About the Execution of ITS-Tools.L for SquareGrid-PT-130613
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15751.250 | 3600000.00 | 9121559.00 | 11030.20 | [undef] | Time out reached |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
....................
/home/mcc/execution
total 1.5M
-rw-r--r-- 1 mcc users 3.4K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.9K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.7K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 12K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.8K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 6.4K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 20K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 111 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 349 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 2.9K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 7 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rwxr-xr-x 1 mcc users 1.3M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstoolsl
Input is SquareGrid-PT-130613, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r165-smll-152705516300208
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-00
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-01
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-02
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-03
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-04
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-05
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-06
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-07
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-08
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-09
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-10
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-11
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-12
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-13
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-14
FORMULA_NAME SquareGrid-PT-130613-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1527503430196
Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution]
Loading property file ReachabilityCardinality.prop.
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-00 with value :(((pb1_2_4<=p4o_10_13)||((p1il_6_10>=2)&&(p4i_9_5<=pbl_1_13)))&&((!(p4ol_2_2>=2))||(p1i_7_5>=3)))
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-01 with value :((pb2_9_2>=1)&&(!(p1ol_6_13>=3)))
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-02 with value :((((p4il_4_10<=p4i_12_13)||(p4il_9_14>=3))&&((pbl_3_3>=1)||(pb3_10_8>=1)))||(pb1_1_7>=2))
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-03 with value :((!((p1i_4_10>=1)||(p1il_2_11<=pb4_11_11)))&&(!((p1o_8_2>=3)&&(pb1_3_7>=2))))
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-04 with value :(pbl_4_12<=p4ol_5_8)
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-05 with value :((((p4ol_11_5<=p4i_5_9)||(pb3_1_11<=pbl_5_6))&&((p4i_3_5>=1)&&(p4il_9_7>=2)))&&((!(pbl_10_1>=1))||(!(pb2_5_2>=3))))
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-06 with value :(p1ol_7_13>=3)
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-07 with value :(((!(p4ol_9_8>=2))||(p1ol_10_13>=1))||(((pb2_12_7<=p1ol_6_10)&&(p1i_2_8>=2))&&(!(pb1_2_12<=p4ol_3_5))))
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-08 with value :(pb3_2_13>=3)
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-09 with value :(p1ol_6_6<=pb3_1_4)
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-10 with value :(pb1_4_4<=p4ol_10_14)
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-11 with value :((((pb1_9_10>=1)||(pb2_3_13>=3))&&(!(p4il_13_2<=p4ol_5_11)))||(!((pb3_13_10>=1)&&(pb4_5_8<=p4il_11_4))))
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-12 with value :(((!(p1o_1_6<=p4i_7_4))||((pb3_7_9<=p4i_8_2)||(p1ol_9_11<=pbl_11_8)))&&(((p1il_7_9>=2)||(p4o_5_12<=p4il_11_2))&&((p1i_3_6<=p4i_8_12)||(pb1_11_1>=3))))
Read [invariant] property : SquareGrid-PT-130613-ReachabilityCardinality-13 with value :(((pbl_10_1<=p1il_14_10)||(pb4_1_7>=3))&&(((p4il_4_5>=2)||(pb2_13_4>=3))||(!(pb3_9_3>=3))))
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-14 with value :((p4o_8_3>=3)||(p1o_11_12>=3))
Read [reachable] property : SquareGrid-PT-130613-ReachabilityCardinality-15 with value :((!((p1o_4_13>=3)&&(p1o_9_6<=p4ol_2_1)))&&(!(pb4_13_3>=3)))
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
// Phase 1: matrix 2756 rows 2301 cols
invariant :pb1_13_1 + pb2_13_1 + pb3_13_1 + pb4_13_1 + pbl_13_1 = 37
invariant :p1o_3_1 + p1ol_3_1 = 1
invariant :pb1_3_5 + pb2_3_5 + pb3_3_5 + pb4_3_5 + pbl_3_5 = 37
invariant :pb1_2_4 + pb2_2_4 + pb3_2_4 + pb4_2_4 + pbl_2_4 = 37
invariant :p4o_6_3 + p4ol_6_3 = 1
invariant :pb1_4_10 + pb2_4_10 + pb3_4_10 + pb4_4_10 + pbl_4_10 = 37
invariant :p1i_12_11 + p1il_12_11 = 1
invariant :p1i_12_7 + p1il_12_7 = 1
invariant :p4i_4_2 + p4il_4_2 = 1
invariant :p4o_13_9 + p4ol_13_9 = 1
invariant :p4o_8_11 + p4ol_8_11 = 1
invariant :p1o_3_6 + p1ol_3_6 = 1
invariant :p1i_8_6 + p1il_8_6 = 1
invariant :p4i_3_14 + p4il_3_14 = 1
invariant :pb1_13_3 + pb2_13_3 + pb3_13_3 + pb4_13_3 + pbl_13_3 = 37
invariant :p1i_13_9 + p1il_13_9 = 1
invariant :pb1_9_3 + pb2_9_3 + pb3_9_3 + pb4_9_3 + pbl_9_3 = 37
invariant :p1o_10_1 + p1ol_10_1 = 1
invariant :p4i_5_10 + p4il_5_10 = 1
invariant :p1i_2_13 + p1il_2_13 = 1
invariant :pb1_2_12 + pb2_2_12 + pb3_2_12 + pb4_2_12 + pbl_2_12 = 37
invariant :pb1_6_6 + pb2_6_6 + pb3_6_6 + pb4_6_6 + pbl_6_6 = 37
invariant :p1o_8_1 + p1ol_8_1 = 1
invariant :p4i_5_8 + p4il_5_8 = 1
invariant :pb1_6_11 + pb2_6_11 + pb3_6_11 + pb4_6_11 + pbl_6_11 = 37
invariant :p1i_7_6 + p1il_7_6 = 1
invariant :p4o_2_4 + p4ol_2_4 = 1
invariant :p1o_7_13 + p1ol_7_13 = 1
invariant :p4i_4_11 + p4il_4_11 = 1
invariant :p1i_12_10 + p1il_12_10 = 1
invariant :p1i_13_10 + p1il_13_10 = 1
invariant :p1o_11_11 + p1ol_11_11 = 1
invariant :p1o_11_12 + p1ol_11_12 = 1
invariant :p4i_2_10 + p4il_2_10 = 1
invariant :p1i_7_8 + p1il_7_8 = 1
invariant :p4o_7_13 + p4ol_7_13 = 1
invariant :p4o_13_3 + p4ol_13_3 = 1
invariant :p4o_8_3 + p4ol_8_3 = 1
invariant :p4o_4_2 + p4ol_4_2 = 1
invariant :p4i_13_3 + p4il_13_3 = 1
invariant :p1i_11_7 + p1il_11_7 = 1
invariant :p4i_1_11 + p4il_1_11 = 1
invariant :p4o_1_10 + p4ol_1_10 = 1
invariant :p1i_2_4 + p1il_2_4 = 1
invariant :p4o_12_9 + p4ol_12_9 = 1
invariant :p1i_12_6 + p1il_12_6 = 1
invariant :p1o_8_6 + p1ol_8_6 = 1
invariant :p4i_4_4 + p4il_4_4 = 1
invariant :p1i_11_3 + p1il_11_3 = 1
invariant :p4o_1_6 + p4ol_1_6 = 1
invariant :p4i_9_7 + p4il_9_7 = 1
invariant :p4i_2_1 + p4il_2_1 = 1
invariant :p4i_10_6 + p4il_10_6 = 1
invariant :p1i_12_12 + p1il_12_12 = 1
invariant :p4o_1_11 + p4ol_1_11 = 1
invariant :p1o_10_3 + p1ol_10_3 = 1
invariant :pb1_11_8 + pb2_11_8 + pb3_11_8 + pb4_11_8 + pbl_11_8 = 37
invariant :p1o_13_2 + p1ol_13_2 = 1
invariant :p4o_10_11 + p4ol_10_11 = 1
invariant :pb1_6_1 + pb2_6_1 + pb3_6_1 + pb4_6_1 + pbl_6_1 = 37
invariant :pb1_12_10 + pb2_12_10 + pb3_12_10 + pb4_12_10 + pbl_12_10 = 37
invariant :p4i_8_11 + p4il_8_11 = 1
invariant :p4i_5_6 + p4il_5_6 = 1
invariant :p4i_6_2 + p4il_6_2 = 1
invariant :p4o_1_7 + p4ol_1_7 = 1
invariant :p1i_13_1 + p1il_13_1 = 1
invariant :-1'p1il_1_1 + -1'p1il_1_10 + -1'p1il_1_11 + -1'p1il_1_12 + -1'p1il_1_13 + -1'p1il_1_2 + -1'p1il_1_3 + -1'p1il_1_4 + -1'p1il_1_5 + -1'p1il_1_6 + -1'p1il_1_7 + -1'p1il_1_8 + -1'p1il_1_9 + -1'p1il_10_1 + -1'p1il_10_10 + -1'p1il_10_11 + -1'p1il_10_12 + -1'p1il_10_13 + -1'p1il_10_2 + -1'p1il_10_3 + -1'p1il_10_4 + -1'p1il_10_5 + -1'p1il_10_6 + -1'p1il_10_7 + -1'p1il_10_8 + -1'p1il_10_9 + -1'p1il_11_1 + -1'p1il_11_10 + -1'p1il_11_11 + -1'p1il_11_12 + -1'p1il_11_13 + -1'p1il_11_2 + -1'p1il_11_3 + -1'p1il_11_4 + -1'p1il_11_5 + -1'p1il_11_6 + -1'p1il_11_7 + -1'p1il_11_8 + -1'p1il_11_9 + -1'p1il_12_1 + -1'p1il_12_10 + -1'p1il_12_11 + -1'p1il_12_12 + -1'p1il_12_13 + -1'p1il_12_2 + -1'p1il_12_3 + -1'p1il_12_4 + -1'p1il_12_5 + -1'p1il_12_6 + -1'p1il_12_7 + -1'p1il_12_8 + -1'p1il_12_9 + -1'p1il_13_1 + -1'p1il_13_10 + -1'p1il_13_11 + -1'p1il_13_12 + -1'p1il_13_13 + -1'p1il_13_2 + -1'p1il_13_3 + -1'p1il_13_4 + -1'p1il_13_5 + -1'p1il_13_6 + -1'p1il_13_7 + -1'p1il_13_8 + -1'p1il_13_9 + -1'p1il_14_1 + -1'p1il_14_10 + -1'p1il_14_11 + -1'p1il_14_12 + -1'p1il_14_13 + -1'p1il_14_2 + -1'p1il_14_3 + -1'p1il_14_4 + -1'p1il_14_5 + -1'p1il_14_6 + -1'p1il_14_7 + -1'p1il_14_8 + -1'p1il_14_9 + -1'p1il_2_1 + -1'p1il_2_10 + -1'p1il_2_11 + -1'p1il_2_12 + -1'p1il_2_13 + -1'p1il_2_2 + -1'p1il_2_3 + -1'p1il_2_4 + -1'p1il_2_5 + -1'p1il_2_6 + -1'p1il_2_7 + -1'p1il_2_8 + -1'p1il_2_9 + -1'p1il_3_1 + -1'p1il_3_10 + -1'p1il_3_11 + -1'p1il_3_12 + -1'p1il_3_13 + -1'p1il_3_2 + -1'p1il_3_3 + -1'p1il_3_4 + -1'p1il_3_5 + -1'p1il_3_6 + -1'p1il_3_7 + -1'p1il_3_8 + -1'p1il_3_9 + -1'p1il_4_1 + -1'p1il_4_10 + -1'p1il_4_11 + -1'p1il_4_12 + -1'p1il_4_13 + -1'p1il_4_2 + -1'p1il_4_3 + -1'p1il_4_4 + -1'p1il_4_5 + -1'p1il_4_6 + -1'p1il_4_7 + -1'p1il_4_8 + -1'p1il_4_9 + -1'p1il_5_1 + -1'p1il_5_10 + -1'p1il_5_11 + -1'p1il_5_12 + -1'p1il_5_13 + -1'p1il_5_2 + -1'p1il_5_3 + -1'p1il_5_4 + -1'p1il_5_5 + -1'p1il_5_6 + -1'p1il_5_7 + -1'p1il_5_8 + -1'p1il_5_9 + -1'p1il_6_1 + -1'p1il_6_10 + -1'p1il_6_11 + -1'p1il_6_12 + -1'p1il_6_13 + -1'p1il_6_2 + -1'p1il_6_3 + -1'p1il_6_4 + -1'p1il_6_5 + -1'p1il_6_6 + -1'p1il_6_7 + -1'p1il_6_8 + -1'p1il_6_9 + -1'p1il_7_1 + -1'p1il_7_10 + -1'p1il_7_11 + -1'p1il_7_12 + -1'p1il_7_13 + -1'p1il_7_2 + -1'p1il_7_3 + -1'p1il_7_4 + -1'p1il_7_5 + -1'p1il_7_6 + -1'p1il_7_7 + -1'p1il_7_8 + -1'p1il_7_9 + -1'p1il_8_1 + -1'p1il_8_10 + -1'p1il_8_11 + -1'p1il_8_12 + -1'p1il_8_13 + -1'p1il_8_2 + -1'p1il_8_3 + -1'p1il_8_4 + -1'p1il_8_5 + -1'p1il_8_6 + -1'p1il_8_7 + -1'p1il_8_8 + -1'p1il_8_9 + -1'p1il_9_1 + -1'p1il_9_10 + -1'p1il_9_11 + -1'p1il_9_12 + -1'p1il_9_13 + -1'p1il_9_2 + -1'p1il_9_3 + -1'p1il_9_4 + -1'p1il_9_5 + -1'p1il_9_6 + -1'p1il_9_7 + -1'p1il_9_8 + -1'p1il_9_9 + p1o_9_6 + -1'p1ol_1_1 + -1'p1ol_1_10 + -1'p1ol_1_11 + -1'p1ol_1_12 + -1'p1ol_1_13 + -1'p1ol_1_2 + -1'p1ol_1_3 + -1'p1ol_1_4 + -1'p1ol_1_5 + -1'p1ol_1_6 + -1'p1ol_1_7 + -1'p1ol_1_8 + -1'p1ol_1_9 + -1'p1ol_10_1 + -1'p1ol_10_10 + -1'p1ol_10_11 + -1'p1ol_10_12 + -1'p1ol_10_13 + -1'p1ol_10_2 + -1'p1ol_10_3 + -1'p1ol_10_4 + -1'p1ol_10_5 + -1'p1ol_10_6 + -1'p1ol_10_7 + -1'p1ol_10_8 + -1'p1ol_10_9 + -1'p1ol_11_1 + -1'p1ol_11_10 + -1'p1ol_11_11 + -1'p1ol_11_12 + -1'p1ol_11_13 + -1'p1ol_11_2 + -1'p1ol_11_3 + -1'p1ol_11_4 + -1'p1ol_11_5 + -1'p1ol_11_6 + -1'p1ol_11_7 + -1'p1ol_11_8 + -1'p1ol_11_9 + -1'p1ol_12_1 + -1'p1ol_12_10 + -1'p1ol_12_11 + -1'p1ol_12_12 + -1'p1ol_12_13 + -1'p1ol_12_2 + -1'p1ol_12_3 + -1'p1ol_12_4 + -1'p1ol_12_5 + -1'p1ol_12_6 + -1'p1ol_12_7 + -1'p1ol_12_8 + -1'p1ol_12_9 + -1'p1ol_13_1 + -1'p1ol_13_10 + -1'p1ol_13_11 + -1'p1ol_13_12 + -1'p1ol_13_13 + -1'p1ol_13_2 + -1'p1ol_13_3 + -1'p1ol_13_4 + -1'p1ol_13_5 + -1'p1ol_13_6 + -1'p1ol_13_7 + -1'p1ol_13_8 + -1'p1ol_13_9 + -1'p1ol_14_1 + -1'p1ol_14_10 + -1'p1ol_14_11 + -1'p1ol_14_12 + -1'p1ol_14_13 + -1'p1ol_14_2 + -1'p1ol_14_3 + -1'p1ol_14_4 + -1'p1ol_14_5 + -1'p1ol_14_6 + -1'p1ol_14_7 + -1'p1ol_14_8 + -1'p1ol_14_9 + -1'p1ol_2_1 + -1'p1ol_2_10 + -1'p1ol_2_11 + -1'p1ol_2_12 + -1'p1ol_2_13 + -1'p1ol_2_2 + -1'p1ol_2_3 + -1'p1ol_2_4 + -1'p1ol_2_5 + -1'p1ol_2_6 + -1'p1ol_2_7 + -1'p1ol_2_8 + -1'p1ol_2_9 + -1'p1ol_3_1 + -1'p1ol_3_10 + -1'p1ol_3_11 + -1'p1ol_3_12 + -1'p1ol_3_13 + -1'p1ol_3_2 + -1'p1ol_3_3 + -1'p1ol_3_4 + -1'p1ol_3_5 + -1'p1ol_3_6 + -1'p1ol_3_7 + -1'p1ol_3_8 + -1'p1ol_3_9 + -1'p1ol_4_1 + -1'p1ol_4_10 + -1'p1ol_4_11 + -1'p1ol_4_12 + -1'p1ol_4_13 + -1'p1ol_4_2 + -1'p1ol_4_3 + -1'p1ol_4_4 + -1'p1ol_4_5 + -1'p1ol_4_6 + -1'p1ol_4_7 + -1'p1ol_4_8 + -1'p1ol_4_9 + -1'p1ol_5_1 + -1'p1ol_5_10 + -1'p1ol_5_11 + -1'p1ol_5_12 + -1'p1ol_5_13 + -1'p1ol_5_2 + -1'p1ol_5_3 + -1'p1ol_5_4 + -1'p1ol_5_5 + -1'p1ol_5_6 + -1'p1ol_5_7 + -1'p1ol_5_8 + -1'p1ol_5_9 + -1'p1ol_6_1 + -1'p1ol_6_10 + -1'p1ol_6_11 + -1'p1ol_6_12 + -1'p1ol_6_13 + -1'p1ol_6_2 + -1'p1ol_6_3 + -1'p1ol_6_4 + -1'p1ol_6_5 + -1'p1ol_6_6 + -1'p1ol_6_7 + -1'p1ol_6_8 + -1'p1ol_6_9 + -1'p1ol_7_1 + -1'p1ol_7_10 + -1'p1ol_7_11 + -1'p1ol_7_12 + -1'p1ol_7_13 + -1'p1ol_7_2 + -1'p1ol_7_3 + -1'p1ol_7_4 + -1'p1ol_7_5 + -1'p1ol_7_6 + -1'p1ol_7_7 + -1'p1ol_7_8 + -1'p1ol_7_9 + -1'p1ol_8_1 + -1'p1ol_8_10 + -1'p1ol_8_11 + -1'p1ol_8_12 + -1'p1ol_8_13 + -1'p1ol_8_2 + -1'p1ol_8_3 + -1'p1ol_8_4 + -1'p1ol_8_5 + -1'p1ol_8_6 + -1'p1ol_8_7 + -1'p1ol_8_8 + -1'p1ol_8_9 + -1'p1ol_9_1 + -1'p1ol_9_10 + -1'p1ol_9_11 + -1'p1ol_9_12 + -1'p1ol_9_13 + -1'p1ol_9_2 + -1'p1ol_9_3 + -1'p1ol_9_4 + -1'p1ol_9_5 + -1'p1ol_9_7 + -1'p1ol_9_8 + -1'p1ol_9_9 + -1'p4il_1_1 + -1'p4il_1_10 + -1'p4il_1_11 + -1'p4il_1_12 + -1'p4il_1_13 + -1'p4il_1_14 + -1'p4il_1_2 + -1'p4il_1_3 + -1'p4il_1_4 + -1'p4il_1_5 + -1'p4il_1_6 + -1'p4il_1_7 + -1'p4il_1_8 + -1'p4il_1_9 + -1'p4il_10_1 + -1'p4il_10_10 + -1'p4il_10_11 + -1'p4il_10_12 + -1'p4il_10_13 + -1'p4il_10_14 + -1'p4il_10_2 + -1'p4il_10_3 + -1'p4il_10_4 + -1'p4il_10_5 + -1'p4il_10_6 + -1'p4il_10_7 + -1'p4il_10_8 + -1'p4il_10_9 + -1'p4il_11_1 + -1'p4il_11_10 + -1'p4il_11_11 + -1'p4il_11_12 + -1'p4il_11_13 + -1'p4il_11_14 + -1'p4il_11_2 + -1'p4il_11_3 + -1'p4il_11_4 + -1'p4il_11_5 + -1'p4il_11_6 + -1'p4il_11_7 + -1'p4il_11_8 + -1'p4il_11_9 + -1'p4il_12_1 + -1'p4il_12_10 + -1'p4il_12_11 + -1'p4il_12_12 + -1'p4il_12_13 + -1'p4il_12_14 + -1'p4il_12_2 + -1'p4il_12_3 + -1'p4il_12_4 + -1'p4il_12_5 + -1'p4il_12_6 + -1'p4il_12_7 + -1'p4il_12_8 + -1'p4il_12_9 + -1'p4il_13_1 + -1'p4il_13_10 + -1'p4il_13_11 + -1'p4il_13_12 + -1'p4il_13_13 + -1'p4il_13_14 + -1'p4il_13_2 + -1'p4il_13_3 + -1'p4il_13_4 + -1'p4il_13_5 + -1'p4il_13_6 + -1'p4il_13_7 + -1'p4il_13_8 + -1'p4il_13_9 + -1'p4il_2_1 + -1'p4il_2_10 + -1'p4il_2_11 + -1'p4il_2_12 + -1'p4il_2_13 + -1'p4il_2_14 + -1'p4il_2_2 + -1'p4il_2_3 + -1'p4il_2_4 + -1'p4il_2_5 + -1'p4il_2_6 + -1'p4il_2_7 + -1'p4il_2_8 + -1'p4il_2_9 + -1'p4il_3_1 + -1'p4il_3_10 + -1'p4il_3_11 + -1'p4il_3_12 + -1'p4il_3_13 + -1'p4il_3_14 + -1'p4il_3_2 + -1'p4il_3_3 + -1'p4il_3_4 + -1'p4il_3_5 + -1'p4il_3_6 + -1'p4il_3_7 + -1'p4il_3_8 + -1'p4il_3_9 + -1'p4il_4_1 + -1'p4il_4_10 + -1'p4il_4_11 + -1'p4il_4_12 + -1'p4il_4_13 + -1'p4il_4_14 + -1'p4il_4_2 + -1'p4il_4_3 + -1'p4il_4_4 + -1'p4il_4_5 + -1'p4il_4_6 + -1'p4il_4_7 + -1'p4il_4_8 + -1'p4il_4_9 + -1'p4il_5_1 + -1'p4il_5_10 + -1'p4il_5_11 + -1'p4il_5_12 + -1'p4il_5_13 + -1'p4il_5_14 + -1'p4il_5_2 + -1'p4il_5_3 + -1'p4il_5_4 + -1'p4il_5_5 + -1'p4il_5_6 + -1'p4il_5_7 + -1'p4il_5_8 + -1'p4il_5_9 + -1'p4il_6_1 + -1'p4il_6_10 + -1'p4il_6_11 + -1'p4il_6_12 + -1'p4il_6_13 + -1'p4il_6_14 + -1'p4il_6_2 + -1'p4il_6_3 + -1'p4il_6_4 + -1'p4il_6_5 + -1'p4il_6_6 + -1'p4il_6_7 + -1'p4il_6_8 + -1'p4il_6_9 + -1'p4il_7_1 + -1'p4il_7_10 + -1'p4il_7_11 + -1'p4il_7_12 + -1'p4il_7_13 + -1'p4il_7_14 + -1'p4il_7_2 + -1'p4il_7_3 + -1'p4il_7_4 + -1'p4il_7_5 + -1'p4il_7_6 + -1'p4il_7_7 + -1'p4il_7_8 + -1'p4il_7_9 + -1'p4il_8_1 + -1'p4il_8_10 + -1'p4il_8_11 + -1'p4il_8_12 + -1'p4il_8_13 + -1'p4il_8_14 + -1'p4il_8_2 + -1'p4il_8_3 + -1'p4il_8_4 + -1'p4il_8_5 + -1'p4il_8_6 + -1'p4il_8_7 + -1'p4il_8_8 + -1'p4il_8_9 + -1'p4il_9_1 + -1'p4il_9_10 + -1'p4il_9_11 + -1'p4il_9_12 + -1'p4il_9_13 + -1'p4il_9_14 + -1'p4il_9_2 + -1'p4il_9_3 + -1'p4il_9_4 + -1'p4il_9_5 + -1'p4il_9_6 + -1'p4il_9_7 + -1'p4il_9_8 + -1'p4il_9_9 + -1'p4ol_1_1 + -1'p4ol_1_10 + -1'p4ol_1_11 + -1'p4ol_1_12 + -1'p4ol_1_13 + -1'p4ol_1_14 + -1'p4ol_1_2 + -1'p4ol_1_3 + -1'p4ol_1_4 + -1'p4ol_1_5 + -1'p4ol_1_6 + -1'p4ol_1_7 + -1'p4ol_1_8 + -1'p4ol_1_9 + -1'p4ol_10_1 + -1'p4ol_10_10 + -1'p4ol_10_11 + -1'p4ol_10_12 + -1'p4ol_10_13 + -1'p4ol_10_14 + -1'p4ol_10_2 + -1'p4ol_10_3 + -1'p4ol_10_4 + -1'p4ol_10_5 + -1'p4ol_10_6 + -1'p4ol_10_7 + -1'p4ol_10_8 + -1'p4ol_10_9 + -1'p4ol_11_1 + -1'p4ol_11_10 + -1'p4ol_11_11 + -1'p4ol_11_12 + -1'p4ol_11_13 + -1'p4ol_11_14 + -1'p4ol_11_2 + -1'p4ol_11_3 + -1'p4ol_11_4 + -1'p4ol_11_5 + -1'p4ol_11_6 + -1'p4ol_11_7 + -1'p4ol_11_8 + -1'p4ol_11_9 + -1'p4ol_12_1 + -1'p4ol_12_10 + -1'p4ol_12_11 + -1'p4ol_12_12 + -1'p4ol_12_13 + -1'p4ol_12_14 + -1'p4ol_12_2 + -1'p4ol_12_3 + -1'p4ol_12_4 + -1'p4ol_12_5 + -1'p4ol_12_6 + -1'p4ol_12_7 + -1'p4ol_12_8 + -1'p4ol_12_9 + -1'p4ol_13_1 + -1'p4ol_13_10 + -1'p4ol_13_11 + -1'p4ol_13_12 + -1'p4ol_13_13 + -1'p4ol_13_14 + -1'p4ol_13_2 + -1'p4ol_13_3 + -1'p4ol_13_4 + -1'p4ol_13_5 + -1'p4ol_13_6 + -1'p4ol_13_7 + -1'p4ol_13_8 + -1'p4ol_13_9 + -1'p4ol_2_1 + -1'p4ol_2_10 + -1'p4ol_2_11 + -1'p4ol_2_12 + -1'p4ol_2_13 + -1'p4ol_2_14 + -1'p4ol_2_2 + -1'p4ol_2_3 + -1'p4ol_2_4 + -1'p4ol_2_5 + -1'p4ol_2_6 + -1'p4ol_2_7 + -1'p4ol_2_8 + -1'p4ol_2_9 + -1'p4ol_3_1 + -1'p4ol_3_10 + -1'p4ol_3_11 + -1'p4ol_3_12 + -1'p4ol_3_13 + -1'p4ol_3_14 + -1'p4ol_3_2 + -1'p4ol_3_3 + -1'p4ol_3_4 + -1'p4ol_3_5 + -1'p4ol_3_6 + -1'p4ol_3_7 + -1'p4ol_3_8 + -1'p4ol_3_9 + -1'p4ol_4_1 + -1'p4ol_4_10 + -1'p4ol_4_11 + -1'p4ol_4_12 + -1'p4ol_4_13 + -1'p4ol_4_14 + -1'p4ol_4_2 + -1'p4ol_4_3 + -1'p4ol_4_4 + -1'p4ol_4_5 + -1'p4ol_4_6 + -1'p4ol_4_7 + -1'p4ol_4_8 + -1'p4ol_4_9 + -1'p4ol_5_1 + -1'p4ol_5_10 + -1'p4ol_5_11 + -1'p4ol_5_12 + -1'p4ol_5_13 + -1'p4ol_5_14 + -1'p4ol_5_2 + -1'p4ol_5_3 + -1'p4ol_5_4 + -1'p4ol_5_5 + -1'p4ol_5_6 + -1'p4ol_5_7 + -1'p4ol_5_8 + -1'p4ol_5_9 + -1'p4ol_6_1 + -1'p4ol_6_10 + -1'p4ol_6_11 + -1'p4ol_6_12 + -1'p4ol_6_13 + -1'p4ol_6_14 + -1'p4ol_6_2 + -1'p4ol_6_3 + -1'p4ol_6_4 + -1'p4ol_6_5 + -1'p4ol_6_6 + -1'p4ol_6_7 + -1'p4ol_6_8 + -1'p4ol_6_9 + -1'p4ol_7_1 + -1'p4ol_7_10 + -1'p4ol_7_11 + -1'p4ol_7_12 + -1'p4ol_7_13 + -1'p4ol_7_14 + -1'p4ol_7_2 + -1'p4ol_7_3 + -1'p4ol_7_4 + -1'p4ol_7_5 + -1'p4ol_7_6 + -1'p4ol_7_7 + -1'p4ol_7_8 + -1'p4ol_7_9 + -1'p4ol_8_1 + -1'p4ol_8_10 + -1'p4ol_8_11 + -1'p4ol_8_12 + -1'p4ol_8_13 + -1'p4ol_8_14 + -1'p4ol_8_2 + -1'p4ol_8_3 + -1'p4ol_8_4 + -1'p4ol_8_5 + -1'p4ol_8_6 + -1'p4ol_8_7 + -1'p4ol_8_8 + -1'p4ol_8_9 + -1'p4ol_9_1 + -1'p4ol_9_10 + -1'p4ol_9_11 + -1'p4ol_9_12 + -1'p4ol_9_13 + -1'p4ol_9_14 + -1'p4ol_9_2 + -1'p4ol_9_3 + -1'p4ol_9_4 + -1'p4ol_9_5 + -1'p4ol_9_6 + -1'p4ol_9_7 + -1'p4ol_9_8 + -1'p4ol_9_9 + -1'pbl_1_1 + -1'pbl_1_10 + -1'pbl_1_11 + -1'pbl_1_12 + -1'pbl_1_13 + -1'pbl_1_2 + -1'pbl_1_3 + -1'pbl_1_4 + -1'pbl_1_5 + -1'pbl_1_6 + -1'pbl_1_7 + -1'pbl_1_8 + -1'pbl_1_9 + -1'pbl_10_1 + -1'pbl_10_10 + -1'pbl_10_11 + -1'pbl_10_12 + -1'pbl_10_13 + -1'pbl_10_2 + -1'pbl_10_3 + -1'pbl_10_4 + -1'pbl_10_5 + -1'pbl_10_6 + -1'pbl_10_7 + -1'pbl_10_8 + -1'pbl_10_9 + -1'pbl_11_1 + -1'pbl_11_10 + -1'pbl_11_11 + -1'pbl_11_12 + -1'pbl_11_13 + -1'pbl_11_2 + -1'pbl_11_3 + -1'pbl_11_4 + -1'pbl_11_5 + -1'pbl_11_6 + -1'pbl_11_7 + -1'pbl_11_8 + -1'pbl_11_9 + -1'pbl_12_1 + -1'pbl_12_10 + -1'pbl_12_11 + -1'pbl_12_12 + -1'pbl_12_13 + -1'pbl_12_2 + -1'pbl_12_3 + -1'pbl_12_4 + -1'pbl_12_5 + -1'pbl_12_6 + -1'pbl_12_7 + -1'pbl_12_8 + -1'pbl_12_9 + -1'pbl_13_1 + -1'pbl_13_10 + -1'pbl_13_11 + -1'pbl_13_12 + -1'pbl_13_13 + -1'pbl_13_2 + -1'pbl_13_3 + -1'pbl_13_4 + -1'pbl_13_5 + -1'pbl_13_6 + -1'pbl_13_7 + -1'pbl_13_8 + -1'pbl_13_9 + -1'pbl_2_1 + -1'pbl_2_10 + -1'pbl_2_11 + -1'pbl_2_12 + -1'pbl_2_13 + -1'pbl_2_2 + -1'pbl_2_3 + -1'pbl_2_4 + -1'pbl_2_5 + -1'pbl_2_6 + -1'pbl_2_7 + -1'pbl_2_8 + -1'pbl_2_9 + -1'pbl_3_1 + -1'pbl_3_10 + -1'pbl_3_11 + -1'pbl_3_12 + -1'pbl_3_13 + -1'pbl_3_2 + -1'pbl_3_3 + -1'pbl_3_4 + -1'pbl_3_5 + -1'pbl_3_6 + -1'pbl_3_7 + -1'pbl_3_8 + -1'pbl_3_9 + -1'pbl_4_1 + -1'pbl_4_10 + -1'pbl_4_11 + -1'pbl_4_12 + -1'pbl_4_13 + -1'pbl_4_2 + -1'pbl_4_3 + -1'pbl_4_4 + -1'pbl_4_5 + -1'pbl_4_6 + -1'pbl_4_7 + -1'pbl_4_8 + -1'pbl_4_9 + -1'pbl_5_1 + -1'pbl_5_10 + -1'pbl_5_11 + -1'pbl_5_12 + -1'pbl_5_13 + -1'pbl_5_2 + -1'pbl_5_3 + -1'pbl_5_4 + -1'pbl_5_5 + -1'pbl_5_6 + -1'pbl_5_7 + -1'pbl_5_8 + -1'pbl_5_9 + -1'pbl_6_1 + -1'pbl_6_10 + -1'pbl_6_11 + -1'pbl_6_12 + -1'pbl_6_13 + -1'pbl_6_2 + -1'pbl_6_3 + -1'pbl_6_4 + -1'pbl_6_5 + -1'pbl_6_6 + -1'pbl_6_7 + -1'pbl_6_8 + -1'pbl_6_9 + -1'pbl_7_1 + -1'pbl_7_10 + -1'pbl_7_11 + -1'pbl_7_12 + -1'pbl_7_13 + -1'pbl_7_2 + -1'pbl_7_3 + -1'pbl_7_4 + -1'pbl_7_5 + -1'pbl_7_6 + -1'pbl_7_7 + -1'pbl_7_8 + -1'pbl_7_9 + -1'pbl_8_1 + -1'pbl_8_10 + -1'pbl_8_11 + -1'pbl_8_12 + -1'pbl_8_13 + -1'pbl_8_2 + -1'pbl_8_3 + -1'pbl_8_4 + -1'pbl_8_5 + -1'pbl_8_6 + -1'pbl_8_7 + -1'pbl_8_8 + -1'pbl_8_9 + -1'pbl_9_1 + -1'pbl_9_10 + -1'pbl_9_11 + -1'pbl_9_12 + -1'pbl_9_13 + -1'pbl_9_2 + -1'pbl_9_3 + -1'pbl_9_4 + -1'pbl_9_5 + -1'pbl_9_6 + -1'pbl_9_7 + -1'pbl_9_8 + -1'pbl_9_9 = -2924
invariant :p4o_4_6 + p4ol_4_6 = 1
invariant :p1i_6_11 + p1il_6_11 = 1
invariant :p1o_2_4 + p1ol_2_4 = 1
invariant :p1i_13_7 + p1il_13_7 = 1
invariant :p1o_14_8 + p1ol_14_8 = 1
invariant :p1o_5_2 + p1ol_5_2 = 1
invariant :p1o_12_9 + p1ol_12_9 = 1
invariant :p1o_8_9 + p1ol_8_9 = 1
invariant :pb1_9_10 + pb2_9_10 + pb3_9_10 + pb4_9_10 + pbl_9_10 = 37
invariant :p1i_13_5 + p1il_13_5 = 1
invariant :p1i_6_8 + p1il_6_8 = 1
invariant :p4o_13_2 + p4ol_13_2 = 1
invariant :p1o_2_7 + p1ol_2_7 = 1
invariant :p4o_2_1 + p4ol_2_1 = 1
invariant :p4o_10_10 + p4ol_10_10 = 1
invariant :p4o_6_5 + p4ol_6_5 = 1
invariant :pb1_9_12 + pb2_9_12 + pb3_9_12 + pb4_9_12 + pbl_9_12 = 37
invariant :p1i_6_1 + p1il_6_1 = 1
invariant :p4o_13_14 + p4ol_13_14 = 1
invariant :p1o_6_4 + p1ol_6_4 = 1
invariant :p4o_7_9 + p4ol_7_9 = 1
invariant :p4o_13_5 + p4ol_13_5 = 1
invariant :p4o_6_2 + p4ol_6_2 = 1
invariant :pb1_2_10 + pb2_2_10 + pb3_2_10 + pb4_2_10 + pbl_2_10 = 37
invariant :pb1_8_6 + pb2_8_6 + pb3_8_6 + pb4_8_6 + pbl_8_6 = 37
invariant :p1i_11_4 + p1il_11_4 = 1
invariant :pb1_12_13 + pb2_12_13 + pb3_12_13 + pb4_12_13 + pbl_12_13 = 37
invariant :p1i_5_10 + p1il_5_10 = 1
invariant :pb1_13_9 + pb2_13_9 + pb3_13_9 + pb4_13_9 + pbl_13_9 = 37
invariant :p4i_7_10 + p4il_7_10 = 1
invariant :p4i_8_2 + p4il_8_2 = 1
invariant :p1i_2_11 + p1il_2_11 = 1
invariant :pb1_13_12 + pb2_13_12 + pb3_13_12 + pb4_13_12 + pbl_13_12 = 37
invariant :pb1_3_9 + pb2_3_9 + pb3_3_9 + pb4_3_9 + pbl_3_9 = 37
invariant :p1o_1_1 + p1ol_1_1 = 1
invariant :p1o_1_8 + p1ol_1_8 = 1
invariant :p1o_14_6 + p1ol_14_6 = 1
invariant :p4o_2_3 + p4ol_2_3 = 1
invariant :p4o_3_7 + p4ol_3_7 = 1
invariant :pb1_10_10 + pb2_10_10 + pb3_10_10 + pb4_10_10 + pbl_10_10 = 37
invariant :p4i_1_7 + p4il_1_7 = 1
invariant :pb1_4_8 + pb2_4_8 + pb3_4_8 + pb4_4_8 + pbl_4_8 = 37
invariant :p4i_4_10 + p4il_4_10 = 1
invariant :p1i_12_4 + p1il_12_4 = 1
invariant :p4o_9_11 + p4ol_9_11 = 1
invariant :p4o_13_4 + p4ol_13_4 = 1
invariant :p1o_1_10 + p1ol_1_10 = 1
invariant :pb1_7_12 + pb2_7_12 + pb3_7_12 + pb4_7_12 + pbl_7_12 = 37
invariant :pb1_2_5 + pb2_2_5 + pb3_2_5 + pb4_2_5 + pbl_2_5 = 37
invariant :p1o_2_3 + p1ol_2_3 = 1
invariant :p1o_6_13 + p1ol_6_13 = 1
invariant :p4i_8_8 + p4il_8_8 = 1
invariant :p4o_4_8 + p4ol_4_8 = 1
invariant :pb1_1_5 + pb2_1_5 + pb3_1_5 + pb4_1_5 + pbl_1_5 = 37
invariant :p4o_13_12 + p4ol_13_12 = 1
invariant :pb1_12_12 + pb2_12_12 + pb3_12_12 + pb4_12_12 + pbl_12_12 = 37
invariant :p4o_10_13 + p4ol_10_13 = 1
invariant :p1o_6_3 + p1ol_6_3 = 1
invariant :pb1_5_4 + pb2_5_4 + pb3_5_4 + pb4_5_4 + pbl_5_4 = 37
invariant :p1o_3_12 + p1ol_3_12 = 1
invariant :p1o_9_3 + p1ol_9_3 = 1
invariant :pb1_2_8 + pb2_2_8 + pb3_2_8 + pb4_2_8 + pbl_2_8 = 37
invariant :p1i_12_3 + p1il_12_3 = 1
invariant :p4i_10_11 + p4il_10_11 = 1
invariant :p4i_6_5 + p4il_6_5 = 1
invariant :pb1_8_9 + pb2_8_9 + pb3_8_9 + pb4_8_9 + pbl_8_9 = 37
invariant :p1i_11_12 + p1il_11_12 = 1
invariant :p4i_12_10 + p4il_12_10 = 1
invariant :p4o_12_11 + p4ol_12_11 = 1
invariant :p4o_6_7 + p4ol_6_7 = 1
invariant :p1o_7_3 + p1ol_7_3 = 1
invariant :p1o_2_6 + p1ol_2_6 = 1
invariant :p1o_6_1 + p1ol_6_1 = 1
invariant :p1o_2_1 + p1ol_2_1 = 1
invariant :p4o_1_12 + p4ol_1_12 = 1
invariant :p1i_5_2 + p1il_5_2 = 1
invariant :pb1_4_13 + pb2_4_13 + pb3_4_13 + pb4_4_13 + pbl_4_13 = 37
invariant :p4i_13_6 + p4il_13_6 = 1
invariant :pb1_10_13 + pb2_10_13 + pb3_10_13 + pb4_10_13 + pbl_10_13 = 37
invariant :p1i_14_1 + p1il_14_1 = 1
invariant :p1i_6_13 + p1il_6_13 = 1
invariant :p4o_7_8 + p4ol_7_8 = 1
invariant :p4i_4_5 + p4il_4_5 = 1
invariant :p1i_8_4 + p1il_8_4 = 1
invariant :pb1_3_1 + pb2_3_1 + pb3_3_1 + pb4_3_1 + pbl_3_1 = 37
invariant :p4i_10_8 + p4il_10_8 = 1
invariant :p4o_4_4 + p4ol_4_4 = 1
invariant :p4o_9_10 + p4ol_9_10 = 1
invariant :pb1_6_13 + pb2_6_13 + pb3_6_13 + pb4_6_13 + pbl_6_13 = 37
invariant :p4o_1_14 + p4ol_1_14 = 1
invariant :pb1_2_7 + pb2_2_7 + pb3_2_7 + pb4_2_7 + pbl_2_7 = 37
invariant :p1o_5_7 + p1ol_5_7 = 1
invariant :p4o_3_9 + p4ol_3_9 = 1
invariant :pb1_3_2 + pb2_3_2 + pb3_3_2 + pb4_3_2 + pbl_3_2 = 37
invariant :p4o_9_5 + p4ol_9_5 = 1
invariant :pb1_5_13 + pb2_5_13 + pb3_5_13 + pb4_5_13 + pbl_5_13 = 37
invariant :p1o_10_5 + p1ol_10_5 = 1
invariant :p1o_12_3 + p1ol_12_3 = 1
invariant :p1i_10_11 + p1il_10_11 = 1
invariant :p1o_9_4 + p1ol_9_4 = 1
invariant :pb1_13_7 + pb2_13_7 + pb3_13_7 + pb4_13_7 + pbl_13_7 = 37
invariant :p1o_12_1 + p1ol_12_1 = 1
invariant :p1o_13_13 + p1ol_13_13 = 1
invariant :pb1_7_2 + pb2_7_2 + pb3_7_2 + pb4_7_2 + pbl_7_2 = 37
invariant :p4o_11_2 + p4ol_11_2 = 1
invariant :p4i_5_3 + p4il_5_3 = 1
invariant :p1i_10_13 + p1il_10_13 = 1
invariant :pb1_5_9 + pb2_5_9 + pb3_5_9 + pb4_5_9 + pbl_5_9 = 37
invariant :p1o_3_4 + p1ol_3_4 = 1
invariant :p1i_10_10 + p1il_10_10 = 1
invariant :p4i_10_4 + p4il_10_4 = 1
invariant :p4o_10_6 + p4ol_10_6 = 1
invariant :p1i_12_1 + p1il_12_1 = 1
invariant :p4i_12_6 + p4il_12_6 = 1
invariant :p1i_8_1 + p1il_8_1 = 1
invariant :p1i_3_7 + p1il_3_7 = 1
invariant :p1o_7_10 + p1ol_7_10 = 1
invariant :p4i_11_7 + p4il_11_7 = 1
invariant :p1o_13_12 + p1ol_13_12 = 1
invariant :p1o_8_12 + p1ol_8_12 = 1
invariant :pb1_3_12 + pb2_3_12 + pb3_3_12 + pb4_3_12 + pbl_3_12 = 37
invariant :p1o_14_2 + p1ol_14_2 = 1
invariant :p1i_7_2 + p1il_7_2 = 1
invariant :p4o_11_6 + p4ol_11_6 = 1
invariant :p1i_10_12 + p1il_10_12 = 1
invariant :pb1_9_4 + pb2_9_4 + pb3_9_4 + pb4_9_4 + pbl_9_4 = 37
invariant :p1o_11_5 + p1ol_11_5 = 1
invariant :p4i_7_7 + p4il_7_7 = 1
invariant :p1i_6_5 + p1il_6_5 = 1
invariant :p1o_1_11 + p1ol_1_11 = 1
invariant :p1o_2_8 + p1ol_2_8 = 1
invariant :p1i_11_8 + p1il_11_8 = 1
invariant :p4i_5_9 + p4il_5_9 = 1
invariant :pb1_7_6 + pb2_7_6 + pb3_7_6 + pb4_7_6 + pbl_7_6 = 37
invariant :p1o_11_4 + p1ol_11_4 = 1
invariant :p1i_4_6 + p1il_4_6 = 1
invariant :p4i_9_1 + p4il_9_1 = 1
invariant :p1o_1_3 + p1ol_1_3 = 1
invariant :p1i_8_3 + p1il_8_3 = 1
invariant :p4o_4_11 + p4ol_4_11 = 1
invariant :pb1_12_9 + pb2_12_9 + pb3_12_9 + pb4_12_9 + pbl_12_9 = 37
invariant :pb1_4_9 + pb2_4_9 + pb3_4_9 + pb4_4_9 + pbl_4_9 = 37
invariant :p4i_10_7 + p4il_10_7 = 1
invariant :pb1_7_9 + pb2_7_9 + pb3_7_9 + pb4_7_9 + pbl_7_9 = 37
invariant :p1i_7_4 + p1il_7_4 = 1
invariant :p1i_1_1 + p1il_1_1 = 1
invariant :p4o_7_11 + p4ol_7_11 = 1
invariant :p4o_12_12 + p4ol_12_12 = 1
invariant :p1i_8_11 + p1il_8_11 = 1
invariant :p1o_14_10 + p1ol_14_10 = 1
invariant :p4o_3_5 + p4ol_3_5 = 1
invariant :p1i_9_3 + p1il_9_3 = 1
invariant :p1i_14_8 + p1il_14_8 = 1
invariant :p4i_2_9 + p4il_2_9 = 1
invariant :p4o_13_7 + p4ol_13_7 = 1
invariant :p4i_10_2 + p4il_10_2 = 1
invariant :p4o_5_11 + p4ol_5_11 = 1
invariant :pb1_13_6 + pb2_13_6 + pb3_13_6 + pb4_13_6 + pbl_13_6 = 37
invariant :pb1_3_4 + pb2_3_4 + pb3_3_4 + pb4_3_4 + pbl_3_4 = 37
invariant :p4o_3_12 + p4ol_3_12 = 1
invariant :p4i_8_6 + p4il_8_6 = 1
invariant :p4i_6_13 + p4il_6_13 = 1
