fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r119-csrt-152666479800320
Last Updated
June 26, 2018

About the Execution of M4M.struct for NeoElection-PT-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15919.290 3600000.00 12411798.00 14102.20 ???????FF?T??F?T normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.....................
/home/mcc/execution
total 13M
-rw-r--r-- 1 mcc users 164K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 400K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 321K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 880K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 129K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 300K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 18K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 56K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 296K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 667K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 451K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 1.3M May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 106K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 202K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 7.3M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool mcc4mcc-structural
Input is NeoElection-PT-6, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r119-csrt-152666479800320
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-00
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-01
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-02
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-03
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-04
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-05
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-06
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-07
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-08
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-09
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-10
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-11
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-12
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-13
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-14
FORMULA_NAME NeoElection-PT-6-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1527323156227


BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

Prefix is 75f5f979.
Reading known information in /usr/share/mcc4mcc/75f5f979-known.json.
Reading learned information in /usr/share/mcc4mcc/75f5f979-learned.json.
Reading value translations in /usr/share/mcc4mcc/75f5f979-values.json.
Using directory /home/mcc/execution for input, as it contains a model.pnml file.
Using NeoElection-PT-6 as instance name.
Using NeoElection as model name.
Using algorithm or tool bmdt.
Model characteristics are: {'Examination': 'ReachabilityCardinality', 'Place/Transition': True, 'Colored': True, 'Relative-Time': 1, 'Relative-Memory': 1, 'Ordinary': True, 'Simple Free Choice': False, 'Extended Free Choice': False, 'State Machine': False, 'Marked Graph': False, 'Connected': False, 'Strongly Connected': False, 'Source Place': True, 'Sink Place': True, 'Source Transition': False, 'Sink Transition': False, 'Loop Free': False, 'Conservative': False, 'Sub-Conservative': False, 'Nested Units': False, 'Safe': True, 'Deadlock': True, 'Reversible': False, 'Quasi Live': False, 'Live': False}.
Known tools are: [{'Time': 83929, 'Memory': 364.71, 'Tool': 'lola'}, {'Time': 87315, 'Memory': 449.41, 'Tool': 'lola'}].
Learned tools are: [{'Tool': 'itstools'}].
ReachabilityCardinality itstools NeoElection-PT-6...
May 26, 2018 8:26:06 AM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-z3path, /usr/bin/z3, -yices2path, /usr/bin/yices, -ltsminpath, /usr/bin, -smt, -its, -pnfolder, /mcc-data, -examination, ReachabilityCardinality]
May 26, 2018 8:26:06 AM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /mcc-data/model.pnml
May 26, 2018 8:26:07 AM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 485 ms
May 26, 2018 8:26:07 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 4830 places.
May 26, 2018 8:26:07 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 8435 transitions.
May 26, 2018 8:26:10 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 3304 fixed domain variables (out of 4830 variables) in GAL type NeoElection_PT_6
May 26, 2018 8:26:10 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 3304 constant array cells/variables (out of 4830 variables) in type NeoElection_PT_6
May 26, 2018 8:26:10 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_network_2_0_RI_3,P_poll__networl_1_6_RP_0,P_poll__networl_6_3_AskP_1,P_poll__networl_1_2_RP_1,P_poll__networl_1_0_RI_3,P_network_5_2_RP_4,P_poll__networl_2_2_RI_1,P_network_5_3_AskP_3,P_network_0_4_AskP_2,P_poll__networl_1_1_AskP_3,P_masterList_2_6_1,P_poll__networl_0_0_AnnP_4,P_poll__networl_4_6_RI_5,P_poll__networl_6_0_AnnP_6,P_poll__networl_5_4_AskP_6,P_network_3_1_AI_5,P_network_2_1_RI_6,P_poll__networl_2_0_AI_2,P_network_3_2_AnnP_1,P_network_2_2_AskP_2,P_poll__networl_6_4_RI_1,P_poll__networl_4_4_RP_2,P_poll__networl_2_5_AI_1,P_poll__networl_5_2_RI_3,P_network_6_5_AI_5,P_poll__networl_2_0_AnnP_2,P_poll__networl_1_1_RI_6,P_poll__networl_4_5_AnsP_0,P_network_3_6_AnnP_3,P_network_0_3_AI_4,P_poll__networl_0_5_RI_6,P_network_5_3_AI_2,P_crashed_5,P_poll__networl_5_3_RI_6,P_poll__networl_5_1_AI_4,P_poll__networl_4_3_AskP_0,P_network_3_2_AnnP_6,P_network_4_4_RI_1,P_poll__networl_1_3_AI_6,P_network_1_5_RI_2,P_network_5_4_AskP_3,P_network_6_0_AI_3,P_network_1_0_AI_2,P_masterList_1_6_0,P_network_4_3_AI_5,P_poll__networl_0_5_AnnP_1,P_poll__networl_6_6_AskP_0,P_poll__networl_6_4_AnnP_5,P_poll__networl_0_3_AskP_6,P_network_0_2_AnnP_2,P_network_3_4_RI_2,P_poll__networl_3_5_AI_3,P_poll__networl_5_5_RI_5,P_network_2_0_AskP_1,P_network_6_2_AnnP_3,P_poll__networl_2_4_RI_1,P_network_6_4_AskP_5,P_poll__networl_1_0_AskP_6,P_poll__networl_4_0_AnsP_0,P_network_0_2_RP_4,P_network_5_4_AI_2,P_network_5_5_AnnP_5,P_network_4_0_AI_4,P_poll__networl_5_1_AskP_2,P_network_1_3_RP_3,P_network_5_0_AnnP_1,P_poll__networl_2_6_RI_5,P_network_6_5_AskP_5,P_dead_3,P_network_4_5_RP_6,P_poll__networl_2_5_AnnP_3,P_network_0_0_RI_2,P_masterList_4_6_4,P_poll__networl_6_0_RP_0,P_poll__networl_4_2_AnnP_1,P_network_1_0_AnnP_3,P_poll__networl_6_0_AskP_0,P_poll__networl_6_1_RI_2,P_poll__networl_6_3_AI_0,P_network_0_0_AskP_1,P_network_0_0_AskP_4,P_network_5_1_RI_6,P_network_1_6_AskP_6,P_poll__networl_1_5_AI_0,P_poll__networl_6_4_AI_2,P_poll__networl_6_1_AnnP_2,P_network_2_0_AI_5,P_network_6_6_RI_4,P_poll__networl_2_1_AI_2,P_poll__networl_3_4_RI_2,P_network_1_3_AnnP_2,P_poll__networl_3_4_RP_0,P_network_2_3_AskP_5,P_network_1_4_AnnP_5,P_network_6_4_RP_3,P_poll__networl_4_6_AskP_0,P_network_1_4_RP_1,P_masterList_5_6_1,P_poll__networl_5_0_AnnP_1,P_poll__networl_1_2_RP_2,P_poll__networl_3_3_AskP_2,P_poll__networl_2_6_AnnP_6,P_poll__networl_3_6_AI_0,P_network_0_1_AskP_6,P_poll__networl_0_3_RI_5,P_poll__networl_2_0_RP_5,P_poll__networl_1_2_RI_6,P_poll__networl_1_0_AskP_3,P_poll__networl_3_4_AI_4,P_network_1_0_RP_4,P_poll__networl_0_5_RP_3,P_poll__networl_6_1_AI_6,P_network_5_2_AI_2,P_poll__networl_1_5_AnnP_4,P_network_2_5_RI_5,P_poll__networl_3_6_AI_2,P_poll__networl_0_6_AI_1,P_poll__networl_6_6_AskP_3,P_poll__networl_0_2_RI_5,P_poll__networl_0_0_AnnP_3,P_poll__networl_0_3_AI_5,P_poll__networl_2_6_AI_2,P_network_5_6_AskP_3,P_poll__networl_1_0_AnnP_3,P_poll__networl_6_6_AnnP_5,P_network_5_3_RP_2,P_poll__networl_0_0_AskP_0,P_network_0_4_AnnP_3,P_network_4_2_AskP_3,P_poll__networl_3_6_AI_5,P_network_1_0_AnnP_2,P_masterList_4_6_0,P_poll__networl_5_0_AI_3,P_poll__networl_3_3_AI_5,P_poll__networl_6_1_AI_2,P_poll__networl_5_1_AnnP_2,P_poll__networl_2_6_AnnP_5,P_network_4_1_RP_3,P_network_5_4_AskP_5,P_poll__networl_5_0_RP_4,P_network_2_1_AskP_4,P_network_4_0_RP_5,P_network_4_6_AnnP_3,P_poll__networl_3_6_AI_1,P_network_1_6_AskP_5,P_poll__networl_6_5_AI_6,P_poll__networl_6_0_RI_4,P_poll__networl_1_4_AskP_1,P_poll__networl_4_0_AI_0,P_network_4_2_RP_3,P_network_5_5_AI_5,P_poll__networl_4_4_RP_0,P_network_2_0_RI_5,P_poll__networl_3_2_RI_5,P_poll__networl_1_5_AI_1,P_network_3_4_RP_5,P_poll__networl_3_0_RP_2,P_poll__networl_5_0_AskP_5,P_poll__networl_6_3_AnnP_5,P_network_3_0_AnnP_5,P_network_5_4_AI_6,P_network_2_6_AI_3,P_poll__networl_1_1_AI_2,P_network_2_3_AskP_6,P_network_2_6_RP_4,P_poll__networl_4_5_RP_0,P_network_2_3_RI_2,P_poll__networl_6_0_AskP_3,P_poll__networl_0_0_AI_0,P_poll__networl_4_2_RI_2,P_poll__networl_2_5_AskP_5,P_network_6_3_RP_2,P_network_6_5_AnnP_2,P_poll__networl_5_0_RP_0,P_poll__networl_5_5_AskP_3,P_poll__networl_1_2_RI_3,P_poll__networl_6_2_RI_5,P_network_0_1_AI_2,P_poll__networl_6_3_RI_3,P_poll__networl_6_0_AI_3,P_network_3_4_RP_4,P_network_6_6_AI_2,P_poll__networl_5_1_RP_5,P_network_0_2_RI_5,P_poll__networl_5_1_RP_1,P_network_1_0_AskP_3,P_poll__networl_4_6_AI_0,P_poll__networl_3_3_AI_2,P_poll__networl_6_4_RP_0,P_network_5_3_RI_6,P_poll__networl_1_5_AskP_3,P_poll__networl_1_1_RI_2,P_poll__networl_2_1_AnnP_5,P_poll__networl_3_5_RP_3,P_poll__networl_6_1_AskP_0,P_network_3_3_RP_4,P_poll__networl_4_5_RI_5,P_poll__networl_3_2_RI_4,P_network_2_4_AskP_4,P_poll__networl_6_5_AI_5,P_network_0_4_AI_2,P_poll__networl_2_3_RI_2,P_poll__networl_2_4_RI_3,P_poll__networl_1_4_AI_3,P_poll__networl_6_4_AI_4,P_poll__networl_0_0_AnnP_0,P_poll__networl_0_6_AnsP_0,P_network_6_6_RI_5,P_poll__networl_0_3_RP_3,P_network_1_6_AskP_2,P_network_2_2_AI_4,P_network_0_0_AnnP_2,P_network_5_3_AnnP_1,P_poll__networl_3_1_RP_5,P_poll__networl_6_2_AnnP_2,P_poll__networl_2_4_AI_2,P_network_2_4_AskP_2,P_network_6_4_RI_6,P_poll__networl_2_2_RP_0,P_network_6_3_AskP_2,P_poll__networl_1_3_AI_5,P_network_1_1_AI_6,P_poll__networl_0_0_RI_0,P_poll__networl_2_4_AI_6,P_poll__networl_2_6_AnsP_0,P_poll__networl_5_2_AI_1,P_poll__networl_6_5_RI_1,P_poll__networl_6_6_AI_0,P_poll__networl_4_3_AI_4,P_network_4_3_AI_1,P_network_3_0_AI_6,P_poll__networl_6_0_AnnP_5,P_poll__networl_4_6_AskP_5,P_poll__networl_3_5_RI_4,P_poll__networl_1_2_AnsP_0,P_network_4_6_RP_5,P_poll__networl_6_1_RP_6,P_poll__networl_6_4_AnnP_4,P_masterList_2_6_0,P_network_1_1_AI_4,P_poll__networl_5_3_RI_2,P_network_2_5_RI_4,P_network_4_2_RP_1,P_poll__networl_0_4_AI_2,P_network_5_0_RP_2,P_poll__networl_2_4_AskP_0,P_poll__networl_2_4_AnnP_4,P_network_6_1_RP_6,P_network_2_3_RI_5,P_poll__networl_0_0_AI_6,P_poll__networl_3_0_AnnP_1,P_poll__networl_0_3_AskP_0,P_network_1_4_AskP_6,P_network_1_6_RP_3,P_poll__networl_1_6_AskP_0,P_network_2_1_RP_4,P_poll__networl_5_2_AI_5,P_poll__networl_6_4_RI_6,P_poll__networl_2_5_RP_1,P_network_2_2_AI_1,P_poll__networl_1_6_RI_2,P_network_0_3_AnnP_3,P_network_2_4_AnnP_1,P_network_2_3_AnnP_3,P_poll__networl_5_0_RI_3,P_poll__networl_1_6_RI_0,P_poll__networl_1_6_AskP_4,P_poll__networl_4_4_AskP_2,P_network_0_6_AI_3,P_poll__networl_2_2_AnnP_6,P_poll__networl_5_5_AI_4,P_network_2_0_AI_3,P_poll__networl_3_6_AI_4,P_network_1_1_AnnP_6,P_network_5_3_RP_5,P_network_0_4_RP_3,P_poll__networl_1_5_RI_1,P_poll__networl_6_5_RI_2,P_poll__networl_6_3_AskP_3,P_network_3_5_RI_6,P_network_6_3_AnnP_6,P_poll__networl_2_4_AI_5,P_network_1_3_AskP_4,P_poll__networl_4_1_RI_6,P_poll__networl_6_2_AnnP_4,P_network_0_4_RI_3,P_electionFailed_5,P_poll__networl_2_6_AskP_4,P_network_5_5_RI_4,P_masterList_0_6_1,P_network_0_6_AI_4,P_network_2_5_AskP_1,P_network_6_0_RI_2,P_poll__networl_3_6_RI_5,P_network_3_5_RP_2,P_network_6_1_RP_2,P_network_5_6_AI_4,P_poll__networl_2_5_RI_6,P_poll__networl_1_0_AI_1,P_poll__networl_4_3_AI_5,P_poll__networl_1_4_AI_2,P_poll__networl_5_6_AnnP_6,P_network_1_2_RP_3,P_poll__networl_5_5_AnnP_0,P_poll__networl_6_6_RP_0,P_poll__networl_0_4_AskP_6,P_network_3_2_RP_6,P_network_4_5_AskP_1,P_poll__networl_1_3_AnnP_4,P_network_2_1_AnnP_1,P_network_0_4_AskP_3,P_poll__networl_3_5_AI_1,P_network_6_6_RP_4,P_network_3_6_AnnP_5,P_poll__networl_2_3_AnsP_0,P_network_3_4_AI_6,P_poll__networl_4_0_RP_6,P_poll__networl_4_2_AI_5,P_poll__networl_6_1_AnsP_0,P_poll__networl_3_5_AI_2,P_poll__networl_3_5_RI_0,P_network_1_0_RP_1,P_masterList_2_6_3,P_poll__networl_4_5_AnnP_2,P_network_5_2_AskP_6,P_poll__networl_0_1_RP_0,P_network_4_4_AI_3,P_network_1_0_RP_3,P_poll__networl_2_2_AnnP_3,P_network_4_0_RI_2,P_network_3_5_RP_3,P_network_2_4_AskP_5,P_network_1_6_AnnP_4,P_network_3_0_AI_1,P_network_4_5_AnnP_3,P_network_6_2_AnnP_5,P_poll__networl_3_5_AI_4,P_poll__networl_1_2_AskP_3,P_poll__networl_4_6_RP_1,P_poll__networl_5_2_AnnP_0,P_network_0_6_RI_6,P_poll__networl_0_5_AnnP_2,P_network_1_4_RI_6,P_network_5_5_AI_3,P_network_2_4_RP_2,P_poll__networl_2_6_RI_2,P_poll__networl_2_3_RI_1,P_network_4_4_AnnP_6,P_poll__networl_2_4_RP_0,P_poll__networl_5_2_RI_2,P_network_0_0_AskP_6,P_poll__networl_0_3_AskP_1,P_poll__networl_5_0_RP_1,P_network_5_4_RI_6,P_poll__networl_6_3_AnnP_6,P_network_0_1_AnnP_5,P_network_4_3_AI_2,P_network_2_4_AnnP_3,P_network_6_5_AnnP_4,P_poll__networl_3_2_AI_6,P_network_4_1_AI_2,P_network_3_2_RP_4,P_network_4_3_AnnP_2,P_poll__networl_5_2_RI_4,P_network_5_0_AskP_2,P_poll__networl_3_3_AI_1,P_crashed_1,P_poll__networl_0_4_RI_2,P_network_0_4_AI_6,P_network_5_5_AskP_1,P_poll__networl_1_0_RP_4,P_poll__networl_3_4_AnnP_5,P_poll__networl_5_2_RP_1,P_poll__networl_1_0_RP_3,P_poll__networl_2_4_RI_6,P_poll__networl_5_5_RP_5,P_poll__networl_3_4_AnnP_4,P_poll__networl_0_1_AskP_4,P_poll__networl_3_4_AI_0,P_poll__networl_4_0_RI_0,P_poll__networl_1_1_RP_1,P_network_0_3_AskP_6,P_poll__networl_0_3_RI_6,P_poll__networl_6_1_AskP_2,P_network_2_3_RI_1,P_network_0_6_AskP_6,P_network_3_5_RP_4,P_network_4_1_AnnP_2,P_poll__networl_4_6_RP_6,P_poll__networl_6_3_AnnP_4,P_poll__networl_3_1_AI_3,P_poll__networl_6_5_RP_4,P_network_6_5_AI_1,P_poll__networl_6_0_RI_2,P_poll__networl_1_1_RP_0,P_network_5_4_AnnP_6,P_poll__networl_0_1_AnnP_6,P_poll__networl_3_1_AI_1,P_poll__networl_1_2_AnnP_5,P_poll__networl_6_0_AnsP_0,P_network_4_6_RI_5,P_poll__networl_6_3_AskP_4,P_network_0_6_AI_1,P_network_2_5_AskP_5,P_network_1_4_AskP_3,P_network_5_0_AI_6,P_network_1_6_RI_6,P_network_5_6_AnnP_2,P_network_6_0_AnnP_5,P_poll__networl_1_3_AnnP_1,P_network_6_2_AnnP_6,P_poll__networl_4_6_RI_3,P_poll__networl_0_2_AI_1,P_poll__networl_3_0_AnsP_0,P_poll__networl_5_4_RI_1,P_network_3_0_RI_5,P_poll__networl_0_6_RI_2,P_poll__networl_2_6_AskP_5,P_network_6_3_AskP_1,P_poll__networl_0_5_AI_4,P_network_2_3_AI_3,P_poll__networl_0_1_AnsP_0,P_network_3_5_AI_4,P_poll__networl_0_2_RI_6,P_network_6_1_AI_1,P_poll__networl_5_6_RP_0,P_poll__networl_2_3_RP_4,P_poll__networl_4_3_AnnP_1,P_poll__networl_4_4_AskP_4,P_network_5_5_AskP_5,P_network_6_3_RP_1,P_network_0_5_AI_6,P_network_0_5_AskP_4,P_poll__networl_1_0_RI_0,P_poll__networl_3_2_AnnP_6,P_poll__networl_2_6_RP_2,P_network_2_4_AI_1,P_network_6_4_AskP_6,P_network_6_2_AskP_1,P_poll__networl_4_3_AI_6,P_network_4_5_RP_3,P_poll__networl_2_3_AskP_0,P_network_3_3_AI_3,P_network_3_0_AskP_6,P_poll__networl_3_4_AskP_3,P_poll__networl_5_5_AnnP_2,P_poll__networl_5_5_AnnP_1,P_poll__networl_4_4_AskP_3,P_poll__networl_4_3_RP_5,P_network_4_4_AnnP_5,P_poll__networl_1_6_RI_4,P_dead_5,P_poll__networl_0_3_AskP_4,P_poll__networl_1_4_AnnP_6,P_poll__networl_3_5_AI_6,P_network_1_2_AI_5,P_poll__networl_6_5_AnnP_4,P_poll__networl_1_4_RI_3,P_network_0_4_AnnP_4,P_poll__networl_4_4_AnnP_2,P_poll__networl_5_1_AnnP_5,P_poll__networl_0_5_AskP_3,P_network_1_1_AskP_3,P_poll__networl_4_0_RI_6,P_poll__networl_0_2_RI_1,P_poll__networl_2_6_RP_0,P_poll__networl_6_4_AskP_2,P_network_6_2_RI_5,P_network_1_1_AskP_2,P_network_5_4_AnnP_3,P_poll__networl_5_0_RI_5,P_network_1_1_RI_2,P_poll__networl_2_4_AnsP_0,P_poll__networl_6_4_RP_4,P_poll__networl_5_0_AI_2,P_poll__networl_5_2_AskP_6,P_network_0_2_RP_2,P_network_2_4_RP_6,P_poll__networl_2_0_AskP_0,P_network_3_0_AI_2,P_poll__networl_0_1_AI_3,P_network_0_2_RP_3,P_poll__networl_3_3_AskP_1,P_network_1_0_AnnP_1,P_poll__networl_3_5_AI_5,P_poll__networl_5_5_RI_4,P_network_0_6_AI_6,P_network_3_6_RP_1,P_network_2_4_AI_5,P_network_1_0_AI_1,P_network_2_0_RP_4,P_poll__networl_6_2_AnnP_1,P_network_3_1_AnnP_4,P_poll__networl_6_2_AskP_3,P_poll__networl_0_2_AI_2,P_network_1_3_RI_5,P_network_2_3_RP_6,P_poll__networl_4_1_AI_6,P_poll__networl_1_0_AI_5,P_masterList_6_6_0,P_network_4_2_AnnP_6,P_network_1_1_RP_3,P_network_2_5_RP_2,P_network_4_5_AskP_5,P_poll__networl_2_1_AI_4,P_poll__networl_5_4_AnnP_2,P_network_2_6_AskP_6,P_poll__networl_4_3_AnnP_3,P_poll__networl_4_0_AnnP_0,P_poll__networl_5_6_RP_3,P_poll__networl_5_0_RI_4,P_poll__networl_3_4_RP_5,P_poll__networl_5_2_AnnP_3,P_network_2_5_AskP_2,P_network_4_1_AnnP_3,P_network_4_2_AskP_1,P_network_4_1_AI_3,P_poll__networl_0_4_AskP_5,P_poll__networl_1_6_AI_3,P_poll__networl_5_1_RI_6,P_network_2_5_AnnP_3,P_poll__networl_1_4_AskP_3,P_poll__networl_0_3_RP_4,P_network_4_6_RP_3,P_poll__networl_0_0_AnsP_0,P_poll__networl_4_0_AskP_2,P_network_5_0_AnnP_5,P_masterList_5_6_2,P_poll__networl_1_2_AI_3,P_network_0_1_AI_3,P_poll__networl_2_1_RP_2,P_network_3_4_AnnP_1,P_poll__networl_1_2_AskP_5,P_network_2_1_AnnP_5,P_poll__networl_5_3_AnnP_3,P_poll__networl_0_2_AnnP_1,P_poll__networl_4_6_AnnP_1,P_poll__networl_3_5_RP_6,P_poll__networl_1_5_AskP_2,P_network_3_3_AnnP_3,P_poll__networl_4_6_RI_4,P_network_6_2_AskP_3,P_poll__networl_5_4_AnnP_0,P_network_2_6_AnnP_2,P_network_4_5_RP_5,P_poll__networl_6_0_AnnP_0,P_poll__networl_1_2_AI_0,P_poll__networl_3_0_RP_3,P_poll__networl_2_6_AI_3,P_poll__networl_6_0_RP_6,P_poll__networl_4_0_AskP_0,P_network_4_5_AnnP_4,P_poll__networl_2_3_RP_5,P_network_4_2_AskP_4,P_poll__networl_0_3_RI_0,P_poll__networl_3_0_AI_4,P_network_1_6_RP_6,P_poll__networl_2_0_AskP_6,P_network_2_4_RI_5,P_poll__networl_3_6_AskP_2,P_poll__networl_4_1_AnnP_0,P_poll__networl_3_3_AskP_4,P_poll__networl_1_0_RI_6,P_network_1_5_RP_6,P_network_4_1_AskP_2,P_network_4_3_AnnP_5,P_network_0_2_AnnP_3,P_poll__networl_2_2_RI_5,P_network_4_3_RI_3,P_poll__networl_2_3_AnnP_1,P_network_2_5_AI_3,P_network_6_5_RP_1,P_poll__networl_1_5_AnnP_5,P_network_5_0_RP_5,P_poll__networl_0_2_AskP_1,P_poll__networl_2_0_AnnP_5,P_poll__networl_6_4_RP_2,P_network_3_0_AI_5,P_network_2_6_RP_5,P_poll__networl_6_4_AI_0,P_poll__networl_2_4_AnnP_3,P_network_6_1_AI_3,P_poll__networl_6_2_RP_3,P_poll__networl_6_3_RI_1,P_network_4_6_AI_1,P_poll__networl_4_4_RI_0,P_network_5_1_RP_5,P_poll__networl_4_1_RI_5,P_poll__networl_2_4_AskP_2,P_poll__networl_4_4_AnnP_6,P_network_4_3_AskP_5,P_network_1_6_AI_4,P_poll__networl_3_2_RP_5,P_network_0_5_RP_2,P_network_0_2_RI_4,P_network_3_6_RP_5,P_masterList_6_6_3,P_poll__networl_1_5_RP_5,P_poll__networl_3_2_AI_2,P_network_0_1_RP_3,P_poll__networl_2_2_AskP_1,P_network_3_2_AskP_3,P_poll__networl_3_3_AI_3,P_poll__networl_0_6_AskP_0,P_network_5_2_RI_2,P_poll__networl_4_3_RP_3,P_network_6_6_RP_2,P_network_1_5_AnnP_5,P_poll__networl_1_6_AI_2,P_poll__networl_3_5_AskP_1,P_poll__networl_4_1_AI_2,P_network_1_1_RI_3,P_poll__networl_1_6_RP_5,P_poll__networl_5_6_AI_5,P_network_3_2_AskP_1,P_poll__networl_3_0_RI_2,P_network_0_3_AnnP_5,P_network_6_4_AnnP_3,P_poll__networl_1_1_RI_0,P_poll__networl_2_2_AskP_6,P_network_4_6_AI_4,P_poll__networl_1_5_RI_3,P_network_3_0_RI_3,P_network_5_0_AI_1,P_network_4_3_RP_5,P_network_5_6_RI_6,P_poll__networl_4_3_AI_2,P_poll__networl_4_6_AskP_2,P_network_2_2_RI_1,P_network_2_1_AnnP_6,P_poll__networl_2_0_AI_5,P_network_3_2_AskP_2,P_poll__networl_6_3_AskP_0,P_network_4_6_RP_6,P_network_1_1_RI_1,P_poll__networl_0_0_AskP_3,P_poll__networl_5_4_RP_4,P_network_5_1_RI_5,P_network_1_4_AskP_5,P_poll__networl_6_2_RI_0,P_network_4_6_AskP_5,P_poll__networl_3_3_RP_6,P_poll__networl_5_3_AskP_1,P_poll__networl_6_0_RI_1,P_poll__networl_6_6_RP_2,P_network_1_4_RI_2,P_poll__networl_4_4_RI_1,P_network_0_5_RI_1,P_network_2_1_RI_4,P_poll__networl_3_1_RI_5,P_poll__networl_0_6_RI_3,P_poll__networl_4_6_RI_6,P_poll__networl_3_6_RI_0,P_poll__networl_3_0_AskP_2,P_network_6_2_AI_6,P_network_2_3_AI_1,P_network_3_6_AnnP_2,P_poll__networl_2_1_AskP_5,P_poll__networl_5_0_RP_5,P_network_0_1_AnnP_4,P_network_3_4_RI_4,P_poll__networl_0_4_RI_6,P_poll__networl_2_6_RI_6,P_poll__networl_5_5_AskP_2,P_network_3_3_AnnP_1,P_poll__networl_3_0_RI_5,P_poll__networl_5_0_RI_6,P_poll__networl_0_6_RI_5,P_poll__networl_0_6_AskP_2,P_poll__networl_5_6_AnnP_4,P_network_2_4_RI_2,P_poll__networl_5_0_AI_1,P_network_3_4_RI_6,P_network_2_3_RP_5,P_network_6_5_AI_4,P_poll__networl_0_1_RI_0,P_network_4_2_RI_5,P_network_1_2_AskP_1,P_poll__networl_5_6_AI_6,P_poll__networl_3_1_AskP_5,P_poll__networl_4_6_RI_0,P_poll__networl_1_6_RI_5,P_network_6_1_RI_5,P_poll__networl_1_0_RP_0,P_poll__networl_4_2_AnnP_4,P_poll__networl_0_4_AnnP_4,P_network_4_5_AskP_4,P_poll__networl_4_1_AskP_2,P_poll__networl_4_1_RI_0,P_network_0_0_AI_3,P_network_6_6_AI_6,P_network_4_4_RP_3,P_network_1_5_RI_5,P_poll__networl_6_5_AskP_1,P_poll__networl_2_4_AI_0,P_network_0_2_AskP_5,P_poll__networl_0_4_RP_5,P_poll__networl_5_2_AI_4,P_poll__networl_0_3_AnnP_0,P_network_0_3_AI_5,P_poll__networl_0_0_AskP_4,P_poll__networl_6_6_RI_6,P_network_1_5_AnnP_6,P_poll__networl_0_3_AI_6,P_poll__networl_5_4_RI_4,P_network_1_1_AnnP_1,P_network_1_6_RP_5,P_network_1_0_AI_6,P_poll__networl_0_2_AnnP_0,P_poll__networl_2_0_AnnP_6,
P_network_3_3_AskP_3,P_network_4_6_AnnP_1,P_network_2_5_AI_4,P_poll__networl_4_5_AnnP_4,P_poll__networl_5_2_AnsP_0,P_poll__networl_1_1_RI_5,P_poll__networl_0_6_AnnP_1,P_poll__networl_0_6_RI_6,P_network_4_0_AnnP_3,P_poll__networl_1_4_RP_1,P_poll__networl_5_2_RI_6,P_network_3_5_AI_1,P_network_1_4_RP_2,P_poll__networl_0_1_RP_3,P_network_0_4_RI_2,P_poll__networl_6_1_RI_6,P_poll__networl_3_2_AskP_0,P_masterList_3_6_0,P_network_6_2_RI_4,P_network_3_2_AskP_6,P_masterList_1_6_6,P_network_5_1_AnnP_2,P_poll__networl_5_2_AskP_3,P_poll__networl_2_3_AI_1,P_poll__networl_3_1_AnnP_0,P_network_2_2_AI_5,P_network_4_4_AskP_6,P_poll__networl_2_0_RP_2,P_poll__networl_2_5_RI_0,P_poll__networl_5_5_AnnP_4,P_network_0_3_AskP_1,P_poll__networl_5_2_AskP_1,P_network_3_5_RI_1,P_poll__networl_3_2_RI_3,P_network_0_3_RP_6,P_network_4_6_RI_6,P_poll__networl_2_4_AI_4,P_network_5_6_AskP_4,P_poll__networl_1_1_AI_4,P_network_3_4_RP_3,P_network_5_6_RI_2,P_network_1_5_AskP_4,P_poll__networl_4_4_AnnP_4,P_poll__networl_0_0_RI_4,P_network_5_5_AnnP_3,P_network_3_5_RP_1,P_poll__networl_6_5_AskP_5,P_poll__networl_2_3_RI_0,P_poll__networl_3_3_RP_4,P_network_4_4_RI_5,P_poll__networl_0_1_AI_4,P_network_6_1_AI_6,P_network_3_2_AI_5,P_network_6_2_AI_5,P_poll__networl_4_4_RI_4,P_poll__networl_1_0_RI_2,P_poll__networl_0_1_AI_6,P_poll__networl_4_6_AnnP_2,P_network_5_3_AI_5,P_network_2_4_AskP_6,P_network_3_1_AskP_3,P_poll__networl_1_1_AI_1,P_poll__networl_3_5_AI_0,P_network_1_5_RI_4,P_poll__networl_3_2_AnsP_0,P_network_5_4_AskP_1,P_network_0_2_AskP_6,P_poll__networl_4_3_AnnP_2,P_poll__networl_5_0_AskP_0,P_poll__networl_5_4_RI_0,P_network_0_4_RI_4,P_network_4_1_AI_1,P_network_6_0_RI_1,P_poll__networl_3_0_AnnP_2,P_poll__networl_6_3_AnnP_0,P_poll__networl_2_6_AI_1,P_poll__networl_0_5_RP_1,P_network_6_6_RP_5,P_poll__networl_6_3_AnnP_2,P_network_1_3_AskP_2,P_poll__networl_3_4_AnnP_2,P_poll__networl_5_4_RP_1,P_poll__networl_6_5_RI_3,P_poll__networl_1_3_RI_3,P_poll__networl_1_1_RI_3,P_network_5_1_AskP_4,P_network_3_1_RP_5,P_poll__networl_3_0_AskP_1,P_network_0_4_AskP_6,P_network_3_6_AI_6,P_poll__networl_4_2_AnnP_3,P_network_3_4_AnnP_2,P_poll__networl_4_0_RP_2,P_network_2_1_RP_5,P_poll__networl_6_3_RP_6,P_poll__networl_5_6_AskP_0,P_poll__networl_5_0_AnsP_0,P_poll__networl_5_1_RI_5,P_network_5_6_RP_4,P_poll__networl_1_4_RP_4,P_network_4_1_RI_2,P_network_1_2_AI_6,P_poll__networl_0_0_AskP_6,P_poll__networl_3_1_AskP_6,P_poll__networl_2_0_AI_4,P_poll__networl_2_2_AnnP_1,P_poll__networl_5_0_AskP_2,P_poll__networl_2_0_AskP_1,P_network_6_1_RI_6,P_network_0_1_AskP_3,P_network_1_6_RI_5,P_poll__networl_6_4_AI_3,P_poll__networl_0_0_AI_1,P_network_3_4_AskP_2,P_poll__networl_5_6_RP_1,P_network_0_5_AI_4,P_poll__networl_6_2_RI_4,P_network_3_5_AskP_3,P_network_1_2_AnnP_5,P_poll__networl_0_3_AnnP_4,P_network_5_5_RI_5,P_network_5_4_AnnP_1,P_poll__networl_6_4_AnnP_3,P_poll__networl_3_6_RP_5,P_poll__networl_0_2_AskP_4,P_poll__networl_5_3_AnnP_5,P_network_2_5_RI_1,P_poll__networl_0_5_RI_0,P_network_4_6_RI_1,P_network_5_0_AI_3,P_network_0_1_RP_4,P_network_2_4_RP_5,P_network_3_3_RP_3,P_network_4_6_RP_4,P_network_6_0_AI_1,P_poll__networl_0_5_AskP_2,P_network_1_2_AskP_3,P_network_6_3_RP_6,P_network_3_3_AskP_6,P_poll__networl_4_5_AI_4,P_poll__networl_1_4_AskP_0,P_network_6_6_AI_5,P_poll__networl_3_3_RI_5,P_poll__networl_2_2_AI_5,P_network_0_2_AnnP_1,P_poll__networl_0_2_AskP_6,P_poll__networl_6_2_AI_5,P_network_0_6_AskP_1,P_network_1_2_AI_3,P_network_2_5_AnnP_1,P_network_4_3_AnnP_1,P_network_1_2_RP_2,P_poll__networl_2_1_RP_6,P_poll__networl_4_2_AskP_0,P_network_1_5_RP_3,P_poll__networl_1_6_RI_3,P_network_2_3_AnnP_4,P_poll__networl_2_6_AI_4,P_network_5_2_AskP_1,P_network_5_0_RP_6,P_poll__networl_4_3_AskP_1,P_poll__networl_2_5_RP_3,P_poll__networl_4_0_RI_5,P_network_2_2_AnnP_6,P_poll__networl_1_1_AnnP_3,P_network_5_0_AskP_5,P_poll__networl_2_5_RI_5,P_network_6_5_RI_1,P_network_4_5_AI_4,P_network_6_5_AnnP_1,P_poll__networl_0_0_RI_3,P_poll__networl_6_5_AskP_3,P_poll__networl_0_4_AI_3,P_network_5_2_AI_5,P_network_0_5_AskP_6,P_network_5_6_AnnP_4,P_network_6_1_AI_4,P_network_5_0_AskP_6,P_poll__networl_6_3_AI_2,P_network_1_6_AnnP_6,P_poll__networl_5_5_RP_2,P_network_5_1_AnnP_1,P_poll__networl_2_1_RP_0,P_poll__networl_4_0_AnnP_4,P_poll__networl_4_1_RP_3,P_poll__networl_6_6_AI_1,P_network_6_0_AskP_1,P_network_2_2_RI_3,P_poll__networl_6_6_RI_0,P_poll__networl_1_6_RI_1,P_poll__networl_2_1_RP_1,P_network_6_1_AnnP_2,P_network_5_0_AI_5,P_poll__networl_3_0_RP_1,P_network_0_2_AI_6,P_network_4_1_RI_3,P_poll__networl_5_3_RP_1,P_poll__networl_1_5_RI_5,P_network_4_4_RP_4,P_network_6_6_AI_3,P_network_3_1_RI_5,P_network_2_3_AnnP_6,P_network_1_3_AnnP_3,P_network_5_2_AI_6,P_network_5_6_RP_3,P_network_1_4_AnnP_2,P_network_5_1_RI_3,P_network_1_0_AnnP_5,P_network_0_6_AskP_2,P_poll__networl_5_0_AnnP_3,P_poll__networl_0_2_RI_4,P_poll__networl_6_0_AskP_4,P_network_2_2_RP_4,P_poll__networl_0_3_AskP_5,P_network_0_0_AI_1,P_network_2_3_AnnP_5,P_poll__networl_1_3_RP_2,P_network_2_1_RI_1,P_poll__networl_3_1_RI_1,P_network_3_5_AnnP_5,P_network_4_5_AnnP_1,P_network_5_6_AskP_6,P_poll__networl_4_0_RP_5,P_network_6_0_RI_3,P_network_3_5_RP_5,P_network_0_5_RP_4,P_network_3_3_RI_5,P_poll__networl_3_0_RP_0,P_network_6_0_RI_5,P_poll__networl_0_2_AnnP_6,P_network_4_2_RI_4,P_poll__networl_5_4_RP_0,P_poll__networl_2_5_AI_5,P_poll__networl_4_4_AnnP_3,P_poll__networl_0_6_AskP_5,P_network_5_2_AnnP_5,P_poll__networl_5_4_AskP_2,P_network_2_2_AnnP_4,P_poll__networl_2_3_AskP_2,P_network_5_0_AnnP_6,P_poll__networl_3_1_AI_2,P_network_0_1_RP_2,P_network_5_1_RP_1,P_network_3_0_AnnP_1,P_network_4_2_AnnP_5,P_network_6_4_RI_5,P_poll__networl_6_6_AI_3,P_network_5_2_AI_1,P_poll__networl_1_4_RI_1,P_network_5_1_AnnP_4,P_network_6_0_RP_2,P_poll__networl_2_6_AskP_0,P_poll__networl_5_4_RP_3,P_poll__networl_0_4_RP_6,P_network_6_0_AI_6,P_poll__networl_4_5_AskP_2,P_network_3_5_AI_3,P_poll__networl_1_1_AskP_2,P_poll__networl_1_2_AskP_4,P_poll__networl_3_0_AnnP_5,P_network_0_5_RI_2,P_network_6_3_AI_2,P_network_3_3_AI_4,P_network_4_1_AI_4,P_masterList_5_6_5,P_network_0_6_AnnP_6,P_network_6_0_RP_6,P_poll__networl_1_1_RP_3,P_poll__networl_6_1_RI_4,P_poll__networl_2_4_RP_1,P_network_1_4_RP_3,P_network_2_0_AnnP_2,P_poll__networl_2_4_AskP_3,P_network_5_1_AI_1,P_network_6_3_AskP_6,P_poll__networl_5_6_AnnP_3,P_dead_2,P_poll__networl_4_6_AI_4,P_poll__networl_2_0_AnnP_3,P_network_3_3_AskP_2,P_poll__networl_5_5_AI_3,P_poll__networl_5_6_RI_1,P_poll__networl_6_6_RI_4,P_poll__networl_2_6_AskP_3,P_poll__networl_4_3_RI_0,P_network_0_1_AI_1,P_network_4_3_AskP_1,P_poll__networl_4_3_RI_6,P_network_2_4_RP_3,P_poll__networl_4_1_AskP_3,P_network_1_2_RI_1,P_poll__networl_2_1_RI_2,P_poll__networl_0_6_AI_2,P_poll__networl_2_3_AskP_4,P_poll__networl_4_0_RP_1,P_poll__networl_0_2_RP_6,P_network_0_5_AnnP_2,P_network_4_6_AI_3,P_network_4_5_AskP_2,P_network_0_0_RP_6,P_network_2_6_AnnP_4,P_network_1_4_AskP_4,P_poll__networl_5_1_RP_4,P_network_6_0_RP_1,P_poll__networl_1_5_AI_2,P_network_3_6_AI_4,P_poll__networl_4_0_AI_4,P_network_1_5_RP_5,P_network_1_5_AskP_5,P_poll__networl_6_0_AskP_5,P_poll__networl_5_4_AI_0,P_poll__networl_1_2_RP_4,P_poll__networl_5_1_AskP_4,P_network_2_4_AnnP_6,P_network_5_3_AnnP_3,P_poll__networl_6_4_RP_3,P_poll__networl_2_3_AI_0,P_poll__networl_2_1_AI_3,P_poll__networl_5_4_RI_3,P_network_6_4_RP_2,P_poll__networl_5_1_RI_2,P_poll__networl_1_3_RI_2,P_masterList_1_6_1,P_poll__networl_0_5_AI_2,P_network_0_2_RI_3,P_poll__networl_3_2_AskP_4,P_poll__networl_5_5_AI_1,P_network_4_0_RI_1,P_poll__networl_3_3_RI_0,P_poll__networl_1_5_AnnP_6,P_poll__networl_4_5_AnnP_5,P_poll__networl_3_4_RP_6,P_poll__networl_4_5_RP_1,P_poll__networl_5_4_AI_5,P_network_0_0_AnnP_6,P_network_6_6_RI_6,P_network_1_5_RI_6,P_network_1_4_AnnP_4,P_poll__networl_4_2_AskP_5,P_network_6_4_RI_4,P_poll__networl_1_3_AskP_0,P_poll__networl_3_5_AnnP_5,P_network_2_6_RI_3,P_poll__networl_1_6_AI_6,P_network_6_4_AnnP_4,P_network_2_2_AskP_1,P_poll__networl_1_1_AskP_1,P_poll__networl_6_3_AI_3,P_network_3_4_AskP_6,P_poll__networl_2_2_RP_5,P_network_5_2_AnnP_4,P_poll__networl_1_6_AnnP_5,P_network_5_1_AnnP_3,P_poll__networl_2_0_RI_4,P_poll__networl_3_0_AI_3,P_poll__networl_4_2_RP_2,P_poll__networl_5_3_AnsP_0,P_poll__networl_5_1_AskP_3,P_poll__networl_0_3_AnnP_2,P_network_0_1_AnnP_2,P_network_4_1_RI_4,P_masterList_4_6_1,P_poll__networl_2_0_RP_1,P_poll__networl_4_2_AnsP_0,P_network_5_4_RP_5,P_network_4_1_RI_6,P_poll__networl_1_3_RP_4,P_network_3_2_RI_5,P_poll__networl_1_4_RP_5,P_poll__networl_1_2_AnnP_3,P_poll__networl_5_6_RI_3,P_poll__networl_1_0_AnnP_4,P_network_5_4_AnnP_4,P_network_6_5_RP_4,P_poll__networl_0_0_RI_6,P_poll__networl_1_4_RP_3,P_poll__networl_1_0_AI_0,P_poll__networl_3_0_AskP_3,P_network_5_2_RI_3,P_poll__networl_1_6_RP_2,P_poll__networl_4_0_AskP_1,P_network_3_2_RI_1,P_poll__networl_5_3_AskP_6,P_network_2_2_RI_2,P_network_1_4_RP_4,P_network_0_5_RP_3,P_network_4_3_AI_4,P_poll__networl_0_6_AnnP_6,P_network_2_2_AI_6,P_network_5_5_AnnP_4,P_poll__networl_2_4_AnnP_5,P_poll__networl_6_4_RI_5,P_poll__networl_5_3_AI_3,P_poll__networl_1_1_AskP_6,P_poll__networl_6_5_AnnP_6,P_network_0_5_AI_2,P_network_4_2_RP_4,P_network_6_5_RP_2,P_poll__networl_4_4_AskP_0,P_network_3_4_AnnP_4,P_poll__networl_3_3_AskP_5,P_poll__networl_4_2_RI_3,P_network_0_6_AI_2,P_network_4_0_RI_3,P_poll__networl_2_5_AnnP_6,P_poll__networl_3_0_AnnP_3,P_network_4_4_RI_2,P_poll__networl_4_2_AI_3,P_poll__networl_6_1_AI_3,P_network_5_6_RI_3,P_poll__networl_1_6_AnnP_3,P_poll__networl_6_3_RI_6,P_electionFailed_2,P_poll__networl_6_1_RP_2,P_network_0_2_AI_5,P_poll__networl_2_6_AnnP_1,P_poll__networl_3_3_AnnP_3,P_poll__networl_1_1_RI_1,P_network_3_6_RP_6,P_poll__networl_1_2_AnnP_2,P_network_3_3_RI_3,P_network_6_5_AskP_4,P_poll__networl_3_3_RP_1,P_network_6_5_RI_5,P_network_5_0_AnnP_3,P_network_4_4_AskP_3,P_poll__networl_0_5_RI_1,P_poll__networl_1_0_AI_3,P_network_5_2_RI_4,P_network_2_4_RI_6,P_poll__networl_5_1_RI_4,P_masterList_1_6_4,P_poll__networl_2_5_AI_3,P_poll__networl_6_6_RI_5,P_poll__networl_1_1_AnsP_0,P_poll__networl_5_3_RP_3,P_network_4_0_RI_4,P_network_0_4_AskP_5,P_network_0_2_AI_3,P_network_1_1_RP_6,P_poll__networl_5_6_RP_6,P_network_4_5_AI_3,P_network_1_5_AnnP_2,P_poll__networl_2_2_AskP_0,P_network_1_2_RI_2,P_network_6_2_AnnP_4,P_poll__networl_4_3_AnsP_0,P_poll__networl_3_6_AskP_0,P_network_5_6_RP_5,P_poll__networl_3_2_AI_5,P_poll__networl_3_1_RP_2,P_poll__networl_1_3_AskP_1,P_network_6_3_AskP_4,P_poll__networl_0_5_RP_4,P_poll__networl_1_2_RI_1,P_poll__networl_2_3_AnnP_6,P_network_1_5_AskP_3,P_network_2_1_AnnP_3,P_network_1_2_AnnP_2,P_network_4_1_AskP_1,P_poll__networl_2_1_AI_1,P_poll__networl_6_0_AskP_6,P_poll__networl_2_1_AskP_6,P_poll__networl_3_6_AskP_6,P_network_1_4_RP_6,P_poll__networl_4_2_RI_5,P_poll__networl_5_0_AI_6,P_network_0_4_AnnP_5,P_network_0_1_RI_2,P_network_4_4_AskP_1,P_network_2_5_AnnP_6,P_poll__networl_3_2_RP_0,P_network_5_0_RP_4,P_network_3_5_AnnP_3,P_network_5_5_AI_6,P_network_0_1_AnnP_3,P_masterList_4_6_3,P_network_2_6_AnnP_5,P_poll__networl_5_2_AskP_0,P_network_3_1_RI_2,P_poll__networl_5_3_AI_6,P_network_2_4_AI_2,P_masterList_0_6_5,P_network_1_2_RI_4,P_network_4_5_RI_3,P_network_6_5_AI_2,P_poll__networl_6_4_AnnP_2,P_network_5_1_AskP_5,P_network_0_1_AskP_1,P_poll__networl_2_2_AnnP_5,P_poll__networl_4_3_AI_3,P_poll__networl_4_4_AskP_5,P_poll__networl_1_3_AskP_6,P_network_2_3_RI_6,P_network_5_5_RP_3,P_poll__networl_6_6_RI_2,P_poll__networl_4_2_AskP_1,P_network_0_5_AnnP_5,P_network_2_3_AI_4,P_poll__networl_6_5_RP_2,P_poll__networl_6_6_AI_2,P_poll__networl_0_3_AI_3,P_poll__networl_3_1_AI_6,P_network_1_2_AskP_4,P_network_2_3_AI_6,P_network_3_4_AskP_4,P_poll__networl_1_3_AnsP_0,P_poll__networl_1_3_AI_3,P_network_1_1_RI_6,P_poll__networl_0_3_AnnP_6,P_poll__networl_5_1_RI_3,P_network_6_0_AnnP_2,P_network_6_0_AskP_5,P_network_1_2_RI_5,P_poll__networl_5_2_AnnP_6,P_poll__networl_3_5_AskP_5,P_poll__networl_4_5_AI_0,P_network_3_6_AskP_6,P_network_6_0_AI_2,P_poll__networl_0_0_RI_5,P_poll__networl_2_2_RP_4,P_poll__networl_1_0_AnnP_6,P_network_1_3_RI_3,P_network_6_3_RI_4,P_poll__networl_0_3_RP_6,P_poll__networl_3_6_RP_4,P_poll__networl_1_3_AnnP_3,P_network_3_6_RP_3,P_network_2_6_RP_6,P_network_3_4_AskP_3,P_network_1_2_RI_3,P_network_6_3_AI_5,P_network_1_6_RI_3,P_poll__networl_6_2_AskP_6,P_poll__networl_1_2_AnnP_0,P_network_1_1_AnnP_5,P_poll__networl_3_2_RP_4,P_poll__networl_3_5_RI_5,P_network_2_5_AI_6,P_poll__networl_1_6_RP_3,P_network_6_1_AnnP_3,P_poll__networl_0_6_AnnP_2,P_poll__networl_6_4_AnnP_0,P_poll__networl_6_3_AnnP_1,P_masterList_1_6_2,P_poll__networl_5_3_AskP_0,P_poll__networl_1_4_AI_6,P_poll__networl_3_4_AskP_0,P_poll__networl_2_0_RI_0,P_poll__networl_1_6_AnnP_6,P_network_1_3_RP_4,P_poll__networl_5_1_AI_0,P_poll__networl_2_5_AskP_3,P_poll__networl_5_2_RP_4,P_poll__networl_3_4_RP_1,P_poll__networl_4_1_AnnP_3,P_network_2_1_AskP_3,P_poll__networl_0_4_AI_5,P_poll__networl_5_5_AskP_4,P_poll__networl_2_0_AnnP_1,P_poll__networl_6_6_RP_3,P_network_6_4_AnnP_5,P_poll__networl_1_3_RP_5,P_network_2_1_AI_3,P_network_0_4_AI_4,P_network_0_2_AI_2,P_poll__networl_3_6_AskP_4,P_poll__networl_3_5_RI_2,P_network_2_6_AI_2,P_network_5_6_RI_4,P_poll__networl_4_4_AI_2,P_network_1_0_AskP_1,P_poll__networl_0_2_AnnP_2,P_poll__networl_3_2_RI_2,P_poll__networl_1_2_RI_2,P_poll__networl_0_5_AI_3,P_network_4_1_RI_1,P_poll__networl_3_5_RP_0,P_network_5_2_AI_4,P_poll__networl_2_1_AskP_2,P_network_6_6_AskP_6,P_poll__networl_2_0_RP_0,P_poll__networl_6_5_AnnP_1,P_network_5_6_RP_1,P_poll__networl_3_4_AI_5,P_poll__networl_4_6_RP_3,P_network_6_1_RP_5,P_network_6_3_AnnP_2,P_poll__networl_2_6_RP_5,P_network_3_4_RI_1,P_network_1_4_AI_3,P_poll__networl_0_5_AskP_5,P_poll__networl_6_5_AnsP_0,P_network_3_1_RP_2,P_network_1_5_AI_1,P_poll__networl_5_1_RP_3,P_masterList_1_6_5,P_network_4_6_AI_2,P_poll__networl_2_4_AskP_1,P_network_4_2_AI_4,P_network_1_1_RI_4,P_poll__networl_3_0_AskP_0,P_network_1_2_AskP_5,P_poll__networl_5_6_AskP_1,P_network_1_0_AI_5,P_network_0_5_AI_1,P_poll__networl_4_3_AI_0,P_poll__networl_4_6_AnnP_4,P_network_3_0_AskP_1,P_network_5_5_AnnP_2,P_poll__networl_5_4_RP_5,P_poll__networl_2_0_AskP_4,P_network_1_1_AI_5,P_poll__networl_3_0_RP_4,P_poll__networl_5_1_AI_3,P_poll__networl_4_1_AnnP_1,P_poll__networl_1_5_AskP_5,P_poll__networl_3_4_AI_1,P_poll__networl_1_1_AnnP_5,P_poll__networl_1_4_AnnP_0,P_poll__networl_3_3_AnnP_2,P_poll__networl_4_1_AnnP_6,P_network_1_0_AI_3,P_poll__networl_2_5_RI_3,P_network_5_2_RP_3,P_poll__networl_3_6_RI_3,P_poll__networl_1_6_AI_4,P_poll__networl_2_2_AI_3,P_poll__networl_5_2_RI_5,P_network_1_1_AI_2,P_network_3_0_AI_3,P_dead_6,P_network_6_6_RI_3,P_network_4_6_RP_1,P_network_1_5_RI_3,P_poll__networl_0_1_AnnP_4,P_network_4_1_AskP_3,P_network_0_3_AskP_2,P_poll__networl_0_1_AnnP_3,P_poll__networl_2_1_AnnP_3,P_poll__networl_2_1_RP_4,P_network_4_1_RP_1,P_network_0_0_RI_1,P_network_2_1_AskP_2,P_network_4_4_AI_2,P_poll__networl_5_6_RP_2,P_poll__networl_6_5_RI_4,P_network_6_4_AI_5,P_poll__networl_0_0_AI_4,P_poll__networl_1_2_AI_4,P_network_3_2_RI_3,P_poll__networl_6_0_AskP_1,P_poll__networl_6_4_AskP_1,P_network_5_3_AnnP_5,P_network_0_3_AskP_3,P_poll__networl_6_2_AskP_4,P_network_6_5_AI_3,P_network_0_0_AI_5,P_network_2_0_RP_5,P_network_0_6_RP_6,P_poll__networl_3_5_RP_4,P_poll__networl_6_2_RI_6,P_network_1_4_AI_4,P_poll__networl_1_3_RP_6,P_poll__networl_3_4_AI_2,P_poll__networl_4_6_AnnP_6,P_network_2_6_AnnP_1,P_network_0_4_RP_2,P_network_4_6_RP_2,P_poll__networl_6_4_AskP_0,P_network_0_3_RP_3,P_network_4_3_AskP_4,P_network_6_6_AskP_3,P_network_4_0_AI_5,P_poll__networl_5_0_RP_2,P_poll__networl_3_6_AnnP_5,P_network_3_2_RP_2,P_network_6_0_AskP_3,P_poll__networl_0_3_RP_2,P_poll__networl_5_0_RP_3,P_poll__networl_2_3_RI_5,P_network_1_1_AnnP_4,P_poll__networl_2_0_RP_3,P_network_2_5_AnnP_4,P_poll__networl_3_4_AnnP_3,P_masterList_0_6_3,P_network_1_4_RP_5,P_poll__networl_3_5_RI_6,P_network_0_5_AI_5,P_poll__networl_0_6_RP_0,P_network_1_1_RP_5,P_poll__networl_2_4_AnnP_2,P_poll__networl_4_6_AnnP_3,P_network_6_3_RI_6,P_poll__networl_0_6_AI_4,P_network_6_5_RP_6,P_poll__networl_0_4_AskP_0,P_poll__networl_6_0_RI_3,P_network_4_5_RI_4,P_network_1_0_AskP_2,P_poll__networl_1_5_RI_4,P_poll__networl_3_5_RI_3,P_poll__networl_0_2_AnnP_3,P_network_3_0_AnnP_4,P_poll__networl_3_4_RP_2,P_network_4_3_AI_6,P_poll__networl_2_2_RI_2,P_network_0_2_AnnP_5,P_poll__networl_3_6_RP_2,P_network_1_5_RP_2,P_poll__networl_6_6_AnnP_3,P_poll__networl_3_2_AskP_5,P_poll__networl_3_6_AskP_5,P_poll__networl_0_0_RP_1,P_poll__networl_0_5_AI_6,P_poll__networl_3_0_AI_1,P_poll__ne
tworl_4_0_AskP_6,P_poll__networl_2_4_AnnP_6,P_network_2_3_AnnP_1,P_poll__networl_0_6_AskP_6,P_poll__networl_6_6_AnnP_6,P_poll__networl_1_5_AnnP_1,P_poll__networl_6_2_AskP_2,P_network_6_1_AI_5,P_poll__networl_4_6_AnnP_5,P_network_3_2_AskP_5,P_network_4_0_AskP_6,P_network_2_0_AskP_4,P_poll__networl_2_4_RP_6,P_network_0_0_AnnP_5,P_network_0_5_AskP_5,P_poll__networl_2_0_AI_0,P_poll__networl_2_3_AskP_1,P_poll__networl_4_1_RP_6,P_network_0_1_RI_5,P_network_5_3_AnnP_2,P_poll__networl_0_3_AI_2,P_network_0_1_AskP_5,P_network_4_2_AI_3,P_poll__networl_1_6_RI_6,P_network_1_2_RP_5,P_network_2_2_RI_5,P_network_6_6_AnnP_5,P_network_3_4_RP_6,P_crashed_3,P_network_6_4_AI_2,P_network_0_3_AskP_4,P_network_0_2_AnnP_4,P_poll__networl_3_2_AskP_1,P_network_5_4_RI_1,P_poll__networl_5_3_RI_5,P_network_2_4_AnnP_2,P_poll__networl_4_4_RI_3,P_poll__networl_6_2_AskP_1,P_network_6_1_RP_4,P_poll__networl_2_5_AI_0,P_network_1_0_RI_5,P_poll__networl_4_5_AI_2,P_network_0_2_AI_1,P_network_4_0_AnnP_1,P_poll__networl_3_0_AI_5,P_poll__networl_3_6_AnnP_0,P_network_0_6_RP_3,P_poll__networl_2_0_AI_1,P_poll__networl_1_5_AskP_1,P_poll__networl_6_0_AnnP_4,P_poll__networl_3_3_RI_6,P_poll__networl_6_2_RP_6,P_network_3_6_AskP_2,P_poll__networl_5_1_AI_1,P_poll__networl_5_5_AnsP_0,P_network_2_1_RI_3,P_poll__networl_4_0_RI_3,P_poll__networl_1_1_RP_2,P_poll__networl_5_5_RP_3,P_network_0_5_RI_6,P_poll__networl_4_1_AI_1,P_poll__networl_3_2_RI_0,P_network_6_0_RP_5,P_network_6_2_AskP_2,P_network_6_2_AI_3,P_network_3_6_AI_1,P_masterList_3_6_2,P_poll__networl_5_1_AskP_0,P_poll__networl_5_1_RP_6,P_network_0_1_RI_1,P_poll__networl_4_5_RP_5,P_poll__networl_3_6_AnsP_0,P_network_0_3_RI_1,P_poll__networl_3_5_AnnP_2,P_network_0_4_AI_5,P_network_0_1_AskP_2,P_poll__networl_5_3_RI_3,P_network_6_1_AskP_3,P_poll__networl_1_6_AnnP_0,P_poll__networl_6_3_AskP_6,P_poll__networl_1_0_RP_2,P_poll__networl_4_5_AskP_0,P_poll__networl_6_5_RP_3,P_poll__networl_3_4_AnnP_1,P_masterList_5_6_4,P_poll__networl_1_5_RP_6,P_network_3_1_RI_3,P_poll__networl_1_5_RP_4,P_poll__networl_6_6_RP_1,P_poll__networl_4_2_RP_1,P_network_4_6_AI_5,P_poll__networl_0_6_AI_6,P_network_6_0_AskP_2,P_network_2_5_RI_3,P_poll__networl_1_5_AI_4,P_network_2_0_AI_6,P_network_2_2_AI_3,P_network_3_3_RI_4,P_network_5_1_RI_2,P_poll__networl_5_6_AnsP_0,P_poll__networl_3_2_AI_4,P_network_3_2_AnnP_2,P_network_3_4_AskP_1,P_poll__networl_2_2_AI_2,P_network_6_1_AskP_1,P_network_6_6_RP_6,P_poll__networl_5_4_AnnP_5,P_poll__networl_6_5_RP_6,P_network_1_2_AskP_2,P_network_1_5_AnnP_3,P_poll__networl_5_6_RP_5,P_network_0_2_AskP_2,P_poll__networl_2_3_AskP_5,P_poll__networl_5_5_AskP_0,P_poll__networl_6_6_AskP_4,P_network_4_5_RI_5,P_poll__networl_2_2_RP_3,P_network_4_4_RP_1,P_poll__networl_3_4_RP_4,P_poll__networl_2_6_RI_1,P_poll__networl_0_6_RP_3,P_network_6_4_AskP_4,P_poll__networl_4_5_RI_0,P_poll__networl_5_3_AI_5,P_poll__networl_0_0_RP_2,P_poll__networl_4_5_AskP_1,P_network_0_1_RP_1,P_network_2_5_AI_1,P_poll__networl_3_2_RI_1,P_network_1_3_RP_2,P_poll__networl_2_6_AI_0,P_poll__networl_2_3_RI_6,P_poll__networl_3_4_AI_6,P_poll__networl_6_4_RI_4,P_network_1_2_RP_6,P_poll__networl_5_5_AskP_1,P_network_3_4_AI_1,P_poll__networl_1_3_RP_1,P_poll__networl_4_5_AI_3,P_poll__networl_3_2_AI_3,P_poll__networl_0_0_RP_5,P_poll__networl_3_1_AskP_0,P_poll__networl_1_0_AI_6,P_poll__networl_2_3_RP_6,P_poll__networl_2_1_RI_1,P_network_4_4_AskP_2,P_poll__networl_0_6_RP_6,P_network_6_2_AskP_5,P_network_1_0_RP_5,P_network_1_1_RP_4,P_network_0_4_RI_6,P_poll__networl_0_3_AnnP_1,P_poll__networl_0_4_RP_3,P_poll__networl_3_5_AskP_4,P_network_2_5_RI_2,P_poll__networl_2_0_RP_4,P_poll__networl_4_6_RI_2,P_poll__networl_6_0_AI_2,P_network_5_4_AskP_6,P_poll__networl_3_2_AskP_2,P_network_0_6_AnnP_5,P_network_6_0_AskP_4,P_network_4_0_RP_4,P_poll__networl_0_6_AnnP_4,P_network_0_5_AI_3,P_poll__networl_0_3_RI_4,P_poll__networl_6_4_AskP_3,P_network_3_6_RP_2,P_poll__networl_0_0_AskP_2,P_network_6_5_RI_2,P_network_4_4_AnnP_2,P_poll__networl_0_5_AskP_6,P_poll__networl_1_2_RP_6,P_poll__networl_6_1_AI_0,P_poll__networl_3_0_AI_6,P_network_4_0_AnnP_4,P_poll__networl_0_1_RP_6,P_poll__networl_6_1_AnnP_0,P_poll__networl_6_1_RP_5,P_network_2_4_AnnP_5,P_poll__networl_3_1_RI_6,P_poll__networl_3_2_RP_2,P_network_5_0_AskP_4,P_poll__networl_0_3_AI_4,P_masterList_3_6_3,P_network_3_5_RI_4,P_poll__networl_0_5_AnnP_6,P_network_3_1_AskP_1,P_network_5_1_RI_4,P_poll__networl_3_6_RP_0,P_network_5_4_AI_5,P_network_1_2_AnnP_1,P_network_2_1_AI_4,P_network_4_2_RP_6,P_network_5_6_AnnP_6,P_poll__networl_5_3_AnnP_1,P_poll__networl_2_1_RI_6,P_network_3_0_AskP_4,P_network_3_4_AskP_5,P_poll__networl_5_1_AnnP_0,P_network_3_1_AI_6,P_poll__networl_1_0_AnnP_0,P_poll__networl_6_4_RP_5,P_poll__networl_6_3_RI_4,P_network_6_4_AnnP_1,P_poll__networl_1_4_RI_0,P_network_1_1_AskP_4,P_network_2_4_RI_4,P_poll__networl_4_5_AskP_6,P_network_6_5_RP_3,P_poll__networl_4_3_AnnP_6,P_network_1_3_RI_2,P_poll__networl_4_3_AnnP_5,P_network_0_4_AnnP_2,P_poll__networl_1_5_AnnP_0,P_network_2_3_AskP_1,P_poll__networl_0_4_RP_4,P_poll__networl_0_1_AI_2,P_network_3_2_RP_5,P_network_0_3_RI_3,P_network_2_6_RI_5,P_poll__networl_0_1_AskP_0,P_poll__networl_0_1_AI_0,P_masterList_6_6_4,P_network_2_2_RP_3,P_masterList_2_6_2,P_network_3_6_AskP_4,P_poll__networl_4_3_RP_6,P_network_2_5_AskP_4,P_network_0_1_RI_4,P_poll__networl_3_5_AnnP_3,P_network_1_0_RI_1,P_network_5_2_AnnP_3,P_network_4_2_AI_2,P_network_3_1_AskP_2,P_poll__networl_1_4_AI_4,P_poll__networl_3_6_RI_1,P_network_0_0_RI_6,P_poll__networl_4_3_RP_0,P_poll__networl_6_4_AskP_5,P_network_4_6_AnnP_4,P_network_4_3_RI_2,P_poll__networl_4_5_RI_3,P_network_4_6_AI_6,P_poll__networl_1_0_AskP_4,P_poll__networl_4_6_AI_5,P_network_1_3_RP_5,P_network_0_6_AskP_4,P_network_6_4_AnnP_2,P_poll__networl_1_5_AskP_0,P_network_5_6_AskP_2,P_network_3_0_AnnP_2,P_network_5_2_AskP_3,P_network_3_5_AI_5,P_poll__networl_1_4_RI_4,P_poll__networl_4_0_RP_0,P_poll__networl_1_1_AI_3,P_network_0_4_AskP_4,P_network_6_5_AI_6,P_poll__networl_4_1_AskP_0,P_network_3_2_RI_6,P_poll__networl_3_4_AnnP_0,P_network_6_4_RI_1,P_network_0_3_RP_4,P_network_5_6_RI_1,P_poll__networl_5_3_RP_2,P_network_0_2_AskP_4,P_poll__networl_5_3_AskP_5,P_poll__networl_1_2_RI_5,P_poll__networl_6_5_AnnP_2,P_network_6_5_RP_5,P_network_6_6_RP_1,P_poll__networl_3_6_AskP_1,P_poll__networl_3_0_RI_0,P_poll__networl_2_4_AskP_5,P_poll__networl_0_4_AI_1,P_poll__networl_3_2_RP_3,P_network_3_6_AnnP_4,P_network_2_5_RI_6,P_poll__networl_4_6_AI_3,P_network_2_1_AskP_1,P_poll__networl_1_5_RP_2,P_poll__networl_5_0_AskP_4,P_poll__networl_6_6_AnnP_0,P_poll__networl_3_5_RI_1,P_poll__networl_6_5_AI_1,P_network_4_2_RI_2,P_poll__networl_4_6_RP_0,P_network_1_3_AnnP_4,P_poll__networl_5_5_AI_5,P_poll__networl_6_0_RI_6,P_network_2_6_AskP_1,P_poll__networl_6_3_RP_2,P_poll__networl_4_2_RP_5,P_network_3_6_RI_5,P_network_2_2_AskP_5,P_network_6_4_AI_6,P_network_0_6_RP_1,P_poll__networl_2_2_RI_4,P_poll__networl_6_2_AnnP_0,P_network_5_0_AskP_3,P_poll__networl_1_1_RI_4,P_network_4_0_RI_5,P_poll__networl_3_0_AnnP_0,P_electionFailed_1,P_poll__networl_3_5_AskP_6,P_network_3_0_RI_6,P_poll__networl_1_3_RI_4,P_poll__networl_5_3_AskP_2,P_poll__networl_6_2_AI_4,P_network_5_3_RI_3,P_poll__networl_6_1_AskP_5,P_network_4_2_AnnP_4,P_poll__networl_3_3_RI_2,P_poll__networl_2_6_RP_4,P_network_3_3_AI_6,P_network_1_3_AI_5,P_network_4_3_RP_6,P_network_3_3_AskP_1,P_network_2_3_RI_4,P_network_2_0_RP_2,P_network_1_6_AI_1,P_poll__networl_6_3_RP_5,P_network_0_6_RP_4,P_network_5_3_RI_2,P_poll__networl_6_3_AskP_5,P_poll__networl_4_0_RP_3,P_network_5_6_RI_5,P_poll__networl_0_5_RI_4,P_poll__networl_5_3_AnnP_0,P_poll__networl_1_1_AnnP_0,P_poll__networl_6_6_RI_3,P_poll__networl_0_2_AI_3,P_poll__networl_4_6_AnnP_0,P_poll__networl_1_6_AskP_2,P_poll__networl_0_1_AskP_5,P_poll__networl_0_1_AI_1,P_network_3_3_RP_1,P_poll__networl_4_2_AI_2,P_network_1_6_AskP_1,P_network_0_3_RP_2,P_poll__networl_3_0_AskP_4,P_network_1_4_AskP_1,P_poll__networl_4_1_AnnP_4,P_network_2_3_RP_1,P_network_4_3_RP_4,P_poll__networl_2_0_AnnP_4,P_poll__networl_4_2_AI_0,P_network_5_4_RP_6,P_poll__networl_2_0_RI_2,P_network_4_5_AnnP_2,P_poll__networl_5_4_RI_5,P_network_4_0_AskP_2,P_poll__networl_2_1_AskP_4,P_network_0_3_RI_4,P_network_1_0_RP_2,P_network_5_3_AnnP_6,P_poll__networl_3_1_AnnP_2,P_network_6_4_AI_4,P_poll__networl_0_4_AskP_3,P_network_1_5_RP_4,P_network_0_1_AskP_4,P_network_5_4_AI_3,P_network_4_5_RP_4,P_poll__networl_3_4_RI_4,P_poll__networl_4_4_AnsP_0,P_poll__networl_0_2_RP_2,P_poll__networl_5_0_AI_0,P_poll__networl_2_5_AnnP_5,P_network_1_3_RI_4,P_network_5_2_RP_6,P_network_6_1_RP_3,P_poll__networl_2_5_RI_1,P_poll__networl_0_0_RP_4,P_network_2_0_AnnP_6,P_poll__networl_0_5_AskP_4,P_network_3_1_RP_3,P_poll__networl_6_2_AnnP_6,P_network_6_4_RI_2,P_poll__networl_1_0_RP_1,P_network_4_4_AnnP_4,P_poll__networl_5_1_AskP_1,P_network_4_4_RP_5,P_network_3_6_AskP_3,P_network_3_0_RI_4,P_poll__networl_0_0_RP_0,P_network_1_2_AskP_6,P_poll__networl_5_6_AI_0,P_network_5_1_RP_4,P_poll__networl_3_5_AnnP_6,P_poll__networl_6_4_AI_5,P_network_3_4_AnnP_5,P_network_2_5_RP_3,P_network_6_3_AI_3,P_poll__networl_3_3_RI_3,P_network_0_6_RI_3,P_poll__networl_5_5_RI_1,P_network_5_3_RP_1,P_masterList_3_6_6,P_poll__networl_3_1_AI_0,P_network_2_0_AnnP_4,P_poll__networl_5_3_AnnP_6,P_network_4_0_AskP_4,P_poll__networl_5_3_RP_4,P_network_6_1_RI_4,P_poll__networl_6_0_RP_3,P_network_3_1_RI_4,P_poll__networl_4_2_RI_0,P_poll__networl_5_2_RP_5,P_network_5_3_RP_3,P_network_1_6_AnnP_5,P_network_2_2_AskP_6,P_poll__networl_5_6_AskP_2,P_network_4_3_AskP_3,P_poll__networl_5_5_RP_6,P_poll__networl_6_3_RP_0,P_network_2_6_RI_1,P_poll__networl_1_0_AskP_2,P_network_2_0_AnnP_3,P_poll__networl_0_1_AnnP_1,P_poll__networl_2_2_AskP_5,P_poll__networl_5_3_AnnP_2,P_network_4_3_RI_5,P_poll__networl_4_5_AnnP_3,P_network_2_6_RI_6,P_network_5_6_AnnP_5,P_poll__networl_6_2_AnsP_0,P_network_4_2_AskP_2,P_poll__networl_3_1_AskP_1,P_network_0_3_RI_5,P_poll__networl_4_0_RI_4,P_poll__networl_6_1_AnnP_4,P_network_3_5_AnnP_4,P_network_0_1_AnnP_1,P_network_2_3_AskP_4,P_network_0_2_AnnP_6,P_poll__networl_0_1_AskP_6,P_poll__networl_3_4_AnnP_6,P_poll__networl_6_6_AI_5,P_poll__networl_4_0_AnnP_5,P_network_4_6_AnnP_6,P_poll__networl_0_0_AI_5,P_network_6_6_AnnP_6,P_poll__networl_0_6_AnnP_5,P_poll__networl_6_2_AI_2,P_network_5_6_AI_5,P_network_1_3_AskP_3,P_poll__networl_1_4_RP_2,P_poll__networl_5_3_AI_4,P_poll__networl_2_2_AnnP_0,P_poll__networl_5_4_AI_4,P_poll__networl_2_4_RI_2,P_poll__networl_4_2_AskP_6,P_network_1_0_AnnP_6,P_poll__networl_3_6_RP_6,P_poll__networl_3_3_AnnP_6,P_poll__networl_1_4_AI_0,P_poll__networl_4_2_AI_6,P_poll__networl_3_5_RP_5,P_poll__networl_4_4_AskP_1,P_poll__networl_1_6_AI_0,P_masterList_0_6_2,P_network_1_2_AI_2,P_poll__networl_0_4_RI_0,P_poll__networl_4_5_AskP_3,P_poll__networl_2_3_RP_3,P_poll__networl_1_3_AskP_2,P_network_2_6_AI_4,P_poll__networl_0_2_RP_3,P_poll__networl_1_1_AI_6,P_poll__networl_0_0_AnnP_1,P_poll__networl_4_4_AI_1,P_network_3_0_RP_2,P_poll__networl_1_5_RI_6,P_poll__networl_1_6_AskP_6,P_network_2_3_RP_2,P_poll__networl_6_1_RP_1,P_network_3_1_AI_1,P_poll__networl_1_5_AnnP_2,P_poll__networl_5_4_AI_1,P_network_2_1_AI_6,P_network_6_2_RP_1,P_network_0_2_AI_4,P_poll__networl_1_0_RI_4,P_network_0_2_AskP_3,P_poll__networl_5_5_AnnP_3,P_poll__networl_3_1_RP_3,P_network_5_1_AskP_3,P_masterList_3_6_4,P_network_3_3_AskP_5,P_poll__networl_2_0_AnsP_0,P_poll__networl_6_2_RP_2,P_poll__networl_2_4_AskP_4,P_network_1_1_AnnP_2,P_network_4_5_RI_6,P_poll__networl_3_1_AI_5,P_poll__networl_3_3_AnsP_0,P_poll__networl_4_5_RP_4,P_poll__networl_4_1_RP_1,P_poll__networl_0_2_RI_0,P_poll__networl_6_4_RP_1,P_network_6_3_RP_3,P_poll__networl_3_6_AnnP_6,P_poll__networl_5_5_AI_2,P_poll__networl_2_3_AskP_6,P_network_2_3_AI_5,P_network_3_1_AnnP_1,P_poll__networl_2_5_AskP_0,P_dead_0,P_poll__networl_2_1_RI_5,P_poll__networl_4_4_AskP_6,P_poll__networl_3_3_RP_2,P_network_5_1_AskP_1,P_network_6_2_RI_1,P_poll__networl_1_3_AnnP_5,P_poll__networl_6_1_AnnP_3,P_poll__networl_1_3_AnnP_6,P_network_4_0_RP_3,P_network_3_4_RI_5,P_network_5_1_AnnP_5,P_poll__networl_3_0_RI_6,P_network_1_0_AI_4,P_poll__networl_0_1_RI_2,P_network_1_3_AskP_5,P_poll__networl_6_1_RI_5,P_network_5_6_AI_3,P_network_2_0_RI_4,P_poll__networl_3_6_AI_6,P_network_0_6_AskP_5,P_poll__networl_6_0_AnnP_3,P_poll__networl_6_1_RI_3,P_network_1_5_AI_2,P_poll__networl_6_3_AI_6,P_poll__networl_6_5_AI_4,P_network_1_0_RI_3,P_poll__networl_5_0_AskP_1,P_poll__networl_4_4_RP_6,P_poll__networl_5_3_RI_1,P_poll__networl_6_3_AskP_2,P_poll__networl_4_2_RI_4,P_poll__networl_6_1_AskP_3,P_poll__networl_0_2_RI_2,P_network_4_6_AnnP_5,P_poll__networl_1_3_AI_0,P_poll__networl_4_5_RI_4,P_poll__networl_5_3_AI_2,P_poll__networl_1_4_AnsP_0,P_network_2_5_AnnP_5,P_poll__networl_3_4_RI_5,P_poll__networl_4_0_AI_3,P_network_6_2_AI_2,P_poll__networl_4_5_RP_6,P_poll__networl_6_3_AnnP_3,P_poll__networl_2_5_AskP_2,P_poll__networl_0_3_AnnP_3,P_network_1_2_AnnP_3,P_network_6_1_RI_1,P_network_6_4_AI_1,P_network_4_0_AskP_3,P_poll__networl_2_2_AskP_2,P_poll__networl_0_1_AnnP_5,P_network_4_6_AskP_4,P_poll__networl_2_1_AnnP_6,P_poll__networl_4_2_RP_4,P_poll__networl_4_5_AnnP_0,P_poll__networl_4_6_AskP_4,P_poll__networl_0_6_RI_0,P_poll__networl_4_2_RI_1,P_poll__networl_6_2_RP_0,P_poll__networl_2_1_AnnP_2,P_poll__networl_5_2_RP_3,P_network_0_0_AI_6,P_network_4_3_AskP_2,P_network_3_5_RP_6,P_network_6_2_RI_6,P_network_1_3_AI_6,P_poll__networl_6_2_RI_1,P_poll__networl_0_6_RP_1,P_poll__networl_0_5_AnsP_0,P_poll__networl_5_0_AnnP_5,P_poll__networl_1_0_AI_2,P_poll__networl_0_2_RP_0,P_network_2_0_AskP_3,P_network_4_4_AI_1,P_network_3_2_AI_2,P_poll__networl_5_5_RP_4,P_masterList_4_6_5,P_network_6_3_AnnP_1,P_network_5_0_RI_6,P_network_2_6_AnnP_6,P_poll__networl_3_0_RI_4,P_poll__networl_0_2_AskP_2,P_poll__networl_3_4_AI_3,P_network_2_6_AskP_4,P_network_3_2_AnnP_3,P_network_5_2_AskP_2,P_poll__networl_1_1_AI_5,P_network_4_2_AnnP_2,P_poll__networl_6_4_RI_0,P_poll__networl_3_3_RP_0,P_poll__networl_5_6_AnnP_0,P_poll__networl_2_5_AnnP_1,P_poll__networl_5_6_AskP_6,P_network_3_1_AnnP_5,P_poll__networl_1_6_AnnP_4,P_network_3_5_AskP_2,P_network_0_0_AI_4,P_network_5_5_RI_3,P_network_4_2_RI_3,P_network_0_6_AskP_3,P_network_3_4_AnnP_3,P_network_5_3_AI_6,P_network_3_2_AI_3,P_network_2_0_RP_3,P_poll__networl_0_1_RP_2,P_masterList_2_6_4,P_poll__networl_3_4_AskP_2,P_network_1_3_AI_2,P_network_6_3_RI_1,P_network_3_3_RP_6,P_network_2_2_AnnP_3,P_poll__networl_3_6_RI_6,P_network_6_2_AI_4,P_poll__networl_2_0_AI_3,P_network_4_4_AskP_5,P_poll__networl_4_0_AskP_3,P_network_0_1_AI_4,P_poll__networl_1_6_RP_4,P_poll__networl_4_2_AskP_2,P_network_4_2_RI_1,P_poll__networl_0_2_RP_1,P_network_6_3_AskP_5,P_network_1_0_RI_6,P_network_2_3_RI_3,P_network_2_6_RI_4,P_poll__networl_5_0_AskP_3,P_network_2_1_AI_1,P_poll__networl_1_4_RI_5,P_network_2_4_AskP_1,P_poll__networl_1_0_RP_5,P_poll__networl_2_5_RI_4,P_masterList_4_6_2,P_network_1_1_RP_2,P_network_0_6_RI_4,P_network_5_1_RI_1,P_network_2_0_RP_1,P_poll__networl_3_4_RI_3,P_network_1_3_AskP_1,P_poll__networl_3_1_AnnP_4,P_poll__networl_2_0_AskP_3,P_poll__networl_4_3_AnnP_0,P_network_0_2_RP_1,P_poll__networl_5_2_AI_3,P_network_5_1_AI_4,P_network_5_2_RP_2,P_network_0_3_AnnP_1,P_network_0_4_RI_1,P_poll__networl_5_4_AI_2,P_network_6_5_RI_3,P_poll__networl_5_4_AnnP_1,P_poll__networl_4_3_AskP_4,P_poll__networl_2_3_RI_3,P_poll__networl_4_5_AskP_4,P_poll__networl_4_6_AskP_3,P_poll__networl_6_0_RI_5,P_network_4_1_RI_5,P_network_2_6_AI_1,P_network_5_2_RI_1,P_poll__networl_2_2_AI_0,P_network_5_6_AI_6,P_network_1_5_AnnP_1,P_network_1_6_RP_1,P_network_2_2_RP_6,P_network_2_3_RP_3,P_network_4_1_AnnP_1,P_poll__networl_6_6_AnsP_0,P_poll__networl_3_2_RP_6,P_network_2_1_RI_5,P_network_6_1_AskP_2,P_network_0_6_AI_5,P_network_5_1_AI_3,P_network_4_6_AskP_1,P_network_0_4_RP_6,P_poll__networl_2_1_AnnP_1,P_network_5_6_RP_2,P_poll__networl_6_0_AskP_2,P_poll__networl_5_0_RI_2,P_network_3_3_RP_5,P_network_3_5_AskP_1,P_poll__networl_1_6_AnnP_1,P_poll__networl_6_2_RP_5,P_poll__networl_3_1_AnsP_0,P_network_4_6_AskP_6,P_network_3_3_RI_6,P_poll__networl_2_4_AskP_6,P_network_0_4_RP_5,P_network_5_0_RP_1,P_poll__networl_6_1_RP_3,P_poll__networl_3_5_AnsP_0,P_poll__networl_4_1_AI_0,P_poll__networl_1_0_RI_1,P_poll__networl_5_2_RP_6,P_poll__networl_6_1_AnnP_5,P_poll__networl_0_4_AnnP_2,P_network_3_0_AskP_3,P_poll__networl_1_2_AskP_1,P_network_3_4_RP_1,P_poll__networl_5_4_AnsP_0,P_network_3_1_AnnP_6,P_poll__networl_6_3_AnsP_0,P_network_5_4_RP_2,P_network_3_0_AskP_2,P_poll__networl_3_6_AI_3,P_poll__networl_3_3_RP
