About the Execution of LoLA for QuasiCertifProtocol-COL-18
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
3555.660 | 3600000.00 | 3803339.00 | 11174.10 | TF?TFTT?TTTFTFTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........................................................................................................
/home/mcc/execution
total 264K
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 21K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 20K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.4K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.4K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 9.6K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.8K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.7K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 117 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 355 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 15K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 3 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 93K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is QuasiCertifProtocol-COL-18, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r136-qhx2-152673578700031
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-00
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-01
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-02
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-03
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-04
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-05
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-06
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-07
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-08
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-09
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-18-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1526909826920
info: Time: 3600 - MCC
===========================================================================================
prep: translating QuasiCertifProtocol-COL-18 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: check for too many tokens
===========================================================================================
prep: translating QuasiCertifProtocol-COL-18 formula CTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking CTLCardinality @ QuasiCertifProtocol-COL-18 @ 3569 seconds
lola: LoLA will run for 3569 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 1694/65536 symbol table entries, 0 collisions
lola: preprocessing...
lola: Size of bit vector: 44736
lola: finding significant places
lola: 1398 places, 296 transitions, 295 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 391 transition conflict sets
lola: TASK
lola: reading formula from QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: always true
lola: always true
lola: LP says that atomic proposition is always false: (2 <= p498)
lola: LP says that atomic proposition is always true: (p537 <= p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557)
lola: always true
lola: (((((p1016 <= p477 + p476 + p475 + p474 + p473 + p472 + p471 + p470 + p469 + p468 + p467 + p466 + p465 + p464 + p463 + p462 + p461 + p460 + p459) OR (p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 <= p1016)) AND (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15 + p16 + p17 + p18 <= p538) AND ((p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 <= 2) OR (p497 <= 0))) AND E (G ((2 <= p1017)))) OR ((A (F ((p77 <= p537))) AND E (F ((p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 <= p577)))) OR ((3 <= p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p1000 + p997 + p998 + p999) AND A (X ((1 <= p1360 + p1341 + p1322 + p1303 + p1284 + p1265 + p1246 + p1227 + p1208 + p1189 + p1170 + p1151 + p1132 + p1113 + p1094 + p1075 + p1056 + p1037 + p1036 + p1035 + p1034 + p1033 + p1032 + p1031 + p1030 + p1029 + p1028 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378)))))) : (NOT(A (G (()))) AND A (F (A (F ((2 <= p1360 + p1341 + p1322 + p1303 + p1284 + p1265 + p1246 + p1227 + p1208 + p1189 + p1170 + p1151 + p1132 + p1113 + p1094 + p1075 + p1056 + p1037 + p1036 + p1035 + p1034 + p1033 + p1032 + p1031 + p1030 + p1029 + p1028 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378)))))) : A (((p537 <= p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397) U ((p496 + p495 + p494 + p493 + p492 + p491 + p490 + p489 + p488 + p487 + p486 + p485 + p484 + p483 + p482 + p481 + p480 + p479 + p478 <= p1360 + p1341 + p1322 + p1303 + p1284 + p1265 + p1246 + p1227 + p1208 + p1189 + p1170 + p1151 + p1132 + p1113 + p1094 + p1075 + p1056 + p1037 + p1036 + p1035 + p1034 + p1033 + p1032 + p1031 + p1030 + p1029 + p1028 + p1018 + p1019 + p1020 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p1027 + p1038 + p1039 + p1040 + p1041 + p1042 + p1043 + p1044 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p1051 + p1052 + p1053 + p1054 + p1055 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1064 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1095 + p1096 + p1097 + p1098 + p1099 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1149 + p1150 + p1152 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1281 + p1282 + p1283 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p1300 + p1301 + p1302 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1317 + p1318 + p1319 + p1320 + p1321 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378) AND (p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p63 + p62 + p61 + p60 + p59 + p58 + p57 + p75 <= p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37) AND (p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 <= p498) AND (p477 + p476 + p475 + p474 + p473 + p472 + p471 + p470 + p469 + p468 + p467 + p466 + p465 + p464 + p463 + p462 + p461 + p460 + p459 <= p1017)))) : A (F ((A (X ((2 <= p458 + p457 + p456 + p455 + p454 + p453 + p452 + p451 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p440))) OR E (G (TRUE))))) : E ((((p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518 <= 1) AND (p957 + p956 + p955 + p954 + p953 + p952 + p951 + p950 + p949 + p948 + p947 + p946 + p945 + p944 + p943 + p942 + p941 + p940 + p939 + 1 <= p497)) U A (F ((2 <= p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p990 + p991 + p992 + p993 + p994 + p995))))) : A ((E (X ((p76 <= p1017))) U (((1 <= p497)) AND ((1 <= p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958) OR (p477 + p476 + p475 + p474 + p473 + p472 + p471 + p470 + p469 + p468 + p467 + p466 + p465 + p464 + p463 + p462 + p461 + p460 + p459 <= p996))))) : NOT(A (F ((3 <= p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958)))) : A ((A (F ((2 <= p577))) U A (X ((3 <= p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958))))) : E (F (E (((3 <= p1017) U (3 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938))))) : E (X (E (G ((p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 <= 2))))) : E (F (((1 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938) AND (p576 + p575 + p574 + p573 + p572 + p571 + p570 + p569 + p568 + p567 + p566 + p565 + p564 + p563 + p562 + p561 + p560 + p559 + p558 <= p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518) AND ((3 <= p1017) OR (p1016 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p79 + p136 + p155 + p174 + p193 + p212 + p231 + p250 + p269 + p288 + p307 + p326 + p345 + p421 + p402 + p364 + p383 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p384 + p382 + p381 + p380 + p379 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p351 + p400 + p401 + p350 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p349 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p333 + p332 + p331 + p330 + p329 + p328 + p327 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p317 + p316 + p315 + p314 + p313 + p312 + p311 + p310 + p309 + p308 + p306 + p305 + p304 + p303 + p302 + p301 + p300 + p299 + p298 + p297 + p296 + p295 + p294 + p293 + p292 + p291 + p290 + p289 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p275 + p274 + p273 + p272 + p271 + p270 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p239 + p238 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p228 + p227 + p226 + p225 + p224 + p223 + p222 + p221 + p220 + p219 + p218 + p217 + p216 + p215 + p214 + p213 + p211 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p202 + p201 + p200 + p199 + p198 + p197 + p196 + p195 + p194 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p173 + p172 + p171 + p170 + p169 + p168 + p167 + p166 + p165 + p164 + p163 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p135 + p134 + p133 + p132 + p131 + p130 + p129 + p128 + p127 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) AND (p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518 <= p1017)))) : A (F (A (G (FALSE)))) : NOT(A (F ((p538 + 1 <= p577)))) : NOT((E (G (())) AND (((2 <= p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518) AND (p576 + p575 + p574 + p573 + p572 + p571 + p570 + p569 + p568 + p567 + p566 + p565 + p564 + p563 + p562 + p561 + p560 + p559 + p558 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p79 + p136 + p155 + p174 + p193 + p212 + p231 + p250 + p269 + p288 + p307 + p326 + p345 + p421 + p402 + p364 + p383 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p384 + p382 + p381 + p380 + p379 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p351 + p400 + p401 + p350 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p349 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p333 + p332 + p331 + p330 + p329 + p328 + p327 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p317 + p316 + p315 + p314 + p313 + p312 + p311 + p310 + p309 + p308 + p306 + p305 + p304 + p303 + p302 + p301 + p300 + p299 + p298 + p297 + p296 + p295 + p294 + p293 + p292 + p291 + p290 + p289 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p275 + p274 + p273 + p272 + p271 + p270 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p239 + p238 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p228 + p227 + p226 + p225 + p224 + p223 + p222 + p221 + p220 + p219 + p218 + p217 + p216 + p215 + p214 + p213 + p211 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p202 + p201 + p200 + p199 + p198 + p197 + p196 + p195 + p194 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p173 + p172 + p171 + p170 + p169 + p168 + p167 + p166 + p165 + p164 + p163 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p135 + p134 + p133 + p132 + p131 + p130 + p129 + p128 + p127 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) OR ((p458 + p457 + p456 + p455 + p454 + p453 + p452 + p451 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p440 <= p538) AND (1 <= p77) AND (1 <= p496 + p495 + p494 + p493 + p492 + p491 + p490 + p489 + p488 + p487 + p486 + p485 + p484 + p483 + p482 + p481 + p480 + p479 + p478))))) : E (F ((p498 + 1 <= p538))) : E (G (((p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 <= p458 + p457 + p456 + p455 + p454 + p453 + p452 + p451 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p440) OR (p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 <= 1) OR (3 <= p78))))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:392
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:123
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:446
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 220 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 235 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 251 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 3 will run for 271 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (((p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518 <= 1) OR (p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p79 + p136 + p155 + p174 + p193 + p212 + p231 + p250 + p269 + p288 + p307 + p326 + p345 + p421 + p402 + p364 + p383... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (((p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518 <= 1) OR (p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p79 + p136 + p155 + p174 + p193 + p212 + p231 + p250 + p269 + p288 + p307 + p326 + p345 + p421 + p402 + p364 + p383... (shortened)
lola: processed formula length: 3097
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: processed formula with 5 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 4 will run for 293 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((A (F ((2 <= p577))) U A (X ((3 <= p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: rewrite Frontend/Parser/formula_rewrite.k:734
lola: rewrite Frontend/Parser/formula_rewrite.k:739
lola: processed formula: A(A(TRUE U (2 <= p577)) U AX((3 <= p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958)))
lola: processed formula length: 168
lola: 32 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 826565 markings, 1109248 edges, 165313 markings/sec, 0 secs
lola: 1609113 markings, 2200563 edges, 156510 markings/sec, 5 secs
lola: 2364826 markings, 3282928 edges, 151143 markings/sec, 10 secs
lola: 3138220 markings, 4374945 edges, 154679 markings/sec, 15 secs
lola: 3894162 markings, 5463751 edges, 151188 markings/sec, 20 secs
lola: 4631921 markings, 6544297 edges, 147552 markings/sec, 25 secs
lola: 5414515 markings, 7649619 edges, 156519 markings/sec, 30 secs
lola: 6195114 markings, 8735029 edges, 156120 markings/sec, 35 secs
lola: 6968482 markings, 9815260 edges, 154674 markings/sec, 40 secs
lola: 7710616 markings, 10893098 edges, 148427 markings/sec, 45 secs
lola: 8415801 markings, 11950904 edges, 141037 markings/sec, 50 secs
lola: 9109506 markings, 13012776 edges, 138741 markings/sec, 55 secs
lola: 9784358 markings, 14077737 edges, 134970 markings/sec, 60 secs
lola: 10582400 markings, 15162949 edges, 159608 markings/sec, 65 secs
lola: 11338345 markings, 16236151 edges, 151189 markings/sec, 70 secs
