About the Execution of LoLA for NeoElection-COL-5
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
14027.790 | 3569836.00 | 3724272.00 | 554.60 | TTF?TFFTT?FFFFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
................
/home/mcc/execution
total 244K
-rw-r--r-- 1 mcc users 3.4K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.7K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.6K May 26 09:26 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K May 26 09:26 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K May 26 09:26 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.6K May 26 09:26 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.7K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 108 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 346 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.2K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 89K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-COL-5, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r256-csrt-152732582800075
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-5-LTLCardinality-00
FORMULA_NAME NeoElection-COL-5-LTLCardinality-01
FORMULA_NAME NeoElection-COL-5-LTLCardinality-02
FORMULA_NAME NeoElection-COL-5-LTLCardinality-03
FORMULA_NAME NeoElection-COL-5-LTLCardinality-04
FORMULA_NAME NeoElection-COL-5-LTLCardinality-05
FORMULA_NAME NeoElection-COL-5-LTLCardinality-06
FORMULA_NAME NeoElection-COL-5-LTLCardinality-07
FORMULA_NAME NeoElection-COL-5-LTLCardinality-08
FORMULA_NAME NeoElection-COL-5-LTLCardinality-09
FORMULA_NAME NeoElection-COL-5-LTLCardinality-10
FORMULA_NAME NeoElection-COL-5-LTLCardinality-11
FORMULA_NAME NeoElection-COL-5-LTLCardinality-12
FORMULA_NAME NeoElection-COL-5-LTLCardinality-13
FORMULA_NAME NeoElection-COL-5-LTLCardinality-14
FORMULA_NAME NeoElection-COL-5-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1527429967972
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-5 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-5 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ NeoElection-COL-5 @ 3568 seconds
lola: LoLA will run for 3568 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 7836/65536 symbol table entries, 1634 collisions
lola: preprocessing...
lola: Size of bit vector: 3090
lola: finding significant places
lola: 3090 places, 4746 transitions, 816 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 1668 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-5-LTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (p1600 + p1599 + p1598 + p1597 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1588 + p1587 + p1586 + p1585 + p1584 + p1583 + p1582 + p1581 + p1580 + p1579 + p1578 + p1576 + p1575 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1568 + p1567 + p1566 + p1564 + p1563 + p1562 + p1561 + p1560 + p1559 + p1558 + p1557 + p1556 + p1555 + p1554 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1546 + p1545 + p1544 + p1543 + p1542 + p1540 + p1539 + p1538 + p1537 + p1536 + p1535 + p1534 + p1533 + p1532 + p1531 + p1530 + p1541 + p1553 + p1565 + p1577 + p1589 + p1601 <= p2910 + p2911 + p2912 + p2913 + p2914 + p2915)
lola: after: (5 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p779 + p778 + p777 + p200 + p201 + p202 + p203 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p1000 + p398 + p1001 + p397 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p374 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p373 + p372 + p371 + p370 + p369 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p368 + p367 + p366 + p365 + p364 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p363 + p362 + p361 + p360 + p359 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p1104 + p338 + p1105 + p337 + p1106 + p336 + p1107 + p335 + p1108 + p1109 + p334 + p333 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p1140 + p322 + p1141 + p321 + p1142 + p320 + p1143 + p319 + p1144 + p318 + p1145 + p317 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p225 + p224 + p223 + p222 + p221 + p220 + p219 + p218 + p217 + p216 + p700 + p701 + p702 + p215 + p214 + p213 + p212 + p211 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p210 + p209 + p208 + p207 + p206 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p205 + p204 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p116 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p115 + p114 + p113 + p112 + p111 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p110 + p109 + p108 + p107 + p106 + p105 + p104 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p103 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p102 + p101 + p100 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 + p2315 + p2317 + p2318 + p2319 + p2320 + p2321 + p2314 + p2323 + p2324 + p2325 + p2326 + p2327 + p2313 + p2312 + p2311 + p2335 + p2336 + p2337 + p2338 + p2339 + p2341 + p2342 + p2343 + p2344 + p2345 + p2347 + p2348 + p2349 + p2350 + p2351 + p2353 + p2354 + p2355 + p2356 + p2357 + p2359 + p2309 + p2360 + p2361 + p2308 + p2362 + p2307 + p2363 + p2306 + p2305 + p2303 + p2302 + p2301 + p2300 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p2380 + p2381 + p2383 + p2384 + p2385 + p2386 + p2387 + p2389 + p2390 + p2391 + p2392 + p2393 + p2395 + p2396 + p2397 + p2398 + p2399 + p2407 + p2408 + p2409 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2425 + p2426 + p2427 + p2428 + p2429 + p2431 + p2432 + p2433 + p2434 + p2435 + p2443 + p2444 + p2445 + p2446 + p2447 + p2449 + p2450 + p2451 + p2452 + p2453 + p2455 + p2456 + p2457 + p2458 + p2459 + p2461 + p2462 + p2463 + p2464 + p2465 + p2467 + p2468 + p2469 + p2470 + p2471 + p2479 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p2491 + p2492 + p2493 + p2494 + p2495 + p2497 + p2498 + p2499 + p2299 + p2291 + p2290 + p2289 + p2288 + p2287 + p2285 + p2500 + p2501 + p2284 + p2503 + p2504 + p2505 + p2506 + p2507 + p2283 + p2282 + p2281 + p2279 + p2278 + p2277 + p2276 + p2275 + p2273 + p2272 + p2271 + p2270 + p2515 + p2516 + p2517 + p2518 + p2519 + p2269 + p2521 + p2522 + p2523 + p2524 + p2525 + p2267 + p2527 + p2528 + p2529 + p2530 + p2531 + p2266 + p2533 + p2534 + p2535 + p2536 + p2537 + p2265 + p2264 + p2539 + p2263 + p2255 + p2540 + p2541 + p2254 + p2542 + p2253 + p2543 + p2252 + p2251 + p2249 + p2248 + p2247 + p2246 + p2245 + p2551 + p2552 + p2553 + p2554 + p2555 + p2243 + p2557 + p2558 + p2559 + p2560 + p2561 + p2242 + p2563 + p2564 + p2565 + p2566 + p2567 + p2241 + p2569 + p2570 + p2571 + p2572 + p2573 + p2240 + p2239 + p2575 + p2237 + p2576 + p2236 + p2577 + p2235 + p2578 + p2234 + p2579 + p2233 + p2231 + p2230 + p2229 + p2228 + p2227 + p2219 + p2587 + p2588 + p2589 + p2590 + p2591 + p2218 + p2593 + p2594 + p2595 + p2596 + p2597 + p2217 + p2599 + p2216 + p2215 + p2213 + p2212 + p2211 + p2210 + p2600 + p2601 + p2602 + p2603 + p2605 + p2606 + p2607 + p2608 + p2609 + p2209 + p2611 + p2612 + p2613 + p2614 + p2615 + p2207 + p2206 + p2205 + p2204 + p2203 + p2201 + p2200 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p2630 + p2631 + p2632 + p2633 + p2635 + p2636 + p2637 + p2638 + p2639 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2659 + p2660 + p2661 + p2662 + p2663 + p2665 + p2666 + p2667 + p2668 + p2669 + p2671 + p2672 + p2673 + p2674 + p2675 + p2677 + p2678 + p2679 + p2680 + p2681 + p2683 + p2684 + p2685 + p2686 + p2687 + p2695 + p2696 + p2697 + p2698 + p2699 + p2199 + p2198 + p2197 + p2195 + p2701 + p2702 + p2703 + p2704 + p2705 + p2194 + p2707 + p2708 + p2709 + p2710 + p2711 + p2193 + p2713 + p2714 + p2715 + p2716 + p2717 + p2192 + p2719 + p2720 + p2721 + p2722 + p2723 + p2191 + p2183 + p2182 + p2181 + p2180 + p2179 + p2177 + p2731 + p2732 + p2733 + p2734 + p2735 + p2176 + p2737 + p2738 + p2739 + p2740 + p2741 + p2175 + p2743 + p2744 + p2745 + p2746 + p2747 + p2174 + p2749 + p2750 + p2751 + p2752 + p2753 + p2173 + p2755 + p2756 + p2757 + p2758 + p2759 + p2171 + p2170 + p2169 + p2168 + p2167 + p2165 + p2164 + p2767 + p2768 + p2769 + p2770 + p2771 + p2163 + p2773 + p2774 + p2775 + p2776 + p2777 + p2162 + p2779 + p2780 + p2781 + p2782 + p2783 + p2161 + p2785 + p2786 + p2787 + p2788 + p2789 + p2159 + p2791 + p2792 + p2793 + p2794 + p2795 + p2158 + p2157 + p2156 + p2155 + p2147 + p2146 + p2145 + p2144 + p2143 + p2141 + p2140 + p2139 + p2138 + p2137 + p2135 + p2134 + p2133 + p2132 + p2131 + p2129 + p2128 + p2127 + p2803 + p2804 + p2805 + p2806 + p2807 + p2126 + p2809 + p2810 + p2811 + p2812 + p2813 + p2125 + p2815 + p2816 + p2817 + p2818 + p2819 + p2123 + p2821 + p2822 + p2823 + p2824 + p2825 + p2122 + p2827 + p2828 + p2829 + p2830 + p2831 + p2121 + p2120 + p2119 + p2111 + p2110 + p2839 + p2840 + p2841 + p2842 + p2843 + p2845 + p2846 + p2847 + p2848 + p2849 + p2851 + p2852 + p2853 + p2854 + p2855 + p2857 + p2858 + p2859 + p2860 + p2861 + p2863 + p2864 + p2109 + p2865 + p2108 + p2866 + p2107 + p2867 + p2105 + p2104 + p2103 + p2102 + p2101 + p2875 + p2876 + p2877 + p2878 + p2879 + p2881 + p2882 + p2883 + p2884 + p2885 + p2887 + p2888 + p2889 + p2890 + p2891 + p2893 + p2894 + p2895 + p2896 + p2897 + p2099 + p2098 + p2097 + p2096 + p2095 + p2093 + p2092 + p2091 + p2090 + p2089 + p2087 + p2086 + p2085 + p2084 + p2083 + p2075 + p2074 + p2073 + p2072 + p2071 + p2069 + p2068 + p1603 + p2067 + p1604 + p1605 + p2066 + p1606 + p2065 + p1607 + p2063 + p2062 + p2061 + p2060 + p2059 + p2057 + p2056 + p2055 + p2054 + p2053 + p2051 + p2050 + p1615 + p2049 + p1616 + p1617 + p2048 + p1618 + p1619 + p2047 + p2039 + p2038 + p2037 + p2036 + p2035 + p2033 + p2032 + p1621 + p2031 + p1622 + p1623 + p2030 + p1624 + p2029 + p1625 + p2027 + p2026 + p1627 + p2025 + p1628 + p1629 + p2024 + p1630 + p2023 + p1631 + p2021 + p2020 + p1633 + p2019 + p1634 + p1635 + p2018 + p1636 + p2017 + p1637 + p2015 + p1639 + p2014 + p2013 + p1640 + p1641 + p2012 + p1642 + p2011 + p1643 + p2003 + p2002 + p2001 + p2000 + p1651 + p1652 + p1653 + p1654 + p1655 + p1657 + p1658 + p1659 + p1660 + p1661 + p1663 + p1664 + p1665 + p1666 + p1667 + p1669 + p1670 + p1671 + p1672 + p1673 + p1999 + p1675 + p1676 + p1677 + p1678 + p1679 + p1997 + p1996 + p1995 + p1994 + p1993 + p1991 + p1990 + p1687 + p1688 + p1689 + p1690 + p1691 + p1989 + p1693 + p1694 + p1695 + p1696 + p1697 + p1988 + p1699 + p1700 + p1701 + p1702 + p1703 + p1987 + p1705 + p1706 + p1707 + p1708 + p1709 + p1985 + p1711 + p1712 + p1713 + p1714 + p1715 + p1984 + p1983 + p1982 + p1981 + p1979 + p1978 + p1977 + p1723 + p1724 + p1725 + p1726 + p1727 + p1976 + p1729 + p1730 + p1731 + p1732 + p1733 + p1975 + p1735 + p1736 + p1737 + p1738 + p1739 + p1967 + p1741 + p1742 + p1743 + p1744 + p1745 + p1966 + p1747 + p1748 + p1749 + p1750 + p1751 + p1965 + p1964 + p1963 + p1961 + p1960 + p1959 + p1958 + p1759 + p1760 + p1761 + p1762 + p1763 + p1957 + p1765 + p1766 + p1767 + p1768 + p1769 + p1955 + p1771 + p1772 + p1773 + p1774 + p1775 + p1954 + p1777 + p1778 + p1779 + p1780 + p1781 + p1953 + p1783 + p1784 + p1785 + p1786 + p1787 + p1952 + p1951 + p1949 + p1948 + p1947 + p1946 + p1945 + p1795 + p1796 + p1797 + p1798 + p1799 + p1943 + p1801 + p1802 + p1803 + p1804 + p1805 + p1942 + p1807 + p1808 + p1809 + p1810 + p1811 + p1941 + p1813 + p1814 + p1815 + p1816 + p1817 + p1940 + p1819 + p1820 + p1821 + p1822 + p1823 + p1939 + p1931 + p1930 + p1929 + p1928 + p1927 + p1925 + p1831 + p1832 + p1833 + p1834 + p1835 + p1924 + p1837 + p1838 + p1839 + p1840 + p1841 + p1923 + p1843 + p1844 + p1845 + p1846 + p1847 + p1922 + p1849 + p1850 + p1851 + p1852 + p1853 + p1921 + p1855 + p1856 + p1857 + p1858 + p1859 + p1919 + p1918 + p1917 + p1916 + p1915 + p1913 + p1912 + p1867 + p1868 + p1869 + p1870 + p1871 + p1911 + p1873 + p1874 + p1875 + p1876 + p1877 + p1910 + p1879 + p1880 + p1881 + p1882 + p1883 + p1909 + p1885 + p1886 + p1887 + p1888 + p1889 + p1907 + p1891 + p1892 + p1893 + p1894 + p1895 + p1906 + p1905 + p1904 + p1903)