_5,P_poll__networl_5_6_RI_6,P_poll__networl_2_2_AI_6,P_network_6_0_RI_6,P_network_3_3_AnnP_6,P_poll__networl_3_3_AnnP_0,P_network_2_2_AI_2,P_poll__networl_1_6_AI_1,P_network_5_1_AI_6,P_network_0_0_AskP_2,P_poll__networl_3_4_AskP_4,P_network_0_6_RI_2,P_poll__networl_5_6_RI_0,P_poll__networl_5_0_AnnP_4,P_network_3_6_AnnP_6,P_network_6_2_RP_4,P_poll__networl_0_2_AI_5,P_poll__networl_5_4_RI_2,P_network_0_5_AnnP_1,P_network_4_3_AnnP_6,P_poll__networl_0_6_RI_1,P_poll__networl_2_0_RI_1,P_poll__networl_2_1_AI_0,P_network_3_1_RP_4,P_poll__networl_0_0_AskP_1,P_poll__networl_0_2_RP_4,P_poll__networl_3_4_RI_6,P_poll__networl_3_1_AnnP_6,P_poll__networl_4_4_RP_5,P_network_6_3_AskP_3,P_poll__networl_6_3_RP_3,P_poll__networl_6_5_AnnP_0,P_network_5_0_AnnP_2,P_poll__networl_4_1_AskP_6,P_poll__networl_0_6_RP_5,P_poll__networl_6_2_AI_0,P_poll__networl_5_0_AI_5,P_poll__networl_5_4_RI_6,P_poll__networl_0_2_AskP_3,P_network_3_3_RI_1,P_network_1_4_AI_5,P_poll__networl_2_3_RP_2,P_poll__networl_6_6_RP_5,P_poll__networl_0_5_RP_6,P_network_1_1_RP_1,P_masterList_5_6_0,P_network_1_1_AskP_5,P_network_4_5_AI_2,P_poll__networl_4_3_AskP_3,P_poll__networl_1_5_RP_3,P_poll__networl_6_3_RI_5,P_network_2_2_AnnP_1,P_poll__networl_0_6_RI_4,P_poll__networl_5_2_AI_0,P_poll__networl_5_4_RP_6,P_network_0_5_AskP_3,P_poll__networl_5_3_AskP_3,P_poll__networl_1_5_AskP_6,P_poll__networl_5_6_RI_4,P_poll__networl_3_4_RP_3,P_network_4_5_AI_1,P_poll__networl_1_4_AI_1,P_network_6_2_RI_3,P_poll__networl_2_1_RI_0,P_poll__networl_4_3_AskP_6,P_poll__networl_6_5_AskP_4,P_poll__networl_1_3_RP_0,P_network_6_2_RP_6,P_poll__networl_0_5_AI_0,P_poll__networl_6_6_AI_6,P_network_3_0_RP_4,P_network_4_0_AnnP_6,P_network_0_6_RI_5,P_poll__networl_1_3_AskP_4,P_network_4_5_AskP_3,P_network_6_5_AskP_2,P_poll__networl_6_2_AI_1,P_poll__networl_2_4_RP_3,P_poll__networl_2_5_AI_2,P_poll__networl_6_5_AskP_2,P_network_3_6_AskP_5,P_network_1_2_RP_1,P_poll__networl_4_6_AskP_1,P_poll__networl_6_5_AI_0,P_network_0_1_RI_6,P_network_4_1_AskP_5,P_network_0_3_AI_3,P_poll__networl_4_3_RI_3,P_network_0_5_RP_6,P_network_3_0_AskP_5,P_network_4_1_AskP_4,P_poll__networl_1_5_RP_0,P_poll__networl_5_5_RI_0,P_network_0_1_RP_5,P_poll__networl_5_1_AI_2,P_poll__networl_5_3_RP_5,P_network_1_0_AskP_6,P_network_0_2_RI_6,P_network_5_3_AI_3,P_network_3_0_AnnP_3,P_network_1_6_AnnP_2,P_network_4_0_RP_6,P_network_0_0_AskP_3,P_poll__networl_1_3_AI_4,P_network_4_0_AI_3,P_poll__networl_4_0_AI_2,P_poll__networl_2_6_AskP_1,P_poll__networl_0_5_RI_3,P_network_1_2_AnnP_4,P_poll__networl_6_2_AI_3,P_network_5_0_RI_5,P_poll__networl_1_2_AI_1,P_network_6_4_RP_5,P_poll__networl_4_2_RP_0,P_network_0_5_AskP_2,P_poll__networl_2_1_RP_3,P_network_6_5_AskP_6,P_poll__networl_4_4_RI_5,P_network_5_1_AskP_6,P_poll__networl_3_5_AskP_3,P_network_1_3_AnnP_6,P_poll__networl_2_5_RI_2,P_poll__networl_0_3_AI_1,P_network_1_4_AnnP_3,P_poll__networl_2_0_AskP_5,P_network_3_6_RI_3,P_poll__networl_6_5_RI_5,P_poll__networl_3_6_RI_2,P_crashed_4,P_network_5_5_AskP_3,P_poll__networl_1_0_RP_6,P_poll__networl_0_0_AnnP_2,P_poll__networl_6_5_RP_0,P_network_0_0_AI_2,P_network_4_3_RI_6,P_poll__networl_3_0_RP_5,P_network_6_0_AnnP_1,P_poll__networl_3_2_AnnP_5,P_poll__networl_5_6_AskP_3,P_poll__networl_3_2_AskP_6,P_network_2_6_RI_2,P_poll__networl_1_3_RI_5,P_network_6_3_AnnP_5,P_poll__networl_0_4_RI_1,P_poll__networl_1_0_AskP_0,P_poll__networl_2_3_AI_4,P_network_5_4_RP_4,P_poll__networl_2_1_AnsP_0,P_poll__networl_1_2_RI_4,P_poll__networl_1_3_AnnP_0,P_network_5_0_RI_2,P_network_1_3_AnnP_5,P_poll__networl_5_4_AskP_0,P_network_3_1_AskP_5,P_poll__networl_5_6_AnnP_1,P_network_0_5_RI_5,P_poll__networl_1_6_AskP_5,P_poll__networl_6_1_RP_0,P_poll__networl_5_1_AskP_5,P_poll__networl_4_2_RP_3,P_poll__networl_6_3_RI_2,P_network_4_0_AI_2,P_poll__networl_1_2_RI_0,P_network_5_6_AnnP_3,P_electionFailed_0,P_poll__networl_3_1_AnnP_5,P_network_5_2_RI_5,P_poll__networl_5_4_AI_3,P_poll__networl_1_4_AskP_4,P_network_1_3_RI_6,P_masterList_6_6_1,P_poll__networl_2_1_AskP_3,P_network_5_5_AskP_4,P_poll__networl_3_0_AskP_5,P_poll__networl_5_4_AnnP_6,P_masterList_0_6_6,P_network_6_1_AnnP_6,P_poll__networl_1_5_RP_1,P_network_4_4_RP_2,P_network_1_1_AI_1,P_network_2_1_RP_6,P_network_0_3_AI_2,P_network_1_2_RP_4,P_poll__networl_3_5_AskP_2,P_poll__networl_1_0_AnnP_2,P_network_1_2_AnnP_6,P_network_2_4_AI_6,P_network_5_2_AI_3,P_poll__networl_6_4_AskP_4,P_network_3_6_RI_1,P_poll__networl_4_6_RP_5,P_network_5_3_RI_1,P_electionFailed_4,P_poll__networl_3_3_AskP_6,P_network_4_3_AI_3,P_poll__networl_2_6_AnnP_0,P_poll__networl_3_5_AnnP_1,P_network_5_2_AnnP_2,P_network_5_6_AskP_1,P_poll__networl_0_3_AskP_2,P_poll__networl_0_2_RP_5,P_poll__networl_0_5_AskP_0,P_network_6_2_AskP_6,P_masterList_6_6_6,P_network_4_5_AI_5,P_poll__networl_2_2_RP_6,P_poll__networl_6_2_AskP_0,P_poll__networl_6_6_RP_4,P_network_0_1_RI_3,P_poll__networl_6_2_RP_1,P_network_4_0_RI_6,P_network_2_5_AI_2,P_network_1_3_AI_1,P_poll__networl_1_2_AnnP_6,P_network_6_2_RP_2,P_poll__networl_2_2_RI_0,P_poll__networl_4_1_RP_2,P_network_6_2_AnnP_2,P_poll__networl_0_0_RI_1,P_network_6_3_AI_6,P_poll__networl_0_5_AnnP_0,P_network_1_3_AnnP_1,P_poll__networl_2_4_RI_0,P_poll__networl_2_3_RP_1,P_poll__networl_5_1_AnsP_0,P_poll__networl_6_1_RI_0,P_network_3_2_AnnP_4,P_network_5_4_AI_1,P_network_5_5_AnnP_6,P_poll__networl_1_4_AI_5,P_network_3_1_AskP_4,P_poll__networl_3_1_RI_3,P_network_1_3_AI_3,P_network_5_2_RP_5,P_network_2_1_AnnP_4,P_poll__networl_5_5_RI_6,P_network_5_3_RI_4,P_poll__networl_5_1_AnnP_3,P_poll__networl_3_3_AnnP_4,P_poll__networl_0_6_AskP_3,P_poll__networl_4_3_RI_1,P_poll__networl_4_0_AnnP_2,P_poll__networl_3_2_AnnP_1,P_poll__networl_6_0_AI_1,P_network_6_3_RP_5,P_network_1_6_RP_2,P_poll__networl_6_5_RI_0,P_network_0_6_RP_5,P_poll__networl_3_0_AnnP_4,P_poll__networl_0_6_AskP_4,P_network_0_2_RI_2,P_poll__networl_0_1_RP_1,P_network_3_5_AI_2,P_poll__networl_3_1_AskP_3,P_poll__networl_2_0_AI_6,P_poll__networl_5_2_AskP_2,P_network_0_2_RP_5,P_poll__networl_2_6_AnnP_4,P_network_3_5_AnnP_1,P_poll__networl_0_5_AI_1,P_network_2_1_AI_2,P_network_6_4_RP_6,P_poll__networl_2_4_AI_3,P_network_5_6_AnnP_1,P_poll__networl_6_6_AnnP_2,P_network_2_6_RP_3,P_poll__networl_4_3_RP_1,P_poll__networl_5_1_AnnP_4,P_masterList_2_6_6,P_network_0_0_AskP_5,P_poll__networl_1_4_RP_6,P_poll__networl_4_4_RP_4,P_poll__networl_2_5_AskP_1,P_electionFailed_6,P_poll__networl_4_5_AskP_5,P_poll__networl_2_3_AnnP_4,P_network_0_5_RP_5,P_poll__networl_4_0_AI_1,P_network_6_0_RP_4,P_network_0_5_AnnP_6,P_poll__networl_5_0_RI_1,P_poll__networl_6_4_RP_6,P_dead_4,P_network_2_6_AskP_2,P_network_5_1_RP_2,P_network_1_6_RI_4,P_poll__networl_3_2_AI_0,P_network_4_6_RI_4,P_poll__networl_6_6_AnnP_4,P_network_5_0_AskP_1,P_poll__networl_0_5_RP_5,P_poll__networl_1_1_AnnP_2,P_network_6_6_AnnP_4,P_network_0_2_AskP_1,P_poll__networl_3_1_AskP_2,P_network_1_4_AskP_2,P_poll__networl_3_3_AskP_0,P_network_4_4_AI_4,P_network_6_5_AnnP_6,P_poll__networl_4_6_AI_6,P_poll__networl_1_6_AskP_1,P_poll__networl_5_2_RP_2,P_poll__networl_5_1_RP_2,P_poll__networl_1_1_AnnP_6,P_poll__networl_2_0_RP_6,P_network_4_1_AI_6,P_poll__networl_6_1_AI_5,P_network_1_0_AnnP_4,P_network_6_3_AI_1,P_poll__networl_6_1_RP_4,P_network_1_2_AI_4,P_poll__networl_1_5_AI_3,P_poll__networl_3_0_AI_0,P_poll__networl_6_4_AnnP_6,P_network_5_3_AskP_2,P_poll__networl_2_1_RP_5,P_poll__networl_0_1_AskP_3,P_network_1_5_AI_4,P_network_1_0_RP_6,P_poll__networl_5_0_AnnP_0,P_network_3_0_RP_5,P_poll__networl_0_1_AskP_1,P_poll__networl_6_5_RI_6,P_poll__networl_2_2_AnsP_0,P_network_2_6_RP_1,P_network_3_3_RI_2,P_network_4_2_RP_5,P_poll__networl_0_0_AI_2,P_poll__networl_6_1_AskP_1,P_network_4_2_AnnP_3,P_network_3_2_RP_3,P_poll__networl_6_1_AI_1,P_network_4_4_RP_6,P_poll__networl_3_2_AnnP_3,P_network_6_6_AskP_5,P_poll__networl_6_6_AskP_6,P_poll__networl_2_1_AnnP_4,P_poll__networl_3_5_AnnP_0,P_poll__networl_3_6_AnnP_2,P_network_4_3_RI_1,P_poll__networl_5_5_AnnP_6,P_network_0_3_RI_6,P_poll__networl_5_5_AI_0,P_poll__networl_5_5_RI_3,P_poll__networl_6_1_RI_1,P_network_5_5_RP_6,P_poll__networl_1_6_AnsP_0,P_network_1_6_AI_3,P_network_5_1_AnnP_6,P_poll__networl_0_6_AskP_1,P_network_5_2_AnnP_6,P_poll__networl_3_6_RI_4,P_poll__networl_1_5_AI_6,P_network_2_2_AskP_3,P_network_6_6_RI_2,P_network_6_0_AskP_6,P_network_5_5_RP_2,P_network_1_2_AI_1,P_poll__networl_2_4_AI_1,P_poll__networl_6_0_AnnP_1,P_network_0_5_AnnP_4,P_poll__networl_1_2_AskP_6,P_poll__networl_0_5_RP_0,P_network_4_5_AskP_6,P_poll__networl_3_1_AnnP_1,P_poll__networl_4_4_RP_3,P_poll__networl_5_2_RP_0,P_poll__networl_4_0_AnnP_3,P_poll__networl_4_5_AnnP_6,P_network_0_1_AnnP_6,P_poll__networl_2_2_AnnP_4,P_poll__networl_4_3_AskP_2,P_network_6_5_RI_4,P_poll__networl_6_3_AI_4,P_poll__networl_0_0_AI_3,P_poll__networl_0_4_AnsP_0,P_network_4_5_RP_1,P_poll__networl_3_3_AI_4,P_network_6_6_AI_1,P_poll__networl_2_0_RI_6,P_poll__networl_5_1_AI_5,P_poll__networl_5_5_AnnP_5,P_poll__networl_2_5_RP_6,P_poll__networl_6_4_RI_3,P_network_2_1_RP_3,P_poll__networl_5_1_AnnP_1,P_network_4_1_AskP_6,P_poll__networl_4_0_AskP_4,P_poll__networl_1_4_AnnP_3,P_poll__networl_5_6_AskP_4,P_poll__networl_1_0_AskP_5,P_network_5_0_RI_1,P_network_4_2_AI_1,P_poll__networl_4_1_RI_1,P_poll__networl_0_5_AI_5,P_poll__networl_0_0_RI_2,P_poll__networl_3_3_AI_6,P_network_1_5_AnnP_4,P_poll__networl_0_1_RI_5,P_poll__networl_3_5_RP_2,P_network_2_4_AskP_3,P_poll__networl_3_2_RP_1,P_poll__networl_6_4_AnnP_1,P_poll__networl_0_2_AI_6,P_poll__networl_4_4_AI_3,P_network_2_5_RP_6,P_poll__networl_2_1_AI_5,P_network_4_1_RP_4,P_network_3_2_AI_6,P_poll__networl_3_0_RP_6,P_network_3_0_RI_1,P_poll__networl_1_1_AnnP_4,P_poll__networl_2_3_AskP_3,P_poll__networl_5_3_AI_1,P_network_1_0_AskP_5,P_poll__networl_0_1_AskP_2,P_network_6_3_RI_2,P_poll__networl_1_5_RI_2,P_poll__networl_1_1_AI_0,P_network_5_3_AI_4,P_poll__networl_1_6_AskP_3,P_poll__networl_2_6_RP_3,P_network_4_0_AI_1,P_poll__networl_0_4_AI_6,P_poll__networl_2_0_AnnP_0,P_poll__networl_3_1_AnnP_3,P_network_0_0_RP_2,P_poll__networl_0_0_RP_3,P_poll__networl_5_5_AskP_6,P_poll__networl_0_0_AnnP_6,P_network_5_3_RI_5,P_poll__networl_3_5_AnnP_4,P_poll__networl_0_2_RI_3,P_poll__networl_0_4_AnnP_5,P_poll__networl_6_2_AnnP_3,P_poll__networl_6_0_AnnP_2,P_crashed_0,P_poll__networl_3_0_AnnP_6,P_poll__networl_2_4_RP_4,P_poll__networl_3_2_AI_1,P_poll__networl_6_1_AskP_6,P_poll__networl_6_6_AskP_1,P_poll__networl_6_6_AnnP_1,P_poll__networl_0_5_AnnP_5,P_network_5_4_RI_2,P_poll__networl_5_4_AI_6,P_network_4_1_AnnP_4,P_network_5_4_AskP_4,P_poll__networl_5_6_AI_3,P_poll__networl_4_0_RP_4,P_network_3_2_RP_1,P_masterList_4_6_6,P_network_2_5_AI_5,P_network_3_1_RP_6,P_network_3_5_RI_5,P_poll__networl_4_3_RP_2,P_poll__networl_0_4_RI_3,P_poll__networl_4_5_RI_6,P_poll__networl_5_0_AnnP_2,P_poll__networl_6_4_AI_1,P_network_0_0_RI_5,P_poll__networl_6_0_AI_5,P_network_5_1_AI_5,P_network_2_1_AnnP_2,P_network_3_3_RP_2,P_network_2_1_AskP_5,P_poll__networl_5_4_AnnP_3,P_poll__networl_6_3_AI_1,P_network_5_3_AskP_5,P_poll__networl_0_6_RP_2,P_network_2_0_RI_6,P_network_3_1_AI_4,P_network_4_3_RP_1,P_network_0_4_AI_1,P_poll__networl_6_3_RP_4,P_poll__networl_4_4_AI_0,P_network_5_5_RP_5,P_network_0_4_RP_4,P_network_2_2_AskP_4,P_network_5_2_RP_1,P_network_3_1_AskP_6,P_network_3_5_RI_3,P_poll__networl_5_1_AnnP_6,P_network_4_1_RP_5,P_poll__networl_4_4_AnnP_1,P_poll__networl_4_2_AI_1,P_poll__networl_3_4_RI_0,P_network_1_4_AI_6,P_network_4_5_AnnP_6,P_poll__networl_1_5_AI_5,P_poll__networl_2_2_AI_1,P_poll__networl_0_1_RI_4,P_network_1_0_AskP_4,P_network_3_6_AnnP_1,P_network_3_4_AI_5,P_poll__networl_2_1_AI_6,P_network_1_5_AI_6,P_network_0_3_AnnP_2,P_network_1_2_RI_6,P_poll__networl_0_4_RI_4,P_network_6_2_RP_3,P_network_5_4_RP_1,P_poll__networl_0_5_RP_2,P_poll__networl_0_1_AI_5,P_network_5_2_RI_6,P_poll__networl_6_1_AskP_4,P_poll__networl_1_1_AskP_0,P_network_0_3_RP_5,P_poll__networl_2_3_AnnP_3,P_poll__networl_3_1_RI_4,P_network_0_4_AskP_1,P_network_3_0_RI_2,P_poll__networl_6_0_RP_2,P_poll__networl_5_4_AskP_3,P_poll__networl_4_1_AI_5,P_network_1_0_RI_4,P_network_1_6_AnnP_3,P_network_3_2_AskP_4,P_poll__networl_4_0_AskP_5,P_poll__networl_5_6_AskP_5,P_poll__networl_6_5_AnnP_3,P_network_5_0_RI_4,P_network_0_0_RP_3,P_network_1_1_RI_5,P_poll__networl_2_3_AI_5,P_poll__networl_4_2_AnnP_5,P_network_0_0_AnnP_4,P_poll__networl_0_3_AnnP_5,P_network_6_2_AskP_4,P_network_6_4_AskP_3,P_network_3_1_RI_1,P_network_6_6_AI_4,P_network_0_3_AI_6,P_network_4_3_AnnP_3,P_network_5_4_AnnP_2,P_network_6_1_AnnP_1,P_poll__networl_3_6_RP_3,P_network_4_6_AskP_3,P_network_6_4_RP_4,P_network_4_0_RP_2,P_network_2_5_AskP_3,P_poll__networl_3_1_RP_0,P_poll__networl_2_4_RP_2,P_poll__networl_0_3_RI_2,P_network_6_6_AskP_2,P_network_4_4_AI_6,P_poll__networl_4_2_AnnP_2,P_network_5_0_AI_4,P_network_0_3_RP_1,P_network_3_3_AnnP_5,P_network_6_1_RI_3,P_network_0_0_RP_5,P_network_0_4_RP_1,P_poll__networl_2_6_AskP_2,P_network_1_6_AI_6,P_poll__networl_5_3_RI_0,P_network_3_1_RI_6,P_network_4_2_AnnP_1,P_network_5_1_AskP_2,P_poll__networl_3_0_AskP_6,P_poll__networl_5_2_AnnP_5,P_network_2_6_AskP_5,P_network_4_2_AskP_6,P_network_5_6_AskP_5,P_network_0_4_RI_5,P_network_4_2_AI_6,P_poll__networl_4_5_RP_3,P_network_2_0_RI_1,P_poll__networl_2_0_RI_3,P_network_0_1_AI_6,P_poll__networl_4_4_RI_2,P_poll__networl_4_0_RI_2,P_network_6_0_AnnP_6,P_network_6_4_RI_3,P_network_0_3_AI_1,P_network_3_5_RI_2,P_poll__networl_6_4_RI_2,P_network_5_1_RP_3,P_network_6_0_AnnP_3,P_poll__networl_3_4_AskP_6,P_poll__networl_4_3_RI_4,P_poll__networl_3_2_AnnP_4,P_poll__networl_0_2_AnnP_5,P_poll__networl_5_1_AskP_6,P_poll__networl_1_5_RI_0,P_poll__networl_2_6_RI_4,P_poll__networl_6_4_AI_6,P_poll__networl_6_5_RP_5,P_poll__networl_4_1_AI_3,P_poll__networl_3_4_RI_1,P_network_3_0_RP_6,P_poll__networl_4_5_AI_1,P_poll__networl_3_3_RI_1,P_poll__networl_0_4_AskP_4,P_network_6_3_RP_4,P_network_1_5_AI_3,P_poll__networl_4_1_RP_0,P_poll__networl_2_4_AnnP_1,P_poll__networl_3_5_AskP_0,P_poll__networl_3_2_RI_6,P_poll__networl_5_2_AI_6,P_network_2_4_AI_3,P_poll__networl_6_1_AnnP_6,P_network_3_0_AnnP_6,P_poll__networl_0_1_AnnP_2,P_poll__networl_4_1_AnsP_0,P_poll__networl_5_4_AskP_5,P_network_4_0_AnnP_2,P_poll__networl_6_5_AnnP_5,P_network_3_6_RP_4,P_poll__networl_2_1_RI_3,P_network_6_1_RP_1,P_poll__networl_2_6_AskP_6,P_network_6_3_AI_4,P_network_0_1_RP_6,P_poll__networl_6_0_RP_1,P_poll__networl_6_2_AnnP_5,P_network_0_0_AnnP_3,P_poll__networl_1_2_AnnP_4,P_poll__networl_2_5_AI_6,P_poll__networl_0_0_RP_6,P_network_4_0_AI_6,P_network_2_0_AI_1,P_poll__networl_0_1_RP_4,P_network_3_4_AI_4,P_poll__networl_3_6_AskP_3,P_poll__networl_1_0_AnnP_1,P_poll__networl_4_1_RI_3,P_network_5_4_RP_3,P_poll__networl_4_5_AI_6,P_network_1_5_AI_5,P_network_2_4_RI_1,P_network_3_6_AI_5,P_network_3_5_AI_6,P_crashed_6,P_poll__networl_2_0_RI_5,P_poll__networl_2_5_AI_4,P_network_0_4_AnnP_1,P_poll__networl_4_1_AnnP_5,P_network_6_3_RI_3,P_poll__networl_1_5_AskP_4,P_network_4_4_AnnP_3,P_poll__networl_0_0_AnnP_5,P_poll__networl_0_0_AskP_5,P_poll__networl_1_3_AnnP_2,P_network_5_5_RP_4,P_network_1_3_RP_6,P_network_2_4_RP_4,P_network_4_1_RP_2,P_poll__networl_1_3_AI_1,P_masterList_1_6_3,P_poll__networl_1_3_AskP_5,P_poll__networl_3_1_RI_0,P_poll__networl_4_1_RI_2,P_poll__networl_6_3_RI_0,P_poll__networl_5_6_RI_5,P_network_6_0_RI_4,P_poll__networl_4_3_AskP_5,P_network_5_5_RP_1,P_poll__networl_5_3_RP_0,P_poll__networl_5_2_RI_1,P_network_0_3_AnnP_6,P_poll__networl_0_3_RP_5,P_poll__networl_1_3_RI_6,P_poll__networl_5_2_AnnP_4,P_network_0_1_AI_5,P_network_5_6_RP_6,P_poll__networl_4_0_AnnP_6,P_network_2_6_AskP_3,P_network_3_1_AI_3,P_poll__networl_0_6_AI_0,P_poll__networl_5_4_AskP_4,P_network_6_6_AskP_4,P_poll__networl_0_5_RI_2,P_masterList_5_6_3,P_network_1_4_RI_5,P_network_2_0_AI_4,P_network_5_5_RI_6,P_network_3_3_AnnP_2,P_network_4_5_AnnP_5,P_network_2_6_RP_2,P_network_0_3_RI_2,P_poll__networl_0_1_RI_6,P_poll__networl_1_6_RP_6,P_network_4_2_RI_6,P_network_5_4_AI_4,P_network_6_5_AskP_3,P_network_5_2_AnnP_1,P_poll__networl_4_3_AI_1,P_poll__networl_6_3_RP_1,P_network_1_5_AskP_6,P_poll__networl_4_4_RP_1,P_poll__networl_2_4_RI_5,P_poll__networl_4_5_RI_1,P_network_1_4_AnnP_6,P_poll__networl_0_4_AnnP_6,P_poll__networl_0_6_AnnP_0,P_poll__networl_1_4_AskP_2,P_poll__networl_3_4_AskP_5,P_network_1_4_AI_1,P_network_6_4_AskP_1,P_network_1_6_RI_1,P_poll__networl_2_5_RP_0,P_poll__networl_6_4_AnsP_0,P_network_5_3_AskP_4,P_poll__networl_0_2_AnsP_0,P_poll__networl_3_1_RI_2,P_poll__networl_2_5_AskP_6,P_network_1_5_RP_1,P_network_5_5_AskP_2,P_poll__networl_4_5_RI_2,P_poll__networl_5_2_AnnP_2,P_poll__networl_4_1
_AI_4,P_network_3_0_RP_1,P_network_6_0_AnnP_4,P_poll__networl_1_0_AnsP_0,P_poll__networl_6_0_RP_4,P_poll__networl_4_0_AI_6,P_poll__networl_5_0_AnnP_6,P_poll__networl_3_4_AskP_1,P_network_4_4_RI_6,P_network_5_3_AskP_1,P_poll__networl_2_3_RI_4,P_poll__networl_6_1_AnnP_1,P_poll__networl_2_5_AnnP_4,P_network_5_3_AnnP_4,P_network_5_4_RI_3,P_network_5_6_AI_2,P_network_5_0_RP_3,P_poll__networl_0_6_AI_5,P_network_2_2_RP_5,P_network_2_4_RI_3,P_poll__networl_3_3_AnnP_1,P_poll__networl_3_2_AnnP_0,P_poll__networl_1_3_RI_1,P_poll__networl_1_3_RI_0,P_poll__networl_2_3_RP_0,P_network_3_0_AI_4,P_network_4_5_RI_1,P_poll__networl_0_2_AnnP_4,P_poll__networl_4_3_RI_5,P_network_5_3_RP_6,P_network_1_4_AnnP_1,P_network_4_5_RP_2,P_network_3_1_AnnP_2,P_poll__networl_1_2_AI_2,P_poll__networl_4_2_AnnP_0,P_poll__networl_4_3_RI_2,P_poll__networl_1_1_RP_4,P_poll__networl_6_6_AI_4,P_poll__networl_2_3_AnnP_5,P_network_4_3_AskP_6,P_poll__networl_1_2_AskP_0,P_poll__networl_0_3_RI_3,P_network_1_6_AnnP_1,P_poll__networl_2_5_RP_4,P_poll__networl_2_3_AnnP_2,P_poll__networl_4_2_RP_6,P_network_6_5_RI_6,P_network_3_3_AI_5,P_poll__networl_4_2_AnnP_6,P_network_6_2_RI_2,P_poll__networl_4_6_AskP_6,P_poll__networl_5_6_AI_4,P_network_1_3_RP_1,P_poll__networl_5_6_AI_2,P_network_5_5_AI_4,P_poll__networl_5_6_AnnP_5,P_poll__networl_0_4_AnnP_0,P_poll__networl_2_6_AnnP_3,P_poll__networl_5_2_AskP_4,P_network_2_0_AnnP_5,P_poll__networl_3_1_RP_6,P_poll__networl_0_4_RI_5,P_network_6_6_AnnP_1,P_network_0_6_AnnP_1,P_poll__networl_0_2_AI_4,P_network_3_5_AskP_6,P_network_5_6_AI_1,P_poll__networl_6_4_AskP_6,P_poll__networl_4_0_AnnP_1,P_network_6_6_RP_3,P_poll__networl_0_3_RP_0,P_network_1_1_AI_3,P_poll__networl_0_1_RI_1,P_poll__networl_2_0_AskP_2,P_network_3_2_RI_4,P_network_2_6_AnnP_3,P_poll__networl_3_5_RP_1,P_network_1_6_RP_4,P_network_2_3_AnnP_2,P_poll__networl_3_4_AnsP_0,P_poll__networl_6_5_AI_3,P_poll__networl_1_4_RI_6,P_network_3_3_AnnP_4,P_network_4_5_RI_2,P_poll__networl_0_4_RP_2,P_network_3_5_AskP_4,P_poll__networl_1_2_AI_6,P_network_3_2_AI_4,P_poll__networl_2_5_RP_2,P_poll__networl_3_1_RP_4,P_network_5_0_AnnP_4,P_poll__networl_4_3_AnnP_4,P_poll__networl_5_6_RP_4,P_network_1_4_AI_2,P_masterList_0_6_0,P_network_3_4_RP_2,P_poll__networl_1_4_AnnP_5,P_network_0_3_AskP_5,P_poll__networl_1_0_AI_4,P_poll__networl_4_4_AI_4,P_network_0_5_RP_1,P_network_2_4_RP_1,P_poll__networl_5_0_AI_4,P_network_1_1_AnnP_3,P_poll__networl_4_2_AI_4,P_network_3_3_AI_1,P_network_0_2_RP_6,P_poll__networl_3_6_RP_1,P_poll__networl_6_2_RI_3,P_poll__networl_4_6_AI_2,P_network_3_6_RI_2,P_network_6_1_RI_2,P_network_0_2_RI_1,P_network_6_0_AI_5,P_poll__networl_2_6_AnnP_2,P_network_4_4_AnnP_1,P_poll__networl_0_2_AskP_5,P_poll__networl_2_1_AskP_1,P_network_3_2_AnnP_5,P_network_0_6_AnnP_2,P_poll__networl_3_2_AnnP_2,P_network_0_4_AI_3,P_poll__networl_0_3_AskP_3,P_poll__networl_0_3_RI_1,P_network_0_0_AnnP_1,P_poll__networl_1_3_AskP_3,P_network_3_1_RP_1,P_network_3_5_AskP_5,P_poll__networl_0_1_RI_3,P_poll__networl_2_6_RI_3,P_network_0_5_AskP_1,P_network_0_6_RP_2,P_network_6_0_AI_4,P_network_6_6_AskP_1,P_poll__networl_6_0_AI_0,P_poll__networl_6_6_RP_6,P_masterList_3_6_5,P_poll__networl_1_4_AskP_5,P_poll__networl_2_1_AnnP_0,P_poll__networl_1_2_AskP_2,P_network_6_1_AI_2,P_network_1_3_AI_4,P_poll__networl_4_5_AI_5,P_network_2_5_AskP_6,P_poll__networl_6_3_AI_5,P_poll__networl_2_2_RP_2,P_poll__networl_0_4_AskP_2,P_poll__networl_0_1_AnnP_0,P_network_3_4_AnnP_6,P_network_6_1_AskP_5,P_poll__networl_3_0_AI_2,P_network_1_6_AI_5,P_network_6_1_AskP_6,P_poll__networl_2_1_RI_4,P_masterList_0_6_4,P_poll__networl_1_3_AI_2,P_crashed_2,P_network_5_3_RP_4,P_network_2_6_AI_5,P_network_0_5_RI_3,P_network_2_6_AI_6,P_network_2_0_RP_6,P_network_6_1_AskP_4,P_poll__networl_1_1_AskP_4,P_network_3_6_RI_6,P_network_2_4_AnnP_4,P_poll__networl_1_2_RP_5,P_poll__networl_6_0_AI_6,P_poll__networl_5_5_RI_2,P_poll__networl_2_5_AskP_4,P_network_2_0_AI_2,P_poll__networl_1_2_RP_3,P_network_0_4_AnnP_6,P_poll__networl_3_2_AskP_3,P_poll__networl_5_5_AI_6,P_network_6_4_AskP_2,P_network_2_1_RP_1,P_network_4_0_RP_1,P_poll__networl_5_0_RP_6,P_masterList_2_6_5,P_poll__networl_2_6_RP_1,P_network_3_5_AnnP_6,P_network_4_4_AI_5,P_network_3_3_AskP_4,P_network_5_5_AI_1,P_poll__networl_1_4_RI_2,P_network_6_3_AnnP_3,P_poll__networl_3_3_AskP_3,P_poll__networl_6_2_RP_4,P_poll__networl_2_4_AnnP_0,P_network_6_6_AnnP_2,P_poll__networl_1_0_AnnP_5,P_network_3_4_RI_3,P_poll__networl_0_4_AnnP_3,P_poll__networl_5_3_AskP_4,P_poll__networl_0_2_AI_0,P_poll__networl_6_1_AI_4,P_network_4_6_AnnP_2,P_poll__networl_5_2_AnnP_1,P_poll__networl_5_4_AnnP_4,P_poll__networl_1_3_RP_3,P_network_2_5_AnnP_2,P_poll__networl_0_3_RP_1,P_poll__networl_1_6_AI_5,P_network_4_4_RI_3,P_network_2_3_AI_2,P_network_5_0_RI_3,P_poll__networl_0_4_RP_0,P_poll__networl_2_5_AnsP_0,P_poll__networl_5_6_RI_2,P_masterList_3_6_1,P_network_0_3_AnnP_4,P_network_6_0_RP_3,P_poll__networl_2_6_AI_6,P_network_3_2_RI_2,P_poll__networl_5_1_RI_1,P_poll__networl_3_1_RP_1,P_network_2_0_AskP_5,P_poll__networl_5_4_AskP_1,P_poll__networl_6_5_RP_1,P_poll__networl_0_2_AskP_0,P_poll__networl_3_1_AskP_4,P_network_2_2_RP_1,P_poll__networl_0_1_RP_5,P_poll__networl_2_3_AI_3,P_network_2_1_RI_2,P_poll__networl_2_5_AnnP_0,P_poll__networl_2_2_RP_1,P_poll__networl_3_3_AnnP_5,P_poll__networl_4_5_AnnP_1,P_network_5_5_RI_1,P_network_6_6_RI_1,P_network_1_6_AskP_3,P_network_0_0_RI_4,P_poll__networl_5_5_RP_1,P_network_3_4_AI_2,P_network_6_1_AnnP_4,P_poll__networl_4_4_RI_6,P_network_5_3_AI_1,P_poll__networl_1_4_AnnP_4,P_poll__networl_5_2_RI_0,P_poll__networl_0_5_RI_5,P_masterList_6_6_2,P_network_2_1_AI_5,P_network_2_3_RP_4,P_masterList_5_6_6,P_poll__networl_1_4_AnnP_1,P_network_2_3_AskP_3,P_network_5_1_AI_2,P_network_2_2_AnnP_2,P_network_5_5_AnnP_1,P_poll__networl_4_4_AI_5,P_poll__networl_1_1_RP_5,P_network_0_5_RI_4,P_network_2_2_AnnP_5,P_poll__networl_2_6_AI_5,P_network_6_2_RP_5,P_poll__networl_6_6_AskP_5,P_network_2_2_RI_6,P_poll__networl_2_3_AnnP_0,P_network_2_4_AI_4,P_poll__networl_0_3_AnsP_0,P_network_5_2_AskP_4,P_poll__networl_5_1_AI_6,P_network_3_6_AI_2,P_poll__networl_4_6_AnsP_0,P_poll__networl_2_2_RI_3,P_poll__networl_0_4_AskP_1,P_poll__networl_4_2_AskP_3,P_network_4_2_RP_2,P_network_5_1_RP_6,P_network_5_3_AskP_6,P_poll__networl_0_4_AI_0,P_poll__networl_1_5_AnsP_0,P_network_6_4_AI_3,P_network_5_4_RI_5,P_network_6_5_AnnP_3,P_poll__networl_3_1_AI_4,P_network_5_5_RI_2,P_poll__networl_2_2_AskP_4,P_poll__networl_0_5_AnnP_3,P_poll__networl_4_4_AnnP_5,P_network_5_5_AskP_6,P_network_5_4_AnnP_5,P_poll__networl_3_3_RI_4,P_poll__networl_4_4_AnnP_0,P_poll__networl_4_2_RI_6,P_network_3_1_AI_2,P_poll__networl_0_6_RP_4,P_poll__networl_6_0_AI_4,P_poll__networl_5_6_AnnP_2,P_poll__networl_6_6_RI_1,P_poll__networl_5_3_RP_6,P_poll__networl_6_5_AskP_0,P_network_1_1_AskP_1,P_network_0_6_RI_1,P_network_1_3_RI_1,P_poll__networl_4_1_AskP_4,P_network_6_3_RI_5,P_poll__networl_3_0_RI_3,P_network_3_6_AskP_1,P_poll__networl_5_2_AI_2,P_network_4_2_AI_5,P_poll__networl_0_5_AnnP_4,P_poll__networl_4_1_RP_4,P_poll__networl_3_3_AI_0,P_network_5_0_AI_2,P_poll__networl_0_5_AskP_1,P_poll__networl_5_0_RI_0,P_poll__networl_5_5_RP_0,P_network_1_0_RI_2,P_network_0_0_RI_3,P_network_4_4_AskP_4,P_poll__networl_3_6_AnnP_1,P_network_1_3_AskP_6,P_poll__networl_4_0_RI_1,P_poll__networl_0_4_AI_4,P_poll__networl_6_2_AI_6,P_network_6_4_RP_1,P_poll__networl_1_1_AskP_5,P_network_4_6_AskP_2,P_network_4_0_AskP_1,P_network_5_5_AI_2,P_poll__networl_5_3_AnnP_4,P_network_0_0_RP_1,P_poll__networl_2_1_AskP_0,P_network_1_5_AskP_1,P_network_6_5_AnnP_5,P_network_6_5_AskP_1,P_electionFailed_3,P_poll__networl_4_0_AI_5,P_poll__networl_1_5_AnnP_3,P_dead_1,P_network_1_5_AskP_2,P_network_2_3_AskP_2,P_network_4_3_RP_2,P_poll__networl_6_2_RI_2,P_poll__networl_6_0_RI_0,P_network_4_3_RP_3,P_poll__networl_1_1_AnnP_1,P_masterList_6_6_5,P_network_3_5_AnnP_2,P_network_4_1_RP_6,P_poll__networl_4_6_RI_1,P_poll__networl_0_3_AI_0,P_poll__networl_1_2_RP_0,P_network_3_4_AI_3,P_poll__networl_2_2_AI_4,P_network_2_0_AnnP_1,P_network_4_6_RI_2,P_network_4_3_AnnP_4,P_network_2_5_RP_5,P_poll__networl_5_0_AskP_6,P_poll__networl_2_4_RP_5,P_network_6_2_AnnP_1,P_poll__networl_4_1_RP_5,P_poll__networl_5_2_AskP_5,P_poll__networl_6_0_RP_5,P_poll__networl_0_6_AnnP_3,P_poll__networl_5_4_RP_2,P_poll__networl_6_5_AI_2,P_network_4_5_AI_6,P_network_0_0_RP_4,P_poll__networl_4_1_AskP_5,P_network_6_6_AnnP_3,P_poll__networl_5_3_AI_0,P_poll__networl_6_6_AskP_2,P_poll__networl_3_3_RP_3,P_network_1_6_AI_2,P_poll__networl_4_5_RP_2,P_poll__networl_1_2_AI_5,P_network_1_4_RI_3,P_network_6_2_AI_1,P_network_1_6_AskP_4,P_network_2_5_RP_1,P_poll__networl_5_1_RI_0,P_poll__networl_5_5_AskP_5,P_poll__networl_1_4_AnnP_2,P_network_3_2_AI_1,P_network_2_0_RI_2,P_poll__networl_5_3_RI_4,P_poll__networl_2_4_RI_4,P_poll__networl_1_6_RP_1,P_poll__networl_2_6_RI_0,P_network_0_6_AnnP_3,P_network_0_6_AnnP_4,P_network_6_1_AnnP_5,P_poll__networl_4_2_AskP_4,P_network_1_1_AskP_6,P_poll__networl_5_1_RP_0,P_poll__networl_6_5_AskP_6,P_poll__networl_4_3_RP_4,P_poll__networl_4_4_AI_6,P_network_2_2_RP_2,P_poll__networl_3_0_RI_1,P_poll__networl_0_6_AI_3,P_poll__networl_4_1_AnnP_2,P_network_4_1_AI_5,P_network_4_0_AskP_5,P_poll__networl_4_6_AI_1,P_poll__networl_4_1_AskP_1,P_network_4_6_RI_3,P_poll__networl_1_4_RP_0,P_poll__networl_2_3_AI_2,P_network_6_4_AnnP_6,P_poll__networl_2_3_AI_6,P_network_1_5_RI_1,P_network_1_4_RI_1,P_poll__networl_1_0_AskP_1,P_poll__networl_1_1_RP_6,P_poll__networl_3_6_AnnP_4,P_poll__networl_1_6_AnnP_2,P_network_4_1_AnnP_5,P_poll__networl_2_2_AskP_3,P_network_2_1_RP_2,P_network_5_4_AskP_2,P_poll__networl_4_6_RP_2,P_network_3_0_RP_3,P_poll__networl_0_4_AnnP_1,P_poll__networl_1_4_AskP_6,P_network_5_2_AskP_5,P_network_2_0_AskP_6,P_network_4_3_RI_4,P_network_3_6_RI_4,P_network_6_3_AnnP_4,P_network_0_5_AnnP_3,P_poll__networl_4_1_RI_4,P_poll__networl_2_2_RI_6,P_network_2_0_AskP_2,P_network_1_6_RI_2,P_poll__networl_6_2_AskP_5,P_network_3_1_AnnP_3,P_network_5_4_RI_4,P_network_3_6_AI_3,P_network_4_4_RI_4,P_network_4_2_AskP_5,P_poll__networl_3_6_AnnP_3,P_network_2_1_AskP_6,P_poll__networl_1_2_AnnP_1,P_poll__networl_2_6_RP_6,P_poll__networl_5_6_AI_1,P_poll__networl_1_0_RI_5,P_network_2_5_RP_4,P_poll__networl_4_6_RP_4,P_network_1_4_RI_4,P_poll__networl_2_5_RP_5,P_poll__networl_2_5_AnnP_2,P_network_3_3_AI_2,P_poll__networl_0_4_RP_1,P_network_4_1_AnnP_6,P_network_2_2_RI_4,P_network_4_0_AnnP_5,P_poll__networl_2_2_AnnP_2,
