About the Execution of LoLA for QuasiCertifProtocol-COL-28
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15918.910 | 3600000.00 | 3642094.00 | 13746.00 | FFFF?FFF?F?FFF?F | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........................................
/home/mcc/execution
total 276K
-rw-r--r-- 1 mcc users 3.3K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.6K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 15K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.5K May 26 09:27 LTLCardinality.txt
-rw-r--r-- 1 mcc users 12K May 26 09:27 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K May 26 09:27 LTLFireability.txt
-rw-r--r-- 1 mcc users 9.9K May 26 09:27 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.4K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 117 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 355 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 3 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 120K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is QuasiCertifProtocol-COL-28, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r184-qhx2-152732127300051
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-00
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-01
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-02
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-03
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-04
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-05
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-06
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-07
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-08
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-09
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-15
=== Now, execution of the tool begins
BK_START 1528187205565
info: Time: 3600 - MCC
===========================================================================================
prep: translating QuasiCertifProtocol-COL-28 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: check for too many tokens
===========================================================================================
prep: translating QuasiCertifProtocol-COL-28 formula LTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking LTLCardinality @ QuasiCertifProtocol-COL-28 @ 3569 seconds
lola: LoLA will run for 3569 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 3444/65536 symbol table entries, 448 collisions
lola: preprocessing...
lola: Size of bit vector: 95936
lola: finding significant places
lola: 2998 places, 446 transitions, 445 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 591 transition conflict sets
lola: TASK
lola: reading formula from QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: LP says that atomic proposition is always false: (2 <= p146)
lola: LP says that atomic proposition is always false: (2 <= p1918)
lola: LP says that atomic proposition is always false: (3 <= p2996)
lola: A (F ((2 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87))) : A ((((1 <= p2006 + p2007 + p2008 + p2009 + p2010 + p2011 + p2012 + p2013 + p2014 + p2015 + p2016 + p2017 + p2018 + p2019 + p2020 + p2021 + p2022 + p2023 + p2024 + p2025 + p2026 + p2027 + p2028 + p2029 + p2030 + p2031 + p2032 + p2033 + p2034) U FALSE) U ((p1831 + p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 <= p147) U FALSE))) : A ((X ((1 <= p58)) U (FALSE U (1 <= p147)))) : A (X (F (X (X ((2 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87)))))) : A (X (G (G (X ((p1831 + p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 <= p147)))))) : A ((3 <= p1831 + p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1569 + p1571 + p1572 + p1573 + p1574 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1610 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1617 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1653 + p1654 + p1655 + p1656 + p1658 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1743 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1774 + p1775 + p1776 + p1777 + p1778 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1800 + p1801 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1827 + p1828 + p1829 + p1830 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859)) : A ((X ((2 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)) U G (F ((2 <= p2995))))) : A ((G (X ((2 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99))) U F (X ((1 <= p1860 + p1861 + p1862 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1885 + p1886 + p1887 + p1888))))) : A (X (G (G (F ((1 <= p2936 + p2937 + p2938 + p2939 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964)))))) : A (X ((3 <= p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p2443 + p2414 + p2385 + p2356 + p2327 + p2298 + p2269 + p2240 + p2211 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2212 + p2213 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2386 + p2387 + p2388 + p2389 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2502 + p2503 + p2504 + p2505 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584 + p2585 + p2586 + p2587 + p2589 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2199 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2198 + p2699 + p2197 + p2700 + p2701 + p2702 + p2703 + p2196 + p2705 + p2706 + p2707 + p2708 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2195 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2194 + p2757 + p2758 + p2759 + p2760 + p2761 + p2193 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2192 + p2786 + p2787 + p2788 + p2789 + p2790 + p2191 + p2792 + p2793 + p2794 + p2795 + p2796 + p2797 + p2798 + p2799 + p2190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p2189 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2188 + p2844 + p2845 + p2846 + p2847 + p2848 + p2187 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2186 + p2873 + p2874 + p2875 + p2876 + p2877 + p2185 + p2184 + p2183 + p2181 + p2180 + p2179 + p2178 + p2177 + p2176 + p2175 + p2174 + p2173 + p2172 + p2171 + p2170 + p2169 + p2168 + p2167 + p2166 + p2165 + p2164 + p2163 + p2162 + p2161 + p2160 + p2159 + p2158 + p2157 + p2156 + p2155 + p2154 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2134 + p2133 + p2132 + p2131 + p2130 + p2129 + p2128 + p2127 + p2126 + p2125 + p2123 + p2122 + p2121 + p2120 + p2119 + p2118 + p2117 + p2116 + p2115 + p2114 + p2113 + p2112 + p2111 + p2110 + p2109 + p2108 + p2107 + p2106 + p2105 + p2104 + p2103 + p2102 + p2101 + p2100 + p2099 + p2098 + p2097 + p2096 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 + p2069 + p2068 + p2067))) : A (F (G (((1 <= p1900 + p1901 + p1902 + p1903 + p1904 + p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1911 + p1912 + p1913 + p1914 + p1915 + p1916 + p1917 + p1889 + p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899) U (p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p2443 + p2414 + p2385 + p2356 + p2327 + p2298 + p2269 + p2240 + p2211 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2212 + p2213 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2386 + p2387 + p2388 + p2389 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2502 + p2503 + p2504 + p2505 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584 + p2585 + p2586 + p2587 + p2589 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2199 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2198 + p2699 + p2197 + p2700 + p2701 + p2702 + p2703 + p2196 + p2705 + p2706 + p2707 + p2708 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2195 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2194 + p2757 + p2758 + p2759 + p2760 + p2761 + p2193 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2192 + p2786 + p2787 + p2788 + p2789 + p2790 + p2191 + p2792 + p2793 + p2794 + p2795 + p2796 + p2797 + p2798 + p2799 + p2190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p2189 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2188 + p2844 + p2845 + p2846 + p2847 + p2848 + p2187 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2186 + p2873 + p2874 + p2875 + p2876 + p2877 + p2185 + p2184 + p2183 + p2181 + p2180 + p2179 + p2178 + p2177 + p2176 + p2175 + p2174 + p2173 + p2172 + p2171 + p2170 + p2169 + p2168 + p2167 + p2166 + p2165 + p2164 + p2163 + p2162 + p2161 + p2160 + p2159 + p2158 + p2157 + p2156 + p2155 + p2154 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2134 + p2133 + p2132 + p2131 + p2130 + p2129 + p2128 + p2127 + p2126 + p2125 + p2123 + p2122 + p2121 + p2120 + p2119 + p2118 + p2117 + p2116 + p2115 + p2114 + p2113 + p2112 + p2111 + p2110 + p2109 + p2108 + p2107 + p2106 + p2105 + p2104 + p2103 + p2102 + p2101 + p2100 + p2099 + p2098 + p2097 + p2096 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 + p2069 + p2068 + p2067 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87))))) : A ((3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)) : A ((F ((2 <= p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p2443 + p2414 + p2385 + p2356 + p2327 + p2298 + p2269 + p2240 + p2211 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2212 + p2213 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2386 + p2387 + p2388 + p2389 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2502 + p2503 + p2504 + p2505 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 + p2555 + p2556 + p2557 + p2558 + p2560 + p2561 + p2562 + p2563 + p2564 + p2565 + p2566 + p2567 + p2568 + p2569 + p2570 + p2571 + p2572 + p2573 + p2574 + p2575 + p2576 + p2577 + p2578 + p2579 + p2580 + p2581 + p2582 + p2583 + p2584 + p2585 + p2586 + p2587 + p2589 + p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 + p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603 + p2604 + p2605 + p2606 + p2607 + p2608 + p2609 + p2610 + p2611 + p2612 + p2613 + p2614 + p2615 + p2616 + p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624 + p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 + p2632 + p2633 + p2634 + p2635 + p2636 + p2637 + p2638 + p2639 + p2640 + p2641 + p2642 + p2643 + p2644 + p2645 + p2647 + p2648 + p2649 + p2650 + p2651 + p2652 + p2653 + p2654 + p2655 + p2656 + p2657 + p2658 + p2659 + p2660 + p2661 + p2662 + p2663 + p2664 + p2665 + p2666 + p2667 + p2668 + p2669 + p2670 + p2671 + p2672 + p2673 + p2674 + p2199 + p2676 + p2677 + p2678 + p2679 + p2680 + p2681 + p2682 + p2683 + p2684 + p2685 + p2686 + p2687 + p2688 + p2689 + p2690 + p2691 + p2692 + p2693 + p2694 + p2695 + p2696 + p2697 + p2698 + p2198 + p2699 + p2197 + p2700 + p2701 + p2702 + p2703 + p2196 + p2705 + p2706 + p2707 + p2708 + p2709 + p2710 + p2711 + p2712 + p2713 + p2714 + p2715 + p2716 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p2723 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2730 + p2731 + p2732 + p2195 + p2734 + p2735 + p2736 + p2737 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p2744 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p2751 + p2752 + p2753 + p2754 + p2755 + p2756 + p2194 + p2757 + p2758 + p2759 + p2760 + p2761 + p2193 + p2763 + p2764 + p2765 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p2773 + p2774 + p2775 + p2776 + p2777 + p2778 + p2779 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2192 + p2786 + p2787 + p2788 + p2789 + p2790 + p2191 + p2792 + p2793 + p2794 + p2795 + p2796 + p2797 + p2798 + p2799 + p2190 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p2810 + p2811 + p2812 + p2813 + p2814 + p2815 + p2816 + p2817 + p2818 + p2819 + p2189 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p2837 + p2838 + p2839 + p2840 + p2841 + p2842 + p2843 + p2188 + p2844 + p2845 + p2846 + p2847 + p2848 + p2187 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p2857 + p2858 + p2859 + p2860 + p2861 + p2862 + p2863 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p2872 + p2186 + p2873 + p2874 + p2875 + p2876 + p2877 + p2185 + p2184 + p2183 + p2181 + p2180 + p2179 + p2178 + p2177 + p2176 + p2175 + p2174 + p2173 + p2172 + p2171 + p2170 + p2169 + p2168 + p2167 + p2166 + p2165 + p2164 + p2163 + p2162 + p2161 + p2160 + p2159 + p2158 + p2157 + p2156 + p2155 + p2154 + p2152 + p2151 + p2150 + p2149 + p2148 + p2147 + p2146 + p2145 + p2144 + p2143 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2134 + p2133 + p2132 + p2131 + p2130 + p2129 + p2128 + p2127 + p2126 + p2125 + p2123 + p2122 + p2121 + p2120 + p2119 + p2118 + p2117 + p2116 + p2115 + p2114 + p2113 + p2112 + p2111 + p2110 + p2109 + p2108 + p2107 + p2106 + p2105 + p2104 + p2103 + p2102 + p2101 + p2100 + p2099 + p2098 + p2097 + p2096 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2071 + p2070 + p2069 + p2068 + p2067)) U X ((3 <= p2035)))) : A (G ((1 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87))) : A (G (F (X (F ((1 <= p2036)))))) : A (G (X (((2 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99) U (1 <= p2995)))))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:185
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:425
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:410
lola: rewrite Frontend/Parser/formula_rewrite.k:431
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:350
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:356
lola: rewrite Frontend/Parser/formula_rewrite.k:347
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:377
lola: rewrite Frontend/Parser/formula_rewrite.k:353
lola: rewrite Frontend/Parser/formula_rewrite.k:437
lola: rewrite Frontend/Parser/formula_rewrite.k:522
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 219 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 234 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p1831 + p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p1831 + p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p1... (shortened)
lola: processed formula length: 6732
lola: ========================================
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 2 will run for 250 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p15 + p14 + p13 + p12 + p11 + p10)
lola: processed formula length: 168
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 3 will run for 270 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (G ((p1831 + p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p10... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G ((p1831 + p1802 + p1773 + p1744 + p1715 + p1686 + p1657 + p1628 + p1599 + p1570 + p1541 + p1512 + p1483 + p1454 + p1425 + p1396 + p1367 + p1338 + p1309 + p1280 + p1251 + p1222 + p1193 + p1164 + p1135 + p1106 + p1077 + p1048 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p10... (shortened)
lola: processed formula length: 6751
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 146371 markings, 1016646 edges, 29274 markings/sec, 0 secs
lola: 276271 markings, 2021226 edges, 25980 markings/sec, 5 secs
lola: 418668 markings, 3018741 edges, 28479 markings/sec, 10 secs
lola: 558365 markings, 3980302 edges, 27939 markings/sec, 15 secs
lola: 686766 markings, 4950379 edges, 25680 markings/sec, 20 secs
lola: 811471 markings, 5910805 edges, 24941 markings/sec, 25 secs
lola: 928769 markings, 6865320 edges, 23460 markings/sec, 30 secs
lola: 1046022 markings, 7825758 edges, 23451 markings/sec, 35 secs
lola: 1161820 markings, 8807064 edges, 23160 markings/sec, 40 secs
lola: 1294355 markings, 9788393 edges, 26507 markings/sec, 45 secs
lola: 1412509 markings, 10753286 edges, 23631 markings/sec, 50 secs
lola: 1522240 markings, 11706136 edges, 21946 markings/sec, 55 secs
lola: 1639850 markings, 12679112 edges, 23522 markings/sec, 60 secs
lola: 1747333 markings, 13625946 edges, 21497 markings/sec, 65 secs
lola: 1854537 markings, 14583314 edges, 21441 markings/sec, 70 secs
lola: 1953771 markings, 15535705 edges, 19847 markings/sec, 75 secs
lola: 2072799 markings, 16527879 edges, 23806 markings/sec, 80 secs
lola: 2200731 markings, 17511317 edges, 25586 markings/sec, 85 secs
lola: 2325230 markings, 18467367 edges, 24900 markings/sec, 90 secs
lola: 2440826 markings, 19426231 edges, 23119 markings/sec, 95 secs
lola: 2549849 markings, 20393952 edges, 21805 markings/sec, 100 secs
lola: 2668080 markings, 21360819 edges, 23646 markings/sec, 105 secs
lola: 2775428 markings, 22320401 edges, 21470 markings/sec, 110 secs
lola: 2882915 markings, 23287638 edges, 21497 markings/sec, 115 secs
lola: 2981860 markings, 24256327 edges, 19789 markings/sec, 120 secs
lola: 3103891 markings, 25242233 edges, 24406 markings/sec, 125 secs
lola: 3215853 markings, 26205768 edges, 22392 markings/sec, 130 secs
lola: 3323317 markings, 27166156 edges, 21493 markings/sec, 135 secs
lola: 3424899 markings, 28128459 edges, 20316 markings/sec, 140 secs
lola: 3530401 markings, 29111984 edges, 21100 markings/sec, 145 secs
lola: 3636387 markings, 30082047 edges, 21197 markings/sec, 150 secs
lola: 3733817 markings, 31053998 edges, 19486 markings/sec, 155 secs
lola: 3833827 markings, 32024156 edges, 20002 markings/sec, 160 secs
lola: 3928522 markings, 33003311 edges, 18939 markings/sec, 165 secs
lola: 4049834 markings, 33991729 edges, 24262 markings/sec, 170 secs
lola: 4196580 markings, 34979425 edges, 29349 markings/sec, 175 secs
lola: 4330555 markings, 35952545 edges, 26795 markings/sec, 180 secs
lola: 4450527 markings, 36919920 edges, 23994 markings/sec, 185 secs
lola: 4581669 markings, 37892594 edges, 26228 markings/sec, 190 secs
lola: 4700245 markings, 38862894 edges, 23715 markings/sec, 195 secs
lola: 4810961 markings, 39829290 edges, 22143 markings/sec, 200 secs
lola: 4940995 markings, 40821962 edges, 26007 markings/sec, 205 secs