lola: after: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p779 + p778 + p777 + p200 + p201 + p202 + p203 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316)
lola: LP says that atomic proposition is always true: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p779 + p778 + p777 + p200 + p201 + p202 + p203 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002)
lola: after: (0 <= 22)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: after: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: place invariant simplifies atomic proposition
lola: before: (p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 + p2315 + p2317 + p2318 + p2319 + p2320 + p2321 + p2314 + p2323 + p2324 + p2325 + p2326 + p2327 + p2313 + p2312 + p2311 + p2335 + p2336 + p2337 + p2338 + p2339 + p2341 + p2342 + p2343 + p2344 + p2345 + p2347 + p2348 + p2349 + p2350 + p2351 + p2353 + p2354 + p2355 + p2356 + p2357 + p2359 + p2309 + p2360 + p2361 + p2308 + p2362 + p2307 + p2363 + p2306 + p2305 + p2303 + p2302 + p2301 + p2300 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p2380 + p2381 + p2383 + p2384 + p2385 + p2386 + p2387 + p2389 + p2390 + p2391 + p2392 + p2393 + p2395 + p2396 + p2397 + p2398 + p2399 + p2407 + p2408 + p2409 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2425 + p2426 + p2427 + p2428 + p2429 + p2431 + p2432 + p2433 + p2434 + p2435 + p2443 + p2444 + p2445 + p2446 + p2447 + p2449 + p2450 + p2451 + p2452 + p2453 + p2455 + p2456 + p2457 + p2458 + p2459 + p2461 + p2462 + p2463 + p2464 + p2465 + p2467 + p2468 + p2469 + p2470 + p2471 + p2479 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p2491 + p2492 + p2493 + p2494 + p2495 + p2497 + p2498 + p2499 + p2299 + p2291 + p2290 + p2289 + p2288 + p2287 + p2285 + p2500 + p2501 + p2284 + p2503 + p2504 + p2505 + p2506 + p2507 + p2283 + p2282 + p2281 + p2279 + p2278 + p2277 + p2276 + p2275 + p2273 + p2272 + p2271 + p2270 + p2515 + p2516 + p2517 + p2518 + p2519 + p2269 + p2521 + p2522 + p2523 + p2524 + p2525 + p2267 + p2527 + p2528 + p2529 + p2530 + p2531 + p2266 + p2533 + p2534 + p2535 + p2536 + p2537 + p2265 + p2264 + p2539 + p2263 + p2255 + p2540 + p2541 + p2254 + p2542 + p2253 + p2543 + p2252 + p2251 + p2249 + p2248 + p2247 + p2246 + p2245 + p2551 + p2552 + p2553 + p2554 + p2555 + p2243 + p2557 + p2558 + p2559 + p2560 + p2561 + p2242 + p2563 + p2564 + p2565 + p2566 + p2567 + p2241 + p2569 + p2570 + p2571 + p2572 + p2573 + p2240 + p2239 + p2575 + p2237 + p2576 + p2236 + p2577 + p2235 + p2578 + p2234 + p2579 + p2233 + p2231 + p2230 + p2229 + p2228 + p2227 + p2219 + p2587 + p2588 + p2589 + p2590 + p2591 + p2218 + p2593 + p2594 + p2595 + p2596 + p2597 + p2217 + p2599 + p2216 + p2215 + p2213 + p2212 + p2211 + p2210 + p2600 + p2601 + p2602 + p2603 + p2605 + p2606 + p2607 + p2608 + p2609 + p2209 + p2611 + p2612 + p2613 + p2614 + p2615 + p2207 + p2206 + p2205 + p2204 + p2203 + p2201 + p2200 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p2630 + p2631 + p2632 + p2633 + p2635 + p2636 + p2637 + p2638 + p2639 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2659 + p2660 + p2661 + p2662 + p2663 + p2665 + p2666 + p2667 + p2668 + p2669 + p2671 + p2672 + p2673 + p2674 + p2675 + p2677 + p2678 + p2679 + p2680 + p2681 + p2683 + p2684 + p2685 + p2686 + p2687 + p2695 + p2696 + p2697 + p2698 + p2699 + p2199 + p2198 + p2197 + p2195 + p2701 + p2702 + p2703 + p2704 + p2705 + p2194 + p2707 + p2708 + p2709 + p2710 + p2711 + p2193 + p2713 + p2714 + p2715 + p2716 + p2717 + p2192 + p2719 + p2720 + p2721 + p2722 + p2723 + p2191 + p2183 + p2182 + p2181 + p2180 + p2179 + p2177 + p2731 + p2732 + p2733 + p2734 + p2735 + p2176 + p2737 + p2738 + p2739 + p2740 + p2741 + p2175 + p2743 + p2744 + p2745 + p2746 + p2747 + p2174 + p2749 + p2750 + p2751 + p2752 + p2753 + p2173 + p2755 + p2756 + p2757 + p2758 + p2759 + p2171 + p2170 + p2169 + p2168 + p2167 + p2165 + p2164 + p2767 + p2768 + p2769 + p2770 + p2771 + p2163 + p2773 + p2774 + p2775 + p2776 + p2777 + p2162 + p2779 + p2780 + p2781 + p2782 + p2783 + p2161 + p2785 + p2786 + p2787 + p2788 + p2789 + p2159 + p2791 + p2792 + p2793 + p2794 + p2795 + p2158 + p2157 + p2156 + p2155 + p2147 + p2146 + p2145 + p2144 + p2143 + p2141 + p2140 + p2139 + p2138 + p2137 + p2135 + p2134 + p2133 + p2132 + p2131 + p2129 + p2128 + p2127 + p2803 + p2804 + p2805 + p2806 + p2807 + p2126 + p2809 + p2810 + p2811 + p2812 + p2813 + p2125 + p2815 + p2816 + p2817 + p2818 + p2819 + p2123 + p2821 + p2822 + p2823 + p2824 + p2825 + p2122 + p2827 + p2828 + p2829 + p2830 + p2831 + p2121 + p2120 + p2119 + p2111 + p2110 + p2839 + p2840 + p2841 + p2842 + p2843 + p2845 + p2846 + p2847 + p2848 + p2849 + p2851 + p2852 + p2853 + p2854 + p2855 + p2857 + p2858 + p2859 + p2860 + p2861 + p2863 + p2864 + p2109 + p2865 + p2108 + p2866 + p2107 + p2867 + p2105 + p2104 + p2103 + p2102 + p2101 + p2875 + p2876 + p2877 + p2878 + p2879 + p2881 + p2882 + p2883 + p2884 + p2885 + p2887 + p2888 + p2889 + p2890 + p2891 + p2893 + p2894 + p2895 + p2896 + p2897 + p2099 + p2098 + p2097 + p2096 + p2095 + p2093 + p2092 + p2091 + p2090 + p2089 + p2087 + p2086 + p2085 + p2084 + p2083 + p2075 + p2074 + p2073 + p2072 + p2071 + p2069 + p2068 + p1603 + p2067 + p1604 + p1605 + p2066 + p1606 + p2065 + p1607 + p2063 + p2062 + p2061 + p2060 + p2059 + p2057 + p2056 + p2055 + p2054 + p2053 + p2051 + p2050 + p1615 + p2049 + p1616 + p1617 + p2048 + p1618 + p1619 + p2047 + p2039 + p2038 + p2037 + p2036 + p2035 + p2033 + p2032 + p1621 + p2031 + p1622 + p1623 + p2030 + p1624 + p2029 + p1625 + p2027 + p2026 + p1627 + p2025 + p1628 + p1629 + p2024 + p1630 + p2023 + p1631 + p2021 + p2020 + p1633 + p2019 + p1634 + p1635 + p2018 + p1636 + p2017 + p1637 + p2015 + p1639 + p2014 + p2013 + p1640 + p1641 + p2012 + p1642 + p2011 + p1643 + p2003 + p2002 + p2001 + p2000 + p1651 + p1652 + p1653 + p1654 + p1655 + p1657 + p1658 + p1659 + p1660 + p1661 + p1663 + p1664 + p1665 + p1666 + p1667 + p1669 + p1670 + p1671 + p1672 + p1673 + p1999 + p1675 + p1676 + p1677 + p1678 + p1679 + p1997 + p1996 + p1995 + p1994 + p1993 + p1991 + p1990 + p1687 + p1688 + p1689 + p1690 + p1691 + p1989 + p1693 + p1694 + p1695 + p1696 + p1697 + p1988 + p1699 + p1700 + p1701 + p1702 + p1703 + p1987 + p1705 + p1706 + p1707 + p1708 + p1709 + p1985 + p1711 + p1712 + p1713 + p1714 + p1715 + p1984 + p1983 + p1982 + p1981 + p1979 + p1978 + p1977 + p1723 + p1724 + p1725 + p1726 + p1727 + p1976 + p1729 + p1730 + p1731 + p1732 + p1733 + p1975 + p1735 + p1736 + p1737 + p1738 + p1739 + p1967 + p1741 + p1742 + p1743 + p1744 + p1745 + p1966 + p1747 + p1748 + p1749 + p1750 + p1751 + p1965 + p1964 + p1963 + p1961 + p1960 + p1959 + p1958 + p1759 + p1760 + p1761 + p1762 + p1763 + p1957 + p1765 + p1766 + p1767 + p1768 + p1769 + p1955 + p1771 + p1772 + p1773 + p1774 + p1775 + p1954 + p1777 + p1778 + p1779 + p1780 + p1781 + p1953 + p1783 + p1784 + p1785 + p1786 + p1787 + p1952 + p1951 + p1949 + p1948 + p1947 + p1946 + p1945 + p1795 + p1796 + p1797 + p1798 + p1799 + p1943 + p1801 + p1802 + p1803 + p1804 + p1805 + p1942 + p1807 + p1808 + p1809 + p1810 + p1811 + p1941 + p1813 + p1814 + p1815 + p1816 + p1817 + p1940 + p1819 + p1820 + p1821 + p1822 + p1823 + p1939 + p1931 + p1930 + p1929 + p1928 + p1927 + p1925 + p1831 + p1832 + p1833 + p1834 + p1835 + p1924 + p1837 + p1838 + p1839 + p1840 + p1841 + p1923 + p1843 + p1844 + p1845 + p1846 + p1847 + p1922 + p1849 + p1850 + p1851 + p1852 + p1853 + p1921 + p1855 + p1856 + p1857 + p1858 + p1859 + p1919 + p1918 + p1917 + p1916 + p1915 + p1913 + p1912 + p1867 + p1868 + p1869 + p1870 + p1871 + p1911 + p1873 + p1874 + p1875 + p1876 + p1877 + p1910 + p1879 + p1880 + p1881 + p1882 + p1883 + p1909 + p1885 + p1886 + p1887 + p1888 + p1889 + p1907 + p1891 + p1892 + p1893 + p1894 + p1895 + p1906 + p1905 + p1904 + p1903 <= p1600 + p1599 + p1598 + p1597 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1588 + p1587 + p1586 + p1585 + p1584 + p1583 + p1582 + p1581 + p1580 + p1579 + p1578 + p1576 + p1575 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1568 + p1567 + p1566 + p1564 + p1563 + p1562 + p1561 + p1560 + p1559 + p1558 + p1557 + p1556 + p1555 + p1554 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1546 + p1545 + p1544 + p1543 + p1542 + p1540 + p1539 + p1538 + p1537 + p1536 + p1535 + p1534 + p1533 + p1532 + p1531 + p1530 + p1541 + p1553 + p1565 + p1577 + p1589 + p1601)
lola: after: (p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 <= 5)
lola: place invariant simplifies atomic proposition
lola: before: (p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002 <= p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083)
lola: after: (25 <= p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083)
lola: LP says that atomic proposition is always false: (25 <= p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083)
lola: place invariant simplifies atomic proposition
lola: before: (p3000 + p3001 + p3003 + p3004 + p2998 + p3006 + p3007 + p2997 + p3009 + p3010 + p2995 + p3012 + p3013 + p2994 + p3015 + p3016 + p3018 + p3019 + p2992 + p3021 + p3022 + p2991 + p3024 + p3025 + p2989 + p3027 + p3028 + p2988 + p2986 + p2985 + p2983 + p2982 + p2980 + p2979 + p2977 + p2976 + p2974 + p2973 + p2971 + p2970 + p2968 + p2967 + p2965 + p2964 + p2962 + p2961 + p2959 + p2958 + p2956 + p2955 + p2953 + p2952 + p2950 + p2949 + p2947 + p2946 + p2944 + p2943 + p2941 + p2940 + p2938 + p2937 + p2935 + p2934 + p2932 + p2931 + p2929 + p2928 + p2926 + p2925 + p2923 + p2922 + p2924 + p2927 + p2930 + p2933 + p2936 + p2939 + p2942 + p2945 + p2948 + p2951 + p2954 + p2957 + p2960 + p2963 + p2966 + p2969 + p2972 + p2975 + p2978 + p2981 + p2984 + p2987 + p3029 + p3026 + p2990 + p3023 + p3020 + p2993 + p3017 + p3014 + p3011 + p2996 + p3008 + p3005 + p2999 + p3002 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: after: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (25 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: place invariant simplifies atomic proposition