invariant :pb1_8_2 + pb2_8_2 + pb3_8_2 + pb4_8_2 + pbl_8_2 = 37
invariant :p1o_4_12 + p1ol_4_12 = 1
invariant :p4o_1_3 + p4ol_1_3 = 1
invariant :p4o_10_14 + p4ol_10_14 = 1
invariant :p4o_10_8 + p4ol_10_8 = 1
invariant :pb1_7_8 + pb2_7_8 + pb3_7_8 + pb4_7_8 + pbl_7_8 = 37
invariant :p1o_14_12 + p1ol_14_12 = 1
invariant :pb1_13_4 + pb2_13_4 + pb3_13_4 + pb4_13_4 + pbl_13_4 = 37
invariant :p1o_9_1 + p1ol_9_1 = 1
invariant :p4o_3_4 + p4ol_3_4 = 1
invariant :p4o_12_6 + p4ol_12_6 = 1
invariant :pb1_1_11 + pb2_1_11 + pb3_1_11 + pb4_1_11 + pbl_1_11 = 37
invariant :pb1_2_3 + pb2_2_3 + pb3_2_3 + pb4_2_3 + pbl_2_3 = 37
invariant :pb1_7_4 + pb2_7_4 + pb3_7_4 + pb4_7_4 + pbl_7_4 = 37
invariant :p1i_14_9 + p1il_14_9 = 1
invariant :p4o_9_4 + p4ol_9_4 = 1
invariant :p4i_2_13 + p4il_2_13 = 1
invariant :p4o_2_11 + p4ol_2_11 = 1
invariant :p1i_3_10 + p1il_3_10 = 1
invariant :p4o_4_5 + p4ol_4_5 = 1
invariant :p1i_2_1 + p1il_2_1 = 1
invariant :p1i_13_13 + p1il_13_13 = 1
invariant :p1o_4_1 + p1ol_4_1 = 1
invariant :p4o_4_12 + p4ol_4_12 = 1
invariant :p4i_6_7 + p4il_6_7 = 1
invariant :p1o_3_9 + p1ol_3_9 = 1
invariant :p4o_6_4 + p4ol_6_4 = 1
invariant :p1i_7_12 + p1il_7_12 = 1
invariant :p1o_4_7 + p1ol_4_7 = 1
invariant :p4i_13_4 + p4il_13_4 = 1
invariant :pb1_9_11 + pb2_9_11 + pb3_9_11 + pb4_9_11 + pbl_9_11 = 37
invariant :p1o_9_8 + p1ol_9_8 = 1
invariant :p4i_9_14 + p4il_9_14 = 1
invariant :pb1_6_12 + pb2_6_12 + pb3_6_12 + pb4_6_12 + pbl_6_12 = 37
invariant :pb1_11_7 + pb2_11_7 + pb3_11_7 + pb4_11_7 + pbl_11_7 = 37
invariant :p1i_13_12 + p1il_13_12 = 1
invariant :p1i_7_13 + p1il_7_13 = 1
invariant :p1o_5_4 + p1ol_5_4 = 1
invariant :pb1_5_5 + pb2_5_5 + pb3_5_5 + pb4_5_5 + pbl_5_5 = 37
invariant :p4o_7_3 + p4ol_7_3 = 1
invariant :p1o_9_5 + p1ol_9_5 = 1
invariant :p4i_6_12 + p4il_6_12 = 1
invariant :p1o_14_9 + p1ol_14_9 = 1
invariant :p4o_6_1 + p4ol_6_1 = 1
invariant :pb1_3_10 + pb2_3_10 + pb3_3_10 + pb4_3_10 + pbl_3_10 = 37
invariant :pb1_4_7 + pb2_4_7 + pb3_4_7 + pb4_4_7 + pbl_4_7 = 37
invariant :pb1_4_3 + pb2_4_3 + pb3_4_3 + pb4_4_3 + pbl_4_3 = 37
invariant :p1o_13_9 + p1ol_13_9 = 1
invariant :p4o_9_2 + p4ol_9_2 = 1
invariant :pb1_13_11 + pb2_13_11 + pb3_13_11 + pb4_13_11 + pbl_13_11 = 37
invariant :p4i_11_13 + p4il_11_13 = 1
invariant :p1i_1_13 + p1il_1_13 = 1
invariant :p4o_13_6 + p4ol_13_6 = 1
invariant :p4o_2_13 + p4ol_2_13 = 1
invariant :pb1_1_12 + pb2_1_12 + pb3_1_12 + pb4_1_12 + pbl_1_12 = 37
invariant :pb1_10_6 + pb2_10_6 + pb3_10_6 + pb4_10_6 + pbl_10_6 = 37
invariant :pb1_12_8 + pb2_12_8 + pb3_12_8 + pb4_12_8 + pbl_12_8 = 37
invariant :p1o_4_10 + p1ol_4_10 = 1
invariant :pb1_12_1 + pb2_12_1 + pb3_12_1 + pb4_12_1 + pbl_12_1 = 37
invariant :p4o_5_12 + p4ol_5_12 = 1
invariant :p4o_7_5 + p4ol_7_5 = 1
invariant :p1i_2_12 + p1il_2_12 = 1
invariant :p1i_9_11 + p1il_9_11 = 1
invariant :p1i_8_9 + p1il_8_9 = 1
invariant :p4i_8_1 + p4il_8_1 = 1
invariant :p4i_11_10 + p4il_11_10 = 1
invariant :pb1_1_1 + pb2_1_1 + pb3_1_1 + pb4_1_1 + pbl_1_1 = 37
invariant :p1o_4_11 + p1ol_4_11 = 1
invariant :pb1_1_9 + pb2_1_9 + pb3_1_9 + pb4_1_9 + pbl_1_9 = 37
invariant :p1o_13_8 + p1ol_13_8 = 1
invariant :pb1_1_3 + pb2_1_3 + pb3_1_3 + pb4_1_3 + pbl_1_3 = 37
invariant :pb1_1_13 + pb2_1_13 + pb3_1_13 + pb4_1_13 + pbl_1_13 = 37
invariant :p4i_11_12 + p4il_11_12 = 1
invariant :p1i_4_11 + p1il_4_11 = 1
invariant :p1i_5_7 + p1il_5_7 = 1
invariant :p1o_2_9 + p1ol_2_9 = 1
invariant :p4i_4_14 + p4il_4_14 = 1
invariant :p1o_12_8 + p1ol_12_8 = 1
invariant :p4o_7_7 + p4ol_7_7 = 1
invariant :p4o_11_5 + p4ol_11_5 = 1
invariant :p1i_5_6 + p1il_5_6 = 1
invariant :p4i_3_13 + p4il_3_13 = 1
invariant :pb1_3_8 + pb2_3_8 + pb3_3_8 + pb4_3_8 + pbl_3_8 = 37
invariant :p1i_1_9 + p1il_1_9 = 1
invariant :p4i_11_3 + p4il_11_3 = 1
invariant :p4i_4_13 + p4il_4_13 = 1
invariant :pb1_11_3 + pb2_11_3 + pb3_11_3 + pb4_11_3 + pbl_11_3 = 37
invariant :p4i_4_3 + p4il_4_3 = 1
invariant :p4i_1_4 + p4il_1_4 = 1
invariant :p1i_12_8 + p1il_12_8 = 1
invariant :p4i_12_14 + p4il_12_14 = 1
invariant :p4o_12_2 + p4ol_12_2 = 1
invariant :p4o_7_10 + p4ol_7_10 = 1
invariant :p1i_1_12 + p1il_1_12 = 1
invariant :p4i_2_3 + p4il_2_3 = 1
invariant :p1o_1_6 + p1ol_1_6 = 1
invariant :p4o_8_7 + p4ol_8_7 = 1
invariant :pb1_13_10 + pb2_13_10 + pb3_13_10 + pb4_13_10 + pbl_13_10 = 37
invariant :p4i_9_12 + p4il_9_12 = 1
invariant :p4i_5_2 + p4il_5_2 = 1
invariant :p1i_3_11 + p1il_3_11 = 1
invariant :p4o_2_14 + p4ol_2_14 = 1
invariant :p1o_4_3 + p1ol_4_3 = 1
invariant :p4o_10_4 + p4ol_10_4 = 1
invariant :p4o_2_8 + p4ol_2_8 = 1
invariant :p1i_9_5 + p1il_9_5 = 1
invariant :pb1_5_12 + pb2_5_12 + pb3_5_12 + pb4_5_12 + pbl_5_12 = 37
invariant :p1i_8_2 + p1il_8_2 = 1
invariant :p4i_9_9 + p4il_9_9 = 1
invariant :p1i_14_11 + p1il_14_11 = 1
invariant :p1o_13_3 + p1ol_13_3 = 1
invariant :p4i_7_6 + p4il_7_6 = 1
invariant :p4i_1_13 + p4il_1_13 = 1
invariant :p4o_4_7 + p4ol_4_7 = 1
invariant :p1i_9_7 + p1il_9_7 = 1
invariant :p1o_11_3 + p1ol_11_3 = 1
invariant :pb1_8_8 + pb2_8_8 + pb3_8_8 + pb4_8_8 + pbl_8_8 = 37
invariant :p1i_9_1 + p1il_9_1 = 1
invariant :p4o_2_7 + p4ol_2_7 = 1
invariant :p4o_10_3 + p4ol_10_3 = 1
invariant :p1o_14_4 + p1ol_14_4 = 1
invariant :p1o_14_5 + p1ol_14_5 = 1
invariant :p1o_13_4 + p1ol_13_4 = 1
invariant :p1o_1_7 + p1ol_1_7 = 1
invariant :p1i_4_13 + p1il_4_13 = 1
invariant :p4o_5_4 + p4ol_5_4 = 1
invariant :p1i_7_5 + p1il_7_5 = 1
invariant :p1o_4_2 + p1ol_4_2 = 1
invariant :pb1_8_10 + pb2_8_10 + pb3_8_10 + pb4_8_10 + pbl_8_10 = 37
invariant :p1i_4_1 + p1il_4_1 = 1
invariant :p4o_9_9 + p4ol_9_9 = 1
invariant :p1i_9_9 + p1il_9_9 = 1
invariant :p1i_10_9 + p1il_10_9 = 1
invariant :p4o_3_8 + p4ol_3_8 = 1
invariant :p4i_10_10 + p4il_10_10 = 1
invariant :p4o_9_6 + p4ol_9_6 = 1
invariant :p1i_3_6 + p1il_3_6 = 1
invariant :p4i_6_10 + p4il_6_10 = 1
invariant :p1o_8_4 + p1ol_8_4 = 1
invariant :p4i_2_11 + p4il_2_11 = 1
invariant :pb1_10_12 + pb2_10_12 + pb3_10_12 + pb4_10_12 + pbl_10_12 = 37
invariant :p4i_8_9 + p4il_8_9 = 1
invariant :p1i_1_6 + p1il_1_6 = 1
invariant :p4i_12_7 + p4il_12_7 = 1
invariant :p1o_13_7 + p1ol_13_7 = 1
invariant :p4i_3_6 + p4il_3_6 = 1
invariant :p4o_12_7 + p4ol_12_7 = 1
invariant :p1o_10_8 + p1ol_10_8 = 1
invariant :p4o_6_10 + p4ol_6_10 = 1
invariant :p4o_9_3 + p4ol_9_3 = 1
invariant :p4i_6_11 + p4il_6_11 = 1
invariant :pb1_11_4 + pb2_11_4 + pb3_11_4 + pb4_11_4 + pbl_11_4 = 37
invariant :p4o_11_11 + p4ol_11_11 = 1
invariant :p4o_2_10 + p4ol_2_10 = 1
invariant :p4o_11_10 + p4ol_11_10 = 1
invariant :pb1_10_5 + pb2_10_5 + pb3_10_5 + pb4_10_5 + pbl_10_5 = 37
invariant :pb1_6_5 + pb2_6_5 + pb3_6_5 + pb4_6_5 + pbl_6_5 = 37
invariant :pb1_11_11 + pb2_11_11 + pb3_11_11 + pb4_11_11 + pbl_11_11 = 37
invariant :pb1_11_10 + pb2_11_10 + pb3_11_10 + pb4_11_10 + pbl_11_10 = 37
invariant :p1i_5_3 + p1il_5_3 = 1
invariant :p4o_4_13 + p4ol_4_13 = 1
invariant :p4o_7_1 + p4ol_7_1 = 1
invariant :pb1_7_13 + pb2_7_13 + pb3_7_13 + pb4_7_13 + pbl_7_13 = 37
invariant :p4i_13_8 + p4il_13_8 = 1
invariant :pb1_5_10 + pb2_5_10 + pb3_5_10 + pb4_5_10 + pbl_5_10 = 37
invariant :p4o_4_1 + p4ol_4_1 = 1
invariant :p1o_9_11 + p1ol_9_11 = 1
invariant :p4i_12_1 + p4il_12_1 = 1
invariant :p4i_5_7 + p4il_5_7 = 1
invariant :p4o_8_6 + p4ol_8_6 = 1
invariant :p4o_5_10 + p4ol_5_10 = 1
invariant :p4i_7_3 + p4il_7_3 = 1
invariant :p1o_1_4 + p1ol_1_4 = 1
invariant :p4i_8_7 + p4il_8_7 = 1
invariant :p4i_7_8 + p4il_7_8 = 1
invariant :p4o_10_2 + p4ol_10_2 = 1
invariant :p4i_1_14 + p4il_1_14 = 1
invariant :p4i_11_4 + p4il_11_4 = 1
invariant :p4i_6_14 + p4il_6_14 = 1
invariant :p1i_3_1 + p1il_3_1 = 1
invariant :p4i_3_3 + p4il_3_3 = 1
invariant :pb1_7_5 + pb2_7_5 + pb3_7_5 + pb4_7_5 + pbl_7_5 = 37
invariant :p1i_11_9 + p1il_11_9 = 1
invariant :p1o_6_12 + p1ol_6_12 = 1
invariant :p1o_1_2 + p1ol_1_2 = 1
invariant :p1o_7_4 + p1ol_7_4 = 1
invariant :p4o_8_14 + p4ol_8_14 = 1
invariant :p4i_8_13 + p4il_8_13 = 1
invariant :p4i_2_7 + p4il_2_7 = 1
invariant :pb1_8_13 + pb2_8_13 + pb3_8_13 + pb4_8_13 + pbl_8_13 = 37
invariant :pb1_12_4 + pb2_12_4 + pb3_12_4 + pb4_12_4 + pbl_12_4 = 37
invariant :pb1_2_2 + pb2_2_2 + pb3_2_2 + pb4_2_2 + pbl_2_2 = 37
invariant :p1o_3_7 + p1ol_3_7 = 1
invariant :p4o_8_9 + p4ol_8_9 = 1
invariant :p1o_13_1 + p1ol_13_1 = 1
invariant :p1o_3_5 + p1ol_3_5 = 1
invariant :p4i_13_11 + p4il_13_11 = 1
invariant :p4o_5_2 + p4ol_5_2 = 1
invariant :p1i_10_4 + p1il_10_4 = 1
invariant :p1i_8_12 + p1il_8_12 = 1
invariant :p1o_11_6 + p1ol_11_6 = 1
invariant :p4i_6_3 + p4il_6_3 = 1
invariant :p4o_6_12 + p4ol_6_12 = 1
invariant :p4o_9_12 + p4ol_9_12 = 1
invariant :p4i_3_8 + p4il_3_8 = 1
invariant :pb1_7_3 + pb2_7_3 + pb3_7_3 + pb4_7_3 + pbl_7_3 = 37
invariant :p4i_11_5 + p4il_11_5 = 1
invariant :p1i_1_11 + p1il_1_11 = 1
invariant :p1i_4_10 + p1il_4_10 = 1
invariant :p1o_12_13 + p1ol_12_13 = 1
invariant :p4i_12_4 + p4il_12_4 = 1
invariant :p1o_6_8 + p1ol_6_8 = 1
invariant :pb1_11_6 + pb2_11_6 + pb3_11_6 + pb4_11_6 + pbl_11_6 = 37
invariant :p1i_5_1 + p1il_5_1 = 1
invariant :p4o_3_2 + p4ol_3_2 = 1
invariant :p1o_10_7 + p1ol_10_7 = 1
invariant :p4i_1_10 + p4il_1_10 = 1
invariant :p4o_4_10 + p4ol_4_10 = 1