lola: 5063606 markings, 41790885 edges, 24522 markings/sec, 210 secs
lola: 5180792 markings, 42763649 edges, 23437 markings/sec, 215 secs
lola: 5291387 markings, 43737362 edges, 22119 markings/sec, 220 secs
lola: 5410977 markings, 44712773 edges, 23918 markings/sec, 225 secs
lola: 5519664 markings, 45683820 edges, 21737 markings/sec, 230 secs
lola: 5623889 markings, 46644895 edges, 20845 markings/sec, 235 secs
lola: 5730425 markings, 47608115 edges, 21307 markings/sec, 240 secs
lola: 5874796 markings, 48579482 edges, 28874 markings/sec, 245 secs
lola: 6002174 markings, 49544647 edges, 25476 markings/sec, 250 secs
lola: 6127720 markings, 50513614 edges, 25109 markings/sec, 255 secs
lola: 6249368 markings, 51473134 edges, 24330 markings/sec, 260 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown unknown unknown no unknown unknown unknown unknown unknown no unknown unknown unknown unknown
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown no unknown unknown unknown no unknown unknown unknown unknown unknown no unknown unknown unknown unknown
lola: memory consumption: 1127540 KB
lola: time consumption: 328 seconds
lola: memory consumption: 1128120 KB
lola: time consumption: 328 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 4 will run for 268 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((X ((1 <= p58)) U (1 <= p147)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X ((1 <= p58)) U (1 <= p147)))
lola: processed formula length: 34
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 292 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((F ((1 <= p1860 + p1861 + p1862 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1885 + p1886 + p1887 + p1888)) OR (G ((2 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p88 + p89 + p90 + p9... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((F ((1 <= p1860 + p1861 + p1862 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1885 + p1886 + p1887 + p1888)) OR (G ((2 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p88 + p89 + p90 + p9... (shortened)
lola: processed formula length: 700
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X ((3 <= p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p244... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((3 <= p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p244... (shortened)
lola: processed formula length: 6740
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 357 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (X (X (F ((2 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (X (F ((2 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87))))))
lola: processed formula length: 198
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-3 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 402 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((F ((2 <= p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p24... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((F ((2 <= p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p24... (shortened)
lola: processed formula length: 6761
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 460 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (G ((F ((1 <= p2995)) AND ((2 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99) OR (1 <= p2995))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G ((F ((1 <= p2995)) AND ((2 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99) OR (1 <= p2995))))))
lola: processed formula length: 248
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 536 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G ((1 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (G ((1 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87)))
lola: processed formula length: 186
lola: 34 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:631
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: formula 0: (p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 <= 0)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: 0 markings, 0 edges
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-LTLCardinality-10-0.sara
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 644 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((2 <= p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:659
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: (p59 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 <= 1)
lola: processed formula length: 178
lola: 34 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 32 markings, 31 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-0 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 805 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((1 <= p2036))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((1 <= p2036))))
lola: processed formula length: 24
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 479858 markings, 574693 edges, 95972 markings/sec, 0 secs
lola: 947110 markings, 1149218 edges, 93450 markings/sec, 5 secs
lola: 1411433 markings, 1721111 edges, 92865 markings/sec, 10 secs
lola: 1866908 markings, 2294830 edges, 91095 markings/sec, 15 secs
lola: 2329512 markings, 2868517 edges, 92521 markings/sec, 20 secs
lola: 2792916 markings, 3450466 edges, 92681 markings/sec, 25 secs
lola: 3243304 markings, 4020793 edges, 90078 markings/sec, 30 secs
lola: 3688778 markings, 4594457 edges, 89095 markings/sec, 35 secs
lola: 4149012 markings, 5177437 edges, 92047 markings/sec, 40 secs
lola: 4613521 markings, 5756474 edges, 92902 markings/sec, 45 secs
lola: 5072075 markings, 6337377 edges, 91711 markings/sec, 50 secs
lola: 5526565 markings, 6918093 edges, 90898 markings/sec, 55 secs
lola: 5975829 markings, 7499923 edges, 89853 markings/sec, 60 secs
lola: 6429290 markings, 8076880 edges, 90692 markings/sec, 65 secs
lola: 6876822 markings, 8660804 edges, 89506 markings/sec, 70 secs
lola: 7325413 markings, 9241575 edges, 89718 markings/sec, 75 secs
lola: 7756448 markings, 9813245 edges, 86207 markings/sec, 80 secs
lola: 8210188 markings, 10382899 edges, 90748 markings/sec, 85 secs
lola: 8665334 markings, 10954420 edges, 91029 markings/sec, 90 secs
lola: 9113993 markings, 11522868 edges, 89732 markings/sec, 95 secs
lola: 9556935 markings, 12091126 edges, 88588 markings/sec, 100 secs
lola: 10005355 markings, 12667996 edges, 89684 markings/sec, 105 secs
lola: 10448428 markings, 13234466 edges, 88615 markings/sec, 110 secs
lola: 10887177 markings, 13805433 edges, 87750 markings/sec, 115 secs
lola: 11323930 markings, 14376068 edges, 87351 markings/sec, 120 secs
lola: 11752604 markings, 14946428 edges, 85735 markings/sec, 125 secs
lola: 12200156 markings, 15514884 edges, 89510 markings/sec, 130 secs
lola: 12641322 markings, 16084778 edges, 88233 markings/sec, 135 secs
lola: 13077132 markings, 16650746 edges, 87162 markings/sec, 140 secs
lola: 13507880 markings, 17219367 edges, 86150 markings/sec, 145 secs
lola: 13936463 markings, 17784256 edges, 85717 markings/sec, 150 secs
lola: 14375344 markings, 18360087 edges, 87776 markings/sec, 155 secs
lola: 14812197 markings, 18943280 edges, 87371 markings/sec, 160 secs
lola: 15244893 markings, 19523184 edges, 86539 markings/sec, 165 secs
lola: 15673957 markings, 20107242 edges, 85813 markings/sec, 170 secs
lola: 16139361 markings, 20687571 edges, 93081 markings/sec, 175 secs
lola: 16596997 markings, 21264224 edges, 91527 markings/sec, 180 secs
lola: 17053687 markings, 21841894 edges, 91338 markings/sec, 185 secs
lola: 17502422 markings, 22420053 edges, 89747 markings/sec, 190 secs
lola: 17952039 markings, 22996569 edges, 89923 markings/sec, 195 secs
lola: 18401306 markings, 23572492 edges, 89853 markings/sec, 200 secs
lola: 18846568 markings, 24151067 edges, 89052 markings/sec, 205 secs
lola: 19288997 markings, 24731337 edges, 88486 markings/sec, 210 secs
lola: 19729457 markings, 25314724 edges, 88092 markings/sec, 215 secs
lola: 20182889 markings, 25891611 edges, 90686 markings/sec, 220 secs
lola: 20628164 markings, 26471215 edges, 89055 markings/sec, 225 secs
lola: 21073602 markings, 27048493 edges, 89088 markings/sec, 230 secs
lola: 21508323 markings, 27624870 edges, 86944 markings/sec, 235 secs
lola: 21950242 markings, 28202212 edges, 88384 markings/sec, 240 secs
lola: 22387908 markings, 28780420 edges, 87533 markings/sec, 245 secs
lola: 22821917 markings, 29358960 edges, 86802 markings/sec, 250 secs
lola: 23253188 markings, 29939154 edges, 86254 markings/sec, 255 secs
lola: 23683852 markings, 30519658 edges, 86133 markings/sec, 260 secs
lola: 24136670 markings, 31096043 edges, 90564 markings/sec, 265 secs
lola: 24581621 markings, 31676935 edges, 88990 markings/sec, 270 secs
lola: 25028417 markings, 32255787 edges, 89359 markings/sec, 275 secs