lola: before: (p3036 + p3037 + p3039 + p3040 + p3042 + p3043 + p3045 + p3046 + p3048 + p3049 + p3051 + p3052 + p3053 + p3050 + p3047 + p3044 + p3041 + p3038 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 + p2315 + p2317 + p2318 + p2319 + p2320 + p2321 + p2314 + p2323 + p2324 + p2325 + p2326 + p2327 + p2313 + p2312 + p2311 + p2335 + p2336 + p2337 + p2338 + p2339 + p2341 + p2342 + p2343 + p2344 + p2345 + p2347 + p2348 + p2349 + p2350 + p2351 + p2353 + p2354 + p2355 + p2356 + p2357 + p2359 + p2309 + p2360 + p2361 + p2308 + p2362 + p2307 + p2363 + p2306 + p2305 + p2303 + p2302 + p2301 + p2300 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p2380 + p2381 + p2383 + p2384 + p2385 + p2386 + p2387 + p2389 + p2390 + p2391 + p2392 + p2393 + p2395 + p2396 + p2397 + p2398 + p2399 + p2407 + p2408 + p2409 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2425 + p2426 + p2427 + p2428 + p2429 + p2431 + p2432 + p2433 + p2434 + p2435 + p2443 + p2444 + p2445 + p2446 + p2447 + p2449 + p2450 + p2451 + p2452 + p2453 + p2455 + p2456 + p2457 + p2458 + p2459 + p2461 + p2462 + p2463 + p2464 + p2465 + p2467 + p2468 + p2469 + p2470 + p2471 + p2479 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p2491 + p2492 + p2493 + p2494 + p2495 + p2497 + p2498 + p2499 + p2299 + p2291 + p2290 + p2289 + p2288 + p2287 + p2285 + p2500 + p2501 + p2284 + p2503 + p2504 + p2505 + p2506 + p2507 + p2283 + p2282 + p2281 + p2279 + p2278 + p2277 + p2276 + p2275 + p2273 + p2272 + p2271 + p2270 + p2515 + p2516 + p2517 + p2518 + p2519 + p2269 + p2521 + p2522 + p2523 + p2524 + p2525 + p2267 + p2527 + p2528 + p2529 + p2530 + p2531 + p2266 + p2533 + p2534 + p2535 + p2536 + p2537 + p2265 + p2264 + p2539 + p2263 + p2255 + p2540 + p2541 + p2254 + p2542 + p2253 + p2543 + p2252 + p2251 + p2249 + p2248 + p2247 + p2246 + p2245 + p2551 + p2552 + p2553 + p2554 + p2555 + p2243 + p2557 + p2558 + p2559 + p2560 + p2561 + p2242 + p2563 + p2564 + p2565 + p2566 + p2567 + p2241 + p2569 + p2570 + p2571 + p2572 + p2573 + p2240 + p2239 + p2575 + p2237 + p2576 + p2236 + p2577 + p2235 + p2578 + p2234 + p2579 + p2233 + p2231 + p2230 + p2229 + p2228 + p2227 + p2219 + p2587 + p2588 + p2589 + p2590 + p2591 + p2218 + p2593 + p2594 + p2595 + p2596 + p2597 + p2217 + p2599 + p2216 + p2215 + p2213 + p2212 + p2211 + p2210 + p2600 + p2601 + p2602 + p2603 + p2605 + p2606 + p2607 + p2608 + p2609 + p2209 + p2611 + p2612 + p2613 + p2614 + p2615 + p2207 + p2206 + p2205 + p2204 + p2203 + p2201 + p2200 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p2630 + p2631 + p2632 + p2633 + p2635 + p2636 + p2637 + p2638 + p2639 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2659 + p2660 + p2661 + p2662 + p2663 + p2665 + p2666 + p2667 + p2668 + p2669 + p2671 + p2672 + p2673 + p2674 + p2675 + p2677 + p2678 + p2679 + p2680 + p2681 + p2683 + p2684 + p2685 + p2686 + p2687 + p2695 + p2696 + p2697 + p2698 + p2699 + p2199 + p2198 + p2197 + p2195 + p2701 + p2702 + p2703 + p2704 + p2705 + p2194 + p2707 + p2708 + p2709 + p2710 + p2711 + p2193 + p2713 + p2714 + p2715 + p2716 + p2717 + p2192 + p2719 + p2720 + p2721 + p2722 + p2723 + p2191 + p2183 + p2182 + p2181 + p2180 + p2179 + p2177 + p2731 + p2732 + p2733 + p2734 + p2735 + p2176 + p2737 + p2738 + p2739 + p2740 + p2741 + p2175 + p2743 + p2744 + p2745 + p2746 + p2747 + p2174 + p2749 + p2750 + p2751 + p2752 + p2753 + p2173 + p2755 + p2756 + p2757 + p2758 + p2759 + p2171 + p2170 + p2169 + p2168 + p2167 + p2165 + p2164 + p2767 + p2768 + p2769 + p2770 + p2771 + p2163 + p2773 + p2774 + p2775 + p2776 + p2777 + p2162 + p2779 + p2780 + p2781 + p2782 + p2783 + p2161 + p2785 + p2786 + p2787 + p2788 + p2789 + p2159 + p2791 + p2792 + p2793 + p2794 + p2795 + p2158 + p2157 + p2156 + p2155 + p2147 + p2146 + p2145 + p2144 + p2143 + p2141 + p2140 + p2139 + p2138 + p2137 + p2135 + p2134 + p2133 + p2132 + p2131 + p2129 + p2128 + p2127 + p2803 + p2804 + p2805 + p2806 + p2807 + p2126 + p2809 + p2810 + p2811 + p2812 + p2813 + p2125 + p2815 + p2816 + p2817 + p2818 + p2819 + p2123 + p2821 + p2822 + p2823 + p2824 + p2825 + p2122 + p2827 + p2828 + p2829 + p2830 + p2831 + p2121 + p2120 + p2119 + p2111 + p2110 + p2839 + p2840 + p2841 + p2842 + p2843 + p2845 + p2846 + p2847 + p2848 + p2849 + p2851 + p2852 + p2853 + p2854 + p2855 + p2857 + p2858 + p2859 + p2860 + p2861 + p2863 + p2864 + p2109 + p2865 + p2108 + p2866 + p2107 + p2867 + p2105 + p2104 + p2103 + p2102 + p2101 + p2875 + p2876 + p2877 + p2878 + p2879 + p2881 + p2882 + p2883 + p2884 + p2885 + p2887 + p2888 + p2889 + p2890 + p2891 + p2893 + p2894 + p2895 + p2896 + p2897 + p2099 + p2098 + p2097 + p2096 + p2095 + p2093 + p2092 + p2091 + p2090 + p2089 + p2087 + p2086 + p2085 + p2084 + p2083 + p2075 + p2074 + p2073 + p2072 + p2071 + p2069 + p2068 + p1603 + p2067 + p1604 + p1605 + p2066 + p1606 + p2065 + p1607 + p2063 + p2062 + p2061 + p2060 + p2059 + p2057 + p2056 + p2055 + p2054 + p2053 + p2051 + p2050 + p1615 + p2049 + p1616 + p1617 + p2048 + p1618 + p1619 + p2047 + p2039 + p2038 + p2037 + p2036 + p2035 + p2033 + p2032 + p1621 + p2031 + p1622 + p1623 + p2030 + p1624 + p2029 + p1625 + p2027 + p2026 + p1627 + p2025 + p1628 + p1629 + p2024 + p1630 + p2023 + p1631 + p2021 + p2020 + p1633 + p2019 + p1634 + p1635 + p2018 + p1636 + p2017 + p1637 + p2015 + p1639 + p2014 + p2013 + p1640 + p1641 + p2012 + p1642 + p2011 + p1643 + p2003 + p2002 + p2001 + p2000 + p1651 + p1652 + p1653 + p1654 + p1655 + p1657 + p1658 + p1659 + p1660 + p1661 + p1663 + p1664 + p1665 + p1666 + p1667 + p1669 + p1670 + p1671 + p1672 + p1673 + p1999 + p1675 + p1676 + p1677 + p1678 + p1679 + p1997 + p1996 + p1995 + p1994 + p1993 + p1991 + p1990 + p1687 + p1688 + p1689 + p1690 + p1691 + p1989 + p1693 + p1694 + p1695 + p1696 + p1697 + p1988 + p1699 + p1700 + p1701 + p1702 + p1703 + p1987 + p1705 + p1706 + p1707 + p1708 + p1709 + p1985 + p1711 + p1712 + p1713 + p1714 + p1715 + p1984 + p1983 + p1982 + p1981 + p1979 + p1978 + p1977 + p1723 + p1724 + p1725 + p1726 + p1727 + p1976 + p1729 + p1730 + p1731 + p1732 + p1733 + p1975 + p1735 + p1736 + p1737 + p1738 + p1739 + p1967 + p1741 + p1742 + p1743 + p1744 + p1745 + p1966 + p1747 + p1748 + p1749 + p1750 + p1751 + p1965 + p1964 + p1963 + p1961 + p1960 + p1959 + p1958 + p1759 + p1760 + p1761 + p1762 + p1763 + p1957 + p1765 + p1766 + p1767 + p1768 + p1769 + p1955 + p1771 + p1772 + p1773 + p1774 + p1775 + p1954 + p1777 + p1778 + p1779 + p1780 + p1781 + p1953 + p1783 + p1784 + p1785 + p1786 + p1787 + p1952 + p1951 + p1949 + p1948 + p1947 + p1946 + p1945 + p1795 + p1796 + p1797 + p1798 + p1799 + p1943 + p1801 + p1802 + p1803 + p1804 + p1805 + p1942 + p1807 + p1808 + p1809 + p1810 + p1811 + p1941 + p1813 + p1814 + p1815 + p1816 + p1817 + p1940 + p1819 + p1820 + p1821 + p1822 + p1823 + p1939 + p1931 + p1930 + p1929 + p1928 + p1927 + p1925 + p1831 + p1832 + p1833 + p1834 + p1835 + p1924 + p1837 + p1838 + p1839 + p1840 + p1841 + p1923 + p1843 + p1844 + p1845 + p1846 + p1847 + p1922 + p1849 + p1850 + p1851 + p1852 + p1853 + p1921 + p1855 + p1856 + p1857 + p1858 + p1859 + p1919 + p1918 + p1917 + p1916 + p1915 + p1913 + p1912 + p1867 + p1868 + p1869 + p1870 + p1871 + p1911 + p1873 + p1874 + p1875 + p1876 + p1877 + p1910 + p1879 + p1880 + p1881 + p1882 + p1883 + p1909 + p1885 + p1886 + p1887 + p1888 + p1889 + p1907 + p1891 + p1892 + p1893 + p1894 + p1895 + p1906 + p1905 + p1904 + p1903)
lola: after: (5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316)
lola: place invariant simplifies atomic proposition
lola: before: (p2910 + p2911 + p2912 + p2913 + p2914 + p2915 <= p3089 + p3088 + p3087 + p3086 + p3085 + p3084)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p1600 + p1599 + p1598 + p1597 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1588 + p1587 + p1586 + p1585 + p1584 + p1583 + p1582 + p1581 + p1580 + p1579 + p1578 + p1576 + p1575 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1568 + p1567 + p1566 + p1564 + p1563 + p1562 + p1561 + p1560 + p1559 + p1558 + p1557 + p1556 + p1555 + p1554 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1546 + p1545 + p1544 + p1543 + p1542 + p1540 + p1539 + p1538 + p1537 + p1536 + p1535 + p1534 + p1533 + p1532 + p1531 + p1530 + p1541 + p1553 + p1565 + p1577 + p1589 + p1601)
lola: after: (0 <= 3)
lola: always true
lola: LP says that atomic proposition is always false: (2 <= p1319 + p1318 + p1317 + p1316 + p1315 + p1314)
lola: LP says that atomic proposition is always false: (3 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (1 <= p0 + p1 + p2 + p3 + p4 + p5)
lola: place invariant simplifies atomic proposition
lola: before: (p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: after: (20 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: LP says that atomic proposition is always false: (20 <= p1349 + p1348 + p1347 + p1346 + p1345 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1333 + p1332 + p1331 + p1330 + p1329 + p1328 + p1327 + p1326 + p1325 + p1324 + p1323 + p1322 + p1321 + p1320)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p3036 + p3037 + p3039 + p3040 + p3042 + p3043 + p3045 + p3046 + p3048 + p3049 + p3051 + p3052 + p3053 + p3050 + p3047 + p3044 + p3041 + p3038)
lola: after: (0 <= 3)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529)
lola: after: (0 <= 17)
lola: always true
lola: A ((FALSE U X (TRUE))) : A (G (G (G (G (TRUE))))) : A (FALSE) : A (F (X (G ((p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316 <= 5))))) : A (F (X (X (F ((3 <= p6 + p7 + p8 + p9 + p11 + p10)))))) : A (G (G (FALSE))) : A (F ((G (FALSE) U X ((3 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))) : A (X ((F ((3 <= p1313 + p1312 + p1311 + p1310 + p1309 + p1308)) U F ((5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 + p1790 + p1950 + p1789 + p1788 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1757 + p1756 + p1755 + p1962 + p1754 + p1753 + p1752 + p1746 + p1740 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1734 + p1728 + p1722 + p1721 + p1720 + p1980 + p1719 + p1718 + p1717 + p1716 + p1710 + p1986 + p1704 + p1698 + p1692 + p1686 + p1685 + p1992 + p1684 + p1683 + p1682 + p1681 + p1680 + p1998 + p1674 + p1668 + p1662 + p1656 + p1650 + p1649 + p1648 + p1647 + p1646 + p1645 + p1644 + p2004 + p2005 + p2006 + p2007 + p2008 + p2009 + p2010 + p1638 + p2016 + p1632 + p2022 + p1626 + p2028 + p1620 + p2034 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p1614 + p2052 + p1613 + p1612 + p1611 + p2058 + p1610 + p1609 + p1608 + p2064 + p1602 + p2070 + p2076 + p2077 + p2078 + p2079 + p2080 + p2081 + p2082 + p2088 + p2094 + p2892 + p2886 + p2880 + p2874 + p2873 + p2872 + p2871 + p2870 + p2100 + p2869 + p2868 + p2106 + p2862 + p2856 + p2850 + p2844 + p2838 + p2837 + p2836 + p2835 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2834 + p2833 + p2832 + p2826 + p2820 + p2124 + p2814 + p2808 + p2802 + p2801 + p2800 + p2130 + p2136 + p2142 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2799 + p2798 + p2797 + p2796 + p2790 + p2160 + p2784 + p2778 + p2772 + p2766 + p2765 + p2166 + p2764 + p2763 + p2762 + p2761 + p2760 + p2172 + p2754 + p2748 + p2742 + p2736 + p2730 + p2178 + p2729 + p2728 + p2727 + p2726 + p2725 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2724 + p2718 + p2712 + p2706 + p2700 + p2196 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2682 + p2676 + p2670 + p2664 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2646 + p2640 + p2634 + p2628 + p2622 + p2621 + p2202 + p2620 + p2619 + p2618 + p2617 + p2616 + p2208 + p2610 + p2604 + p2214 + p2598 + p2592 + p2586 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2585 + p2584 + p2583 + p2582 + p2581 + p2232 + p2580 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2549 + p2548 + p2547 + p2546 + p2250 + p2545 + p2544 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2513 + p2512 + p2511 + p2274 + p2510 + p2280 + p2509 + p2508 + p2502 + p2286 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2496 + p2490 + p2484 + p2478 + p2477 + p2476 + p2475 + p2474 + p2473 + p2472 + p2466 + p2460 + p2454 + p2448 + p2442 + p2441 + p2440 + p2439 + p2438 + p2437 + p2436 + p2430 + p2424 + p2418 + p2412 + p2406 + p2405 + p2404 + p2403 + p2402 + p2401 + p2400 + p2394 + p2388 + p2382 + p2376 + p2370 + p2369 + p2368 + p2367 + p2366 + p2304 + p2365 + p2364 + p2358 + p2352 + p2346 + p2340 + p2334 + p2333 + p2332 + p2331 + p2310 + p2330 + p2329 + p2328 + p2322 + p2316))))) : A (X ((TRUE U F (TRUE)))) : A (F (X (G (X ((p6 + p7 + p8 + p9 + p11 + p10 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903)))))) : A (FALSE) : A (X (X ((p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903)))) : A (X ((X ((2 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903)) U G (FALSE)))) : A (FALSE) : A (FALSE) : A (F ((G (TRUE) U X (TRUE))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:422