May 26, 2018 8:26:11 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 3549 fixed domain variables (out of 4830 variables) in GAL type NeoElection_PT_6
May 26, 2018 8:26:11 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 3549 constant array cells/variables (out of 4830 variables) in type NeoElection_PT_6
May 26, 2018 8:26:11 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_network_2_0_RI_3,P_poll__networl_1_6_RP_0,P_poll__networl_6_3_AskP_1,P_poll__networl_1_2_RP_1,P_poll__networl_1_0_RI_3,P_network_5_2_RP_4,P_poll__networl_2_2_RI_1,P_network_5_3_AskP_3,P_network_0_4_AskP_2,P_poll__networl_1_1_AskP_3,P_masterList_2_6_1,P_poll__networl_0_0_AnnP_4,P_poll__networl_4_6_RI_5,P_poll__networl_6_0_AnnP_6,P_poll__networl_5_4_AskP_6,P_network_3_1_AI_5,P_network_2_1_RI_6,P_poll__networl_2_0_AI_2,P_network_3_2_AnnP_1,P_network_2_2_AskP_2,P_poll__networl_6_4_RI_1,P_poll__networl_4_4_RP_2,P_poll__networl_2_5_AI_1,P_poll__networl_5_2_RI_3,P_network_6_5_AI_5,P_poll__networl_2_0_AnnP_2,P_poll__networl_1_1_RI_6,P_poll__networl_4_5_AnsP_0,P_network_3_6_AnnP_3,P_network_0_3_AI_4,P_poll__networl_0_5_RI_6,P_network_5_3_AI_2,P_crashed_5,P_poll__networl_5_3_RI_6,P_poll__networl_5_1_AI_4,P_poll__networl_4_3_AskP_0,P_network_3_2_AnnP_6,P_network_4_4_RI_1,P_masterList_5_2_0,P_poll__networl_1_3_AI_6,P_network_1_5_RI_2,P_network_5_4_AskP_3,P_network_6_0_AI_3,P_network_1_0_AI_2,P_masterList_1_6_0,P_network_4_3_AI_5,P_poll__networl_0_5_AnnP_1,P_masterList_3_4_2,P_poll__networl_6_6_AskP_0,P_poll__networl_6_4_AnnP_5,P_poll__networl_0_3_AskP_6,P_network_0_2_AnnP_2,P_network_3_4_RI_2,P_poll__networl_3_5_AI_3,P_poll__networl_5_5_RI_5,P_network_2_0_AskP_1,P_network_6_2_AnnP_3,P_poll__networl_2_4_RI_1,P_network_6_4_AskP_5,P_poll__networl_1_0_AskP_6,P_poll__networl_4_0_AnsP_0,P_network_0_2_RP_4,P_network_5_4_AI_2,P_network_5_5_AnnP_5,P_network_4_0_AI_4,P_poll__networl_5_1_AskP_2,P_network_1_3_RP_3,P_network_5_0_AnnP_1,P_poll__networl_2_6_RI_5,P_network_6_5_AskP_5,P_dead_3,P_network_4_5_RP_6,P_poll__networl_2_5_AnnP_3,P_network_0_0_RI_2,P_masterList_4_6_4,P_poll__networl_6_0_RP_0,P_poll__networl_4_2_AnnP_1,P_network_1_0_AnnP_3,P_poll__networl_6_0_AskP_0,P_poll__networl_6_1_RI_2,P_masterList_1_5_6,P_poll__networl_6_3_AI_0,P_network_0_0_AskP_1,P_network_0_0_AskP_4,P_network_5_1_RI_6,P_network_1_6_AskP_6,P_poll__networl_1_5_AI_0,P_poll__networl_6_4_AI_2,P_poll__networl_6_1_AnnP_2,P_masterList_2_2_3,P_network_2_0_AI_5,P_network_6_6_RI_4,P_poll__networl_2_1_AI_2,P_poll__networl_3_4_RI_2,P_network_1_3_AnnP_2,P_poll__networl_3_4_RP_0,P_network_2_3_AskP_5,P_network_1_4_AnnP_5,P_network_6_4_RP_3,P_poll__networl_4_6_AskP_0,P_network_1_4_RP_1,P_masterList_0_3_5,P_masterList_5_6_1,P_poll__networl_5_0_AnnP_1,P_poll__networl_1_2_RP_2,P_poll__networl_3_3_AskP_2,P_poll__networl_2_6_AnnP_6,P_poll__networl_3_6_AI_0,P_masterList_6_3_3,P_network_0_1_AskP_6,P_poll__networl_0_3_RI_5,P_poll__networl_2_0_RP_5,P_poll__networl_1_2_RI_6,P_poll__networl_1_0_AskP_3,P_poll__networl_3_4_AI_4,P_network_1_0_RP_4,P_poll__networl_0_5_RP_3,P_poll__networl_6_1_AI_6,P_network_5_2_AI_2,P_poll__networl_1_5_AnnP_4,P_network_2_5_RI_5,P_poll__networl_3_6_AI_2,P_poll__networl_0_6_AI_1,P_poll__networl_6_6_AskP_3,P_poll__networl_0_2_RI_5,P_poll__networl_0_0_AnnP_3,P_poll__networl_0_3_AI_5,P_poll__networl_2_6_AI_2,P_network_5_6_AskP_3,P_poll__networl_1_0_AnnP_3,P_poll__networl_6_6_AnnP_5,P_network_5_3_RP_2,P_poll__networl_0_0_AskP_0,P_network_0_4_AnnP_3,P_network_4_2_AskP_3,P_poll__networl_3_6_AI_5,P_network_1_0_AnnP_2,P_masterList_4_6_0,P_poll__networl_5_0_AI_3,P_poll__networl_3_3_AI_5,P_poll__networl_6_1_AI_2,P_poll__networl_5_1_AnnP_2,P_poll__networl_2_6_AnnP_5,P_masterList_6_2_0,P_network_4_1_RP_3,P_network_5_4_AskP_5,P_poll__networl_5_0_RP_4,P_network_2_1_AskP_4,P_network_4_0_RP_5,P_network_4_6_AnnP_3,P_poll__networl_3_6_AI_1,P_network_1_6_AskP_5,P_poll__networl_6_5_AI_6,P_poll__networl_6_0_RI_4,P_poll__networl_1_4_AskP_1,P_poll__networl_4_0_AI_0,P_network_4_2_RP_3,P_masterList_2_1_4,P_network_5_5_AI_5,P_poll__networl_4_4_RP_0,P_network_2_0_RI_5,P_poll__networl_3_2_RI_5,P_masterList_0_1_3,P_poll__networl_1_5_AI_1,P_network_3_4_RP_5,P_masterList_3_1_5,P_poll__networl_3_0_RP_2,P_poll__networl_5_0_AskP_5,P_poll__networl_6_3_AnnP_5,P_network_3_0_AnnP_5,P_network_5_4_AI_6,P_network_2_6_AI_3,P_poll__networl_1_1_AI_2,P_masterList_1_3_4,P_network_2_3_AskP_6,P_network_2_6_RP_4,P_poll__networl_4_5_RP_0,P_network_2_3_RI_2,P_poll__networl_6_0_AskP_3,P_poll__networl_0_0_AI_0,P_poll__networl_4_2_RI_2,P_poll__networl_2_5_AskP_5,P_network_6_3_RP_2,P_network_6_5_AnnP_2,P_poll__networl_5_0_RP_0,P_poll__networl_5_5_AskP_3,P_poll__networl_1_2_RI_3,P_poll__networl_6_2_RI_5,P_network_0_1_AI_2,P_poll__networl_6_3_RI_3,P_poll__networl_6_0_AI_3,P_network_3_4_RP_4,P_network_6_6_AI_2,P_poll__networl_5_1_RP_5,P_network_0_2_RI_5,P_poll__networl_5_1_RP_1,P_network_1_0_AskP_3,P_poll__networl_4_6_AI_0,P_poll__networl_3_3_AI_2,P_poll__networl_6_4_RP_0,P_masterList_4_5_6,P_network_5_3_RI_6,P_poll__networl_1_5_AskP_3,P_poll__networl_1_1_RI_2,P_poll__networl_2_1_AnnP_5,P_poll__networl_3_5_RP_3,P_poll__networl_6_1_AskP_0,P_network_3_3_RP_4,P_poll__networl_4_5_RI_5,P_poll__networl_3_2_RI_4,P_network_2_4_AskP_4,P_poll__networl_6_5_AI_5,P_network_0_4_AI_2,P_poll__networl_2_3_RI_2,P_poll__networl_2_4_RI_3,P_poll__networl_1_4_AI_3,P_poll__networl_6_4_AI_4,P_poll__networl_0_0_AnnP_0,P_poll__networl_0_6_AnsP_0,P_network_6_6_RI_5,P_poll__networl_0_3_RP_3,P_masterList_1_2_4,P_network_1_6_AskP_2,P_network_2_2_AI_4,P_network_0_0_AnnP_2,P_network_5_3_AnnP_1,P_poll__networl_3_1_RP_5,P_poll__networl_6_2_AnnP_2,P_poll__networl_2_4_AI_2,P_masterList_1_2_6,P_network_2_4_AskP_2,P_network_6_4_RI_6,P_poll__networl_2_2_RP_0,P_network_6_3_AskP_2,P_poll__networl_1_3_AI_5,P_network_1_1_AI_6,P_poll__networl_0_0_RI_0,P_poll__networl_2_4_AI_6,P_poll__networl_2_6_AnsP_0,P_poll__networl_5_2_AI_1,P_poll__networl_6_5_RI_1,P_poll__networl_6_6_AI_0,P_poll__networl_4_3_AI_4,P_network_4_3_AI_1,P_network_3_0_AI_6,P_poll__networl_6_0_AnnP_5,P_poll__networl_4_6_AskP_5,P_poll__networl_3_5_RI_4,P_poll__networl_1_2_AnsP_0,P_network_4_6_RP_5,P_poll__networl_6_1_RP_6,P_poll__networl_6_4_AnnP_4,P_masterList_2_6_0,P_network_1_1_AI_4,P_masterList_2_1_3,P_masterList_2_3_4,P_poll__networl_5_3_RI_2,P_network_2_5_RI_4,P_network_4_2_RP_1,P_poll__networl_0_4_AI_2,P_network_5_0_RP_2,P_poll__networl_2_4_AskP_0,P_poll__networl_2_4_AnnP_4,P_network_6_1_RP_6,P_network_2_3_RI_5,P_poll__networl_0_0_AI_6,P_poll__networl_3_0_AnnP_1,P_poll__networl_0_3_AskP_0,P_network_1_4_AskP_6,P_network_1_6_RP_3,P_poll__networl_1_6_AskP_0,P_network_2_1_RP_4,P_masterList_1_1_2,P_poll__networl_5_2_AI_5,P_poll__networl_6_4_RI_6,P_poll__networl_2_5_RP_1,P_network_2_2_AI_1,P_poll__networl_1_6_RI_2,P_masterList_4_3_5,P_network_0_3_AnnP_3,P_network_2_4_AnnP_1,P_network_2_3_AnnP_3,P_poll__networl_5_0_RI_3,P_poll__networl_1_6_RI_0,P_poll__networl_1_6_AskP_4,P_masterList_2_3_6,P_poll__networl_4_4_AskP_2,P_network_0_6_AI_3,P_poll__networl_2_2_AnnP_6,P_poll__networl_5_5_AI_4,P_network_2_0_AI_3,P_poll__networl_3_6_AI_4,P_network_1_1_AnnP_6,P_network_5_3_RP_5,P_network_0_4_RP_3,P_poll__networl_1_5_RI_1,P_poll__networl_6_5_RI_2,P_poll__networl_6_3_AskP_3,P_network_3_5_RI_6,P_network_6_3_AnnP_6,P_poll__networl_2_4_AI_5,P_network_1_3_AskP_4,P_poll__networl_4_1_RI_6,P_poll__networl_6_2_AnnP_4,P_network_0_4_RI_3,P_electionFailed_5,P_poll__networl_2_6_AskP_4,P_masterList_2_1_6,P_network_5_5_RI_4,P_masterList_0_6_1,P_network_0_6_AI_4,P_network_2_5_AskP_1,P_network_6_0_RI_2,P_poll__networl_3_6_RI_5,P_network_3_5_RP_2,P_masterList_0_1_6,P_network_6_1_RP_2,P_network_5_6_AI_4,P_poll__networl_2_5_RI_6,P_poll__networl_1_0_AI_1,P_poll__networl_4_3_AI_5,P_poll__networl_1_4_AI_2,P_poll__networl_5_6_AnnP_6,P_network_1_2_RP_3,P_poll__networl_5_5_AnnP_0,P_poll__networl_6_6_RP_0,P_masterList_6_5_1,P_poll__networl_0_4_AskP_6,P_network_3_2_RP_6,P_network_4_5_AskP_1,P_poll__networl_1_3_AnnP_4,P_network_2_1_AnnP_1,P_network_0_4_AskP_3,P_poll__networl_3_5_AI_1,P_network_6_6_RP_4,P_network_3_6_AnnP_5,P_poll__networl_2_3_AnsP_0,P_network_3_4_AI_6,P_poll__networl_4_0_RP_6,P_poll__networl_4_2_AI_5,P_poll__networl_6_1_AnsP_0,P_poll__networl_3_5_AI_2,P_masterList_2_2_1,P_poll__networl_3_5_RI_0,P_network_1_0_RP_1,P_masterList_2_6_3,P_masterList_6_1_3,P_poll__networl_4_5_AnnP_2,P_network_5_2_AskP_6,P_poll__networl_0_1_RP_0,P_network_4_4_AI_3,P_network_1_0_RP_3,P_poll__networl_2_2_AnnP_3,P_masterList_2_4_4,P_network_4_0_RI_2,P_network_3_5_RP_3,P_network_2_4_AskP_5,P_network_1_6_AnnP_4,P_network_3_0_AI_1,P_network_4_5_AnnP_3,P_network_6_2_AnnP_5,P_poll__networl_3_5_AI_4,P_poll__networl_1_2_AskP_3,P_poll__networl_4_6_RP_1,P_poll__networl_5_2_AnnP_0,P_network_0_6_RI_6,P_poll__networl_0_5_AnnP_2,P_network_1_4_RI_6,P_network_5_5_AI_3,P_network_2_4_RP_2,P_poll__networl_2_6_RI_2,P_poll__networl_2_3_RI_1,P_network_4_4_AnnP_6,P_poll__networl_2_4_RP_0,P_masterList_2_4_1,P_poll__networl_5_2_RI_2,P_network_0_0_AskP_6,P_poll__networl_0_3_AskP_1,P_poll__networl_5_0_RP_1,P_network_5_4_RI_6,P_poll__networl_6_3_AnnP_6,P_network_0_1_AnnP_5,P_network_4_3_AI_2,P_masterList_4_3_1,P_network_2_4_AnnP_3,P_network_6_5_AnnP_4,P_poll__networl_3_2_AI_6,P_network_4_1_AI_2,P_network_3_2_RP_4,P_network_4_3_AnnP_2,P_poll__networl_5_2_RI_4,P_network_5_0_AskP_2,P_poll__networl_3_3_AI_1,P_crashed_1,P_poll__networl_0_4_RI_2,P_network_0_4_AI_6,P_network_5_5_AskP_1,P_poll__networl_1_0_RP_4,P_poll__networl_3_4_AnnP_5,P_poll__networl_5_2_RP_1,P_poll__networl_1_0_RP_3,P_poll__networl_2_4_RI_6,P_poll__networl_5_5_RP_5,P_poll__networl_3_4_AnnP_4,P_poll__networl_0_1_AskP_4,P_poll__networl_3_4_AI_0,P_poll__networl_4_0_RI_0,P_poll__networl_1_1_RP_1,P_network_0_3_AskP_6,P_poll__networl_0_3_RI_6,P_poll__networl_6_1_AskP_2,P_network_2_3_RI_1,P_network_0_6_AskP_6,P_network_3_5_RP_4,P_network_4_1_AnnP_2,P_poll__networl_4_6_RP_6,P_masterList_5_4_1,P_poll__networl_6_3_AnnP_4,P_poll__networl_3_1_AI_3,P_poll__networl_6_5_RP_4,P_network_6_5_AI_1,P_poll__networl_6_0_RI_2,P_poll__networl_1_1_RP_0,P_network_5_4_AnnP_6,P_poll__networl_0_1_AnnP_6,P_poll__networl_3_1_AI_1,P_masterList_2_1_5,P_poll__networl_1_2_AnnP_5,P_poll__networl_6_0_AnsP_0,P_network_4_6_RI_5,P_poll__networl_6_3_AskP_4,P_network_0_6_AI_1,P_network_2_5_AskP_5,P_network_1_4_AskP_3,P_network_5_0_AI_6,P_masterList_6_2_4,P_network_1_6_RI_6,P_network_5_6_AnnP_2,P_network_6_0_AnnP_5,P_poll__networl_1_3_AnnP_1,P_network_6_2_AnnP_6,P_poll__networl_4_6_RI_3,P_poll__networl_0_2_AI_1,P_poll__networl_3_0_AnsP_0,P_poll__networl_5_4_RI_1,P_network_3_0_RI_5,P_poll__networl_0_6_RI_2,P_poll__networl_2_6_AskP_5,P_network_6_3_AskP_1,P_poll__networl_0_5_AI_4,P_network_2_3_AI_3,P_poll__networl_0_1_AnsP_0,P_network_3_5_AI_4,P_poll__networl_0_2_RI_6,P_network_6_1_AI_1,P_poll__networl_5_6_RP_0,P_poll__networl_2_3_RP_4,P_poll__networl_4_3_AnnP_1,P_poll__networl_4_4_AskP_4,P_network_5_5_AskP_5,P_network_6_3_RP_1,P_network_0_5_AI_6,P_network_0_5_AskP_4,P_poll__networl_1_0_RI_0,P_poll__networl_3_2_AnnP_6,P_poll__networl_2_6_RP_2,P_network_2_4_AI_1,P_network_6_4_AskP_6,P_network_6_2_AskP_1,P_poll__networl_4_3_AI_6,P_network_4_5_RP_3,P_poll__networl_2_3_AskP_0,P_network_3_3_AI_3,P_network_3_0_AskP_6,P_masterList_3_3_6,P_poll__networl_3_4_AskP_3,P_poll__networl_5_5_AnnP_2,P_poll__networl_5_5_AnnP_1,P_poll__networl_4_4_AskP_3,P_poll__networl_4_3_RP_5,P_network_4_4_AnnP_5,P_poll__networl_1_6_RI_4,P_dead_5,P_poll__networl_0_3_AskP_4,P_poll__networl_1_4_AnnP_6,P_poll__networl_3_5_AI_6,P_network_1_2_AI_5,P_poll__networl_6_5_AnnP_4,P_poll__networl_1_4_RI_3,P_network_0_4_AnnP_4,P_masterList_2_5_6,P_poll__networl_4_4_AnnP_2,P_poll__networl_5_1_AnnP_5,P_poll__networl_0_5_AskP_3,P_network_1_1_AskP_3,P_poll__networl_4_0_RI_6,P_poll__networl_0_2_RI_1,P_poll__networl_2_6_RP_0,P_poll__networl_6_4_AskP_2,P_network_6_2_RI_5,P_network_1_1_AskP_2,P_network_5_4_AnnP_3,P_poll__networl_5_0_RI_5,P_network_1_1_RI_2,P_poll__networl_2_4_AnsP_0,P_poll__networl_6_4_RP_4,P_poll__networl_5_0_AI_2,P_poll__networl_5_2_AskP_6,P_masterList_6_1_2,P_network_0_2_RP_2,P_network_2_4_RP_6,P_poll__networl_2_0_AskP_0,P_network_3_0_AI_2,P_poll__networl_0_1_AI_3,P_network_0_2_RP_3,P_poll__networl_3_3_AskP_1,P_network_1_0_AnnP_1,P_poll__networl_3_5_AI_5,P_poll__networl_5_5_RI_4,P_network_0_6_AI_6,P_network_3_6_RP_1,P_network_2_4_AI_5,P_network_1_0_AI_1,P_network_2_0_RP_4,P_poll__networl_6_2_AnnP_1,P_network_3_1_AnnP_4,P_poll__networl_6_2_AskP_3,P_poll__networl_0_2_AI_2,P_network_1_3_RI_5,P_network_2_3_RP_6,P_poll__networl_4_1_AI_6,P_poll__networl_1_0_AI_5,P_masterList_6_6_0,P_network_4_2_AnnP_6,P_network_1_1_RP_3,P_network_2_5_RP_2,P_network_4_5_AskP_5,P_poll__networl_2_1_AI_4,P_poll__networl_5_4_AnnP_2,P_network_2_6_AskP_6,P_poll__networl_4_3_AnnP_3,P_poll__networl_4_0_AnnP_0,P_poll__networl_5_6_RP_3,P_poll__networl_5_0_RI_4,P_poll__networl_3_4_RP_5,P_poll__networl_5_2_AnnP_3,P_network_2_5_AskP_2,P_network_4_1_AnnP_3,P_network_4_2_AskP_1,P_network_4_1_AI_3,P_poll__networl_0_4_AskP_5,P_poll__networl_1_6_AI_3,P_poll__networl_5_1_RI_6,P_network_2_5_AnnP_3,P_masterList_6_2_1,P_poll__networl_1_4_AskP_3,P_poll__networl_0_3_RP_4,P_network_4_6_RP_3,P_masterList_2_3_3,P_poll__networl_0_0_AnsP_0,P_poll__networl_4_0_AskP_2,P_network_5_0_AnnP_5,P_masterList_5_6_2,P_poll__networl_1_2_AI_3,P_network_0_1_AI_3,P_poll__networl_2_1_RP_2,P_network_3_4_AnnP_1,P_poll__networl_1_2_AskP_5,P_network_2_1_AnnP_5,P_poll__networl_5_3_AnnP_3,P_poll__networl_0_2_AnnP_1,P_poll__networl_4_6_AnnP_1,P_poll__networl_3_5_RP_6,P_poll__networl_1_5_AskP_2,P_network_3_3_AnnP_3,P_poll__networl_4_6_RI_4,P_network_6_2_AskP_3,P_masterList_3_3_0,P_poll__networl_5_4_AnnP_0,P_network_2_6_AnnP_2,P_network_4_5_RP_5,P_poll__networl_6_0_AnnP_0,P_poll__networl_1_2_AI_0,P_poll__networl_3_0_RP_3,P_poll__networl_2_6_AI_3,P_poll__networl_6_0_RP_6,P_poll__networl_4_0_AskP_0,P_network_4_5_AnnP_4,P_poll__networl_2_3_RP_5,P_network_4_2_AskP_4,P_poll__networl_0_3_RI_0,P_poll__networl_3_0_AI_4,P_network_1_6_RP_6,P_poll__networl_2_0_AskP_6,P_network_2_4_RI_5,P_poll__networl_3_6_AskP_2,P_poll__networl_4_1_AnnP_0,P_poll__networl_3_3_AskP_4,P_poll__networl_1_0_RI_6,P_network_1_5_RP_6,P_network_4_1_AskP_2,P_network_4_3_AnnP_5,P_network_0_2_AnnP_3,P_poll__networl_2_2_RI_5,P_network_4_3_RI_3,P_poll__networl_2_3_AnnP_1,P_network_2_5_AI_3,P_network_6_5_RP_1,P_poll__networl_1_5_AnnP_5,P_network_5_0_RP_5,P_poll__networl_0_2_AskP_1,P_poll__networl_2_0_AnnP_5,P_poll__networl_6_4_RP_2,P_network_3_0_AI_5,P_network_2_6_RP_5,P_poll__networl_6_4_AI_0,P_poll__networl_2_4_AnnP_3,P_network_6_1_AI_3,P_poll__networl_6_2_RP_3,P_poll__networl_6_3_RI_1,P_network_4_6_AI_1,P_poll__networl_4_4_RI_0,P_network_5_1_RP_5,P_poll__networl_4_1_RI_5,P_poll__networl_2_4_AskP_2,P_poll__networl_4_4_AnnP_6,P_network_4_3_AskP_5,P_network_1_6_AI_4,P_poll__networl_3_2_RP_5,P_network_0_5_RP_2,P_network_0_2_RI_4,P_network_3_6_RP_5,P_masterList_2_3_0,P_masterList_6_6_3,P_masterList_3_2_6,P_poll__networl_1_5_RP_5,P_poll__networl_3_2_AI_2,P_masterList_5_1_6,P_network_0_1_RP_3,P_poll__networl_2_2_AskP_1,P_network_3_2_AskP_3,P_masterList_0_5_2,P_poll__networl_3_3_AI_3,P_poll__networl_0_6_AskP_0,P_network_5_2_RI_2,P_poll__networl_4_3_RP_3,P_network_6_6_RP_2,P_masterList_6_4_2,P_network_1_5_AnnP_5,P_poll__networl_1_6_AI_2,P_poll__networl_3_5_AskP_1,P_poll__networl_4_1_AI_2,P_network_1_1_RI_3,P_poll__networl_1_6_RP_5,P_poll__networl_5_6_AI_5,P_network_3_2_AskP_1,P_poll__networl_3_0_RI_2,P_masterList_4_5_4,P_network_0_3_AnnP_5,P_masterList_0_4_1,P_network_6_4_AnnP_3,P_poll__networl_1_1_RI_0,P_poll__networl_2_2_AskP_6,P_network_4_6_AI_4,P_poll__networl_1_5_RI_3,P_network_3_0_RI_3,P_network_5_0_AI_1,P_network_4_3_RP_5,P_network_5_6_RI_6,P_poll__networl_4_3_AI_2,P_poll__networl_4_6_AskP_2,P_network_2_2_RI_1,P_network_2_1_AnnP_6,P_poll__networl_2_0_AI_5,P_network_3_2_AskP_2,P_poll__networl_6_3_AskP_0,P_network_4_6_RP_6,P_network_1_1_RI_1,P_masterList_3_1_2,P_masterList_1_5_3,P_poll__networl_0_0_AskP_3,P_poll__networl_5_4_RP_4,P_network_5_1_RI_5,P_network_1_4_AskP_5,P_poll__networl_6_2_RI_0,P_network_4_6_AskP_5,P_poll__networl_3_3_RP_6,P_poll__networl_5_3_AskP_1,P_poll__networl_6_0_RI_1,P_poll__networl_6_6_RP_2,P_network_1_4_RI_2,P_poll__networl_4_4_RI_1,P_network_0_5_RI_1,P_network_2_1_RI_4,P_poll__networl_3_1_RI_5,P_poll__networl_0_6_RI_3,P_poll__networl_4_6_RI_6,P_poll__networl_3_6_RI_0,P_masterList_4_4_0,P_poll__networl_3_0_AskP_2,P_network_6_2_AI_6,P_masterList_1_4_6,P_network_2_3_AI_1,P_network_3_6_AnnP_2,P_poll__networl_2_1_AskP_5,P_poll__networl_5_0_RP_5,P_network_0_1_AnnP_4,P_network_3_4_RI_4,P_poll__networl_0_4_RI_6,P_poll__networl_2_6_RI_6,P_poll__networl_5_5_AskP_2,P_network_3_3_AnnP_1,P_poll__networl_3_0_RI_5,P_poll__networl_5_0_RI_6,P_poll__networl_0_6_RI_5,P_poll__networl_0_6_AskP_2,P_poll__networl_5_6_AnnP_4,P_network_2_4_RI_2,P_poll__
networl_5_0_AI_1,P_network_3_4_RI_6,P_network_2_3_RP_5,P_network_6_5_AI_4,P_poll__networl_0_1_RI_0,P_network_4_2_RI_5,P_network_1_2_AskP_1,P_poll__networl_5_6_AI_6,P_poll__networl_3_1_AskP_5,P_poll__networl_4_6_RI_0,P_poll__networl_1_6_RI_5,P_network_6_1_RI_5,P_poll__networl_1_0_RP_0,P_poll__networl_4_2_AnnP_4,P_poll__networl_0_4_AnnP_4,P_masterList_4_4_4,P_network_4_5_AskP_4,P_poll__networl_4_1_AskP_2,P_poll__networl_4_1_RI_0,P_network_0_0_AI_3,P_network_6_6_AI_6,P_network_4_4_RP_3,P_network_1_5_RI_5,P_poll__networl_6_5_AskP_1,P_poll__networl_2_4_AI_0,P_masterList_0_4_2,P_network_0_2_AskP_5,P_poll__networl_0_4_RP_5,P_poll__networl_5_2_AI_4,P_poll__networl_0_3_AnnP_0,P_network_0_3_AI_5,P_poll__networl_0_0_AskP_4,P_poll__networl_6_6_RI_6,P_network_1_5_AnnP_6,P_poll__networl_0_3_AI_6,P_poll__networl_5_4_RI_4,P_network_1_1_AnnP_1,P_network_1_6_RP_5,P_network_1_0_AI_6,P_masterList_4_5_1,P_masterList_5_4_3,P_poll__networl_0_2_AnnP_0,P_poll__networl_2_0_AnnP_6,P_network_3_3_AskP_3,P_network_4_6_AnnP_1,P_network_2_5_AI_4,P_poll__networl_4_5_AnnP_4,P_poll__networl_5_2_AnsP_0,P_poll__networl_1_1_RI_5,P_poll__networl_0_6_AnnP_1,P_masterList_6_1_4,P_poll__networl_0_6_RI_6,P_network_4_0_AnnP_3,P_poll__networl_1_4_RP_1,P_poll__networl_5_2_RI_6,P_network_3_5_AI_1,P_network_1_4_RP_2,P_poll__networl_0_1_RP_3,P_network_0_4_RI_2,P_masterList_4_3_0,P_poll__networl_6_1_RI_6,P_poll__networl_3_2_AskP_0,P_masterList_3_6_0,P_network_6_2_RI_4,P_network_3_2_AskP_6,P_masterList_1_6_6,P_network_5_1_AnnP_2,P_poll__networl_5_2_AskP_3,P_masterList_4_1_5,P_poll__networl_2_3_AI_1,P_poll__networl_3_1_AnnP_0,P_network_2_2_AI_5,P_network_4_4_AskP_6,P_poll__networl_2_0_RP_2,P_poll__networl_2_5_RI_0,P_poll__networl_5_5_AnnP_4,P_network_0_3_AskP_1,P_poll__networl_5_2_AskP_1,P_network_3_5_RI_1,P_poll__networl_3_2_RI_3,P_network_0_3_RP_6,P_network_4_6_RI_6,P_poll__networl_2_4_AI_4,P_network_5_6_AskP_4,P_poll__networl_1_1_AI_4,P_network_3_4_RP_3,P_network_5_6_RI_2,P_network_1_5_AskP_4,P_poll__networl_4_4_AnnP_4,P_poll__networl_0_0_RI_4,P_network_5_5_AnnP_3,P_network_3_5_RP_1,P_poll__networl_6_5_AskP_5,P_poll__networl_2_3_RI_0,P_poll__networl_3_3_RP_4,P_network_4_4_RI_5,P_poll__networl_0_1_AI_4,P_network_6_1_AI_6,P_network_3_2_AI_5,P_network_6_2_AI_5,P_poll__networl_4_4_RI_4,P_poll__networl_1_0_RI_2,P_poll__networl_0_1_AI_6,P_masterList_6_3_0,P_poll__networl_4_6_AnnP_2,P_network_5_3_AI_5,P_network_2_4_AskP_6,P_network_3_1_AskP_3,P_masterList_0_5_4,P_poll__networl_1_1_AI_1,P_poll__networl_3_5_AI_0,P_network_1_5_RI_4,P_poll__networl_3_2_AnsP_0,P_network_5_4_AskP_1,P_network_0_2_AskP_6,P_poll__networl_4_3_AnnP_2,P_poll__networl_5_0_AskP_0,P_poll__networl_5_4_RI_0,P_network_0_4_RI_4,P_network_4_1_AI_1,P_network_6_0_RI_1,P_poll__networl_3_0_AnnP_2,P_poll__networl_6_3_AnnP_0,P_poll__networl_2_6_AI_1,P_poll__networl_0_5_RP_1,P_masterList_5_4_5,P_network_6_6_RP_5,P_poll__networl_6_3_AnnP_2,P_network_1_3_AskP_2,P_poll__networl_3_4_AnnP_2,P_poll__networl_5_4_RP_1,P_poll__networl_6_5_RI_3,P_poll__networl_1_3_RI_3,P_poll__networl_1_1_RI_3,P_network_5_1_AskP_4,P_network_3_1_RP_5,P_poll__networl_3_0_AskP_1,P_network_0_4_AskP_6,P_network_3_6_AI_6,P_poll__networl_4_2_AnnP_3,P_network_3_4_AnnP_2,P_poll__networl_4_0_RP_2,P_network_2_1_RP_5,P_poll__networl_6_3_RP_6,P_poll__networl_5_6_AskP_0,P_poll__networl_5_0_AnsP_0,P_poll__networl_5_1_RI_5,P_network_5_6_RP_4,P_poll__networl_1_4_RP_4,P_network_4_1_RI_2,P_network_1_2_AI_6,P_poll__networl_0_0_AskP_6,P_poll__networl_3_1_AskP_6,P_poll__networl_2_0_AI_4,P_poll__networl_2_2_AnnP_1,P_poll__networl_5_0_AskP_2,P_poll__networl_2_0_AskP_1,P_network_6_1_RI_6,P_network_0_1_AskP_3,P_network_1_6_RI_5,P_poll__networl_6_4_AI_3,P_poll__networl_0_0_AI_1,P_masterList_0_5_5,P_network_3_4_AskP_2,P_poll__networl_5_6_RP_1,P_network_0_5_AI_4,P_poll__networl_6_2_RI_4,P_network_3_5_AskP_3,P_network_1_2_AnnP_5,P_poll__networl_0_3_AnnP_4,P_network_5_5_RI_5,P_network_5_4_AnnP_1,P_poll__networl_6_4_AnnP_3,P_poll__networl_3_6_RP_5,P_poll__networl_0_2_AskP_4,P_poll__networl_5_3_AnnP_5,P_network_2_5_RI_1,P_poll__networl_0_5_RI_0,P_network_4_6_RI_1,P_network_5_0_AI_3,P_network_0_1_RP_4,P_network_2_4_RP_5,P_network_3_3_RP_3,P_network_4_6_RP_4,P_network_6_0_AI_1,P_poll__networl_0_5_AskP_2,P_network_1_2_AskP_3,P_network_6_3_RP_6,P_network_3_3_AskP_6,P_poll__networl_4_5_AI_4,P_poll__networl_1_4_AskP_0,P_network_6_6_AI_5,P_poll__networl_3_3_RI_5,P_poll__networl_2_2_AI_5,P_network_0_2_AnnP_1,P_poll__networl_0_2_AskP_6,P_poll__networl_6_2_AI_5,P_network_0_6_AskP_1,P_network_1_2_AI_3,P_network_2_5_AnnP_1,P_network_4_3_AnnP_1,P_network_1_2_RP_2,P_poll__networl_2_1_RP_6,P_poll__networl_4_2_AskP_0,P_network_1_5_RP_3,P_poll__networl_1_6_RI_3,P_network_2_3_AnnP_4,P_poll__networl_2_6_AI_4,P_network_5_2_AskP_1,P_network_5_0_RP_6,P_poll__networl_4_3_AskP_1,P_poll__networl_2_5_RP_3,P_poll__networl_4_0_RI_5,P_network_2_2_AnnP_6,P_poll__networl_1_1_AnnP_3,P_network_5_0_AskP_5,P_poll__networl_2_5_RI_5,P_network_6_5_RI_1,P_network_4_5_AI_4,P_network_6_5_AnnP_1,P_poll__networl_0_0_RI_3,P_poll__networl_6_5_AskP_3,P_poll__networl_0_4_AI_3,P_network_5_2_AI_5,P_network_0_5_AskP_6,P_network_5_6_AnnP_4,P_network_6_1_AI_4,P_network_5_0_AskP_6,P_poll__networl_6_3_AI_2,P_network_1_6_AnnP_6,P_poll__networl_5_5_RP_2,P_network_5_1_AnnP_1,P_poll__networl_2_1_RP_0,P_poll__networl_4_0_AnnP_4,P_poll__networl_4_1_RP_3,P_poll__networl_6_6_AI_1,P_network_6_0_AskP_1,P_network_2_2_RI_3,P_poll__networl_6_6_RI_0,P_poll__networl_1_6_RI_1,P_poll__networl_2_1_RP_1,P_network_6_1_AnnP_2,P_network_5_0_AI_5,P_poll__networl_3_0_RP_1,P_network_0_2_AI_6,P_network_4_1_RI_3,P_poll__networl_5_3_RP_1,P_poll__networl_1_5_RI_5,P_network_4_4_RP_4,P_network_6_6_AI_3,P_network_3_1_RI_5,P_network_2_3_AnnP_6,P_network_1_3_AnnP_3,P_network_5_2_AI_6,P_network_5_6_RP_3,P_masterList_5_3_4,P_network_1_4_AnnP_2,P_network_5_1_RI_3,P_network_1_0_AnnP_5,P_network_0_6_AskP_2,P_poll__networl_5_0_AnnP_3,P_masterList_0_3_3,P_poll__networl_0_2_RI_4,P_poll__networl_6_0_AskP_4,P_network_2_2_RP_4,P_poll__networl_0_3_AskP_5,P_network_0_0_AI_1,P_network_2_3_AnnP_5,P_poll__networl_1_3_RP_2,P_network_2_1_RI_1,P_poll__networl_3_1_RI_1,P_network_3_5_AnnP_5,P_network_4_5_AnnP_1,P_network_5_6_AskP_6,P_poll__networl_4_0_RP_5,P_network_6_0_RI_3,P_network_3_5_RP_5,P_network_0_5_RP_4,P_network_3_3_RI_5,P_poll__networl_3_0_RP_0,P_network_6_0_RI_5,P_poll__networl_0_2_AnnP_6,P_network_4_2_RI_4,P_poll__networl_5_4_RP_0,P_poll__networl_2_5_AI_5,P_poll__networl_4_4_AnnP_3,P_masterList_5_5_4,P_poll__networl_0_6_AskP_5,P_network_5_2_AnnP_5,P_poll__networl_5_4_AskP_2,P_network_2_2_AnnP_4,P_poll__networl_2_3_AskP_2,P_network_5_0_AnnP_6,P_poll__networl_3_1_AI_2,P_network_0_1_RP_2,P_network_5_1_RP_1,P_network_3_0_AnnP_1,P_network_4_2_AnnP_5,P_network_6_4_RI_5,P_poll__networl_6_6_AI_3,P_network_5_2_AI_1,P_poll__networl_1_4_RI_1,P_masterList_5_3_1,P_network_5_1_AnnP_4,P_network_6_0_RP_2,P_poll__networl_2_6_AskP_0,P_poll__networl_5_4_RP_3,P_poll__networl_0_4_RP_6,P_network_6_0_AI_6,P_masterList_3_5_6,P_poll__networl_4_5_AskP_2,P_network_3_5_AI_3,P_poll__networl_1_1_AskP_2,P_poll__networl_1_2_AskP_4,P_poll__networl_3_0_AnnP_5,P_network_0_5_RI_2,P_network_6_3_AI_2,P_network_3_3_AI_4,P_network_4_1_AI_4,P_masterList_5_6_5,P_network_0_6_AnnP_6,P_masterList_4_5_3,P_network_6_0_RP_6,P_poll__networl_1_1_RP_3,P_poll__networl_6_1_RI_4,P_poll__networl_2_4_RP_1,P_network_1_4_RP_3,P_network_2_0_AnnP_2,P_poll__networl_2_4_AskP_3,P_network_5_1_AI_1,P_network_6_3_AskP_6,P_poll__networl_5_6_AnnP_3,P_dead_2,P_poll__networl_4_6_AI_4,P_poll__networl_2_0_AnnP_3,P_network_3_3_AskP_2,P_poll__networl_5_5_AI_3,P_poll__networl_5_6_RI_1,P_poll__networl_6_6_RI_4,P_poll__networl_2_6_AskP_3,P_poll__networl_4_3_RI_0,P_network_0_1_AI_1,P_network_4_3_AskP_1,P_poll__networl_4_3_RI_6,P_network_2_4_RP_3,P_poll__networl_4_1_AskP_3,P_network_1_2_RI_1,P_poll__networl_2_1_RI_2,P_poll__networl_0_6_AI_2,P_poll__networl_2_3_AskP_4,P_poll__networl_4_0_RP_1,P_poll__networl_0_2_RP_6,P_network_0_5_AnnP_2,P_network_4_6_AI_3,P_masterList_3_2_2,P_masterList_6_1_5,P_network_4_5_AskP_2,P_network_0_0_RP_6,P_network_2_6_AnnP_4,P_network_1_4_AskP_4,P_poll__networl_5_1_RP_4,P_network_6_0_RP_1,P_poll__networl_1_5_AI_2,P_network_3_6_AI_4,P_poll__networl_4_0_AI_4,P_network_1_5_RP_5,P_network_1_5_AskP_5,P_poll__networl_6_0_AskP_5,P_masterList_3_5_5,P_poll__networl_5_4_AI_0,P_poll__networl_1_2_RP_4,P_poll__networl_5_1_AskP_4,P_network_2_4_AnnP_6,P_network_5_3_AnnP_3,P_masterList_2_3_2,P_poll__networl_6_4_RP_3,P_poll__networl_2_3_AI_0,P_poll__networl_2_1_AI_3,P_poll__networl_5_4_RI_3,P_network_6_4_RP_2,P_poll__networl_5_1_RI_2,P_poll__networl_1_3_RI_2,P_masterList_1_6_1,P_poll__networl_0_5_AI_2,P_masterList_5_5_5,P_network_0_2_RI_3,P_poll__networl_3_2_AskP_4,P_poll__networl_5_5_AI_1,P_network_4_0_RI_1,P_poll__networl_3_3_RI_0,P_poll__networl_1_5_AnnP_6,P_poll__networl_4_5_AnnP_5,P_poll__networl_3_4_RP_6,P_poll__networl_4_5_RP_1,P_poll__networl_5_4_AI_5,P_network_0_0_AnnP_6,P_network_6_6_RI_6,P_network_1_5_RI_6,P_network_1_4_AnnP_4,P_poll__networl_4_2_AskP_5,P_network_6_4_RI_4,P_poll__networl_1_3_AskP_0,P_poll__networl_3_5_AnnP_5,P_network_2_6_RI_3,P_poll__networl_1_6_AI_6,P_network_6_4_AnnP_4,P_network_2_2_AskP_1,P_poll__networl_1_1_AskP_1,P_poll__networl_6_3_AI_3,P_network_3_4_AskP_6,P_poll__networl_2_2_RP_5,P_masterList_3_5_2,P_network_5_2_AnnP_4,P_poll__networl_1_6_AnnP_5,P_network_5_1_AnnP_3,P_poll__networl_2_0_RI_4,P_poll__networl_3_0_AI_3,P_poll__networl_4_2_RP_2,P_masterList_4_1_2,P_poll__networl_5_3_AnsP_0,P_poll__networl_5_1_AskP_3,P_poll__networl_0_3_AnnP_2,P_network_0_1_AnnP_2,P_network_4_1_RI_4,P_masterList_4_6_1,P_poll__networl_2_0_RP_1,P_poll__networl_4_2_AnsP_0,P_network_5_4_RP_5,P_network_4_1_RI_6,P_masterList_3_3_3,P_poll__networl_1_3_RP_4,P_masterList_4_5_2,P_network_3_2_RI_5,P_poll__networl_1_4_RP_5,P_poll__networl_1_2_AnnP_3,P_poll__networl_5_6_RI_3,P_poll__networl_1_0_AnnP_4,P_network_5_4_AnnP_4,P_network_6_5_RP_4,P_poll__networl_0_0_RI_6,P_poll__networl_1_4_RP_3,P_poll__networl_1_0_AI_0,P_poll__networl_3_0_AskP_3,P_network_5_2_RI_3,P_poll__networl_1_6_RP_2,P_poll__networl_4_0_AskP_1,P_network_3_2_RI_1,P_poll__networl_5_3_AskP_6,P_network_2_2_RI_2,P_network_1_4_RP_4,P_network_0_5_RP_3,P_network_4_3_AI_4,P_poll__networl_0_6_AnnP_6,P_masterList_0_4_6,P_network_2_2_AI_6,P_network_5_5_AnnP_4,P_poll__networl_2_4_AnnP_5,P_poll__networl_6_4_RI_5,P_poll__networl_5_3_AI_3,P_poll__networl_1_1_AskP_6,P_poll__networl_6_5_AnnP_6,P_network_0_5_AI_2,P_network_4_2_RP_4,P_network_6_5_RP_2,P_poll__networl_4_4_AskP_0,P_network_3_4_AnnP_4,P_poll__networl_3_3_AskP_5,P_poll__networl_4_2_RI_3,P_network_0_6_AI_2,P_network_4_0_RI_3,P_poll__networl_2_5_AnnP_6,P_poll__networl_3_0_AnnP_3,P_network_4_4_RI_2,P_poll__networl_4_2_AI_3,P_poll__networl_6_1_AI_3,P_network_5_6_RI_3,P_poll__networl_1_6_AnnP_3,P_poll__networl_6_3_RI_6,P_electionFailed_2,P_poll__networl_6_1_RP_2,P_network_0_2_AI_5,P_poll__networl_2_6_AnnP_1,P_poll__networl_3_3_AnnP_3,P_poll__networl_1_1_RI_1,P_network_3_6_RP_6,P_poll__networl_1_2_AnnP_2,P_network_3_3_RI_3,P_network_6_5_AskP_4,P_poll__networl_3_3_RP_1,P_network_6_5_RI_5,P_network_5_0_AnnP_3,P_network_4_4_AskP_3,P_poll__networl_0_5_RI_1,P_poll__networl_1_0_AI_3,P_network_5_2_RI_4,P_network_2_4_RI_6,P_poll__networl_5_1_RI_4,P_masterList_1_6_4,P_poll__networl_2_5_AI_3,P_poll__networl_6_6_RI_5,P_poll__networl_1_1_AnsP_0,P_poll__networl_5_3_RP_3,P_network_4_0_RI_4,P_network_0_4_AskP_5,P_network_0_2_AI_3,P_network_1_1_RP_6,P_poll__networl_5_6_RP_6,P_network_4_5_AI_3,P_network_1_5_AnnP_2,P_poll__networl_2_2_AskP_0,P_network_1_2_RI_2,P_network_6_2_AnnP_4,P_poll__networl_4_3_AnsP_0,P_masterList_5_1_0,P_poll__networl_3_6_AskP_0,P_network_5_6_RP_5,P_poll__networl_3_2_AI_5,P_poll__networl_3_1_RP_2,P_poll__networl_1_3_AskP_1,P_network_6_3_AskP_4,P_poll__networl_0_5_RP_4,P_poll__networl_1_2_RI_1,P_poll__networl_2_3_AnnP_6,P_masterList_1_3_5,P_network_1_5_AskP_3,P_network_2_1_AnnP_3,P_masterList_0_2_5,P_masterList_6_2_3,P_network_1_2_AnnP_2,P_network_4_1_AskP_1,P_poll__networl_2_1_AI_1,P_poll__networl_6_0_AskP_6,P_poll__networl_2_1_AskP_6,P_poll__networl_3_6_AskP_6,P_network_1_4_RP_6,P_poll__networl_4_2_RI_5,P_poll__networl_5_0_AI_6,P_network_0_4_AnnP_5,P_network_0_1_RI_2,P_network_4_4_AskP_1,P_network_2_5_AnnP_6,P_poll__networl_3_2_RP_0,P_network_5_0_RP_4,P_network_3_5_AnnP_3,P_network_5_5_AI_6,P_masterList_5_4_4,P_network_0_1_AnnP_3,P_masterList_4_6_3,P_network_2_6_AnnP_5,P_poll__networl_5_2_AskP_0,P_masterList_0_3_6,P_network_3_1_RI_2,P_poll__networl_5_3_AI_6,P_network_2_4_AI_2,P_masterList_0_6_5,P_network_1_2_RI_4,P_network_4_5_RI_3,P_network_6_5_AI_2,P_poll__networl_6_4_AnnP_2,P_network_5_1_AskP_5,P_network_0_1_AskP_1,P_poll__networl_2_2_AnnP_5,P_poll__networl_4_3_AI_3,P_poll__networl_4_4_AskP_5,P_poll__networl_1_3_AskP_6,P_network_2_3_RI_6,P_network_5_5_RP_3,P_poll__networl_6_6_RI_2,P_masterList_2_5_2,P_masterList_2_4_6,P_poll__networl_4_2_AskP_1,P_network_0_5_AnnP_5,P_network_2_3_AI_4,P_poll__networl_6_5_RP_2,P_poll__networl_6_6_AI_2,P_masterList_0_5_1,P_poll__networl_0_3_AI_3,P_poll__networl_3_1_AI_6,P_network_1_2_AskP_4,P_network_2_3_AI_6,P_network_3_4_AskP_4,P_poll__networl_1_3_AnsP_0,P_poll__networl_1_3_AI_3,P_network_1_1_RI_6,P_poll__networl_0_3_AnnP_6,P_poll__networl_5_1_RI_3,P_network_6_0_AnnP_2,P_network_6_0_AskP_5,P_network_1_2_RI_5,P_poll__networl_5_2_AnnP_6,P_poll__networl_3_5_AskP_5,P_poll__networl_4_5_AI_0,P_masterList_0_2_6,P_network_3_6_AskP_6,P_network_6_0_AI_2,P_poll__networl_0_0_RI_5,P_poll__networl_2_2_RP_4,P_poll__networl_1_0_AnnP_6,P_network_1_3_RI_3,P_network_6_3_RI_4,P_poll__networl_0_3_RP_6,P_poll__networl_3_6_RP_4,P_poll__networl_1_3_AnnP_3,P_network_3_6_RP_3,P_masterList_1_1_3,P_network_2_6_RP_6,P_network_3_4_AskP_3,P_network_1_2_RI_3,P_masterList_5_2_3,P_network_6_3_AI_5,P_network_1_6_RI_3,P_poll__networl_6_2_AskP_6,P_masterList_2_3_5,P_poll__networl_1_2_AnnP_0,P_network_1_1_AnnP_5,P_poll__networl_3_2_RP_4,P_poll__networl_3_5_RI_5,P_network_2_5_AI_6,P_poll__networl_1_6_RP_3,P_network_6_1_AnnP_3,P_poll__networl_0_6_AnnP_2,P_masterList_5_4_6,P_poll__networl_6_4_AnnP_0,P_poll__networl_6_3_AnnP_1,P_masterList_1_4_2,P_masterList_1_6_2,P_masterList_3_5_4,P_poll__networl_5_3_AskP_0,P_poll__networl_1_4_AI_6,P_poll__networl_3_4_AskP_0,P_poll__networl_2_0_RI_0,P_poll__networl_1_6_AnnP_6,P_network_1_3_RP_4,P_poll__networl_5_1_AI_0,P_poll__networl_2_5_AskP_3,P_poll__networl_5_2_RP_4,P_poll__networl_3_4_RP_1,P_poll__networl_4_1_AnnP_3,P_masterList_6_3_2,P_network_2_1_AskP_3,P_poll__networl_0_4_AI_5,P_poll__networl_5_5_AskP_4,P_poll__networl_2_0_AnnP_1,P_poll__networl_6_6_RP_3,P_network_6_4_AnnP_5,P_poll__networl_1_3_RP_5,P_network_2_1_AI_3,P_network_0_4_AI_4,P_network_0_2_AI_2,P_poll__networl_3_6_AskP_4,P_poll__networl_3_5_RI_2,P_network_2_6_AI_2,P_network_5_6_RI_4,P_poll__networl_4_4_AI_2,P_network_1_0_AskP_1,P_poll__networl_0_2_AnnP_2,P_poll__networl_3_2_RI_2,P_masterList_1_2_3,P_poll__networl_1_2_RI_2,P_poll__networl_0_5_AI_3,P_network_4_1_RI_1,P_poll__networl_3_5_RP_0,P_network_5_2_AI_4,P_poll__networl_2_1_AskP_2,P_network_6_6_AskP_6,P_poll__networl_2_0_RP_0,P_poll__networl_6_5_AnnP_1,P_network_5_6_RP_1,P_poll__networl_3_4_AI_5,P_poll__networl_4_6_RP_3,P_network_6_1_RP_5,P_network_6_3_AnnP_2,P_poll__networl_2_6_RP_5,P_network_3_4_RI_1,P_network_1_4_AI_3,P_poll__networl_0_5_AskP_5,P_poll__networl_6_5_AnsP_0,P_network_3_1_RP_2,P_masterList_1_1_1,P_network_1_5_AI_1,P_masterList_6_4_6,P_masterList_1_5_5,P_poll__networl_5_1_RP_3,P_masterList_1_6_5,P_network_4_6_AI_2,P_poll__networl_2_4_AskP_1,P_network_4_2_AI_4,P_network_1_1_RI_4,P_poll__networl_3_0_AskP_0,P_masterList_1_5_0,P_network_1_2_AskP_5,P_poll__networl_5_6_AskP_1,P_network_1_0_AI_5,P_network_0_5_AI_1,P_poll__networl_4_3_AI_0,P_poll__networl_4_6_AnnP_4,P_network_3_0_AskP_1,P_network_5_5_AnnP_2,P_poll__networl_5_4_RP_5,P_poll__networl_2_0_AskP_4,P_network_1_1_AI_5,P_poll__networl_3_0_RP_4,P_poll__networl_5_1_AI_3,P_poll__networl_4_1_AnnP_1,P_poll__networl_1_5_AskP_5,P_poll__networl_3_4_AI_1,P_poll__networl_1_1_AnnP_5,P_poll__networl_1_4_AnnP_0,P_poll__networl_3_3_AnnP_2,P_poll__networl_4_1_AnnP_6,P_network_1_0_AI_3,P_poll__networl_2_5_RI_3,P_network_5_2_RP_3,P_poll__networl_3_6_RI_3,P_poll__networl_1_6_AI_4,P_poll__networl_2_2_AI_3,P_poll__networl_5_2_RI_5,P_network_1_1_AI_2,P_network_3_0_AI_3,P_dead_6,P_network_6_6_RI_3,P_network_4_6_RP_1,P_network_1_5_RI_3,P_poll__networl_0_1_AnnP_4,P_network_4_1_AskP
_3,P_network_0_3_AskP_2,P_poll__networl_0_1_AnnP_3,P_poll__networl_2_1_AnnP_3,P_poll__networl_2_1_RP_4,P_network_4_1_RP_1,P_masterList_5_4_2,P_network_0_0_RI_1,P_network_2_1_AskP_2,P_network_4_4_AI_2,P_poll__networl_5_6_RP_2,P_poll__networl_6_5_RI_4,P_network_6_4_AI_5,P_poll__networl_0_0_AI_4,P_poll__networl_1_2_AI_4,P_network_3_2_RI_3,P_poll__networl_6_0_AskP_1,P_poll__networl_6_4_AskP_1,P_network_5_3_AnnP_5,P_network_0_3_AskP_3,P_poll__networl_6_2_AskP_4,P_network_6_5_AI_3,P_network_0_0_AI_5,P_network_2_0_RP_5,P_network_0_6_RP_6,P_poll__networl_3_5_RP_4,P_poll__networl_6_2_RI_6,P_network_1_4_AI_4,P_poll__networl_1_3_RP_6,P_poll__networl_3_4_AI_2,P_poll__networl_4_6_AnnP_6,P_network_2_6_AnnP_1,P_network_0_4_RP_2,P_network_4_6_RP_2,P_poll__networl_6_4_AskP_0,P_network_0_3_RP_3,P_network_4_3_AskP_4,P_network_6_6_AskP_3,P_network_4_0_AI_5,P_poll__networl_5_0_RP_2,P_poll__networl_3_6_AnnP_5,P_network_3_2_RP_2,P_network_6_0_AskP_3,P_poll__networl_0_3_RP_2,P_masterList_4_1_0,P_poll__networl_5_0_RP_3,P_masterList_0_2_4,P_poll__networl_2_3_RI_5,P_network_1_1_AnnP_4,P_poll__networl_2_0_RP_3,P_network_2_5_AnnP_4,P_poll__networl_3_4_AnnP_3,P_masterList_0_6_3,P_network_1_4_RP_5,P_poll__networl_3_5_RI_6,P_network_0_5_AI_5,P_poll__networl_0_6_RP_0,P_network_1_1_RP_5,P_poll__networl_2_4_AnnP_2,P_poll__networl_4_6_AnnP_3,P_network_6_3_RI_6,P_poll__networl_0_6_AI_4,P_masterList_4_2_3,P_network_6_5_RP_6,P_poll__networl_0_4_AskP_0,P_poll__networl_6_0_RI_3,P_network_4_5_RI_4,P_masterList_0_3_4,P_network_1_0_AskP_2,P_poll__networl_1_5_RI_4,P_poll__networl_3_5_RI_3,P_poll__networl_0_2_AnnP_3,P_network_3_0_AnnP_4,P_poll__networl_3_4_RP_2,P_network_4_3_AI_6,P_poll__networl_2_2_RI_2,P_network_0_2_AnnP_5,P_poll__networl_3_6_RP_2,P_network_1_5_RP_2,P_poll__networl_6_6_AnnP_3,P_poll__networl_3_2_AskP_5,P_poll__networl_3_6_AskP_5,P_poll__networl_0_0_RP_1,P_poll__networl_0_5_AI_6,P_poll__networl_3_0_AI_1,P_poll__networl_4_0_AskP_6,P_poll__networl_2_4_AnnP_6,P_network_2_3_AnnP_1,P_poll__networl_0_6_AskP_6,P_poll__networl_6_6_AnnP_6,P_poll__networl_1_5_AnnP_1,P_poll__networl_6_2_AskP_2,P_network_6_1_AI_5,P_poll__networl_4_6_AnnP_5,P_network_3_2_AskP_5,P_network_4_0_AskP_6,P_network_2_0_AskP_4,P_poll__networl_2_4_RP_6,P_network_0_0_AnnP_5,P_network_0_5_AskP_5,P_poll__networl_2_0_AI_0,P_poll__networl_2_3_AskP_1,P_poll__networl_4_1_RP_6,P_network_0_1_RI_5,P_network_5_3_AnnP_2,P_poll__networl_0_3_AI_2,P_network_0_1_AskP_5,P_network_4_2_AI_3,P_poll__networl_1_6_RI_6,P_masterList_4_2_6,P_network_1_2_RP_5,P_network_2_2_RI_5,P_network_6_6_AnnP_5,P_network_3_4_RP_6,P_crashed_3,P_network_6_4_AI_2,P_masterList_1_2_5,P_network_0_3_AskP_4,P_masterList_3_1_0,P_network_0_2_AnnP_4,P_poll__networl_3_2_AskP_1,P_network_5_4_RI_1,P_poll__networl_5_3_RI_5,P_network_2_4_AnnP_2,P_poll__networl_4_4_RI_3,P_poll__networl_6_2_AskP_1,P_network_6_1_RP_4,P_poll__networl_2_5_AI_0,P_network_1_0_RI_5,P_poll__networl_4_5_AI_2,P_network_0_2_AI_1,P_network_4_0_AnnP_1,P_poll__networl_3_0_AI_5,P_poll__networl_3_6_AnnP_0,P_network_0_6_RP_3,P_poll__networl_2_0_AI_1,P_masterList_4_1_4,P_poll__networl_1_5_AskP_1,P_masterList_3_1_1,P_poll__networl_6_0_AnnP_4,P_poll__networl_3_3_RI_6,P_poll__networl_6_2_RP_6,P_network_3_6_AskP_2,P_poll__networl_5_1_AI_1,P_poll__networl_5_5_AnsP_0,P_network_2_1_RI_3,P_poll__networl_4_0_RI_3,P_poll__networl_1_1_RP_2,P_poll__networl_5_5_RP_3,P_network_0_5_RI_6,P_masterList_1_5_1,P_poll__networl_4_1_AI_1,P_masterList_4_3_4,P_masterList_1_1_0,P_poll__networl_3_2_RI_0,P_network_6_0_RP_5,P_masterList_6_4_1,P_network_6_2_AskP_2,P_network_6_2_AI_3,P_network_3_6_AI_1,P_masterList_3_6_2,P_poll__networl_5_1_AskP_0,P_poll__networl_5_1_RP_6,P_network_0_1_RI_1,P_poll__networl_4_5_RP_5,P_poll__networl_3_6_AnsP_0,P_network_0_3_RI_1,P_poll__networl_3_5_AnnP_2,P_network_0_4_AI_5,P_masterList_1_4_3,P_network_0_1_AskP_2,P_poll__networl_5_3_RI_3,P_network_6_1_AskP_3,P_poll__networl_1_6_AnnP_0,P_poll__networl_6_3_AskP_6,P_poll__networl_1_0_RP_2,P_poll__networl_4_5_AskP_0,P_poll__networl_6_5_RP_3,P_masterList_1_3_6,P_poll__networl_3_4_AnnP_1,P_masterList_5_6_4,P_poll__networl_1_5_RP_6,P_masterList_3_4_3,P_network_3_1_RI_3,P_poll__networl_1_5_RP_4,P_poll__networl_6_6_RP_1,P_poll__networl_4_2_RP_1,P_network_4_6_AI_5,P_poll__networl_0_6_AI_6,P_network_6_0_AskP_2,P_network_2_5_RI_3,P_poll__networl_1_5_AI_4,P_network_2_0_AI_6,P_network_2_2_AI_3,P_network_3_3_RI_4,P_network_5_1_RI_2,P_poll__networl_5_6_AnsP_0,P_poll__networl_3_2_AI_4,P_network_3_2_AnnP_2,P_network_3_4_AskP_1,P_poll__networl_2_2_AI_2,P_network_6_1_AskP_1,P_network_6_6_RP_6,P_poll__networl_5_4_AnnP_5,P_poll__networl_6_5_RP_6,P_network_1_2_AskP_2,P_network_1_5_AnnP_3,P_poll__networl_5_6_RP_5,P_network_0_2_AskP_2,P_poll__networl_2_3_AskP_5,P_poll__networl_5_5_AskP_0,P_poll__networl_6_6_AskP_4,P_network_4_5_RI_5,P_poll__networl_2_2_RP_3,P_network_4_4_RP_1,P_poll__networl_3_4_RP_4,P_poll__networl_2_6_RI_1,P_poll__networl_0_6_RP_3,P_network_6_4_AskP_4,P_poll__networl_4_5_RI_0,P_poll__networl_5_3_AI_5,P_poll__networl_0_0_RP_2,P_poll__networl_4_5_AskP_1,P_network_0_1_RP_1,P_network_2_5_AI_1,P_poll__networl_3_2_RI_1,P_masterList_1_3_2,P_network_1_3_RP_2,P_poll__networl_2_6_AI_0,P_poll__networl_2_3_RI_6,P_poll__networl_3_4_AI_6,P_poll__networl_6_4_RI_4,P_network_1_2_RP_6,P_poll__networl_5_5_AskP_1,P_network_3_4_AI_1,P_poll__networl_1_3_RP_1,P_poll__networl_4_5_AI_3,P_poll__networl_3_2_AI_3,P_poll__networl_0_0_RP_5,P_poll__networl_3_1_AskP_0,P_poll__networl_1_0_AI_6,P_poll__networl_2_3_RP_6,P_poll__networl_2_1_RI_1,P_network_4_4_AskP_2,P_poll__networl_0_6_RP_6,P_network_6_2_AskP_5,P_network_1_0_RP_5,P_network_1_1_RP_4,P_network_0_4_RI_6,P_masterList_3_5_1,P_poll__networl_0_3_AnnP_1,P_poll__networl_0_4_RP_3,P_poll__networl_3_5_AskP_4,P_network_2_5_RI_2,P_poll__networl_2_0_RP_4,P_poll__networl_4_6_RI_2,P_poll__networl_6_0_AI_2,P_network_5_4_AskP_6,P_poll__networl_3_2_AskP_2,P_network_0_6_AnnP_5,P_network_6_0_AskP_4,P_network_4_0_RP_4,P_poll__networl_0_6_AnnP_4,P_network_0_5_AI_3,P_poll__networl_0_3_RI_4,P_poll__networl_6_4_AskP_3,P_network_3_6_RP_2,P_poll__networl_0_0_AskP_2,P_network_6_5_RI_2,P_network_4_4_AnnP_2,P_poll__networl_0_5_AskP_6,P_poll__networl_1_2_RP_6,P_poll__networl_6_1_AI_0,P_poll__networl_3_0_AI_6,P_network_4_0_AnnP_4,P_poll__networl_0_1_RP_6,P_poll__networl_6_1_AnnP_0,P_poll__networl_6_1_RP_5,P_network_2_4_AnnP_5,P_poll__networl_3_1_RI_6,P_poll__networl_3_2_RP_2,P_network_5_0_AskP_4,P_poll__networl_0_3_AI_4,P_masterList_3_6_3,P_network_3_5_RI_4,P_poll__networl_0_5_AnnP_6,P_network_3_1_AskP_1,P_network_5_1_RI_4,P_poll__networl_3_6_RP_0,P_network_5_4_AI_5,P_network_1_2_AnnP_1,P_network_2_1_AI_4,P_network_4_2_RP_6,P_network_5_6_AnnP_6,P_poll__networl_5_3_AnnP_1,P_poll__networl_2_1_RI_6,P_masterList_4_4_3,P_network_3_0_AskP_4,P_network_3_4_AskP_5,P_masterList_6_1_1,P_poll__networl_5_1_AnnP_0,P_network_3_1_AI_6,P_poll__networl_1_0_AnnP_0,P_poll__networl_6_4_RP_5,P_masterList_3_4_5,P_poll__networl_6_3_RI_4,P_network_6_4_AnnP_1,P_poll__networl_1_4_RI_0,P_network_1_1_AskP_4,P_network_2_4_RI_4,P_poll__networl_4_5_AskP_6,P_network_6_5_RP_3,P_poll__networl_4_3_AnnP_6,P_network_1_3_RI_2,P_poll__networl_4_3_AnnP_5,P_network_0_4_AnnP_2,P_poll__networl_1_5_AnnP_0,P_masterList_0_5_6,P_network_2_3_AskP_1,P_poll__networl_0_4_RP_4,P_poll__networl_0_1_AI_2,P_network_3_2_RP_5,P_network_0_3_RI_3,P_network_2_6_RI_5,P_masterList_0_4_0,P_poll__networl_0_1_AskP_0,P_poll__networl_0_1_AI_0,P_masterList_6_6_4,P_network_2_2_RP_3,P_masterList_2_6_2,P_network_3_6_AskP_4,P_poll__networl_4_3_RP_6,P_network_2_5_AskP_4,P_network_0_1_RI_4,P_poll__networl_3_5_AnnP_3,P_network_1_0_RI_1,P_network_5_2_AnnP_3,P_network_4_2_AI_2,P_network_3_1_AskP_2,P_poll__networl_1_4_AI_4,P_poll__networl_3_6_RI_1,P_network_0_0_RI_6,P_poll__networl_4_3_RP_0,P_poll__networl_6_4_AskP_5,P_masterList_6_5_6,P_network_4_6_AnnP_4,P_network_4_3_RI_2,P_poll__networl_4_5_RI_3,P_network_4_6_AI_6,P_poll__networl_1_0_AskP_4,P_poll__networl_4_6_AI_5,P_network_1_3_RP_5,P_network_0_6_AskP_4,P_network_6_4_AnnP_2,P_poll__networl_1_5_AskP_0,P_network_5_6_AskP_2,P_network_3_0_AnnP_2,P_network_5_2_AskP_3,P_network_3_5_AI_5,P_poll__networl_1_4_RI_4,P_poll__networl_4_0_RP_0,P_poll__networl_1_1_AI_3,P_network_0_4_AskP_4,P_network_6_5_AI_6,P_poll__networl_4_1_AskP_0,P_network_3_2_RI_6,P_poll__networl_3_4_AnnP_0,P_masterList_0_1_1,P_network_6_4_RI_1,P_network_0_3_RP_4,P_network_5_6_RI_1,P_poll__networl_5_3_RP_2,P_network_0_2_AskP_4,P_poll__networl_5_3_AskP_5,P_poll__networl_1_2_RI_5,P_poll__networl_6_5_AnnP_2,P_network_6_5_RP_5,P_network_6_6_RP_1,P_poll__networl_3_6_AskP_1,P_poll__networl_3_0_RI_0,P_poll__networl_2_4_AskP_5,P_masterList_5_2_5,P_poll__networl_0_4_AI_1,P_poll__networl_3_2_RP_3,P_network_3_6_AnnP_4,P_network_2_5_RI_6,P_poll__networl_4_6_AI_3,P_network_2_1_AskP_1,P_poll__networl_1_5_RP_2,P_poll__networl_5_0_AskP_4,P_poll__networl_6_6_AnnP_0,P_poll__networl_3_5_RI_1,P_poll__networl_6_5_AI_1,P_network_4_2_RI_2,P_masterList_0_1_5,P_poll__networl_4_6_RP_0,P_network_1_3_AnnP_4,P_poll__networl_5_5_AI_5,P_poll__networl_6_0_RI_6,P_network_2_6_AskP_1,P_poll__networl_6_3_RP_2,P_poll__networl_4_2_RP_5,P_network_3_6_RI_5,P_masterList_3_1_4,P_network_2_2_AskP_5,P_network_6_4_AI_6,P_network_0_6_RP_1,P_poll__networl_2_2_RI_4,P_poll__networl_6_2_AnnP_0,P_network_5_0_AskP_3,P_poll__networl_1_1_RI_4,P_network_4_0_RI_5,P_poll__networl_3_0_AnnP_0,P_electionFailed_1,P_poll__networl_3_5_AskP_6,P_network_3_0_RI_6,P_poll__networl_1_3_RI_4,P_poll__networl_5_3_AskP_2,P_poll__networl_6_2_AI_4,P_network_5_3_RI_3,P_poll__networl_6_1_AskP_5,P_network_4_2_AnnP_4,P_poll__networl_3_3_RI_2,P_poll__networl_2_6_RP_4,P_masterList_2_5_3,P_network_3_3_AI_6,P_network_1_3_AI_5,P_network_4_3_RP_6,P_network_3_3_AskP_1,P_network_2_3_RI_4,P_network_2_0_RP_2,P_masterList_6_4_4,P_network_1_6_AI_1,P_poll__networl_6_3_RP_5,P_network_0_6_RP_4,P_network_5_3_RI_2,P_poll__networl_6_3_AskP_5,P_poll__networl_4_0_RP_3,P_network_5_6_RI_5,P_poll__networl_0_5_RI_4,P_poll__networl_5_3_AnnP_0,P_poll__networl_1_1_AnnP_0,P_poll__networl_6_6_RI_3,P_poll__networl_0_2_AI_3,P_poll__networl_4_6_AnnP_0,P_poll__networl_1_6_AskP_2,P_poll__networl_0_1_AskP_5,P_poll__networl_0_1_AI_1,P_network_3_3_RP_1,P_poll__networl_4_2_AI_2,P_network_1_6_AskP_1,P_network_0_3_RP_2,P_poll__networl_3_0_AskP_4,P_network_1_4_AskP_1,P_poll__networl_4_1_AnnP_4,P_network_2_3_RP_1,P_network_4_3_RP_4,P_poll__networl_2_0_AnnP_4,P_poll__networl_4_2_AI_0,P_network_5_4_RP_6,P_poll__networl_2_0_RI_2,P_network_4_5_AnnP_2,P_masterList_1_2_0,P_poll__networl_5_4_RI_5,P_network_4_0_AskP_2,P_poll__networl_2_1_AskP_4,P_network_0_3_RI_4,P_network_1_0_RP_2,P_network_5_3_AnnP_6,P_poll__networl_3_1_AnnP_2,P_network_6_4_AI_4,P_masterList_2_4_5,P_poll__networl_0_4_AskP_3,P_network_1_5_RP_4,P_masterList_6_5_3,P_network_0_1_AskP_4,P_network_5_4_AI_3,P_network_4_5_RP_4,P_masterList_1_2_2,P_poll__networl_3_4_RI_4,P_poll__networl_4_4_AnsP_0,P_poll__networl_0_2_RP_2,P_poll__networl_5_0_AI_0,P_poll__networl_2_5_AnnP_5,P_network_1_3_RI_4,P_network_5_2_RP_6,P_masterList_4_1_6,P_network_6_1_RP_3,P_masterList_3_3_2,P_poll__networl_2_5_RI_1,P_poll__networl_0_0_RP_4,P_network_2_0_AnnP_6,P_poll__networl_0_5_AskP_4,P_network_3_1_RP_3,P_poll__networl_6_2_AnnP_6,P_network_6_4_RI_2,P_poll__networl_1_0_RP_1,P_network_4_4_AnnP_4,P_poll__networl_5_1_AskP_1,P_network_4_4_RP_5,P_network_3_6_AskP_3,P_network_3_0_RI_4,P_poll__networl_0_0_RP_0,P_network_1_2_AskP_6,P_poll__networl_5_6_AI_0,P_network_5_1_RP_4,P_poll__networl_3_5_AnnP_6,P_poll__networl_6_4_AI_5,P_network_3_4_AnnP_5,P_network_2_5_RP_3,P_network_6_3_AI_3,P_poll__networl_3_3_RI_3,P_network_0_6_RI_3,P_poll__networl_5_5_RI_1,P_network_5_3_RP_1,P_masterList_3_6_6,P_poll__networl_3_1_AI_0,P_network_2_0_AnnP_4,P_poll__networl_5_3_AnnP_6,P_network_4_0_AskP_4,P_poll__networl_5_3_RP_4,P_masterList_4_3_2,P_network_6_1_RI_4,P_poll__networl_6_0_RP_3,P_network_3_1_RI_4,P_poll__networl_4_2_RI_0,P_poll__networl_5_2_RP_5,P_network_5_3_RP_3,P_network_1_6_AnnP_5,P_network_2_2_AskP_6,P_masterList_1_4_5,P_poll__networl_5_6_AskP_2,P_network_4_3_AskP_3,P_poll__networl_5_5_RP_6,P_poll__networl_6_3_RP_0,P_network_2_6_RI_1,P_poll__networl_1_0_AskP_2,P_network_2_0_AnnP_3,P_masterList_3_1_3,P_poll__networl_0_1_AnnP_1,P_poll__networl_2_2_AskP_5,P_poll__networl_5_3_AnnP_2,P_network_4_3_RI_5,P_poll__networl_4_5_AnnP_3,P_masterList_4_5_5,P_network_2_6_RI_6,P_network_5_6_AnnP_5,P_poll__networl_6_2_AnsP_0,P_network_4_2_AskP_2,P_poll__networl_3_1_AskP_1,P_network_0_3_RI_5,P_poll__networl_4_0_RI_4,P_poll__networl_6_1_AnnP_4,P_network_3_5_AnnP_4,P_network_0_1_AnnP_1,P_network_2_3_AskP_4,P_masterList_0_3_1,P_network_0_2_AnnP_6,P_poll__networl_0_1_AskP_6,P_poll__networl_3_4_AnnP_6,P_masterList_1_3_1,P_poll__networl_6_6_AI_5,P_poll__networl_4_0_AnnP_5,P_network_4_6_AnnP_6,P_poll__networl_0_0_AI_5,P_network_6_6_AnnP_6,P_poll__networl_0_6_AnnP_5,P_poll__networl_6_2_AI_2,P_network_5_6_AI_5,P_network_1_3_AskP_3,P_poll__networl_1_4_RP_2,P_poll__networl_5_3_AI_4,P_poll__networl_2_2_AnnP_0,P_poll__networl_5_4_AI_4,P_poll__networl_2_4_RI_2,P_poll__networl_4_2_AskP_6,P_network_1_0_AnnP_6,P_poll__networl_3_6_RP_6,P_poll__networl_3_3_AnnP_6,P_poll__networl_1_4_AI_0,P_poll__networl_4_2_AI_6,P_poll__networl_3_5_RP_5,P_poll__networl_4_4_AskP_1,P_poll__networl_1_6_AI_0,P_masterList_0_4_5,P_masterList_0_6_2,P_network_1_2_AI_2,P_poll__networl_0_4_RI_0,P_poll__networl_4_5_AskP_3,P_poll__networl_2_3_RP_3,P_poll__networl_1_3_AskP_2,P_network_2_6_AI_4,P_masterList_2_4_2,P_poll__networl_0_2_RP_3,P_poll__networl_1_1_AI_6,P_poll__networl_0_0_AnnP_1,P_poll__networl_4_4_AI_1,P_network_3_0_RP_2,P_poll__networl_1_5_RI_6,P_poll__networl_1_6_AskP_6,P_network_2_3_RP_2,P_poll__networl_6_1_RP_1,P_network_3_1_AI_1,P_poll__networl_1_5_AnnP_2,P_poll__networl_5_4_AI_1,P_network_2_1_AI_6,P_network_6_2_RP_1,P_masterList_1_5_2,P_network_0_2_AI_4,P_poll__networl_1_0_RI_4,P_network_0_2_AskP_3,P_poll__networl_5_5_AnnP_3,P_poll__networl_3_1_RP_3,P_network_5_1_AskP_3,P_masterList_3_6_4,P_network_3_3_AskP_5,P_poll__networl_2_0_AnsP_0,P_poll__networl_6_2_RP_2,P_masterList_5_3_6,P_poll__networl_2_4_AskP_4,P_network_1_1_AnnP_2,P_network_4_5_RI_6,P_poll__networl_3_1_AI_5,P_poll__networl_3_3_AnsP_0,P_poll__networl_4_5_RP_4,P_poll__networl_4_1_RP_1,P_poll__networl_0_2_RI_0,P_masterList_3_2_0,P_poll__networl_6_4_RP_1,P_network_6_3_RP_3,P_poll__networl_3_6_AnnP_6,P_poll__networl_5_5_AI_2,P_poll__networl_2_3_AskP_6,P_network_2_3_AI_5,P_masterList_4_2_0,P_network_3_1_AnnP_1,P_poll__networl_2_5_AskP_0,P_dead_0,P_poll__networl_2_1_RI_5,P_poll__networl_4_4_AskP_6,P_poll__networl_3_3_RP_2,P_network_5_1_AskP_1,P_network_6_2_RI_1,P_poll__networl_1_3_AnnP_5,P_poll__networl_6_1_AnnP_3,P_poll__networl_1_3_AnnP_6,P_network_4_0_RP_3,P_masterList_5_1_3,P_network_3_4_RI_5,P_network_5_1_AnnP_5,P_poll__networl_3_0_RI_6,P_network_1_0_AI_4,P_masterList_4_5_0,P_poll__networl_0_1_RI_2,P_network_1_3_AskP_5,P_poll__networl_6_1_RI_5,P_network_5_6_AI_3,P_network_2_0_RI_4,P_poll__networl_3_6_AI_6,P_network_0_6_AskP_5,P_poll__networl_6_0_AnnP_3,P_poll__networl_6_1_RI_3,P_network_1_5_AI_2,P_poll__networl_6_3_AI_6,P_poll__networl_6_5_AI_4,P_network_1_0_RI_3,P_poll__networl_5_0_AskP_1,P_poll__networl_4_4_RP_6,P_poll__networl_5_3_RI_1,P_poll__networl_6_3_AskP_2,P_poll__networl_4_2_RI_4,P_poll__networl_6_1_AskP_3,P_poll__networl_0_2_RI_2,P_network_4_6_AnnP_5,P_poll__networl_1_3_AI_0,P_masterList_5_2_6,P_poll__networl_4_5_RI_4,P_poll__networl_5_3_AI_2,P_poll__networl_1_4_AnsP_0,P_network_2_5_AnnP_5,P_poll__networl_3_4_RI_5,P_poll__networl_4_0_AI_3,P_network_6_2_AI_2,P_poll__networl_4_5_RP_6,P_poll__networl_6_3_AnnP_3,P_poll__networl_2_5_AskP_2,P_poll__networl_0_3_AnnP_3,P_network_1_2_AnnP_3,P_network_6_1_RI_1,P_network_6_4_AI_1,P_masterList_2_5_1,P_network_4_0_AskP_3,P_masterList_0_5_3,P_poll__networl_2_2_AskP_2,P_masterList_6_2_5,P_poll__networl_0_1_AnnP_5,P_network_4_6_AskP_4,P_poll__networl_2_1_AnnP_6,P_poll__networl_4_2_RP_4,P_poll__networl_4_5_AnnP_0,P_poll__networl_4_6_AskP_4,P_poll__networl_0_6_RI_0,P_poll__networl_4_2_RI_1,P_poll__networl_6_2_RP_0,P_poll__networl_2_1_AnnP_2,P_poll__networl_5_2_RP_3,P_network_0_0_AI_6,P_network_4_3_AskP_2,P_network_3_5_RP_6,P_network_6_2_RI_6,P_network_1_3_AI_6,P_poll__networl_6_2_RI_1,P_poll__networl_0_6_RP_1,P_poll__networl_0_5_AnsP_0,P_poll__networl_5_0_AnnP_5,P_masterList_0_3_0,P_poll__networl_1_0_AI_2,P_masterList_6_1_6,P_poll__networl_0_2_RP_0,P_network_2_0_AskP_3,P_network_4_4_AI_1,P_networ