lola: 12042811 markings, 17293837 edges, 140893 markings/sec, 75 secs
lola: 12741558 markings, 18336814 edges, 139749 markings/sec, 80 secs
lola: 13427413 markings, 19385856 edges, 137171 markings/sec, 85 secs
lola: 14073709 markings, 20429302 edges, 129259 markings/sec, 90 secs
lola: 14742093 markings, 21482428 edges, 133677 markings/sec, 95 secs
lola: 15492380 markings, 22531219 edges, 150057 markings/sec, 100 secs
lola: 16199220 markings, 23573295 edges, 141368 markings/sec, 105 secs
lola: 16847741 markings, 24602933 edges, 129704 markings/sec, 110 secs
lola: 17546339 markings, 25647853 edges, 139720 markings/sec, 115 secs
lola: 18186291 markings, 26679887 edges, 127990 markings/sec, 120 secs
lola: 18806852 markings, 27713837 edges, 124112 markings/sec, 125 secs
lola: 19461646 markings, 28739299 edges, 130959 markings/sec, 130 secs
lola: 20153123 markings, 29751074 edges, 138295 markings/sec, 135 secs
lola: 20819296 markings, 30767916 edges, 133235 markings/sec, 140 secs
lola: 21425042 markings, 31774802 edges, 121149 markings/sec, 145 secs
lola: 22099300 markings, 32799695 edges, 134852 markings/sec, 150 secs
lola: 22712568 markings, 33816067 edges, 122654 markings/sec, 155 secs
lola: 23308699 markings, 34843135 edges, 119226 markings/sec, 160 secs
lola: 23942512 markings, 35862215 edges, 126763 markings/sec, 165 secs
lola: 24614971 markings, 36877820 edges, 134492 markings/sec, 170 secs
lola: 25255607 markings, 37888123 edges, 128127 markings/sec, 175 secs
lola: 25842561 markings, 38891250 edges, 117391 markings/sec, 180 secs
lola: 26498597 markings, 39917046 edges, 131207 markings/sec, 185 secs
lola: 27090040 markings, 40929658 edges, 118289 markings/sec, 190 secs
lola: 27658129 markings, 41947077 edges, 113618 markings/sec, 195 secs
lola: 28274359 markings, 42960759 edges, 123246 markings/sec, 200 secs
lola: 28913293 markings, 43958372 edges, 127787 markings/sec, 205 secs
lola: 29533610 markings, 44964479 edges, 124063 markings/sec, 210 secs
lola: 30089404 markings, 45951575 edges, 111159 markings/sec, 215 secs
lola: 30723042 markings, 46967917 edges, 126728 markings/sec, 220 secs
lola: 31295430 markings, 47977785 edges, 114478 markings/sec, 225 secs
lola: 31838998 markings, 48977260 edges, 108714 markings/sec, 230 secs
lola: 32419449 markings, 49981514 edges, 116090 markings/sec, 235 secs
lola: 33042326 markings, 50970822 edges, 124575 markings/sec, 240 secs
lola: 33632944 markings, 51954763 edges, 118124 markings/sec, 245 secs
lola: 34172290 markings, 52935380 edges, 107869 markings/sec, 250 secs
lola: 34767126 markings, 53936298 edges, 118967 markings/sec, 255 secs
lola: 35312231 markings, 54925449 edges, 109021 markings/sec, 260 secs
lola: 35843652 markings, 55920776 edges, 106284 markings/sec, 265 secs
lola: 36374721 markings, 56903001 edges, 106214 markings/sec, 270 secs
lola: 36979866 markings, 57886268 edges, 121029 markings/sec, 275 secs
lola: 37560354 markings, 58872615 edges, 116098 markings/sec, 280 secs
lola: 38091904 markings, 59851560 edges, 106310 markings/sec, 285 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown no unknown yes unknown unknown unknown unknown unknown unknown unknown no unknown no unknown unknown
lola: memory consumption: 3319720 KB
lola: time consumption: 338 seconds
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown no unknown yes unknown unknown unknown unknown unknown unknown unknown no unknown no unknown unknown
lola: memory consumption: 3334116 KB
lola: time consumption: 340 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 5 will run for 291 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (X (E (G ((p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 <= 2)))))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation from a successor
lola: rewrite Frontend/Parser/formula_rewrite.k:627
lola: processed formula: (p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 <= 2)
lola: processed formula length: 118
lola: 30 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EXEG)
lola: state space: using reachability graph (EXEG version) (--search=depth)
lola: state space: using invisibility based stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space /EXEG
lola: The predicate is possibly preserved from some successor.
lola: 21 markings, 20 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 321 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (((((p1016 <= p477 + p476 + p475 + p474 + p473 + p472 + p471 + p470 + p469 + p468 + p467 + p466 + p465 + p464 + p463 + p462 + p461 + p460 + p459) OR (p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 <= p1016)) AND (p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p10 + p11 + p12 + p13 + p14 + p15... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking a Boolean combination of formulas
lola: RUNNING
lola: subprocess 6 will run for 321 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: (3 <= p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p1000 + p997 + p998 + p999)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= p1015 + p1014 + p1013 + p1012 + p1011 + p1010 + p1009 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p1000 + p997 + p998 + p999)
lola: processed formula length: 153
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
lola: subprocess 7 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G ((2 <= p1017)))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation
lola: processed formula: E (G ((2 <= p1017)))
lola: processed formula length: 20
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate is not possibly preserved.
lola: 1 markings, 0 edges
lola: ========================================
lola: subprocess 8 will run for 401 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((p77 <= p537)))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:659
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: (p537 + 1 <= p77)
lola: processed formula length: 17
lola: 31 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: 110477 markings, 771260 edges, 22095 markings/sec, 0 secs
lola: 203246 markings, 1525773 edges, 18554 markings/sec, 5 secs
lola: 288657 markings, 2274746 edges, 17082 markings/sec, 10 secs
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate eventually occurs.
lola: 354522 markings, 2952258 edges
lola: ========================================
lola: subprocess 9 will run for 455 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F ((p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 <= p577)))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: processed formula: E (F ((p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 <= p577)))
lola: processed formula length: 129
lola: 30 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: 0 markings, 0 edges
lola: formula 0: (p38 + p39 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p50 + p51 + p52 + p53 + p54 + p55 + p56 <= p577)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: ========================================
lola: SUBRESULT
lola: result: yes
lola: The Boolean predicate is true.
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 354 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A ((E (X ((p76 <= p1017))) U (((1 <= p497)) AND ((1 <= p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958) OR (p477 + p476 + p475 + p474 + p473 + p472 + p471 + p470 + p469 + p468 + p467 + p466 + p465 + p464 + p463 + p462 + p461 + p460 + p459 <= p996)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:739
lola: processed formula: A(EX((p76 <= p1017)) U (((1 <= p497)) AND ((1 <= p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958) OR (p477 + p476 + p475 + p474 + p473 + p472 + p471 + p470 + p469 + p468 + p467 + p466 + p465 + p464 + p463 + p462 + p461 + p460 + p459 <= p996))))
lola: processed formula length: 328
lola: 31 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 325970 markings, 1384411 edges, 65194 markings/sec, 0 secs
lola: 617128 markings, 2771886 edges, 58232 markings/sec, 5 secs
lola: SUBRESULT
lola: result: yes
lola: produced by: CTL model checker
lola: The net satisfies the given formula.
lola: 709044 markings, 3306780 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 397 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F ((p498 + 1 <= p538)))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: processed formula: E (F ((p498 + 1 <= p538)))
lola: processed formula length: 26
lola: 30 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: formula 0: (p498 + 1 <= p538)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: 22 markings, 21 edges
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-18-CTLCardinality-8-0.sara
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 9 will run for 454 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F ((3 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p61... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: processed formula: E (F ((3 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p61... (shortened)
lola: processed formula length: 2539
lola: 30 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: formula 0: (3 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938)
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: 46 markings, 45 edges
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-18-CTLCardinality-9-0.sara
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 529 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F (((1 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p6... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: processed formula: E (F (((1 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p6... (shortened)
lola: processed formula length: 5496
lola: 30 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: formula 0: ((1 <= p920 + p901 + p882 + p863 + p844 + p825 + p806 + p787 + p768 + p749 + p730 + p711 + p692 + p673 + p654 + p635 + p616 + p597 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p598 + p599 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p690 + p691 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p769 + p770 + p771 + p772 + p773 + p774 + p775 + p776 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p800 + p801 + p802 + p803 + p804 + p805 + p807 + p808 + p809 + p810 + p811 + p812 + p813 + p814 + p815 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p900 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938) AND (p576 + p575 + p574 + p573 + p572 + p571 + p570 + p569 + p568 + p567 + p566 + p565 + p564 + p563 + p562 + p561 + p560 + p559 + p558 <= p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518) AND ((3 <= p1017) OR (p1016 <= p100 + p101 + p102 + p103 + p104 + p105 + p106 + p107 + p108 + p109 + p110 + p111 + p112 + p113 + p114 + p115 + p116 + p117 + p118 + p119 + p79 + p136 + p155 + p174 + p193 + p212 + p231 + p250 + p269 + p288 + p307 + p326 + p345 + p421 + p402 + p364 + p383 + p385 + p386 + p387 + p388 + p389 + p390 + p391 + p392 + p393 + p394 + p395 + p396 + p397 + p398 + p399 + p384 + p382 + p381 + p380 + p379 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p369 + p368 + p367 + p366 + p365 + p363 + p362 + p361 + p360 + p359 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p351 + p400 + p401 + p350 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p349 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p348 + p347 + p346 + p344 + p343 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p333 + p332 + p331 + p330 + p329 + p328 + p327 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p317 + p316 + p315 + p314 + p313 + p312 + p311 + p310 + p309 + p308 + p306 + p305 + p304 + p303 + p302 + p301 + p300 + p299 + p298 + p297 + p296 + p295 + p294 + p293 + p292 + p291 + p290 + p289 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p275 + p274 + p273 + p272 + p271 + p270 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p239 + p238 + p237 + p236 + p235 + p234 + p233 + p232 + p230 + p229 + p228 + p227 + p226 + p225 + p224 + p223 + p222 + p221 + p220 + p219 + p218 + p217 + p216 + p215 + p214 + p213 + p211 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p202 + p201 + p200 + p199 + p198 + p197 + p196 + p195 + p194 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p173 + p172 + p171 + p170 + p169 + p168 + p167 + p166 + p165 + p164 + p163 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p135 + p134 + p133 + p132 + p131 + p130 + p129 + p128 + p127 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p99)) AND (p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518 <= p1017))
lola: state equation: Generated DNF with 8 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-18-CTLCardinality-10-0.sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: 47 markings, 46 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 635 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G ((p577 <= p538)))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation
lola: processed formula: E (G ((p577 <= p538)))
lola: processed formula length: 22
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: 102319 markings, 834619 edges, 20464 markings/sec, 0 secs
lola: 198013 markings, 1713755 edges, 19139 markings/sec, 5 secs
lola: 290617 markings, 2594539 edges, 18521 markings/sec, 10 secs
lola: 382803 markings, 3484509 edges, 18437 markings/sec, 15 secs
lola: 472576 markings, 4394179 edges, 17955 markings/sec, 20 secs
lola: 564455 markings, 5280315 edges, 18376 markings/sec, 25 secs
lola: 661666 markings, 6139788 edges, 19442 markings/sec, 30 secs
lola: 756667 markings, 7021584 edges, 19000 markings/sec, 35 secs
lola: 849182 markings, 7897682 edges, 18503 markings/sec, 40 secs
lola: 939485 markings, 8782977 edges, 18061 markings/sec, 45 secs
lola: 1025944 markings, 9690578 edges, 17292 markings/sec, 50 secs
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate is possibly preserved.