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:380
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:145
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
FORMULA NeoElection-COL-5-LTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
FORMULA NeoElection-COL-5-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 295 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 394 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 6 markings, 5 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 443 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (F ((3 <= p6 + p7 + p8 + p9 + p11 + p10)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (F ((3 <= p6 + p7 + p8 + p9 + p11 + p10)))))
lola: processed formula length: 52
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 21 markings, 30 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-4 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 507 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X ((p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X ((p3054 + p3055 + p3056 + p3057 + p3058 + p3059 + p3060 + p3061 + p3062 + p3063 + p3064 + p3065 + p3066 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p3073 + p3074 + p3075 + p3076 + p3077 + p3078 + p3079 + p3080 + p3081 + p3082 + p3083 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: processed formula length: 300
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 276 markings, 276 edges
FORMULA NeoElection-COL-5-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 10 will run for 591 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 6 markings, 5 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 710 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((3 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((3 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: processed formula length: 64
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 276 markings, 276 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 887 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (F ((5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((5 <= p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p... (shortened)
lola: processed formula length: 3184
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 2083 markings, 5730 edges
FORMULA NeoElection-COL-5-LTLCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 13 will run for 1183 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (TRUE))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (TRUE))
lola: processed formula length: 12
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: 6 markings, 5 edges
lola: ========================================
FORMULA NeoElection-COL-5-LTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1775 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p6 + p7 + p8 + p9 + p11 + p10 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p6 + p7 + p8 + p9 + p11 + p10 <= p2898 + p2899 + p2900 + p2901 + p2902 + p2903))))
lola: processed formula length: 92
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 257380 markings, 608383 edges, 51476 markings/sec, 0 secs
lola: 512515 markings, 1215934 edges, 51027 markings/sec, 5 secs
lola: 772878 markings, 1834402 edges, 52073 markings/sec, 10 secs
lola: 1028902 markings, 2449984 edges, 51205 markings/sec, 15 secs
lola: 1292339 markings, 3063129 edges, 52687 markings/sec, 20 secs
lola: 1546022 markings, 3663343 edges, 50737 markings/sec, 25 secs
lola: 1789144 markings, 4270234 edges, 48624 markings/sec, 30 secs
lola: 2016429 markings, 4835335 edges, 45457 markings/sec, 35 secs
lola: 2248712 markings, 5408017 edges, 46457 markings/sec, 40 secs
lola: 2477929 markings, 5971407 edges, 45843 markings/sec, 45 secs
lola: 2723312 markings, 6537752 edges, 49077 markings/sec, 50 secs
lola: 2969073 markings, 7083163 edges, 49152 markings/sec, 55 secs
lola: 3207966 markings, 7625328 edges, 47779 markings/sec, 60 secs
lola: 3439526 markings, 8208697 edges, 46312 markings/sec, 65 secs
lola: 3689752 markings, 8838326 edges, 50045 markings/sec, 70 secs
lola: 3938358 markings, 9462306 edges, 49721 markings/sec, 75 secs
lola: 4186354 markings, 10104116 edges, 49599 markings/sec, 80 secs
lola: 4424686 markings, 10729813 edges, 47666 markings/sec, 85 secs
lola: 4685087 markings, 11371591 edges, 52080 markings/sec, 90 secs
lola: 4930839 markings, 12002178 edges, 49150 markings/sec, 95 secs
lola: 5174010 markings, 12625307 edges, 48634 markings/sec, 100 secs
lola: 5414685 markings, 13248674 edges, 48135 markings/sec, 105 secs
lola: 5657447 markings, 13869598 edges, 48552 markings/sec, 110 secs
lola: 5908751 markings, 14484673 edges, 50261 markings/sec, 115 secs
lola: 6168736 markings, 15102917 edges, 51997 markings/sec, 120 secs
lola: 6411303 markings, 15730610 edges, 48513 markings/sec, 125 secs
lola: 6650484 markings, 16361250 edges, 47836 markings/sec, 130 secs
lola: 6889534 markings, 16988874 edges, 47810 markings/sec, 135 secs
lola: 7109126 markings, 17576307 edges, 43918 markings/sec, 140 secs
lola: 7325187 markings, 18147271 edges, 43212 markings/sec, 145 secs
lola: 7539627 markings, 18712339 edges, 42888 markings/sec, 150 secs
lola: 7772777 markings, 19329021 edges, 46630 markings/sec, 155 secs
lola: 8003083 markings, 19932062 edges, 46061 markings/sec, 160 secs
lola: 8236213 markings, 20538394 edges, 46626 markings/sec, 165 secs
lola: 8463997 markings, 21142504 edges, 45557 markings/sec, 170 secs
lola: 8691725 markings, 21746271 edges, 45546 markings/sec, 175 secs
lola: 8938810 markings, 22339481 edges, 49417 markings/sec, 180 secs
lola: 9194400 markings, 22950516 edges, 51118 markings/sec, 185 secs
lola: 9470643 markings, 23567047 edges, 55249 markings/sec, 190 secs
lola: 9731208 markings, 24179790 edges, 52113 markings/sec, 195 secs
lola: 9981739 markings, 24823190 edges, 50106 markings/sec, 200 secs
lola: 10235041 markings, 25467971 edges, 50660 markings/sec, 205 secs
lola: 10477944 markings, 26092361 edges, 48581 markings/sec, 210 secs
lola: 10723232 markings, 26723674 edges, 49058 markings/sec, 215 secs
lola: 10965759 markings, 27341312 edges, 48505 markings/sec, 220 secs
lola: 11185435 markings, 27896665 edges, 43935 markings/sec, 225 secs
lola: 11428570 markings, 28447094 edges, 48627 markings/sec, 230 secs
lola: 11653648 markings, 29042336 edges, 45016 markings/sec, 235 secs
lola: 11893547 markings, 29678790 edges, 47980 markings/sec, 240 secs
lola: 12129392 markings, 30311687 edges, 47169 markings/sec, 245 secs
lola: 12373026 markings, 30946488 edges, 48727 markings/sec, 250 secs
lola: 12615292 markings, 31586584 edges, 48453 markings/sec, 255 secs
lola: 12857243 markings, 32228423 edges, 48390 markings/sec, 260 secs
lola: 13117755 markings, 32864764 edges, 52102 markings/sec, 265 secs
lola: 13382355 markings, 33504871 edges, 52920 markings/sec, 270 secs
lola: 13629667 markings, 34125788 edges, 49462 markings/sec, 275 secs
lola: 13873500 markings, 34747322 edges, 48767 markings/sec, 280 secs
lola: 14085831 markings, 35303728 edges, 42466 markings/sec, 285 secs
lola: 14307268 markings, 35855414 edges, 44287 markings/sec, 290 secs
lola: 14520562 markings, 36405056 edges, 42659 markings/sec, 295 secs
lola: 14747837 markings, 36988302 edges, 45455 markings/sec, 300 secs
lola: 15000889 markings, 37614855 edges, 50610 markings/sec, 305 secs
lola: 15252157 markings, 38237789 edges, 50254 markings/sec, 310 secs
lola: 15487401 markings, 38869118 edges, 47049 markings/sec, 315 secs
lola: 15730394 markings, 39507927 edges, 48599 markings/sec, 320 secs
lola: 15951453 markings, 40092418 edges, 44212 markings/sec, 325 secs
lola: 16162383 markings, 40648960 edges, 42186 markings/sec, 330 secs
lola: 16370877 markings, 41195169 edges, 41699 markings/sec, 335 secs
lola: 16577851 markings, 41742122 edges, 41395 markings/sec, 340 secs
lola: 16810052 markings, 42285865 edges, 46440 markings/sec, 345 secs
lola: 17048893 markings, 42830226 edges, 47768 markings/sec, 350 secs
lola: 17289785 markings, 43383699 edges, 48178 markings/sec, 355 secs
lola: 17536372 markings, 43938031 edges, 49317 markings/sec, 360 secs
lola: 17781171 markings, 44494061 edges, 48960 markings/sec, 365 secs
lola: 18022871 markings, 45044314 edges, 48340 markings/sec, 370 secs
lola: 18252228 markings, 45607130 edges, 45871 markings/sec, 375 secs
lola: 18480562 markings, 46168494 edges, 45667 markings/sec, 380 secs
lola: 18722014 markings, 46751238 edges, 48290 markings/sec, 385 secs
lola: 18944207 markings, 47316209 edges, 44439 markings/sec, 390 secs
lola: 19184619 markings, 47872747 edges, 48082 markings/sec, 395 secs
lola: 19409186 markings, 48429808 edges, 44913 markings/sec, 400 secs
lola: 19626285 markings, 48993003 edges, 43420 markings/sec, 405 secs
lola: 19840288 markings, 49560170 edges, 42801 markings/sec, 410 secs
lola: 20055423 markings, 50123622 edges, 43027 markings/sec, 415 secs
lola: 20265747 markings, 50684394 edges, 42065 markings/sec, 420 secs
lola: 20496151 markings, 51237476 edges, 46081 markings/sec, 425 secs
lola: 20730197 markings, 51871003 edges, 46809 markings/sec, 430 secs
lola: 20965413 markings, 52512415 edges, 47043 markings/sec, 435 secs
lola: 21204472 markings, 53155923 edges, 47812 markings/sec, 440 secs
lola: 21443362 markings, 53796836 edges, 47778 markings/sec, 445 secs
lola: 21707400 markings, 54400645 edges, 52808 markings/sec, 450 secs
lola: 21959700 markings, 55037746 edges, 50460 markings/sec, 455 secs
lola: 22201392 markings, 55681826 edges, 48338 markings/sec, 460 secs
lola: 22457054 markings, 56307968 edges, 51132 markings/sec, 465 secs
lola: 22692566 markings, 56949070 edges, 47102 markings/sec, 470 secs
lola: 22929954 markings, 57593653 edges, 47478 markings/sec, 475 secs
lola: 23175862 markings, 58224661 edges, 49182 markings/sec, 480 secs
lola: 23417068 markings, 58846554 edges, 48241 markings/sec, 485 secs
lola: 23652988 markings, 59473291 edges, 47184 markings/sec, 490 secs
lola: 23898373 markings, 60086764 edges, 49077 markings/sec, 495 secs