lola: 25466090 markings, 32836502 edges, 87535 markings/sec, 280 secs
lola: 25909318 markings, 33414915 edges, 88646 markings/sec, 285 secs
lola: 26348415 markings, 33995284 edges, 87819 markings/sec, 290 secs
lola: 26782789 markings, 34575368 edges, 86875 markings/sec, 295 secs
lola: 27215459 markings, 35157569 edges, 86534 markings/sec, 300 secs
lola: 27646205 markings, 35739220 edges, 86149 markings/sec, 305 secs
lola: 28087211 markings, 36315417 edges, 88201 markings/sec, 310 secs
lola: 28519523 markings, 36894435 edges, 86462 markings/sec, 315 secs
lola: 28954832 markings, 37473124 edges, 87062 markings/sec, 320 secs
lola: 29377806 markings, 38048101 edges, 84595 markings/sec, 325 secs
lola: 29808745 markings, 38625421 edges, 86188 markings/sec, 330 secs
lola: 30236456 markings, 39204994 edges, 85542 markings/sec, 335 secs
lola: 30663388 markings, 39787738 edges, 85386 markings/sec, 340 secs
lola: 31085728 markings, 40370024 edges, 84468 markings/sec, 345 secs
lola: 31504486 markings, 40949758 edges, 83752 markings/sec, 350 secs
lola: 31964460 markings, 41519179 edges, 91995 markings/sec, 355 secs
lola: 32414345 markings, 42088373 edges, 89977 markings/sec, 360 secs
lola: 32868884 markings, 42662854 edges, 90908 markings/sec, 365 secs
lola: 33315137 markings, 43239738 edges, 89251 markings/sec, 370 secs
lola: 33765270 markings, 43812719 edges, 90027 markings/sec, 375 secs
lola: 34211210 markings, 44387186 edges, 89188 markings/sec, 380 secs
lola: 34653319 markings, 44963166 edges, 88422 markings/sec, 385 secs
lola: 35091740 markings, 45538355 edges, 87684 markings/sec, 390 secs
lola: 35532571 markings, 46116912 edges, 88166 markings/sec, 395 secs
lola: 35979542 markings, 46687098 edges, 89394 markings/sec, 400 secs
lola: 36425334 markings, 47267908 edges, 89158 markings/sec, 405 secs
lola: 36867638 markings, 47845683 edges, 88461 markings/sec, 410 secs
lola: 37302535 markings, 48422904 edges, 86979 markings/sec, 415 secs
lola: 37742723 markings, 48995561 edges, 88038 markings/sec, 420 secs
lola: 38177313 markings, 49570589 edges, 86918 markings/sec, 425 secs
lola: 38607392 markings, 50144279 edges, 86016 markings/sec, 430 secs
lola: 39035533 markings, 50721669 edges, 85628 markings/sec, 435 secs
lola: 39468800 markings, 51299342 edges, 86653 markings/sec, 440 secs
lola: 39919888 markings, 51875062 edges, 90218 markings/sec, 445 secs
lola: 40360898 markings, 52449621 edges, 88202 markings/sec, 450 secs
lola: 40804843 markings, 53029315 edges, 88789 markings/sec, 455 secs
lola: 41239193 markings, 53606357 edges, 86870 markings/sec, 460 secs
lola: 41675193 markings, 54173312 edges, 87200 markings/sec, 465 secs
lola: 42110877 markings, 54749803 edges, 87137 markings/sec, 470 secs
lola: 42542116 markings, 55324980 edges, 86248 markings/sec, 475 secs
lola: 42970740 markings, 55903244 edges, 85725 markings/sec, 480 secs
lola: 43390414 markings, 56468191 edges, 83935 markings/sec, 485 secs
lola: 43827514 markings, 57039939 edges, 87420 markings/sec, 490 secs
lola: 44260958 markings, 57620088 edges, 86689 markings/sec, 495 secs
lola: 44694673 markings, 58197936 edges, 86743 markings/sec, 500 secs
lola: 45120371 markings, 58776564 edges, 85140 markings/sec, 505 secs
lola: 45548824 markings, 59350073 edges, 85691 markings/sec, 510 secs
lola: 45974997 markings, 59927504 edges, 85235 markings/sec, 515 secs
lola: 46396908 markings, 60503701 edges, 84382 markings/sec, 520 secs
lola: 46812451 markings, 61076650 edges, 83109 markings/sec, 525 secs
lola: 47226752 markings, 61652824 edges, 82860 markings/sec, 530 secs
lola: 47672165 markings, 62219133 edges, 89083 markings/sec, 535 secs
lola: 48109844 markings, 62785404 edges, 87536 markings/sec, 540 secs
lola: 48546555 markings, 63351864 edges, 87342 markings/sec, 545 secs
lola: 48975477 markings, 63918994 edges, 85784 markings/sec, 550 secs
lola: 49408971 markings, 64488993 edges, 86699 markings/sec, 555 secs
lola: 49841829 markings, 65057687 edges, 86572 markings/sec, 560 secs
lola: 50268423 markings, 65627132 edges, 85319 markings/sec, 565 secs
lola: 50693412 markings, 66197297 edges, 84998 markings/sec, 570 secs
lola: 51101835 markings, 66757588 edges, 81685 markings/sec, 575 secs
lola: 51542767 markings, 67329764 edges, 88186 markings/sec, 580 secs
lola: 51976258 markings, 67904736 edges, 86698 markings/sec, 585 secs
lola: 52410284 markings, 68482490 edges, 86805 markings/sec, 590 secs
lola: 52836018 markings, 69059165 edges, 85147 markings/sec, 595 secs
lola: 53259493 markings, 69630962 edges, 84695 markings/sec, 600 secs
lola: 53675107 markings, 70189503 edges, 83123 markings/sec, 605 secs
lola: 54084533 markings, 70751939 edges, 81885 markings/sec, 610 secs
lola: 54497063 markings, 71314103 edges, 82506 markings/sec, 615 secs
lola: 54645553 markings, 71518883 edges, 29698 markings/sec, 620 secs
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 863 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((2 <= p2995))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((2 <= p2995))))
lola: processed formula length: 24
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: 48 markings, 48 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1294 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (F ((1 <= p2936 + p2937 + p2938 + p2939 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F ((1 <= p2936 + p2937 + p2938 + p2939 + p2940 + p2941 + p2942 + p2943 + p2944 + p2945 + p2946 + p2947 + p2948 + p2949 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p2963 + p2964))))
lola: processed formula length: 248
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 357065 markings, 673091 edges, 71413 markings/sec, 0 secs
lola: 761653 markings, 1437749 edges, 80918 markings/sec, 5 secs
lola: 1146512 markings, 2183736 edges, 76972 markings/sec, 10 secs
lola: 1457623 markings, 2928588 edges, 62222 markings/sec, 15 secs
lola: 1685824 markings, 3684144 edges, 45640 markings/sec, 20 secs
lola: 1948273 markings, 4440444 edges, 52490 markings/sec, 25 secs
lola: 2171014 markings, 5207342 edges, 44548 markings/sec, 30 secs
lola: 2489576 markings, 5951129 edges, 63712 markings/sec, 35 secs
lola: 2718517 markings, 6699291 edges, 45788 markings/sec, 40 secs
lola: 2957320 markings, 7447734 edges, 47761 markings/sec, 45 secs
lola: 3185611 markings, 8202579 edges, 45658 markings/sec, 50 secs
lola: 3426527 markings, 8978615 edges, 48183 markings/sec, 55 secs
lola: 3799742 markings, 9722726 edges, 74643 markings/sec, 60 secs
lola: 4082884 markings, 10472466 edges, 56628 markings/sec, 65 secs
lola: 4308557 markings, 11238163 edges, 45135 markings/sec, 70 secs
lola: 4561176 markings, 11997543 edges, 50524 markings/sec, 75 secs
lola: 4780859 markings, 12777303 edges, 43937 markings/sec, 80 secs
lola: 5095395 markings, 13520967 edges, 62907 markings/sec, 85 secs
lola: 5322994 markings, 14290907 edges, 45520 markings/sec, 90 secs
lola: 5559805 markings, 15062053 edges, 47362 markings/sec, 95 secs
lola: 5781307 markings, 15825859 edges, 44300 markings/sec, 100 secs
lola: 6018779 markings, 16612766 edges, 47494 markings/sec, 105 secs
lola: 6422988 markings, 17375464 edges, 80842 markings/sec, 110 secs
lola: 6820989 markings, 18135554 edges, 79600 markings/sec, 115 secs
lola: 7202380 markings, 18881398 edges, 76278 markings/sec, 120 secs
lola: 7465647 markings, 19641029 edges, 52653 markings/sec, 125 secs
lola: 7706778 markings, 20398662 edges, 48226 markings/sec, 130 secs
lola: 7951573 markings, 21148968 edges, 48959 markings/sec, 135 secs
lola: 8184226 markings, 21909643 edges, 46531 markings/sec, 140 secs
lola: 8500238 markings, 22651691 edges, 63202 markings/sec, 145 secs
lola: 8726803 markings, 23415266 edges, 45313 markings/sec, 150 secs
lola: 8979173 markings, 24168438 edges, 50474 markings/sec, 155 secs
lola: 9198085 markings, 24938138 edges, 43782 markings/sec, 160 secs
lola: 9495211 markings, 25700744 edges, 59425 markings/sec, 165 secs
lola: 9859691 markings, 26437637 edges, 72896 markings/sec, 170 secs
lola: 10097869 markings, 27184329 edges, 47636 markings/sec, 175 secs
lola: 10331742 markings, 27942557 edges, 46775 markings/sec, 180 secs
lola: 10563658 markings, 28699815 edges, 46383 markings/sec, 185 secs
lola: 10789983 markings, 29465362 edges, 45265 markings/sec, 190 secs
lola: 11097604 markings, 30195144 edges, 61524 markings/sec, 195 secs
lola: 11317054 markings, 30964992 edges, 43890 markings/sec, 200 secs
lola: 11566005 markings, 31731528 edges, 49790 markings/sec, 205 secs
lola: 11784931 markings, 32506181 edges, 43785 markings/sec, 210 secs
lola: 12051708 markings, 33265764 edges, 53355 markings/sec, 215 secs
lola: 12414716 markings, 33975531 edges, 72602 markings/sec, 220 secs
lola: 12672721 markings, 34718463 edges, 51601 markings/sec, 225 secs