lola: 1048736 markings, 9961669 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 780 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G ((p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958 <= 2)))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation
lola: processed formula: E (G ((p976 + p975 + p974 + p973 + p972 + p971 + p970 + p969 + p968 + p967 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p958 <= 2)))
lola: processed formula length: 145
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate is possibly preserved.
lola: 22 markings, 21 edges
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1040 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G (((p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 <= p458 + p457 + p456 + p455 + p454 + p453 + p452 + p451 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p440) OR (p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p139... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking possible preservation
lola: processed formula: E (G (((p19 + p20 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 <= p458 + p457 + p456 + p455 + p454 + p453 + p452 + p451 + p450 + p449 + p448 + p447 + p446 + p445 + p444 + p443 + p442 + p441 + p440) OR (p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p139... (shortened)
lola: processed formula length: 433
lola: 29 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: state space / EG
lola: The predicate is possibly preserved.
lola: lola: ========================================
22 markings, 21 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1561 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E ((((p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518 <= 1) AND (p957 + p956 + p955 + p954 + p953 + p952 + p951 + p950 + p949 + p948 + p947 + p946 + p945 + p944 + p943 + p942 + p941 + p940 + p939 + 1 <= p497)) U A (F ((2 <= p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p9... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: rewrite Frontend/Parser/formula_rewrite.k:726
lola: processed formula: E(((p536 + p535 + p534 + p533 + p532 + p531 + p530 + p529 + p528 + p527 + p526 + p525 + p524 + p523 + p522 + p521 + p520 + p519 + p518 <= 1) AND (p957 + p956 + p955 + p954 + p953 + p952 + p951 + p950 + p949 + p948 + p947 + p946 + p945 + p944 + p943 + p942 + p941 + p940 + p939 + 1 <= p497)) U A(TRUE U (2 <= p977 + p978 + p979 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p... (shortened)
lola: processed formula length: 441
lola: 31 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: no
lola: produced by: CTL model checker
lola: The net does not satisfy the given formula.
lola: 22 markings, 22 edges
lola: ========================================
FORMULA QuasiCertifProtocol-COL-18-CTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 3122 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (((p537 <= p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397) U ((p496 + p495 + p494 + p493 + p492 + p491 + p490 + p489 + p488 + p487 + p486 + p485 + p484 + p483 + p482 + p481 + p480 + p479 + p478 <= p1360 + p1341 + p1322 + p1303 + p1284 + p1265 + p1246 + p1227 + p1208 + p1189 + p1170 + p1151 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking universal until
lola: rewrite Frontend/Parser/formula_rewrite.k:645
lola: rewrite Frontend/Parser/formula_rewrite.k:609
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: A (((p537 <= p1382 + p1381 + p1380 + p1379 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397) U ((p496 + p495 + p494 + p493 + p492 + p491 + p490 + p489 + p488 + p487 + p486 + p485 + p484 + p483 + p482 + p481 + p480 + p479 + p478 <= p1360 + p1341 + p1322 + p1303 + p1284 + p1265 + p1246 + p1227 + p1208 + p1189 + p1170 + p1151 + p1... (shortened)
lola: processed formula length: 6109
lola: 33 rewrites
lola: closed formula file QuasiCertifProtocol-COL-18-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /ER)
lola: state space: using reachability graph (ER version) (--search=depth)
lola: state space: using ltl preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: 213063 markings, 1307943 edges, 42613 markings/sec, 0 secs
lola: 398819 markings, 2562478 edges, 37151 markings/sec, 5 secs
lola: 580977 markings, 3805388 edges, 36432 markings/sec, 10 secs
lola: 757387 markings, 5022943 edges, 35282 markings/sec, 15 secs
lola: 912261 markings, 6157140 edges, 30975 markings/sec, 20 secs
lola: 1051058 markings, 7256722 edges, 27759 markings/sec, 25 secs
lola: 1174942 markings, 8420735 edges, 24777 markings/sec, 30 secs
lola: 1330237 markings, 9624894 edges, 31059 markings/sec, 35 secs
lola: 1522225 markings, 10880199 edges, 38398 markings/sec, 40 secs
lola: 1703022 markings, 12117089 edges, 36159 markings/sec, 45 secs
lola: 1873301 markings, 13320349 edges, 34056 markings/sec, 50 secs
lola: 2016634 markings, 14409006 edges, 28667 markings/sec, 55 secs
lola: 2155458 markings, 15501672 edges, 27765 markings/sec, 60 secs
lola: 2273285 markings, 16658100 edges, 23565 markings/sec, 65 secs
lola: 2435499 markings, 17885486 edges, 32443 markings/sec, 70 secs
lola: 2617972 markings, 19109436 edges, 36495 markings/sec, 75 secs
lola: 2788146 markings, 20308303 edges, 34035 markings/sec, 80 secs
lola: 2946615 markings, 21440861 edges, 31694 markings/sec, 85 secs
lola: 3080131 markings, 22490873 edges, 26703 markings/sec, 90 secs
lola: 3207366 markings, 23661655 edges, 25447 markings/sec, 95 secs
lola: 3352095 markings, 24856810 edges, 28946 markings/sec, 100 secs
lola: 3530646 markings, 26073790 edges, 35710 markings/sec, 105 secs
lola: 3693084 markings, 27249834 edges, 32488 markings/sec, 110 secs
lola: 3837648 markings, 28320409 edges, 28913 markings/sec, 115 secs
lola: 3976189 markings, 29432119 edges, 27708 markings/sec, 120 secs
lola: 4090242 markings, 30584870 edges, 22811 markings/sec, 125 secs
lola: 4254890 markings, 31787604 edges, 32930 markings/sec, 130 secs
lola: 4419610 markings, 32960117 edges, 32944 markings/sec, 135 secs
lola: 4564404 markings, 34052162 edges, 28959 markings/sec, 140 secs
lola: 4703653 markings, 35159447 edges, 27850 markings/sec, 145 secs
lola: 4818716 markings, 36291008 edges, 23013 markings/sec, 150 secs
lola: 4971161 markings, 37472791 edges, 30489 markings/sec, 155 secs
lola: 5131310 markings, 38633844 edges, 32030 markings/sec, 160 secs
lola: 5266570 markings, 39670245 edges, 27052 markings/sec, 165 secs
lola: 5397701 markings, 40796821 edges, 26226 markings/sec, 170 secs
lola: 5510638 markings, 41939220 edges, 22587 markings/sec, 175 secs
lola: 5674647 markings, 43093266 edges, 32802 markings/sec, 180 secs
lola: 5806005 markings, 44115346 edges, 26272 markings/sec, 185 secs
lola: 5939631 markings, 45219339 edges, 26725 markings/sec, 190 secs
lola: 6049760 markings, 46350339 edges, 22026 markings/sec, 195 secs
lola: 6199865 markings, 47476325 edges, 30021 markings/sec, 200 secs
lola: 6329149 markings, 48484627 edges, 25857 markings/sec, 205 secs
lola: 6454355 markings, 49602791 edges, 25041 markings/sec, 210 secs
lola: 6575075 markings, 50726401 edges, 24144 markings/sec, 215 secs
lola: 6705456 markings, 51742192 edges, 26076 markings/sec, 220 secs
lola: 6836063 markings, 52829982 edges, 26121 markings/sec, 225 secs
lola: 6943093 markings, 53924334 edges, 21406 markings/sec, 230 secs
lola: 7074250 markings, 54962157 edges, 26231 markings/sec, 235 secs
lola: 7200093 markings, 56034326 edges, 25169 markings/sec, 240 secs
lola: 7300744 markings, 57096052 edges, 20130 markings/sec, 245 secs
lola: 7423786 markings, 58067955 edges, 24608 markings/sec, 250 secs
lola: 7519599 markings, 58972377 edges, 19163 markings/sec, 255 secs
lola: 7606217 markings, 59865256 edges, 17324 markings/sec, 260 secs
lola: 7728744 markings, 60867195 edges, 24505 markings/sec, 265 secs
lola: 7821828 markings, 61809938 edges, 18617 markings/sec, 270 secs
lola: 7933051 markings, 62820994 edges, 22245 markings/sec, 275 secs
lola: 8029736 markings, 63799146 edges, 19337 markings/sec, 280 secs
lola: 8149884 markings, 64900589 edges, 24030 markings/sec, 285 secs
lola: 8262089 markings, 66057685 edges, 22441 markings/sec, 290 secs
lola: 8380850 markings, 67200924 edges, 23752 markings/sec, 295 secs
lola: 8475938 markings, 68307068 edges, 19018 markings/sec, 300 secs
lola: 8573414 markings, 69435765 edges, 19495 markings/sec, 305 secs
