p1819 + p1820 + p1821 + p1822 + p1823 + p1939 + p1931 + p1930 + p1929 + p1928 + p1927 + p1925 + p1831 + p1832 + p1833 + p1834 + p1835 + p1924 + p1837 + p1838 + p1839 + p1840 + p1841 + p1923 + p1843 + p1844 + p1845 + p1846 + p1847 + p1922 + p1849 + p1850 + p1851 + p1852 + p1853 + p1921 + p1855 + p1856 + p1857 + p1858 + p1859 + p1919 + p1918 + p1917 + p1916 + p1915 + p1913 + p1912 + p1867 + p1868 + p1869 + p1870 + p1871 + p1911 + p1873 + p1874 + p1875 + p1876 + p1877 + p1910 + p1879 + p1880 + p1881 + p1882 + p1883 + p1909 + p1885 + p1886 + p1887 + p1888 + p1889 + p1907 + p1891 + p1892 + p1893 + p1894 + p1895 + p1906 + p1905 + p1904 + p1903)
lola: after: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p779 + p778 + p777 + p200 + p201 + p202 + p203 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316)
lola: LP says that atomic proposition is always true: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p779 + p778 + p777 + p200 + p201 + p202 + p203 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002)
lola: after: (0 <= 22)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: after: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: place invariant simplifies atomic proposition
lola: before: (p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 + p2315 + p2317 + p2318 + p2319 + p2320 + p2321 + p2314 + p2323 + p2324 + p2325 + p2326 + p2327 + p2313 + p2312 + p2311 + p2335 + p2336 + p2337 + p2338 + p2339 + p2341 + p2342 + p2343 + p2344 + p2345 + p2347 + p2348 + p2349 + p2350 + p2351 + p2353 + p2354 + p2355 + p2356 + p2357 + p2359 + p2309 + p2360 + p2361 + p2308 + p2362 + p2307 + p2363 + p2306 + p2305 + p2303 + p2302 + p2301 + p2300 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p2380 + p2381 + p2383 + p2384 + p2385 + p2386 + p2387 + p2389 + p2390 + p2391 + p2392 + p2393 + p2395 + p2396 + p2397 + p2398 + p2399 + p2407 + p2408 + p2409 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2425 + p2426 + p2427 + p2428 + p2429 + p2431 + p2432 + p2433 + p2434 + p2435 + p2443 + p2444 + p2445 + p2446 + p2447 + p2449 + p2450 + p2451 + p2452 + p2453 + p2455 + p2456 + p2457 + p2458 + p2459 + p2461 + p2462 + p2463 + p2464 + p2465 + p2467 + p2468 + p2469 + p2470 + p2471 + p2479 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p2491 + p2492 + p2493 + p2494 + p2495 + p2497 + p2498 + p2499 + p2299 + p2291 + p2290 + p2289 + p2288 + p2287 + p2285 + p2500 + p2501 + p2284 + p2503 + p2504 + p2505 + p2506 + p2507 + p2283 + p2282 + p2281 + p2279 + p2278 + p2277 + p2276 + p2275 + p2273 + p2272 + p2271 + p2270 + p2515 + p2516 + p2517 + p2518 + p2519 + p2269 + p2521 + p2522 + p2523 + p2524 + p2525 + p2267 + p2527 + p2528 + p2529 + p2530 + p2531 + p2266 + p2533 + p2534 + p2535 + p2536 + p2537 + p2265 + p2264 + p2539 + p2263 + p2255 + p2540 + p2541 + p2254 + p2542 + p2253 + p2543 + p2252 + p2251 + p2249 + p2248 + p2247 + p2246 + p2245 + p2551 + p2552 + p2553 + p2554 + p2555 + p2243 + p2557 + p2558 + p2559 + p2560 + p2561 + p2242 + p2563 + p2564 + p2565 + p2566 + p2567 + p2241 + p2569 + p2570 + p2571 + p2572 + p2573 + p2240 + p2239 + p2575 + p2237 + p2576 + p2236 + p2577 + p2235 + p2578 + p2234 + p2579 + p2233 + p2231 + p2230 + p2229 + p2228 + p2227 + p2219 + p2587 + p2588 + p2589 + p2590 + p2591 + p2218 + p2593 + p2594 + p2595 + p2596 + p2597 + p2217 + p2599 + p2216 + p2215 + p2213 + p2212 + p2211 + p2210 + p2600 + p2601 + p2602 + p2603 + p2605 + p2606 + p2607 + p2608 + p2609 + p2209 + p2611 + p2612 + p2613 + p2614 + p2615 + p2207 + p2206 + p2205 + p2204 + p2203 + p2201 + p2200 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p2630 + p2631 + p2632 + p2633 + p2635 + p2636 + p2637 + p2638 + p2639 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2659 + p2660 + p2661 + p2662 + p2663 + p2665 + p2666 + p2667 + p2668 + p2669 + p2671 + p2672 + p2673 + p2674 + p2675 + p2677 + p2678 + p2679 + p2680 + p2681 + p2683 + p2684 + p2685 + p2686 + p2687 + p2695 + p2696 + p2697 + p2698 + p2699 + p2199 + p2198 + p2197 + p2195 + p2701 + p2702 + p2703 + p2704 + p2705 + p2194 + p2707 + p2708 + p2709 + p2710 + p2711 + p2193 + p2713 + p2714 + p2715 + p2716 + p2717 + p2192 + p2719 + p2720 + p2721 + p2722 + p2723 + p2191 + p2183 + p2182 + p2181 + p2180 + p2179 + p2177 + p2731 + p2732 + p2733 + p2734 + p2735 + p2176 + p2737 + p2738 + p2739 + p2740 + p2741 + p2175 + p2743 + p2744 + p2745 + p2746 + p2747 + p2174 + p2749 + p2750 + p2751 + p2752 + p2753 + p2173 + p2755 + p2756 + p2757 + p2758 + p2759 + p2171 + p2170 + p2169 + p2168 + p2167 + p2165 + p2164 + p2767 + p2768 + p2769 + p2770 + p2771 + p2163 + p2773 + p2774 + p2775 + p2776 + p2777 + p2162 + p2779 + p2780 + p2781 + p2782 + p2783 + p2161 + p2785 + p2786 + p2787 + p2788 + p2789 + p2159 + p2791 + p2792 + p2793 + p2794 + p2795 + p2158 + p2157 + p2156 + p2155 + p2147 + p2146 + p2145 + p2144 + p2143 + p2141 + p2140 + p2139 + p2138 + p2137 + p2135 + p2134 + p2133 + p2132 + p2131 + p2129 + p2128 + p2127 + p2803 + p2804 + p2805 + p2806 + p2807 + p2126 + p2809 + p2810 + p2811 + p2812 + p2813 + p2125 + p2815 + p2816 + p2817 + p2818 + p2819 + p2123 + p2821 + p2822 + p2823 + p2824 + p2825 + p2122 + p2827 + p2828 + p2829 + p2830 + p2831 + p2121 + p2120 + p2119 + p2111 + p2110 + p2839 + p2840 + p2841 + p2842 + p2843 + p2845 + p2846 + p2847 + p2848 + p2849 + p2851 + p2852 + p2853 + p2854 + p2855 + p2857 + p2858 + p2859 + p2860 + p2861 + p2863 + p2864 + p2109 + p2865 + p2108 + p2866 + p2107 + p2867 + p2105 + p2104 + p2103 + p2102 + p2101 + p2875 + p2876 + p2877 + p2878 + p2879 + p2881 + p2882 + p2883 + p2884 + p2885 + p2887 + p2888 + p2889 + p2890 + p2891 + p2893 + p2894 + p2895 + p2896 + p2897 + p2099 + p2098 + p2097 + p2096 + p2095 + p2093 + p2092 + p2091 + p2090 + p2089 + p2087 + p2086 + p2085 + p2084 + p2083 + p2075 + p2074 + p2073 + p2072 + p2071 + p2069 + p2068 + p1603 + p2067 + p1604 + p1605 + p2066 + p1606 + p2065 + p1607 + p2063 + p2062 + p2061 + p2060 + p2059 + p2057 + p2056 + p2055 + p2054 + p2053 + p2051 + p2050 + p1615 + p2049 + p1616 + p1617 + p2048 + p1618 + p1619 + p2047 + p2039 + p2038 + p2037 + p2036 + p2035 + p2033 + p2032 + p1621 + p2031 + p1622 + p1623 + p2030 + p1624 + p2029 + p1625 + p2027 + p2026 + p1627 + p2025 + p1628 + p1629 + p2024 + p1630 + p2023 + p1631 + p2021 + p2020 + p1633 + p2019 + p1634 + p1635 + p2018 + p1636 + p2017 + p1637 + p2015 + p1639 + p2014 + p2013 + p1640 + p1641 + p2012 + p1642 + p2011 + p1643 + p2003 + p2002 + p2001 + p2000 + p1651 + p1652 + p1653 + p1654 + p1655 + p1657 + p1658 + p1659 + p1660 + p1661 + p1663 + p1664 + p1665 + p1666 + p1667 + p1669 + p1670 + p1671 + p1672 + p1673 + p1999 + p1675 + p1676 + p1677 + p1678 + p1679 + p1997 + p1996 + p1995 + p1994 + p1993 + p1991 + p1990 + p1687 + p1688 + p1689 + p1690 + p1691 + p1989 + p1693 + p1694 + p1695 + p1696 + p1697 + p1988 + p1699 + p1700 + p1701 + p1702 + p1703 + p1987 + p1705 + p1706 + p1707 + p1708 + p1709 + p1985 + p1711 + p1712 + p1713 + p1714 + p1715 + p1984 + p1983 + p1982 + p1981 + p1979 + p1978 + p1977 + p1723 + p1724 + p1725 + p1726 + p1727 + p1976 + p1729 + p1730 + p1731 + p1732 + p1733 + p1975 + p1735 + p1736 + p1737 + p1738 + p1739 + p1967 + p1741 + p1742 + p1743 + p1744 + p1745 + p1966 + p1747 + p1748 + p1749 + p1750 + p1751 + p1965 + p1964 + p1963 + p1961 + p1960 + p1959 + p1958 + p1759 + p1760 + p1761 + p1762 + p1763 + p1957 + p1765 + p1766 + p1767 + p1768 + p1769 + p1955 + p1771 + p1772 + p1773 + p1774 + p1775 + p1954 + p1777 + p1778 + p1779 + p1780 + p1781 + p1953 + p1783 + p1784 + p1785 + p1786 + p1787 + p1952 + p1951 + p1949 + p1948 + p1947 + p1946 + p1945 + p1795 + p1796 + p1797 + p1798 + p1799 + p1943 + p1801 + p1802 + p1803 + p1804 + p1805 + p1942 + p1807 + p1808 + p1809 + p1810 + p1811 + p1941 + p1813 + p1814 + p1815 + p1816 + p1817 + p1940 + p1819 + p1820 + p1821 + p1822 + p1823 + p1939 + p1931 + p1930 + p1929 + p1928 + p1927 + p1925 + p1831 + p1832 + p1833 + p1834 + p1835 + p1924 + p1837 + p1838 + p1839 + p1840 + p1841 + p1923 + p1843 + p1844 + p1845 + p1846 + p1847 + p1922 + p1849 + p1850 + p1851 + p1852 + p1853 + p1921 + p1855 + p1856 + p1857 + p1858 + p1859 + p1919 + p1918 + p1917 + p1916 + p1915 + p1913 + p1912 + p1867 + p1868 + p1869 + p1870 + p1871 + p1911 + p1873 + p1874 + p1875 + p1876 + p1877 + p1910 + p1879 + p1880 + p1881 + p1882 + p1883 + p1909 + p1885 + p1886 + p1887 + p1888 + p1889 + p1907 + p1891 + p1892 + p1893 + p1894 + p1895 + p1906 + p1905 + p1904 + p1903 <= p1600 + p1599 + p1598 + p1597 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1588 + p1587 + p1586 + p1585 + p1584 + p1583 + p1582 + p1581 + p1580 + p1579 + p1578 + p1576 + p1575 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1568 + p1567 + p1566 + p1564 + p1563 + p1562 + p1561 + p1560 + p1559 + p1558 + p1557 + p1556 + p1555 + p1554 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1546 + p1545 + p1544 + p1543 + p1542 + p1540 + p1539 + p1538 + p1537 + p1536 + p1535 + p1534 + p1533 + p1532 + p1531 + p1530 + p1541 + p1553 + p1565 + p1577 + p1589 + p1601)
lola: after: (p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 <= 5)
lola: place invariant simplifies atomic proposition