invariant :p4o_8_10 + p4ol_8_10 = 1
invariant :p1o_12_10 + p1ol_12_10 = 1
invariant :p1i_11_6 + p1il_11_6 = 1
invariant :p1o_4_6 + p1ol_4_6 = 1
invariant :pb1_5_8 + pb2_5_8 + pb3_5_8 + pb4_5_8 + pbl_5_8 = 37
invariant :p1i_7_11 + p1il_7_11 = 1
invariant :p4o_6_8 + p4ol_6_8 = 1
invariant :p1o_5_10 + p1ol_5_10 = 1
invariant :p1i_13_6 + p1il_13_6 = 1
invariant :p4o_9_1 + p4ol_9_1 = 1
invariant :p4o_2_6 + p4ol_2_6 = 1
invariant :p1i_1_10 + p1il_1_10 = 1
invariant :p1i_13_8 + p1il_13_8 = 1
invariant :pb1_9_6 + pb2_9_6 + pb3_9_6 + pb4_9_6 + pbl_9_6 = 37
invariant :p1i_14_3 + p1il_14_3 = 1
invariant :pb1_1_6 + pb2_1_6 + pb3_1_6 + pb4_1_6 + pbl_1_6 = 37
invariant :p1i_10_1 + p1il_10_1 = 1
invariant :p4o_2_12 + p4ol_2_12 = 1
invariant :pb1_5_6 + pb2_5_6 + pb3_5_6 + pb4_5_6 + pbl_5_6 = 37
invariant :p4o_5_13 + p4ol_5_13 = 1
invariant :p1i_10_5 + p1il_10_5 = 1
invariant :pb1_9_1 + pb2_9_1 + pb3_9_1 + pb4_9_1 + pbl_9_1 = 37
invariant :p4o_6_13 + p4ol_6_13 = 1
invariant :p4o_13_10 + p4ol_13_10 = 1
invariant :p1o_5_8 + p1ol_5_8 = 1
invariant :p1i_9_13 + p1il_9_13 = 1
invariant :p1o_6_5 + p1ol_6_5 = 1
invariant :p1i_6_9 + p1il_6_9 = 1
invariant :pb1_13_2 + pb2_13_2 + pb3_13_2 + pb4_13_2 + pbl_13_2 = 37
invariant :p1i_3_8 + p1il_3_8 = 1
invariant :p1i_5_4 + p1il_5_4 = 1
invariant :p4o_2_2 + p4ol_2_2 = 1
invariant :p1i_12_2 + p1il_12_2 = 1
invariant :p1o_2_10 + p1ol_2_10 = 1
invariant :pb1_2_9 + pb2_2_9 + pb3_2_9 + pb4_2_9 + pbl_2_9 = 37
invariant :p1o_8_11 + p1ol_8_11 = 1
invariant :p1i_4_9 + p1il_4_9 = 1
invariant :p1o_14_1 + p1ol_14_1 = 1
invariant :p1o_4_8 + p1ol_4_8 = 1
invariant :p1i_2_10 + p1il_2_10 = 1
invariant :pb1_11_12 + pb2_11_12 + pb3_11_12 + pb4_11_12 + pbl_11_12 = 37
invariant :p4i_3_11 + p4il_3_11 = 1
invariant :p1i_6_7 + p1il_6_7 = 1
invariant :p4i_11_11 + p4il_11_11 = 1
invariant :p4i_7_13 + p4il_7_13 = 1
invariant :p4i_7_14 + p4il_7_14 = 1
invariant :p4i_1_9 + p4il_1_9 = 1
invariant :p1o_2_5 + p1ol_2_5 = 1
invariant :p4i_8_14 + p4il_8_14 = 1
invariant :p1o_8_7 + p1ol_8_7 = 1
invariant :p1o_2_2 + p1ol_2_2 = 1
invariant :p4i_12_9 + p4il_12_9 = 1
invariant :p4i_2_8 + p4il_2_8 = 1
invariant :p4o_11_1 + p4ol_11_1 = 1
invariant :pb1_1_10 + pb2_1_10 + pb3_1_10 + pb4_1_10 + pbl_1_10 = 37
invariant :p4o_12_3 + p4ol_12_3 = 1
invariant :p4o_10_5 + p4ol_10_5 = 1
invariant :p4i_5_14 + p4il_5_14 = 1
invariant :pb1_4_2 + pb2_4_2 + pb3_4_2 + pb4_4_2 + pbl_4_2 = 37
invariant :p1i_7_3 + p1il_7_3 = 1
invariant :pb1_13_8 + pb2_13_8 + pb3_13_8 + pb4_13_8 + pbl_13_8 = 37
invariant :p4i_9_11 + p4il_9_11 = 1
invariant :p4i_8_3 + p4il_8_3 = 1
invariant :p4o_10_12 + p4ol_10_12 = 1
invariant :p4o_4_9 + p4ol_4_9 = 1
invariant :pb1_5_3 + pb2_5_3 + pb3_5_3 + pb4_5_3 + pbl_5_3 = 37
invariant :p1o_6_9 + p1ol_6_9 = 1
invariant :p1o_8_5 + p1ol_8_5 = 1
invariant :p4i_9_3 + p4il_9_3 = 1
invariant :pb1_9_7 + pb2_9_7 + pb3_9_7 + pb4_9_7 + pbl_9_7 = 37
invariant :p4i_11_2 + p4il_11_2 = 1
invariant :pb1_13_5 + pb2_13_5 + pb3_13_5 + pb4_13_5 + pbl_13_5 = 37
invariant :p1o_6_6 + p1ol_6_6 = 1
invariant :p1o_3_3 + p1ol_3_3 = 1
invariant :p4i_12_5 + p4il_12_5 = 1
invariant :p1o_12_6 + p1ol_12_6 = 1
invariant :p1o_8_8 + p1ol_8_8 = 1
invariant :pb1_11_5 + pb2_11_5 + pb3_11_5 + pb4_11_5 + pbl_11_5 = 37
invariant :p1o_10_6 + p1ol_10_6 = 1
invariant :p1o_10_9 + p1ol_10_9 = 1
invariant :p4i_5_11 + p4il_5_11 = 1
invariant :p1i_6_2 + p1il_6_2 = 1
invariant :p1i_9_10 + p1il_9_10 = 1
invariant :p1o_13_11 + p1ol_13_11 = 1
invariant :p4o_8_8 + p4ol_8_8 = 1
invariant :p1o_5_3 + p1ol_5_3 = 1
invariant :p1i_2_2 + p1il_2_2 = 1
invariant :p1i_12_5 + p1il_12_5 = 1
invariant :p4i_6_4 + p4il_6_4 = 1
invariant :p4i_9_6 + p4il_9_6 = 1
invariant :p1o_8_10 + p1ol_8_10 = 1
invariant :p4i_7_2 + p4il_7_2 = 1
invariant :p1i_6_6 + p1il_6_6 = 1
invariant :p1o_14_3 + p1ol_14_3 = 1
invariant :p4i_3_5 + p4il_3_5 = 1
invariant :p1o_11_7 + p1ol_11_7 = 1
invariant :p4o_11_8 + p4ol_11_8 = 1
invariant :pb1_7_10 + pb2_7_10 + pb3_7_10 + pb4_7_10 + pbl_7_10 = 37
invariant :p4i_1_5 + p4il_1_5 = 1
invariant :p1i_14_4 + p1il_14_4 = 1
invariant :p4i_9_4 + p4il_9_4 = 1
invariant :p4o_5_6 + p4ol_5_6 = 1
invariant :p4o_6_9 + p4ol_6_9 = 1
invariant :p1i_10_6 + p1il_10_6 = 1
invariant :p1o_12_7 + p1ol_12_7 = 1
invariant :p4o_13_11 + p4ol_13_11 = 1
invariant :p1i_6_4 + p1il_6_4 = 1
invariant :p1o_12_12 + p1ol_12_12 = 1
invariant :p4i_3_12 + p4il_3_12 = 1
invariant :pb1_11_13 + pb2_11_13 + pb3_11_13 + pb4_11_13 + pbl_11_13 = 37
invariant :p4o_5_8 + p4ol_5_8 = 1
invariant :p1o_9_12 + p1ol_9_12 = 1
invariant :pb1_1_2 + pb2_1_2 + pb3_1_2 + pb4_1_2 + pbl_1_2 = 37
invariant :p1i_1_7 + p1il_1_7 = 1
invariant :p1i_10_3 + p1il_10_3 = 1
invariant :p4o_3_1 + p4ol_3_1 = 1
invariant :pb1_6_4 + pb2_6_4 + pb3_6_4 + pb4_6_4 + pbl_6_4 = 37
invariant :p1i_4_12 + p1il_4_12 = 1
invariant :pb1_9_9 + pb2_9_9 + pb3_9_9 + pb4_9_9 + pbl_9_9 = 37
invariant :p1o_5_5 + p1ol_5_5 = 1
invariant :p1o_5_13 + p1ol_5_13 = 1
invariant :p1i_11_13 + p1il_11_13 = 1
invariant :pb1_9_2 + pb2_9_2 + pb3_9_2 + pb4_9_2 + pbl_9_2 = 37
invariant :p4i_1_6 + p4il_1_6 = 1
invariant :p4o_4_14 + p4ol_4_14 = 1
invariant :p4i_13_1 + p4il_13_1 = 1
invariant :pb1_12_7 + pb2_12_7 + pb3_12_7 + pb4_12_7 + pbl_12_7 = 37
invariant :p1o_3_13 + p1ol_3_13 = 1
invariant :p4o_3_11 + p4ol_3_11 = 1
invariant :p4o_7_12 + p4ol_7_12 = 1
invariant :p1o_11_1 + p1ol_11_1 = 1
invariant :p1i_4_7 + p1il_4_7 = 1
invariant :p4i_7_5 + p4il_7_5 = 1
invariant :p4o_6_11 + p4ol_6_11 = 1
invariant :p1i_11_5 + p1il_11_5 = 1
invariant :pb1_10_4 + pb2_10_4 + pb3_10_4 + pb4_10_4 + pbl_10_4 = 37
invariant :pb1_9_8 + pb2_9_8 + pb3_9_8 + pb4_9_8 + pbl_9_8 = 37
invariant :p4i_10_3 + p4il_10_3 = 1
invariant :p1i_4_3 + p1il_4_3 = 1
invariant :p1o_7_11 + p1ol_7_11 = 1
invariant :p4i_12_11 + p4il_12_11 = 1
invariant :p1o_10_11 + p1ol_10_11 = 1
invariant :p4o_3_13 + p4ol_3_13 = 1
invariant :p4i_13_5 + p4il_13_5 = 1
invariant :p4i_1_8 + p4il_1_8 = 1
invariant :p1o_7_7 + p1ol_7_7 = 1
invariant :p4o_12_14 + p4ol_12_14 = 1
invariant :pb1_6_3 + pb2_6_3 + pb3_6_3 + pb4_6_3 + pbl_6_3 = 37
invariant :p4o_5_5 + p4ol_5_5 = 1
invariant :p4o_5_3 + p4ol_5_3 = 1
invariant :p4o_9_13 + p4ol_9_13 = 1
invariant :p1o_12_2 + p1ol_12_2 = 1
invariant :p1i_12_13 + p1il_12_13 = 1
invariant :p4i_1_2 + p4il_1_2 = 1
invariant :p1o_3_8 + p1ol_3_8 = 1
invariant :p1o_3_2 + p1ol_3_2 = 1
invariant :p4i_7_12 + p4il_7_12 = 1
invariant :pb1_5_2 + pb2_5_2 + pb3_5_2 + pb4_5_2 + pbl_5_2 = 37
invariant :p1i_10_2 + p1il_10_2 = 1
invariant :p1o_12_11 + p1ol_12_11 = 1
invariant :p4o_3_6 + p4ol_3_6 = 1
invariant :p4o_11_12 + p4ol_11_12 = 1
invariant :p1i_3_13 + p1il_3_13 = 1
invariant :p1o_11_13 + p1ol_11_13 = 1
invariant :p1o_10_10 + p1ol_10_10 = 1
invariant :pb1_12_6 + pb2_12_6 + pb3_12_6 + pb4_12_6 + pbl_12_6 = 37
invariant :p1i_14_5 + p1il_14_5 = 1
invariant :p1o_3_10 + p1ol_3_10 = 1
invariant :p1i_5_13 + p1il_5_13 = 1
invariant :p1i_8_10 + p1il_8_10 = 1
invariant :p4i_4_6 + p4il_4_6 = 1
invariant :p4i_6_6 + p4il_6_6 = 1
invariant :pb1_2_11 + pb2_2_11 + pb3_2_11 + pb4_2_11 + pbl_2_11 = 37
invariant :p4o_9_14 + p4ol_9_14 = 1
invariant :p4o_4_3 + p4ol_4_3 = 1
invariant :p1i_1_5 + p1il_1_5 = 1
invariant :p1o_7_9 + p1ol_7_9 = 1
invariant :p1i_3_3 + p1il_3_3 = 1
invariant :p1i_7_7 + p1il_7_7 = 1
invariant :p4i_4_1 + p4il_4_1 = 1
invariant :p1o_6_2 + p1ol_6_2 = 1
invariant :p1o_10_12 + p1ol_10_12 = 1
invariant :p4i_3_7 + p4il_3_7 = 1
invariant :p1i_14_12 + p1il_14_12 = 1
invariant :p1o_1_5 + p1ol_1_5 = 1
invariant :p4i_9_5 + p4il_9_5 = 1
invariant :p1o_11_9 + p1ol_11_9 = 1
invariant :p1i_4_8 + p1il_4_8 = 1
invariant :p1o_7_2 + p1ol_7_2 = 1
invariant :p1o_10_4 + p1ol_10_4 = 1
invariant :p1o_6_10 + p1ol_6_10 = 1
invariant :pb1_8_1 + pb2_8_1 + pb3_8_1 + pb4_8_1 + pbl_8_1 = 37
invariant :p1o_1_12 + p1ol_1_12 = 1
invariant :p4i_1_1 + p4il_1_1 = 1
invariant :pb1_6_10 + pb2_6_10 + pb3_6_10 + pb4_6_10 + pbl_6_10 = 37
invariant :p1o_9_13 + p1ol_9_13 = 1
invariant :pb1_11_1 + pb2_11_1 + pb3_11_1 + pb4_11_1 + pbl_11_1 = 37
invariant :pb1_10_9 + pb2_10_9 + pb3_10_9 + pb4_10_9 + pbl_10_9 = 37
invariant :p4i_8_4 + p4il_8_4 = 1
invariant :p1i_5_12 + p1il_5_12 = 1
invariant :pb1_8_5 + pb2_8_5 + pb3_8_5 + pb4_8_5 + pbl_8_5 = 37
invariant :pb1_1_7 + pb2_1_7 + pb3_1_7 + pb4_1_7 + pbl_1_7 = 37
invariant :p4i_2_2 + p4il_2_2 = 1
invariant :pb1_4_6 + pb2_4_6 + pb3_4_6 + pb4_4_6 + pbl_4_6 = 37
invariant :p4i_4_7 + p4il_4_7 = 1
invariant :p1i_10_7 + p1il_10_7 = 1
invariant :p4i_13_7 + p4il_13_7 = 1
invariant :p4o_11_7 + p4ol_11_7 = 1
invariant :p4o_11_14 + p4ol_11_14 = 1
invariant :p1o_11_2 + p1ol_11_2 = 1
invariant :p4o_12_4 + p4ol_12_4 = 1
invariant :p4i_4_9 + p4il_4_9 = 1
invariant :pb1_10_8 + pb2_10_8 + pb3_10_8 + pb4_10_8 + pbl_10_8 = 37
invariant :pb1_10_1 + pb2_10_1 + pb3_10_1 + pb4_10_1 + pbl_10_1 = 37
invariant :p1i_12_9 + p1il_12_9 = 1
invariant :p1i_2_3 + p1il_2_3 = 1
invariant :p1o_11_10 + p1ol_11_10 = 1
invariant :pb1_11_2 + pb2_11_2 + pb3_11_2 + pb4_11_2 + pbl_11_2 = 37
invariant :p1o_7_8 + p1ol_7_8 = 1
invariant :p4o_10_1 + p4ol_10_1 = 1
invariant :p1o_14_11 + p1ol_14_11 = 1
invariant :p4o_6_14 + p4ol_6_14 = 1