lola: 8673373 markings, 70567156 edges, 19992 markings/sec, 310 secs
lola: 8770446 markings, 71694080 edges, 19415 markings/sec, 315 secs
lola: 8861832 markings, 72827509 edges, 18277 markings/sec, 320 secs
lola: 8945058 markings, 73961824 edges, 16645 markings/sec, 325 secs
lola: 9147546 markings, 75231088 edges, 40498 markings/sec, 330 secs
lola: 9330016 markings, 76466318 edges, 36494 markings/sec, 335 secs
lola: 9502833 markings, 77663235 edges, 34563 markings/sec, 340 secs
lola: 9662883 markings, 78829541 edges, 32010 markings/sec, 345 secs
lola: 9797929 markings, 79869131 edges, 27009 markings/sec, 350 secs
lola: 9930580 markings, 81022448 edges, 26530 markings/sec, 355 secs
lola: 10055825 markings, 82200988 edges, 25049 markings/sec, 360 secs
lola: 10238790 markings, 83423098 edges, 36593 markings/sec, 365 secs
lola: 10417951 markings, 84644259 edges, 35832 markings/sec, 370 secs
lola: 10584711 markings, 85835589 edges, 33352 markings/sec, 375 secs
lola: 10724675 markings, 86884737 edges, 27993 markings/sec, 380 secs
lola: 10860609 markings, 87996639 edges, 27187 markings/sec, 385 secs
lola: 10972281 markings, 89146592 edges, 22334 markings/sec, 390 secs
lola: 11151479 markings, 90373464 edges, 35840 markings/sec, 395 secs
lola: 11324745 markings, 91583456 edges, 34653 markings/sec, 400 secs
lola: 11480738 markings, 92747180 edges, 31199 markings/sec, 405 secs
lola: 11616378 markings, 93784483 edges, 27128 markings/sec, 410 secs
lola: 11744583 markings, 94929845 edges, 25641 markings/sec, 415 secs
lola: 11877398 markings, 96109570 edges, 26563 markings/sec, 420 secs
lola: 12050791 markings, 97308648 edges, 34679 markings/sec, 425 secs
lola: 12210093 markings, 98477119 edges, 31860 markings/sec, 430 secs
lola: 12346242 markings, 99523302 edges, 27230 markings/sec, 435 secs
lola: 12478097 markings, 100674905 edges, 26371 markings/sec, 440 secs
lola: 12602112 markings, 101844753 edges, 24803 markings/sec, 445 secs
lola: 12770831 markings, 103021638 edges, 33744 markings/sec, 450 secs
lola: 12912860 markings, 104094736 edges, 28406 markings/sec, 455 secs
lola: 13047839 markings, 105165736 edges, 26996 markings/sec, 460 secs
lola: 13168395 markings, 106296325 edges, 24111 markings/sec, 465 secs
lola: 13305898 markings, 107458349 edges, 27501 markings/sec, 470 secs
lola: 13458799 markings, 108572436 edges, 30580 markings/sec, 475 secs
lola: 13589908 markings, 109604883 edges, 26222 markings/sec, 480 secs
lola: 13713604 markings, 110742733 edges, 24739 markings/sec, 485 secs
lola: 13839597 markings, 111878226 edges, 25199 markings/sec, 490 secs
lola: 13982981 markings, 112937147 edges, 28677 markings/sec, 495 secs
lola: 14118927 markings, 114028020 edges, 27189 markings/sec, 500 secs
lola: 14229648 markings, 115145764 edges, 22144 markings/sec, 505 secs
lola: 14362270 markings, 116231605 edges, 26524 markings/sec, 510 secs
lola: 14495212 markings, 117280450 edges, 26588 markings/sec, 515 secs
lola: 14613137 markings, 118375438 edges, 23585 markings/sec, 520 secs
lola: 14723600 markings, 119420695 edges, 22093 markings/sec, 525 secs
lola: 14860158 markings, 120485793 edges, 27312 markings/sec, 530 secs
lola: 14971929 markings, 121545888 edges, 22354 markings/sec, 535 secs
lola: 15082466 markings, 122570198 edges, 22107 markings/sec, 540 secs
lola: 15194992 markings, 123500396 edges, 22505 markings/sec, 545 secs
lola: 15282080 markings, 124377734 edges, 17418 markings/sec, 550 secs
lola: 15389304 markings, 125346185 edges, 21445 markings/sec, 555 secs
lola: 15491699 markings, 126301369 edges, 20479 markings/sec, 560 secs
lola: 15585216 markings, 127240867 edges, 18703 markings/sec, 565 secs
lola: 15692708 markings, 128232035 edges, 21498 markings/sec, 570 secs
lola: 15794958 markings, 129245314 edges, 20450 markings/sec, 575 secs
lola: 15918953 markings, 130385690 edges, 24799 markings/sec, 580 secs
lola: 16032790 markings, 131520740 edges, 22767 markings/sec, 585 secs
lola: 16141073 markings, 132634301 edges, 21657 markings/sec, 590 secs
lola: 16237150 markings, 133741608 edges, 19215 markings/sec, 595 secs
lola: 16323936 markings, 134860060 edges, 17357 markings/sec, 600 secs
lola: 16432712 markings, 135995336 edges, 21755 markings/sec, 605 secs
lola: 16521885 markings, 137105369 edges, 17835 markings/sec, 610 secs
lola: 16610452 markings, 138243328 edges, 17713 markings/sec, 615 secs
lola: 16744696 markings, 139423908 edges, 26849 markings/sec, 620 secs
lola: 16927476 markings, 140657281 edges, 36556 markings/sec, 625 secs
lola: 17101124 markings, 141859753 edges, 34730 markings/sec, 630 secs
lola: 17257405 markings, 143012175 edges, 31256 markings/sec, 635 secs
lola: 17392820 markings, 144050521 edges, 27083 markings/sec, 640 secs
lola: 17523949 markings, 145195419 edges, 26226 markings/sec, 645 secs
lola: 17651510 markings, 146380713 edges, 25512 markings/sec, 650 secs
lola: 17830326 markings, 147604150 edges, 35763 markings/sec, 655 secs
lola: 18000528 markings, 148788210 edges, 34040 markings/sec, 660 secs
lola: 18150349 markings, 149889461 edges, 29964 markings/sec, 665 secs
lola: 18284290 markings, 150943463 edges, 26788 markings/sec, 670 secs
lola: 18408318 markings, 152094647 edges, 24806 markings/sec, 675 secs
lola: 18549400 markings, 153282333 edges, 28216 markings/sec, 680 secs
lola: 18718522 markings, 154473663 edges, 33824 markings/sec, 685 secs
lola: 18877151 markings, 155604906 edges, 31726 markings/sec, 690 secs
lola: 19009532 markings, 156647361 edges, 26476 markings/sec, 695 secs
lola: 19134198 markings, 157791718 edges, 24933 markings/sec, 700 secs
lola: 19269416 markings, 158963656 edges, 27044 markings/sec, 705 secs
lola: 19431307 markings, 160136012 edges, 32378 markings/sec, 710 secs
lola: 19575806 markings, 161200764 edges, 28900 markings/sec, 715 secs
lola: 19711943 markings, 162298120 edges, 27227 markings/sec, 720 secs
lola: 19822735 markings, 163417362 edges, 22158 markings/sec, 725 secs
lola: 19973649 markings, 164577715 edges, 30183 markings/sec, 730 secs
lola: 20113993 markings, 165641283 edges, 28069 markings/sec, 735 secs
lola: 20251808 markings, 166723663 edges, 27563 markings/sec, 740 secs
lola: 20366670 markings, 167839527 edges, 22972 markings/sec, 745 secs
lola: 20503484 markings, 168968359 edges, 27363 markings/sec, 750 secs
lola: 20635258 markings, 169988482 edges, 26355 markings/sec, 755 secs
lola: 20768781 markings, 171087131 edges, 26705 markings/sec, 760 secs
lola: 20875545 markings, 172184963 edges, 21353 markings/sec, 765 secs
lola: 21010022 markings, 173241681 edges, 26895 markings/sec, 770 secs
lola: 21145390 markings, 174305971 edges, 27074 markings/sec, 775 secs
lola: 21257025 markings, 175381299 edges, 22327 markings/sec, 780 secs
lola: 21375020 markings, 176424953 edges, 23599 markings/sec, 785 secs
lola: 21506942 markings, 177483426 edges, 26384 markings/sec, 790 secs
lola: 21613749 markings, 178533263 edges, 21361 markings/sec, 795 secs
lola: 21724768 markings, 179536101 edges, 22204 markings/sec, 800 secs
lola: 21834083 markings, 180463444 edges, 21863 markings/sec, 805 secs
lola: 21921205 markings, 181335512 edges, 17424 markings/sec, 810 secs
lola: 22029231 markings, 182296180 edges, 21605 markings/sec, 815 secs
lola: 22130363 markings, 183240449 edges, 20226 markings/sec, 820 secs
lola: 22226600 markings, 184196333 edges, 19247 markings/sec, 825 secs
lola: 22334047 markings, 185190984 edges, 21489 markings/sec, 830 secs
lola: 22437598 markings, 186208604 edges, 20710 markings/sec, 835 secs
lola: 22559964 markings, 187344724 edges, 24473 markings/sec, 840 secs
lola: 22672239 markings, 188474010 edges, 22455 markings/sec, 845 secs
lola: 22778055 markings, 189581942 edges, 21163 markings/sec, 850 secs
lola: 22876321 markings, 190700726 edges, 19653 markings/sec, 855 secs
lola: 22964038 markings, 191806917 edges, 17543 markings/sec, 860 secs
lola: 23069265 markings, 192933692 edges, 21045 markings/sec, 865 secs
lola: 23157066 markings, 194036512 edges, 17560 markings/sec, 870 secs
lola: 23245832 markings, 195157836 edges, 17753 markings/sec, 875 secs
lola: 23376203 markings, 196328768 edges, 26074 markings/sec, 880 secs
lola: 23554602 markings, 197543117 edges, 35680 markings/sec, 885 secs
lola: 23715596 markings, 198705782 edges, 32199 markings/sec, 890 secs
lola: 23859822 markings, 199772095 edges, 28845 markings/sec, 895 secs