lola: 12908146 markings, 35469794 edges, 47085 markings/sec, 230 secs
lola: 13156895 markings, 36215114 edges, 49750 markings/sec, 235 secs
lola: 13381408 markings, 36973405 edges, 44903 markings/sec, 240 secs
lola: 13699541 markings, 37693433 edges, 63627 markings/sec, 245 secs
lola: 13920290 markings, 38442762 edges, 44150 markings/sec, 250 secs
lola: 14168552 markings, 39182583 edges, 49652 markings/sec, 255 secs
lola: 14387862 markings, 39937490 edges, 43862 markings/sec, 260 secs
lola: 14654354 markings, 40682980 edges, 53298 markings/sec, 265 secs
lola: 15015086 markings, 41387988 edges, 72146 markings/sec, 270 secs
lola: 15274026 markings, 42120499 edges, 51788 markings/sec, 275 secs
lola: 15498782 markings, 42861823 edges, 44951 markings/sec, 280 secs
lola: 15751152 markings, 43591084 edges, 50474 markings/sec, 285 secs
lola: 15968379 markings, 44339923 edges, 43445 markings/sec, 290 secs
lola: 16285469 markings, 45051221 edges, 63418 markings/sec, 295 secs
lola: 16509311 markings, 45796878 edges, 44768 markings/sec, 300 secs
lola: 16755703 markings, 46530103 edges, 49278 markings/sec, 305 secs
lola: 16971365 markings, 47278751 edges, 43132 markings/sec, 310 secs
lola: 17218669 markings, 48031702 edges, 49461 markings/sec, 315 secs
lola: 17502016 markings, 48758205 edges, 56669 markings/sec, 320 secs
lola: 17727926 markings, 49499889 edges, 45182 markings/sec, 325 secs
lola: 17980681 markings, 50233570 edges, 50551 markings/sec, 330 secs
lola: 18199329 markings, 50981830 edges, 43730 markings/sec, 335 secs
lola: 18518105 markings, 51699361 edges, 63755 markings/sec, 340 secs
lola: 18750074 markings, 52438129 edges, 46394 markings/sec, 345 secs
lola: 18999250 markings, 53173543 edges, 49835 markings/sec, 350 secs
lola: 19224956 markings, 53911030 edges, 45141 markings/sec, 355 secs
lola: 19466561 markings, 54657702 edges, 48321 markings/sec, 360 secs
lola: 19707182 markings, 55391945 edges, 48124 markings/sec, 365 secs
lola: 19950748 markings, 56131848 edges, 48713 markings/sec, 370 secs
lola: 20193223 markings, 56872035 edges, 48495 markings/sec, 375 secs
lola: 20417206 markings, 57612866 edges, 44797 markings/sec, 380 secs
lola: 20647180 markings, 58349227 edges, 45995 markings/sec, 385 secs
lola: 20869411 markings, 59086343 edges, 44446 markings/sec, 390 secs
lola: 21057921 markings, 59829362 edges, 37702 markings/sec, 395 secs
lola: 21203089 markings, 60572106 edges, 29034 markings/sec, 400 secs
lola: 21360522 markings, 61310601 edges, 31487 markings/sec, 405 secs
lola: 21520141 markings, 62044995 edges, 31924 markings/sec, 410 secs
lola: 21721466 markings, 62774055 edges, 40265 markings/sec, 415 secs
lola: 21863080 markings, 63517466 edges, 28323 markings/sec, 420 secs
lola: 22021359 markings, 64247981 edges, 31656 markings/sec, 425 secs
lola: 22153915 markings, 65001286 edges, 26511 markings/sec, 430 secs
lola: 22356280 markings, 65721755 edges, 40473 markings/sec, 435 secs
lola: 22575652 markings, 66455416 edges, 43874 markings/sec, 440 secs
lola: 22782101 markings, 67176849 edges, 41290 markings/sec, 445 secs
lola: 22937781 markings, 67909090 edges, 31136 markings/sec, 450 secs
lola: 23090507 markings, 68645614 edges, 30545 markings/sec, 455 secs
lola: 23235924 markings, 69387667 edges, 29083 markings/sec, 460 secs
lola: 23389902 markings, 70116320 edges, 30796 markings/sec, 465 secs
lola: 23582887 markings, 70851309 edges, 38597 markings/sec, 470 secs
lola: 23713771 markings, 71600783 edges, 26177 markings/sec, 475 secs
lola: 23868005 markings, 72344416 edges, 30847 markings/sec, 480 secs
lola: 23996213 markings, 73107233 edges, 25642 markings/sec, 485 secs
lola: 24233985 markings, 73822825 edges, 47554 markings/sec, 490 secs
lola: 24445761 markings, 74543028 edges, 42355 markings/sec, 495 secs
lola: 24687651 markings, 75265184 edges, 48378 markings/sec, 500 secs
lola: 24908530 markings, 75996123 edges, 44176 markings/sec, 505 secs
lola: 25128530 markings, 76717523 edges, 44000 markings/sec, 510 secs
lola: 25345830 markings, 77443322 edges, 43460 markings/sec, 515 secs
lola: 25551352 markings, 78168862 edges, 41104 markings/sec, 520 secs
lola: 25721022 markings, 78900649 edges, 33934 markings/sec, 525 secs
lola: 25862927 markings, 79642843 edges, 28381 markings/sec, 530 secs
lola: 26014197 markings, 80388943 edges, 30254 markings/sec, 535 secs
lola: 26169228 markings, 81130396 edges, 31006 markings/sec, 540 secs
lola: 26362020 markings, 81860566 edges, 38558 markings/sec, 545 secs
lola: 26501891 markings, 82611562 edges, 27974 markings/sec, 550 secs
lola: 26656708 markings, 83356172 edges, 30963 markings/sec, 555 secs
lola: 26783800 markings, 84119423 edges, 25418 markings/sec, 560 secs
lola: 26973171 markings, 84840074 edges, 37874 markings/sec, 565 secs
lola: 27186298 markings, 85567705 edges, 42625 markings/sec, 570 secs
lola: 27385890 markings, 86296587 edges, 39918 markings/sec, 575 secs
lola: 27551938 markings, 87029716 edges, 33210 markings/sec, 580 secs
lola: 27683768 markings, 87777222 edges, 26366 markings/sec, 585 secs
lola: 27834788 markings, 88523990 edges, 30204 markings/sec, 590 secs
lola: 27974049 markings, 89271673 edges, 27852 markings/sec, 595 secs
lola: 28163445 markings, 89997119 edges, 37879 markings/sec, 600 secs
lola: 28305435 markings, 90746181 edges, 28398 markings/sec, 605 secs
lola: 28448808 markings, 91505808 edges, 28675 markings/sec, 610 secs
lola: 28584594 markings, 92264596 edges, 27157 markings/sec, 615 secs
lola: 28783208 markings, 93006866 edges, 39723 markings/sec, 620 secs
lola: 29050205 markings, 93717944 edges, 53399 markings/sec, 625 secs
lola: 29264044 markings, 94450407 edges, 42768 markings/sec, 630 secs
lola: 29505815 markings, 95170089 edges, 48354 markings/sec, 635 secs
lola: 29720153 markings, 95905934 edges, 42868 markings/sec, 640 secs
lola: 30003651 markings, 96629635 edges, 56700 markings/sec, 645 secs
lola: 30236666 markings, 97363897 edges, 46603 markings/sec, 650 secs
lola: 30461164 markings, 98103252 edges, 44900 markings/sec, 655 secs
lola: 30697753 markings, 98837018 edges, 47318 markings/sec, 660 secs
lola: 30909946 markings, 99585587 edges, 42439 markings/sec, 665 secs
lola: 31156627 markings, 100291564 edges, 49336 markings/sec, 670 secs
lola: 31367426 markings, 101011028 edges, 42160 markings/sec, 675 secs
lola: 31620888 markings, 101734868 edges, 50692 markings/sec, 680 secs
lola: 31837563 markings, 102475007 edges, 43335 markings/sec, 685 secs
lola: 32052919 markings, 103195538 edges, 43071 markings/sec, 690 secs
lola: 32275482 markings, 103926263 edges, 44513 markings/sec, 695 secs
lola: 32482185 markings, 104652886 edges, 41341 markings/sec, 700 secs
lola: 32640296 markings, 105391428 edges, 31622 markings/sec, 705 secs
lola: 32792438 markings, 106129654 edges, 30428 markings/sec, 710 secs
lola: 32938151 markings, 106865070 edges, 29143 markings/sec, 715 secs
lola: 33090415 markings, 107595189 edges, 30453 markings/sec, 720 secs
lola: 33281783 markings, 108314332 edges, 38274 markings/sec, 725 secs
lola: 33415151 markings, 109061036 edges, 26674 markings/sec, 730 secs
lola: 33571556 markings, 109806251 edges, 31281 markings/sec, 735 secs
lola: 33699092 markings, 110564851 edges, 25507 markings/sec, 740 secs
lola: 33887655 markings, 111273303 edges, 37713 markings/sec, 745 secs
lola: 34099694 markings, 112003640 edges, 42408 markings/sec, 750 secs
lola: 34300217 markings, 112728709 edges, 40105 markings/sec, 755 secs
lola: 34463315 markings, 113467303 edges, 32620 markings/sec, 760 secs
lola: 34599202 markings, 114221021 edges, 27177 markings/sec, 765 secs
lola: 34746434 markings, 114967025 edges, 29446 markings/sec, 770 secs
lola: 34890894 markings, 115713351 edges, 28892 markings/sec, 775 secs
lola: 35080791 markings, 116444748 edges, 37979 markings/sec, 780 secs
lola: 35222342 markings, 117197679 edges, 28310 markings/sec, 785 secs
lola: 35366870 markings, 117957142 edges, 28906 markings/sec, 790 secs
lola: 35502219 markings, 118720745 edges, 27070 markings/sec, 795 secs
lola: 35697106 markings, 119450462 edges, 38977 markings/sec, 800 secs
lola: 35903778 markings, 120159791 edges, 41334 markings/sec, 805 secs
lola: 36114952 markings, 120876791 edges, 42235 markings/sec, 810 secs
lola: 36335573 markings, 121610243 edges, 44124 markings/sec, 815 secs
lola: 36549704 markings, 122353300 edges, 42826 markings/sec, 820 secs
lola: 36756580 markings, 123055961 edges, 41375 markings/sec, 825 secs
lola: 36972473 markings, 123787535 edges, 43179 markings/sec, 830 secs
lola: 37165046 markings, 124502677 edges, 38515 markings/sec, 835 secs
lola: 37312325 markings, 125245306 edges, 29456 markings/sec, 840 secs
lola: 37458865 markings, 125990431 edges, 29308 markings/sec, 845 secs
lola: 37598432 markings, 126740043 edges, 27913 markings/sec, 850 secs