lola: before: (p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002 <= p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083)
lola: after: (25 <= p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083)
lola: LP says that atomic proposition is always false: (25 <= p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083)
lola: place invariant simplifies atomic proposition
lola: before: (p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: after: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: place invariant simplifies atomic proposition
lola: before: (p3036 + p3037 + p3039 + p3040 + p3042 + p3043 + p3045 + p3046 + p3048 + p3049 + p3051 + p3052 + p3053 + p3050 + p3047 + p3044 + p3041 + p3038 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 + p2315 + p2317 + p2318 + p2319 + p2320 + p2321 + p2314 + p2323 + p2324 + p2325 + p2326 + p2327 + p2313 + p2312 + p2311 + p2335 + p2336 + p2337 + p2338 + p2339 + p2341 + p2342 + p2343 + p2344 + p2345 + p2347 + p2348 + p2349 + p2350 + p2351 + p2353 + p2354 + p2355 + p2356 + p2357 + p2359 + p2309 + p2360 + p2361 + p2308 + p2362 + p2307 + p2363 + p2306 + p2305 + p2303 + p2302 + p2301 + p2300 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p2380 + p2381 + p2383 + p2384 + p2385 + p2386 + p2387 + p2389 + p2390 + p2391 + p2392 + p2393 + p2395 + p2396 + p2397 + p2398 + p2399 + p2407 + p2408 + p2409 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2425 + p2426 + p2427 + p2428 + p2429 + p2431 + p2432 + p2433 + p2434 + p2435 + p2443 + p2444 + p2445 + p2446 + p2447 + p2449 + p2450 + p2451 + p2452 + p2453 + p2455 + p2456 + p2457 + p2458 + p2459 + p2461 + p2462 + p2463 + p2464 + p2465 + p2467 + p2468 + p2469 + p2470 + p2471 + p2479 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p2491 + p2492 + p2493 + p2494 + p2495 + p2497 + p2498 + p2499 + p2299 + p2291 + p2290 + p2289 + p2288 + p2287 + p2285 + p2500 + p2501 + p2284 + p2503 + p2504 + p2505 + p2506 + p2507 + p2283 + p2282 + p2281 + p2279 + p2278 + p2277 + p2276 + p2275 + p2273 + p2272 + p2271 + p2270 + p2515 + p2516 + p2517 + p2518 + p2519 + p2269 + p2521 + p2522 + p2523 + p2524 + p2525 + p2267 + p2527 + p2528 + p2529 + p2530 + p2531 + p2266 + p2533 + p2534 + p2535 + p2536 + p2537 + p2265 + p2264 + p2539 + p2263 + p2255 + p2540 + p2541 + p2254 + p2542 + p2253 + p2543 + p2252 + p2251 + p2249 + p2248 + p2247 + p2246 + p2245 + p2551 + p2552 + p2553 + p2554 + p2555 + p2243 + p2557 + p2558 + p2559 + p2560 + p2561 + p2242 + p2563 + p2564 + p2565 + p2566 + p2567 + p2241 + p2569 + p2570 + p2571 + p2572 + p2573 + p2240 + p2239 + p2575 + p2237 + p2576 + p2236 + p2577 + p2235 + p2578 + p2234 + p2579 + p2233 + p2231 + p2230 + p2229 + p2228 + p2227 + p2219 + p2587 + p2588 + p2589 + p2590 + p2591 + p2218 + p2593 + p2594 + p2595 + p2596 + p2597 + p2217 + p2599 + p2216 + p2215 + p2213 + p2212 + p2211 + p2210 + p2600 + p2601 + p2602 + p2603 + p2605 + p2606 + p2607 + p2608 + p2609 + p2209 + p2611 + p2612 + p2613 + p2614 + p2615 + p2207 + p2206 + p2205 + p2204 + p2203 + p2201 + p2200 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p2630 + p2631 + p2632 + p2633 + p2635 + p2636 + p2637 + p2638 + p2639 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2659 + p2660 + p2661 + p2662 + p2663 + p2665 + p2666 + p2667 + p2668 + p2669 + p2671 + p2672 + p2673 + p2674 + p2675 + p2677 + p2678 + p2679 + p2680 + p2681 + p2683 + p2684 + p2685 + p2686 + p2687 + p2695 + p2696 + p2697 + p2698 + p2699 + p2199 + p2198 + p2197 + p2195 + p2701 + p2702 + p2703 + p2704 + p2705 + p2194 + p2707 + p2708 + p2709 + p2710 + p2711 + p2193 + p2713 + p2714 + p2715 + p2716 + p2717 + p2192 + p2719 + p2720 + p2721 + p2722 + p2723 + p2191 + p2183 + p2182 + p2181 + p2180 + p2179 + p2177 + p2731 + p2732 + p2733 + p2734 + p2735 + p2176 + p2737 + p2738 + p2739 + p2740 + p2741 + p2175 + p2743 + p2744 + p2745 + p2746 + p2747 + p2174 + p2749 + p2750 + p2751 + p2752 + p2753 + p2173 + p2755 + p2756 + p2757 + p2758 + p2759 + p2171 + p2170 + p2169 + p2168 + p2167 + p2165 + p2164 + p2767 + p2768 + p2769 + p2770 + p2771 + p2163 + p2773 + p2774 + p2775 + p2776 + p2777 + p2162 + p2779 + p2780 + p2781 + p2782 + p2783 + p2161 + p2785 + p2786 + p2787 + p2788 + p2789 + p2159 + p2791 + p2792 + p2793 + p2794 + p2795 + p2158 + p2157 + p2156 + p2155 + p2147 + p2146 + p2145 + p2144 + p2143 + p2141 + p2140 + p2139 + p2138 + p2137 + p2135 + p2134 + p2133 + p2132 + p2131 + p2129 + p2128 + p2127 + p2803 + p2804 + p2805 + p2806 + p2807 + p2126 + p2809 + p2810 + p2811 + p2812 + p2813 + p2125 + p2815 + p2816 + p2817 + p2818 + p2819 + p2123 + p2821 + p2822 + p2823 + p2824 + p2825 + p2122 + p2827 + p2828 + p2829 + p2830 + p2831 + p2121 + p2120 + p2119 + p2111 + p2110 + p2839 + p2840 + p2841 + p2842 + p2843 + p2845 + p2846 + p2847 + p2848 + p2849 + p2851 + p2852 + p2853 + p2854 + p2855 + p2857 + p2858 + p2859 + p2860 + p2861 + p2863 + p2864 + p2109 + p2865 + p2108 + p2866 + p2107 + p2867 + p2105 + p2104 + p2103 + p2102 + p2101 + p2875 + p2876 + p2877 + p2878 + p2879 + p2881 + p2882 + p2883 + p2884 + p2885 + p2887 + p2888 + p2889 + p2890 + p2891 + p2893 + p2894 + p2895 + p2896 + p2897 + p2099 + p2098 + p2097 + p2096 + p2095 + p2093 + p2092 + p2091 + p2090 + p2089 + p2087 + p2086 + p2085 + p2084 + p2083 + p2075 + p2074 + p2073 + p2072 + p2071 + p2069 + p2068 + p1603 + p2067 + p1604 + p1605 + p2066 + p1606 + p2065 + p1607 + p2063 + p2062 + p2061 + p2060 + p2059 + p2057 + p2056 + p2055 + p2054 + p2053 + p2051 + p2050 + p1615 + p2049 + p1616 + p1617 + p2048 + p1618 + p1619 + p2047 + p2039 + p2038 + p2037 + p2036 + p2035 + p2033 + p2032 + p1621 + p2031 + p1622 + p1623 + p2030 + p1624 + p2029 + p1625 + p2027 + p2026 + p1627 + p2025 + p1628 + p1629 + p2024 + p1630 + p2023 + p1631 + p2021 + p2020 + p1633 + p2019 + p1634 + p1635 + p2018 + p1636 + p2017 + p1637 + p2015 + p1639 + p2014 + p2013 + p1640 + p1641 + p2012 + p1642 + p2011 + p1643 + p2003 + p2002 + p2001 + p2000 + p1651 + p1652 + p1653 + p1654 + p1655 + p1657 + p1658 + p1659 + p1660 + p1661 + p1663 + p1664 + p1665 + p1666 + p1667 + p1669 + p1670 + p1671 + p1672 + p1673 + p1999 + p1675 + p1676 + p1677 + p1678 + p1679 + p1997 + p1996 + p1995 + p1994 + p1993 + p1991 + p1990 + p1687 + p1688 + p1689 + p1690 + p1691 + p1989 + p1693 + p1694 + p1695 + p1696 + p1697 + p1988 + p1699 + p1700 + p1701 + p1702 + p1703 + p1987 + p1705 + p1706 + p1707 + p1708 + p1709 + p1985 + p1711 + p1712 + p1713 + p1714 + p1715 + p1984 + p1983 + p1982 + p1981 + p1979 + p1978 + p1977 + p1723 + p1724 + p1725 + p1726 + p1727 + p1976 + p1729 + p1730 + p1731 + p1732 + p1733 + p1975 + p1735 + p1736 + p1737 + p1738 + p1739 + p1967 + p1741 + p1742 + p1743 + p1744 + p1745 + p1966 + p1747 + p1748 + p1749 + p1750 + p1751 + p1965 + p1964 + p1963 + p1961 + p1960 + p1959 + p1958 + p1759 + p1760 + p1761 + p1762 + p1763 + p1957 + p1765 + p1766 + p1767 + p1768 + p1769 + p1955 + p1771 + p1772 + p1773 + p1774 + p1775 + p1954 + p1777 + p1778 + p1779 + p1780 + p1781 + p1953 + p1783 + p1784 + p1785 + p1786 + p1787 + p1952 + p1951 + p1949 + p1948 + p1947 + p1946 + p1945 + p1795 + p1796 + p1797 + p1798 + p1799 + p1943 + p1801 + p1802 + p1803 + p1804 + p1805 + p1942 + p1807 + p1808 + p1809 + p1810 + p1811 + p1941 + p1813 + p1814 + p1815 + p1816 + p1817 + p1940 + p1819 + p1820 + p1821 + p1822 + p1823 + p1939 + p1931 + p1930 + p1929 + p1928 + p1927 + p1925 + p1831 + p1832 + p1833 + p1834 + p1835 + p1924 + p1837 + p1838 + p1839 + p1840 + p1841 + p1923 + p1843 + p1844 + p1845 + p1846 + p1847 + p1922 + p1849 + p1850 + p1851 + p1852 + p1853 + p1921 + p1855 + p1856 + p1857 + p1858 + p1859 + p1919 + p1918 + p1917 + p1916 + p1915 + p1913 + p1912 + p1867 + p1868 + p1869 + p1870 + p1871 + p1911 + p1873 + p1874 + p1875 + p1876 + p1877 + p1910 + p1879 + p1880 + p1881 + p1882 + p1883 + p1909 + p1885 + p1886 + p1887 + p1888 + p1889 + p1907 + p1891 + p1892 + p1893 + p1894 + p1895 + p1906 + p1905 + p1904 + p1903)
lola: after: (5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316)
lola: place invariant simplifies atomic proposition
lola: before: (p2910 + p2911 + p2912 + p2913 + p2914 + p2915 <= p3089 + p3088 + p3087 + p3086 + p3085 + p3084)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1600 + p1599 + p1598 + p1597 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1588 + p1587 + p1586 + p1585 + p1584 + p1583 + p1582 + p1581 + p1580 + p1579 + p1578 + p1576 + p1575 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1568 + p1567 + p1566 + p1564 + p1563 + p1562 + p1561 + p1560 + p1559 + p1558 + p1557 + p1556 + p1555 + p1554 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1546 + p1545 + p1544 + p1543 + p1542 + p1540 + p1539 + p1538 + p1537 + p1536 + p1535 + p1534 + p1533 + p1532 + p1531 + p1530 + p1541 + p1553 + p1565 + p1577 + p1589 + p1601)
lola: after: (0 <= 3)
lola: always true
lola: LP says that atomic proposition is always false: (2 <= p1319 + p1318 + p1317 + p1316 + p1315 + p1314)
lola: LP says that atomic proposition is always false: (3 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (1 <= p0 + p1 + p2 + p3 + p4 + p5)
lola: place invariant simplifies atomic proposition