lola: 23996772 markings, 200873301 edges, 27390 markings/sec, 900 secs
lola: 24109557 markings, 202013423 edges, 22557 markings/sec, 905 secs
lola: 24272574 markings, 203210287 edges, 32603 markings/sec, 910 secs
lola: 24438639 markings, 204385838 edges, 33213 markings/sec, 915 secs
lola: 24578391 markings, 205450170 edges, 27950 markings/sec, 920 secs
lola: 24716882 markings, 206536210 edges, 27698 markings/sec, 925 secs
lola: 24833685 markings, 207664351 edges, 23361 markings/sec, 930 secs
lola: 24979652 markings, 208838031 edges, 29193 markings/sec, 935 secs
lola: 25141050 markings, 209984188 edges, 32280 markings/sec, 940 secs
lola: 25272714 markings, 211007653 edges, 26333 markings/sec, 945 secs
lola: 25405969 markings, 212118724 edges, 26651 markings/sec, 950 secs
lola: 25514275 markings, 213247658 edges, 21661 markings/sec, 955 secs
lola: 25674557 markings, 214403099 edges, 32056 markings/sec, 960 secs
lola: 25813704 markings, 215441236 edges, 27829 markings/sec, 965 secs
lola: 25947001 markings, 216523933 edges, 26659 markings/sec, 970 secs
lola: 26057110 markings, 217635474 edges, 22022 markings/sec, 975 secs
lola: 26199971 markings, 218761265 edges, 28572 markings/sec, 980 secs
lola: 26332405 markings, 219777301 edges, 26487 markings/sec, 985 secs
lola: 26459838 markings, 220872383 edges, 25487 markings/sec, 990 secs
lola: 26566356 markings, 221977156 edges, 21304 markings/sec, 995 secs
lola: 26706487 markings, 223017560 edges, 28026 markings/sec, 1000 secs
lola: 26839427 markings, 224088847 edges, 26588 markings/sec, 1005 secs
lola: 26945994 markings, 225166171 edges, 21313 markings/sec, 1010 secs
lola: 27066457 markings, 226182754 edges, 24093 markings/sec, 1015 secs
lola: 27196752 markings, 227243845 edges, 26059 markings/sec, 1020 secs
lola: 27299374 markings, 228282654 edges, 20524 markings/sec, 1025 secs
lola: 27411614 markings, 229259522 edges, 22448 markings/sec, 1030 secs
lola: 27518502 markings, 230169901 edges, 21378 markings/sec, 1035 secs
lola: 27603935 markings, 231048410 edges, 17087 markings/sec, 1040 secs
lola: 27718218 markings, 232029344 edges, 22857 markings/sec, 1045 secs
lola: 27813174 markings, 232938567 edges, 18991 markings/sec, 1050 secs
lola: 27908089 markings, 233874161 edges, 18983 markings/sec, 1055 secs
lola: 28014774 markings, 234875320 edges, 21337 markings/sec, 1060 secs
lola: 28120794 markings, 235909727 edges, 21204 markings/sec, 1065 secs
lola: 28241643 markings, 237043040 edges, 24170 markings/sec, 1070 secs
lola: 28354368 markings, 238168543 edges, 22545 markings/sec, 1075 secs
lola: 28458081 markings, 239267859 edges, 20743 markings/sec, 1080 secs
lola: 28553738 markings, 240366952 edges, 19131 markings/sec, 1085 secs
lola: 28644774 markings, 241484590 edges, 18207 markings/sec, 1090 secs
lola: 28748898 markings, 242608658 edges, 20825 markings/sec, 1095 secs
lola: 28833367 markings, 243706719 edges, 16894 markings/sec, 1100 secs
lola: 28922060 markings, 244812566 edges, 17739 markings/sec, 1105 secs
lola: 29050250 markings, 245969531 edges, 25638 markings/sec, 1110 secs
lola: 29217312 markings, 247146187 edges, 33412 markings/sec, 1115 secs
lola: 29374164 markings, 248261984 edges, 31370 markings/sec, 1120 secs
lola: 29503608 markings, 249278534 edges, 25889 markings/sec, 1125 secs
lola: 29626989 markings, 250408006 edges, 24676 markings/sec, 1130 secs
lola: 29758999 markings, 251556188 edges, 26402 markings/sec, 1135 secs
lola: 29919964 markings, 252714055 edges, 32193 markings/sec, 1140 secs
lola: 30060826 markings, 253769059 edges, 28172 markings/sec, 1145 secs
lola: 30193436 markings, 254825830 edges, 26522 markings/sec, 1150 secs
lola: 30307041 markings, 255936196 edges, 22721 markings/sec, 1155 secs
lola: 30449297 markings, 257083514 edges, 28451 markings/sec, 1160 secs
lola: 30595550 markings, 258166279 edges, 29251 markings/sec, 1165 secs
lola: 30726894 markings, 259200205 edges, 26269 markings/sec, 1170 secs
lola: 30845603 markings, 260305300 edges, 23742 markings/sec, 1175 secs
lola: 30971002 markings, 261435045 edges, 25080 markings/sec, 1180 secs
lola: 31114127 markings, 262487513 edges, 28625 markings/sec, 1185 secs
lola: 31248328 markings, 263565522 edges, 26840 markings/sec, 1190 secs
lola: 31355102 markings, 264645094 edges, 21355 markings/sec, 1195 secs
lola: 31484458 markings, 265714859 edges, 25871 markings/sec, 1200 secs
lola: 31615194 markings, 266740809 edges, 26147 markings/sec, 1205 secs
lola: 31731901 markings, 267818424 edges, 23341 markings/sec, 1210 secs
lola: 31843245 markings, 268866819 edges, 22269 markings/sec, 1215 secs
lola: 31974611 markings, 269898458 edges, 26273 markings/sec, 1220 secs
lola: 32088315 markings, 270958231 edges, 22741 markings/sec, 1225 secs
lola: 32194356 markings, 271977974 edges, 21208 markings/sec, 1230 secs
lola: 32312134 markings, 272917287 edges, 23556 markings/sec, 1235 secs
lola: 32400460 markings, 273791588 edges, 17665 markings/sec, 1240 secs
lola: 32496282 markings, 274715322 edges, 19164 markings/sec, 1245 secs
lola: 32601684 markings, 275640624 edges, 21080 markings/sec, 1250 secs
lola: 32690523 markings, 276560461 edges, 17768 markings/sec, 1255 secs
lola: 32803082 markings, 277553350 edges, 22512 markings/sec, 1260 secs
lola: 32896336 markings, 278525514 edges, 18651 markings/sec, 1265 secs
lola: 33019473 markings, 279640193 edges, 24627 markings/sec, 1270 secs
lola: 33129766 markings, 280762688 edges, 22059 markings/sec, 1275 secs
lola: 33239973 markings, 281829648 edges, 22041 markings/sec, 1280 secs
lola: 33333720 markings, 282924506 edges, 18749 markings/sec, 1285 secs
lola: 33426031 markings, 284019740 edges, 18462 markings/sec, 1290 secs
lola: 33524276 markings, 285123414 edges, 19649 markings/sec, 1295 secs
lola: 33619668 markings, 286227227 edges, 19078 markings/sec, 1300 secs
lola: 33708232 markings, 287331048 edges, 17713 markings/sec, 1305 secs
lola: 33786022 markings, 288436381 edges, 15558 markings/sec, 1310 secs
lola: 33956255 markings, 289618253 edges, 34047 markings/sec, 1315 secs
lola: 34108882 markings, 290715314 edges, 30525 markings/sec, 1320 secs
lola: 34240108 markings, 291744888 edges, 26245 markings/sec, 1325 secs
lola: 34362115 markings, 292866054 edges, 24401 markings/sec, 1330 secs
lola: 34490573 markings, 294007773 edges, 25692 markings/sec, 1335 secs
lola: 34642635 markings, 295132662 edges, 30412 markings/sec, 1340 secs
lola: 34772553 markings, 296122451 edges, 25984 markings/sec, 1345 secs
lola: 34899487 markings, 297238603 edges, 25387 markings/sec, 1350 secs
lola: 35013712 markings, 298347448 edges, 22845 markings/sec, 1355 secs
lola: 35159836 markings, 299425252 edges, 29225 markings/sec, 1360 secs
lola: 35291811 markings, 300460796 edges, 26395 markings/sec, 1365 secs
lola: 35408254 markings, 301543156 edges, 23289 markings/sec, 1370 secs
lola: 35527365 markings, 302639547 edges, 23822 markings/sec, 1375 secs
lola: 35658720 markings, 303644863 edges, 26271 markings/sec, 1380 secs
lola: 35783622 markings, 304712904 edges, 24980 markings/sec, 1385 secs
lola: 35882239 markings, 305752486 edges, 19723 markings/sec, 1390 secs
lola: 36013694 markings, 306769007 edges, 26291 markings/sec, 1395 secs
lola: 36135045 markings, 307807743 edges, 24270 markings/sec, 1400 secs
lola: 36233525 markings, 308845608 edges, 19696 markings/sec, 1405 secs
lola: 36355531 markings, 309808696 edges, 24401 markings/sec, 1410 secs
lola: 36450471 markings, 310702684 edges, 18988 markings/sec, 1415 secs
lola: 36534313 markings, 311580543 edges, 16768 markings/sec, 1420 secs
lola: 36656532 markings, 312568949 edges, 24444 markings/sec, 1425 secs
lola: 36748690 markings, 313493939 edges, 18432 markings/sec, 1430 secs
lola: 36856810 markings, 314479411 edges, 21624 markings/sec, 1435 secs
lola: 36953701 markings, 315446364 edges, 19378 markings/sec, 1440 secs
lola: 37069073 markings, 316511802 edges, 23074 markings/sec, 1445 secs
lola: 37179431 markings, 317627166 edges, 22072 markings/sec, 1450 secs
lola: 37292113 markings, 318744607 edges, 22536 markings/sec, 1455 secs
lola: 37391026 markings, 319819103 edges, 19783 markings/sec, 1460 secs
lola: 37482680 markings, 320891175 edges, 18331 markings/sec, 1465 secs
lola: 37574455 markings, 321969438 edges, 18355 markings/sec, 1470 secs
lola: 37674723 markings, 323068729 edges, 20054 markings/sec, 1475 secs