invariant :p4o_9_7 + p4ol_9_7 = 1
invariant :p4i_12_8 + p4il_12_8 = 1
invariant :p1i_8_7 + p1il_8_7 = 1
invariant :p1i_2_8 + p1il_2_8 = 1
invariant :p4o_12_8 + p4ol_12_8 = 1
invariant :pb1_7_1 + pb2_7_1 + pb3_7_1 + pb4_7_1 + pbl_7_1 = 37
invariant :p4o_2_5 + p4ol_2_5 = 1
invariant :p4o_7_14 + p4ol_7_14 = 1
invariant :p4o_3_3 + p4ol_3_3 = 1
invariant :p4o_9_8 + p4ol_9_8 = 1
invariant :p1o_9_2 + p1ol_9_2 = 1
invariant :p1o_8_2 + p1ol_8_2 = 1
invariant :p4o_11_4 + p4ol_11_4 = 1
invariant :pb1_10_3 + pb2_10_3 + pb3_10_3 + pb4_10_3 + pbl_10_3 = 37
invariant :p4i_3_1 + p4il_3_1 = 1
invariant :p4i_3_2 + p4il_3_2 = 1
invariant :pb1_1_8 + pb2_1_8 + pb3_1_8 + pb4_1_8 + pbl_1_8 = 37
invariant :p4o_12_5 + p4ol_12_5 = 1
invariant :p4o_5_1 + p4ol_5_1 = 1
invariant :p4o_6_6 + p4ol_6_6 = 1
invariant :p4i_5_4 + p4il_5_4 = 1
invariant :p4i_2_4 + p4il_2_4 = 1
invariant :p1i_2_9 + p1il_2_9 = 1
invariant :p1il_1_1 + p1il_1_10 + p1il_1_11 + p1il_1_12 + p1il_1_13 + p1il_1_2 + p1il_1_3 + p1il_1_4 + p1il_1_5 + p1il_1_6 + p1il_1_7 + p1il_1_8 + p1il_1_9 + p1il_10_1 + p1il_10_10 + p1il_10_11 + p1il_10_12 + p1il_10_13 + p1il_10_2 + p1il_10_3 + p1il_10_4 + p1il_10_5 + p1il_10_6 + p1il_10_7 + p1il_10_8 + p1il_10_9 + p1il_11_1 + p1il_11_10 + p1il_11_11 + p1il_11_12 + p1il_11_13 + p1il_11_2 + p1il_11_3 + p1il_11_4 + p1il_11_5 + p1il_11_6 + p1il_11_7 + p1il_11_8 + p1il_11_9 + p1il_12_1 + p1il_12_10 + p1il_12_11 + p1il_12_12 + p1il_12_13 + p1il_12_2 + p1il_12_3 + p1il_12_4 + p1il_12_5 + p1il_12_6 + p1il_12_7 + p1il_12_8 + p1il_12_9 + p1il_13_1 + p1il_13_10 + p1il_13_11 + p1il_13_12 + p1il_13_13 + p1il_13_2 + p1il_13_3 + p1il_13_4 + p1il_13_5 + p1il_13_6 + p1il_13_7 + p1il_13_8 + p1il_13_9 + p1il_14_1 + p1il_14_10 + p1il_14_11 + p1il_14_12 + p1il_14_13 + p1il_14_2 + p1il_14_3 + p1il_14_4 + p1il_14_5 + p1il_14_6 + p1il_14_7 + p1il_14_8 + p1il_14_9 + p1il_2_1 + p1il_2_10 + p1il_2_11 + p1il_2_12 + p1il_2_13 + p1il_2_2 + p1il_2_3 + p1il_2_4 + p1il_2_5 + p1il_2_6 + p1il_2_7 + p1il_2_8 + p1il_2_9 + p1il_3_1 + p1il_3_10 + p1il_3_11 + p1il_3_12 + p1il_3_13 + p1il_3_2 + p1il_3_3 + p1il_3_4 + p1il_3_5 + p1il_3_6 + p1il_3_7 + p1il_3_8 + p1il_3_9 + p1il_4_1 + p1il_4_10 + p1il_4_11 + p1il_4_12 + p1il_4_13 + p1il_4_2 + p1il_4_3 + p1il_4_4 + p1il_4_5 + p1il_4_6 + p1il_4_7 + p1il_4_8 + p1il_4_9 + p1il_5_1 + p1il_5_10 + p1il_5_11 + p1il_5_12 + p1il_5_13 + p1il_5_2 + p1il_5_3 + p1il_5_4 + p1il_5_5 + p1il_5_6 + p1il_5_7 + p1il_5_8 + p1il_5_9 + p1il_6_1 + p1il_6_10 + p1il_6_11 + p1il_6_12 + p1il_6_13 + p1il_6_2 + p1il_6_3 + p1il_6_4 + p1il_6_5 + p1il_6_6 + p1il_6_7 + p1il_6_8 + p1il_6_9 + p1il_7_1 + p1il_7_10 + p1il_7_11 + p1il_7_12 + p1il_7_13 + p1il_7_2 + p1il_7_3 + p1il_7_4 + p1il_7_5 + p1il_7_6 + p1il_7_7 + p1il_7_8 + p1il_7_9 + p1il_8_1 + p1il_8_10 + p1il_8_11 + p1il_8_12 + p1il_8_13 + p1il_8_2 + p1il_8_3 + p1il_8_4 + p1il_8_5 + p1il_8_6 + p1il_8_7 + p1il_8_8 + p1il_8_9 + p1il_9_1 + p1il_9_10 + p1il_9_11 + p1il_9_12 + p1il_9_13 + p1il_9_2 + p1il_9_3 + p1il_9_4 + p1il_9_5 + p1il_9_6 + p1il_9_7 + p1il_9_8 + p1il_9_9 + p1ol_1_1 + p1ol_1_10 + p1ol_1_11 + p1ol_1_12 + p1ol_1_13 + p1ol_1_2 + p1ol_1_3 + p1ol_1_4 + p1ol_1_5 + p1ol_1_6 + p1ol_1_7 + p1ol_1_8 + p1ol_1_9 + p1ol_10_1 + p1ol_10_10 + p1ol_10_11 + p1ol_10_12 + p1ol_10_13 + p1ol_10_2 + p1ol_10_3 + p1ol_10_4 + p1ol_10_5 + p1ol_10_6 + p1ol_10_7 + p1ol_10_8 + p1ol_10_9 + p1ol_11_1 + p1ol_11_10 + p1ol_11_11 + p1ol_11_12 + p1ol_11_13 + p1ol_11_2 + p1ol_11_3 + p1ol_11_4 + p1ol_11_5 + p1ol_11_6 + p1ol_11_7 + p1ol_11_8 + p1ol_11_9 + p1ol_12_1 + p1ol_12_10 + p1ol_12_11 + p1ol_12_12 + p1ol_12_13 + p1ol_12_2 + p1ol_12_3 + p1ol_12_4 + p1ol_12_5 + p1ol_12_6 + p1ol_12_7 + p1ol_12_8 + p1ol_12_9 + p1ol_13_1 + p1ol_13_10 + p1ol_13_11 + p1ol_13_12 + p1ol_13_13 + p1ol_13_2 + p1ol_13_3 + p1ol_13_4 + p1ol_13_5 + p1ol_13_6 + p1ol_13_7 + p1ol_13_8 + p1ol_13_9 + p1ol_14_1 + p1ol_14_10 + p1ol_14_11 + p1ol_14_12 + p1ol_14_13 + p1ol_14_2 + p1ol_14_3 + p1ol_14_4 + p1ol_14_5 + p1ol_14_6 + p1ol_14_7 + p1ol_14_8 + p1ol_14_9 + p1ol_2_1 + p1ol_2_10 + p1ol_2_11 + p1ol_2_12 + p1ol_2_13 + p1ol_2_2 + p1ol_2_3 + p1ol_2_4 + p1ol_2_5 + p1ol_2_6 + p1ol_2_7 + p1ol_2_8 + p1ol_2_9 + p1ol_3_1 + p1ol_3_10 + p1ol_3_11 + p1ol_3_12 + p1ol_3_13 + p1ol_3_2 + p1ol_3_3 + p1ol_3_4 + p1ol_3_5 + p1ol_3_6 + p1ol_3_7 + p1ol_3_8 + p1ol_3_9 + p1ol_4_1 + p1ol_4_10 + p1ol_4_11 + p1ol_4_12 + p1ol_4_13 + p1ol_4_2 + p1ol_4_3 + p1ol_4_4 + p1ol_4_5 + p1ol_4_6 + p1ol_4_7 + p1ol_4_8 + p1ol_4_9 + p1ol_5_1 + p1ol_5_10 + p1ol_5_11 + p1ol_5_12 + p1ol_5_13 + p1ol_5_2 + p1ol_5_3 + p1ol_5_4 + p1ol_5_5 + p1ol_5_6 + p1ol_5_7 + p1ol_5_8 + p1ol_5_9 + p1ol_6_1 + p1ol_6_10 + p1ol_6_11 + p1ol_6_12 + p1ol_6_13 + p1ol_6_2 + p1ol_6_3 + p1ol_6_4 + p1ol_6_5 + p1ol_6_6 + p1ol_6_7 + p1ol_6_8 + p1ol_6_9 + p1ol_7_1 + p1ol_7_10 + p1ol_7_11 + p1ol_7_12 + p1ol_7_13 + p1ol_7_2 + p1ol_7_3 + p1ol_7_4 + p1ol_7_5 + p1ol_7_6 + p1ol_7_7 + p1ol_7_8 + p1ol_7_9 + p1ol_8_1 + p1ol_8_10 + p1ol_8_11 + p1ol_8_12 + p1ol_8_13 + p1ol_8_2 + p1ol_8_3 + p1ol_8_4 + p1ol_8_5 + p1ol_8_6 + p1ol_8_7 + p1ol_8_8 + p1ol_8_9 + p1ol_9_1 + p1ol_9_10 + p1ol_9_11 + p1ol_9_12 + p1ol_9_13 + p1ol_9_2 + p1ol_9_3 + p1ol_9_4 + p1ol_9_5 + p1ol_9_6 + p1ol_9_7 + p1ol_9_8 + p1ol_9_9 + p4il_1_1 + p4il_1_10 + p4il_1_11 + p4il_1_12 + p4il_1_13 + p4il_1_14 + p4il_1_2 + p4il_1_3 + p4il_1_4 + p4il_1_5 + p4il_1_6 + p4il_1_7 + p4il_1_8 + p4il_1_9 + p4il_10_1 + p4il_10_10 + p4il_10_11 + p4il_10_12 + p4il_10_13 + p4il_10_14 + p4il_10_2 + p4il_10_3 + p4il_10_4 + p4il_10_5 + p4il_10_6 + p4il_10_7 + p4il_10_8 + p4il_10_9 + p4il_11_1 + p4il_11_10 + p4il_11_11 + p4il_11_12 + p4il_11_13 + p4il_11_14 + p4il_11_2 + p4il_11_3 + p4il_11_4 + p4il_11_5 + p4il_11_6 + p4il_11_7 + p4il_11_8 + p4il_11_9 + p4il_12_1 + p4il_12_10 + p4il_12_11 + p4il_12_12 + p4il_12_13 + p4il_12_14 + p4il_12_2 + p4il_12_3 + p4il_12_4 + p4il_12_5 + p4il_12_6 + p4il_12_7 + p4il_12_8 + p4il_12_9 + p4il_13_1 + p4il_13_10 + p4il_13_11 + p4il_13_12 + p4il_13_13 + p4il_13_14 + p4il_13_2 + p4il_13_3 + p4il_13_4 + p4il_13_5 + p4il_13_6 + p4il_13_7 + p4il_13_8 + p4il_13_9 + p4il_2_1 + p4il_2_10 + p4il_2_11 + p4il_2_12 + p4il_2_13 + p4il_2_14 + p4il_2_2 + p4il_2_3 + p4il_2_4 + p4il_2_5 + p4il_2_6 + p4il_2_7 + p4il_2_8 + p4il_2_9 + p4il_3_1 + p4il_3_10 + p4il_3_11 + p4il_3_12 + p4il_3_13 + p4il_3_14 + p4il_3_2 + p4il_3_3 + p4il_3_4 + p4il_3_5 + p4il_3_6 + p4il_3_7 + p4il_3_8 + p4il_3_9 + p4il_4_1 + p4il_4_10 + p4il_4_11 + p4il_4_12 + p4il_4_13 + p4il_4_14 + p4il_4_2 + p4il_4_3 + p4il_4_4 + p4il_4_5 + p4il_4_6 + p4il_4_7 + p4il_4_8 + p4il_4_9 + p4il_5_1 + p4il_5_10 + p4il_5_11 + p4il_5_12 + p4il_5_13 + p4il_5_14 + p4il_5_2 + p4il_5_3 + p4il_5_4 + p4il_5_5 + p4il_5_6 + p4il_5_7 + p4il_5_8 + p4il_5_9 + p4il_6_1 + p4il_6_10 + p4il_6_11 + p4il_6_12 + p4il_6_13 + p4il_6_14 + p4il_6_2 + p4il_6_3 + p4il_6_4 + p4il_6_5 + p4il_6_6 + p4il_6_7 + p4il_6_8 + p4il_6_9 + p4il_7_1 + p4il_7_10 + p4il_7_11 + p4il_7_12 + p4il_7_13 + p4il_7_14 + p4il_7_2 + p4il_7_3 + p4il_7_4 + p4il_7_5 + p4il_7_6 + p4il_7_7 + p4il_7_8 + p4il_7_9 + p4il_8_1 + p4il_8_10 + p4il_8_11 + p4il_8_12 + p4il_8_13 + p4il_8_14 + p4il_8_2 + p4il_8_3 + p4il_8_4 + p4il_8_5 + p4il_8_6 + p4il_8_7 + p4il_8_8 + p4il_8_9 + p4il_9_1 + p4il_9_10 + p4il_9_11 + p4il_9_12 + p4il_9_13 + p4il_9_14 + p4il_9_2 + p4il_9_3 + p4il_9_4 + p4il_9_5 + p4il_9_6 + p4il_9_7 + p4il_9_8 + p4il_9_9 + p4ol_1_1 + p4ol_1_10 + p4ol_1_11 + p4ol_1_12 + p4ol_1_13 + p4ol_1_14 + p4ol_1_2 + p4ol_1_3 + p4ol_1_4 + p4ol_1_5 + p4ol_1_6 + p4ol_1_7 + p4ol_1_8 + p4ol_1_9 + p4ol_10_1 + p4ol_10_10 + p4ol_10_11 + p4ol_10_12 + p4ol_10_13 + p4ol_10_14 + p4ol_10_2 + p4ol_10_3 + p4ol_10_4 + p4ol_10_5 + p4ol_10_6 + p4ol_10_7 + p4ol_10_8 + p4ol_10_9 + p4ol_11_1 + p4ol_11_10 + p4ol_11_11 + p4ol_11_12 + p4ol_11_13 + p4ol_11_14 + p4ol_11_2 + p4ol_11_3 + p4ol_11_4 + p4ol_11_5 + p4ol_11_6 + p4ol_11_7 + p4ol_11_8 + p4ol_11_9 + p4ol_12_1 + p4ol_12_10 + p4ol_12_11 + p4ol_12_12 + p4ol_12_13 + p4ol_12_14 + p4ol_12_2 + p4ol_12_3 + p4ol_12_4 + p4ol_12_5 + p4ol_12_6 + p4ol_12_7 + p4ol_12_8 + p4ol_12_9 + p4ol_13_1 + p4ol_13_10 + p4ol_13_11 + p4ol_13_12 + p4ol_13_13 + p4ol_13_14 + p4ol_13_2 + p4ol_13_3 + p4ol_13_4 + p4ol_13_5 + p4ol_13_6 + p4ol_13_7 + p4ol_13_8 + p4ol_13_9 + p4ol_2_1 + p4ol_2_10 + p4ol_2_11 + p4ol_2_12 + p4ol_2_13 + p4ol_2_14 + p4ol_2_2 + p4ol_2_3 + p4ol_2_4 + p4ol_2_5 + p4ol_2_6 + p4ol_2_7 + p4ol_2_8 + p4ol_2_9 + p4ol_3_1 + p4ol_3_10 + p4ol_3_11 + p4ol_3_12 + p4ol_3_13 + p4ol_3_14 + p4ol_3_2 + p4ol_3_3 + p4ol_3_4 + p4ol_3_5 + p4ol_3_6 + p4ol_3_7 + p4ol_3_8 + p4ol_3_9 + p4ol_4_1 + p4ol_4_10 + p4ol_4_11 + p4ol_4_12 + p4ol_4_13 + p4ol_4_14 + p4ol_4_2 + p4ol_4_3 + p4ol_4_4 + p4ol_4_5 + p4ol_4_6 + p4ol_4_7 + p4ol_4_8 + p4ol_4_9 + p4ol_5_1 + p4ol_5_10 + p4ol_5_11 + p4ol_5_12 + p4ol_5_13 + p4ol_5_14 + p4ol_5_2 + p4ol_5_3 + p4ol_5_4 + p4ol_5_5 + p4ol_5_6 + p4ol_5_7 + p4ol_5_8 + p4ol_5_9 + p4ol_6_1 + p4ol_6_10 + p4ol_6_11 + p4ol_6_12 + p4ol_6_13 + p4ol_6_14 + p4ol_6_2 + p4ol_6_3 + p4ol_6_4 + p4ol_6_5 + p4ol_6_6 + p4ol_6_7 + p4ol_6_8 + p4ol_6_9 + p4ol_7_1 + p4ol_7_10 + p4ol_7_11 + p4ol_7_12 + p4ol_7_13 + p4ol_7_14 + p4ol_7_2 + p4ol_7_3 + p4ol_7_4 + p4ol_7_5 + p4ol_7_6 + p4ol_7_7 + p4ol_7_8 + p4ol_7_9 + p4ol_8_1 + p4ol_8_10 + p4ol_8_11 + p4ol_8_12 + p4ol_8_13 + p4ol_8_14 + p4ol_8_2 + p4ol_8_3 + p4ol_8_4 + p4ol_8_5 + p4ol_8_6 + p4ol_8_7 + p4ol_8_8 + p4ol_8_9 + p4ol_9_1 + p4ol_9_10 + p4ol_9_11 + p4ol_9_12 + p4ol_9_13 + p4ol_9_14 + p4ol_9_2 + p4ol_9_3 + p4ol_9_4 + p4ol_9_5 + p4ol_9_6 + p4ol_9_7 + p4ol_9_8 + p4ol_9_9 + pbl_1_1 + pbl_1_10 + pbl_1_11 + pbl_1_12 + pbl_1_13 + pbl_1_2 + pbl_1_3 + pbl_1_4 + pbl_1_5 + pbl_1_6 + pbl_1_7 + pbl_1_8 + pbl_1_9 + pbl_10_1 + pbl_10_10 + pbl_10_11 + pbl_10_12 + pbl_10_13 + pbl_10_2 + pbl_10_3 + pbl_10_4 + pbl_10_5 + pbl_10_6 + pbl_10_7 + pbl_10_8 + pbl_10_9 + pbl_11_1 + pbl_11_10 + pbl_11_11 + pbl_11_12 + pbl_11_13 + pbl_11_2 + pbl_11_3 + pbl_11_4 + pbl_11_5 + pbl_11_6 + pbl_11_7 + pbl_11_8 + pbl_11_9 + pbl_12_1 + pbl_12_10 + pbl_12_11 + pbl_12_12 + pbl_12_13 + pbl_12_2 + pbl_12_3 + pbl_12_4 + pbl_12_5 + pbl_12_6 + pbl_12_7 + pbl_12_8 + pbl_12_9 + pbl_13_1 + pbl_13_10 + pbl_13_11 + pbl_13_12 + pbl_13_13 + pbl_13_2 + pbl_13_3 + pbl_13_4 + pbl_13_5 + pbl_13_6 + pbl_13_7 + pbl_13_8 + pbl_13_9 + pbl_2_1 + pbl_2_10 + pbl_2_11 + pbl_2_12 + pbl_2_13 + pbl_2_2 + pbl_2_3 + pbl_2_4 + pbl_2_5 + pbl_2_6 + pbl_2_7 + pbl_2_8 + pbl_2_9 + pbl_3_1 + pbl_3_10 + pbl_3_11 + pbl_3_12 + pbl_3_13 + pbl_3_2 + pbl_3_3 + pbl_3_4 + pbl_3_5 + pbl_3_6 + pbl_3_7 + pbl_3_8 + pbl_3_9 + pbl_4_1 + pbl_4_10 + pbl_4_11 + pbl_4_12 + pbl_4_13 + pbl_4_2 + pbl_4_3 + pbl_4_4 + pbl_4_5 + pbl_4_6 + pbl_4_7 + pbl_4_8 + pbl_4_9 + pbl_5_1 + pbl_5_10 + pbl_5_11 + pbl_5_12 + pbl_5_13 + pbl_5_2 + pbl_5_3 + pbl_5_4 + pbl_5_5 + pbl_5_6 + pbl_5_7 + pbl_5_8 + pbl_5_9 + pbl_6_1 + pbl_6_10 + pbl_6_11 + pbl_6_12 + pbl_6_13 + pbl_6_2 + pbl_6_3 + pbl_6_4 + pbl_6_5 + pbl_6_6 + pbl_6_7 + pbl_6_8 + pbl_6_9 + pbl_7_1 + pbl_7_10 + pbl_7_11 + pbl_7_12 + pbl_7_13 + pbl_7_2 + pbl_7_3 + pbl_7_4 + pbl_7_5 + pbl_7_6 + pbl_7_7 + pbl_7_8 + pbl_7_9 + pbl_8_1 + pbl_8_10 + pbl_8_11 + pbl_8_12 + pbl_8_13 + pbl_8_2 + pbl_8_3 + pbl_8_4 + pbl_8_5 + pbl_8_6 + pbl_8_7 + pbl_8_8 + pbl_8_9 + pbl_9_1 + pbl_9_10 + pbl_9_11 + pbl_9_12 + pbl_9_13 + pbl_9_2 + pbl_9_3 + pbl_9_4 + pbl_9_5 + pbl_9_6 + pbl_9_7 + pbl_9_8 + pbl_9_9 = 2925
invariant :p4o_1_2 + p4ol_1_2 = 1
invariant :p1i_13_11 + p1il_13_11 = 1
invariant :p4i_5_5 + p4il_5_5 = 1
invariant :pb1_5_11 + pb2_5_11 + pb3_5_11 + pb4_5_11 + pbl_5_11 = 37
invariant :p1i_6_12 + p1il_6_12 = 1
invariant :p1o_3_11 + p1ol_3_11 = 1
invariant :p1i_7_10 + p1il_7_10 = 1
invariant :p4i_9_10 + p4il_9_10 = 1
invariant :pb1_3_6 + pb2_3_6 + pb3_3_6 + pb4_3_6 + pbl_3_6 = 37
invariant :p1i_1_3 + p1il_1_3 = 1
invariant :p4o_1_1 + p4ol_1_1 = 1
invariant :p1i_2_7 + p1il_2_7 = 1
invariant :p4o_5_14 + p4ol_5_14 = 1
invariant :p4o_3_10 + p4ol_3_10 = 1
invariant :pb1_13_13 + pb2_13_13 + pb3_13_13 + pb4_13_13 + pbl_13_13 = 37
invariant :p4i_8_5 + p4il_8_5 = 1
invariant :p4i_2_5 + p4il_2_5 = 1
invariant :pb1_6_9 + pb2_6_9 + pb3_6_9 + pb4_6_9 + pbl_6_9 = 37
invariant :p4i_4_8 + p4il_4_8 = 1
invariant :p4o_10_7 + p4ol_10_7 = 1
invariant :p4i_3_10 + p4il_3_10 = 1
invariant :p1o_13_10 + p1ol_13_10 = 1
invariant :pb1_3_11 + pb2_3_11 + pb3_3_11 + pb4_3_11 + pbl_3_11 = 37
invariant :p1i_3_9 + p1il_3_9 = 1
invariant :p1o_5_11 + p1ol_5_11 = 1
invariant :pb1_12_11 + pb2_12_11 + pb3_12_11 + pb4_12_11 + pbl_12_11 = 37
invariant :p1i_9_4 + p1il_9_4 = 1
invariant :p1o_4_13 + p1ol_4_13 = 1
invariant :p4o_1_4 + p4ol_1_4 = 1
invariant :pb1_2_6 + pb2_2_6 + pb3_2_6 + pb4_2_6 + pbl_2_6 = 37
invariant :p4o_2_9 + p4ol_2_9 = 1
invariant :p4i_7_11 + p4il_7_11 = 1
invariant :p1i_8_5 + p1il_8_5 = 1
invariant :p1i_11_2 + p1il_11_2 = 1
invariant :p4o_7_6 + p4ol_7_6 = 1
invariant :p4i_6_8 + p4il_6_8 = 1
invariant :p4o_7_2 + p4ol_7_2 = 1
invariant :p1o_8_3 + p1ol_8_3 = 1
invariant :p1o_2_13 + p1ol_2_13 = 1
invariant :p4i_8_12 + p4il_8_12 = 1
invariant :p4o_13_8 + p4ol_13_8 = 1
invariant :p1o_1_13 + p1ol_1_13 = 1
invariant :pb1_4_1 + pb2_4_1 + pb3_4_1 + pb4_4_1 + pbl_4_1 = 37
invariant :pb1_6_8 + pb2_6_8 + pb3_6_8 + pb4_6_8 + pbl_6_8 = 37
invariant :p1i_6_10 + p1il_6_10 = 1
invariant :p1i_14_10 + p1il_14_10 = 1
invariant :p1o_4_5 + p1ol_4_5 = 1
invariant :p4i_5_13 + p4il_5_13 = 1
invariant :p1i_2_6 + p1il_2_6 = 1
invariant :p1i_8_8 + p1il_8_8 = 1
invariant :pb1_3_3 + pb2_3_3 + pb3_3_3 + pb4_3_3 + pbl_3_3 = 37
invariant :p4i_11_14 + p4il_11_14 = 1
invariant :p1o_4_4 + p1ol_4_4 = 1
invariant :p4o_1_8 + p4ol_1_8 = 1
invariant :p1i_13_2 + p1il_13_2 = 1
invariant :p4i_9_2 + p4il_9_2 = 1
invariant :pb1_4_4 + pb2_4_4 + pb3_4_4 + pb4_4_4 + pbl_4_4 = 37
invariant :p1i_9_12 + p1il_9_12 = 1
invariant :p4i_12_2 + p4il_12_2 = 1
invariant :p4o_5_9 + p4ol_5_9 = 1
invariant :p4o_8_4 + p4ol_8_4 = 1
invariant :pb1_12_2 + pb2_12_2 + pb3_12_2 + pb4_12_2 + pbl_12_2 = 37
invariant :pb1_5_7 + pb2_5_7 + pb3_5_7 + pb4_5_7 + pbl_5_7 = 37
invariant :p1i_8_13 + p1il_8_13 = 1
invariant :p4i_1_3 + p4il_1_3 = 1
invariant :p4i_7_1 + p4il_7_1 = 1
invariant :p1i_5_9 + p1il_5_9 = 1
invariant :pb1_4_11 + pb2_4_11 + pb3_4_11 + pb4_4_11 + pbl_4_11 = 37
invariant :p1i_7_1 + p1il_7_1 = 1
invariant :p1o_6_11 + p1ol_6_11 = 1
invariant :p4i_5_12 + p4il_5_12 = 1
invariant :p1i_5_5 + p1il_5_5 = 1
invariant :p1o_5_6 + p1ol_5_6 = 1
invariant :p1o_10_2 + p1ol_10_2 = 1
invariant :p1o_7_1 + p1ol_7_1 = 1
invariant :p1i_1_4 + p1il_1_4 = 1
invariant :p1i_14_2 + p1il_14_2 = 1
invariant :p4i_13_2 + p4il_13_2 = 1
invariant :p4o_8_13 + p4ol_8_13 = 1
invariant :pb1_3_7 + pb2_3_7 + pb3_3_7 + pb4_3_7 + pbl_3_7 = 37
invariant :p1i_13_3 + p1il_13_3 = 1
invariant :p1o_8_13 + p1ol_8_13 = 1
invariant :pb1_1_4 + pb2_1_4 + pb3_1_4 + pb4_1_4 + pbl_1_4 = 37
invariant :p1o_14_13 + p1ol_14_13 = 1
invariant :p4i_4_12 + p4il_4_12 = 1
invariant :p4o_13_1 + p4ol_13_1 = 1
invariant :p4i_13_9 + p4il_13_9 = 1
invariant :p4i_3_9 + p4il_3_9 = 1
invariant :p1i_4_2 + p1il_4_2 = 1
invariant :p1i_7_9 + p1il_7_9 = 1
invariant :p1o_1_9 + p1ol_1_9 = 1
invariant :p4i_9_13 + p4il_9_13 = 1
invariant :p1i_9_6 + p1il_9_6 = 1
invariant :p1o_5_9 + p1ol_5_9 = 1
invariant :p4i_5_1 + p4il_5_1 = 1
invariant :p1i_9_2 + p1il_9_2 = 1
invariant :p4i_12_3 + p4il_12_3 = 1
invariant :p4i_6_9 + p4il_6_9 = 1
invariant :p1i_5_11 + p1il_5_11 = 1
invariant :p4o_12_13 + p4ol_12_13 = 1
invariant :p4o_5_7 + p4ol_5_7 = 1
invariant :pb1_9_5 + pb2_9_5 + pb3_9_5 + pb4_9_5 + pbl_9_5 = 37
invariant :p1o_14_7 + p1ol_14_7 = 1
invariant :p1i_11_11 + p1il_11_11 = 1
invariant :p1i_4_5 + p1il_4_5 = 1
invariant :p4i_13_13 + p4il_13_13 = 1
invariant :p1o_6_7 + p1ol_6_7 = 1
invariant :pb1_4_5 + pb2_4_5 + pb3_4_5 + pb4_4_5 + pbl_4_5 = 37
invariant :p1i_1_8 + p1il_1_8 = 1
invariant :p4i_10_1 + p4il_10_1 = 1
invariant :pb1_10_7 + pb2_10_7 + pb3_10_7 + pb4_10_7 + pbl_10_7 = 37
invariant :pb1_10_11 + pb2_10_11 + pb3_10_11 + pb4_10_11 + pbl_10_11 = 37
invariant :p4i_2_14 + p4il_2_14 = 1
invariant :p4o_7_4 + p4ol_7_4 = 1
invariant :pb1_8_11 + pb2_8_11 + pb3_8_11 + pb4_8_11 + pbl_8_11 = 37
invariant :p4i_7_4 + p4il_7_4 = 1
invariant :p4o_8_2 + p4ol_8_2 = 1
invariant :p4i_2_12 + p4il_2_12 = 1
invariant :p1o_10_13 + p1ol_10_13 = 1
invariant :pb1_11_9 + pb2_11_9 + pb3_11_9 + pb4_11_9 + pbl_11_9 = 37
invariant :p4i_1_12 + p4il_1_12 = 1
invariant :pb1_9_13 + pb2_9_13 + pb3_9_13 + pb4_9_13 + pbl_9_13 = 37
invariant :p4i_10_12 + p4il_10_12 = 1
invariant :p4i_13_10 + p4il_13_10 = 1
invariant :p1i_3_2 + p1il_3_2 = 1
invariant :p4o_11_9 + p4ol_11_9 = 1
invariant :p4o_1_9 + p4ol_1_9 = 1
invariant :p1o_13_6 + p1ol_13_6 = 1
invariant :pb1_2_13 + pb2_2_13 + pb3_2_13 + pb4_2_13 + pbl_2_13 = 37
invariant :p1o_5_1 + p1ol_5_1 = 1
invariant :pb1_12_3 + pb2_12_3 + pb3_12_3 + pb4_12_3 + pbl_12_3 = 37
invariant :p4i_11_1 + p4il_11_1 = 1
invariant :pb1_6_2 + pb2_6_2 + pb3_6_2 + pb4_6_2 + pbl_6_2 = 37
invariant :p1o_7_6 + p1ol_7_6 = 1
invariant :p1i_14_7 + p1il_14_7 = 1
invariant :pb1_8_7 + pb2_8_7 + pb3_8_7 + pb4_8_7 + pbl_8_7 = 37
invariant :p4o_1_5 + p4ol_1_5 = 1
invariant :p1o_5_12 + p1ol_5_12 = 1
invariant :p4i_10_13 + p4il_10_13 = 1
invariant :p4o_12_1 + p4ol_12_1 = 1
invariant :pb1_4_12 + pb2_4_12 + pb3_4_12 + pb4_4_12 + pbl_4_12 = 37
invariant :p4o_8_1 + p4ol_8_1 = 1
invariant :p1i_6_3 + p1il_6_3 = 1
invariant :p4i_10_9 + p4il_10_9 = 1
invariant :pb1_7_11 + pb2_7_11 + pb3_7_11 + pb4_7_11 + pbl_7_11 = 37
invariant :pb1_3_13 + pb2_3_13 + pb3_3_13 + pb4_3_13 + pbl_3_13 = 37
invariant :p4i_8_10 + p4il_8_10 = 1
invariant :p1i_10_8 + p1il_10_8 = 1
invariant :pb1_10_2 + pb2_10_2 + pb3_10_2 + pb4_10_2 + pbl_10_2 = 37
invariant :pb1_5_1 + pb2_5_1 + pb3_5_1 + pb4_5_1 + pbl_5_1 = 37
invariant :pb1_7_7 + pb2_7_7 + pb3_7_7 + pb4_7_7 + pbl_7_7 = 37
invariant :p1o_12_4 + p1ol_12_4 = 1
invariant :p4i_9_8 + p4il_9_8 = 1
invariant :p1o_13_5 + p1ol_13_5 = 1
invariant :pb1_8_3 + pb2_8_3 + pb3_8_3 + pb4_8_3 + pbl_8_3 = 37
invariant :p1i_1_2 + p1il_1_2 = 1
invariant :p4i_3_4 + p4il_3_4 = 1
invariant :p1i_11_1 + p1il_11_1 = 1
invariant :p1i_3_12 + p1il_3_12 = 1
invariant :p1i_4_4 + p1il_4_4 = 1
invariant :p4o_11_3 + p4ol_11_3 = 1
invariant :p1i_2_5 + p1il_2_5 = 1
invariant :p1i_14_6 + p1il_14_6 = 1
invariant :p4i_6_1 + p4il_6_1 = 1