lola: before: (p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: after: (20 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (20 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p3036 + p3037 + p3039 + p3040 + p3042 + p3043 + p3045 + p3046 + p3048 + p3049 + p3051 + p3052 + p3053 + p3050 + p3047 + p3044 + p3041 + p3038)
lola: after: (0 <= 3)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529)
lola: after: (0 <= 17)
lola: always true
lola: A ((FALSE U X (TRUE))) : A (G (G (G (G (TRUE))))) : A (FALSE) : A (F (X (G ((p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 <= 5))))) : A (F (X (X (F ((3 <= p6 + p7 + p8 + p9 + p11 + p10)))))) : A (G (G (FALSE))) : A (F ((G (FALSE) U X ((3 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))) : A (X ((F ((3 <= p1313 + p1312 + p1311 + p1310 + p1309 + p1308)) U F ((5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316))))) : A (X ((TRUE U F (TRUE)))) : A (F (X (G (X ((p6 + p7 + p8 + p9 + p11 + p10 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903)))))) : A (FALSE) : A (X (X ((p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903)))) : A (X ((X ((2 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903)) U G (FALSE)))) : A (FALSE) : A (FALSE) : A (F ((G (TRUE) U X (TRUE))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-5-LTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-5-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 295 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 394 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 6 markings, 5 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 443 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (F ((3 <= p6 + p7 + p8 + p9 + p11 + p10)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (F ((3 <= p6 + p7 + p8 + p9 + p11 + p10)))))
lola: processed formula length: 52
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 30 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-4 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 507 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X ((p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X ((p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: processed formula length: 300
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 276 markings, 276 edges

FORMULA NeoElection-COL-5-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 10 will run for 591 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 6 markings, 5 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 710 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((3 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((3 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: processed formula length: 64
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 276 markings, 276 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 887 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p... (shortened)
lola: processed formula length: 3184
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 2083 markings, 5730 edges

FORMULA NeoElection-COL-5-LTLCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 13 will run for 1183 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 6 markings, 5 edges
lola: ========================================

FORMULA NeoElection-COL-5-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1775 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p6 + p7 + p8 + p9 + p11 + p10 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p6 + p7 + p8 + p9 + p11 + p10 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: processed formula length: 92
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 257380 markings, 608383 edges, 51476 markings/sec, 0 secs
lola: 512515 markings, 1215934 edges, 51027 markings/sec, 5 secs
lola: 772878 markings, 1834402 edges, 52073 markings/sec, 10 secs
lola: 1028902 markings, 2449984 edges, 51205 markings/sec, 15 secs
lola: 1292339 markings, 3063129 edges, 52687 markings/sec, 20 secs
lola: 1546022 markings, 3663343 edges, 50737 markings/sec, 25 secs
lola: 1789144 markings, 4270234 edges, 48624 markings/sec, 30 secs
lola: 2016429 markings, 4835335 edges, 45457 markings/sec, 35 secs
lola: 2248712 markings, 5408017 edges, 46457 markings/sec, 40 secs
lola: 2477929 markings, 5971407 edges, 45843 markings/sec, 45 secs
lola: 2723312 markings, 6537752 edges, 49077 markings/sec, 50 secs
lola: 2969073 markings, 7083163 edges, 49152 markings/sec, 55 secs
lola: 3207966 markings, 7625328 edges, 47779 markings/sec, 60 secs
lola: 3439526 markings, 8208697 edges, 46312 markings/sec, 65 secs
lola: 3689752 markings, 8838326 edges, 50045 markings/sec, 70 secs
lola: 3938358 markings, 9462306 edges, 49721 markings/sec, 75 secs
lola: 4186354 markings, 10104116 edges, 49599 markings/sec, 80 secs
lola: 4424686 markings, 10729813 edges, 47666 markings/sec, 85 secs
lola: 4685087 markings, 11371591 edges, 52080 markings/sec, 90 secs
lola: 4930839 markings, 12002178 edges, 49150 markings/sec, 95 secs
lola: 5174010 markings, 12625307 edges, 48634 markings/sec, 100 secs
lola: 5414685 markings, 13248674 edges, 48135 markings/sec, 105 secs
lola: 5657447 markings, 13869598 edges, 48552 markings/sec, 110 secs
lola: 5908751 markings, 14484673 edges, 50261 markings/sec, 115 secs
lola: 6168736 markings, 15102917 edges, 51997 markings/sec, 120 secs
lola: 6411303 markings, 15730610 edges, 48513 markings/sec, 125 secs
lola: 6650484 markings, 16361250 edges, 47836 markings/sec, 130 secs
lola: 6889534 markings, 16988874 edges, 47810 markings/sec, 135 secs
lola: 7109126 markings, 17576307 edges, 43918 markings/sec, 140 secs
lola: 7325187 markings, 18147271 edges, 43212 markings/sec, 145 secs
lola: 7539627 markings, 18712339 edges, 42888 markings/sec, 150 secs
lola: 7772777 markings, 19329021 edges, 46630 markings/sec, 155 secs
lola: 8003083 markings, 19932062 edges, 46061 markings/sec, 160 secs
lola: 8236213 markings, 20538394 edges, 46626 markings/sec, 165 secs
lola: 8463997 markings, 21142504 edges, 45557 markings/sec, 170 secs
lola: 8691725 markings, 21746271 edges, 45546 markings/sec, 175 secs
lola: 8938810 markings, 22339481 edges, 49417 markings/sec, 180 secs
lola: 9194400 markings, 22950516 edges, 51118 markings/sec, 185 secs
lola: 9470643 markings, 23567047 edges, 55249 markings/sec, 190 secs
lola: 9731208 markings, 24179790 edges, 52113 markings/sec, 195 secs
lola: 9981739 markings, 24823190 edges, 50106 markings/sec, 200 secs
lola: 10235041 markings, 25467971 edges, 50660 markings/sec, 205 secs
lola: 10477944 markings, 26092361 edges, 48581 markings/sec, 210 secs
lola: 10723232 markings, 26723674 edges, 49058 markings/sec, 215 secs
lola: 10965759 markings, 27341312 edges, 48505 markings/sec, 220 secs
lola: 11185435 markings, 27896665 edges, 43935 markings/sec, 225 secs
lola: 11428570 markings, 28447094 edges, 48627 markings/sec, 230 secs
lola: 11653648 markings, 29042336 edges, 45016 markings/sec, 235 secs
lola: 11893547 markings, 29678790 edges, 47980 markings/sec, 240 secs
lola: 12129392 markings, 30311687 edges, 47169 markings/sec, 245 secs
lola: 12373026 markings, 30946488 edges, 48727 markings/sec, 250 secs
lola: 12615292 markings, 31586584 edges, 48453 markings/sec, 255 secs
lola: 12857243 markings, 32228423 edges, 48390 markings/sec, 260 secs
lola: 13117755 markings, 32864764 edges, 52102 markings/sec, 265 secs
lola: 13382355 markings, 33504871 edges, 52920 markings/sec, 270 secs
lola: 13629667 markings, 34125788 edges, 49462 markings/sec, 275 secs
lola: 13873500 markings, 34747322 edges, 48767 markings/sec, 280 secs
lola: 14085831 markings, 35303728 edges, 42466 markings/sec, 285 secs
lola: 14307268 markings, 35855414 edges, 44287 markings/sec, 290 secs
lola: 14520562 markings, 36405056 edges, 42659 markings/sec, 295 secs
lola: 14747837 markings, 36988302 edges, 45455 markings/sec, 300 secs
lola: 15000889 markings, 37614855 edges, 50610 markings/sec, 305 secs
lola: 15252157 markings, 38237789 edges, 50254 markings/sec, 310 secs
lola: 15487401 markings, 38869118 edges, 47049 markings/sec, 315 secs
lola: 15730394 markings, 39507927 edges, 48599 markings/sec, 320 secs
lola: 15951453 markings, 40092418 edges, 44212 markings/sec, 325 secs
lola: 16162383 markings, 40648960 edges, 42186 markings/sec, 330 secs
lola: 16370877 markings, 41195169 edges, 41699 markings/sec, 335 secs
lola: 16577851 markings, 41742122 edges, 41395 markings/sec, 340 secs
lola: 16810052 markings, 42285865 edges, 46440 markings/sec, 345 secs
lola: 17048893 markings, 42830226 edges, 47768 markings/sec, 350 secs
lola: 17289785 markings, 43383699 edges, 48178 markings/sec, 355 secs
lola: 17536372 markings, 43938031 edges, 49317 markings/sec, 360 secs
lola: 17781171 markings, 44494061 edges, 48960 markings/sec, 365 secs
lola: 18022871 markings, 45044314 edges, 48340 markings/sec, 370 secs
lola: 18252228 markings, 45607130 edges, 45871 markings/sec, 375 secs
lola: 18480562 markings, 46168494 edges, 45667 markings/sec, 380 secs
lola: 18722014 markings, 46751238 edges, 48290 markings/sec, 385 secs
lola: 18944207 markings, 47316209 edges, 44439 markings/sec, 390 secs