lola: 37748120 markings, 127475311 edges, 29938 markings/sec, 855 secs
lola: 37934902 markings, 128206853 edges, 37356 markings/sec, 860 secs
lola: 38061279 markings, 128957215 edges, 25275 markings/sec, 865 secs
lola: 38209759 markings, 129681841 edges, 29696 markings/sec, 870 secs
lola: 38331135 markings, 130436138 edges, 24275 markings/sec, 875 secs
lola: 38512979 markings, 131164187 edges, 36369 markings/sec, 880 secs
lola: 38718692 markings, 131888859 edges, 41143 markings/sec, 885 secs
lola: 38910346 markings, 132615458 edges, 38331 markings/sec, 890 secs
lola: 39080063 markings, 133348963 edges, 33943 markings/sec, 895 secs
lola: 39207494 markings, 134106678 edges, 25486 markings/sec, 900 secs
lola: 39356236 markings, 134852077 edges, 29748 markings/sec, 905 secs
lola: 39480784 markings, 135619904 edges, 24910 markings/sec, 910 secs
lola: 39661737 markings, 136360506 edges, 36191 markings/sec, 915 secs
lola: 39816498 markings, 137105507 edges, 30952 markings/sec, 920 secs
lola: 39935845 markings, 137874769 edges, 23869 markings/sec, 925 secs
lola: 40087848 markings, 138632526 edges, 30401 markings/sec, 930 secs
lola: 40204768 markings, 139409229 edges, 23384 markings/sec, 935 secs
lola: 40548215 markings, 140103032 edges, 68689 markings/sec, 940 secs
lola: 40864009 markings, 140798440 edges, 63159 markings/sec, 945 secs
lola: 41083421 markings, 141527512 edges, 43882 markings/sec, 950 secs
lola: 41328728 markings, 142254365 edges, 49061 markings/sec, 955 secs
lola: 41542610 markings, 142993661 edges, 42776 markings/sec, 960 secs
lola: 41769124 markings, 143726728 edges, 45303 markings/sec, 965 secs
lola: 42044994 markings, 144441166 edges, 55174 markings/sec, 970 secs
lola: 42261857 markings, 145183380 edges, 43373 markings/sec, 975 secs
lola: 42498659 markings, 145917180 edges, 47360 markings/sec, 980 secs
lola: 42708034 markings, 146668717 edges, 41875 markings/sec, 985 secs
lola: 42973237 markings, 147414258 edges, 53041 markings/sec, 990 secs
lola: 43325115 markings, 148119103 edges, 70376 markings/sec, 995 secs
lola: 43576300 markings, 148844269 edges, 50237 markings/sec, 1000 secs
lola: 43793296 markings, 149590159 edges, 43399 markings/sec, 1005 secs
lola: 44039758 markings, 150317689 edges, 49292 markings/sec, 1010 secs
lola: 44250489 markings, 151061741 edges, 42146 markings/sec, 1015 secs
lola: 44551512 markings, 151772246 edges, 60205 markings/sec, 1020 secs
lola: 44774095 markings, 152514269 edges, 44517 markings/sec, 1025 secs
lola: 44994657 markings, 153265772 edges, 44112 markings/sec, 1030 secs
lola: 45213271 markings, 154019569 edges, 43723 markings/sec, 1035 secs
lola: 45426106 markings, 154781977 edges, 42567 markings/sec, 1040 secs
lola: 45735724 markings, 155478788 edges, 61924 markings/sec, 1045 secs
lola: 45955487 markings, 156207822 edges, 43953 markings/sec, 1050 secs
lola: 46198561 markings, 156924725 edges, 48615 markings/sec, 1055 secs
lola: 46410393 markings, 157658002 edges, 42366 markings/sec, 1060 secs
lola: 46642715 markings, 158392665 edges, 46464 markings/sec, 1065 secs
lola: 46926931 markings, 159109109 edges, 56843 markings/sec, 1070 secs
lola: 47143323 markings, 159849930 edges, 43278 markings/sec, 1075 secs
lola: 47383004 markings, 160577292 edges, 47936 markings/sec, 1080 secs
lola: 47596843 markings, 161319599 edges, 42768 markings/sec, 1085 secs
lola: 47842465 markings, 162041593 edges, 49124 markings/sec, 1090 secs
lola: 48057056 markings, 162759779 edges, 42918 markings/sec, 1095 secs
lola: 48303347 markings, 163479607 edges, 49258 markings/sec, 1100 secs
lola: 48521285 markings, 164212711 edges, 43588 markings/sec, 1105 secs
lola: 48738441 markings, 164945108 edges, 43431 markings/sec, 1110 secs
lola: 48957097 markings, 165666960 edges, 43731 markings/sec, 1115 secs
lola: 49167479 markings, 166392514 edges, 42076 markings/sec, 1120 secs
lola: 49354539 markings, 167128068 edges, 37412 markings/sec, 1125 secs
lola: 49490133 markings, 167874817 edges, 27119 markings/sec, 1130 secs
lola: 49649887 markings, 168609983 edges, 31951 markings/sec, 1135 secs
lola: 49783849 markings, 169364707 edges, 26792 markings/sec, 1140 secs
lola: 49979554 markings, 170083674 edges, 39141 markings/sec, 1145 secs
lola: 50130063 markings, 170825567 edges, 30102 markings/sec, 1150 secs
lola: 50278454 markings, 171571757 edges, 29678 markings/sec, 1155 secs
lola: 50418857 markings, 172322033 edges, 28081 markings/sec, 1160 secs
lola: 50584717 markings, 173057212 edges, 33172 markings/sec, 1165 secs
lola: 50793809 markings, 173771701 edges, 41818 markings/sec, 1170 secs
lola: 50992858 markings, 174497970 edges, 39810 markings/sec, 1175 secs
lola: 51182811 markings, 175228637 edges, 37991 markings/sec, 1180 secs
lola: 51312580 markings, 175972709 edges, 25954 markings/sec, 1185 secs
lola: 51466221 markings, 176712662 edges, 30728 markings/sec, 1190 secs
lola: 51593042 markings, 177464994 edges, 25364 markings/sec, 1195 secs
lola: 51774533 markings, 178195190 edges, 36298 markings/sec, 1200 secs
lola: 51932512 markings, 178927267 edges, 31596 markings/sec, 1205 secs
lola: 52061377 markings, 179693370 edges, 25773 markings/sec, 1210 secs
lola: 52209561 markings, 180445806 edges, 29637 markings/sec, 1215 secs
lola: 52343832 markings, 181207291 edges, 26854 markings/sec, 1220 secs
lola: 52576367 markings, 181902051 edges, 46507 markings/sec, 1225 secs
lola: 52777921 markings, 182610907 edges, 40311 markings/sec, 1230 secs
lola: 53016353 markings, 183320498 edges, 47686 markings/sec, 1235 secs
lola: 53232191 markings, 184061263 edges, 43168 markings/sec, 1240 secs
lola: 53441537 markings, 184784747 edges, 41869 markings/sec, 1245 secs
lola: 53653514 markings, 185513705 edges, 42395 markings/sec, 1250 secs
lola: 53852422 markings, 186233031 edges, 39782 markings/sec, 1255 secs
lola: 54019748 markings, 186969261 edges, 33465 markings/sec, 1260 secs
lola: 54148478 markings, 187725100 edges, 25746 markings/sec, 1265 secs
lola: 54304323 markings, 188466143 edges, 31169 markings/sec, 1270 secs
lola: 54444261 markings, 189223236 edges, 27988 markings/sec, 1275 secs
lola: 54634085 markings, 189956226 edges, 37965 markings/sec, 1280 secs
lola: 54778093 markings, 190711567 edges, 28802 markings/sec, 1285 secs
lola: local time limit reached - aborting
lola:
preliminary result: no no no no unknown no no no unknown no unknown no no no unknown no
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no no no no unknown no no no unknown no unknown no no no unknown no
lola: memory consumption: 9550668 KB
lola: time consumption: 2277 seconds
lola: memory consumption: 9551308 KB
lola: time consumption: 2278 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1271 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (G ((F ((p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p2... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((F ((p2037 + p2038 + p2039 + p2040 + p2041 + p2042 + p2043 + p2044 + p2045 + p2046 + p2047 + p2048 + p2049 + p2050 + p2051 + p2052 + p2053 + p2054 + p2055 + p2056 + p2057 + p2058 + p2059 + p2060 + p2061 + p2062 + p2063 + p2064 + p2065 + p2066 + p2095 + p2124 + p2153 + p2182 + p2849 + p2820 + p2791 + p2762 + p2733 + p2704 + p2675 + p2646 + p2617 + p2588 + p2559 + p2530 + p2501 + p2472 + p2... (shortened)
lola: processed formula length: 14069
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 134337 markings, 932959 edges, 26867 markings/sec, 0 secs
lola: 251608 markings, 1868582 edges, 23454 markings/sec, 5 secs
lola: 385259 markings, 2790973 edges, 26730 markings/sec, 10 secs
lola: 518903 markings, 3680849 edges, 26729 markings/sec, 15 secs
lola: 637568 markings, 4564150 edges, 23733 markings/sec, 20 secs
lola: 748005 markings, 5458284 edges, 22087 markings/sec, 25 secs
lola: 867908 markings, 6348989 edges, 23981 markings/sec, 30 secs
lola: 977713 markings, 7245304 edges, 21961 markings/sec, 35 secs
lola: 1081552 markings, 8142887 edges, 20768 markings/sec, 40 secs
lola: 1196209 markings, 9064119 edges, 22931 markings/sec, 45 secs
lola: 1314402 markings, 9950169 edges, 23639 markings/sec, 50 secs
lola: 1424251 markings, 10846529 edges, 21970 markings/sec, 55 secs
lola: 1525418 markings, 11737700 edges, 20233 markings/sec, 60 secs
lola: 1636151 markings, 12649754 edges, 22147 markings/sec, 65 secs
lola: 1739038 markings, 13548232 edges, 20577 markings/sec, 70 secs
lola: 1840961 markings, 14456631 edges, 20385 markings/sec, 75 secs
lola: 1936258 markings, 15360642 edges, 19059 markings/sec, 80 secs
lola: 2042208 markings, 16285460 edges, 21190 markings/sec, 85 secs
lola: 2160164 markings, 17223832 edges, 23591 markings/sec, 90 secs
lola: 2282984 markings, 18124136 edges, 24564 markings/sec, 95 secs
lola: 2393515 markings, 19020667 edges, 22106 markings/sec, 100 secs