k_3_2_AI_2,P_poll__networl_5_5_RP_4,P_masterList_4_6_5,P_network_6_3_AnnP_1,P_masterList_4_3_6,P_network_5_0_RI_6,P_network_2_6_AnnP_6,P_poll__networl_3_0_RI_4,P_poll__networl_0_2_AskP_2,P_poll__networl_3_4_AI_3,P_network_2_6_AskP_4,P_network_3_2_AnnP_3,P_network_5_2_AskP_2,P_poll__networl_1_1_AI_5,P_network_4_2_AnnP_2,P_poll__networl_6_4_RI_0,P_poll__networl_3_3_RP_0,P_poll__networl_5_6_AnnP_0,P_poll__networl_2_5_AnnP_1,P_poll__networl_5_6_AskP_6,P_network_3_1_AnnP_5,P_poll__networl_1_6_AnnP_4,P_network_3_5_AskP_2,P_network_0_0_AI_4,P_network_5_5_RI_3,P_network_4_2_RI_3,P_network_0_6_AskP_3,P_network_3_4_AnnP_3,P_network_5_3_AI_6,P_network_3_2_AI_3,P_network_2_0_RP_3,P_poll__networl_0_1_RP_2,P_masterList_2_6_4,P_poll__networl_3_4_AskP_2,P_network_1_3_AI_2,P_network_6_3_RI_1,P_network_3_3_RP_6,P_network_2_2_AnnP_3,P_poll__networl_3_6_RI_6,P_masterList_5_4_0,P_network_6_2_AI_4,P_poll__networl_2_0_AI_3,P_network_4_4_AskP_5,P_poll__networl_4_0_AskP_3,P_network_0_1_AI_4,P_poll__networl_1_6_RP_4,P_poll__networl_4_2_AskP_2,P_masterList_3_3_1,P_network_4_2_RI_1,P_poll__networl_0_2_RP_1,P_network_6_3_AskP_5,P_network_1_0_RI_6,P_network_2_3_RI_3,P_network_2_6_RI_4,P_poll__networl_5_0_AskP_3,P_network_2_1_AI_1,P_masterList_2_3_1,P_masterList_2_2_5,P_poll__networl_1_4_RI_5,P_network_2_4_AskP_1,P_poll__networl_1_0_RP_5,P_poll__networl_2_5_RI_4,P_masterList_4_6_2,P_network_1_1_RP_2,P_network_0_6_RI_4,P_network_5_1_RI_1,P_network_2_0_RP_1,P_poll__networl_3_4_RI_3,P_masterList_5_3_3,P_masterList_6_3_4,P_network_1_3_AskP_1,P_poll__networl_3_1_AnnP_4,P_poll__networl_2_0_AskP_3,P_poll__networl_4_3_AnnP_0,P_network_0_2_RP_1,P_poll__networl_5_2_AI_3,P_network_5_1_AI_4,P_network_5_2_RP_2,P_network_0_3_AnnP_1,P_network_0_4_RI_1,P_poll__networl_5_4_AI_2,P_network_6_5_RI_3,P_poll__networl_5_4_AnnP_1,P_poll__networl_4_3_AskP_4,P_poll__networl_2_3_RI_3,P_poll__networl_4_5_AskP_4,P_poll__networl_4_6_AskP_3,P_poll__networl_6_0_RI_5,P_network_4_1_RI_5,P_network_2_6_AI_1,P_network_5_2_RI_1,P_masterList_1_1_6,P_poll__networl_2_2_AI_0,P_network_5_6_AI_6,P_masterList_0_1_0,P_masterList_5_5_1,P_network_1_5_AnnP_1,P_network_1_6_RP_1,P_network_2_2_RP_6,P_network_2_3_RP_3,P_network_4_1_AnnP_1,P_poll__networl_6_6_AnsP_0,P_poll__networl_3_2_RP_6,P_network_2_1_RI_5,P_network_6_1_AskP_2,P_network_0_6_AI_5,P_network_5_1_AI_3,P_masterList_5_2_1,P_masterList_2_1_0,P_network_4_6_AskP_1,P_network_0_4_RP_6,P_poll__networl_2_1_AnnP_1,P_network_5_6_RP_2,P_poll__networl_6_0_AskP_2,P_poll__networl_5_0_RI_2,P_network_3_3_RP_5,P_network_3_5_AskP_1,P_poll__networl_1_6_AnnP_1,P_poll__networl_6_2_RP_5,P_poll__networl_3_1_AnsP_0,P_network_4_6_AskP_6,P_network_3_3_RI_6,P_poll__networl_2_4_AskP_6,P_network_0_4_RP_5,P_network_5_0_RP_1,P_poll__networl_6_1_RP_3,P_poll__networl_3_5_AnsP_0,P_poll__networl_4_1_AI_0,P_poll__networl_1_0_RI_1,P_masterList_1_4_0,P_poll__networl_5_2_RP_6,P_poll__networl_6_1_AnnP_5,P_poll__networl_0_4_AnnP_2,P_network_3_0_AskP_3,P_poll__networl_1_2_AskP_1,P_network_3_4_RP_1,P_poll__networl_5_4_AnsP_0,P_network_3_1_AnnP_6,P_poll__networl_6_3_AnsP_0,P_network_5_4_RP_2,P_network_3_0_AskP_2,P_poll__networl_3_6_AI_3,P_poll__networl_3_3_RP_5,P_poll__networl_5_6_RI_6,P_poll__networl_2_2_AI_6,P_network_6_0_RI_6,P_network_3_3_AnnP_6,P_poll__networl_3_3_AnnP_0,P_network_2_2_AI_2,P_poll__networl_1_6_AI_1,P_network_5_1_AI_6,P_network_0_0_AskP_2,P_poll__networl_3_4_AskP_4,P_network_0_6_RI_2,P_poll__networl_5_6_RI_0,P_poll__networl_5_0_AnnP_4,P_network_3_6_AnnP_6,P_network_6_2_RP_4,P_poll__networl_0_2_AI_5,P_poll__networl_5_4_RI_2,P_network_0_5_AnnP_1,P_network_4_3_AnnP_6,P_poll__networl_0_6_RI_1,P_poll__networl_2_0_RI_1,P_poll__networl_2_1_AI_0,P_network_3_1_RP_4,P_poll__networl_0_0_AskP_1,P_poll__networl_0_2_RP_4,P_poll__networl_3_4_RI_6,P_poll__networl_3_1_AnnP_6,P_poll__networl_4_4_RP_5,P_network_6_3_AskP_3,P_poll__networl_6_3_RP_3,P_poll__networl_6_5_AnnP_0,P_masterList_4_4_5,P_network_5_0_AnnP_2,P_poll__networl_4_1_AskP_6,P_poll__networl_0_6_RP_5,P_poll__networl_6_2_AI_0,P_poll__networl_5_0_AI_5,P_poll__networl_5_4_RI_6,P_poll__networl_0_2_AskP_3,P_network_3_3_RI_1,P_network_1_4_AI_5,P_poll__networl_2_3_RP_2,P_poll__networl_6_6_RP_5,P_poll__networl_0_5_RP_6,P_masterList_6_5_5,P_network_1_1_RP_1,P_masterList_4_2_1,P_masterList_5_6_0,P_network_1_1_AskP_5,P_network_4_5_AI_2,P_poll__networl_4_3_AskP_3,P_poll__networl_1_5_RP_3,P_poll__networl_6_3_RI_5,P_masterList_1_4_1,P_network_2_2_AnnP_1,P_poll__networl_0_6_RI_4,P_poll__networl_5_2_AI_0,P_poll__networl_5_4_RP_6,P_network_0_5_AskP_3,P_poll__networl_5_3_AskP_3,P_poll__networl_1_5_AskP_6,P_poll__networl_5_6_RI_4,P_poll__networl_3_4_RP_3,P_network_4_5_AI_1,P_poll__networl_1_4_AI_1,P_masterList_0_2_1,P_network_6_2_RI_3,P_poll__networl_2_1_RI_0,P_poll__networl_4_3_AskP_6,P_poll__networl_6_5_AskP_4,P_poll__networl_1_3_RP_0,P_network_6_2_RP_6,P_poll__networl_0_5_AI_0,P_masterList_2_4_0,P_poll__networl_6_6_AI_6,P_network_3_0_RP_4,P_network_4_0_AnnP_6,P_network_0_6_RI_5,P_poll__networl_1_3_AskP_4,P_network_4_5_AskP_3,P_network_6_5_AskP_2,P_poll__networl_6_2_AI_1,P_poll__networl_2_4_RP_3,P_poll__networl_2_5_AI_2,P_poll__networl_6_5_AskP_2,P_network_3_6_AskP_5,P_network_1_2_RP_1,P_poll__networl_4_6_AskP_1,P_poll__networl_6_5_AI_0,P_network_0_1_RI_6,P_network_4_1_AskP_5,P_network_0_3_AI_3,P_poll__networl_4_3_RI_3,P_network_0_5_RP_6,P_network_3_0_AskP_5,P_network_4_1_AskP_4,P_poll__networl_1_5_RP_0,P_poll__networl_5_5_RI_0,P_network_0_1_RP_5,P_poll__networl_5_1_AI_2,P_poll__networl_5_3_RP_5,P_network_1_0_AskP_6,P_network_0_2_RI_6,P_network_5_3_AI_3,P_network_3_0_AnnP_3,P_network_1_6_AnnP_2,P_network_4_0_RP_6,P_network_0_0_AskP_3,P_poll__networl_1_3_AI_4,P_network_4_0_AI_3,P_poll__networl_4_0_AI_2,P_poll__networl_2_6_AskP_1,P_poll__networl_0_5_RI_3,P_network_1_2_AnnP_4,P_poll__networl_6_2_AI_3,P_network_5_0_RI_5,P_poll__networl_1_2_AI_1,P_network_6_4_RP_5,P_poll__networl_4_2_RP_0,P_network_0_5_AskP_2,P_poll__networl_2_1_RP_3,P_masterList_0_3_2,P_masterList_2_2_4,P_network_6_5_AskP_6,P_poll__networl_4_4_RI_5,P_network_5_1_AskP_6,P_poll__networl_3_5_AskP_3,P_network_1_3_AnnP_6,P_poll__networl_2_5_RI_2,P_poll__networl_0_3_AI_1,P_network_1_4_AnnP_3,P_poll__networl_2_0_AskP_5,P_masterList_6_5_0,P_network_3_6_RI_3,P_poll__networl_6_5_RI_5,P_poll__networl_3_6_RI_2,P_crashed_4,P_network_5_5_AskP_3,P_poll__networl_1_0_RP_6,P_masterList_5_5_0,P_poll__networl_0_0_AnnP_2,P_poll__networl_6_5_RP_0,P_network_0_0_AI_2,P_network_4_3_RI_6,P_poll__networl_3_0_RP_5,P_network_6_0_AnnP_1,P_masterList_4_4_6,P_poll__networl_3_2_AnnP_5,P_poll__networl_5_6_AskP_3,P_poll__networl_3_2_AskP_6,P_network_2_6_RI_2,P_masterList_3_3_5,P_poll__networl_1_3_RI_5,P_network_6_3_AnnP_5,P_poll__networl_0_4_RI_1,P_poll__networl_1_0_AskP_0,P_poll__networl_2_3_AI_4,P_network_5_4_RP_4,P_poll__networl_2_1_AnsP_0,P_poll__networl_1_2_RI_4,P_poll__networl_1_3_AnnP_0,P_network_5_0_RI_2,P_network_1_3_AnnP_5,P_poll__networl_5_4_AskP_0,P_network_3_1_AskP_5,P_poll__networl_5_6_AnnP_1,P_network_0_5_RI_5,P_poll__networl_1_6_AskP_5,P_poll__networl_6_1_RP_0,P_poll__networl_5_1_AskP_5,P_poll__networl_4_2_RP_3,P_poll__networl_6_3_RI_2,P_network_4_0_AI_2,P_poll__networl_1_2_RI_0,P_network_5_6_AnnP_3,P_electionFailed_0,P_poll__networl_3_1_AnnP_5,P_network_5_2_RI_5,P_poll__networl_5_4_AI_3,P_poll__networl_1_4_AskP_4,P_network_1_3_RI_6,P_masterList_6_6_1,P_poll__networl_2_1_AskP_3,P_network_5_5_AskP_4,P_poll__networl_3_0_AskP_5,P_poll__networl_5_4_AnnP_6,P_masterList_0_6_6,P_network_6_1_AnnP_6,P_poll__networl_1_5_RP_1,P_network_4_4_RP_2,P_network_1_1_AI_1,P_network_2_1_RP_6,P_network_0_3_AI_2,P_network_1_2_RP_4,P_poll__networl_3_5_AskP_2,P_poll__networl_1_0_AnnP_2,P_network_1_2_AnnP_6,P_network_2_4_AI_6,P_network_5_2_AI_3,P_poll__networl_6_4_AskP_4,P_network_3_6_RI_1,P_poll__networl_4_6_RP_5,P_network_5_3_RI_1,P_masterList_0_2_0,P_electionFailed_4,P_poll__networl_3_3_AskP_6,P_network_4_3_AI_3,P_poll__networl_2_6_AnnP_0,P_poll__networl_3_5_AnnP_1,P_network_5_2_AnnP_2,P_network_5_6_AskP_1,P_poll__networl_0_3_AskP_2,P_poll__networl_0_2_RP_5,P_poll__networl_0_5_AskP_0,P_network_6_2_AskP_6,P_masterList_6_6_6,P_network_4_5_AI_5,P_poll__networl_2_2_RP_6,P_poll__networl_6_2_AskP_0,P_poll__networl_6_6_RP_4,P_network_0_1_RI_3,P_poll__networl_6_2_RP_1,P_network_4_0_RI_6,P_network_2_5_AI_2,P_network_1_3_AI_1,P_poll__networl_1_2_AnnP_6,P_network_6_2_RP_2,P_poll__networl_2_2_RI_0,P_poll__networl_4_1_RP_2,P_network_6_2_AnnP_2,P_poll__networl_0_0_RI_1,P_network_6_3_AI_6,P_poll__networl_0_5_AnnP_0,P_network_1_3_AnnP_1,P_poll__networl_2_4_RI_0,P_masterList_4_3_3,P_poll__networl_2_3_RP_1,P_poll__networl_5_1_AnsP_0,P_poll__networl_6_1_RI_0,P_network_3_2_AnnP_4,P_network_5_4_AI_1,P_network_5_5_AnnP_6,P_poll__networl_1_4_AI_5,P_network_3_1_AskP_4,P_poll__networl_3_1_RI_3,P_network_1_3_AI_3,P_network_5_2_RP_5,P_network_2_1_AnnP_4,P_poll__networl_5_5_RI_6,P_network_5_3_RI_4,P_poll__networl_5_1_AnnP_3,P_poll__networl_3_3_AnnP_4,P_poll__networl_0_6_AskP_3,P_poll__networl_4_3_RI_1,P_poll__networl_4_0_AnnP_2,P_poll__networl_3_2_AnnP_1,P_poll__networl_6_0_AI_1,P_network_6_3_RP_5,P_network_1_6_RP_2,P_poll__networl_6_5_RI_0,P_network_0_6_RP_5,P_poll__networl_3_0_AnnP_4,P_poll__networl_0_6_AskP_4,P_masterList_1_1_4,P_network_0_2_RI_2,P_poll__networl_0_1_RP_1,P_masterList_5_5_3,P_network_3_5_AI_2,P_poll__networl_3_1_AskP_3,P_poll__networl_2_0_AI_6,P_poll__networl_5_2_AskP_2,P_network_0_2_RP_5,P_poll__networl_2_6_AnnP_4,P_network_3_5_AnnP_1,P_poll__networl_0_5_AI_1,P_network_2_1_AI_2,P_network_6_4_RP_6,P_poll__networl_2_4_AI_3,P_network_5_6_AnnP_1,P_poll__networl_6_6_AnnP_2,P_network_2_6_RP_3,P_poll__networl_4_3_RP_1,P_poll__networl_5_1_AnnP_4,P_masterList_2_6_6,P_network_0_0_AskP_5,P_poll__networl_1_4_RP_6,P_poll__networl_4_4_RP_4,P_poll__networl_2_5_AskP_1,P_electionFailed_6,P_poll__networl_4_5_AskP_5,P_poll__networl_2_3_AnnP_4,P_network_0_5_RP_5,P_poll__networl_4_0_AI_1,P_network_6_0_RP_4,P_network_0_5_AnnP_6,P_masterList_2_2_2,P_poll__networl_5_0_RI_1,P_poll__networl_6_4_RP_6,P_dead_4,P_network_2_6_AskP_2,P_network_5_1_RP_2,P_network_1_6_RI_4,P_poll__networl_3_2_AI_0,P_network_4_6_RI_4,P_poll__networl_6_6_AnnP_4,P_network_5_0_AskP_1,P_poll__networl_0_5_RP_5,P_poll__networl_1_1_AnnP_2,P_network_6_6_AnnP_4,P_network_0_2_AskP_1,P_poll__networl_3_1_AskP_2,P_network_1_4_AskP_2,P_masterList_3_2_5,P_poll__networl_3_3_AskP_0,P_network_4_4_AI_4,P_network_6_5_AnnP_6,P_poll__networl_4_6_AI_6,P_poll__networl_1_6_AskP_1,P_poll__networl_5_2_RP_2,P_masterList_6_3_6,P_poll__networl_5_1_RP_2,P_poll__networl_1_1_AnnP_6,P_poll__networl_2_0_RP_6,P_network_4_1_AI_6,P_poll__networl_6_1_AI_5,P_network_1_0_AnnP_4,P_network_6_3_AI_1,P_poll__networl_6_1_RP_4,P_network_1_2_AI_4,P_poll__networl_1_5_AI_3,P_poll__networl_3_0_AI_0,P_poll__networl_6_4_AnnP_6,P_network_5_3_AskP_2,P_poll__networl_2_1_RP_5,P_poll__networl_0_1_AskP_3,P_network_1_5_AI_4,P_masterList_1_1_5,P_network_1_0_RP_6,P_poll__networl_5_0_AnnP_0,P_network_3_0_RP_5,P_poll__networl_0_1_AskP_1,P_poll__networl_6_5_RI_6,P_poll__networl_2_2_AnsP_0,P_network_2_6_RP_1,P_network_3_3_RI_2,P_network_4_2_RP_5,P_poll__networl_0_0_AI_2,P_poll__networl_6_1_AskP_1,P_network_4_2_AnnP_3,P_network_3_2_RP_3,P_poll__networl_6_1_AI_1,P_masterList_2_1_2,P_network_4_4_RP_6,P_poll__networl_3_2_AnnP_3,P_network_6_6_AskP_5,P_poll__networl_6_6_AskP_6,P_poll__networl_2_1_AnnP_4,P_poll__networl_3_5_AnnP_0,P_poll__networl_3_6_AnnP_2,P_network_4_3_RI_1,P_poll__networl_5_5_AnnP_6,P_network_0_3_RI_6,P_poll__networl_5_5_AI_0,P_poll__networl_5_5_RI_3,P_poll__networl_6_1_RI_1,P_network_5_5_RP_6,P_poll__networl_1_6_AnsP_0,P_masterList_4_1_3,P_network_1_6_AI_3,P_network_5_1_AnnP_6,P_poll__networl_0_6_AskP_1,P_network_5_2_AnnP_6,P_poll__networl_3_6_RI_4,P_poll__networl_1_5_AI_6,P_network_2_2_AskP_3,P_network_6_6_RI_2,P_network_6_0_AskP_6,P_network_5_5_RP_2,P_network_1_2_AI_1,P_poll__networl_2_4_AI_1,P_poll__networl_6_0_AnnP_1,P_network_0_5_AnnP_4,P_poll__networl_1_2_AskP_6,P_poll__networl_0_5_RP_0,P_network_4_5_AskP_6,P_poll__networl_3_1_AnnP_1,P_poll__networl_4_4_RP_3,P_poll__networl_5_2_RP_0,P_poll__networl_4_0_AnnP_3,P_poll__networl_4_5_AnnP_6,P_network_0_1_AnnP_6,P_masterList_1_3_3,P_poll__networl_2_2_AnnP_4,P_poll__networl_4_3_AskP_2,P_network_6_5_RI_4,P_poll__networl_6_3_AI_4,P_poll__networl_0_0_AI_3,P_poll__networl_0_4_AnsP_0,P_network_4_5_RP_1,P_poll__networl_3_3_AI_4,P_network_6_6_AI_1,P_poll__networl_2_0_RI_6,P_poll__networl_5_1_AI_5,P_poll__networl_5_5_AnnP_5,P_poll__networl_2_5_RP_6,P_poll__networl_6_4_RI_3,P_network_2_1_RP_3,P_poll__networl_5_1_AnnP_1,P_network_4_1_AskP_6,P_poll__networl_4_0_AskP_4,P_poll__networl_1_4_AnnP_3,P_poll__networl_5_6_AskP_4,P_poll__networl_1_0_AskP_5,P_network_5_0_RI_1,P_network_4_2_AI_1,P_poll__networl_4_1_RI_1,P_poll__networl_0_5_AI_5,P_poll__networl_0_0_RI_2,P_poll__networl_3_3_AI_6,P_network_1_5_AnnP_4,P_poll__networl_0_1_RI_5,P_poll__networl_3_5_RP_2,P_network_2_4_AskP_3,P_poll__networl_3_2_RP_1,P_poll__networl_6_4_AnnP_1,P_poll__networl_0_2_AI_6,P_poll__networl_4_4_AI_3,P_masterList_0_5_0,P_network_2_5_RP_6,P_poll__networl_2_1_AI_5,P_network_4_1_RP_4,P_network_3_2_AI_6,P_poll__networl_3_0_RP_6,P_network_3_0_RI_1,P_poll__networl_1_1_AnnP_4,P_poll__networl_2_3_AskP_3,P_poll__networl_5_3_AI_1,P_network_1_0_AskP_5,P_poll__networl_0_1_AskP_2,P_masterList_1_4_4,P_network_6_3_RI_2,P_poll__networl_1_5_RI_2,P_poll__networl_1_1_AI_0,P_network_5_3_AI_4,P_poll__networl_1_6_AskP_3,P_poll__networl_2_6_RP_3,P_network_4_0_AI_1,P_poll__networl_0_4_AI_6,P_poll__networl_2_0_AnnP_0,P_poll__networl_3_1_AnnP_3,P_network_0_0_RP_2,P_poll__networl_0_0_RP_3,P_poll__networl_5_5_AskP_6,P_poll__networl_0_0_AnnP_6,P_network_5_3_RI_5,P_poll__networl_3_5_AnnP_4,P_poll__networl_0_2_RI_3,P_poll__networl_0_4_AnnP_5,P_poll__networl_6_2_AnnP_3,P_poll__networl_6_0_AnnP_2,P_crashed_0,P_poll__networl_3_0_AnnP_6,P_poll__networl_2_4_RP_4,P_poll__networl_3_2_AI_1,P_poll__networl_6_1_AskP_6,P_masterList_3_3_4,P_poll__networl_6_6_AskP_1,P_poll__networl_6_6_AnnP_1,P_poll__networl_0_5_AnnP_5,P_masterList_6_2_6,P_network_5_4_RI_2,P_poll__networl_5_4_AI_6,P_network_4_1_AnnP_4,P_network_5_4_AskP_4,P_poll__networl_5_6_AI_3,P_poll__networl_4_0_RP_4,P_network_3_2_RP_1,P_masterList_4_6_6,P_network_2_5_AI_5,P_network_3_1_RP_6,P_network_3_5_RI_5,P_masterList_3_2_3,P_poll__networl_4_3_RP_2,P_poll__networl_0_4_RI_3,P_poll__networl_4_5_RI_6,P_poll__networl_5_0_AnnP_2,P_poll__networl_6_4_AI_1,P_network_0_0_RI_5,P_poll__networl_6_0_AI_5,P_network_5_1_AI_5,P_network_2_1_AnnP_2,P_network_3_3_RP_2,P_network_2_1_AskP_5,P_poll__networl_5_4_AnnP_3,P_poll__networl_6_3_AI_1,P_network_5_3_AskP_5,P_poll__networl_0_6_RP_2,P_network_2_0_RI_6,P_network_3_1_AI_4,P_network_4_3_RP_1,P_network_0_4_AI_1,P_poll__networl_6_3_RP_4,P_poll__networl_4_4_AI_0,P_network_5_5_RP_5,P_network_0_4_RP_4,P_network_2_2_AskP_4,P_network_5_2_RP_1,P_masterList_3_4_0,P_network_3_1_AskP_6,P_network_3_5_RI_3,P_poll__networl_5_1_AnnP_6,P_network_4_1_RP_5,P_poll__networl_4_4_AnnP_1,P_poll__networl_4_2_AI_1,P_masterList_0_2_2,P_poll__networl_3_4_RI_0,P_network_1_4_AI_6,P_network_4_5_AnnP_6,P_poll__networl_1_5_AI_5,P_poll__networl_2_2_AI_1,P_poll__networl_0_1_RI_4,P_network_1_0_AskP_4,P_network_3_6_AnnP_1,P_network_3_4_AI_5,P_masterList_3_1_6,P_poll__networl_2_1_AI_6,P_masterList_3_2_1,P_masterList_5_1_1,P_network_1_5_AI_6,P_network_0_3_AnnP_2,P_network_1_2_RI_6,P_poll__networl_0_4_RI_4,P_network_6_2_RP_3,P_network_5_4_RP_1,P_poll__networl_0_5_RP_2,P_poll__networl_0_1_AI_5,P_network_5_2_RI_6,P_poll__networl_6_1_AskP_4,P_poll__networl_1_1_AskP_0,P_network_0_3_RP_5,P_poll__networl_2_3_AnnP_3,P_poll__networl_3_1_RI_4,P_network_0_4_AskP_1,P_network_3_0_RI_2,P_poll__networl_6_0_RP_2,P_poll__networl_5_4_AskP_3,P_poll__networl_4_1_AI_5,P_network_1_0_RI_4,P_network_1_6_AnnP_3,P_network_3_2_AskP_4,P_poll__networl_4_0_AskP_5,P_poll__networl_5_6_AskP_5,P_poll__networl_6_5_AnnP_3,P_network_5_0_RI_4,P_network_0_0_RP_3,P_network_1_1_RI_5,P_poll__networl_2_3_AI_5,P_poll__networl_4_2_AnnP_5,P_network_0_0_AnnP_4,P_masterList_6_1_0,P_poll__networl_0_3_AnnP_5,P_network_6_2_AskP_4,P_network_6_4_AskP_3,P_network_3_1_RI_1,P_masterList_1_3_0,P_network_6_6_AI_4,P_masterList_4_2_5,P_network_0_3_AI_6,P_network_4_3_AnnP_3,P_network_5_4_AnnP_2,P_network_6_1_AnnP_1,P_poll__networl_3_6_RP_3,P_network_4_6_AskP_3,P_network_6_4_RP_4,P_network_4_0_RP_2,P_network_2_5_AskP_3,P_poll__networl_3_1_RP_0,P_poll__networl_2_4_RP_2,P_poll__networl_0_3_RI_2,P_network_6_6_AskP
_2,P_network_4_4_AI_6,P_poll__networl_4_2_AnnP_2,P_network_5_0_AI_4,P_network_0_3_RP_1,P_network_3_3_AnnP_5,P_network_6_1_RI_3,P_network_0_0_RP_5,P_network_0_4_RP_1,P_poll__networl_2_6_AskP_2,P_network_1_6_AI_6,P_poll__networl_5_3_RI_0,P_network_3_1_RI_6,P_network_4_2_AnnP_1,P_network_5_1_AskP_2,P_poll__networl_3_0_AskP_6,P_poll__networl_5_2_AnnP_5,P_network_2_6_AskP_5,P_network_4_2_AskP_6,P_network_5_6_AskP_5,P_masterList_6_3_5,P_network_0_4_RI_5,P_network_4_2_AI_6,P_poll__networl_4_5_RP_3,P_network_2_0_RI_1,P_poll__networl_2_0_RI_3,P_network_0_1_AI_6,P_poll__networl_4_4_RI_2,P_poll__networl_4_0_RI_2,P_network_6_0_AnnP_6,P_network_6_4_RI_3,P_network_0_3_AI_1,P_network_3_5_RI_2,P_poll__networl_6_4_RI_2,P_network_5_1_RP_3,P_network_6_0_AnnP_3,P_masterList_2_4_3,P_poll__networl_3_4_AskP_6,P_poll__networl_4_3_RI_4,P_poll__networl_3_2_AnnP_4,P_poll__networl_0_2_AnnP_5,P_poll__networl_5_1_AskP_6,P_poll__networl_1_5_RI_0,P_poll__networl_2_6_RI_4,P_poll__networl_6_4_AI_6,P_poll__networl_6_5_RP_5,P_masterList_5_3_5,P_poll__networl_4_1_AI_3,P_masterList_3_4_4,P_poll__networl_3_4_RI_1,P_network_3_0_RP_6,P_poll__networl_4_5_AI_1,P_poll__networl_3_3_RI_1,P_poll__networl_0_4_AskP_4,P_network_6_3_RP_4,P_network_1_5_AI_3,P_poll__networl_4_1_RP_0,P_poll__networl_2_4_AnnP_1,P_poll__networl_3_5_AskP_0,P_poll__networl_3_2_RI_6,P_poll__networl_5_2_AI_6,P_network_2_4_AI_3,P_poll__networl_6_1_AnnP_6,P_network_3_0_AnnP_6,P_poll__networl_0_1_AnnP_2,P_poll__networl_4_1_AnsP_0,P_poll__networl_5_4_AskP_5,P_network_4_0_AnnP_2,P_poll__networl_6_5_AnnP_5,P_network_3_6_RP_4,P_poll__networl_2_1_RI_3,P_network_6_1_RP_1,P_poll__networl_2_6_AskP_6,P_network_6_3_AI_4,P_network_0_1_RP_6,P_poll__networl_6_0_RP_1,P_poll__networl_6_2_AnnP_5,P_network_0_0_AnnP_3,P_poll__networl_1_2_AnnP_4,P_poll__networl_2_5_AI_6,P_poll__networl_0_0_RP_6,P_network_4_0_AI_6,P_network_2_0_AI_1,P_poll__networl_0_1_RP_4,P_network_3_4_AI_4,P_poll__networl_3_6_AskP_3,P_masterList_0_4_4,P_poll__networl_1_0_AnnP_1,P_masterList_6_4_3,P_poll__networl_4_1_RI_3,P_network_5_4_RP_3,P_poll__networl_4_5_AI_6,P_network_1_5_AI_5,P_network_2_4_RI_1,P_network_3_6_AI_5,P_network_3_5_AI_6,P_crashed_6,P_poll__networl_2_0_RI_5,P_poll__networl_2_5_AI_4,P_masterList_6_2_2,P_network_0_4_AnnP_1,P_poll__networl_4_1_AnnP_5,P_network_6_3_RI_3,P_poll__networl_1_5_AskP_4,P_network_4_4_AnnP_3,P_poll__networl_0_0_AnnP_5,P_poll__networl_0_0_AskP_5,P_poll__networl_1_3_AnnP_2,P_network_5_5_RP_4,P_network_1_3_RP_6,P_network_2_4_RP_4,P_network_4_1_RP_2,P_poll__networl_1_3_AI_1,P_masterList_1_6_3,P_poll__networl_1_3_AskP_5,P_poll__networl_3_1_RI_0,P_poll__networl_4_1_RI_2,P_poll__networl_6_3_RI_0,P_poll__networl_5_6_RI_5,P_network_6_0_RI_4,P_poll__networl_4_3_AskP_5,P_network_5_5_RP_1,P_poll__networl_5_3_RP_0,P_poll__networl_5_2_RI_1,P_network_0_3_AnnP_6,P_poll__networl_0_3_RP_5,P_poll__networl_1_3_RI_6,P_poll__networl_5_2_AnnP_4,P_network_0_1_AI_5,P_network_5_6_RP_6,P_poll__networl_4_0_AnnP_6,P_network_2_6_AskP_3,P_network_3_1_AI_3,P_poll__networl_0_6_AI_0,P_poll__networl_5_4_AskP_4,P_network_6_6_AskP_4,P_poll__networl_0_5_RI_2,P_masterList_5_6_3,P_network_1_4_RI_5,P_network_2_0_AI_4,P_masterList_3_4_1,P_network_5_5_RI_6,P_network_3_3_AnnP_2,P_network_4_5_AnnP_5,P_network_2_6_RP_2,P_network_0_3_RI_2,P_poll__networl_0_1_RI_6,P_poll__networl_1_6_RP_6,P_network_4_2_RI_6,P_network_5_4_AI_4,P_network_6_5_AskP_3,P_network_5_2_AnnP_1,P_poll__networl_4_3_AI_1,P_poll__networl_6_3_RP_1,P_network_1_5_AskP_6,P_poll__networl_4_4_RP_1,P_poll__networl_2_4_RI_5,P_poll__networl_4_5_RI_1,P_network_1_4_AnnP_6,P_poll__networl_0_4_AnnP_6,P_poll__networl_0_6_AnnP_0,P_poll__networl_1_4_AskP_2,P_poll__networl_3_4_AskP_5,P_network_1_4_AI_1,P_network_6_4_AskP_1,P_masterList_5_5_2,P_network_1_6_RI_1,P_poll__networl_2_5_RP_0,P_poll__networl_6_4_AnsP_0,P_network_5_3_AskP_4,P_poll__networl_0_2_AnsP_0,P_poll__networl_3_1_RI_2,P_poll__networl_2_5_AskP_6,P_network_1_5_RP_1,P_network_5_5_AskP_2,P_poll__networl_4_5_RI_2,P_poll__networl_5_2_AnnP_2,P_poll__networl_4_1_AI_4,P_network_3_0_RP_1,P_network_6_0_AnnP_4,P_poll__networl_1_0_AnsP_0,P_poll__networl_6_0_RP_4,P_masterList_3_5_0,P_poll__networl_4_0_AI_6,P_poll__networl_5_0_AnnP_6,P_masterList_5_3_2,P_poll__networl_3_4_AskP_1,P_network_4_4_RI_6,P_network_5_3_AskP_1,P_poll__networl_2_3_RI_4,P_poll__networl_6_1_AnnP_1,P_poll__networl_2_5_AnnP_4,P_network_5_3_AnnP_4,P_network_5_4_RI_3,P_network_5_6_AI_2,P_network_5_0_RP_3,P_poll__networl_0_6_AI_5,P_network_2_2_RP_5,P_network_2_4_RI_3,P_poll__networl_3_3_AnnP_1,P_poll__networl_3_2_AnnP_0,P_poll__networl_1_3_RI_1,P_poll__networl_1_3_RI_0,P_poll__networl_2_3_RP_0,P_network_3_0_AI_4,P_network_4_5_RI_1,P_poll__networl_0_2_AnnP_4,P_poll__networl_4_3_RI_5,P_network_5_3_RP_6,P_network_1_4_AnnP_1,P_network_4_5_RP_2,P_network_3_1_AnnP_2,P_poll__networl_1_2_AI_2,P_poll__networl_4_2_AnnP_0,P_poll__networl_4_3_RI_2,P_poll__networl_1_1_RP_4,P_poll__networl_6_6_AI_4,P_masterList_2_5_0,P_poll__networl_2_3_AnnP_5,P_network_4_3_AskP_6,P_poll__networl_1_2_AskP_0,P_poll__networl_0_3_RI_3,P_network_1_6_AnnP_1,P_poll__networl_2_5_RP_4,P_poll__networl_2_3_AnnP_2,P_poll__networl_4_2_RP_6,P_network_6_5_RI_6,P_network_3_3_AI_5,P_poll__networl_4_2_AnnP_6,P_network_6_2_RI_2,P_poll__networl_4_6_AskP_6,P_poll__networl_5_6_AI_4,P_network_1_3_RP_1,P_poll__networl_5_6_AI_2,P_network_5_5_AI_4,P_poll__networl_5_6_AnnP_5,P_poll__networl_0_4_AnnP_0,P_poll__networl_2_6_AnnP_3,P_poll__networl_5_2_AskP_4,P_network_2_0_AnnP_5,P_poll__networl_3_1_RP_6,P_masterList_6_4_5,P_poll__networl_0_4_RI_5,P_network_6_6_AnnP_1,P_network_0_6_AnnP_1,P_poll__networl_0_2_AI_4,P_network_3_5_AskP_6,P_network_5_6_AI_1,P_poll__networl_6_4_AskP_6,P_masterList_4_4_1,P_poll__networl_4_0_AnnP_1,P_network_6_6_RP_3,P_poll__networl_0_3_RP_0,P_network_1_1_AI_3,P_poll__networl_0_1_RI_1,P_poll__networl_2_0_AskP_2,P_network_3_2_RI_4,P_network_2_6_AnnP_3,P_masterList_0_2_3,P_poll__networl_3_5_RP_1,P_network_1_6_RP_4,P_network_2_3_AnnP_2,P_poll__networl_3_4_AnsP_0,P_poll__networl_6_5_AI_3,P_poll__networl_1_4_RI_6,P_network_3_3_AnnP_4,P_network_4_5_RI_2,P_poll__networl_0_4_RP_2,P_network_3_5_AskP_4,P_poll__networl_1_2_AI_6,P_network_3_2_AI_4,P_poll__networl_2_5_RP_2,P_poll__networl_3_1_RP_4,P_network_5_0_AnnP_4,P_poll__networl_4_3_AnnP_4,P_poll__networl_5_6_RP_4,P_masterList_6_5_2,P_network_1_4_AI_2,P_masterList_0_6_0,P_network_3_4_RP_2,P_masterList_1_5_4,P_poll__networl_1_4_AnnP_5,P_masterList_5_5_6,P_network_0_3_AskP_5,P_poll__networl_1_0_AI_4,P_poll__networl_4_4_AI_4,P_network_0_5_RP_1,P_network_2_4_RP_1,P_poll__networl_5_0_AI_4,P_network_1_1_AnnP_3,P_poll__networl_4_2_AI_4,P_network_3_3_AI_1,P_network_0_2_RP_6,P_poll__networl_3_6_RP_1,P_masterList_1_2_1,P_poll__networl_6_2_RI_3,P_poll__networl_4_6_AI_2,P_network_3_6_RI_2,P_network_6_1_RI_2,P_network_0_2_RI_1,P_network_6_0_AI_5,P_poll__networl_2_6_AnnP_2,P_network_4_4_AnnP_1,P_poll__networl_0_2_AskP_5,P_poll__networl_2_1_AskP_1,P_network_3_2_AnnP_5,P_network_0_6_AnnP_2,P_masterList_2_1_1,P_poll__networl_3_2_AnnP_2,P_network_0_4_AI_3,P_poll__networl_0_3_AskP_3,P_poll__networl_0_3_RI_1,P_network_0_0_AnnP_1,P_masterList_3_4_6,P_poll__networl_1_3_AskP_3,P_network_3_1_RP_1,P_masterList_4_2_4,P_network_3_5_AskP_5,P_poll__networl_0_1_RI_3,P_poll__networl_2_6_RI_3,P_network_0_5_AskP_1,P_network_0_6_RP_2,P_network_6_0_AI_4,P_network_6_6_AskP_1,P_poll__networl_6_0_AI_0,P_poll__networl_6_6_RP_6,P_masterList_3_6_5,P_poll__networl_1_4_AskP_5,P_poll__networl_2_1_AnnP_0,P_poll__networl_1_2_AskP_2,P_network_6_1_AI_2,P_network_1_3_AI_4,P_poll__networl_4_5_AI_5,P_network_2_5_AskP_6,P_poll__networl_6_3_AI_5,P_poll__networl_2_2_RP_2,P_poll__networl_0_4_AskP_2,P_poll__networl_0_1_AnnP_0,P_network_3_4_AnnP_6,P_network_6_1_AskP_5,P_poll__networl_3_0_AI_2,P_network_1_6_AI_5,P_network_6_1_AskP_6,P_poll__networl_2_1_RI_4,P_masterList_0_6_4,P_poll__networl_1_3_AI_2,P_crashed_2,P_network_5_3_RP_4,P_network_2_6_AI_5,P_masterList_6_3_1,P_network_0_5_RI_3,P_network_2_6_AI_6,P_network_2_0_RP_6,P_network_6_1_AskP_4,P_poll__networl_1_1_AskP_4,P_network_3_6_RI_6,P_network_2_4_AnnP_4,P_poll__networl_1_2_RP_5,P_poll__networl_6_0_AI_6,P_poll__networl_5_5_RI_2,P_poll__networl_2_5_AskP_4,P_masterList_2_2_0,P_network_2_0_AI_2,P_poll__networl_1_2_RP_3,P_masterList_5_1_2,P_network_0_4_AnnP_6,P_poll__networl_3_2_AskP_3,P_poll__networl_5_5_AI_6,P_network_6_4_AskP_2,P_network_2_1_RP_1,P_masterList_5_1_5,P_network_4_0_RP_1,P_poll__networl_5_0_RP_6,P_masterList_2_6_5,P_poll__networl_2_6_RP_1,P_network_3_5_AnnP_6,P_network_4_4_AI_5,P_masterList_0_4_3,P_masterList_2_5_4,P_network_3_3_AskP_4,P_masterList_4_4_2,P_network_5_5_AI_1,P_poll__networl_1_4_RI_2,P_network_6_3_AnnP_3,P_poll__networl_3_3_AskP_3,P_poll__networl_6_2_RP_4,P_poll__networl_2_4_AnnP_0,P_network_6_6_AnnP_2,P_poll__networl_1_0_AnnP_5,P_network_3_4_RI_3,P_poll__networl_0_4_AnnP_3,P_poll__networl_5_3_AskP_4,P_poll__networl_0_2_AI_0,P_poll__networl_6_1_AI_4,P_network_4_6_AnnP_2,P_poll__networl_5_2_AnnP_1,P_poll__networl_5_4_AnnP_4,P_poll__networl_1_3_RP_3,P_network_2_5_AnnP_2,P_poll__networl_0_3_RP_1,P_poll__networl_1_6_AI_5,P_network_4_4_RI_3,P_network_2_3_AI_2,P_network_5_0_RI_3,P_poll__networl_0_4_RP_0,P_poll__networl_2_5_AnsP_0,P_poll__networl_5_6_RI_2,P_masterList_3_6_1,P_network_0_3_AnnP_4,P_network_6_0_RP_3,P_poll__networl_2_6_AI_6,P_network_3_2_RI_2,P_poll__networl_5_1_RI_1,P_masterList_4_1_1,P_poll__networl_3_1_RP_1,P_network_2_0_AskP_5,P_poll__networl_5_4_AskP_1,P_poll__networl_6_5_RP_1,P_poll__networl_0_2_AskP_0,P_poll__networl_3_1_AskP_4,P_network_2_2_RP_1,P_poll__networl_0_1_RP_5,P_poll__networl_2_3_AI_3,P_masterList_6_4_0,P_network_2_1_RI_2,P_masterList_6_5_4,P_poll__networl_2_5_AnnP_0,P_poll__networl_2_2_RP_1,P_poll__networl_3_3_AnnP_5,P_poll__networl_4_5_AnnP_1,P_network_5_5_RI_1,P_network_6_6_RI_1,P_network_1_6_AskP_3,P_network_0_0_RI_4,P_poll__networl_5_5_RP_1,P_network_3_4_AI_2,P_network_6_1_AnnP_4,P_poll__networl_4_4_RI_6,P_network_5_3_AI_1,P_poll__networl_1_4_AnnP_4,P_poll__networl_5_2_RI_0,P_poll__networl_0_5_RI_5,P_masterList_6_6_2,P_network_2_1_AI_5,P_network_2_3_RP_4,P_masterList_5_6_6,P_poll__networl_1_4_AnnP_1,P_network_2_3_AskP_3,P_network_5_1_AI_2,P_masterList_0_1_2,P_masterList_4_2_2,P_network_2_2_AnnP_2,P_network_5_5_AnnP_1,P_poll__networl_4_4_AI_5,P_poll__networl_1_1_RP_5,P_network_0_5_RI_4,P_network_2_2_AnnP_5,P_poll__networl_2_6_AI_5,P_network_6_2_RP_5,P_poll__networl_6_6_AskP_5,P_network_2_2_RI_6,P_poll__networl_2_3_AnnP_0,P_network_2_4_AI_4,P_poll__networl_0_3_AnsP_0,P_network_5_2_AskP_4,P_poll__networl_5_1_AI_6,P_network_3_6_AI_2,P_poll__networl_4_6_AnsP_0,P_poll__networl_2_2_RI_3,P_poll__networl_0_4_AskP_1,P_poll__networl_4_2_AskP_3,P_network_4_2_RP_2,P_masterList_5_2_2,P_network_5_1_RP_6,P_network_5_3_AskP_6,P_poll__networl_0_4_AI_0,P_poll__networl_1_5_AnsP_0,P_network_6_4_AI_3,P_network_5_4_RI_5,P_network_6_5_AnnP_3,P_poll__networl_3_1_AI_4,P_network_5_5_RI_2,P_poll__networl_2_2_AskP_4,P_poll__networl_0_5_AnnP_3,P_poll__networl_4_4_AnnP_5,P_network_5_5_AskP_6,P_network_5_4_AnnP_5,P_poll__networl_3_3_RI_4,P_poll__networl_4_4_AnnP_0,P_poll__networl_4_2_RI_6,P_network_3_1_AI_2,P_poll__networl_0_6_RP_4,P_poll__networl_6_0_AI_4,P_poll__networl_5_6_AnnP_2,P_poll__networl_6_6_RI_1,P_poll__networl_5_3_RP_6,P_poll__networl_6_5_AskP_0,P_network_1_1_AskP_1,P_network_0_6_RI_1,P_network_1_3_RI_1,P_poll__networl_4_1_AskP_4,P_network_6_3_RI_5,P_poll__networl_3_0_RI_3,P_masterList_5_3_0,P_network_3_6_AskP_1,P_poll__networl_5_2_AI_2,P_network_4_2_AI_5,P_poll__networl_0_5_AnnP_4,P_poll__networl_4_1_RP_4,P_poll__networl_3_3_AI_0,P_network_5_0_AI_2,P_poll__networl_0_5_AskP_1,P_poll__networl_5_0_RI_0,P_poll__networl_5_5_RP_0,P_masterList_2_5_5,P_network_1_0_RI_2,P_network_0_0_RI_3,P_network_4_4_AskP_4,P_poll__networl_3_6_AnnP_1,P_network_1_3_AskP_6,P_poll__networl_4_0_RI_1,P_poll__networl_0_4_AI_4,P_poll__networl_6_2_AI_6,P_network_6_4_RP_1,P_poll__networl_1_1_AskP_5,P_network_4_6_AskP_2,P_network_4_0_AskP_1,P_network_5_5_AI_2,P_poll__networl_5_3_AnnP_4,P_network_0_0_RP_1,P_poll__networl_2_1_AskP_0,P_network_1_5_AskP_1,P_network_6_5_AnnP_5,P_network_6_5_AskP_1,P_electionFailed_3,P_poll__networl_4_0_AI_5,P_poll__networl_1_5_AnnP_3,P_dead_1,P_network_1_5_AskP_2,P_network_2_3_AskP_2,P_network_4_3_RP_2,P_poll__networl_6_2_RI_2,P_poll__networl_6_0_RI_0,P_network_4_3_RP_3,P_poll__networl_1_1_AnnP_1,P_masterList_6_6_5,P_network_3_5_AnnP_2,P_network_4_1_RP_6,P_poll__networl_4_6_RI_1,P_poll__networl_0_3_AI_0,P_poll__networl_1_2_RP_0,P_network_3_4_AI_3,P_poll__networl_2_2_AI_4,P_network_2_0_AnnP_1,P_network_4_6_RI_2,P_network_4_3_AnnP_4,P_network_2_5_RP_5,P_poll__networl_5_0_AskP_6,P_poll__networl_2_4_RP_5,P_network_6_2_AnnP_1,P_poll__networl_4_1_RP_5,P_poll__networl_5_2_AskP_5,P_poll__networl_6_0_RP_5,P_poll__networl_0_6_AnnP_3,P_poll__networl_5_4_RP_2,P_poll__networl_6_5_AI_2,P_network_4_5_AI_6,P_network_0_0_RP_4,P_poll__networl_4_1_AskP_5,P_network_6_6_AnnP_3,P_poll__networl_5_3_AI_0,P_poll__networl_6_6_AskP_2,P_poll__networl_3_3_RP_3,P_network_1_6_AI_2,P_poll__networl_4_5_RP_2,P_poll__networl_1_2_AI_5,P_network_1_4_RI_3,P_network_6_2_AI_1,P_network_1_6_AskP_4,P_network_2_5_RP_1,P_poll__networl_5_1_RI_0,P_poll__networl_5_5_AskP_5,P_poll__networl_1_4_AnnP_2,P_network_3_2_AI_1,P_network_2_0_RI_2,P_poll__networl_5_3_RI_4,P_masterList_0_1_4,P_poll__networl_2_4_RI_4,P_poll__networl_1_6_RP_1,P_poll__networl_2_6_RI_0,P_network_0_6_AnnP_3,P_network_0_6_AnnP_4,P_network_6_1_AnnP_5,P_poll__networl_4_2_AskP_4,P_network_1_1_AskP_6,P_poll__networl_5_1_RP_0,P_poll__networl_6_5_AskP_6,P_poll__networl_4_3_RP_4,P_poll__networl_4_4_AI_6,P_network_2_2_RP_2,P_poll__networl_3_0_RI_1,P_poll__networl_0_6_AI_3,P_poll__networl_4_1_AnnP_2,P_network_4_1_AI_5,P_network_4_0_AskP_5,P_poll__networl_4_6_AI_1,P_poll__networl_4_1_AskP_1,P_network_4_6_RI_3,P_masterList_3_5_3,P_poll__networl_1_4_RP_0,P_poll__networl_2_3_AI_2,P_network_6_4_AnnP_6,P_poll__networl_2_3_AI_6,P_network_1_5_RI_1,P_network_1_4_RI_1,P_poll__networl_1_0_AskP_1,P_masterList_3_2_4,P_poll__networl_1_1_RP_6,P_poll__networl_3_6_AnnP_4,P_poll__networl_1_6_AnnP_2,P_network_4_1_AnnP_5,P_poll__networl_2_2_AskP_3,P_network_2_1_RP_2,P_network_5_4_AskP_2,P_poll__networl_4_6_RP_2,P_network_3_0_RP_3,P_poll__networl_0_4_AnnP_1,P_poll__networl_1_4_AskP_6,P_network_5_2_AskP_5,P_network_2_0_AskP_6,P_network_4_3_RI_4,P_network_3_6_RI_4,P_network_6_3_AnnP_4,P_network_0_5_AnnP_3,P_poll__networl_4_1_RI_4,P_masterList_2_2_6,P_masterList_5_2_4,P_poll__networl_2_2_RI_6,P_network_2_0_AskP_2,P_masterList_5_1_4,P_network_1_6_RI_2,P_poll__networl_6_2_AskP_5,P_network_3_1_AnnP_3,P_network_5_4_RI_4,P_network_3_6_AI_3,P_network_4_4_RI_4,P_network_4_2_AskP_5,P_poll__networl_3_6_AnnP_3,P_network_2_1_AskP_6,P_poll__networl_1_2_AnnP_1,P_poll__networl_2_6_RP_6,P_poll__networl_5_6_AI_1,P_poll__networl_1_0_RI_5,P_network_2_5_RP_4,P_poll__networl_4_6_RP_4,P_network_1_4_RI_4,P_poll__networl_2_5_RP_5,P_poll__networl_2_5_AnnP_2,P_network_3_3_AI_2,P_poll__networl_0_4_RP_1,P_network_4_1_AnnP_6,P_network_2_2_RI_4,P_network_4_0_AnnP_5,P_poll__networl_2_2_AnnP_2,