lola: 19184619 markings, 47872747 edges, 48082 markings/sec, 395 secs
lola: 19409186 markings, 48429808 edges, 44913 markings/sec, 400 secs
lola: 19626285 markings, 48993003 edges, 43420 markings/sec, 405 secs
lola: 19840288 markings, 49560170 edges, 42801 markings/sec, 410 secs
lola: 20055423 markings, 50123622 edges, 43027 markings/sec, 415 secs
lola: 20265747 markings, 50684394 edges, 42065 markings/sec, 420 secs
lola: 20496151 markings, 51237476 edges, 46081 markings/sec, 425 secs
lola: 20730197 markings, 51871003 edges, 46809 markings/sec, 430 secs
lola: 20965413 markings, 52512415 edges, 47043 markings/sec, 435 secs
lola: 21204472 markings, 53155923 edges, 47812 markings/sec, 440 secs
lola: 21443362 markings, 53796836 edges, 47778 markings/sec, 445 secs
lola: 21707400 markings, 54400645 edges, 52808 markings/sec, 450 secs
lola: 21959700 markings, 55037746 edges, 50460 markings/sec, 455 secs
lola: 22201392 markings, 55681826 edges, 48338 markings/sec, 460 secs
lola: 22457054 markings, 56307968 edges, 51132 markings/sec, 465 secs
lola: 22692566 markings, 56949070 edges, 47102 markings/sec, 470 secs
lola: 22929954 markings, 57593653 edges, 47478 markings/sec, 475 secs
lola: 23175862 markings, 58224661 edges, 49182 markings/sec, 480 secs
lola: 23417068 markings, 58846554 edges, 48241 markings/sec, 485 secs
lola: 23652988 markings, 59473291 edges, 47184 markings/sec, 490 secs
lola: 23898373 markings, 60086764 edges, 49077 markings/sec, 495 secs
lola: 24127924 markings, 60710519 edges, 45910 markings/sec, 500 secs
lola: 24357301 markings, 61330618 edges, 45875 markings/sec, 505 secs
lola: 24598725 markings, 61942030 edges, 48285 markings/sec, 510 secs
lola: 24862923 markings, 62570833 edges, 52840 markings/sec, 515 secs
lola: 25122339 markings, 63193416 edges, 51883 markings/sec, 520 secs
lola: 25377068 markings, 63811009 edges, 50946 markings/sec, 525 secs
lola: 25632153 markings, 64435067 edges, 51017 markings/sec, 530 secs
lola: 25888500 markings, 65056892 edges, 51269 markings/sec, 535 secs
lola: 26132726 markings, 65680107 edges, 48845 markings/sec, 540 secs
lola: 26363411 markings, 66250364 edges, 46137 markings/sec, 545 secs
lola: 26595064 markings, 66789577 edges, 46331 markings/sec, 550 secs
lola: 26804671 markings, 67343761 edges, 41921 markings/sec, 555 secs
lola: 27021200 markings, 67901501 edges, 43306 markings/sec, 560 secs
lola: 27231912 markings, 68450428 edges, 42142 markings/sec, 565 secs
lola: 27436945 markings, 69000472 edges, 41007 markings/sec, 570 secs
lola: 27670069 markings, 69587672 edges, 46625 markings/sec, 575 secs
lola: 27883173 markings, 70144456 edges, 42621 markings/sec, 580 secs
lola: 28085170 markings, 70697633 edges, 40399 markings/sec, 585 secs
lola: 28285079 markings, 71243779 edges, 39982 markings/sec, 590 secs
lola: 28490969 markings, 71794622 edges, 41178 markings/sec, 595 secs
lola: 28694778 markings, 72345725 edges, 40762 markings/sec, 600 secs
lola: 28918935 markings, 72891244 edges, 44831 markings/sec, 605 secs
lola: 29145241 markings, 73441253 edges, 45261 markings/sec, 610 secs
lola: 29385346 markings, 74069509 edges, 48021 markings/sec, 615 secs
lola: 29618341 markings, 74683168 edges, 46599 markings/sec, 620 secs
lola: 29862083 markings, 75301130 edges, 48748 markings/sec, 625 secs
lola: 30074269 markings, 75881533 edges, 42437 markings/sec, 630 secs
lola: 30280110 markings, 76438196 edges, 41168 markings/sec, 635 secs
lola: 30497265 markings, 76984694 edges, 43431 markings/sec, 640 secs
lola: 30714777 markings, 77547667 edges, 43502 markings/sec, 645 secs
lola: 30942491 markings, 78151857 edges, 45543 markings/sec, 650 secs
lola: 31171227 markings, 78737641 edges, 45747 markings/sec, 655 secs
lola: 31395488 markings, 79340436 edges, 44852 markings/sec, 660 secs
lola: 31622787 markings, 79955301 edges, 45460 markings/sec, 665 secs
lola: 31866630 markings, 80568964 edges, 48769 markings/sec, 670 secs
lola: 32135576 markings, 81173221 edges, 53789 markings/sec, 675 secs
lola: 32409962 markings, 81776423 edges, 54877 markings/sec, 680 secs
lola: 32690854 markings, 82374206 edges, 56178 markings/sec, 685 secs
lola: 32953380 markings, 83008696 edges, 52505 markings/sec, 690 secs
lola: 33212780 markings, 83632642 edges, 51880 markings/sec, 695 secs
lola: 33478083 markings, 84262325 edges, 53061 markings/sec, 700 secs
lola: 33727525 markings, 84885464 edges, 49888 markings/sec, 705 secs
lola: 33994397 markings, 85495547 edges, 53374 markings/sec, 710 secs
lola: 34248679 markings, 86112680 edges, 50856 markings/sec, 715 secs
lola: 34491223 markings, 86735581 edges, 48509 markings/sec, 720 secs
lola: 34726611 markings, 87353044 edges, 47078 markings/sec, 725 secs
lola: 34971716 markings, 87980868 edges, 49021 markings/sec, 730 secs
lola: 35213179 markings, 88604149 edges, 48293 markings/sec, 735 secs
lola: 35477196 markings, 89221562 edges, 52803 markings/sec, 740 secs
lola: 35710894 markings, 89853570 edges, 46740 markings/sec, 745 secs
lola: 35947971 markings, 90483129 edges, 47415 markings/sec, 750 secs
lola: 36182426 markings, 91105841 edges, 46891 markings/sec, 755 secs
lola: 36416593 markings, 91729555 edges, 46833 markings/sec, 760 secs
lola: 36665235 markings, 92342972 edges, 49728 markings/sec, 765 secs
lola: 36931768 markings, 92946522 edges, 53307 markings/sec, 770 secs
lola: 37177868 markings, 93576690 edges, 49220 markings/sec, 775 secs
lola: 37417679 markings, 94197216 edges, 47962 markings/sec, 780 secs
lola: 37659756 markings, 94805536 edges, 48415 markings/sec, 785 secs
lola: 37904886 markings, 95426169 edges, 49026 markings/sec, 790 secs
lola: 38141033 markings, 96055094 edges, 47229 markings/sec, 795 secs
lola: 38376753 markings, 96682118 edges, 47144 markings/sec, 800 secs
lola: 38627654 markings, 97293642 edges, 50180 markings/sec, 805 secs
lola: 38861606 markings, 97903426 edges, 46790 markings/sec, 810 secs
lola: 39094319 markings, 98504310 edges, 46543 markings/sec, 815 secs
lola: 39331947 markings, 99095895 edges, 47526 markings/sec, 820 secs
lola: 39563676 markings, 99698700 edges, 46346 markings/sec, 825 secs
lola: 39790342 markings, 100301018 edges, 45333 markings/sec, 830 secs
lola: 40018457 markings, 100908540 edges, 45623 markings/sec, 835 secs
lola: 40288185 markings, 101510149 edges, 53946 markings/sec, 840 secs
lola: 40559700 markings, 102120824 edges, 54303 markings/sec, 845 secs
lola: 40815822 markings, 102735039 edges, 51224 markings/sec, 850 secs
lola: 41066849 markings, 103358944 edges, 50205 markings/sec, 855 secs
lola: 41321839 markings, 103981580 edges, 50998 markings/sec, 860 secs
lola: 41559495 markings, 104612723 edges, 47531 markings/sec, 865 secs
lola: 41803067 markings, 105230142 edges, 48714 markings/sec, 870 secs
lola: 42034265 markings, 105864425 edges, 46240 markings/sec, 875 secs
lola: 42277241 markings, 106469773 edges, 48595 markings/sec, 880 secs
lola: 42503593 markings, 107058410 edges, 45270 markings/sec, 885 secs
lola: 42730219 markings, 107645165 edges, 45325 markings/sec, 890 secs
lola: 42950671 markings, 108230463 edges, 44090 markings/sec, 895 secs
lola: 43172715 markings, 108818345 edges, 44409 markings/sec, 900 secs
lola: 43401242 markings, 109418998 edges, 45705 markings/sec, 905 secs
lola: 43640948 markings, 110028548 edges, 47941 markings/sec, 910 secs
lola: 43892203 markings, 110636785 edges, 50251 markings/sec, 915 secs
lola: 44138328 markings, 111238613 edges, 49225 markings/sec, 920 secs
lola: 44380448 markings, 111841903 edges, 48424 markings/sec, 925 secs
lola: 44613661 markings, 112435445 edges, 46643 markings/sec, 930 secs
lola: 44838738 markings, 113035407 edges, 45015 markings/sec, 935 secs
lola: 45068091 markings, 113631426 edges, 45871 markings/sec, 940 secs
lola: 45293473 markings, 114246925 edges, 45076 markings/sec, 945 secs
lola: 45537387 markings, 114849258 edges, 48783 markings/sec, 950 secs
lola: 45749530 markings, 115410684 edges, 42429 markings/sec, 955 secs
lola: 45955355 markings, 115947690 edges, 41165 markings/sec, 960 secs
lola: 46158679 markings, 116489288 edges, 40665 markings/sec, 965 secs
lola: 46363620 markings, 117028417 edges, 40988 markings/sec, 970 secs
lola: 46588153 markings, 117620895 edges, 44907 markings/sec, 975 secs
lola: 46822823 markings, 118219881 edges, 46934 markings/sec, 980 secs
lola: 47090645 markings, 118820672 edges, 53564 markings/sec, 985 secs
lola: 47351517 markings, 119429702 edges, 52174 markings/sec, 990 secs
lola: 47606132 markings, 120043564 edges, 50923 markings/sec, 995 secs
lola: 47865562 markings, 120653304 edges, 51886 markings/sec, 1000 secs
lola: 48114331 markings, 121272920 edges, 49754 markings/sec, 1005 secs
lola: 48367132 markings, 121891392 edges, 50560 markings/sec, 1010 secs
lola: 48633552 markings, 122495698 edges, 53284 markings/sec, 1015 secs
lola: 48880950 markings, 123127207 edges, 49480 markings/sec, 1020 secs
lola: 49126059 markings, 123755930 edges, 49022 markings/sec, 1025 secs
lola: 49348050 markings, 124319684 edges, 44398 markings/sec, 1030 secs
lola: 49563080 markings, 124867187 edges, 43006 markings/sec, 1035 secs