lola: 24127924 markings, 60710519 edges, 45910 markings/sec, 500 secs
lola: 24357301 markings, 61330618 edges, 45875 markings/sec, 505 secs
lola: 24598725 markings, 61942030 edges, 48285 markings/sec, 510 secs
lola: 24862923 markings, 62570833 edges, 52840 markings/sec, 515 secs
lola: 25122339 markings, 63193416 edges, 51883 markings/sec, 520 secs
lola: 25377068 markings, 63811009 edges, 50946 markings/sec, 525 secs
lola: 25632153 markings, 64435067 edges, 51017 markings/sec, 530 secs
lola: 25888500 markings, 65056892 edges, 51269 markings/sec, 535 secs
lola: 26132726 markings, 65680107 edges, 48845 markings/sec, 540 secs
lola: 26363411 markings, 66250364 edges, 46137 markings/sec, 545 secs
lola: 26595064 markings, 66789577 edges, 46331 markings/sec, 550 secs
lola: 26804671 markings, 67343761 edges, 41921 markings/sec, 555 secs
lola: 27021200 markings, 67901501 edges, 43306 markings/sec, 560 secs
lola: 27231912 markings, 68450428 edges, 42142 markings/sec, 565 secs
lola: 27436945 markings, 69000472 edges, 41007 markings/sec, 570 secs
lola: 27670069 markings, 69587672 edges, 46625 markings/sec, 575 secs
lola: 27883173 markings, 70144456 edges, 42621 markings/sec, 580 secs
lola: 28085170 markings, 70697633 edges, 40399 markings/sec, 585 secs
lola: 28285079 markings, 71243779 edges, 39982 markings/sec, 590 secs
lola: 28490969 markings, 71794622 edges, 41178 markings/sec, 595 secs
lola: 28694778 markings, 72345725 edges, 40762 markings/sec, 600 secs
lola: 28918935 markings, 72891244 edges, 44831 markings/sec, 605 secs
lola: 29145241 markings, 73441253 edges, 45261 markings/sec, 610 secs
lola: 29385346 markings, 74069509 edges, 48021 markings/sec, 615 secs
lola: 29618341 markings, 74683168 edges, 46599 markings/sec, 620 secs
lola: 29862083 markings, 75301130 edges, 48748 markings/sec, 625 secs
lola: 30074269 markings, 75881533 edges, 42437 markings/sec, 630 secs
lola: 30280110 markings, 76438196 edges, 41168 markings/sec, 635 secs
lola: 30497265 markings, 76984694 edges, 43431 markings/sec, 640 secs
lola: 30714777 markings, 77547667 edges, 43502 markings/sec, 645 secs
lola: 30942491 markings, 78151857 edges, 45543 markings/sec, 650 secs
lola: 31171227 markings, 78737641 edges, 45747 markings/sec, 655 secs
lola: 31395488 markings, 79340436 edges, 44852 markings/sec, 660 secs
lola: 31622787 markings, 79955301 edges, 45460 markings/sec, 665 secs
lola: 31866630 markings, 80568964 edges, 48769 markings/sec, 670 secs
lola: 32135576 markings, 81173221 edges, 53789 markings/sec, 675 secs
lola: 32409962 markings, 81776423 edges, 54877 markings/sec, 680 secs
lola: 32690854 markings, 82374206 edges, 56178 markings/sec, 685 secs
lola: 32953380 markings, 83008696 edges, 52505 markings/sec, 690 secs
lola: 33212780 markings, 83632642 edges, 51880 markings/sec, 695 secs
lola: 33478083 markings, 84262325 edges, 53061 markings/sec, 700 secs
lola: 33727525 markings, 84885464 edges, 49888 markings/sec, 705 secs
lola: 33994397 markings, 85495547 edges, 53374 markings/sec, 710 secs
lola: 34248679 markings, 86112680 edges, 50856 markings/sec, 715 secs
lola: 34491223 markings, 86735581 edges, 48509 markings/sec, 720 secs
lola: 34726611 markings, 87353044 edges, 47078 markings/sec, 725 secs
lola: 34971716 markings, 87980868 edges, 49021 markings/sec, 730 secs
lola: 35213179 markings, 88604149 edges, 48293 markings/sec, 735 secs
lola: 35477196 markings, 89221562 edges, 52803 markings/sec, 740 secs
lola: 35710894 markings, 89853570 edges, 46740 markings/sec, 745 secs
lola: 35947971 markings, 90483129 edges, 47415 markings/sec, 750 secs
lola: 36182426 markings, 91105841 edges, 46891 markings/sec, 755 secs
lola: 36416593 markings, 91729555 edges, 46833 markings/sec, 760 secs
lola: 36665235 markings, 92342972 edges, 49728 markings/sec, 765 secs
lola: 36931768 markings, 92946522 edges, 53307 markings/sec, 770 secs
lola: 37177868 markings, 93576690 edges, 49220 markings/sec, 775 secs
lola: 37417679 markings, 94197216 edges, 47962 markings/sec, 780 secs
lola: 37659756 markings, 94805536 edges, 48415 markings/sec, 785 secs
lola: 37904886 markings, 95426169 edges, 49026 markings/sec, 790 secs
lola: 38141033 markings, 96055094 edges, 47229 markings/sec, 795 secs
lola: 38376753 markings, 96682118 edges, 47144 markings/sec, 800 secs
lola: 38627654 markings, 97293642 edges, 50180 markings/sec, 805 secs
lola: 38861606 markings, 97903426 edges, 46790 markings/sec, 810 secs
lola: 39094319 markings, 98504310 edges, 46543 markings/sec, 815 secs
lola: 39331947 markings, 99095895 edges, 47526 markings/sec, 820 secs
lola: 39563676 markings, 99698700 edges, 46346 markings/sec, 825 secs
lola: 39790342 markings, 100301018 edges, 45333 markings/sec, 830 secs
lola: 40018457 markings, 100908540 edges, 45623 markings/sec, 835 secs
lola: 40288185 markings, 101510149 edges, 53946 markings/sec, 840 secs
lola: 40559700 markings, 102120824 edges, 54303 markings/sec, 845 secs
lola: 40815822 markings, 102735039 edges, 51224 markings/sec, 850 secs
lola: 41066849 markings, 103358944 edges, 50205 markings/sec, 855 secs
lola: 41321839 markings, 103981580 edges, 50998 markings/sec, 860 secs
lola: 41559495 markings, 104612723 edges, 47531 markings/sec, 865 secs
lola: 41803067 markings, 105230142 edges, 48714 markings/sec, 870 secs
lola: 42034265 markings, 105864425 edges, 46240 markings/sec, 875 secs
lola: 42277241 markings, 106469773 edges, 48595 markings/sec, 880 secs
lola: 42503593 markings, 107058410 edges, 45270 markings/sec, 885 secs
lola: 42730219 markings, 107645165 edges, 45325 markings/sec, 890 secs
lola: 42950671 markings, 108230463 edges, 44090 markings/sec, 895 secs
lola: 43172715 markings, 108818345 edges, 44409 markings/sec, 900 secs
lola: 43401242 markings, 109418998 edges, 45705 markings/sec, 905 secs
lola: 43640948 markings, 110028548 edges, 47941 markings/sec, 910 secs
lola: 43892203 markings, 110636785 edges, 50251 markings/sec, 915 secs
lola: 44138328 markings, 111238613 edges, 49225 markings/sec, 920 secs
lola: 44380448 markings, 111841903 edges, 48424 markings/sec, 925 secs
lola: 44613661 markings, 112435445 edges, 46643 markings/sec, 930 secs
lola: 44838738 markings, 113035407 edges, 45015 markings/sec, 935 secs
lola: 45068091 markings, 113631426 edges, 45871 markings/sec, 940 secs
lola: 45293473 markings, 114246925 edges, 45076 markings/sec, 945 secs
lola: 45537387 markings, 114849258 edges, 48783 markings/sec, 950 secs
lola: 45749530 markings, 115410684 edges, 42429 markings/sec, 955 secs
lola: 45955355 markings, 115947690 edges, 41165 markings/sec, 960 secs
lola: 46158679 markings, 116489288 edges, 40665 markings/sec, 965 secs
lola: 46363620 markings, 117028417 edges, 40988 markings/sec, 970 secs
lola: 46588153 markings, 117620895 edges, 44907 markings/sec, 975 secs
lola: 46822823 markings, 118219881 edges, 46934 markings/sec, 980 secs
lola: 47090645 markings, 118820672 edges, 53564 markings/sec, 985 secs
lola: 47351517 markings, 119429702 edges, 52174 markings/sec, 990 secs
lola: 47606132 markings, 120043564 edges, 50923 markings/sec, 995 secs
lola: 47865562 markings, 120653304 edges, 51886 markings/sec, 1000 secs
lola: 48114331 markings, 121272920 edges, 49754 markings/sec, 1005 secs
lola: 48367132 markings, 121891392 edges, 50560 markings/sec, 1010 secs
lola: 48633552 markings, 122495698 edges, 53284 markings/sec, 1015 secs
lola: 48880950 markings, 123127207 edges, 49480 markings/sec, 1020 secs
lola: 49126059 markings, 123755930 edges, 49022 markings/sec, 1025 secs
lola: 49348050 markings, 124319684 edges, 44398 markings/sec, 1030 secs
lola: 49563080 markings, 124867187 edges, 43006 markings/sec, 1035 secs
lola: 49773689 markings, 125412973 edges, 42122 markings/sec, 1040 secs
lola: 50012188 markings, 125997508 edges, 47700 markings/sec, 1045 secs
lola: 50239570 markings, 126608757 edges, 45476 markings/sec, 1050 secs
lola: 50476738 markings, 127232403 edges, 47434 markings/sec, 1055 secs
lola: 50707006 markings, 127839218 edges, 46054 markings/sec, 1060 secs
lola: 50939519 markings, 128453866 edges, 46503 markings/sec, 1065 secs
lola: 51181222 markings, 129061867 edges, 48341 markings/sec, 1070 secs
lola: 51435415 markings, 129648538 edges, 50839 markings/sec, 1075 secs
lola: 51678006 markings, 130260225 edges, 48518 markings/sec, 1080 secs
lola: 51920686 markings, 130883372 edges, 48536 markings/sec, 1085 secs
lola: 52159507 markings, 131493587 edges, 47764 markings/sec, 1090 secs
lola: 52405073 markings, 132111488 edges, 49113 markings/sec, 1095 secs
lola: 52633149 markings, 132717879 edges, 45615 markings/sec, 1100 secs
lola: 52865739 markings, 133330880 edges, 46518 markings/sec, 1105 secs
lola: 53111943 markings, 133938141 edges, 49241 markings/sec, 1110 secs
lola: 53338556 markings, 134518706 edges, 45323 markings/sec, 1115 secs
lola: 53566234 markings, 135099526 edges, 45536 markings/sec, 1120 secs
lola: 53797798 markings, 135695368 edges, 46313 markings/sec, 1125 secs
lola: 54033668 markings, 136294961 edges, 47174 markings/sec, 1130 secs
lola: 54260807 markings, 136896434 edges, 45428 markings/sec, 1135 secs
lola: 54491525 markings, 137508675 edges, 46144 markings/sec, 1140 secs
lola: 54745554 markings, 138111450 edges, 50806 markings/sec, 1145 secs
lola: 55011487 markings, 138718457 edges, 53187 markings/sec, 1150 secs
lola: 55242494 markings, 139257633 edges, 46201 markings/sec, 1155 secs
lola: 55467254 markings, 139806072 edges, 44952 markings/sec, 1160 secs
lola: 55689965 markings, 140352044 edges, 44542 markings/sec, 1165 secs
lola: 55932645 markings, 140975398 edges, 48536 markings/sec, 1170 secs
lola: 56167187 markings, 141597042 edges, 46908 markings/sec, 1175 secs
lola: 56406311 markings, 142216561 edges, 47825 markings/sec, 1180 secs
lola: 56635916 markings, 142841678 edges, 45921 markings/sec, 1185 secs
lola: 56887293 markings, 143455984 edges, 50275 markings/sec, 1190 secs
lola: 57118488 markings, 144058386 edges, 46239 markings/sec, 1195 secs
lola: 57341013 markings, 144656150 edges, 44505 markings/sec, 1200 secs
lola: 57559937 markings, 145223140 edges, 43785 markings/sec, 1205 secs
lola: 57763504 markings, 145751826 edges, 40713 markings/sec, 1210 secs
lola: 57960629 markings, 146282949 edges, 39425 markings/sec, 1215 secs
lola: 58176985 markings, 146819273 edges, 43271 markings/sec, 1220 secs
lola: 58397907 markings, 147355984 edges, 44184 markings/sec, 1225 secs
lola: 58616011 markings, 147893157 edges, 43621 markings/sec, 1230 secs
lola: 58839271 markings, 148455451 edges, 44652 markings/sec, 1235 secs
lola: 59057214 markings, 148992908 edges, 43589 markings/sec, 1240 secs
lola: 59275389 markings, 149565187 edges, 43635 markings/sec, 1245 secs
lola: 59493409 markings, 150128589 edges, 43604 markings/sec, 1250 secs
lola: 59697891 markings, 150686260 edges, 40896 markings/sec, 1255 secs
lola: 59902421 markings, 151239804 edges, 40906 markings/sec, 1260 secs
lola: 60124991 markings, 151788210 edges, 44514 markings/sec, 1265 secs
lola: 60332598 markings, 152332944 edges, 41521 markings/sec, 1270 secs
lola: 60534724 markings, 152872309 edges, 40425 markings/sec, 1275 secs
lola: 60748277 markings, 153427469 edges, 42711 markings/sec, 1280 secs