lola: 2497166 markings, 19915124 edges, 20730 markings/sec, 105 secs
lola: 2605615 markings, 20827717 edges, 21690 markings/sec, 110 secs
lola: 2710409 markings, 21727829 edges, 20959 markings/sec, 115 secs
lola: 2812862 markings, 22638856 edges, 20491 markings/sec, 120 secs
lola: 2910089 markings, 23545022 edges, 19445 markings/sec, 125 secs
lola: 3007668 markings, 24467125 edges, 19516 markings/sec, 130 secs
lola: 3121566 markings, 25390405 edges, 22780 markings/sec, 135 secs
lola: 3224995 markings, 26290359 edges, 20686 markings/sec, 140 secs
lola: 3327122 markings, 27201717 edges, 20425 markings/sec, 145 secs
lola: 3423185 markings, 28112349 edges, 19213 markings/sec, 150 secs
lola: 3521613 markings, 29044636 edges, 19686 markings/sec, 155 secs
lola: 3621341 markings, 29946332 edges, 19946 markings/sec, 160 secs
lola: 3713085 markings, 30851915 edges, 18349 markings/sec, 165 secs
lola: 3809424 markings, 31768785 edges, 19268 markings/sec, 170 secs
lola: 3898946 markings, 32690052 edges, 17904 markings/sec, 175 secs
lola: 3997233 markings, 33621261 edges, 19657 markings/sec, 180 secs
lola: 4128720 markings, 34547599 edges, 26297 markings/sec, 185 secs
lola: 4258040 markings, 35418851 edges, 25864 markings/sec, 190 secs
lola: 4373960 markings, 36295617 edges, 23184 markings/sec, 195 secs
lola: 4485989 markings, 37183886 edges, 22406 markings/sec, 200 secs
lola: 4602210 markings, 38061955 edges, 23244 markings/sec, 205 secs
lola: 4711201 markings, 38949829 edges, 21798 markings/sec, 210 secs
lola: 4811914 markings, 39837823 edges, 20143 markings/sec, 215 secs
lola: 4930349 markings, 40755630 edges, 23687 markings/sec, 220 secs
lola: 5045332 markings, 41635274 edges, 22997 markings/sec, 225 secs
lola: 5153481 markings, 42523658 edges, 21630 markings/sec, 230 secs
lola: 5254237 markings, 43416300 edges, 20151 markings/sec, 235 secs
lola: 5365713 markings, 44324866 edges, 22295 markings/sec, 240 secs
lola: 5467531 markings, 45224878 edges, 20364 markings/sec, 245 secs
lola: 5569008 markings, 46129759 edges, 20295 markings/sec, 250 secs
lola: 5664370 markings, 47036318 edges, 19072 markings/sec, 255 secs
lola: 5781208 markings, 47944909 edges, 23368 markings/sec, 260 secs
lola: 5906093 markings, 48820785 edges, 24977 markings/sec, 265 secs
lola: 6022505 markings, 49697937 edges, 23282 markings/sec, 270 secs
lola: 6137626 markings, 50586740 edges, 23024 markings/sec, 275 secs
lola: 6248696 markings, 51468027 edges, 22214 markings/sec, 280 secs
lola: 6356729 markings, 52359827 edges, 21607 markings/sec, 285 secs
lola: 6456040 markings, 53256461 edges, 19862 markings/sec, 290 secs
lola: 6585976 markings, 54130849 edges, 25987 markings/sec, 295 secs
lola: 6701737 markings, 55006642 edges, 23152 markings/sec, 300 secs
lola: 6816970 markings, 55885041 edges, 23047 markings/sec, 305 secs
lola: 6935998 markings, 56746512 edges, 23806 markings/sec, 310 secs
lola: 7050074 markings, 57602543 edges, 22815 markings/sec, 315 secs
lola: 7149751 markings, 58461638 edges, 19935 markings/sec, 320 secs
lola: 7255125 markings, 59316844 edges, 21075 markings/sec, 325 secs
lola: 7352819 markings, 60179284 edges, 19539 markings/sec, 330 secs
lola: 7457566 markings, 61052990 edges, 20949 markings/sec, 335 secs
lola: 7563385 markings, 61909636 edges, 21164 markings/sec, 340 secs
lola: 7661445 markings, 62776096 edges, 19612 markings/sec, 345 secs
lola: 7762414 markings, 63646899 edges, 20194 markings/sec, 350 secs
lola: 7855515 markings, 64513842 edges, 18620 markings/sec, 355 secs
lola: 7949568 markings, 65383387 edges, 18811 markings/sec, 360 secs
lola: 8050350 markings, 66267496 edges, 20156 markings/sec, 365 secs
lola: 8159625 markings, 67149394 edges, 21855 markings/sec, 370 secs
lola: 8275606 markings, 68023289 edges, 23196 markings/sec, 375 secs
lola: 8375920 markings, 68882570 edges, 20063 markings/sec, 380 secs
lola: 8469285 markings, 69753608 edges, 18673 markings/sec, 385 secs
lola: 8572240 markings, 70622443 edges, 20591 markings/sec, 390 secs
lola: 8667174 markings, 71491737 edges, 18987 markings/sec, 395 secs
lola: 8757284 markings, 72368643 edges, 18022 markings/sec, 400 secs
lola: 8858274 markings, 73252820 edges, 20198 markings/sec, 405 secs
lola: 8961710 markings, 74118747 edges, 20687 markings/sec, 410 secs
lola: 9055657 markings, 74983862 edges, 18789 markings/sec, 415 secs
lola: 9144966 markings, 75853064 edges, 17862 markings/sec, 420 secs
lola: 9241797 markings, 76728063 edges, 19366 markings/sec, 425 secs
lola: 9331316 markings, 77593113 edges, 17904 markings/sec, 430 secs
lola: 9421063 markings, 78471041 edges, 17949 markings/sec, 435 secs
lola: 9506827 markings, 79352012 edges, 17153 markings/sec, 440 secs
lola: 9610053 markings, 80248704 edges, 20645 markings/sec, 445 secs
lola: 9721839 markings, 81135660 edges, 22357 markings/sec, 450 secs
lola: 9830220 markings, 82030150 edges, 21676 markings/sec, 455 secs
lola: 9930226 markings, 82930569 edges, 20001 markings/sec, 460 secs
lola: 10047313 markings, 83811926 edges, 23417 markings/sec, 465 secs
lola: 10157590 markings, 84691289 edges, 22055 markings/sec, 470 secs
lola: 10263732 markings, 85550652 edges, 21228 markings/sec, 475 secs
lola: 10361213 markings, 86412769 edges, 19496 markings/sec, 480 secs
lola: 10462545 markings, 87286420 edges, 20266 markings/sec, 485 secs
lola: 10556081 markings, 88155348 edges, 18707 markings/sec, 490 secs
lola: 10650005 markings, 89027076 edges, 18785 markings/sec, 495 secs
lola: 10746135 markings, 89909440 edges, 19226 markings/sec, 500 secs
lola: 10851889 markings, 90785346 edges, 21151 markings/sec, 505 secs
lola: 10945149 markings, 91650418 edges, 18652 markings/sec, 510 secs
lola: 11038469 markings, 92517080 edges, 18664 markings/sec, 515 secs
lola: 11129909 markings, 93394799 edges, 18288 markings/sec, 520 secs
lola: 11224308 markings, 94256607 edges, 18880 markings/sec, 525 secs
lola: 11313535 markings, 95133819 edges, 17845 markings/sec, 530 secs
lola: 11401027 markings, 96007421 edges, 17498 markings/sec, 535 secs
lola: 11485047 markings, 96889534 edges, 16804 markings/sec, 540 secs
lola: 11593584 markings, 97779341 edges, 21707 markings/sec, 545 secs
lola: 11695518 markings, 98675266 edges, 20387 markings/sec, 550 secs
lola: 11802943 markings, 99559977 edges, 21485 markings/sec, 555 secs
lola: 11895553 markings, 100420763 edges, 18522 markings/sec, 560 secs
lola: 11990708 markings, 101293285 edges, 19031 markings/sec, 565 secs
lola: 12082064 markings, 102174071 edges, 18271 markings/sec, 570 secs
lola: 12176544 markings, 103041079 edges, 18896 markings/sec, 575 secs
lola: 12265252 markings, 103915635 edges, 17742 markings/sec, 580 secs
lola: 12353517 markings, 104789772 edges, 17653 markings/sec, 585 secs
lola: 12436341 markings, 105670354 edges, 16565 markings/sec, 590 secs
lola: 12534226 markings, 106562829 edges, 19577 markings/sec, 595 secs
lola: 12633620 markings, 107437741 edges, 19879 markings/sec, 600 secs
lola: 12721399 markings, 108306880 edges, 17556 markings/sec, 605 secs
lola: 12811492 markings, 109180977 edges, 18019 markings/sec, 610 secs
lola: 12895681 markings, 110056687 edges, 16838 markings/sec, 615 secs
lola: 12985646 markings, 110946080 edges, 17993 markings/sec, 620 secs
lola: 13073797 markings, 111819161 edges, 17630 markings/sec, 625 secs
lola: 13156521 markings, 112695188 edges, 16545 markings/sec, 630 secs
lola: 13243342 markings, 113578789 edges, 17364 markings/sec, 635 secs
lola: 13324673 markings, 114460995 edges, 16266 markings/sec, 640 secs
lola: 13401202 markings, 115350247 edges, 15306 markings/sec, 645 secs
lola: 13527504 markings, 116264086 edges, 25260 markings/sec, 650 secs
lola: 13638159 markings, 117155270 edges, 22131 markings/sec, 655 secs
lola: 13746612 markings, 118050667 edges, 21691 markings/sec, 660 secs
lola: 13847958 markings, 118949481 edges, 20269 markings/sec, 665 secs
lola: 13958167 markings, 119850512 edges, 22042 markings/sec, 670 secs
lola: 14058684 markings, 120750914 edges, 20103 markings/sec, 675 secs
lola: 14159620 markings, 121653907 edges, 20187 markings/sec, 680 secs
lola: 14253917 markings, 122560148 edges, 18859 markings/sec, 685 secs
lola: 14369736 markings, 123458639 edges, 23164 markings/sec, 690 secs
lola: 14480094 markings, 124354513 edges, 22072 markings/sec, 695 secs
lola: 14586159 markings, 125238713 edges, 21213 markings/sec, 700 secs
lola: 14692170 markings, 126126981 edges, 21202 markings/sec, 705 secs
lola: 14801843 markings, 127011431 edges, 21935 markings/sec, 710 secs
lola: 14917664 markings, 127888116 edges, 23164 markings/sec, 715 secs
lola: 15018900 markings, 128753075 edges, 20247 markings/sec, 720 secs
lola: 15112144 markings, 129620554 edges, 18649 markings/sec, 725 secs