lola: 49773689 markings, 125412973 edges, 42122 markings/sec, 1040 secs
lola: 50012188 markings, 125997508 edges, 47700 markings/sec, 1045 secs
lola: 50239570 markings, 126608757 edges, 45476 markings/sec, 1050 secs
lola: 50476738 markings, 127232403 edges, 47434 markings/sec, 1055 secs
lola: 50707006 markings, 127839218 edges, 46054 markings/sec, 1060 secs
lola: 50939519 markings, 128453866 edges, 46503 markings/sec, 1065 secs
lola: 51181222 markings, 129061867 edges, 48341 markings/sec, 1070 secs
lola: 51435415 markings, 129648538 edges, 50839 markings/sec, 1075 secs
lola: 51678006 markings, 130260225 edges, 48518 markings/sec, 1080 secs
lola: 51920686 markings, 130883372 edges, 48536 markings/sec, 1085 secs
lola: 52159507 markings, 131493587 edges, 47764 markings/sec, 1090 secs
lola: 52405073 markings, 132111488 edges, 49113 markings/sec, 1095 secs
lola: 52633149 markings, 132717879 edges, 45615 markings/sec, 1100 secs
lola: 52865739 markings, 133330880 edges, 46518 markings/sec, 1105 secs
lola: 53111943 markings, 133938141 edges, 49241 markings/sec, 1110 secs
lola: 53338556 markings, 134518706 edges, 45323 markings/sec, 1115 secs
lola: 53566234 markings, 135099526 edges, 45536 markings/sec, 1120 secs
lola: 53797798 markings, 135695368 edges, 46313 markings/sec, 1125 secs
lola: 54033668 markings, 136294961 edges, 47174 markings/sec, 1130 secs
lola: 54260807 markings, 136896434 edges, 45428 markings/sec, 1135 secs
lola: 54491525 markings, 137508675 edges, 46144 markings/sec, 1140 secs
lola: 54745554 markings, 138111450 edges, 50806 markings/sec, 1145 secs
lola: 55011487 markings, 138718457 edges, 53187 markings/sec, 1150 secs
lola: 55242494 markings, 139257633 edges, 46201 markings/sec, 1155 secs
lola: 55467254 markings, 139806072 edges, 44952 markings/sec, 1160 secs
lola: 55689965 markings, 140352044 edges, 44542 markings/sec, 1165 secs
lola: 55932645 markings, 140975398 edges, 48536 markings/sec, 1170 secs
lola: 56167187 markings, 141597042 edges, 46908 markings/sec, 1175 secs
lola: 56406311 markings, 142216561 edges, 47825 markings/sec, 1180 secs
lola: 56635916 markings, 142841678 edges, 45921 markings/sec, 1185 secs
lola: 56887293 markings, 143455984 edges, 50275 markings/sec, 1190 secs
lola: 57118488 markings, 144058386 edges, 46239 markings/sec, 1195 secs
lola: 57341013 markings, 144656150 edges, 44505 markings/sec, 1200 secs
lola: 57559937 markings, 145223140 edges, 43785 markings/sec, 1205 secs
lola: 57763504 markings, 145751826 edges, 40713 markings/sec, 1210 secs
lola: 57960629 markings, 146282949 edges, 39425 markings/sec, 1215 secs
lola: 58176985 markings, 146819273 edges, 43271 markings/sec, 1220 secs
lola: 58397907 markings, 147355984 edges, 44184 markings/sec, 1225 secs
lola: 58616011 markings, 147893157 edges, 43621 markings/sec, 1230 secs
lola: 58839271 markings, 148455451 edges, 44652 markings/sec, 1235 secs
lola: 59057214 markings, 148992908 edges, 43589 markings/sec, 1240 secs
lola: 59275389 markings, 149565187 edges, 43635 markings/sec, 1245 secs
lola: 59493409 markings, 150128589 edges, 43604 markings/sec, 1250 secs
lola: 59697891 markings, 150686260 edges, 40896 markings/sec, 1255 secs
lola: 59902421 markings, 151239804 edges, 40906 markings/sec, 1260 secs
lola: 60124991 markings, 151788210 edges, 44514 markings/sec, 1265 secs
lola: 60332598 markings, 152332944 edges, 41521 markings/sec, 1270 secs
lola: 60534724 markings, 152872309 edges, 40425 markings/sec, 1275 secs
lola: 60748277 markings, 153427469 edges, 42711 markings/sec, 1280 secs
lola: 60948779 markings, 153956163 edges, 40100 markings/sec, 1285 secs
lola: 61161890 markings, 154524903 edges, 42622 markings/sec, 1290 secs
lola: 61380349 markings, 155059530 edges, 43692 markings/sec, 1295 secs
lola: 61621246 markings, 155587882 edges, 48179 markings/sec, 1300 secs
lola: 61856455 markings, 156151183 edges, 47042 markings/sec, 1305 secs
lola: 62096904 markings, 156749300 edges, 48090 markings/sec, 1310 secs
lola: 62333716 markings, 157338110 edges, 47362 markings/sec, 1315 secs
lola: 62572646 markings, 157952386 edges, 47786 markings/sec, 1320 secs
lola: 62831198 markings, 158622033 edges, 51710 markings/sec, 1325 secs
lola: 63080455 markings, 159287104 edges, 49851 markings/sec, 1330 secs
lola: 63335920 markings, 159945038 edges, 51093 markings/sec, 1335 secs
lola: 63578256 markings, 160590694 edges, 48467 markings/sec, 1340 secs
lola: 63827841 markings, 161233398 edges, 49917 markings/sec, 1345 secs
lola: 64072591 markings, 161869762 edges, 48950 markings/sec, 1350 secs
lola: 64331831 markings, 162485131 edges, 51848 markings/sec, 1355 secs
lola: 64578167 markings, 163102751 edges, 49267 markings/sec, 1360 secs
lola: 64825970 markings, 163755536 edges, 49561 markings/sec, 1365 secs
lola: 65069925 markings, 164398755 edges, 48791 markings/sec, 1370 secs
lola: 65318127 markings, 165057621 edges, 49640 markings/sec, 1375 secs
lola: 65561349 markings, 165699631 edges, 48644 markings/sec, 1380 secs
lola: 65808915 markings, 166340904 edges, 49513 markings/sec, 1385 secs
lola: 66060795 markings, 166999458 edges, 50376 markings/sec, 1390 secs
lola: 66306832 markings, 167636534 edges, 49207 markings/sec, 1395 secs
lola: 66557516 markings, 168299952 edges, 50137 markings/sec, 1400 secs
lola: 66807023 markings, 168953600 edges, 49901 markings/sec, 1405 secs
lola: 67083650 markings, 169598260 edges, 55325 markings/sec, 1410 secs
lola: 67355229 markings, 170239935 edges, 54316 markings/sec, 1415 secs
lola: 67624201 markings, 170881811 edges, 53794 markings/sec, 1420 secs
lola: 67890352 markings, 171523288 edges, 53230 markings/sec, 1425 secs
lola: 68157058 markings, 172163714 edges, 53341 markings/sec, 1430 secs
lola: 68397871 markings, 172798389 edges, 48163 markings/sec, 1435 secs
lola: 68630336 markings, 173414614 edges, 46493 markings/sec, 1440 secs
lola: 68849006 markings, 173980327 edges, 43734 markings/sec, 1445 secs
lola: 69062109 markings, 174546512 edges, 42621 markings/sec, 1450 secs
lola: 69274567 markings, 175108638 edges, 42492 markings/sec, 1455 secs
lola: 69488152 markings, 175664437 edges, 42717 markings/sec, 1460 secs
lola: 69712249 markings, 176288662 edges, 44819 markings/sec, 1465 secs
lola: 69946276 markings, 176926810 edges, 46805 markings/sec, 1470 secs
lola: 70167037 markings, 177548235 edges, 44152 markings/sec, 1475 secs
lola: 70387161 markings, 178135706 edges, 44025 markings/sec, 1480 secs
lola: 70597358 markings, 178719238 edges, 42039 markings/sec, 1485 secs
lola: 70800464 markings, 179302310 edges, 40621 markings/sec, 1490 secs
lola: 71005330 markings, 179871013 edges, 40973 markings/sec, 1495 secs
lola: 71204512 markings, 180441944 edges, 39836 markings/sec, 1500 secs
lola: 71420342 markings, 181003448 edges, 43166 markings/sec, 1505 secs
lola: 71628327 markings, 181585574 edges, 41597 markings/sec, 1510 secs
lola: 71843467 markings, 182174955 edges, 43028 markings/sec, 1515 secs
lola: 72072565 markings, 182824748 edges, 45820 markings/sec, 1520 secs
lola: 72300285 markings, 183462928 edges, 45544 markings/sec, 1525 secs
lola: 72531279 markings, 184097093 edges, 46199 markings/sec, 1530 secs
lola: 72754553 markings, 184724580 edges, 44655 markings/sec, 1535 secs
lola: 72971791 markings, 185339033 edges, 43448 markings/sec, 1540 secs
lola: 73175760 markings, 185915093 edges, 40794 markings/sec, 1545 secs
lola: 73415179 markings, 186509812 edges, 47884 markings/sec, 1550 secs
lola: 73660746 markings, 187125984 edges, 49113 markings/sec, 1555 secs
lola: 73881754 markings, 187691722 edges, 44202 markings/sec, 1560 secs
lola: 74096802 markings, 188245810 edges, 43010 markings/sec, 1565 secs
lola: 74304927 markings, 188817357 edges, 41625 markings/sec, 1570 secs
lola: 74513092 markings, 189397536 edges, 41633 markings/sec, 1575 secs
lola: 74738619 markings, 190016939 edges, 45105 markings/sec, 1580 secs
lola: 74972420 markings, 190675395 edges, 46760 markings/sec, 1585 secs
lola: 75201016 markings, 191323344 edges, 45719 markings/sec, 1590 secs
lola: 75431994 markings, 191953225 edges, 46196 markings/sec, 1595 secs
lola: 75662133 markings, 192605111 edges, 46028 markings/sec, 1600 secs
lola: 75894396 markings, 193253967 edges, 46453 markings/sec, 1605 secs
lola: 76121271 markings, 193887973 edges, 45375 markings/sec, 1610 secs
lola: 76348233 markings, 194523405 edges, 45392 markings/sec, 1615 secs
lola: 76569230 markings, 195155476 edges, 44199 markings/sec, 1620 secs
lola: 76801985 markings, 195783331 edges, 46551 markings/sec, 1625 secs
lola: 77039279 markings, 196443390 edges, 47459 markings/sec, 1630 secs
lola: 77271910 markings, 197093981 edges, 46526 markings/sec, 1635 secs
lola: 77512417 markings, 197751846 edges, 48101 markings/sec, 1640 secs
lola: 77743113 markings, 198404370 edges, 46139 markings/sec, 1645 secs
lola: 77976381 markings, 199040634 edges, 46654 markings/sec, 1650 secs
lola: 78209652 markings, 199687570 edges, 46654 markings/sec, 1655 secs
lola: 78443563 markings, 200340734 edges, 46782 markings/sec, 1660 secs
lola: 78672346 markings, 200975941 edges, 45757 markings/sec, 1665 secs