lola: 60948779 markings, 153956163 edges, 40100 markings/sec, 1285 secs
lola: 61161890 markings, 154524903 edges, 42622 markings/sec, 1290 secs
lola: 61380349 markings, 155059530 edges, 43692 markings/sec, 1295 secs
lola: 61621246 markings, 155587882 edges, 48179 markings/sec, 1300 secs
lola: 61856455 markings, 156151183 edges, 47042 markings/sec, 1305 secs
lola: 62096904 markings, 156749300 edges, 48090 markings/sec, 1310 secs
lola: 62333716 markings, 157338110 edges, 47362 markings/sec, 1315 secs
lola: 62572646 markings, 157952386 edges, 47786 markings/sec, 1320 secs
lola: 62831198 markings, 158622033 edges, 51710 markings/sec, 1325 secs
lola: 63080455 markings, 159287104 edges, 49851 markings/sec, 1330 secs
lola: 63335920 markings, 159945038 edges, 51093 markings/sec, 1335 secs
lola: 63578256 markings, 160590694 edges, 48467 markings/sec, 1340 secs
lola: 63827841 markings, 161233398 edges, 49917 markings/sec, 1345 secs
lola: 64072591 markings, 161869762 edges, 48950 markings/sec, 1350 secs
lola: 64331831 markings, 162485131 edges, 51848 markings/sec, 1355 secs
lola: 64578167 markings, 163102751 edges, 49267 markings/sec, 1360 secs
lola: 64825970 markings, 163755536 edges, 49561 markings/sec, 1365 secs
lola: 65069925 markings, 164398755 edges, 48791 markings/sec, 1370 secs
lola: 65318127 markings, 165057621 edges, 49640 markings/sec, 1375 secs
lola: 65561349 markings, 165699631 edges, 48644 markings/sec, 1380 secs
lola: 65808915 markings, 166340904 edges, 49513 markings/sec, 1385 secs
lola: 66060795 markings, 166999458 edges, 50376 markings/sec, 1390 secs
lola: 66306832 markings, 167636534 edges, 49207 markings/sec, 1395 secs
lola: 66557516 markings, 168299952 edges, 50137 markings/sec, 1400 secs
lola: 66807023 markings, 168953600 edges, 49901 markings/sec, 1405 secs
lola: 67083650 markings, 169598260 edges, 55325 markings/sec, 1410 secs
lola: 67355229 markings, 170239935 edges, 54316 markings/sec, 1415 secs
lola: 67624201 markings, 170881811 edges, 53794 markings/sec, 1420 secs
lola: 67890352 markings, 171523288 edges, 53230 markings/sec, 1425 secs
lola: 68157058 markings, 172163714 edges, 53341 markings/sec, 1430 secs
lola: 68397871 markings, 172798389 edges, 48163 markings/sec, 1435 secs
lola: 68630336 markings, 173414614 edges, 46493 markings/sec, 1440 secs
lola: 68849006 markings, 173980327 edges, 43734 markings/sec, 1445 secs
lola: 69062109 markings, 174546512 edges, 42621 markings/sec, 1450 secs
lola: 69274567 markings, 175108638 edges, 42492 markings/sec, 1455 secs
lola: 69488152 markings, 175664437 edges, 42717 markings/sec, 1460 secs
lola: 69712249 markings, 176288662 edges, 44819 markings/sec, 1465 secs
lola: 69946276 markings, 176926810 edges, 46805 markings/sec, 1470 secs
lola: 70167037 markings, 177548235 edges, 44152 markings/sec, 1475 secs
lola: 70387161 markings, 178135706 edges, 44025 markings/sec, 1480 secs
lola: 70597358 markings, 178719238 edges, 42039 markings/sec, 1485 secs
lola: 70800464 markings, 179302310 edges, 40621 markings/sec, 1490 secs
lola: 71005330 markings, 179871013 edges, 40973 markings/sec, 1495 secs
lola: 71204512 markings, 180441944 edges, 39836 markings/sec, 1500 secs
lola: 71420342 markings, 181003448 edges, 43166 markings/sec, 1505 secs
lola: 71628327 markings, 181585574 edges, 41597 markings/sec, 1510 secs
lola: 71843467 markings, 182174955 edges, 43028 markings/sec, 1515 secs
lola: 72072565 markings, 182824748 edges, 45820 markings/sec, 1520 secs
lola: 72300285 markings, 183462928 edges, 45544 markings/sec, 1525 secs
lola: 72531279 markings, 184097093 edges, 46199 markings/sec, 1530 secs
lola: 72754553 markings, 184724580 edges, 44655 markings/sec, 1535 secs
lola: 72971791 markings, 185339033 edges, 43448 markings/sec, 1540 secs
lola: 73175760 markings, 185915093 edges, 40794 markings/sec, 1545 secs
lola: 73415179 markings, 186509812 edges, 47884 markings/sec, 1550 secs
lola: 73660746 markings, 187125984 edges, 49113 markings/sec, 1555 secs
lola: 73881754 markings, 187691722 edges, 44202 markings/sec, 1560 secs
lola: 74096802 markings, 188245810 edges, 43010 markings/sec, 1565 secs
lola: 74304927 markings, 188817357 edges, 41625 markings/sec, 1570 secs
lola: 74513092 markings, 189397536 edges, 41633 markings/sec, 1575 secs
lola: 74738619 markings, 190016939 edges, 45105 markings/sec, 1580 secs
lola: 74972420 markings, 190675395 edges, 46760 markings/sec, 1585 secs
lola: 75201016 markings, 191323344 edges, 45719 markings/sec, 1590 secs
lola: 75431994 markings, 191953225 edges, 46196 markings/sec, 1595 secs
lola: 75662133 markings, 192605111 edges, 46028 markings/sec, 1600 secs
lola: 75894396 markings, 193253967 edges, 46453 markings/sec, 1605 secs
lola: 76121271 markings, 193887973 edges, 45375 markings/sec, 1610 secs
lola: 76348233 markings, 194523405 edges, 45392 markings/sec, 1615 secs
lola: 76569230 markings, 195155476 edges, 44199 markings/sec, 1620 secs
lola: 76801985 markings, 195783331 edges, 46551 markings/sec, 1625 secs
lola: 77039279 markings, 196443390 edges, 47459 markings/sec, 1630 secs
lola: 77271910 markings, 197093981 edges, 46526 markings/sec, 1635 secs
lola: 77512417 markings, 197751846 edges, 48101 markings/sec, 1640 secs
lola: 77743113 markings, 198404370 edges, 46139 markings/sec, 1645 secs
lola: 77976381 markings, 199040634 edges, 46654 markings/sec, 1650 secs
lola: 78209652 markings, 199687570 edges, 46654 markings/sec, 1655 secs
lola: 78443563 markings, 200340734 edges, 46782 markings/sec, 1660 secs
lola: 78672346 markings, 200975941 edges, 45757 markings/sec, 1665 secs
lola: 78900363 markings, 201615305 edges, 45603 markings/sec, 1670 secs
lola: 79126938 markings, 202254127 edges, 45315 markings/sec, 1675 secs
lola: 79371536 markings, 202882632 edges, 48920 markings/sec, 1680 secs
lola: 79627610 markings, 203504875 edges, 51215 markings/sec, 1685 secs
lola: 79884391 markings, 204159236 edges, 51356 markings/sec, 1690 secs
lola: 80137846 markings, 204788330 edges, 50691 markings/sec, 1695 secs
lola: 80397941 markings, 205413649 edges, 52019 markings/sec, 1700 secs
lola: 80656001 markings, 206026731 edges, 51612 markings/sec, 1705 secs
lola: 80915463 markings, 206650780 edges, 51892 markings/sec, 1710 secs
lola: 81167964 markings, 207290133 edges, 50500 markings/sec, 1715 secs
lola: 81409310 markings, 207926652 edges, 48269 markings/sec, 1720 secs
lola: 81649562 markings, 208564263 edges, 48050 markings/sec, 1725 secs
lola: 81894044 markings, 209214503 edges, 48896 markings/sec, 1730 secs
lola: 82132952 markings, 209882835 edges, 47782 markings/sec, 1735 secs
lola: 82372167 markings, 210537880 edges, 47843 markings/sec, 1740 secs
lola: 82608682 markings, 211206406 edges, 47303 markings/sec, 1745 secs
lola: 82832591 markings, 211846852 edges, 44782 markings/sec, 1750 secs
lola: 83074088 markings, 212497117 edges, 48299 markings/sec, 1755 secs
lola: 83306533 markings, 213153121 edges, 46489 markings/sec, 1760 secs
lola: 83534775 markings, 213785263 edges, 45648 markings/sec, 1765 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1774 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((p1900 + p1901 + p1902 + p1899 + p1898 + p1897 + p1896 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1865 + p1914 + p1864 + p1863 + p1862 + p1861 + p1860 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1829 + p1828 + p1827 + p1826 + p1825 + p1932 + p1933 + p1934 + p1935 + p1936 + p1937 + p1938 + p1824 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1793 + p1792 + p1791 ... (shortened)
lola: processed formula length: 3184
lola: 54 rewrites
lola: closed formula file NeoElection-COL-5-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 249484 markings, 626233 edges, 49897 markings/sec, 0 secs
lola: 488817 markings, 1280940 edges, 47867 markings/sec, 5 secs
lola: 720665 markings, 1943633 edges, 46370 markings/sec, 10 secs
lola: 942163 markings, 2607495 edges, 44300 markings/sec, 15 secs
lola: 1160952 markings, 3287288 edges, 43758 markings/sec, 20 secs
lola: 1377560 markings, 3951218 edges, 43322 markings/sec, 25 secs
lola: 1593164 markings, 4602190 edges, 43121 markings/sec, 30 secs
lola: 1808474 markings, 5275276 edges, 43062 markings/sec, 35 secs
lola: 2018956 markings, 5922582 edges, 42096 markings/sec, 40 secs
lola: 2228546 markings, 6545779 edges, 41918 markings/sec, 45 secs
lola: 2435960 markings, 7199888 edges, 41483 markings/sec, 50 secs
lola: 2654039 markings, 7864642 edges, 43616 markings/sec, 55 secs
lola: 2874949 markings, 8531923 edges, 44182 markings/sec, 60 secs
lola: 3082602 markings, 9210957 edges, 41531 markings/sec, 65 secs
lola: 3291334 markings, 9893310 edges, 41746 markings/sec, 70 secs
lola: 3502485 markings, 10573451 edges, 42230 markings/sec, 75 secs
lola: 3710660 markings, 11249501 edges, 41635 markings/sec, 80 secs
lola: 3936151 markings, 11904340 edges, 45098 markings/sec, 85 secs
lola: 4151853 markings, 12567611 edges, 43140 markings/sec, 90 secs
lola: 4360107 markings, 13250203 edges, 41651 markings/sec, 95 secs
lola: 4569500 markings, 13919657 edges, 41879 markings/sec, 100 secs
lola: 4781981 markings, 14597045 edges, 42496 markings/sec, 105 secs
lola: 4996786 markings, 15260700 edges, 42961 markings/sec, 110 secs
lola: 5224623 markings, 15910822 edges, 45567 markings/sec, 115 secs
lola: 5438333 markings, 16575654 edges, 42742 markings/sec, 120 secs
lola: 5649461 markings, 17245210 edges, 42226 markings/sec, 125 secs
lola: 5861576 markings, 17919772 edges, 42423 markings/sec, 130 secs
lola: 6074074 markings, 18577295 edges, 42500 markings/sec, 135 secs
lola: 6287075 markings, 19237472 edges, 42600 markings/sec, 140 secs
lola: 6493356 markings, 19918452 edges, 41256 markings/sec, 145 secs
lola: 6699461 markings, 20582429 edges, 41221 markings/sec, 150 secs
lola: 6913869 markings, 21240402 edges, 42882 markings/sec, 155 secs
lola: 7118203 markings, 21905154 edges, 40867 markings/sec, 160 secs
lola: 7323328 markings, 22564750 edges, 41025 markings/sec, 165 secs
lola: 7546942 markings, 23202408 edges, 44723 markings/sec, 170 secs
lola: 7762757 markings, 23842144 edges, 43163 markings/sec, 175 secs
lola: 7971716 markings, 24511553 edges, 41792 markings/sec, 180 secs
lola: 8182568 markings, 25173452 edges, 42170 markings/sec, 185 secs
lola: 8391753 markings, 25834167 edges, 41837 markings/sec, 190 secs
lola: 8595694 markings, 26490991 edges, 40788 markings/sec, 195 secs
lola: 8804916 markings, 27147218 edges, 41844 markings/sec, 200 secs
lola: 9006208 markings, 27819608 edges, 40258 markings/sec, 205 secs
lola: 9211160 markings, 28476301 edges, 40990 markings/sec, 210 secs
lola: 9416342 markings, 29129359 edges, 41036 markings/sec, 215 secs
lola: 9619627 markings, 29798068 edges, 40657 markings/sec, 220 secs
lola: 9830460 markings, 30454256 edges, 42167 markings/sec, 225 secs
lola: 10047755 markings, 31116161 edges, 43459 markings/sec, 230 secs
lola: 10262885 markings, 31775692 edges, 43026 markings/sec, 235 secs
lola: 10474899 markings, 32437948 edges, 42403 markings/sec, 240 secs
lola: 10688328 markings, 33109035 edges, 42686 markings/sec, 245 secs
lola: 10900849 markings, 33795046 edges, 42504 markings/sec, 250 secs