lola: 37759413 markings, 324153800 edges, 16938 markings/sec, 1480 secs
lola: 37843993 markings, 325248501 edges, 16916 markings/sec, 1485 secs
lola: 37976406 markings, 326391072 edges, 26483 markings/sec, 1490 secs
lola: 38122661 markings, 327473229 edges, 29251 markings/sec, 1495 secs
lola: 38253754 markings, 328503830 edges, 26219 markings/sec, 1500 secs
lola: 38372909 markings, 329612863 edges, 23831 markings/sec, 1505 secs
lola: 38496966 markings, 330729693 edges, 24811 markings/sec, 1510 secs
lola: 38637908 markings, 331768914 edges, 28188 markings/sec, 1515 secs
lola: 38770044 markings, 332829022 edges, 26427 markings/sec, 1520 secs
lola: 38879115 markings, 333916464 edges, 21814 markings/sec, 1525 secs
lola: 39009700 markings, 335002124 edges, 26117 markings/sec, 1530 secs
lola: 39140838 markings, 336033763 edges, 26228 markings/sec, 1535 secs
lola: 39257882 markings, 337113831 edges, 23409 markings/sec, 1540 secs
lola: 39369162 markings, 338161591 edges, 22256 markings/sec, 1545 secs
lola: 39501619 markings, 339204816 edges, 26491 markings/sec, 1550 secs
lola: 39614304 markings, 340256059 edges, 22537 markings/sec, 1555 secs
lola: 39718805 markings, 341262382 edges, 20900 markings/sec, 1560 secs
lola: 39836847 markings, 342203626 edges, 23608 markings/sec, 1565 secs
lola: 39925428 markings, 343074367 edges, 17716 markings/sec, 1570 secs
lola: 40019057 markings, 343994103 edges, 18726 markings/sec, 1575 secs
lola: 40127442 markings, 344928554 edges, 21677 markings/sec, 1580 secs
lola: 40216118 markings, 345849269 edges, 17735 markings/sec, 1585 secs
lola: 40327298 markings, 346833632 edges, 22236 markings/sec, 1590 secs
lola: 40420154 markings, 347790846 edges, 18571 markings/sec, 1595 secs
lola: 40540995 markings, 348878937 edges, 24168 markings/sec, 1600 secs
lola: 40644484 markings, 349979068 edges, 20698 markings/sec, 1605 secs
lola: 40759577 markings, 351068940 edges, 23019 markings/sec, 1610 secs
lola: 40851413 markings, 352143006 edges, 18367 markings/sec, 1615 secs
lola: 40945449 markings, 353228199 edges, 18807 markings/sec, 1620 secs
lola: 41043570 markings, 354334482 edges, 19624 markings/sec, 1625 secs
lola: 41137893 markings, 355423254 edges, 18865 markings/sec, 1630 secs
lola: 41226263 markings, 356525947 edges, 17674 markings/sec, 1635 secs
lola: 41305596 markings, 357613315 edges, 15867 markings/sec, 1640 secs
lola: 41447880 markings, 358720097 edges, 28457 markings/sec, 1645 secs
lola: 41579399 markings, 359725377 edges, 26304 markings/sec, 1650 secs
lola: 41704153 markings, 360819347 edges, 24951 markings/sec, 1655 secs
lola: 41815037 markings, 361913661 edges, 22177 markings/sec, 1660 secs
lola: 41949100 markings, 362927420 edges, 26813 markings/sec, 1665 secs
lola: 42079222 markings, 363987588 edges, 26024 markings/sec, 1670 secs
lola: 42184341 markings, 365047794 edges, 21024 markings/sec, 1675 secs
lola: 42304043 markings, 366055933 edges, 23940 markings/sec, 1680 secs
lola: 42433167 markings, 367106051 edges, 25825 markings/sec, 1685 secs
lola: 42534781 markings, 368134156 edges, 20323 markings/sec, 1690 secs
lola: 42647589 markings, 369117480 edges, 22562 markings/sec, 1695 secs
lola: 42755128 markings, 370034975 edges, 21508 markings/sec, 1700 secs
lola: 42840027 markings, 370906585 edges, 16980 markings/sec, 1705 secs
lola: 42951826 markings, 371870023 edges, 22360 markings/sec, 1710 secs
lola: 43049739 markings, 372802618 edges, 19583 markings/sec, 1715 secs
lola: 43145719 markings, 373747276 edges, 19196 markings/sec, 1720 secs
lola: 43250246 markings, 374726065 edges, 20905 markings/sec, 1725 secs
lola: 43353332 markings, 375732748 edges, 20617 markings/sec, 1730 secs
lola: 43472071 markings, 376837768 edges, 23748 markings/sec, 1735 secs
lola: 43580230 markings, 377930923 edges, 21632 markings/sec, 1740 secs
lola: 43682593 markings, 378993984 edges, 20473 markings/sec, 1745 secs
lola: 43775225 markings, 380058659 edges, 18526 markings/sec, 1750 secs
lola: 43857376 markings, 381117470 edges, 16430 markings/sec, 1755 secs
lola: 43962096 markings, 382214619 edges, 20944 markings/sec, 1760 secs
lola: 44049596 markings, 383275410 edges, 17500 markings/sec, 1765 secs
lola: 44134976 markings, 384352310 edges, 17076 markings/sec, 1770 secs
lola: 44229530 markings, 385442057 edges, 18911 markings/sec, 1775 secs
lola: 44357553 markings, 386440365 edges, 25605 markings/sec, 1780 secs
lola: 44487261 markings, 387501177 edges, 25942 markings/sec, 1785 secs
lola: 44591452 markings, 388561621 edges, 20838 markings/sec, 1790 secs
lola: 44713174 markings, 389569096 edges, 24344 markings/sec, 1795 secs
lola: 44841162 markings, 390621846 edges, 25598 markings/sec, 1800 secs
lola: 44942195 markings, 391646111 edges, 20207 markings/sec, 1805 secs
lola: 45050553 markings, 392580291 edges, 21672 markings/sec, 1810 secs
lola: 45154706 markings, 393464358 edges, 20831 markings/sec, 1815 secs
lola: 45236936 markings, 394304704 edges, 16446 markings/sec, 1820 secs
lola: 45343932 markings, 395245499 edges, 21399 markings/sec, 1825 secs
lola: 45442691 markings, 396175820 edges, 19752 markings/sec, 1830 secs
lola: 45533912 markings, 397081917 edges, 18244 markings/sec, 1835 secs
lola: 45639508 markings, 398059557 edges, 21119 markings/sec, 1840 secs
lola: 45738276 markings, 399041642 edges, 19754 markings/sec, 1845 secs
lola: 45855904 markings, 400126095 edges, 23526 markings/sec, 1850 secs
lola: 45964529 markings, 401207965 edges, 21725 markings/sec, 1855 secs
lola: 46068751 markings, 402261426 edges, 20844 markings/sec, 1860 secs
lola: 46158556 markings, 403307911 edges, 17961 markings/sec, 1865 secs
lola: 46242447 markings, 404341481 edges, 16778 markings/sec, 1870 secs
lola: 46338589 markings, 405404621 edges, 19228 markings/sec, 1875 secs
lola: 46428447 markings, 406440979 edges, 17972 markings/sec, 1880 secs
lola: 46513725 markings, 407505275 edges, 17056 markings/sec, 1885 secs
lola: 46589167 markings, 408552135 edges, 15088 markings/sec, 1890 secs
lola: 46714092 markings, 409553405 edges, 24985 markings/sec, 1895 secs
lola: 46837827 markings, 410601743 edges, 24747 markings/sec, 1900 secs
lola: 46936670 markings, 411623346 edges, 19769 markings/sec, 1905 secs
lola: 47053653 markings, 412576543 edges, 23397 markings/sec, 1910 secs
lola: 47150540 markings, 413449256 edges, 19377 markings/sec, 1915 secs
lola: 47234480 markings, 414317274 edges, 16788 markings/sec, 1920 secs
lola: 47352201 markings, 415297512 edges, 23544 markings/sec, 1925 secs
lola: 47446605 markings, 416219741 edges, 18881 markings/sec, 1930 secs
lola: 47546779 markings, 417181367 edges, 20035 markings/sec, 1935 secs
lola: 47648696 markings, 418146785 edges, 20383 markings/sec, 1940 secs
lola: 47752188 markings, 419149728 edges, 20698 markings/sec, 1945 secs
lola: 47863888 markings, 420211845 edges, 22340 markings/sec, 1950 secs
lola: 47969354 markings, 421270712 edges, 21093 markings/sec, 1955 secs
lola: 48068238 markings, 422297626 edges, 19777 markings/sec, 1960 secs
lola: 48156628 markings, 423321214 edges, 17678 markings/sec, 1965 secs
lola: 48237856 markings, 424340173 edges, 16246 markings/sec, 1970 secs
lola: 48336041 markings, 425405606 edges, 19637 markings/sec, 1975 secs
lola: 48423260 markings, 426426206 edges, 17444 markings/sec, 1980 secs
lola: 48506829 markings, 427465771 edges, 16714 markings/sec, 1985 secs
lola: 48579915 markings, 428498850 edges, 14617 markings/sec, 1990 secs
lola: 48700953 markings, 429459720 edges, 24208 markings/sec, 1995 secs
lola: 48795642 markings, 430350892 edges, 18938 markings/sec, 2000 secs
lola: 48878645 markings, 431217416 edges, 16601 markings/sec, 2005 secs
lola: 48999126 markings, 432191899 edges, 24096 markings/sec, 2010 secs
lola: 49091198 markings, 433110554 edges, 18414 markings/sec, 2015 secs
lola: 49197640 markings, 434093114 edges, 21288 markings/sec, 2020 secs
lola: 49294547 markings, 435049790 edges, 19381 markings/sec, 2025 secs
lola: 49403991 markings, 436070254 edges, 21889 markings/sec, 2030 secs
lola: 49506414 markings, 437077893 edges, 20485 markings/sec, 2035 secs
lola: 49609496 markings, 438101568 edges, 20616 markings/sec, 2040 secs
lola: 49704545 markings, 439099187 edges, 19010 markings/sec, 2045 secs
lola: 49790738 markings, 440098635 edges, 17239 markings/sec, 2050 secs