lola: 78900363 markings, 201615305 edges, 45603 markings/sec, 1670 secs
lola: 79126938 markings, 202254127 edges, 45315 markings/sec, 1675 secs
lola: 79371536 markings, 202882632 edges, 48920 markings/sec, 1680 secs
lola: 79627610 markings, 203504875 edges, 51215 markings/sec, 1685 secs
lola: 79884391 markings, 204159236 edges, 51356 markings/sec, 1690 secs
lola: 80137846 markings, 204788330 edges, 50691 markings/sec, 1695 secs
lola: 80397941 markings, 205413649 edges, 52019 markings/sec, 1700 secs
lola: 80656001 markings, 206026731 edges, 51612 markings/sec, 1705 secs
lola: 80915463 markings, 206650780 edges, 51892 markings/sec, 1710 secs
lola: 81167964 markings, 207290133 edges, 50500 markings/sec, 1715 secs
lola: 81409310 markings, 207926652 edges, 48269 markings/sec, 1720 secs
lola: 81649562 markings, 208564263 edges, 48050 markings/sec, 1725 secs
lola: 81894044 markings, 209214503 edges, 48896 markings/sec, 1730 secs
lola: 82132952 markings, 209882835 edges, 47782 markings/sec, 1735 secs
lola: 82372167 markings, 210537880 edges, 47843 markings/sec, 1740 secs
lola: 82608682 markings, 211206406 edges, 47303 markings/sec, 1745 secs
lola: 82832591 markings, 211846852 edges, 44782 markings/sec, 1750 secs
lola: 83074088 markings, 212497117 edges, 48299 markings/sec, 1755 secs
lola: 83306533 markings, 213153121 edges, 46489 markings/sec, 1760 secs
lola: 83534775 markings, 213785263 edges, 45648 markings/sec, 1765 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1774 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 ... (shortened)
lola: processed formula length: 3184
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 249484 markings, 626233 edges, 49897 markings/sec, 0 secs
lola: 488817 markings, 1280940 edges, 47867 markings/sec, 5 secs
lola: 720665 markings, 1943633 edges, 46370 markings/sec, 10 secs
lola: 942163 markings, 2607495 edges, 44300 markings/sec, 15 secs
lola: 1160952 markings, 3287288 edges, 43758 markings/sec, 20 secs
lola: 1377560 markings, 3951218 edges, 43322 markings/sec, 25 secs
lola: 1593164 markings, 4602190 edges, 43121 markings/sec, 30 secs
lola: 1808474 markings, 5275276 edges, 43062 markings/sec, 35 secs
lola: 2018956 markings, 5922582 edges, 42096 markings/sec, 40 secs
lola: 2228546 markings, 6545779 edges, 41918 markings/sec, 45 secs
lola: 2435960 markings, 7199888 edges, 41483 markings/sec, 50 secs
lola: 2654039 markings, 7864642 edges, 43616 markings/sec, 55 secs
lola: 2874949 markings, 8531923 edges, 44182 markings/sec, 60 secs
lola: 3082602 markings, 9210957 edges, 41531 markings/sec, 65 secs
lola: 3291334 markings, 9893310 edges, 41746 markings/sec, 70 secs
lola: 3502485 markings, 10573451 edges, 42230 markings/sec, 75 secs
lola: 3710660 markings, 11249501 edges, 41635 markings/sec, 80 secs
lola: 3936151 markings, 11904340 edges, 45098 markings/sec, 85 secs
lola: 4151853 markings, 12567611 edges, 43140 markings/sec, 90 secs
lola: 4360107 markings, 13250203 edges, 41651 markings/sec, 95 secs
lola: 4569500 markings, 13919657 edges, 41879 markings/sec, 100 secs
lola: 4781981 markings, 14597045 edges, 42496 markings/sec, 105 secs
lola: 4996786 markings, 15260700 edges, 42961 markings/sec, 110 secs
lola: 5224623 markings, 15910822 edges, 45567 markings/sec, 115 secs
lola: 5438333 markings, 16575654 edges, 42742 markings/sec, 120 secs
lola: 5649461 markings, 17245210 edges, 42226 markings/sec, 125 secs
lola: 5861576 markings, 17919772 edges, 42423 markings/sec, 130 secs
lola: 6074074 markings, 18577295 edges, 42500 markings/sec, 135 secs
lola: 6287075 markings, 19237472 edges, 42600 markings/sec, 140 secs
lola: 6493356 markings, 19918452 edges, 41256 markings/sec, 145 secs
lola: 6699461 markings, 20582429 edges, 41221 markings/sec, 150 secs
lola: 6913869 markings, 21240402 edges, 42882 markings/sec, 155 secs
lola: 7118203 markings, 21905154 edges, 40867 markings/sec, 160 secs
lola: 7323328 markings, 22564750 edges, 41025 markings/sec, 165 secs
lola: 7546942 markings, 23202408 edges, 44723 markings/sec, 170 secs
lola: 7762757 markings, 23842144 edges, 43163 markings/sec, 175 secs
lola: 7971716 markings, 24511553 edges, 41792 markings/sec, 180 secs
lola: 8182568 markings, 25173452 edges, 42170 markings/sec, 185 secs
lola: 8391753 markings, 25834167 edges, 41837 markings/sec, 190 secs
lola: 8595694 markings, 26490991 edges, 40788 markings/sec, 195 secs
lola: 8804916 markings, 27147218 edges, 41844 markings/sec, 200 secs
lola: 9006208 markings, 27819608 edges, 40258 markings/sec, 205 secs
lola: 9211160 markings, 28476301 edges, 40990 markings/sec, 210 secs
lola: 9416342 markings, 29129359 edges, 41036 markings/sec, 215 secs
lola: 9619627 markings, 29798068 edges, 40657 markings/sec, 220 secs
lola: 9830460 markings, 30454256 edges, 42167 markings/sec, 225 secs
lola: 10047755 markings, 31116161 edges, 43459 markings/sec, 230 secs
lola: 10262885 markings, 31775692 edges, 43026 markings/sec, 235 secs
lola: 10474899 markings, 32437948 edges, 42403 markings/sec, 240 secs
lola: 10688328 markings, 33109035 edges, 42686 markings/sec, 245 secs
lola: 10900849 markings, 33795046 edges, 42504 markings/sec, 250 secs
lola: 11108001 markings, 34484794 edges, 41430 markings/sec, 255 secs
lola: 11313974 markings, 35180606 edges, 41195 markings/sec, 260 secs
lola: 11517405 markings, 35867272 edges, 40686 markings/sec, 265 secs
lola: 11720471 markings, 36549144 edges, 40613 markings/sec, 270 secs
lola: 11926835 markings, 37234523 edges, 41273 markings/sec, 275 secs
lola: 12125606 markings, 37901927 edges, 39754 markings/sec, 280 secs
lola: 12320520 markings, 38558273 edges, 38983 markings/sec, 285 secs
lola: 12519631 markings, 39238083 edges, 39822 markings/sec, 290 secs
lola: 12720905 markings, 39917701 edges, 40255 markings/sec, 295 secs
lola: 12923376 markings, 40594256 edges, 40494 markings/sec, 300 secs
lola: 13125048 markings, 41276643 edges, 40334 markings/sec, 305 secs
lola: 13320659 markings, 41967309 edges, 39122 markings/sec, 310 secs
lola: 13518331 markings, 42647829 edges, 39534 markings/sec, 315 secs
lola: 13720705 markings, 43329910 edges, 40475 markings/sec, 320 secs
lola: 13921822 markings, 44007961 edges, 40223 markings/sec, 325 secs
lola: 14126736 markings, 44709864 edges, 40983 markings/sec, 330 secs
lola: 14328453 markings, 45384890 edges, 40343 markings/sec, 335 secs
lola: 14527877 markings, 46053242 edges, 39885 markings/sec, 340 secs
lola: 14723639 markings, 46727609 edges, 39152 markings/sec, 345 secs
lola: 14919267 markings, 47398446 edges, 39126 markings/sec, 350 secs
lola: 15119623 markings, 48071405 edges, 40071 markings/sec, 355 secs
lola: 15316739 markings, 48742012 edges, 39423 markings/sec, 360 secs
lola: 15514087 markings, 49425703 edges, 39470 markings/sec, 365 secs
lola: 15716773 markings, 50093435 edges, 40537 markings/sec, 370 secs
lola: 15920339 markings, 50767130 edges, 40713 markings/sec, 375 secs
lola: 16124013 markings, 51445691 edges, 40735 markings/sec, 380 secs
lola: 16316488 markings, 52133906 edges, 38495 markings/sec, 385 secs
lola: 16508102 markings, 52821568 edges, 38323 markings/sec, 390 secs
lola: 16707082 markings, 53516587 edges, 39796 markings/sec, 395 secs
lola: 16903384 markings, 54215516 edges, 39260 markings/sec, 400 secs
lola: 17100950 markings, 54903039 edges, 39513 markings/sec, 405 secs
lola: 17292112 markings, 55601787 edges, 38232 markings/sec, 410 secs
lola: 17496992 markings, 56305692 edges, 40976 markings/sec, 415 secs
lola: 17699643 markings, 57000129 edges, 40530 markings/sec, 420 secs
lola: 17891163 markings, 57690807 edges, 38304 markings/sec, 425 secs
lola: 18087950 markings, 58367518 edges, 39357 markings/sec, 430 secs
lola: 18293191 markings, 59059233 edges, 41048 markings/sec, 435 secs
lola: 18499059 markings, 59731927 edges, 41174 markings/sec, 440 secs
lola: 18700295 markings, 60399715 edges, 40247 markings/sec, 445 secs
lola: 18896110 markings, 61080210 edges, 39163 markings/sec, 450 secs
lola: 19092817 markings, 61758242 edges, 39341 markings/sec, 455 secs
lola: 19288208 markings, 62431398 edges, 39078 markings/sec, 460 secs
lola: 19482095 markings, 63112240 edges, 38777 markings/sec, 465 secs
lola: 19677739 markings, 63785790 edges, 39129 markings/sec, 470 secs
lola: 19869572 markings, 64468548 edges, 38367 markings/sec, 475 secs
lola: 20067083 markings, 65153991 edges, 39502 markings/sec, 480 secs
lola: 20263632 markings, 65838284 edges, 39310 markings/sec, 485 secs
lola: 20460960 markings, 66523342 edges, 39466 markings/sec, 490 secs
lola: 20655152 markings, 67200568 edges, 38838 markings/sec, 495 secs
lola: 20849630 markings, 67881739 edges, 38896 markings/sec, 500 secs
lola: 21056503 markings, 68543066 edges, 41375 markings/sec, 505 secs
lola: 21266149 markings, 69207369 edges, 41929 markings/sec, 510 secs
lola: 21473412 markings, 69888281 edges, 41453 markings/sec, 515 secs
lola: 21671775 markings, 70576838 edges, 39673 markings/sec, 520 secs
lola: 21870925 markings, 71266222 edges, 39830 markings/sec, 525 secs
lola: 22072277 markings, 71954830 edges, 40270 markings/sec, 530 secs
lola: 22268164 markings, 72633819 edges, 39177 markings/sec, 535 secs