lola: 11108001 markings, 34484794 edges, 41430 markings/sec, 255 secs
lola: 11313974 markings, 35180606 edges, 41195 markings/sec, 260 secs
lola: 11517405 markings, 35867272 edges, 40686 markings/sec, 265 secs
lola: 11720471 markings, 36549144 edges, 40613 markings/sec, 270 secs
lola: 11926835 markings, 37234523 edges, 41273 markings/sec, 275 secs
lola: 12125606 markings, 37901927 edges, 39754 markings/sec, 280 secs
lola: 12320520 markings, 38558273 edges, 38983 markings/sec, 285 secs
lola: 12519631 markings, 39238083 edges, 39822 markings/sec, 290 secs
lola: 12720905 markings, 39917701 edges, 40255 markings/sec, 295 secs
lola: 12923376 markings, 40594256 edges, 40494 markings/sec, 300 secs
lola: 13125048 markings, 41276643 edges, 40334 markings/sec, 305 secs
lola: 13320659 markings, 41967309 edges, 39122 markings/sec, 310 secs
lola: 13518331 markings, 42647829 edges, 39534 markings/sec, 315 secs
lola: 13720705 markings, 43329910 edges, 40475 markings/sec, 320 secs
lola: 13921822 markings, 44007961 edges, 40223 markings/sec, 325 secs
lola: 14126736 markings, 44709864 edges, 40983 markings/sec, 330 secs
lola: 14328453 markings, 45384890 edges, 40343 markings/sec, 335 secs
lola: 14527877 markings, 46053242 edges, 39885 markings/sec, 340 secs
lola: 14723639 markings, 46727609 edges, 39152 markings/sec, 345 secs
lola: 14919267 markings, 47398446 edges, 39126 markings/sec, 350 secs
lola: 15119623 markings, 48071405 edges, 40071 markings/sec, 355 secs
lola: 15316739 markings, 48742012 edges, 39423 markings/sec, 360 secs
lola: 15514087 markings, 49425703 edges, 39470 markings/sec, 365 secs
lola: 15716773 markings, 50093435 edges, 40537 markings/sec, 370 secs
lola: 15920339 markings, 50767130 edges, 40713 markings/sec, 375 secs
lola: 16124013 markings, 51445691 edges, 40735 markings/sec, 380 secs
lola: 16316488 markings, 52133906 edges, 38495 markings/sec, 385 secs
lola: 16508102 markings, 52821568 edges, 38323 markings/sec, 390 secs
lola: 16707082 markings, 53516587 edges, 39796 markings/sec, 395 secs
lola: 16903384 markings, 54215516 edges, 39260 markings/sec, 400 secs
lola: 17100950 markings, 54903039 edges, 39513 markings/sec, 405 secs
lola: 17292112 markings, 55601787 edges, 38232 markings/sec, 410 secs
lola: 17496992 markings, 56305692 edges, 40976 markings/sec, 415 secs
lola: 17699643 markings, 57000129 edges, 40530 markings/sec, 420 secs
lola: 17891163 markings, 57690807 edges, 38304 markings/sec, 425 secs
lola: 18087950 markings, 58367518 edges, 39357 markings/sec, 430 secs
lola: 18293191 markings, 59059233 edges, 41048 markings/sec, 435 secs
lola: 18499059 markings, 59731927 edges, 41174 markings/sec, 440 secs
lola: 18700295 markings, 60399715 edges, 40247 markings/sec, 445 secs
lola: 18896110 markings, 61080210 edges, 39163 markings/sec, 450 secs
lola: 19092817 markings, 61758242 edges, 39341 markings/sec, 455 secs
lola: 19288208 markings, 62431398 edges, 39078 markings/sec, 460 secs
lola: 19482095 markings, 63112240 edges, 38777 markings/sec, 465 secs
lola: 19677739 markings, 63785790 edges, 39129 markings/sec, 470 secs
lola: 19869572 markings, 64468548 edges, 38367 markings/sec, 475 secs
lola: 20067083 markings, 65153991 edges, 39502 markings/sec, 480 secs
lola: 20263632 markings, 65838284 edges, 39310 markings/sec, 485 secs
lola: 20460960 markings, 66523342 edges, 39466 markings/sec, 490 secs
lola: 20655152 markings, 67200568 edges, 38838 markings/sec, 495 secs
lola: 20849630 markings, 67881739 edges, 38896 markings/sec, 500 secs
lola: 21056503 markings, 68543066 edges, 41375 markings/sec, 505 secs
lola: 21266149 markings, 69207369 edges, 41929 markings/sec, 510 secs
lola: 21473412 markings, 69888281 edges, 41453 markings/sec, 515 secs
lola: 21671775 markings, 70576838 edges, 39673 markings/sec, 520 secs
lola: 21870925 markings, 71266222 edges, 39830 markings/sec, 525 secs
lola: 22072277 markings, 71954830 edges, 40270 markings/sec, 530 secs
lola: 22268164 markings, 72633819 edges, 39177 markings/sec, 535 secs
lola: 22470390 markings, 73317702 edges, 40445 markings/sec, 540 secs
lola: 22664434 markings, 74013642 edges, 38809 markings/sec, 545 secs
lola: 22863938 markings, 74686663 edges, 39901 markings/sec, 550 secs
lola: 23062891 markings, 75360880 edges, 39791 markings/sec, 555 secs
lola: 23256164 markings, 76025415 edges, 38655 markings/sec, 560 secs
lola: 23450568 markings, 76693636 edges, 38881 markings/sec, 565 secs
lola: 23645183 markings, 77360016 edges, 38923 markings/sec, 570 secs
lola: 23848071 markings, 78034761 edges, 40578 markings/sec, 575 secs
lola: 24043538 markings, 78710959 edges, 39093 markings/sec, 580 secs
lola: 24233521 markings, 79392200 edges, 37997 markings/sec, 585 secs
lola: 24427642 markings, 80076452 edges, 38824 markings/sec, 590 secs
lola: 24628316 markings, 80775093 edges, 40135 markings/sec, 595 secs
lola: 24827740 markings, 81468326 edges, 39885 markings/sec, 600 secs
lola: 25032336 markings, 82151956 edges, 40919 markings/sec, 605 secs
lola: 25238144 markings, 82834293 edges, 41162 markings/sec, 610 secs
lola: 25434591 markings, 83527112 edges, 39289 markings/sec, 615 secs
lola: 25632430 markings, 84218856 edges, 39568 markings/sec, 620 secs
lola: 25830381 markings, 84909486 edges, 39590 markings/sec, 625 secs
lola: 26029399 markings, 85591953 edges, 39804 markings/sec, 630 secs
lola: 26217612 markings, 86238058 edges, 37643 markings/sec, 635 secs
lola: 26426129 markings, 86902779 edges, 41703 markings/sec, 640 secs
lola: 26635436 markings, 87573921 edges, 41861 markings/sec, 645 secs
lola: 26834428 markings, 88232225 edges, 39798 markings/sec, 650 secs
lola: 27029582 markings, 88906168 edges, 39031 markings/sec, 655 secs
lola: 27227992 markings, 89587744 edges, 39682 markings/sec, 660 secs
lola: 27425422 markings, 90264490 edges, 39486 markings/sec, 665 secs
lola: 27623268 markings, 90949664 edges, 39569 markings/sec, 670 secs
lola: 27819662 markings, 91616464 edges, 39279 markings/sec, 675 secs
lola: 28013804 markings, 92311132 edges, 38828 markings/sec, 680 secs
lola: 28210582 markings, 92984324 edges, 39356 markings/sec, 685 secs
lola: 28410219 markings, 93670672 edges, 39927 markings/sec, 690 secs
lola: 28607276 markings, 94352480 edges, 39411 markings/sec, 695 secs
lola: 28799252 markings, 95015125 edges, 38395 markings/sec, 700 secs
lola: 28990048 markings, 95679432 edges, 38159 markings/sec, 705 secs
lola: 29186118 markings, 96339965 edges, 39214 markings/sec, 710 secs
lola: 29377072 markings, 97012981 edges, 38191 markings/sec, 715 secs
lola: 29566877 markings, 97693375 edges, 37961 markings/sec, 720 secs
lola: 29758970 markings, 98383261 edges, 38419 markings/sec, 725 secs
lola: 29955744 markings, 99076070 edges, 39355 markings/sec, 730 secs
lola: 30149485 markings, 99761750 edges, 38748 markings/sec, 735 secs
lola: 30349231 markings, 100443982 edges, 39949 markings/sec, 740 secs
lola: 30551098 markings, 101129717 edges, 40373 markings/sec, 745 secs
lola: 30746609 markings, 101819042 edges, 39102 markings/sec, 750 secs
lola: 30938573 markings, 102493061 edges, 38393 markings/sec, 755 secs
lola: 31127538 markings, 103163657 edges, 37793 markings/sec, 760 secs
lola: 31317200 markings, 103831666 edges, 37932 markings/sec, 765 secs
lola: 31508378 markings, 104490950 edges, 38236 markings/sec, 770 secs
lola: 31724575 markings, 105152037 edges, 43239 markings/sec, 775 secs
lola: 31928280 markings, 105822341 edges, 40741 markings/sec, 780 secs
lola: 32133446 markings, 106496269 edges, 41033 markings/sec, 785 secs
lola: 32328406 markings, 107115147 edges, 38992 markings/sec, 790 secs
lola: 32523392 markings, 107768161 edges, 38997 markings/sec, 795 secs
lola: 32706313 markings, 108385763 edges, 36584 markings/sec, 800 secs
lola: 32881210 markings, 108978924 edges, 34979 markings/sec, 805 secs
lola: 33057257 markings, 109586518 edges, 35209 markings/sec, 810 secs
lola: 33231894 markings, 110192656 edges, 34927 markings/sec, 815 secs
lola: 33406444 markings, 110800731 edges, 34910 markings/sec, 820 secs
lola: 33598273 markings, 111443690 edges, 38366 markings/sec, 825 secs
lola: 33793388 markings, 112121683 edges, 39023 markings/sec, 830 secs
lola: 33981120 markings, 112788269 edges, 37546 markings/sec, 835 secs
lola: 34176091 markings, 113471753 edges, 38994 markings/sec, 840 secs
lola: 34375554 markings, 114169319 edges, 39893 markings/sec, 845 secs
lola: 34583960 markings, 114848913 edges, 41681 markings/sec, 850 secs
lola: 34788459 markings, 115534218 edges, 40900 markings/sec, 855 secs
lola: 34989301 markings, 116218899 edges, 40168 markings/sec, 860 secs
lola: 35180071 markings, 116875983 edges, 38154 markings/sec, 865 secs
lola: 35377028 markings, 117533504 edges, 39391 markings/sec, 870 secs
lola: 35580492 markings, 118226628 edges, 40693 markings/sec, 875 secs
lola: 35778522 markings, 118920823 edges, 39606 markings/sec, 880 secs
lola: 35975408 markings, 119623089 edges, 39377 markings/sec, 885 secs
lola: 36170326 markings, 120318214 edges, 38984 markings/sec, 890 secs
lola: 36357560 markings, 120988368 edges, 37447 markings/sec, 895 secs
lola: 36549778 markings, 121666909 edges, 38444 markings/sec, 900 secs
lola: 36745249 markings, 122335463 edges, 39094 markings/sec, 905 secs
lola: 36941924 markings, 123017059 edges, 39335 markings/sec, 910 secs
lola: 37148480 markings, 123702968 edges, 41311 markings/sec, 915 secs
lola: 37350798 markings, 124385728 edges, 40464 markings/sec, 920 secs
lola: 37549762 markings, 125076484 edges, 39793 markings/sec, 925 secs
lola: 37747274 markings, 125771452 edges, 39502 markings/sec, 930 secs
lola: 37943387 markings, 126452656 edges, 39223 markings/sec, 935 secs
lola: 38135242 markings, 127144335 edges, 38371 markings/sec, 940 secs
lola: 38335601 markings, 127835460 edges, 40072 markings/sec, 945 secs
lola: 38531210 markings, 128512395 edges, 39122 markings/sec, 950 secs
lola: 38730410 markings, 129172770 edges, 39840 markings/sec, 955 secs
lola: 38929407 markings, 129838549 edges, 39799 markings/sec, 960 secs
lola: 39127772 markings, 130499342 edges, 39673 markings/sec, 965 secs
lola: 39321041 markings, 131170461 edges, 38654 markings/sec, 970 secs
lola: 39515005 markings, 131849737 edges, 38793 markings/sec, 975 secs
lola: 39708103 markings, 132511694 edges, 38620 markings/sec, 980 secs
lola: 39893322 markings, 133167779 edges, 37044 markings/sec, 985 secs
lola: 40084909 markings, 133815831 edges, 38317 markings/sec, 990 secs
lola: 40272752 markings, 134456074 edges, 37569 markings/sec, 995 secs
lola: 40463311 markings, 135100568 edges, 38112 markings/sec, 1000 secs
lola: 40653958 markings, 135749143 edges, 38129 markings/sec, 1005 secs
lola: 40837317 markings, 136409274 edges, 36672 markings/sec, 1010 secs
lola: 41023234 markings, 137059994 edges, 37183 markings/sec, 1015 secs
lola: 41212747 markings, 137702653 edges, 37903 markings/sec, 1020 secs
lola: 41404443 markings, 138343622 edges, 38339 markings/sec, 1025 secs
lola: 41594907 markings, 139007213 edges, 38093 markings/sec, 1030 secs
lola: 41784408 markings, 139671999 edges, 37900 markings/sec, 1035 secs
lola: 41977288 markings, 140330262 edges, 38576 markings/sec, 1040 secs