lola: 15214300 markings, 130483845 edges, 20431 markings/sec, 730 secs
lola: 15308905 markings, 131348885 edges, 18921 markings/sec, 735 secs
lola: 15398449 markings, 132217603 edges, 17909 markings/sec, 740 secs
lola: 15499107 markings, 133099384 edges, 20132 markings/sec, 745 secs
lola: 15602162 markings, 133968046 edges, 20611 markings/sec, 750 secs
lola: 15696708 markings, 134834172 edges, 18909 markings/sec, 755 secs
lola: 15786398 markings, 135703993 edges, 17938 markings/sec, 760 secs
lola: 15883060 markings, 136580803 edges, 19332 markings/sec, 765 secs
lola: 15973269 markings, 137450521 edges, 18042 markings/sec, 770 secs
lola: 16062644 markings, 138326567 edges, 17875 markings/sec, 775 secs
lola: 16148156 markings, 139204548 edges, 17102 markings/sec, 780 secs
lola: 16244096 markings, 140094991 edges, 19188 markings/sec, 785 secs
lola: 16347592 markings, 140988150 edges, 20699 markings/sec, 790 secs
lola: 16451220 markings, 141881007 edges, 20726 markings/sec, 795 secs
lola: 16554702 markings, 142757058 edges, 20696 markings/sec, 800 secs
lola: 16650621 markings, 143629354 edges, 19184 markings/sec, 805 secs
lola: 16741645 markings, 144507209 edges, 18205 markings/sec, 810 secs
lola: 16838097 markings, 145390909 edges, 19290 markings/sec, 815 secs
lola: 16928983 markings, 146263619 edges, 18177 markings/sec, 820 secs
lola: 17019058 markings, 147141784 edges, 18015 markings/sec, 825 secs
lola: 17105194 markings, 148021298 edges, 17227 markings/sec, 830 secs
lola: 17195183 markings, 148912903 edges, 17998 markings/sec, 835 secs
lola: 17293672 markings, 149810412 edges, 19698 markings/sec, 840 secs
lola: 17389416 markings, 150686764 edges, 19149 markings/sec, 845 secs
lola: 17479577 markings, 151569380 edges, 18032 markings/sec, 850 secs
lola: 17567324 markings, 152451103 edges, 17549 markings/sec, 855 secs
lola: 17651509 markings, 153339426 edges, 16837 markings/sec, 860 secs
lola: 17744588 markings, 154226598 edges, 18616 markings/sec, 865 secs
lola: 17830750 markings, 155108055 edges, 17232 markings/sec, 870 secs
lola: 17916065 markings, 155999513 edges, 17063 markings/sec, 875 secs
lola: 17998805 markings, 156884394 edges, 16548 markings/sec, 880 secs
lola: 18080871 markings, 157777351 edges, 16413 markings/sec, 885 secs
lola: 18177588 markings, 158690014 edges, 19343 markings/sec, 890 secs
lola: 18283519 markings, 159586717 edges, 21186 markings/sec, 895 secs
lola: 18385422 markings, 160496048 edges, 20381 markings/sec, 900 secs
lola: 18483057 markings, 161401145 edges, 19527 markings/sec, 905 secs
lola: 18579800 markings, 162315627 edges, 19349 markings/sec, 910 secs
lola: 18686048 markings, 163211176 edges, 21250 markings/sec, 915 secs
lola: 18789484 markings, 164111207 edges, 20687 markings/sec, 920 secs
lola: 18895184 markings, 164994862 edges, 21140 markings/sec, 925 secs
lola: 18990484 markings, 165872700 edges, 19060 markings/sec, 930 secs
lola: 19084180 markings, 166750272 edges, 18739 markings/sec, 935 secs
lola: 19178215 markings, 167638389 edges, 18807 markings/sec, 940 secs
lola: 19271891 markings, 168508108 edges, 18735 markings/sec, 945 secs
lola: 19362259 markings, 169390746 edges, 18074 markings/sec, 950 secs
lola: 19449722 markings, 170275608 edges, 17493 markings/sec, 955 secs
lola: 19537450 markings, 171171613 edges, 17546 markings/sec, 960 secs
lola: 19636359 markings, 172065517 edges, 19782 markings/sec, 965 secs
lola: 19732182 markings, 172944973 edges, 19165 markings/sec, 970 secs
lola: 19821939 markings, 173826316 edges, 17951 markings/sec, 975 secs
lola: 19911059 markings, 174709118 edges, 17824 markings/sec, 980 secs
lola: 19994615 markings, 175595017 edges, 16711 markings/sec, 985 secs
lola: 20089126 markings, 176486093 edges, 18902 markings/sec, 990 secs
lola: 20176365 markings, 177367672 edges, 17448 markings/sec, 995 secs
lola: 20259947 markings, 178258691 edges, 16716 markings/sec, 1000 secs
lola: 20345397 markings, 179145892 edges, 17090 markings/sec, 1005 secs
lola: 20426951 markings, 180041212 edges, 16311 markings/sec, 1010 secs
lola: 20514493 markings, 180945916 edges, 17508 markings/sec, 1015 secs
lola: 20613150 markings, 181850759 edges, 19731 markings/sec, 1020 secs
lola: 20705455 markings, 182765187 edges, 18461 markings/sec, 1025 secs
lola: 20805981 markings, 183664441 edges, 20105 markings/sec, 1030 secs
lola: 20903198 markings, 184546545 edges, 19443 markings/sec, 1035 secs
lola: 20992084 markings, 185424165 edges, 17777 markings/sec, 1040 secs
lola: 21081491 markings, 186308120 edges, 17881 markings/sec, 1045 secs
lola: 21166984 markings, 187197502 edges, 17099 markings/sec, 1050 secs
lola: 21260608 markings, 188090332 edges, 18725 markings/sec, 1055 secs
lola: 21347855 markings, 188969852 edges, 17449 markings/sec, 1060 secs
lola: 21430671 markings, 189855073 edges, 16563 markings/sec, 1065 secs
lola: 21516146 markings, 190735259 edges, 17095 markings/sec, 1070 secs
lola: 21597547 markings, 191626663 edges, 16280 markings/sec, 1075 secs
lola: 21680209 markings, 192530950 edges, 16532 markings/sec, 1080 secs
lola: 21771509 markings, 193443865 edges, 18260 markings/sec, 1085 secs
lola: 21867335 markings, 194341402 edges, 19165 markings/sec, 1090 secs
lola: 21954184 markings, 195226328 edges, 17370 markings/sec, 1095 secs
lola: 22038830 markings, 196119982 edges, 16929 markings/sec, 1100 secs
lola: 22123184 markings, 197011192 edges, 16871 markings/sec, 1105 secs
lola: 22205393 markings, 197908012 edges, 16442 markings/sec, 1110 secs
lola: 22287961 markings, 198814922 edges, 16514 markings/sec, 1115 secs
lola: 22375002 markings, 199706794 edges, 17408 markings/sec, 1120 secs
lola: 22457760 markings, 200595628 edges, 16552 markings/sec, 1125 secs
lola: 22536097 markings, 201490575 edges, 15667 markings/sec, 1130 secs
lola: 22619289 markings, 202392604 edges, 16638 markings/sec, 1135 secs
lola: 22696733 markings, 203289282 edges, 15489 markings/sec, 1140 secs
lola: 22774643 markings, 204192705 edges, 15582 markings/sec, 1145 secs
lola: 22855359 markings, 205104577 edges, 16143 markings/sec, 1150 secs
lola: 22973364 markings, 206045162 edges, 23601 markings/sec, 1155 secs
lola: 23098524 markings, 206958129 edges, 25032 markings/sec, 1160 secs
lola: 23207214 markings, 207852268 edges, 21738 markings/sec, 1165 secs
lola: 23317666 markings, 208748693 edges, 22090 markings/sec, 1170 secs
lola: 23419183 markings, 209652148 edges, 20303 markings/sec, 1175 secs
lola: 23529474 markings, 210553603 edges, 22058 markings/sec, 1180 secs
lola: 23629830 markings, 211458013 edges, 20071 markings/sec, 1185 secs
lola: 23729871 markings, 212361366 edges, 20008 markings/sec, 1190 secs
lola: 23822426 markings, 213262541 edges, 18511 markings/sec, 1195 secs
lola: 23933463 markings, 214196227 edges, 22207 markings/sec, 1200 secs
lola: 24042194 markings, 215092273 edges, 21746 markings/sec, 1205 secs
lola: 24143939 markings, 216000740 edges, 20349 markings/sec, 1210 secs
lola: 24242445 markings, 216904514 edges, 19701 markings/sec, 1215 secs
lola: 24334596 markings, 217818613 edges, 18430 markings/sec, 1220 secs
lola: 24439739 markings, 218738484 edges, 21029 markings/sec, 1225 secs
lola: 24535622 markings, 219651731 edges, 19177 markings/sec, 1230 secs
lola: 24630467 markings, 220573225 edges, 18969 markings/sec, 1235 secs
lola: 24721450 markings, 221489544 edges, 18197 markings/sec, 1240 secs
lola: 24807514 markings, 222409266 edges, 17213 markings/sec, 1245 secs
lola: 24927241 markings, 223336977 edges, 23945 markings/sec, 1250 secs
lola: 25041486 markings, 224228227 edges, 22849 markings/sec, 1255 secs
lola: 25150030 markings, 225121528 edges, 21709 markings/sec, 1260 secs
lola: time limit reached - aborting
lola:
preliminary result: no no no no unknown no no no unknown no unknown no no no unknown no
lola:
preliminary result: no no no no unknown no no no unknown no unknown no no no unknown no
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: no no no no unknown no no no unknown no unknown no no no unknown no
lola: memory consumption: 4423204 KB
lola: time consumption: 3569 seconds
lola: caught signal User defined signal 2 - aborting LoLA
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: no no no no unknown no no no unknown no unknown no no no unknown no
lola:
preliminary result: no no no no unknown no no no unknown no unknown no no no unknown no
lola: memory consumption: 23024 KB
lola: time consumption: 3573 seconds
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-28"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-28.tgz
mv QuasiCertifProtocol-COL-28 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is QuasiCertifProtocol-COL-28, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r184-qhx2-152732127300051"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;