lola: 22470390 markings, 73317702 edges, 40445 markings/sec, 540 secs
lola: 22664434 markings, 74013642 edges, 38809 markings/sec, 545 secs
lola: 22863938 markings, 74686663 edges, 39901 markings/sec, 550 secs
lola: 23062891 markings, 75360880 edges, 39791 markings/sec, 555 secs
lola: 23256164 markings, 76025415 edges, 38655 markings/sec, 560 secs
lola: 23450568 markings, 76693636 edges, 38881 markings/sec, 565 secs
lola: 23645183 markings, 77360016 edges, 38923 markings/sec, 570 secs
lola: 23848071 markings, 78034761 edges, 40578 markings/sec, 575 secs
lola: 24043538 markings, 78710959 edges, 39093 markings/sec, 580 secs
lola: 24233521 markings, 79392200 edges, 37997 markings/sec, 585 secs
lola: 24427642 markings, 80076452 edges, 38824 markings/sec, 590 secs
lola: 24628316 markings, 80775093 edges, 40135 markings/sec, 595 secs
lola: 24827740 markings, 81468326 edges, 39885 markings/sec, 600 secs
lola: 25032336 markings, 82151956 edges, 40919 markings/sec, 605 secs
lola: 25238144 markings, 82834293 edges, 41162 markings/sec, 610 secs
lola: 25434591 markings, 83527112 edges, 39289 markings/sec, 615 secs
lola: 25632430 markings, 84218856 edges, 39568 markings/sec, 620 secs
lola: 25830381 markings, 84909486 edges, 39590 markings/sec, 625 secs
lola: 26029399 markings, 85591953 edges, 39804 markings/sec, 630 secs
lola: 26217612 markings, 86238058 edges, 37643 markings/sec, 635 secs
lola: 26426129 markings, 86902779 edges, 41703 markings/sec, 640 secs
lola: 26635436 markings, 87573921 edges, 41861 markings/sec, 645 secs
lola: 26834428 markings, 88232225 edges, 39798 markings/sec, 650 secs
lola: 27029582 markings, 88906168 edges, 39031 markings/sec, 655 secs
lola: 27227992 markings, 89587744 edges, 39682 markings/sec, 660 secs
lola: 27425422 markings, 90264490 edges, 39486 markings/sec, 665 secs
lola: 27623268 markings, 90949664 edges, 39569 markings/sec, 670 secs
lola: 27819662 markings, 91616464 edges, 39279 markings/sec, 675 secs
lola: 28013804 markings, 92311132 edges, 38828 markings/sec, 680 secs
lola: 28210582 markings, 92984324 edges, 39356 markings/sec, 685 secs
lola: 28410219 markings, 93670672 edges, 39927 markings/sec, 690 secs
lola: 28607276 markings, 94352480 edges, 39411 markings/sec, 695 secs
lola: 28799252 markings, 95015125 edges, 38395 markings/sec, 700 secs
lola: 28990048 markings, 95679432 edges, 38159 markings/sec, 705 secs
lola: 29186118 markings, 96339965 edges, 39214 markings/sec, 710 secs
lola: 29377072 markings, 97012981 edges, 38191 markings/sec, 715 secs
lola: 29566877 markings, 97693375 edges, 37961 markings/sec, 720 secs
lola: 29758970 markings, 98383261 edges, 38419 markings/sec, 725 secs
lola: 29955744 markings, 99076070 edges, 39355 markings/sec, 730 secs
lola: 30149485 markings, 99761750 edges, 38748 markings/sec, 735 secs
lola: 30349231 markings, 100443982 edges, 39949 markings/sec, 740 secs
lola: 30551098 markings, 101129717 edges, 40373 markings/sec, 745 secs
lola: 30746609 markings, 101819042 edges, 39102 markings/sec, 750 secs
lola: 30938573 markings, 102493061 edges, 38393 markings/sec, 755 secs
lola: 31127538 markings, 103163657 edges, 37793 markings/sec, 760 secs
lola: 31317200 markings, 103831666 edges, 37932 markings/sec, 765 secs
lola: 31508378 markings, 104490950 edges, 38236 markings/sec, 770 secs
lola: 31724575 markings, 105152037 edges, 43239 markings/sec, 775 secs
lola: 31928280 markings, 105822341 edges, 40741 markings/sec, 780 secs
lola: 32133446 markings, 106496269 edges, 41033 markings/sec, 785 secs
lola: 32328406 markings, 107115147 edges, 38992 markings/sec, 790 secs
lola: 32523392 markings, 107768161 edges, 38997 markings/sec, 795 secs
lola: 32706313 markings, 108385763 edges, 36584 markings/sec, 800 secs
lola: 32881210 markings, 108978924 edges, 34979 markings/sec, 805 secs
lola: 33057257 markings, 109586518 edges, 35209 markings/sec, 810 secs
lola: 33231894 markings, 110192656 edges, 34927 markings/sec, 815 secs
lola: 33406444 markings, 110800731 edges, 34910 markings/sec, 820 secs
lola: 33598273 markings, 111443690 edges, 38366 markings/sec, 825 secs
lola: 33793388 markings, 112121683 edges, 39023 markings/sec, 830 secs
lola: 33981120 markings, 112788269 edges, 37546 markings/sec, 835 secs
lola: 34176091 markings, 113471753 edges, 38994 markings/sec, 840 secs
lola: 34375554 markings, 114169319 edges, 39893 markings/sec, 845 secs
lola: 34583960 markings, 114848913 edges, 41681 markings/sec, 850 secs
lola: 34788459 markings, 115534218 edges, 40900 markings/sec, 855 secs
lola: 34989301 markings, 116218899 edges, 40168 markings/sec, 860 secs
lola: 35180071 markings, 116875983 edges, 38154 markings/sec, 865 secs
lola: 35377028 markings, 117533504 edges, 39391 markings/sec, 870 secs
lola: 35580492 markings, 118226628 edges, 40693 markings/sec, 875 secs
lola: 35778522 markings, 118920823 edges, 39606 markings/sec, 880 secs
lola: 35975408 markings, 119623089 edges, 39377 markings/sec, 885 secs
lola: 36170326 markings, 120318214 edges, 38984 markings/sec, 890 secs
lola: 36357560 markings, 120988368 edges, 37447 markings/sec, 895 secs
lola: 36549778 markings, 121666909 edges, 38444 markings/sec, 900 secs
lola: 36745249 markings, 122335463 edges, 39094 markings/sec, 905 secs
lola: 36941924 markings, 123017059 edges, 39335 markings/sec, 910 secs
lola: 37148480 markings, 123702968 edges, 41311 markings/sec, 915 secs
lola: 37350798 markings, 124385728 edges, 40464 markings/sec, 920 secs
lola: 37549762 markings, 125076484 edges, 39793 markings/sec, 925 secs
lola: 37747274 markings, 125771452 edges, 39502 markings/sec, 930 secs
lola: 37943387 markings, 126452656 edges, 39223 markings/sec, 935 secs
lola: 38135242 markings, 127144335 edges, 38371 markings/sec, 940 secs
lola: 38335601 markings, 127835460 edges, 40072 markings/sec, 945 secs
lola: 38531210 markings, 128512395 edges, 39122 markings/sec, 950 secs
lola: 38730410 markings, 129172770 edges, 39840 markings/sec, 955 secs
lola: 38929407 markings, 129838549 edges, 39799 markings/sec, 960 secs
lola: 39127772 markings, 130499342 edges, 39673 markings/sec, 965 secs
lola: 39321041 markings, 131170461 edges, 38654 markings/sec, 970 secs
lola: 39515005 markings, 131849737 edges, 38793 markings/sec, 975 secs
lola: 39708103 markings, 132511694 edges, 38620 markings/sec, 980 secs
lola: 39893322 markings, 133167779 edges, 37044 markings/sec, 985 secs
lola: 40084909 markings, 133815831 edges, 38317 markings/sec, 990 secs
lola: 40272752 markings, 134456074 edges, 37569 markings/sec, 995 secs
lola: 40463311 markings, 135100568 edges, 38112 markings/sec, 1000 secs
lola: 40653958 markings, 135749143 edges, 38129 markings/sec, 1005 secs
lola: 40837317 markings, 136409274 edges, 36672 markings/sec, 1010 secs
lola: 41023234 markings, 137059994 edges, 37183 markings/sec, 1015 secs
lola: 41212747 markings, 137702653 edges, 37903 markings/sec, 1020 secs
lola: 41404443 markings, 138343622 edges, 38339 markings/sec, 1025 secs
lola: 41594907 markings, 139007213 edges, 38093 markings/sec, 1030 secs
lola: 41784408 markings, 139671999 edges, 37900 markings/sec, 1035 secs
lola: 41977288 markings, 140330262 edges, 38576 markings/sec, 1040 secs
lola: 42178227 markings, 140985859 edges, 40188 markings/sec, 1045 secs
lola: 42376510 markings, 141652840 edges, 39657 markings/sec, 1050 secs
lola: 42574475 markings, 142318071 edges, 39593 markings/sec, 1055 secs
lola: 42773550 markings, 143007050 edges, 39815 markings/sec, 1060 secs
lola: 42969329 markings, 143694400 edges, 39156 markings/sec, 1065 secs
lola: 43167395 markings, 144382836 edges, 39613 markings/sec, 1070 secs
lola: 43360643 markings, 145071026 edges, 38650 markings/sec, 1075 secs
lola: 43558730 markings, 145741661 edges, 39617 markings/sec, 1080 secs
lola: 43755301 markings, 146415175 edges, 39314 markings/sec, 1085 secs
lola: 43953818 markings, 147098989 edges, 39703 markings/sec, 1090 secs
lola: 44147836 markings, 147787681 edges, 38804 markings/sec, 1095 secs
lola: 44337484 markings, 148469106 edges, 37930 markings/sec, 1100 secs
lola: 44527597 markings, 149134925 edges, 38023 markings/sec, 1105 secs
lola: 44722055 markings, 149801761 edges, 38892 markings/sec, 1110 secs
lola: 44915121 markings, 150472207 edges, 38613 markings/sec, 1115 secs
lola: 45106312 markings, 151149082 edges, 38238 markings/sec, 1120 secs
lola: 45295363 markings, 151814319 edges, 37810 markings/sec, 1125 secs
lola: 45505502 markings, 152478056 edges, 42028 markings/sec, 1130 secs
lola: 45718313 markings, 153149956 edges, 42562 markings/sec, 1135 secs
lola: 45923452 markings, 153834541 edges, 41028 markings/sec, 1140 secs
lola: 46133219 markings, 154506032 edges, 41953 markings/sec, 1145 secs
lola: 46336023 markings, 155179168 edges, 40561 markings/sec, 1150 secs
lola: 46529067 markings, 155841537 edges, 38609 markings/sec, 1155 secs
lola: 46723919 markings, 156501506 edges, 38970 markings/sec, 1160 secs
lola: 46916982 markings, 157174015 edges, 38613 markings/sec, 1165 secs
lola: 47107237 markings, 157846894 edges, 38051 markings/sec, 1170 secs
lola: 47302492 markings, 158523406 edges, 39051 markings/sec, 1175 secs