lola: 42178227 markings, 140985859 edges, 40188 markings/sec, 1045 secs
lola: 42376510 markings, 141652840 edges, 39657 markings/sec, 1050 secs
lola: 42574475 markings, 142318071 edges, 39593 markings/sec, 1055 secs
lola: 42773550 markings, 143007050 edges, 39815 markings/sec, 1060 secs
lola: 42969329 markings, 143694400 edges, 39156 markings/sec, 1065 secs
lola: 43167395 markings, 144382836 edges, 39613 markings/sec, 1070 secs
lola: 43360643 markings, 145071026 edges, 38650 markings/sec, 1075 secs
lola: 43558730 markings, 145741661 edges, 39617 markings/sec, 1080 secs
lola: 43755301 markings, 146415175 edges, 39314 markings/sec, 1085 secs
lola: 43953818 markings, 147098989 edges, 39703 markings/sec, 1090 secs
lola: 44147836 markings, 147787681 edges, 38804 markings/sec, 1095 secs
lola: 44337484 markings, 148469106 edges, 37930 markings/sec, 1100 secs
lola: 44527597 markings, 149134925 edges, 38023 markings/sec, 1105 secs
lola: 44722055 markings, 149801761 edges, 38892 markings/sec, 1110 secs
lola: 44915121 markings, 150472207 edges, 38613 markings/sec, 1115 secs
lola: 45106312 markings, 151149082 edges, 38238 markings/sec, 1120 secs
lola: 45295363 markings, 151814319 edges, 37810 markings/sec, 1125 secs
lola: 45505502 markings, 152478056 edges, 42028 markings/sec, 1130 secs
lola: 45718313 markings, 153149956 edges, 42562 markings/sec, 1135 secs
lola: 45923452 markings, 153834541 edges, 41028 markings/sec, 1140 secs
lola: 46133219 markings, 154506032 edges, 41953 markings/sec, 1145 secs
lola: 46336023 markings, 155179168 edges, 40561 markings/sec, 1150 secs
lola: 46529067 markings, 155841537 edges, 38609 markings/sec, 1155 secs
lola: 46723919 markings, 156501506 edges, 38970 markings/sec, 1160 secs
lola: 46916982 markings, 157174015 edges, 38613 markings/sec, 1165 secs
lola: 47107237 markings, 157846894 edges, 38051 markings/sec, 1170 secs
lola: 47302492 markings, 158523406 edges, 39051 markings/sec, 1175 secs
lola: 47505342 markings, 159197279 edges, 40570 markings/sec, 1180 secs
lola: 47697164 markings, 159864516 edges, 38364 markings/sec, 1185 secs
lola: 47888382 markings, 160528522 edges, 38244 markings/sec, 1190 secs
lola: 48082763 markings, 161210326 edges, 38876 markings/sec, 1195 secs
lola: 48280733 markings, 161886193 edges, 39594 markings/sec, 1200 secs
lola: 48480299 markings, 162557581 edges, 39913 markings/sec, 1205 secs
lola: 48675764 markings, 163228930 edges, 39093 markings/sec, 1210 secs
lola: 48863306 markings, 163882678 edges, 37508 markings/sec, 1215 secs
lola: 49033445 markings, 164485460 edges, 34028 markings/sec, 1220 secs
lola: 49212535 markings, 165079673 edges, 35818 markings/sec, 1225 secs
lola: 49389690 markings, 165681047 edges, 35431 markings/sec, 1230 secs
lola: 49564758 markings, 166287187 edges, 35014 markings/sec, 1235 secs
lola: 49733454 markings, 166893280 edges, 33739 markings/sec, 1240 secs
lola: 49900856 markings, 167504737 edges, 33480 markings/sec, 1245 secs
lola: 50092528 markings, 168170275 edges, 38334 markings/sec, 1250 secs
lola: 50277858 markings, 168836955 edges, 37066 markings/sec, 1255 secs
lola: 50469930 markings, 169498337 edges, 38414 markings/sec, 1260 secs
lola: 50655340 markings, 170157968 edges, 37082 markings/sec, 1265 secs
lola: 50848052 markings, 170810777 edges, 38542 markings/sec, 1270 secs
lola: 51041976 markings, 171465934 edges, 38785 markings/sec, 1275 secs
lola: 51233479 markings, 172117263 edges, 38301 markings/sec, 1280 secs
lola: 51421009 markings, 172774344 edges, 37506 markings/sec, 1285 secs
lola: 51605980 markings, 173439053 edges, 36994 markings/sec, 1290 secs
lola: 51797127 markings, 174097855 edges, 38229 markings/sec, 1295 secs
lola: 51983205 markings, 174758634 edges, 37216 markings/sec, 1300 secs
lola: 52178465 markings, 175437192 edges, 39052 markings/sec, 1305 secs
lola: 52367188 markings, 176101828 edges, 37745 markings/sec, 1310 secs
lola: 52562258 markings, 176748770 edges, 39014 markings/sec, 1315 secs
lola: 52757997 markings, 177396202 edges, 39148 markings/sec, 1320 secs
lola: 52952961 markings, 178057329 edges, 38993 markings/sec, 1325 secs
lola: 53146128 markings, 178731861 edges, 38633 markings/sec, 1330 secs
lola: 53337594 markings, 179412160 edges, 38293 markings/sec, 1335 secs
lola: 53537772 markings, 180094200 edges, 40036 markings/sec, 1340 secs
lola: 53730558 markings, 180768401 edges, 38557 markings/sec, 1345 secs
lola: 53927047 markings, 181433631 edges, 39298 markings/sec, 1350 secs
lola: 54114651 markings, 182087500 edges, 37521 markings/sec, 1355 secs
lola: 54308293 markings, 182745130 edges, 38728 markings/sec, 1360 secs
lola: 54497382 markings, 183402527 edges, 37818 markings/sec, 1365 secs
lola: 54683501 markings, 184067360 edges, 37224 markings/sec, 1370 secs
lola: 54874244 markings, 184724948 edges, 38149 markings/sec, 1375 secs
lola: 55063662 markings, 185374062 edges, 37884 markings/sec, 1380 secs
lola: 55255342 markings, 186019913 edges, 38336 markings/sec, 1385 secs
lola: 55439291 markings, 186674597 edges, 36790 markings/sec, 1390 secs
lola: 55628558 markings, 187328102 edges, 37853 markings/sec, 1395 secs
lola: 55816726 markings, 187975008 edges, 37634 markings/sec, 1400 secs
lola: 56021848 markings, 188637059 edges, 41024 markings/sec, 1405 secs
lola: 56220480 markings, 189304691 edges, 39726 markings/sec, 1410 secs
lola: 56416440 markings, 189981767 edges, 39192 markings/sec, 1415 secs
lola: 56608229 markings, 190653294 edges, 38358 markings/sec, 1420 secs
lola: 56801705 markings, 191328240 edges, 38695 markings/sec, 1425 secs
lola: 56994307 markings, 191999975 edges, 38520 markings/sec, 1430 secs
lola: 57184890 markings, 192667601 edges, 38117 markings/sec, 1435 secs
lola: 57373079 markings, 193314897 edges, 37638 markings/sec, 1440 secs
lola: 57555752 markings, 193958680 edges, 36535 markings/sec, 1445 secs
lola: 57746018 markings, 194606268 edges, 38053 markings/sec, 1450 secs
lola: 57928082 markings, 195262861 edges, 36413 markings/sec, 1455 secs
lola: 58114264 markings, 195929175 edges, 37236 markings/sec, 1460 secs
lola: 58302055 markings, 196589825 edges, 37558 markings/sec, 1465 secs
lola: 58495951 markings, 197256727 edges, 38779 markings/sec, 1470 secs
lola: 58687942 markings, 197928652 edges, 38398 markings/sec, 1475 secs
lola: 58877024 markings, 198598652 edges, 37816 markings/sec, 1480 secs
lola: 59066565 markings, 199266839 edges, 37908 markings/sec, 1485 secs
lola: 59274505 markings, 199910097 edges, 41588 markings/sec, 1490 secs
lola: 59485402 markings, 200525637 edges, 42179 markings/sec, 1495 secs
lola: 59688046 markings, 201144485 edges, 40529 markings/sec, 1500 secs
lola: 59886297 markings, 201780254 edges, 39650 markings/sec, 1505 secs
lola: 60087555 markings, 202420112 edges, 40252 markings/sec, 1510 secs
lola: 60292316 markings, 203051013 edges, 40952 markings/sec, 1515 secs
lola: 60492484 markings, 203693928 edges, 40034 markings/sec, 1520 secs
lola: 60689282 markings, 204327709 edges, 39360 markings/sec, 1525 secs
lola: 60884821 markings, 204961464 edges, 39108 markings/sec, 1530 secs
lola: 61078687 markings, 205594163 edges, 38773 markings/sec, 1535 secs
lola: 61275285 markings, 206260564 edges, 39320 markings/sec, 1540 secs
lola: 61468648 markings, 206930464 edges, 38673 markings/sec, 1545 secs
lola: 61658034 markings, 207585437 edges, 37877 markings/sec, 1550 secs
lola: 61846360 markings, 208238210 edges, 37665 markings/sec, 1555 secs
lola: 62032903 markings, 208885915 edges, 37309 markings/sec, 1560 secs
lola: 62223448 markings, 209532260 edges, 38109 markings/sec, 1565 secs
lola: 62420974 markings, 210187021 edges, 39505 markings/sec, 1570 secs
lola: 62616028 markings, 210845880 edges, 39011 markings/sec, 1575 secs
lola: 62807957 markings, 211488974 edges, 38386 markings/sec, 1580 secs
lola: 62991677 markings, 212123949 edges, 36744 markings/sec, 1585 secs
lola: 63177139 markings, 212780602 edges, 37092 markings/sec, 1590 secs
lola: 63364918 markings, 213445389 edges, 37556 markings/sec, 1595 secs
lola: 63553047 markings, 214102440 edges, 37626 markings/sec, 1600 secs
lola: 63745206 markings, 214737820 edges, 38432 markings/sec, 1605 secs
lola: 63937228 markings, 215370775 edges, 38404 markings/sec, 1610 secs
lola: 64128845 markings, 216003378 edges, 38323 markings/sec, 1615 secs
lola: 64319455 markings, 216634508 edges, 38122 markings/sec, 1620 secs
lola: 64507578 markings, 217285367 edges, 37625 markings/sec, 1625 secs
lola: 64697713 markings, 217947323 edges, 38027 markings/sec, 1630 secs
lola: 64887530 markings, 218612818 edges, 37963 markings/sec, 1635 secs
lola: 65075082 markings, 219254112 edges, 37510 markings/sec, 1640 secs
lola: 65275501 markings, 219893869 edges, 40084 markings/sec, 1645 secs
lola: 65468955 markings, 220546737 edges, 38691 markings/sec, 1650 secs
lola: 65661721 markings, 221201709 edges, 38553 markings/sec, 1655 secs
lola: 65850973 markings, 221859388 edges, 37850 markings/sec, 1660 secs
lola: 66035539 markings, 222520569 edges, 36913 markings/sec, 1665 secs
lola: 66218349 markings, 223187025 edges, 36562 markings/sec, 1670 secs
lola: 66403805 markings, 223856088 edges, 37091 markings/sec, 1675 secs
lola: 66590764 markings, 224518828 edges, 37392 markings/sec, 1680 secs
lola: 66778982 markings, 225200471 edges, 37644 markings/sec, 1685 secs
lola: 66968912 markings, 225886834 edges, 37986 markings/sec, 1690 secs
lola: 67161437 markings, 226558464 edges, 38505 markings/sec, 1695 secs
lola: 67346896 markings, 227206196 edges, 37092 markings/sec, 1700 secs
lola: 67533509 markings, 227876710 edges, 37323 markings/sec, 1705 secs
lola: 67735812 markings, 228542972 edges, 40461 markings/sec, 1710 secs
lola: 67939977 markings, 229200429 edges, 40833 markings/sec, 1715 secs
lola: 68139560 markings, 229855048 edges, 39917 markings/sec, 1720 secs
lola: 68337462 markings, 230521553 edges, 39580 markings/sec, 1725 secs
lola: 68533000 markings, 231187703 edges, 39108 markings/sec, 1730 secs
lola: 68716292 markings, 231831316 edges, 36658 markings/sec, 1735 secs
lola: 68890833 markings, 232455004 edges, 34908 markings/sec, 1740 secs
lola: 69079042 markings, 233108233 edges, 37642 markings/sec, 1745 secs
lola: 69251366 markings, 233704266 edges, 34465 markings/sec, 1750 secs
lola: 69430719 markings, 234341652 edges, 35871 markings/sec, 1755 secs
lola: 69600300 markings, 234947366 edges, 33916 markings/sec, 1760 secs
lola: 69773660 markings, 235536056 edges, 34672 markings/sec, 1765 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola: time limit reached - aborting
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola:
preliminary result: yes yes no unknown yes no no yes yes unknown no no no no no yes
lola: memory consumption: 33152 KB
lola: time consumption: 3568 seconds
BK_STOP 1527433537808
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-5"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-5.tgz
mv NeoElection-COL-5 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-COL-5, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r256-csrt-152732582800075"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;