invariant :p4i_10_14 + p4il_10_14 = 1
invariant :p4i_11_9 + p4il_11_9 = 1
invariant :p4i_2_6 + p4il_2_6 = 1
invariant :p1o_2_12 + p1ol_2_12 = 1
invariant :p4i_12_13 + p4il_12_13 = 1
invariant :p4o_8_12 + p4ol_8_12 = 1
invariant :p4o_8_5 + p4ol_8_5 = 1
invariant :pb1_8_4 + pb2_8_4 + pb3_8_4 + pb4_8_4 + pbl_8_4 = 37
invariant :pb1_8_12 + pb2_8_12 + pb3_8_12 + pb4_8_12 + pbl_8_12 = 37
invariant :p1i_14_13 + p1il_14_13 = 1
invariant :p4i_10_5 + p4il_10_5 = 1
invariant :p4o_13_13 + p4ol_13_13 = 1
invariant :p4i_12_12 + p4il_12_12 = 1
invariant :p4o_11_13 + p4ol_11_13 = 1
invariant :p1i_3_4 + p1il_3_4 = 1
invariant :p4i_11_8 + p4il_11_8 = 1
invariant :p1o_9_7 + p1ol_9_7 = 1
invariant :p1i_5_8 + p1il_5_8 = 1
invariant :p1o_7_5 + p1ol_7_5 = 1
invariant :pb1_12_5 + pb2_12_5 + pb3_12_5 + pb4_12_5 + pbl_12_5 = 37
invariant :p1i_9_8 + p1il_9_8 = 1
invariant :p1o_9_10 + p1ol_9_10 = 1
invariant :p1o_9_9 + p1ol_9_9 = 1
invariant :p4i_7_9 + p4il_7_9 = 1
invariant :p4i_13_12 + p4il_13_12 = 1
invariant :p4o_10_9 + p4ol_10_9 = 1
invariant :p4i_11_6 + p4il_11_6 = 1
invariant :p1o_11_8 + p1ol_11_8 = 1
invariant :p1o_4_9 + p1ol_4_9 = 1
invariant :p4o_1_13 + p4ol_1_13 = 1
invariant :p4o_3_14 + p4ol_3_14 = 1
invariant :p1i_13_4 + p1il_13_4 = 1
invariant :pb1_2_1 + pb2_2_1 + pb3_2_1 + pb4_2_1 + pbl_2_1 = 37
invariant :p1o_2_11 + p1ol_2_11 = 1
invariant :p1o_12_5 + p1ol_12_5 = 1
invariant :p1o_7_12 + p1ol_7_12 = 1
invariant :p4o_12_10 + p4ol_12_10 = 1
invariant :p1i_11_10 + p1il_11_10 = 1
invariant :p1i_3_5 + p1il_3_5 = 1
invariant :pb1_6_7 + pb2_6_7 + pb3_6_7 + pb4_6_7 + pbl_6_7 = 37
invariant :p4i_13_14 + p4il_13_14 = 1
Compilation finished in 43990 ms.
Running link step : CommandLine [args=[gcc, -shared, -o, gal.so, model.o], workingDir=/home/mcc/execution]
Link finished in 75 ms.
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality00==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality00==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality01==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality01==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality02==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality02==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality04==true], workingDir=/home/mcc/execution]
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality04==true], workingDir=/home/mcc/execution]
255
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityCardinality -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityCardinality -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 28, 2018 10:30:33 AM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -louvain, -smt]
May 28, 2018 10:30:33 AM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 28, 2018 10:30:33 AM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 292 ms
May 28, 2018 10:30:33 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2301 places.
May 28, 2018 10:30:33 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2756 transitions.
May 28, 2018 10:30:34 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 937 ms
May 28, 2018 10:30:35 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 2756 transitions.
May 28, 2018 10:30:35 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Too many transitions (2756) to apply POR reductions. Disabling POR matrices.
May 28, 2018 10:30:35 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1045 ms
May 28, 2018 10:30:35 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 984 ms
May 28, 2018 10:30:36 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 100 ms
May 28, 2018 10:30:36 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 0 ms
May 28, 2018 10:30:36 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 1323ms conformant to PINS in folder :/home/mcc/execution
May 28, 2018 10:30:36 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 2756 transitions.
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 16 in 2148 ms.
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-00(UNSAT) depth K=0 took 87 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-01(UNSAT) depth K=0 took 10 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-02(UNSAT) depth K=0 took 12 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-03(UNSAT) depth K=0 took 16 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-04(UNSAT) depth K=0 took 12 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-05(UNSAT) depth K=0 took 16 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-06(UNSAT) depth K=0 took 16 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-07(UNSAT) depth K=0 took 68 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-08(UNSAT) depth K=0 took 20 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-09(UNSAT) depth K=0 took 15 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-10(UNSAT) depth K=0 took 15 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-11(UNSAT) depth K=0 took 11 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-12(UNSAT) depth K=0 took 15 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-13(UNSAT) depth K=0 took 11 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-14(UNSAT) depth K=0 took 15 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-15(UNSAT) depth K=0 took 11 ms
May 28, 2018 10:30:38 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 2756 transitions.
May 28, 2018 10:30:42 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 898 place invariants in 2429 ms
May 28, 2018 10:30:44 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-00(UNSAT) depth K=1 took 5333 ms
May 28, 2018 10:30:47 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-01(UNSAT) depth K=1 took 3151 ms
May 28, 2018 10:30:48 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-02(UNSAT) depth K=1 took 1651 ms
May 28, 2018 10:30:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-03(UNSAT) depth K=1 took 1920 ms
May 28, 2018 10:30:52 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-04(UNSAT) depth K=1 took 1767 ms
May 28, 2018 10:30:54 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-05(UNSAT) depth K=1 took 1496 ms
May 28, 2018 10:30:55 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-06(UNSAT) depth K=1 took 1551 ms
May 28, 2018 10:30:57 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-07(UNSAT) depth K=1 took 1529 ms
May 28, 2018 10:30:58 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-08(UNSAT) depth K=1 took 1523 ms
May 28, 2018 10:31:00 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-09(UNSAT) depth K=1 took 1877 ms
May 28, 2018 10:31:02 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-10(UNSAT) depth K=1 took 1755 ms
May 28, 2018 10:31:04 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 2301 variables to be positive in 23980 ms
May 28, 2018 10:31:05 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-11(UNSAT) depth K=1 took 3591 ms
May 28, 2018 10:31:11 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-12(UNSAT) depth K=1 took 5394 ms
May 28, 2018 10:31:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-13(UNSAT) depth K=1 took 3103 ms
May 28, 2018 10:31:17 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-14(UNSAT) depth K=1 took 3157 ms
May 28, 2018 10:31:19 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property SquareGrid-PT-130613-ReachabilityCardinality-15(UNSAT) depth K=1 took 1601 ms
pins2lts-mc, 0.000: Registering PINS so language module
pins2lts-mc, 0.000, ** error **: out of memory trying to get 4294967296
java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, SquareGridPT130613ReachabilityCardinality04==true], workingDir=/home/mcc/execution]
255
at fr.lip6.move.gal.application.LTSminRunner.checkProperty(LTSminRunner.java:167)
at fr.lip6.move.gal.application.LTSminRunner.access$9(LTSminRunner.java:122)
at fr.lip6.move.gal.application.LTSminRunner$1.run(LTSminRunner.java:91)
at java.lang.Thread.run(Thread.java:748)
ITS-tools command line returned an error code 137
May 28, 2018 10:57:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesSquareGrid-PT-130613-ReachabilityCardinality-00
May 28, 2018 10:57:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property SquareGrid-PT-130613-ReachabilityCardinality-00(SAT) depth K=0 took 1606233 ms
May 28, 2018 11:20:43 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesSquareGrid-PT-130613-ReachabilityCardinality-01
May 28, 2018 11:20:43 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property SquareGrid-PT-130613-ReachabilityCardinality-01(SAT) depth K=0 took 1372795 ms
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="SquareGrid-PT-130613"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="itstoolsl"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/SquareGrid-PT-130613.tgz
mv SquareGrid-PT-130613 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstoolsl"
echo " Input is SquareGrid-PT-130613, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r165-smll-152705516300208"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;