lola: 47505342 markings, 159197279 edges, 40570 markings/sec, 1180 secs
lola: 47697164 markings, 159864516 edges, 38364 markings/sec, 1185 secs
lola: 47888382 markings, 160528522 edges, 38244 markings/sec, 1190 secs
lola: 48082763 markings, 161210326 edges, 38876 markings/sec, 1195 secs
lola: 48280733 markings, 161886193 edges, 39594 markings/sec, 1200 secs
lola: 48480299 markings, 162557581 edges, 39913 markings/sec, 1205 secs
lola: 48675764 markings, 163228930 edges, 39093 markings/sec, 1210 secs
lola: 48863306 markings, 163882678 edges, 37508 markings/sec, 1215 secs
lola: 49033445 markings, 164485460 edges, 34028 markings/sec, 1220 secs
lola: 49212535 markings, 165079673 edges, 35818 markings/sec, 1225 secs
lola: 49389690 markings, 165681047 edges, 35431 markings/sec, 1230 secs
lola: 49564758 markings, 166287187 edges, 35014 markings/sec, 1235 secs
lola: 49733454 markings, 166893280 edges, 33739 markings/sec, 1240 secs
lola: 49900856 markings, 167504737 edges, 33480 markings/sec, 1245 secs
lola: 50092528 markings, 168170275 edges, 38334 markings/sec, 1250 secs
lola: 50277858 markings, 168836955 edges, 37066 markings/sec, 1255 secs
lola: 50469930 markings, 169498337 edges, 38414 markings/sec, 1260 secs
lola: 50655340 markings, 170157968 edges, 37082 markings/sec, 1265 secs
lola: 50848052 markings, 170810777 edges, 38542 markings/sec, 1270 secs
lola: 51041976 markings, 171465934 edges, 38785 markings/sec, 1275 secs
lola: 51233479 markings, 172117263 edges, 38301 markings/sec, 1280 secs
lola: 51421009 markings, 172774344 edges, 37506 markings/sec, 1285 secs
lola: 51605980 markings, 173439053 edges, 36994 markings/sec, 1290 secs
lola: 51797127 markings, 174097855 edges, 38229 markings/sec, 1295 secs
lola: 51983205 markings, 174758634 edges, 37216 markings/sec, 1300 secs
lola: 52178465 markings, 175437192 edges, 39052 markings/sec, 1305 secs
lola: 52367188 markings, 176101828 edges, 37745 markings/sec, 1310 secs
lola: 52562258 markings, 176748770 edges, 39014 markings/sec, 1315 secs
lola: 52757997 markings, 177396202 edges, 39148 markings/sec, 1320 secs
lola: 52952961 markings, 178057329 edges, 38993 markings/sec, 1325 secs
lola: 53146128 markings, 178731861 edges, 38633 markings/sec, 1330 secs
lola: 53337594 markings, 179412160 edges, 38293 markings/sec, 1335 secs
lola: 53537772 markings, 180094200 edges, 40036 markings/sec, 1340 secs
lola: 53730558 markings, 180768401 edges, 38557 markings/sec, 1345 secs
lola: 53927047 markings, 181433631 edges, 39298 markings/sec, 1350 secs
lola: 54114651 markings, 182087500 edges, 37521 markings/sec, 1355 secs
lola: 54308293 markings, 182745130 edges, 38728 markings/sec, 1360 secs
lola: 54497382 markings, 183402527 edges, 37818 markings/sec, 1365 secs
lola: 54683501 markings, 184067360 edges, 37224 markings/sec, 1370 secs
lola: 54874244 markings, 184724948 edges, 38149 markings/sec, 1375 secs
lola: 55063662 markings, 185374062 edges, 37884 markings/sec, 1380 secs
lola: 55255342 markings, 186019913 edges, 38336 markings/sec, 1385 secs
lola: 55439291 markings, 186674597 edges, 36790 markings/sec, 1390 secs
lola: 55628558 markings, 187328102 edges, 37853 markings/sec, 1395 secs
lola: 55816726 markings, 187975008 edges, 37634 markings/sec, 1400 secs
lola: 56021848 markings, 188637059 edges, 41024 markings/sec, 1405 secs
lola: 56220480 markings, 189304691 edges, 39726 markings/sec, 1410 secs
lola: 56416440 markings, 189981767 edges, 39192 markings/sec, 1415 secs
lola: 56608229 markings, 190653294 edges, 38358 markings/sec, 1420 secs
lola: 56801705 markings, 191328240 edges, 38695 markings/sec, 1425 secs
lola: 56994307 markings, 191999975 edges, 38520 markings/sec, 1430 secs
lola: 57184890 markings, 192667601 edges, 38117 markings/sec, 1435 secs
lola: 57373079 markings, 193314897 edges, 37638 markings/sec, 1440 secs
lola: 57555752 markings, 193958680 edges, 36535 markings/sec, 1445 secs
lola: 57746018 markings, 194606268 edges, 38053 markings/sec, 1450 secs
lola: 57928082 markings, 195262861 edges, 36413 markings/sec, 1455 secs
lola: 58114264 markings, 195929175 edges, 37236 markings/sec, 1460 secs
lola: 58302055 markings, 196589825 edges, 37558 markings/sec, 1465 secs
lola: 58495951 markings, 197256727 edges, 38779 markings/sec, 1470 secs
lola: 58687942 markings, 197928652 edges, 38398 markings/sec, 1475 secs
lola: 58877024 markings, 198598652 edges, 37816 markings/sec, 1480 secs
lola: 59066565 markings, 199266839 edges, 37908 markings/sec, 1485 secs
lola: 59274505 markings, 199910097 edges, 41588 markings/sec, 1490 secs
lola: 59485402 markings, 200525637 edges, 42179 markings/sec, 1495 secs
lola: 59688046 markings, 201144485 edges, 40529 markings/sec, 1500 secs
lola: 59886297 markings, 201780254 edges, 39650 markings/sec, 1505 secs
lola: 60087555 markings, 202420112 edges, 40252 markings/sec, 1510 secs
lola: 60292316 markings, 203051013 edges, 40952 markings/sec, 1515 secs
lola: 60492484 markings, 203693928 edges, 40034 markings/sec, 1520 secs
lola: 60689282 markings, 204327709 edges, 39360 markings/sec, 1525 secs
lola: 60884821 markings, 204961464 edges, 39108 markings/sec, 1530 secs
lola: 61078687 markings, 205594163 edges, 38773 markings/sec, 1535 secs
lola: 61275285 markings, 206260564 edges, 39320 markings/sec, 1540 secs
lola: 61468648 markings, 206930464 edges, 38673 markings/sec, 1545 secs
lola: 61658034 markings, 207585437 edges, 37877 markings/sec, 1550 secs
lola: 61846360 markings, 208238210 edges, 37665 markings/sec, 1555 secs
lola: 62032903 markings, 208885915 edges, 37309 markings/sec, 1560 secs
lola: 62223448 markings, 209532260 edges, 38109 markings/sec, 1565 secs
lola: 62420974 markings, 210187021 edges, 39505 markings/sec, 1570 secs
lola: 62616028 markings, 210845880 edges, 39011 markings/sec, 1575 secs
lola: 62807957 markings, 211488974 edges, 38386 markings/sec, 1580 secs
lola: 62991677 markings, 212123949 edges, 36744 markings/sec, 1585 secs
lola: 63177139 markings, 212780602 edges, 37092 markings/sec, 1590 secs
lola: 63364918 markings, 213445389 edges, 37556 markings/sec, 1595 secs
lola: 63553047 markings, 214102440 edges, 37626 markings/sec, 1600 secs
lola: 63745206 markings, 214737820 edges, 38432 markings/sec, 1605 secs
lola: 63937228 markings, 215370775 edges, 38404 markings/sec, 1610 secs
lola: 64128845 markings, 216003378 edges, 38323 markings/sec, 1615 secs
lola: 64319455 markings, 216634508 edges, 38122 markings/sec, 1620 secs
lola: 64507578 markings, 217285367 edges, 37625 markings/sec, 1625 secs
lola: 64697713 markings, 217947323 edges, 38027 markings/sec, 1630 secs
lola: 64887530 markings, 218612818 edges, 37963 markings/sec, 1635 secs
lola: 65075082 markings, 219254112 edges, 37510 markings/sec, 1640 secs
lola: 65275501 markings, 219893869 edges, 40084 markings/sec, 1645 secs
lola: 65468955 markings, 220546737 edges, 38691 markings/sec, 1650 secs
lola: 65661721 markings, 221201709 edges, 38553 markings/sec, 1655 secs
lola: 65850973 markings, 221859388 edges, 37850 markings/sec, 1660 secs
lola: 66035539 markings, 222520569 edges, 36913 markings/sec, 1665 secs
lola: 66218349 markings, 223187025 edges, 36562 markings/sec, 1670 secs
lola: 66403805 markings, 223856088 edges, 37091 markings/sec, 1675 secs
lola: 66590764 markings, 224518828 edges, 37392 markings/sec, 1680 secs
lola: 66778982 markings, 225200471 edges, 37644 markings/sec, 1685 secs
lola: 66968912 markings, 225886834 edges, 37986 markings/sec, 1690 secs
lola: 67161437 markings, 226558464 edges, 38505 markings/sec, 1695 secs
lola: 67346896 markings, 227206196 edges, 37092 markings/sec, 1700 secs
lola: 67533509 markings, 227876710 edges, 37323 markings/sec, 1705 secs
lola: 67735812 markings, 228542972 edges, 40461 markings/sec, 1710 secs
lola: 67939977 markings, 229200429 edges, 40833 markings/sec, 1715 secs
lola: 68139560 markings, 229855048 edges, 39917 markings/sec, 1720 secs
lola: 68337462 markings, 230521553 edges, 39580 markings/sec, 1725 secs
lola: 68533000 markings, 231187703 edges, 39108 markings/sec, 1730 secs
lola: 68716292 markings, 231831316 edges, 36658 markings/sec, 1735 secs
lola: 68890833 markings, 232455004 edges, 34908 markings/sec, 1740 secs
lola: 69079042 markings, 233108233 edges, 37642 markings/sec, 1745 secs
lola: 69251366 markings, 233704266 edges, 34465 markings/sec, 1750 secs
lola: 69430719 markings, 234341652 edges, 35871 markings/sec, 1755 secs
lola: 69600300 markings, 234947366 edges, 33916 markings/sec, 1760 secs
lola: 69773660 markings, 235536056 edges, 34672 markings/sec, 1765 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola: time limit reached - aborting
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola: memory consumption: 33152 KB
lola: time consumption: 3568 seconds

BK_STOP 1527433537808

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-5"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-5.tgz
mv NeoElection-COL-5 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-COL-5, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r256-csrt-152732582800075"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;