lola: 49869857 markings, 441084521 edges, 15824 markings/sec, 2055 secs
lola: 49964041 markings, 442120436 edges, 18837 markings/sec, 2060 secs
lola: 50049686 markings, 443104251 edges, 17129 markings/sec, 2065 secs
lola: 50130493 markings, 444112763 edges, 16161 markings/sec, 2070 secs
lola: 50203899 markings, 445112679 edges, 14681 markings/sec, 2075 secs
lola: 50311401 markings, 446071287 edges, 21500 markings/sec, 2080 secs
lola: 50402162 markings, 446942427 edges, 18152 markings/sec, 2085 secs
lola: 50488838 markings, 447809879 edges, 17335 markings/sec, 2090 secs
lola: 50585090 markings, 448682669 edges, 19250 markings/sec, 2095 secs
lola: 50667335 markings, 449535323 edges, 16449 markings/sec, 2100 secs
lola: 50767864 markings, 450423958 edges, 20106 markings/sec, 2105 secs
lola: 50851612 markings, 451267432 edges, 16750 markings/sec, 2110 secs
lola: 50940573 markings, 452138618 edges, 17792 markings/sec, 2115 secs
lola: 51024954 markings, 452988310 edges, 16876 markings/sec, 2120 secs
lola: 51092250 markings, 453810490 edges, 13459 markings/sec, 2125 secs
lola: 51164372 markings, 454618118 edges, 14424 markings/sec, 2130 secs
lola: 51232033 markings, 455467621 edges, 13532 markings/sec, 2135 secs
lola: 51313385 markings, 456328954 edges, 16270 markings/sec, 2140 secs
lola: 51380281 markings, 457113813 edges, 13379 markings/sec, 2145 secs
lola: 51446865 markings, 457953947 edges, 13317 markings/sec, 2150 secs
lola: 51510845 markings, 458787920 edges, 12796 markings/sec, 2155 secs
lola: 51591247 markings, 459704800 edges, 16080 markings/sec, 2160 secs
lola: 51693455 markings, 460658273 edges, 20442 markings/sec, 2165 secs
lola: 51787918 markings, 461603751 edges, 18893 markings/sec, 2170 secs
lola: 51888274 markings, 462535753 edges, 20071 markings/sec, 2175 secs
lola: 51976825 markings, 463449248 edges, 17710 markings/sec, 2180 secs
lola: 52074162 markings, 464364875 edges, 19467 markings/sec, 2185 secs
lola: 52154712 markings, 465247778 edges, 16110 markings/sec, 2190 secs
lola: 52231006 markings, 466125136 edges, 15259 markings/sec, 2195 secs
lola: 52297887 markings, 466988558 edges, 13376 markings/sec, 2200 secs
lola: 52382285 markings, 467898007 edges, 16880 markings/sec, 2205 secs
lola: 52458880 markings, 468762878 edges, 15319 markings/sec, 2210 secs
lola: 52527315 markings, 469644029 edges, 13687 markings/sec, 2215 secs
lola: 52596442 markings, 470536056 edges, 13825 markings/sec, 2220 secs
lola: 52679639 markings, 471482289 edges, 16639 markings/sec, 2225 secs
lola: 52784314 markings, 472461949 edges, 20935 markings/sec, 2230 secs
lola: 52881380 markings, 473427778 edges, 19413 markings/sec, 2235 secs
lola: 52977513 markings, 474382707 edges, 19227 markings/sec, 2240 secs
lola: 53055222 markings, 475305555 edges, 15542 markings/sec, 2245 secs
lola: 53135329 markings, 476227199 edges, 16021 markings/sec, 2250 secs
lola: 53216466 markings, 477176641 edges, 16227 markings/sec, 2255 secs
lola: 53302957 markings, 478132443 edges, 17298 markings/sec, 2260 secs
lola: 53376397 markings, 479031930 edges, 14688 markings/sec, 2265 secs
lola: 53452163 markings, 479974457 edges, 15153 markings/sec, 2270 secs
lola: 53518325 markings, 480912050 edges, 13232 markings/sec, 2275 secs
lola: 53641816 markings, 482032533 edges, 24698 markings/sec, 2280 secs
lola: 53755594 markings, 483166860 edges, 22756 markings/sec, 2285 secs
lola: 53866682 markings, 484262675 edges, 22218 markings/sec, 2290 secs
lola: 53959101 markings, 485349411 edges, 18484 markings/sec, 2295 secs
lola: 54048093 markings, 486437413 edges, 17798 markings/sec, 2300 secs
lola: 54148345 markings, 487553929 edges, 20050 markings/sec, 2305 secs
lola: 54242498 markings, 488639493 edges, 18831 markings/sec, 2310 secs
lola: 54330488 markings, 489740238 edges, 17598 markings/sec, 2315 secs
lola: 54412605 markings, 490838538 edges, 16423 markings/sec, 2320 secs
lola: 54526667 markings, 491936834 edges, 22812 markings/sec, 2325 secs
lola: 54618402 markings, 493014563 edges, 18347 markings/sec, 2330 secs
lola: 54710485 markings, 494101161 edges, 18417 markings/sec, 2335 secs
lola: 54805885 markings, 495175567 edges, 19080 markings/sec, 2340 secs
lola: 54897291 markings, 496249222 edges, 18281 markings/sec, 2345 secs
lola: 54978363 markings, 497299064 edges, 16214 markings/sec, 2350 secs
lola: 55058796 markings, 498364997 edges, 16087 markings/sec, 2355 secs
lola: 55134803 markings, 499424538 edges, 15201 markings/sec, 2360 secs
lola: 55219581 markings, 500506661 edges, 16956 markings/sec, 2365 secs
lola: 55302218 markings, 501578867 edges, 16527 markings/sec, 2370 secs
lola: 55383958 markings, 502640462 edges, 16348 markings/sec, 2375 secs
lola: 55454671 markings, 503706532 edges, 14143 markings/sec, 2380 secs
lola: 55532763 markings, 504779036 edges, 15618 markings/sec, 2385 secs
lola: 55600754 markings, 505857495 edges, 13598 markings/sec, 2390 secs
lola: 55703429 markings, 506975323 edges, 20535 markings/sec, 2395 secs
lola: 55792694 markings, 508038411 edges, 17853 markings/sec, 2400 secs
lola: 55879769 markings, 509142039 edges, 17415 markings/sec, 2405 secs
lola: 55963111 markings, 510247498 edges, 16668 markings/sec, 2410 secs
lola: 56051871 markings, 511330233 edges, 17752 markings/sec, 2415 secs
lola: 56136191 markings, 512406405 edges, 16864 markings/sec, 2420 secs
lola: 56209481 markings, 513479821 edges, 14658 markings/sec, 2425 secs
lola: 56287210 markings, 514565066 edges, 15546 markings/sec, 2430 secs
lola: 56356836 markings, 515638204 edges, 13925 markings/sec, 2435 secs
lola: 56438305 markings, 516730487 edges, 16294 markings/sec, 2440 secs
lola: 56516676 markings, 517821994 edges, 15674 markings/sec, 2445 secs
lola: 56593014 markings, 518900944 edges, 15268 markings/sec, 2450 secs
lola: 56660370 markings, 519984682 edges, 13471 markings/sec, 2455 secs
lola: 56735393 markings, 521077083 edges, 15005 markings/sec, 2460 secs
lola: 56800393 markings, 522167263 edges, 13000 markings/sec, 2465 secs
lola: 56956023 markings, 523377346 edges, 31126 markings/sec, 2470 secs
lola: 57146874 markings, 524617328 edges, 38170 markings/sec, 2475 secs
lola: 57326232 markings, 525841320 edges, 35872 markings/sec, 2480 secs
lola: 57489890 markings, 527031557 edges, 32732 markings/sec, 2485 secs
lola: 57634740 markings, 528097392 edges, 28970 markings/sec, 2490 secs
lola: 57772005 markings, 529208142 edges, 27453 markings/sec, 2495 secs
lola: 57884259 markings, 530344931 edges, 22451 markings/sec, 2500 secs
lola: 58062614 markings, 531597781 edges, 35671 markings/sec, 2505 secs
lola: 58240537 markings, 532815064 edges, 35585 markings/sec, 2510 secs
lola: 58411719 markings, 534006045 edges, 34236 markings/sec, 2515 secs
lola: 58558404 markings, 535103616 edges, 29337 markings/sec, 2520 secs
lola: 58695082 markings, 536186116 edges, 27336 markings/sec, 2525 secs
lola: 58817401 markings, 537337664 edges, 24464 markings/sec, 2530 secs
lola: 58965422 markings, 538536499 edges, 29604 markings/sec, 2535 secs
lola: 59143711 markings, 539748670 edges, 35658 markings/sec, 2540 secs
lola: 59308728 markings, 540923349 edges, 33003 markings/sec, 2545 secs
lola: 59448274 markings, 541970393 edges, 27909 markings/sec, 2550 secs
lola: 59584602 markings, 543086242 edges, 27266 markings/sec, 2555 secs
lola: 59696402 markings, 544238801 edges, 22360 markings/sec, 2560 secs
lola: 59868611 markings, 545445025 edges, 34442 markings/sec, 2565 secs
lola: 60030570 markings, 546615702 edges, 32392 markings/sec, 2570 secs
lola: 60174129 markings, 547679386 edges, 28712 markings/sec, 2575 secs
lola: 60312148 markings, 548786881 edges, 27604 markings/sec, 2580 secs
lola: 60424448 markings, 549921358 edges, 22460 markings/sec, 2585 secs
lola: 60584094 markings, 551113071 edges, 31929 markings/sec, 2590 secs
lola: 60739193 markings, 552267828 edges, 31020 markings/sec, 2595 secs
lola: 60874414 markings, 553297911 edges, 27044 markings/sec, 2600 secs
lola: 61003273 markings, 554432564 edges, 25772 markings/sec, 2605 secs
lola: 61125569 markings, 555585291 edges, 24459 markings/sec, 2610 secs
lola: 61284730 markings, 556738948 edges, 31832 markings/sec, 2615 secs
lola: 61419622 markings, 557773462 edges, 26978 markings/sec, 2620 secs
lola: 61550389 markings, 558887757 edges, 26153 markings/sec, 2625 secs
lola: 61659110 markings, 560018395 edges, 21744 markings/sec, 2630 secs
lola: 61813144 markings, 561124770 edges, 30807 markings/sec, 2635 secs
lola: 61942767 markings, 562142842 edges, 25925 markings/sec, 2640 secs
lola: 62063690 markings, 563251263 edges, 24185 markings/sec, 2645 secs
lola: 62184731 markings, 564366947 edges, 24208 markings/sec, 2650 secs
lola: 62318349 markings, 565393222 edges, 26724 markings/sec, 2655 secs
lola: 62444873 markings, 566473528 edges, 25305 markings/sec, 2660 secs
lola: 62545367 markings, 567534690 edges, 20099 markings/sec, 2665 secs
lola: 62677171 markings, 568551064 edges, 26361 markings/sec, 2670 secs
lola: 62795874 markings, 569563829 edges, 23741 markings/sec, 2675 secs
lola: 62894278 markings, 570596740 edges, 19681 markings/sec, 2680 secs
lola: 63015119 markings, 571563597 edges, 24168 markings/sec, 2685 secs
lola: 63111159 markings, 572453180 edges, 19208 markings/sec, 2690 secs
lola: 63195802 markings, 573340902 edges, 16929 markings/sec, 2695 secs
lola: 63317589 markings, 574330676 edges, 24357 markings/sec, 2700 secs
lola: 63410857 markings, 575264985 edges, 18654 markings/sec, 2705 secs
lola: 63519256 markings, 576253698 edges, 21680 markings/sec, 2710 secs
lola: 63617050 markings, 577231393 edges, 19559 markings/sec, 2715 secs
lola: 63732958 markings, 578300797 edges, 23182 markings/sec, 2720 secs
lola: 63843788 markings, 579420605 edges, 22166 markings/sec, 2725 secs
lola: 63958164 markings, 580547394 edges, 22875 markings/sec, 2730 secs
lola: 64056139 markings, 581631616 edges, 19595 markings/sec, 2735 secs
lola: 64150469 markings, 582740094 edges, 18866 markings/sec, 2740 secs
lola: 64247745 markings, 583863053 edges, 19455 markings/sec, 2745 secs
lola: 64347287 markings, 584977028 edges, 19908 markings/sec, 2750 secs
lola: 64435269 markings, 586088031 edges, 17596 markings/sec, 2755 secs
lola: 64519220 markings, 587212984 edges, 16790 markings/sec, 2760 secs
lola: 64690853 markings, 588449787 edges, 34327 markings/sec, 2765 secs
lola: 64866555 markings, 589658384 edges, 35140 markings/sec, 2770 secs
lola: 65037590 markings, 590845230 edges, 34207 markings/sec, 2775 secs
lola: 65186652 markings, 591947345 edges, 29812 markings/sec, 2780 secs
lola: 65322191 markings, 593018508 edges, 27108 markings/sec, 2785 secs
lola: 65445391 markings, 594170860 edges, 24640 markings/sec, 2790 secs
lola: 65590723 markings, 595352767 edges, 29066 markings/sec, 2795 secs
lola: 65766384 markings, 596548299 edges, 35132 markings/sec, 2800 secs
lola: 65926384 markings, 597710057 edges, 32000 markings/sec, 2805 secs
lola: 66070765 markings, 598771378 edges, 28876 markings/sec, 2810 secs
lola: 66207302 markings, 599874389 edges, 27307 markings/sec, 2815 secs
lola: 66319287 markings, 601006221 edges, 22397 markings/sec, 2820 secs
lola: 66484384 markings, 602204623 edges, 33019 markings/sec, 2825 secs
lola: 66648279 markings, 603375452 edges, 32779 markings/sec, 2830 secs
lola: 66791192 markings, 604452457 edges, 28583 markings/sec, 2835 secs
lola: 66929001 markings, 605543476 edges, 27562 markings/sec, 2840 secs
lola: 67044436 markings, 606674596 edges, 23087 markings/sec, 2845 secs
lola: 67194759 markings, 607853724 edges, 30065 markings/sec, 2850 secs
lola: 67355350 markings, 609011747 edges, 32118 markings/sec, 2855 secs
lola: 67490390 markings, 610046190 edges, 27008 markings/sec, 2860 secs
lola: 67621608 markings, 611162929 edges, 26244 markings/sec, 2865 secs
lola: 67728835 markings, 612288772 edges, 21445 markings/sec, 2870 secs
lola: 67893344 markings, 613442181 edges, 32902 markings/sec, 2875 secs
lola: 68028285 markings, 614472499 edges, 26988 markings/sec, 2880 secs
lola: 68161480 markings, 615562848 edges, 26639 markings/sec, 2885 secs
lola: 68265732 markings, 616621058 edges, 20850 markings/sec, 2890 secs
lola: 68406128 markings, 617718985 edges, 28079 markings/sec, 2895 secs
lola: 68536827 markings, 618719106 edges, 26140 markings/sec, 2900 secs
lola: 68662677 markings, 619791710 edges, 25170 markings/sec, 2905 secs
lola: 68764819 markings, 620874729 edges, 20428 markings/sec, 2910 secs
lola: 68903631 markings, 621900923 edges, 27762 markings/sec, 2915 secs
lola: 69033129 markings, 622940120 edges, 25900 markings/sec, 2920 secs
lola: 69141124 markings, 624002117 edges, 21599 markings/sec, 2925 secs
lola: 69259080 markings, 625027755 edges, 23591 markings/sec, 2930 secs
lola: 69388776 markings, 626070808 edges, 25939 markings/sec, 2935 secs
lola: 69493051 markings, 627103525 edges, 20855 markings/sec, 2940 secs
lola: 69602659 markings, 628090612 edges, 21922 markings/sec, 2945 secs
lola: 69711029 markings, 629003165 edges, 21674 markings/sec, 2950 secs
lola: 69797504 markings, 629876263 edges, 17295 markings/sec, 2955 secs
lola: 69902077 markings, 630805037 edges, 20915 markings/sec, 2960 secs
lola: 70000803 markings, 631727493 edges, 19745 markings/sec, 2965 secs
lola: 70093804 markings, 632662410 edges, 18600 markings/sec, 2970 secs
lola: 70200209 markings, 633635233 edges, 21281 markings/sec, 2975 secs
lola: 70297819 markings, 634624142 edges, 19522 markings/sec, 2980 secs
lola: 70420347 markings, 635739796 edges, 24506 markings/sec, 2985 secs
lola: 70532907 markings, 636855597 edges, 22512 markings/sec, 2990 secs
lola: 70640919 markings, 637951100 edges, 21602 markings/sec, 2995 secs
lola: 70735903 markings, 639056739 edges, 18997 markings/sec, 3000 secs
lola: 70823558 markings, 640154032 edges, 17531 markings/sec, 3005 secs
lola: 70928618 markings, 641273524 edges, 21012 markings/sec, 3010 secs
lola: 71019512 markings, 642369325 edges, 18179 markings/sec, 3015 secs
lola: 71107889 markings, 643487019 edges, 17675 markings/sec, 3020 secs
lola: 71218623 markings, 644636778 edges, 22147 markings/sec, 3025 secs
lola: 71395283 markings, 645847383 edges, 35332 markings/sec, 3030 secs
lola: 71563163 markings, 647021885 edges, 33576 markings/sec, 3035 secs
lola: 71707794 markings, 648108431 edges, 28926 markings/sec, 3040 secs
lola: 71843105 markings, 649179297 edges, 27062 markings/sec, 3045 secs
lola: 71964543 markings, 650319500 edges, 24288 markings/sec, 3050 secs
lola: 72104370 markings, 651481163 edges, 27965 markings/sec, 3055 secs
lola: 72274178 markings, 652665678 edges, 33962 markings/sec, 3060 secs
lola: 72428875 markings, 653774509 edges, 30939 markings/sec, 3065 secs
lola: 72557736 markings, 654784931 edges, 25772 markings/sec, 3070 secs
lola: 72680654 markings, 655910970 edges, 24584 markings/sec, 3075 secs
lola: 72814019 markings, 657071574 edges, 26673 markings/sec, 3080 secs
lola: 72974692 markings, 658228349 edges, 32135 markings/sec, 3085 secs
lola: 73118322 markings, 659294442 edges, 28726 markings/sec, 3090 secs
lola: 73253768 markings, 660382550 edges, 27089 markings/sec, 3095 secs
lola: 73365526 markings, 661501496 edges, 22352 markings/sec, 3100 secs
lola: 73513673 markings, 662650584 edges, 29629 markings/sec, 3105 secs
lola: 73653878 markings, 663713074 edges, 28041 markings/sec, 3110 secs
lola: 73788414 markings, 664779737 edges, 26907 markings/sec, 3115 secs
lola: time limit reached - aborting
lola:
preliminary result: yes no unknown yes no yes yes unknown yes yes yes no yes no yes yes
lola:
preliminary result: yes no unknown yes no yes yes unknown yes yes yes no yes no yes yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes no unknown yes no yes yes unknown yes yes yes no yes no yes yes
lola: memory consumption: 3415756 KB
lola: time consumption: 3569 seconds
lola: local time limit reached - aborting
lola:
preliminary result: yes no unknown yes no yes yes unknown yes yes yes no yes no yes yes
lola: memory consumption: 3415984 KB
lola: time consumption: 3569 seconds
lola: memory consumption: 3416320 KB
lola: time consumption: 3569 seconds
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: yes no unknown yes no yes yes unknown yes yes yes no yes no yes yes
lola:
preliminary result: yes no unknown yes no yes yes unknown yes yes yes no yes no yes yes
lola: memory consumption: 28504 KB
lola: time consumption: 3570 seconds
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-COL-18"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-COL-18.tgz
mv QuasiCertifProtocol-COL-18 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is QuasiCertifProtocol-COL-18, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r136-qhx2-152673578700031"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;