May 26, 2018 8:26:12 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Removed 3549 constant variables :P_network_2_0_RI_3=0, P_poll__networl_1_6_RP_0=0, P_poll__networl_6_3_AskP_1=0, P_poll__networl_1_2_RP_1=0, P_poll__networl_1_0_RI_3=0, P_network_5_2_RP_4=0, P_poll__networl_2_2_RI_1=0, P_network_5_3_AskP_3=0, P_network_0_4_AskP_2=0, P_poll__networl_1_1_AskP_3=0, P_masterList_2_6_1=0, P_poll__networl_0_0_AnnP_4=0, P_poll__networl_4_6_RI_5=0, P_poll__networl_6_0_AnnP_6=0, P_poll__networl_5_4_AskP_6=0, P_network_3_1_AI_5=0, P_network_2_1_RI_6=0, P_poll__networl_2_0_AI_2=0, P_network_3_2_AnnP_1=0, P_network_2_2_AskP_2=0, P_poll__networl_6_4_RI_1=0, P_poll__networl_4_4_RP_2=0, P_poll__networl_2_5_AI_1=0, P_poll__networl_5_2_RI_3=0, P_network_6_5_AI_5=0, P_poll__networl_2_0_AnnP_2=0, P_poll__networl_1_1_RI_6=0, P_poll__networl_4_5_AnsP_0=0, P_network_3_6_AnnP_3=0, P_network_0_3_AI_4=0, P_poll__networl_0_5_RI_6=0, P_network_5_3_AI_2=0, P_crashed_5=0, P_poll__networl_5_3_RI_6=0, P_poll__networl_5_1_AI_4=0, P_poll__networl_4_3_AskP_0=0, P_network_3_2_AnnP_6=0, P_network_4_4_RI_1=0, P_masterList_5_2_0=0, P_poll__networl_1_3_AI_6=0, P_network_1_5_RI_2=0, P_network_5_4_AskP_3=0, P_network_6_0_AI_3=0, P_network_1_0_AI_2=0, P_masterList_1_6_0=0, P_network_4_3_AI_5=0, P_poll__networl_0_5_AnnP_1=0, P_masterList_3_4_2=0, P_poll__networl_6_6_AskP_0=0, P_poll__networl_6_4_AnnP_5=0, P_poll__networl_0_3_AskP_6=0, P_network_0_2_AnnP_2=0, P_network_3_4_RI_2=0, P_poll__networl_3_5_AI_3=0, P_poll__networl_5_5_RI_5=0, P_network_2_0_AskP_1=0, P_network_6_2_AnnP_3=0, P_poll__networl_2_4_RI_1=0, P_network_6_4_AskP_5=0, P_poll__networl_1_0_AskP_6=0, P_poll__networl_4_0_AnsP_0=0, P_network_0_2_RP_4=0, P_network_5_4_AI_2=0, P_network_5_5_AnnP_5=0, P_network_4_0_AI_4=0, P_poll__networl_5_1_AskP_2=0, P_network_1_3_RP_3=0, P_network_5_0_AnnP_1=0, P_poll__networl_2_6_RI_5=0, P_network_6_5_AskP_5=0, P_dead_3=0, P_network_4_5_RP_6=0, P_poll__networl_2_5_AnnP_3=0, P_network_0_0_RI_2=0, P_masterList_4_6_4=0, P_poll__networl_6_0_RP_0=0, P_poll__networl_4_2_AnnP_1=0, P_network_1_0_AnnP_3=0, P_poll__networl_6_0_AskP_0=0, P_poll__networl_6_1_RI_2=0, P_masterList_1_5_6=1, P_poll__networl_6_3_AI_0=0, P_network_0_0_AskP_1=0, P_network_0_0_AskP_4=0, P_network_5_1_RI_6=0, P_network_1_6_AskP_6=0, P_poll__networl_1_5_AI_0=0, P_poll__networl_6_4_AI_2=0, P_poll__networl_6_1_AnnP_2=0, P_masterList_2_2_3=1, P_network_2_0_AI_5=0, P_network_6_6_RI_4=0, P_poll__networl_2_1_AI_2=0, P_poll__networl_3_4_RI_2=0, P_network_1_3_AnnP_2=0, P_poll__networl_3_4_RP_0=0, P_network_2_3_AskP_5=0, P_network_1_4_AnnP_5=0, P_network_6_4_RP_3=0, P_poll__networl_4_6_AskP_0=0, P_network_1_4_RP_1=0, P_masterList_0_3_5=0, P_masterList_5_6_1=0, P_poll__networl_5_0_AnnP_1=0, P_poll__networl_1_2_RP_2=0, P_poll__networl_3_3_AskP_2=0, P_poll__networl_2_6_AnnP_6=0, P_poll__networl_3_6_AI_0=0, P_masterList_6_3_3=1, P_network_0_1_AskP_6=0, P_poll__networl_0_3_RI_5=0, P_poll__networl_2_0_RP_5=0, P_poll__networl_1_2_RI_6=0, P_poll__networl_1_0_AskP_3=0, P_poll__networl_3_4_AI_4=0, P_network_1_0_RP_4=0, P_poll__networl_0_5_RP_3=0, P_poll__networl_6_1_AI_6=0, P_network_5_2_AI_2=0, P_poll__networl_1_5_AnnP_4=0, P_network_2_5_RI_5=0, P_poll__networl_3_6_AI_2=0, P_poll__networl_0_6_AI_1=0, P_poll__networl_6_6_AskP_3=0, P_poll__networl_0_2_RI_5=0, P_poll__networl_0_0_AnnP_3=0, P_poll__networl_0_3_AI_5=0, P_poll__networl_2_6_AI_2=0, P_network_5_6_AskP_3=0, P_poll__networl_1_0_AnnP_3=0, P_poll__networl_6_6_AnnP_5=0, P_network_5_3_RP_2=0, P_poll__networl_0_0_AskP_0=0, P_network_0_4_AnnP_3=0, P_network_4_2_AskP_3=0, P_poll__networl_3_6_AI_5=0, P_network_1_0_AnnP_2=0, P_masterList_4_6_0=0, P_poll__networl_5_0_AI_3=0, P_poll__networl_3_3_AI_5=0, P_poll__networl_6_1_AI_2=0, P_poll__networl_5_1_AnnP_2=0, P_poll__networl_2_6_AnnP_5=0, P_masterList_6_2_0=0, P_network_4_1_RP_3=0, P_network_5_4_AskP_5=0, P_poll__networl_5_0_RP_4=0, P_network_2_1_AskP_4=0, P_network_4_0_RP_5=0, P_network_4_6_AnnP_3=0, P_poll__networl_3_6_AI_1=0, P_network_1_6_AskP_5=0, P_poll__networl_6_5_AI_6=0, P_poll__networl_6_0_RI_4=0, P_poll__networl_1_4_AskP_1=0, P_poll__networl_4_0_AI_0=0, P_network_4_2_RP_3=0, P_masterList_2_1_4=0, P_network_5_5_AI_5=0, P_poll__networl_4_4_RP_0=0, P_network_2_0_RI_5=0, P_poll__networl_3_2_RI_5=0, P_masterList_0_1_3=0, P_poll__networl_1_5_AI_1=0, P_network_3_4_RP_5=0, P_masterList_3_1_5=0, P_poll__networl_3_0_RP_2=0, P_poll__networl_5_0_AskP_5=0, P_poll__networl_6_3_AnnP_5=0, P_network_3_0_AnnP_5=0, P_network_5_4_AI_6=0, P_network_2_6_AI_3=0, P_poll__networl_1_1_AI_2=0, P_masterList_1_3_4=1, P_network_2_3_AskP_6=0, P_network_2_6_RP_4=0, P_poll__networl_4_5_RP_0=0, P_network_2_3_RI_2=0, P_poll__networl_6_0_AskP_3=0, P_poll__networl_0_0_AI_0=0, P_poll__networl_4_2_RI_2=0, P_poll__networl_2_5_AskP_5=0, P_network_6_3_RP_2=0, P_network_6_5_AnnP_2=0, P_poll__networl_5_0_RP_0=0, P_poll__networl_5_5_AskP_3=0, P_poll__networl_1_2_RI_3=0, P_poll__networl_6_2_RI_5=0, P_network_0_1_AI_2=0, P_poll__networl_6_3_RI_3=0, P_poll__networl_6_0_AI_3=0, P_network_3_4_RP_4=0, P_network_6_6_AI_2=0, P_poll__networl_5_1_RP_5=0, P_network_0_2_RI_5=0, P_poll__networl_5_1_RP_1=0, P_network_1_0_AskP_3=0, P_poll__networl_4_6_AI_0=0, P_poll__networl_3_3_AI_2=0, P_poll__networl_6_4_RP_0=0, P_masterList_4_5_6=1, P_network_5_3_RI_6=0, P_poll__networl_1_5_AskP_3=0, P_poll__networl_1_1_RI_2=0, P_poll__networl_2_1_AnnP_5=0, P_poll__networl_3_5_RP_3=0, P_poll__networl_6_1_AskP_0=0, P_network_3_3_RP_4=0, P_poll__networl_4_5_RI_5=0, P_poll__networl_3_2_RI_4=0, P_network_2_4_AskP_4=0, P_poll__networl_6_5_AI_5=0, P_network_0_4_AI_2=0, P_poll__networl_2_3_RI_2=0, P_poll__networl_2_4_RI_3=0, P_poll__networl_1_4_AI_3=0, P_poll__networl_6_4_AI_4=0, P_poll__networl_0_0_AnnP_0=0, P_poll__networl_0_6_AnsP_0=0, P_network_6_6_RI_5=0, P_poll__networl_0_3_RP_3=0, P_masterList_1_2_4=0, P_network_1_6_AskP_2=0, P_network_2_2_AI_4=0, P_network_0_0_AnnP_2=0, P_network_5_3_AnnP_1=0, P_poll__networl_3_1_RP_5=0, P_poll__networl_6_2_AnnP_2=0, P_poll__networl_2_4_AI_2=0, P_masterList_1_2_6=0, P_network_2_4_AskP_2=0, P_network_6_4_RI_6=0, P_poll__networl_2_2_RP_0=0, P_network_6_3_AskP_2=0, P_poll__networl_1_3_AI_5=0, P_network_1_1_AI_6=0, P_poll__networl_0_0_RI_0=0, P_poll__networl_2_4_AI_6=0, P_poll__networl_2_6_AnsP_0=0, P_poll__networl_5_2_AI_1=0, P_poll__networl_6_5_RI_1=0, P_poll__networl_6_6_AI_0=0, P_poll__networl_4_3_AI_4=0, P_network_4_3_AI_1=0, P_network_3_0_AI_6=0, P_poll__networl_6_0_AnnP_5=0, P_poll__networl_4_6_AskP_5=0, P_poll__networl_3_5_RI_4=0, P_poll__networl_1_2_AnsP_0=0, P_network_4_6_RP_5=0, P_poll__networl_6_1_RP_6=0, P_poll__networl_6_4_AnnP_4=0, P_masterList_2_6_0=0, P_network_1_1_AI_4=0, P_masterList_2_1_3=0, P_masterList_2_3_4=1, P_poll__networl_5_3_RI_2=0, P_network_2_5_RI_4=0, P_network_4_2_RP_1=0, P_poll__networl_0_4_AI_2=0, P_network_5_0_RP_2=0, P_poll__networl_2_4_AskP_0=0, P_poll__networl_2_4_AnnP_4=0, P_network_6_1_RP_6=0, P_network_2_3_RI_5=0, P_poll__networl_0_0_AI_6=0, P_poll__networl_3_0_AnnP_1=0, P_poll__networl_0_3_AskP_0=0, P_network_1_4_AskP_6=0, P_network_1_6_RP_3=0, P_poll__networl_1_6_AskP_0=0, P_network_2_1_RP_4=0, P_masterList_1_1_2=1, P_poll__networl_5_2_AI_5=0, P_poll__networl_6_4_RI_6=0, P_poll__networl_2_5_RP_1=0, P_network_2_2_AI_1=0, P_poll__networl_1_6_RI_2=0, P_masterList_4_3_5=0, P_network_0_3_AnnP_3=0, P_network_2_4_AnnP_1=0, P_network_2_3_AnnP_3=0, P_poll__networl_5_0_RI_3=0, P_poll__networl_1_6_RI_0=0, P_poll__networl_1_6_AskP_4=0, P_masterList_2_3_6=0, P_poll__networl_4_4_AskP_2=0, P_network_0_6_AI_3=0, P_poll__networl_2_2_AnnP_6=0, P_poll__networl_5_5_AI_4=0, P_network_2_0_AI_3=0, P_poll__networl_3_6_AI_4=0, P_network_1_1_AnnP_6=0, P_network_5_3_RP_5=0, P_network_0_4_RP_3=0, P_poll__networl_1_5_RI_1=0, P_poll__networl_6_5_RI_2=0, P_poll__networl_6_3_AskP_3=0, P_network_3_5_RI_6=0, P_network_6_3_AnnP_6=0, P_poll__networl_2_4_AI_5=0, P_network_1_3_AskP_4=0, P_poll__networl_4_1_RI_6=0, P_poll__networl_6_2_AnnP_4=0, P_network_0_4_RI_3=0, P_electionFailed_5=0, P_poll__networl_2_6_AskP_4=0, P_masterList_2_1_6=0, P_network_5_5_RI_4=0, P_masterList_0_6_1=0, P_network_0_6_AI_4=0, P_network_2_5_AskP_1=0, P_network_6_0_RI_2=0, P_poll__networl_3_6_RI_5=0, P_network_3_5_RP_2=0, P_masterList_0_1_6=0, P_network_6_1_RP_2=0, P_network_5_6_AI_4=0, P_poll__networl_2_5_RI_6=0, P_poll__networl_1_0_AI_1=0, P_poll__networl_4_3_AI_5=0, P_poll__networl_1_4_AI_2=0, P_poll__networl_5_6_AnnP_6=0, P_network_1_2_RP_3=0, P_poll__networl_5_5_AnnP_0=0, P_poll__networl_6_6_RP_0=0, P_masterList_6_5_1=0, P_poll__networl_0_4_AskP_6=0, P_network_3_2_RP_6=0, P_network_4_5_AskP_1=0, P_poll__networl_1_3_AnnP_4=0, P_network_2_1_AnnP_1=0, P_network_0_4_AskP_3=0, P_poll__networl_3_5_AI_1=0, P_network_6_6_RP_4=0, P_network_3_6_AnnP_5=0, P_poll__networl_2_3_AnsP_0=0, P_network_3_4_AI_6=0, P_poll__networl_4_0_RP_6=0, P_poll__networl_4_2_AI_5=0, P_poll__networl_6_1_AnsP_0=0, P_poll__networl_3_5_AI_2=0, P_masterList_2_2_1=0, P_poll__networl_3_5_RI_0=0, P_network_1_0_RP_1=0, P_masterList_2_6_3=0, P_masterList_6_1_3=0, P_poll__networl_4_5_AnnP_2=0, P_network_5_2_AskP_6=0, P_poll__networl_0_1_RP_0=0, P_network_4_4_AI_3=0, P_network_1_0_RP_3=0, P_poll__networl_2_2_AnnP_3=0, P_masterList_2_4_4=0, P_network_4_0_RI_2=0, P_network_3_5_RP_3=0, P_network_2_4_AskP_5=0, P_network_1_6_AnnP_4=0, P_network_3_0_AI_1=0, P_network_4_5_AnnP_3=0, P_network_6_2_AnnP_5=0, P_poll__networl_3_5_AI_4=0, P_poll__networl_1_2_AskP_3=0, P_poll__networl_4_6_RP_1=0, P_poll__networl_5_2_AnnP_0=0, P_network_0_6_RI_6=0, P_poll__networl_0_5_AnnP_2=0, P_network_1_4_RI_6=0, P_network_5_5_AI_3=0, P_network_2_4_RP_2=0, P_poll__networl_2_6_RI_2=0, P_poll__networl_2_3_RI_1=0, P_network_4_4_AnnP_6=0, P_poll__networl_2_4_RP_0=0, P_masterList_2_4_1=0, P_poll__networl_5_2_RI_2=0, P_network_0_0_AskP_6=0, P_poll__networl_0_3_AskP_1=0, P_poll__networl_5_0_RP_1=0, P_network_5_4_RI_6=0, P_poll__networl_6_3_AnnP_6=0, P_network_0_1_AnnP_5=0, P_network_4_3_AI_2=0, P_masterList_4_3_1=0, P_network_2_4_AnnP_3=0, P_network_6_5_AnnP_4=0, P_poll__networl_3_2_AI_6=0, P_network_4_1_AI_2=0, P_network_3_2_RP_4=0, P_network_4_3_AnnP_2=0, P_poll__networl_5_2_RI_4=0, P_network_5_0_AskP_2=0, P_poll__networl_3_3_AI_1=0, P_crashed_1=0, P_poll__networl_0_4_RI_2=0, P_network_0_4_AI_6=0, P_network_5_5_AskP_1=0, P_poll__networl_1_0_RP_4=0, P_poll__networl_3_4_AnnP_5=0, P_poll__networl_5_2_RP_1=0, P_poll__networl_1_0_RP_3=0, P_poll__networl_2_4_RI_6=0, P_poll__networl_5_5_RP_5=0, P_poll__networl_3_4_AnnP_4=0, P_poll__networl_0_1_AskP_4=0, P_poll__networl_3_4_AI_0=0, P_poll__networl_4_0_RI_0=0, P_poll__networl_1_1_RP_1=0, P_network_0_3_AskP_6=0, P_poll__networl_0_3_RI_6=0, P_poll__networl_6_1_AskP_2=0, P_network_2_3_RI_1=0, P_network_0_6_AskP_6=0, P_network_3_5_RP_4=0, P_network_4_1_AnnP_2=0, P_poll__networl_4_6_RP_6=0, P_masterList_5_4_1=0, P_poll__networl_6_3_AnnP_4=0, P_poll__networl_3_1_AI_3=0, P_poll__networl_6_5_RP_4=0, P_network_6_5_AI_1=0, P_poll__networl_6_0_RI_2=0, P_poll__networl_1_1_RP_0=0, P_network_5_4_AnnP_6=0, P_poll__networl_0_1_AnnP_6=0, P_poll__networl_3_1_AI_1=0, P_masterList_2_1_5=0, P_poll__networl_1_2_AnnP_5=0, P_poll__networl_6_0_AnsP_0=0, P_network_4_6_RI_5=0, P_poll__networl_6_3_AskP_4=0, P_network_0_6_AI_1=0, P_network_2_5_AskP_5=0, P_network_1_4_AskP_3=0, P_network_5_0_AI_6=0, P_masterList_6_2_4=0, P_network_1_6_RI_6=0, P_network_5_6_AnnP_2=0, P_network_6_0_AnnP_5=0, P_poll__networl_1_3_AnnP_1=0, P_network_6_2_AnnP_6=0, P_poll__networl_4_6_RI_3=0, P_poll__networl_0_2_AI_1=0, P_poll__networl_3_0_AnsP_0=0, P_poll__networl_5_4_RI_1=0, P_network_3_0_RI_5=0, P_poll__networl_0_6_RI_2=0, P_poll__networl_2_6_AskP_5=0, P_network_6_3_AskP_1=0, P_poll__networl_0_5_AI_4=0, P_network_2_3_AI_3=0, P_poll__networl_0_1_AnsP_0=0, P_network_3_5_AI_4=0, P_poll__networl_0_2_RI_6=0, P_network_6_1_AI_1=0, P_poll__networl_5_6_RP_0=0, P_poll__networl_2_3_RP_4=0, P_poll__networl_4_3_AnnP_1=0, P_poll__networl_4_4_AskP_4=0, P_network_5_5_AskP_5=0, P_network_6_3_RP_1=0, P_network_0_5_AI_6=0, P_network_0_5_AskP_4=0, P_poll__networl_1_0_RI_0=0, P_poll__networl_3_2_AnnP_6=0, P_poll__networl_2_6_RP_2=0, P_network_2_4_AI_1=0, P_network_6_4_AskP_6=0, P_network_6_2_AskP_1=0, P_poll__networl_4_3_AI_6=0, P_network_4_5_RP_3=0, P_poll__networl_2_3_AskP_0=0, P_network_3_3_AI_3=0, P_network_3_0_AskP_6=0, P_masterList_3_3_6=0, P_poll__networl_3_4_AskP_3=0, P_poll__networl_5_5_AnnP_2=0, P_poll__networl_5_5_AnnP_1=0, P_poll__networl_4_4_AskP_3=0, P_poll__networl_4_3_RP_5=0, P_network_4_4_AnnP_5=0, P_poll__networl_1_6_RI_4=0, P_dead_5=0, P_poll__networl_0_3_AskP_4=0, P_poll__networl_1_4_AnnP_6=0, P_poll__networl_3_5_AI_6=0, P_network_1_2_AI_5=0, P_poll__networl_6_5_AnnP_4=0, P_poll__networl_1_4_RI_3=0, P_network_0_4_AnnP_4=0, P_masterList_2_5_6=1, P_poll__networl_4_4_AnnP_2=0, P_poll__networl_5_1_AnnP_5=0, P_poll__networl_0_5_AskP_3=0, P_network_1_1_AskP_3=0, P_poll__networl_4_0_RI_6=0, P_poll__networl_0_2_RI_1=0, P_poll__networl_2_6_RP_0=0, P_poll__networl_6_4_AskP_2=0, P_network_6_2_RI_5=0, P_network_1_1_AskP_2=0, P_network_5_4_AnnP_3=0, P_poll__networl_5_0_RI_5=0, P_network_1_1_RI_2=0, P_poll__networl_2_4_AnsP_0=0, P_poll__networl_6_4_RP_4=0, P_poll__networl_5_0_AI_2=0, P_poll__networl_5_2_AskP_6=0, P_masterList_6_1_2=0, P_network_0_2_RP_2=0, P_network_2_4_RP_6=0, P_poll__networl_2_0_AskP_0=0, P_network_3_0_AI_2=0, P_poll__networl_0_1_AI_3=0, P_network_0_2_RP_3=0, P_poll__networl_3_3_AskP_1=0, P_network_1_0_AnnP_1=0, P_poll__networl_3_5_AI_5=0, P_poll__networl_5_5_RI_4=0, P_network_0_6_AI_6=0, P_network_3_6_RP_1=0, P_network_2_4_AI_5=0, P_network_1_0_AI_1=0, P_network_2_0_RP_4=0, P_poll__networl_6_2_AnnP_1=0, P_network_3_1_AnnP_4=0, P_poll__networl_6_2_AskP_3=0, P_poll__networl_0_2_AI_2=0, P_network_1_3_RI_5=0, P_network_2_3_RP_6=0, P_poll__networl_4_1_AI_6=0, P_poll__networl_1_0_AI_5=0, P_masterList_6_6_0=0, P_network_4_2_AnnP_6=0, P_network_1_1_RP_3=0, P_network_2_5_RP_2=0, P_network_4_5_AskP_5=0, P_poll__networl_2_1_AI_4=0, P_poll__networl_5_4_AnnP_2=0, P_network_2_6_AskP_6=0, P_poll__networl_4_3_AnnP_3=0, P_poll__networl_4_0_AnnP_0=0, P_poll__networl_5_6_RP_3=0, P_poll__networl_5_0_RI_4=0, P_poll__networl_3_4_RP_5=0, P_poll__networl_5_2_AnnP_3=0, P_network_2_5_AskP_2=0, P_network_4_1_AnnP_3=0, P_network_4_2_AskP_1=0, P_network_4_1_AI_3=0, P_poll__networl_0_4_AskP_5=0, P_poll__networl_1_6_AI_3=0, P_poll__networl_5_1_RI_6=0, P_network_2_5_AnnP_3=0, P_masterList_6_2_1=0, P_poll__networl_1_4_AskP_3=0, P_poll__networl_0_3_RP_4=0, P_network_4_6_RP_3=0, P_masterList_2_3_3=0, P_poll__networl_0_0_AnsP_0=0, P_poll__networl_4_0_AskP_2=0, P_network_5_0_AnnP_5=0, P_masterList_5_6_2=0, P_poll__networl_1_2_AI_3=0, P_network_0_1_AI_3=0, P_poll__networl_2_1_RP_2=0, P_network_3_4_AnnP_1=0, P_poll__networl_1_2_AskP_5=0, P_network_2_1_AnnP_5=0, P_poll__networl_5_3_AnnP_3=0, P_poll__networl_0_2_AnnP_1=0, P_poll__networl_4_6_AnnP_1=0, P_poll__networl_3_5_RP_6=0, P_poll__networl_1_5_AskP_2=0, P_network_3_3_AnnP_3=0, P_poll__networl_4_6_RI_4=0, P_network_6_2_AskP_3=0, P_masterList_3_3_0=0, P_poll__networl_5_4_AnnP_0=0, P_network_2_6_AnnP_2=0, P_network_4_5_RP_5=0, P_poll__networl_6_0_AnnP_0=0, P_poll__networl_1_2_AI_0=0, P_poll__networl_3_0_RP_3=0, P_poll__networl_2_6_AI_3=0, P_poll__networl_6_0_RP_6=0, P_poll__networl_4_0_AskP_0=0, P_network_4_5_AnnP_4=0, P_poll__networl_2_3_RP_5=0, P_network_4_2_AskP_4=0, P_poll__networl_0_3_RI_0=0, P_poll__networl_3_0_AI_4=0, P_network_1_6_RP_6=0, P_poll__networl_2_0_AskP_6=0, P_network_2_4_RI_5=0, P_poll__networl_3_6_AskP_2=0, P_poll__networl_4_1_AnnP_0=0, P_poll__networl_3_3_AskP_4=0, P_poll__networl_1_0_RI_6=0, P_network_1_5_RP_6=0, P_network_4_1_AskP_2=0, P_network_4_3_AnnP_5=0, P_network_0_2_AnnP_3=0, P_poll__networl_2_2_RI_5=0, P_network_4_3_RI_3=0, P_poll__networl_2_3_AnnP_1=0, P_network_2_5_AI_3=0, P_network_6_5_RP_1=0, P_poll__networl_1_5_AnnP_5=0, P_network_5_0_RP_5=0, P_poll__networl_0_2_AskP_1=0, P_poll__networl_2_0_AnnP_5=0, P_poll__networl_6_4_RP_2=0, P_network_3_0_AI_5=0, P_network_2_6_RP_5=0, P_poll__networl_6_4_AI_0=0, P_poll__networl_2_4_AnnP_3=0, P_network_6_1_AI_3=0, P_poll__networl_6_2_RP_3=0, P_poll__networl_6_3_RI_1=0, P_network_4_6_AI_1=0, P_poll__networl_4_4_RI_0=0, P_network_5_1_RP_5=0, P_poll__networl_4_1_RI_5=0, P_poll__networl_2_4_AskP_2=0, P_poll__networl_4_4_AnnP_6=0, P_network_4_3_AskP_5=0, P_network_1_6_AI_4=0, P_poll__networl_3_2_RP_5=0, P_network_0_5_RP_2=0, P_network_0_2_RI_4=0, P_network_3_6_RP_5=0, P_masterList_2_
3_0=0, P_masterList_6_6_3=0, P_masterList_3_2_6=0, P_poll__networl_1_5_RP_5=0, P_poll__networl_3_2_AI_2=0, P_masterList_5_1_6=0, P_network_0_1_RP_3=0, P_poll__networl_2_2_AskP_1=0, P_network_3_2_AskP_3=0, P_masterList_0_5_2=0, P_poll__networl_3_3_AI_3=0, P_poll__networl_0_6_AskP_0=0, P_network_5_2_RI_2=0, P_poll__networl_4_3_RP_3=0, P_network_6_6_RP_2=0, P_masterList_6_4_2=0, P_network_1_5_AnnP_5=0, P_poll__networl_1_6_AI_2=0, P_poll__networl_3_5_AskP_1=0, P_poll__networl_4_1_AI_2=0, P_network_1_1_RI_3=0, P_poll__networl_1_6_RP_5=0, P_poll__networl_5_6_AI_5=0, P_network_3_2_AskP_1=0, P_poll__networl_3_0_RI_2=0, P_masterList_4_5_4=0, P_network_0_3_AnnP_5=0, P_masterList_0_4_1=0, P_network_6_4_AnnP_3=0, P_poll__networl_1_1_RI_0=0, P_poll__networl_2_2_AskP_6=0, P_network_4_6_AI_4=0, P_poll__networl_1_5_RI_3=0, P_network_3_0_RI_3=0, P_network_5_0_AI_1=0, P_network_4_3_RP_5=0, P_network_5_6_RI_6=0, P_poll__networl_4_3_AI_2=0, P_poll__networl_4_6_AskP_2=0, P_network_2_2_RI_1=0, P_network_2_1_AnnP_6=0, P_poll__networl_2_0_AI_5=0, P_network_3_2_AskP_2=0, P_poll__networl_6_3_AskP_0=0, P_network_4_6_RP_6=0, P_network_1_1_RI_1=0, P_masterList_3_1_2=0, P_masterList_1_5_3=0, P_poll__networl_0_0_AskP_3=0, P_poll__networl_5_4_RP_4=0, P_network_5_1_RI_5=0, P_network_1_4_AskP_5=0, P_poll__networl_6_2_RI_0=0, P_network_4_6_AskP_5=0, P_poll__networl_3_3_RP_6=0, P_poll__networl_5_3_AskP_1=0, P_poll__networl_6_0_RI_1=0, P_poll__networl_6_6_RP_2=0, P_network_1_4_RI_2=0, P_poll__networl_4_4_RI_1=0, P_network_0_5_RI_1=0, P_network_2_1_RI_4=0, P_poll__networl_3_1_RI_5=0, P_poll__networl_0_6_RI_3=0, P_poll__networl_4_6_RI_6=0, P_poll__networl_3_6_RI_0=0, P_masterList_4_4_0=0, P_poll__networl_3_0_AskP_2=0, P_network_6_2_AI_6=0, P_masterList_1_4_6=0, P_network_2_3_AI_1=0, P_network_3_6_AnnP_2=0, P_poll__networl_2_1_AskP_5=0, P_poll__networl_5_0_RP_5=0, P_network_0_1_AnnP_4=0, P_network_3_4_RI_4=0, P_poll__networl_0_4_RI_6=0, P_poll__networl_2_6_RI_6=0, P_poll__networl_5_5_AskP_2=0, P_network_3_3_AnnP_1=0, P_poll__networl_3_0_RI_5=0, P_poll__networl_5_0_RI_6=0, P_poll__networl_0_6_RI_5=0, P_poll__networl_0_6_AskP_2=0, P_poll__networl_5_6_AnnP_4=0, P_network_2_4_RI_2=0, P_poll__networl_5_0_AI_1=0, P_network_3_4_RI_6=0, P_network_2_3_RP_5=0, P_network_6_5_AI_4=0, P_poll__networl_0_1_RI_0=0, P_network_4_2_RI_5=0, P_network_1_2_AskP_1=0, P_poll__networl_5_6_AI_6=0, P_poll__networl_3_1_AskP_5=0, P_poll__networl_4_6_RI_0=0, P_poll__networl_1_6_RI_5=0, P_network_6_1_RI_5=0, P_poll__networl_1_0_RP_0=0, P_poll__networl_4_2_AnnP_4=0, P_poll__networl_0_4_AnnP_4=0, P_masterList_4_4_4=0, P_network_4_5_AskP_4=0, P_poll__networl_4_1_AskP_2=0, P_poll__networl_4_1_RI_0=0, P_network_0_0_AI_3=0, P_network_6_6_AI_6=0, P_network_4_4_RP_3=0, P_network_1_5_RI_5=0, P_poll__networl_6_5_AskP_1=0, P_poll__networl_2_4_AI_0=0, P_masterList_0_4_2=0, P_network_0_2_AskP_5=0, P_poll__networl_0_4_RP_5=0, P_poll__networl_5_2_AI_4=0, P_poll__networl_0_3_AnnP_0=0, P_network_0_3_AI_5=0, P_poll__networl_0_0_AskP_4=0, P_poll__networl_6_6_RI_6=0, P_network_1_5_AnnP_6=0, P_poll__networl_0_3_AI_6=0, P_poll__networl_5_4_RI_4=0, P_network_1_1_AnnP_1=0, P_network_1_6_RP_5=0, P_network_1_0_AI_6=0, P_masterList_4_5_1=0, P_masterList_5_4_3=0, P_poll__networl_0_2_AnnP_0=0, P_poll__networl_2_0_AnnP_6=0, P_network_3_3_AskP_3=0, P_network_4_6_AnnP_1=0, P_network_2_5_AI_4=0, P_poll__networl_4_5_AnnP_4=0, P_poll__networl_5_2_AnsP_0=0, P_poll__networl_1_1_RI_5=0, P_poll__networl_0_6_AnnP_1=0, P_masterList_6_1_4=0, P_poll__networl_0_6_RI_6=0, P_network_4_0_AnnP_3=0, P_poll__networl_1_4_RP_1=0, P_poll__networl_5_2_RI_6=0, P_network_3_5_AI_1=0, P_network_1_4_RP_2=0, P_poll__networl_0_1_RP_3=0, P_network_0_4_RI_2=0, P_masterList_4_3_0=0, P_poll__networl_6_1_RI_6=0, P_poll__networl_3_2_AskP_0=0, P_masterList_3_6_0=0, P_network_6_2_RI_4=0, P_network_3_2_AskP_6=0, P_masterList_1_6_6=0, P_network_5_1_AnnP_2=0, P_poll__networl_5_2_AskP_3=0, P_masterList_4_1_5=0, P_poll__networl_2_3_AI_1=0, P_poll__networl_3_1_AnnP_0=0, P_network_2_2_AI_5=0, P_network_4_4_AskP_6=0, P_poll__networl_2_0_RP_2=0, P_poll__networl_2_5_RI_0=0, P_poll__networl_5_5_AnnP_4=0, P_network_0_3_AskP_1=0, P_poll__networl_5_2_AskP_1=0, P_network_3_5_RI_1=0, P_poll__networl_3_2_RI_3=0, P_network_0_3_RP_6=0, P_network_4_6_RI_6=0, P_poll__networl_2_4_AI_4=0, P_network_5_6_AskP_4=0, P_poll__networl_1_1_AI_4=0, P_network_3_4_RP_3=0, P_network_5_6_RI_2=0, P_network_1_5_AskP_4=0, P_poll__networl_4_4_AnnP_4=0, P_poll__networl_0_0_RI_4=0, P_network_5_5_AnnP_3=0, P_network_3_5_RP_1=0, P_poll__networl_6_5_AskP_5=0, P_poll__networl_2_3_RI_0=0, P_poll__networl_3_3_RP_4=0, P_network_4_4_RI_5=0, P_poll__networl_0_1_AI_4=0, P_network_6_1_AI_6=0, P_network_3_2_AI_5=0, P_network_6_2_AI_5=0, P_poll__networl_4_4_RI_4=0, P_poll__networl_1_0_RI_2=0, P_poll__networl_0_1_AI_6=0, P_masterList_6_3_0=0, P_poll__networl_4_6_AnnP_2=0, P_network_5_3_AI_5=0, P_network_2_4_AskP_6=0, P_network_3_1_AskP_3=0, P_masterList_0_5_4=0, P_poll__networl_1_1_AI_1=0, P_poll__networl_3_5_AI_0=0, P_network_1_5_RI_4=0, P_poll__networl_3_2_AnsP_0=0, P_network_5_4_AskP_1=0, P_network_0_2_AskP_6=0, P_poll__networl_4_3_AnnP_2=0, P_poll__networl_5_0_AskP_0=0, P_poll__networl_5_4_RI_0=0, P_network_0_4_RI_4=0, P_network_4_1_AI_1=0, P_network_6_0_RI_1=0, P_poll__networl_3_0_AnnP_2=0, P_poll__networl_6_3_AnnP_0=0, P_poll__networl_2_6_AI_1=0, P_poll__networl_0_5_RP_1=0, P_masterList_5_4_5=0, P_network_6_6_RP_5=0, P_poll__networl_6_3_AnnP_2=0, P_network_1_3_AskP_2=0, P_poll__networl_3_4_AnnP_2=0, P_poll__networl_5_4_RP_1=0, P_poll__networl_6_5_RI_3=0, P_poll__networl_1_3_RI_3=0, P_poll__networl_1_1_RI_3=0, P_network_5_1_AskP_4=0, P_network_3_1_RP_5=0, P_poll__networl_3_0_AskP_1=0, P_network_0_4_AskP_6=0, P_network_3_6_AI_6=0, P_poll__networl_4_2_AnnP_3=0, P_network_3_4_AnnP_2=0, P_poll__networl_4_0_RP_2=0, P_network_2_1_RP_5=0, P_poll__networl_6_3_RP_6=0, P_poll__networl_5_6_AskP_0=0, P_poll__networl_5_0_AnsP_0=0, P_poll__networl_5_1_RI_5=0, P_network_5_6_RP_4=0, P_poll__networl_1_4_RP_4=0, P_network_4_1_RI_2=0, P_network_1_2_AI_6=0, P_poll__networl_0_0_AskP_6=0, P_poll__networl_3_1_AskP_6=0, P_poll__networl_2_0_AI_4=0, P_poll__networl_2_2_AnnP_1=0, P_poll__networl_5_0_AskP_2=0, P_poll__networl_2_0_AskP_1=0, P_network_6_1_RI_6=0, P_network_0_1_AskP_3=0, P_network_1_6_RI_5=0, P_poll__networl_6_4_AI_3=0, P_poll__networl_0_0_AI_1=0, P_masterList_0_5_5=0, P_network_3_4_AskP_2=0, P_poll__networl_5_6_RP_1=0, P_network_0_5_AI_4=0, P_poll__networl_6_2_RI_4=0, P_network_3_5_AskP_3=0, P_network_1_2_AnnP_5=0, P_poll__networl_0_3_AnnP_4=0, P_network_5_5_RI_5=0, P_network_5_4_AnnP_1=0, P_poll__networl_6_4_AnnP_3=0, P_poll__networl_3_6_RP_5=0, P_poll__networl_0_2_AskP_4=0, P_poll__networl_5_3_AnnP_5=0, P_network_2_5_RI_1=0, P_poll__networl_0_5_RI_0=0, P_network_4_6_RI_1=0, P_network_5_0_AI_3=0, P_network_0_1_RP_4=0, P_network_2_4_RP_5=0, P_network_3_3_RP_3=0, P_network_4_6_RP_4=0, P_network_6_0_AI_1=0, P_poll__networl_0_5_AskP_2=0, P_network_1_2_AskP_3=0, P_network_6_3_RP_6=0, P_network_3_3_AskP_6=0, P_poll__networl_4_5_AI_4=0, P_poll__networl_1_4_AskP_0=0, P_network_6_6_AI_5=0, P_poll__networl_3_3_RI_5=0, P_poll__networl_2_2_AI_5=0, P_network_0_2_AnnP_1=0, P_poll__networl_0_2_AskP_6=0, P_poll__networl_6_2_AI_5=0, P_network_0_6_AskP_1=0, P_network_1_2_AI_3=0, P_network_2_5_AnnP_1=0, P_network_4_3_AnnP_1=0, P_network_1_2_RP_2=0, P_poll__networl_2_1_RP_6=0, P_poll__networl_4_2_AskP_0=0, P_network_1_5_RP_3=0, P_poll__networl_1_6_RI_3=0, P_network_2_3_AnnP_4=0, P_poll__networl_2_6_AI_4=0, P_network_5_2_AskP_1=0, P_network_5_0_RP_6=0, P_poll__networl_4_3_AskP_1=0, P_poll__networl_2_5_RP_3=0, P_poll__networl_4_0_RI_5=0, P_network_2_2_AnnP_6=0, P_poll__networl_1_1_AnnP_3=0, P_network_5_0_AskP_5=0, P_poll__networl_2_5_RI_5=0, P_network_6_5_RI_1=0, P_network_4_5_AI_4=0, P_network_6_5_AnnP_1=0, P_poll__networl_0_0_RI_3=0, P_poll__networl_6_5_AskP_3=0, P_poll__networl_0_4_AI_3=0, P_network_5_2_AI_5=0, P_network_0_5_AskP_6=0, P_network_5_6_AnnP_4=0, P_network_6_1_AI_4=0, P_network_5_0_AskP_6=0, P_poll__networl_6_3_AI_2=0, P_network_1_6_AnnP_6=0, P_poll__networl_5_5_RP_2=0, P_network_5_1_AnnP_1=0, P_poll__networl_2_1_RP_0=0, P_poll__networl_4_0_AnnP_4=0, P_poll__networl_4_1_RP_3=0, P_poll__networl_6_6_AI_1=0, P_network_6_0_AskP_1=0, P_network_2_2_RI_3=0, P_poll__networl_6_6_RI_0=0, P_poll__networl_1_6_RI_1=0, P_poll__networl_2_1_RP_1=0, P_network_6_1_AnnP_2=0, P_network_5_0_AI_5=0, P_poll__networl_3_0_RP_1=0, P_network_0_2_AI_6=0, P_network_4_1_RI_3=0, P_poll__networl_5_3_RP_1=0, P_poll__networl_1_5_RI_5=0, P_network_4_4_RP_4=0, P_network_6_6_AI_3=0, P_network_3_1_RI_5=0, P_network_2_3_AnnP_6=0, P_network_1_3_AnnP_3=0, P_network_5_2_AI_6=0, P_network_5_6_RP_3=0, P_masterList_5_3_4=0, P_network_1_4_AnnP_2=0, P_network_5_1_RI_3=0, P_network_1_0_AnnP_5=0, P_network_0_6_AskP_2=0, P_poll__networl_5_0_AnnP_3=0, P_masterList_0_3_3=0, P_poll__networl_0_2_RI_4=0, P_poll__networl_6_0_AskP_4=0, P_network_2_2_RP_4=0, P_poll__networl_0_3_AskP_5=0, P_network_0_0_AI_1=0, P_network_2_3_AnnP_5=0, P_poll__networl_1_3_RP_2=0, P_network_2_1_RI_1=0, P_poll__networl_3_1_RI_1=0, P_network_3_5_AnnP_5=0, P_network_4_5_AnnP_1=0, P_network_5_6_AskP_6=0, P_poll__networl_4_0_RP_5=0, P_network_6_0_RI_3=0, P_network_3_5_RP_5=0, P_network_0_5_RP_4=0, P_network_3_3_RI_5=0, P_poll__networl_3_0_RP_0=0, P_network_6_0_RI_5=0, P_poll__networl_0_2_AnnP_6=0, P_network_4_2_RI_4=0, P_poll__networl_5_4_RP_0=0, P_poll__networl_2_5_AI_5=0, P_poll__networl_4_4_AnnP_3=0, P_masterList_5_5_4=0, P_poll__networl_0_6_AskP_5=0, P_network_5_2_AnnP_5=0, P_poll__networl_5_4_AskP_2=0, P_network_2_2_AnnP_4=0, P_poll__networl_2_3_AskP_2=0, P_network_5_0_AnnP_6=0, P_poll__networl_3_1_AI_2=0, P_network_0_1_RP_2=0, P_network_5_1_RP_1=0, P_network_3_0_AnnP_1=0, P_network_4_2_AnnP_5=0, P_network_6_4_RI_5=0, P_poll__networl_6_6_AI_3=0, P_network_5_2_AI_1=0, P_poll__networl_1_4_RI_1=0, P_masterList_5_3_1=0, P_network_5_1_AnnP_4=0, P_network_6_0_RP_2=0, P_poll__networl_2_6_AskP_0=0, P_poll__networl_5_4_RP_3=0, P_poll__networl_0_4_RP_6=0, P_network_6_0_AI_6=0, P_masterList_3_5_6=1, P_poll__networl_4_5_AskP_2=0, P_network_3_5_AI_3=0, P_poll__networl_1_1_AskP_2=0, P_poll__networl_1_2_AskP_4=0, P_poll__networl_3_0_AnnP_5=0, P_network_0_5_RI_2=0, P_network_6_3_AI_2=0, P_network_3_3_AI_4=0, P_network_4_1_AI_4=0, P_masterList_5_6_5=0, P_network_0_6_AnnP_6=0, P_masterList_4_5_3=0, P_network_6_0_RP_6=0, P_poll__networl_1_1_RP_3=0, P_poll__networl_6_1_RI_4=0, P_poll__networl_2_4_RP_1=0, P_network_1_4_RP_3=0, P_network_2_0_AnnP_2=0, P_poll__networl_2_4_AskP_3=0, P_network_5_1_AI_1=0, P_network_6_3_AskP_6=0, P_poll__networl_5_6_AnnP_3=0, P_dead_2=0, P_poll__networl_4_6_AI_4=0, P_poll__networl_2_0_AnnP_3=0, P_network_3_3_AskP_2=0, P_poll__networl_5_5_AI_3=0, P_poll__networl_5_6_RI_1=0, P_poll__networl_6_6_RI_4=0, P_poll__networl_2_6_AskP_3=0, P_poll__networl_4_3_RI_0=0, P_network_0_1_AI_1=0, P_network_4_3_AskP_1=0, P_poll__networl_4_3_RI_6=0, P_network_2_4_RP_3=0, P_poll__networl_4_1_AskP_3=0, P_network_1_2_RI_1=0, P_poll__networl_2_1_RI_2=0, P_poll__networl_0_6_AI_2=0, P_poll__networl_2_3_AskP_4=0, P_poll__networl_4_0_RP_1=0, P_poll__networl_0_2_RP_6=0, P_network_0_5_AnnP_2=0, P_network_4_6_AI_3=0, P_masterList_3_2_2=1, P_masterList_6_1_5=0, P_network_4_5_AskP_2=0, P_network_0_0_RP_6=0, P_network_2_6_AnnP_4=0, P_network_1_4_AskP_4=0, P_poll__networl_5_1_RP_4=0, P_network_6_0_RP_1=0, P_poll__networl_1_5_AI_2=0, P_network_3_6_AI_4=0, P_poll__networl_4_0_AI_4=0, P_network_1_5_RP_5=0, P_network_1_5_AskP_5=0, P_poll__networl_6_0_AskP_5=0, P_masterList_3_5_5=0, P_poll__networl_5_4_AI_0=0, P_poll__networl_1_2_RP_4=0, P_poll__networl_5_1_AskP_4=0, P_network_2_4_AnnP_6=0, P_network_5_3_AnnP_3=0, P_masterList_2_3_2=0, P_poll__networl_6_4_RP_3=0, P_poll__networl_2_3_AI_0=0, P_poll__networl_2_1_AI_3=0, P_poll__networl_5_4_RI_3=0, P_network_6_4_RP_2=0, P_poll__networl_5_1_RI_2=0, P_poll__networl_1_3_RI_2=0, P_masterList_1_6_1=0, P_poll__networl_0_5_AI_2=0, P_masterList_5_5_5=0, P_network_0_2_RI_3=0, P_poll__networl_3_2_AskP_4=0, P_poll__networl_5_5_AI_1=0, P_network_4_0_RI_1=0, P_poll__networl_3_3_RI_0=0, P_poll__networl_1_5_AnnP_6=0, P_poll__networl_4_5_AnnP_5=0, P_poll__networl_3_4_RP_6=0, P_poll__networl_4_5_RP_1=0, P_poll__networl_5_4_AI_5=0, P_network_0_0_AnnP_6=0, P_network_6_6_RI_6=0, P_network_1_5_RI_6=0, P_network_1_4_AnnP_4=0, P_poll__networl_4_2_AskP_5=0, P_network_6_4_RI_4=0, P_poll__networl_1_3_AskP_0=0, P_poll__networl_3_5_AnnP_5=0, P_network_2_6_RI_3=0, P_poll__networl_1_6_AI_6=0, P_network_6_4_AnnP_4=0, P_network_2_2_AskP_1=0, P_poll__networl_1_1_AskP_1=0, P_poll__networl_6_3_AI_3=0, P_network_3_4_AskP_6=0, P_poll__networl_2_2_RP_5=0, P_masterList_3_5_2=0, P_network_5_2_AnnP_4=0, P_poll__networl_1_6_AnnP_5=0, P_network_5_1_AnnP_3=0, P_poll__networl_2_0_RI_4=0, P_poll__networl_3_0_AI_3=0, P_poll__networl_4_2_RP_2=0, P_masterList_4_1_2=0, P_poll__networl_5_3_AnsP_0=0, P_poll__networl_5_1_AskP_3=0, P_poll__networl_0_3_AnnP_2=0, P_network_0_1_AnnP_2=0, P_network_4_1_RI_4=0, P_masterList_4_6_1=0, P_poll__networl_2_0_RP_1=0, P_poll__networl_4_2_AnsP_0=0, P_network_5_4_RP_5=0, P_network_4_1_RI_6=0, P_masterList_3_3_3=0, P_poll__networl_1_3_RP_4=0, P_masterList_4_5_2=0, P_network_3_2_RI_5=0, P_poll__networl_1_4_RP_5=0, P_poll__networl_1_2_AnnP_3=0, P_poll__networl_5_6_RI_3=0, P_poll__networl_1_0_AnnP_4=0, P_network_5_4_AnnP_4=0, P_network_6_5_RP_4=0, P_poll__networl_0_0_RI_6=0, P_poll__networl_1_4_RP_3=0, P_poll__networl_1_0_AI_0=0, P_poll__networl_3_0_AskP_3=0, P_network_5_2_RI_3=0, P_poll__networl_1_6_RP_2=0, P_poll__networl_4_0_AskP_1=0, P_network_3_2_RI_1=0, P_poll__networl_5_3_AskP_6=0, P_network_2_2_RI_2=0, P_network_1_4_RP_4=0, P_network_0_5_RP_3=0, P_network_4_3_AI_4=0, P_poll__networl_0_6_AnnP_6=0, P_masterList_0_4_6=0, P_network_2_2_AI_6=0, P_network_5_5_AnnP_4=0, P_poll__networl_2_4_AnnP_5=0, P_poll__networl_6_4_RI_5=0, P_poll__networl_5_3_AI_3=0, P_poll__networl_1_1_AskP_6=0, P_poll__networl_6_5_AnnP_6=0, P_network_0_5_AI_2=0, P_network_4_2_RP_4=0, P_network_6_5_RP_2=0, P_poll__networl_4_4_AskP_0=0, P_network_3_4_AnnP_4=0, P_poll__networl_3_3_AskP_5=0, P_poll__networl_4_2_RI_3=0, P_network_0_6_AI_2=0, P_network_4_0_RI_3=0, P_poll__networl_2_5_AnnP_6=0, P_poll__networl_3_0_AnnP_3=0, P_network_4_4_RI_2=0, P_poll__networl_4_2_AI_3=0, P_poll__networl_6_1_AI_3=0, P_network_5_6_RI_3=0, P_poll__networl_1_6_AnnP_3=0, P_poll__networl_6_3_RI_6=0, P_electionFailed_2=0, P_poll__networl_6_1_RP_2=0, P_network_0_2_AI_5=0, P_poll__networl_2_6_AnnP_1=0, P_poll__networl_3_3_AnnP_3=0, P_poll__networl_1_1_RI_1=0, P_network_3_6_RP_6=0, P_poll__networl_1_2_AnnP_2=0, P_network_3_3_RI_3=0, P_network_6_5_AskP_4=0, P_poll__networl_3_3_RP_1=0, P_network_6_5_RI_5=0, P_network_5_0_AnnP_3=0, P_network_4_4_AskP_3=0, P_poll__networl_0_5_RI_1=0, P_poll__networl_1_0_AI_3=0, P_network_5_2_RI_4=0, P_network_2_4_RI_6=0, P_poll__networl_5_1_RI_4=0, P_masterList_1_6_4=0, P_poll__networl_2_5_AI_3=0, P_poll__networl_6_6_RI_5=0, P_poll__networl_1_1_AnsP_0=0, P_poll__networl_5_3_RP_3=0, P_network_4_0_RI_4=0, P_network_0_4_AskP_5=0, P_network_0_2_AI_3=0, P_network_1_1_RP_6=0, P_poll__networl_5_6_RP_6=0, P_network_4_5_AI_3=0, P_network_1_5_AnnP_2=0, P_poll__networl_2_2_AskP_0=0, P_network_1_2_RI_2=0, P_network_6_2_AnnP_4=0, P_poll__networl_4_3_AnsP_0=0, P_masterList_5_1_0=0, P_poll__networl_3_6_AskP_0=0, P_network_5_6_RP_5=0, P_poll__networl_3_2_AI_5=0, P_poll__networl_3_1_RP_2=0, P_poll__networl_1_3_AskP_1=0, P_network_6_3_AskP_4=0, P_poll__networl_0_5_RP_4=0, P_poll__networl_1_2_RI_1=0, P_poll__networl_2_3_AnnP_6=0, P_masterList_1_3_5=0, P_network_1_5_AskP_3=0, P_network_2_1_AnnP_3=0, P_masterList_0_2_5=0, P_masterList_6_2_3=0, P_network_1_2_AnnP_2=0, P_network_4_1_AskP_1=0, P_poll__networl_2_1_AI_1=0, P_poll__networl_6_0_AskP_6=0, P_poll__networl_2_1_AskP_6=0, P_poll__networl_3_6_AskP_6=0, P_network_1_4_RP_6=0, P_poll__networl_4_2_RI_5=0, P_poll__networl_5_0_AI_6=0, P_network_0_4_AnnP_5=0, P_network_0_1_RI_2=0, P_network_4_4_AskP_1=0, P_network_2_5_AnnP_6=0, P_poll__networl_3_2_RP_0=0, P_network_5_0_RP_4=0, P_network_3_5_AnnP_3=0, P_network_5_5_AI_6=0, P_masterList_5_4_4=1, P_network_0_1_AnnP_3=0, P_masterList_4_6_3=0, P_network_2_6_AnnP_5=0, P_poll__networl_5_2_AskP_0=0, P_masterList_0_3_6=0, P_network_3_1_RI_2=0, P_poll__networl_5_3_AI_6=0, P_network_2_4_AI_2=0, P_masterList_0_6_5=0, P_n
etwork_1_2_RI_4=0, P_network_4_5_RI_3=0, P_network_6_5_AI_2=0, P_poll__networl_6_4_AnnP_2=0, P_network_5_1_AskP_5=0, P_network_0_1_AskP_1=0, P_poll__networl_2_2_AnnP_5=0, P_poll__networl_4_3_AI_3=0, P_poll__networl_4_4_AskP_5=0, P_poll__networl_1_3_AskP_6=0, P_network_2_3_RI_6=0, P_network_5_5_RP_3=0, P_poll__networl_6_6_RI_2=0, P_masterList_2_5_2=0, P_masterList_2_4_6=0, P_poll__networl_4_2_AskP_1=0, P_network_0_5_AnnP_5=0, P_network_2_3_AI_4=0, P_poll__networl_6_5_RP_2=0, P_poll__networl_6_6_AI_2=0, P_masterList_0_5_1=0, P_poll__networl_0_3_AI_3=0, P_poll__networl_3_1_AI_6=0, P_network_1_2_AskP_4=0, P_network_2_3_AI_6=0, P_network_3_4_AskP_4=0, P_poll__networl_1_3_AnsP_0=0, P_poll__networl_1_3_AI_3=0, P_network_1_1_RI_6=0, P_poll__networl_0_3_AnnP_6=0, P_poll__networl_5_1_RI_3=0, P_network_6_0_AnnP_2=0, P_network_6_0_AskP_5=0, P_network_1_2_RI_5=0, P_poll__networl_5_2_AnnP_6=0, P_poll__networl_3_5_AskP_5=0, P_poll__networl_4_5_AI_0=0, P_masterList_0_2_6=0, P_network_3_6_AskP_6=0, P_network_6_0_AI_2=0, P_poll__networl_0_0_RI_5=0, P_poll__networl_2_2_RP_4=0, P_poll__networl_1_0_AnnP_6=0, P_network_1_3_RI_3=0, P_network_6_3_RI_4=0, P_poll__networl_0_3_RP_6=0, P_poll__networl_3_6_RP_4=0, P_poll__networl_1_3_AnnP_3=0, P_network_3_6_RP_3=0, P_masterList_1_1_3=0, P_network_2_6_RP_6=0, P_network_3_4_AskP_3=0, P_network_1_2_RI_3=0, P_masterList_5_2_3=0, P_network_6_3_AI_5=0, P_network_1_6_RI_3=0, P_poll__networl_6_2_AskP_6=0, P_masterList_2_3_5=0, P_poll__networl_1_2_AnnP_0=0, P_network_1_1_AnnP_5=0, P_poll__networl_3_2_RP_4=0, P_poll__networl_3_5_RI_5=0, P_network_2_5_AI_6=0, P_poll__networl_1_6_RP_3=0, P_network_6_1_AnnP_3=0, P_poll__networl_0_6_AnnP_2=0, P_masterList_5_4_6=0, P_poll__networl_6_4_AnnP_0=0, P_poll__networl_6_3_AnnP_1=0, P_masterList_1_4_2=0, P_masterList_1_6_2=0, P_masterList_3_5_4=0, P_poll__networl_5_3_AskP_0=0, P_poll__networl_1_4_AI_6=0, P_poll__networl_3_4_AskP_0=0, P_poll__networl_2_0_RI_0=0, P_poll__networl_1_6_AnnP_6=0, P_network_1_3_RP_4=0, P_poll__networl_5_1_AI_0=0, P_poll__networl_2_5_AskP_3=0, P_poll__networl_5_2_RP_4=0, P_poll__networl_3_4_RP_1=0, P_poll__networl_4_1_AnnP_3=0, P_masterList_6_3_2=0, P_network_2_1_AskP_3=0, P_poll__networl_0_4_AI_5=0, P_poll__networl_5_5_AskP_4=0, P_poll__networl_2_0_AnnP_1=0, P_poll__networl_6_6_RP_3=0, P_network_6_4_AnnP_5=0, P_poll__networl_1_3_RP_5=0, P_network_2_1_AI_3=0, P_network_0_4_AI_4=0, P_network_0_2_AI_2=0, P_poll__networl_3_6_AskP_4=0, P_poll__networl_3_5_RI_2=0, P_network_2_6_AI_2=0, P_network_5_6_RI_4=0, P_poll__networl_4_4_AI_2=0, P_network_1_0_AskP_1=0, P_poll__networl_0_2_AnnP_2=0, P_poll__networl_3_2_RI_2=0, P_masterList_1_2_3=1, P_poll__networl_1_2_RI_2=0, P_poll__networl_0_5_AI_3=0, P_network_4_1_RI_1=0, P_poll__networl_3_5_RP_0=0, P_network_5_2_AI_4=0, P_poll__networl_2_1_AskP_2=0, P_network_6_6_AskP_6=0, P_poll__networl_2_0_RP_0=0, P_poll__networl_6_5_AnnP_1=0, P_network_5_6_RP_1=0, P_poll__networl_3_4_AI_5=0, P_poll__networl_4_6_RP_3=0, P_network_6_1_RP_5=0, P_network_6_3_AnnP_2=0, P_poll__networl_2_6_RP_5=0, P_network_3_4_RI_1=0, P_network_1_4_AI_3=0, P_poll__networl_0_5_AskP_5=0, P_poll__networl_6_5_AnsP_0=0, P_network_3_1_RP_2=0, P_masterList_1_1_1=0, P_network_1_5_AI_1=0, P_masterList_6_4_6=0, P_masterList_1_5_5=0, P_poll__networl_5_1_RP_3=0, P_masterList_1_6_5=0, P_network_4_6_AI_2=0, P_poll__networl_2_4_AskP_1=0, P_network_4_2_AI_4=0, P_network_1_1_RI_4=0, P_poll__networl_3_0_AskP_0=0, P_masterList_1_5_0=0, P_network_1_2_AskP_5=0, P_poll__networl_5_6_AskP_1=0, P_network_1_0_AI_5=0, P_network_0_5_AI_1=0, P_poll__networl_4_3_AI_0=0, P_poll__networl_4_6_AnnP_4=0, P_network_3_0_AskP_1=0, P_network_5_5_AnnP_2=0, P_poll__networl_5_4_RP_5=0, P_poll__networl_2_0_AskP_4=0, P_network_1_1_AI_5=0, P_poll__networl_3_0_RP_4=0, P_poll__networl_5_1_AI_3=0, P_poll__networl_4_1_AnnP_1=0, P_poll__networl_1_5_AskP_5=0, P_poll__networl_3_4_AI_1=0, P_poll__networl_1_1_AnnP_5=0, P_poll__networl_1_4_AnnP_0=0, P_poll__networl_3_3_AnnP_2=0, P_poll__networl_4_1_AnnP_6=0, P_network_1_0_AI_3=0, P_poll__networl_2_5_RI_3=0, P_network_5_2_RP_3=0, P_poll__networl_3_6_RI_3=0, P_poll__networl_1_6_AI_4=0, P_poll__networl_2_2_AI_3=0, P_poll__networl_5_2_RI_5=0, P_network_1_1_AI_2=0, P_network_3_0_AI_3=0, P_dead_6=0, P_network_6_6_RI_3=0, P_network_4_6_RP_1=0, P_network_1_5_RI_3=0, P_poll__networl_0_1_AnnP_4=0, P_network_4_1_AskP_3=0, P_network_0_3_AskP_2=0, P_poll__networl_0_1_AnnP_3=0, P_poll__networl_2_1_AnnP_3=0, P_poll__networl_2_1_RP_4=0, P_network_4_1_RP_1=0, P_masterList_5_4_2=0, P_network_0_0_RI_1=0, P_network_2_1_AskP_2=0, P_network_4_4_AI_2=0, P_poll__networl_5_6_RP_2=0, P_poll__networl_6_5_RI_4=0, P_network_6_4_AI_5=0, P_poll__networl_0_0_AI_4=0, P_poll__networl_1_2_AI_4=0, P_network_3_2_RI_3=0, P_poll__networl_6_0_AskP_1=0, P_poll__networl_6_4_AskP_1=0, P_network_5_3_AnnP_5=0, P_network_0_3_AskP_3=0, P_poll__networl_6_2_AskP_4=0, P_network_6_5_AI_3=0, P_network_0_0_AI_5=0, P_network_2_0_RP_5=0, P_network_0_6_RP_6=0, P_poll__networl_3_5_RP_4=0, P_poll__networl_6_2_RI_6=0, P_network_1_4_AI_4=0, P_poll__networl_1_3_RP_6=0, P_poll__networl_3_4_AI_2=0, P_poll__networl_4_6_AnnP_6=0, P_network_2_6_AnnP_1=0, P_network_0_4_RP_2=0, P_network_4_6_RP_2=0, P_poll__networl_6_4_AskP_0=0, P_network_0_3_RP_3=0, P_network_4_3_AskP_4=0, P_network_6_6_AskP_3=0, P_network_4_0_AI_5=0, P_poll__networl_5_0_RP_2=0, P_poll__networl_3_6_AnnP_5=0, P_network_3_2_RP_2=0, P_network_6_0_AskP_3=0, P_poll__networl_0_3_RP_2=0, P_masterList_4_1_0=0, P_poll__networl_5_0_RP_3=0, P_masterList_0_2_4=0, P_poll__networl_2_3_RI_5=0, P_network_1_1_AnnP_4=0, P_poll__networl_2_0_RP_3=0, P_network_2_5_AnnP_4=0, P_poll__networl_3_4_AnnP_3=0, P_masterList_0_6_3=0, P_network_1_4_RP_5=0, P_poll__networl_3_5_RI_6=0, P_network_0_5_AI_5=0, P_poll__networl_0_6_RP_0=0, P_network_1_1_RP_5=0, P_poll__networl_2_4_AnnP_2=0, P_poll__networl_4_6_AnnP_3=0, P_network_6_3_RI_6=0, P_poll__networl_0_6_AI_4=0, P_masterList_4_2_3=0, P_network_6_5_RP_6=0, P_poll__networl_0_4_AskP_0=0, P_poll__networl_6_0_RI_3=0, P_network_4_5_RI_4=0, P_masterList_0_3_4=0, P_network_1_0_AskP_2=0, P_poll__networl_1_5_RI_4=0, P_poll__networl_3_5_RI_3=0, P_poll__networl_0_2_AnnP_3=0, P_network_3_0_AnnP_4=0, P_poll__networl_3_4_RP_2=0, P_network_4_3_AI_6=0, P_poll__networl_2_2_RI_2=0, P_network_0_2_AnnP_5=0, P_poll__networl_3_6_RP_2=0, P_network_1_5_RP_2=0, P_poll__networl_6_6_AnnP_3=0, P_poll__networl_3_2_AskP_5=0, P_poll__networl_3_6_AskP_5=0, P_poll__networl_0_0_RP_1=0, P_poll__networl_0_5_AI_6=0, P_poll__networl_3_0_AI_1=0, P_poll__networl_4_0_AskP_6=0, P_poll__networl_2_4_AnnP_6=0, P_network_2_3_AnnP_1=0, P_poll__networl_0_6_AskP_6=0, P_poll__networl_6_6_AnnP_6=0, P_poll__networl_1_5_AnnP_1=0, P_poll__networl_6_2_AskP_2=0, P_network_6_1_AI_5=0, P_poll__networl_4_6_AnnP_5=0, P_network_3_2_AskP_5=0, P_network_4_0_AskP_6=0, P_network_2_0_AskP_4=0, P_poll__networl_2_4_RP_6=0, P_network_0_0_AnnP_5=0, P_network_0_5_AskP_5=0, P_poll__networl_2_0_AI_0=0, P_poll__networl_2_3_AskP_1=0, P_poll__networl_4_1_RP_6=0, P_network_0_1_RI_5=0, P_network_5_3_AnnP_2=0, P_poll__networl_0_3_AI_2=0, P_network_0_1_AskP_5=0, P_network_4_2_AI_3=0, P_poll__networl_1_6_RI_6=0, P_masterList_4_2_6=0, P_network_1_2_RP_5=0, P_network_2_2_RI_5=0, P_network_6_6_AnnP_5=0, P_network_3_4_RP_6=0, P_crashed_3=0, P_network_6_4_AI_2=0, P_masterList_1_2_5=0, P_network_0_3_AskP_4=0, P_masterList_3_1_0=0, P_network_0_2_AnnP_4=0, P_poll__networl_3_2_AskP_1=0, P_network_5_4_RI_1=0, P_poll__networl_5_3_RI_5=0, P_network_2_4_AnnP_2=0, P_poll__networl_4_4_RI_3=0, P_poll__networl_6_2_AskP_1=0, P_network_6_1_RP_4=0, P_poll__networl_2_5_AI_0=0, P_network_1_0_RI_5=0, P_poll__networl_4_5_AI_2=0, P_network_0_2_AI_1=0, P_network_4_0_AnnP_1=0, P_poll__networl_3_0_AI_5=0, P_poll__networl_3_6_AnnP_0=0, P_network_0_6_RP_3=0, P_poll__networl_2_0_AI_1=0, P_masterList_4_1_4=0, P_poll__networl_1_5_AskP_1=0, P_masterList_3_1_1=1, P_poll__networl_6_0_AnnP_4=0, P_poll__networl_3_3_RI_6=0, P_poll__networl_6_2_RP_6=0, P_network_3_6_AskP_2=0, P_poll__networl_5_1_AI_1=0, P_poll__networl_5_5_AnsP_0=0, P_network_2_1_RI_3=0, P_poll__networl_4_0_RI_3=0, P_poll__networl_1_1_RP_2=0, P_poll__networl_5_5_RP_3=0, P_network_0_5_RI_6=0, P_masterList_1_5_1=0, P_poll__networl_4_1_AI_1=0, P_masterList_4_3_4=0, P_masterList_1_1_0=0, P_poll__networl_3_2_RI_0=0, P_network_6_0_RP_5=0, P_masterList_6_4_1=0, P_network_6_2_AskP_2=0, P_network_6_2_AI_3=0, P_network_3_6_AI_1=0, P_masterList_3_6_2=0, P_poll__networl_5_1_AskP_0=0, P_poll__networl_5_1_RP_6=0, P_network_0_1_RI_1=0, P_poll__networl_4_5_RP_5=0, P_poll__networl_3_6_AnsP_0=0, P_network_0_3_RI_1=0, P_poll__networl_3_5_AnnP_2=0, P_network_0_4_AI_5=0, P_masterList_1_4_3=0, P_network_0_1_AskP_2=0, P_poll__networl_5_3_RI_3=0, P_network_6_1_AskP_3=0, P_poll__networl_1_6_AnnP_0=0, P_poll__networl_6_3_AskP_6=0, P_poll__networl_1_0_RP_2=0, P_poll__networl_4_5_AskP_0=0, P_poll__networl_6_5_RP_3=0, P_masterList_1_3_6=0, P_poll__networl_3_4_AnnP_1=0, P_masterList_5_6_4=0, P_poll__networl_1_5_RP_6=0, P_masterList_3_4_3=0, P_network_3_1_RI_3=0, P_poll__networl_1_5_RP_4=0, P_poll__networl_6_6_RP_1=0, P_poll__networl_4_2_RP_1=0, P_network_4_6_AI_5=0, P_poll__networl_0_6_AI_6=0, P_network_6_0_AskP_2=0, P_network_2_5_RI_3=0, P_poll__networl_1_5_AI_4=0, P_network_2_0_AI_6=0, P_network_2_2_AI_3=0, P_network_3_3_RI_4=0, P_network_5_1_RI_2=0, P_poll__networl_5_6_AnsP_0=0, P_poll__networl_3_2_AI_4=0, P_network_3_2_AnnP_2=0, P_network_3_4_AskP_1=0, P_poll__networl_2_2_AI_2=0, P_network_6_1_AskP_1=0, P_network_6_6_RP_6=0, P_poll__networl_5_4_AnnP_5=0, P_poll__networl_6_5_RP_6=0, P_network_1_2_AskP_2=0, P_network_1_5_AnnP_3=0, P_poll__networl_5_6_RP_5=0, P_network_0_2_AskP_2=0, P_poll__networl_2_3_AskP_5=0, P_poll__networl_5_5_AskP_0=0, P_poll__networl_6_6_AskP_4=0, P_network_4_5_RI_5=0, P_poll__networl_2_2_RP_3=0, P_network_4_4_RP_1=0, P_poll__networl_3_4_RP_4=0, P_poll__networl_2_6_RI_1=0, P_poll__networl_0_6_RP_3=0, P_network_6_4_AskP_4=0, P_poll__networl_4_5_RI_0=0, P_poll__networl_5_3_AI_5=0, P_poll__networl_0_0_RP_2=0, P_poll__networl_4_5_AskP_1=0, P_network_0_1_RP_1=0, P_network_2_5_AI_1=0, P_poll__networl_3_2_RI_1=0, P_masterList_1_3_2=0, P_network_1_3_RP_2=0, P_poll__networl_2_6_AI_0=0, P_poll__networl_2_3_RI_6=0, P_poll__networl_3_4_AI_6=0, P_poll__networl_6_4_RI_4=0, P_network_1_2_RP_6=0, P_poll__networl_5_5_AskP_1=0, P_network_3_4_AI_1=0, P_poll__networl_1_3_RP_1=0, P_poll__networl_4_5_AI_3=0, P_poll__networl_3_2_AI_3=0, P_poll__networl_0_0_RP_5=0, P_poll__networl_3_1_AskP_0=0, P_poll__networl_1_0_AI_6=0, P_poll__networl_2_3_RP_6=0, P_poll__networl_2_1_RI_1=0, P_network_4_4_AskP_2=0, P_poll__networl_0_6_RP_6=0, P_network_6_2_AskP_5=0, P_network_1_0_RP_5=0, P_network_1_1_RP_4=0, P_network_0_4_RI_6=0, P_masterList_3_5_1=0, P_poll__networl_0_3_AnnP_1=0, P_poll__networl_0_4_RP_3=0, P_poll__networl_3_5_AskP_4=0, P_network_2_5_RI_2=0, P_poll__networl_2_0_RP_4=0, P_poll__networl_4_6_RI_2=0, P_poll__networl_6_0_AI_2=0, P_network_5_4_AskP_6=0, P_poll__networl_3_2_AskP_2=0, P_network_0_6_AnnP_5=0, P_network_6_0_AskP_4=0, P_network_4_0_RP_4=0, P_poll__networl_0_6_AnnP_4=0, P_network_0_5_AI_3=0, P_poll__networl_0_3_RI_4=0, P_poll__networl_6_4_AskP_3=0, P_network_3_6_RP_2=0, P_poll__networl_0_0_AskP_2=0, P_network_6_5_RI_2=0, P_network_4_4_AnnP_2=0, P_poll__networl_0_5_AskP_6=0, P_poll__networl_1_2_RP_6=0, P_poll__networl_6_1_AI_0=0, P_poll__networl_3_0_AI_6=0, P_network_4_0_AnnP_4=0, P_poll__networl_0_1_RP_6=0, P_poll__networl_6_1_AnnP_0=0, P_poll__networl_6_1_RP_5=0, P_network_2_4_AnnP_5=0, P_poll__networl_3_1_RI_6=0, P_poll__networl_3_2_RP_2=0, P_network_5_0_AskP_4=0, P_poll__networl_0_3_AI_4=0, P_masterList_3_6_3=0, P_network_3_5_RI_4=0, P_poll__networl_0_5_AnnP_6=0, P_network_3_1_AskP_1=0, P_network_5_1_RI_4=0, P_poll__networl_3_6_RP_0=0, P_network_5_4_AI_5=0, P_network_1_2_AnnP_1=0, P_network_2_1_AI_4=0, P_network_4_2_RP_6=0, P_network_5_6_AnnP_6=0, P_poll__networl_5_3_AnnP_1=0, P_poll__networl_2_1_RI_6=0, P_masterList_4_4_3=0, P_network_3_0_AskP_4=0, P_network_3_4_AskP_5=0, P_masterList_6_1_1=1, P_poll__networl_5_1_AnnP_0=0, P_network_3_1_AI_6=0, P_poll__networl_1_0_AnnP_0=0, P_poll__networl_6_4_RP_5=0, P_masterList_3_4_5=1, P_poll__networl_6_3_RI_4=0, P_network_6_4_AnnP_1=0, P_poll__networl_1_4_RI_0=0, P_network_1_1_AskP_4=0, P_network_2_4_RI_4=0, P_poll__networl_4_5_AskP_6=0, P_network_6_5_RP_3=0, P_poll__networl_4_3_AnnP_6=0, P_network_1_3_RI_2=0, P_poll__networl_4_3_AnnP_5=0, P_network_0_4_AnnP_2=0, P_poll__networl_1_5_AnnP_0=0, P_masterList_0_5_6=0, P_network_2_3_AskP_1=0, P_poll__networl_0_4_RP_4=0, P_poll__networl_0_1_AI_2=0, P_network_3_2_RP_5=0, P_network_0_3_RI_3=0, P_network_2_6_RI_5=0, P_masterList_0_4_0=0, P_poll__networl_0_1_AskP_0=0, P_poll__networl_0_1_AI_0=0, P_masterList_6_6_4=0, P_network_2_2_RP_3=0, P_masterList_2_6_2=0, P_network_3_6_AskP_4=0, P_poll__networl_4_3_RP_6=0, P_network_2_5_AskP_4=0, P_network_0_1_RI_4=0, P_poll__networl_3_5_AnnP_3=0, P_network_1_0_RI_1=0, P_network_5_2_AnnP_3=0, P_network_4_2_AI_2=0, P_network_3_1_AskP_2=0, P_poll__networl_1_4_AI_4=0, P_poll__networl_3_6_RI_1=0, P_network_0_0_RI_6=0, P_poll__networl_4_3_RP_0=0, P_poll__networl_6_4_AskP_5=0, P_masterList_6_5_6=0, P_network_4_6_AnnP_4=0, P_network_4_3_RI_2=0, P_poll__networl_4_5_RI_3=0, P_network_4_6_AI_6=0, P_poll__networl_1_0_AskP_4=0, P_poll__networl_4_6_AI_5=0, P_network_1_3_RP_5=0, P_network_0_6_AskP_4=0, P_network_6_4_AnnP_2=0, P_poll__networl_1_5_AskP_0=0, P_network_5_6_AskP_2=0, P_network_3_0_AnnP_2=0, P_network_5_2_AskP_3=0, P_network_3_5_AI_5=0, P_poll__networl_1_4_RI_4=0, P_poll__networl_4_0_RP_0=0, P_poll__networl_1_1_AI_3=0, P_network_0_4_AskP_4=0, P_network_6_5_AI_6=0, P_poll__networl_4_1_AskP_0=0, P_network_3_2_RI_6=0, P_poll__networl_3_4_AnnP_0=0, P_masterList_0_1_1=0, P_network_6_4_RI_1=0, P_network_0_3_RP_4=0, P_network_5_6_RI_1=0, P_poll__networl_5_3_RP_2=0, P_network_0_2_AskP_4=0, P_poll__networl_5_3_AskP_5=0, P_poll__networl_1_2_RI_5=0, P_poll__networl_6_5_AnnP_2=0, P_network_6_5_RP_5=0, P_network_6_6_RP_1=0, P_poll__networl_3_6_AskP_1=0, P_poll__networl_3_0_RI_0=0, P_poll__networl_2_4_AskP_5=0, P_masterList_5_2_5=0, P_poll__networl_0_4_AI_1=0, P_poll__networl_3_2_RP_3=0, P_network_3_6_AnnP_4=0, P_network_2_5_RI_6=0, P_poll__networl_4_6_AI_3=0, P_network_2_1_AskP_1=0, P_poll__networl_1_5_RP_2=0, P_poll__networl_5_0_AskP_4=0, P_poll__networl_6_6_AnnP_0=0, P_poll__networl_3_5_RI_1=0, P_poll__networl_6_5_AI_1=0, P_network_4_2_RI_2=0, P_masterList_0_1_5=0, P_poll__networl_4_6_RP_0=0, P_network_1_3_AnnP_4=0, P_poll__networl_5_5_AI_5=0, P_poll__networl_6_0_RI_6=0, P_network_2_6_AskP_1=0, P_poll__networl_6_3_RP_2=0, P_poll__networl_4_2_RP_5=0, P_network_3_6_RI_5=0, P_masterList_3_1_4=0, P_network_2_2_AskP_5=0, P_network_6_4_AI_6=0, P_network_0_6_RP_1=0, P_poll__networl_2_2_RI_4=0, P_poll__networl_6_2_AnnP_0=0, P_network_5_0_AskP_3=0, P_poll__networl_1_1_RI_4=0, P_network_4_0_RI_5=0, P_poll__networl_3_0_AnnP_0=0, P_electionFailed_1=0, P_poll__networl_3_5_AskP_6=0, P_network_3_0_RI_6=0, P_poll__networl_1_3_RI_4=0, P_poll__networl_5_3_AskP_2=0, P_poll__networl_6_2_AI_4=0, P_network_5_3_RI_3=0, P_poll__networl_6_1_AskP_5=0, P_network_4_2_AnnP_4=0, P_poll__networl_3_3_RI_2=0, P_poll__networl_2_6_RP_4=0, P_masterList_2_5_3=0, P_network_3_3_AI_6=0, P_network_1_3_AI_5=0, P_network_4_3_RP_6=0, P_network_3_3_AskP_1=0, P_network_2_3_RI_4=0, P_network_2_0_RP_2=0, P_masterList_6_4_4=1, P_network_1_6_AI_1=0, P_poll__networl_6_3_RP_5=0, P_network_0_6_RP_4=0, P_network_5_3_RI_2=0, P_poll__networl_6_3_AskP_5=0, P_poll__networl_4_0_RP_3=0, P_network_5_6_RI_5=0, P_poll__networl_0_5_RI_4=0, P_poll__networl_5_3_AnnP_0=0, P_poll__networl_1_1_AnnP_0=0, P_poll__networl_6_6_RI_3=0, P_poll__networl_0_2_AI_3=0, P_poll__networl_4_6_AnnP_0=0, P_poll__networl_1_6_AskP_2=0, P_poll__networl_0_1_AskP_5=0, P_poll__networl_0_1_AI_1=0, P_network_3_3_RP_1=0, P_poll__networl_4_2_AI_2=0, P_network_1_6_AskP_1=0, P_network_0_3_RP_2=0, P_poll__networl_3_0_AskP_4=0, P_network_1_4_AskP_1=0, P_poll__networl_4_1_AnnP_4=0, P_network_2_3_RP_1=0, P_network_4_3_RP_4=0, P_poll__networl_2_0_AnnP_4=0, P_poll__networl_4_2_AI_0=0, P_network_5_4_RP_6=0, P_poll__networl_2_0_RI_2=0, P_network_4_5_AnnP_2=0, P_masterList_1_2_0=0, P_poll__networl_5_4_RI_5=0, P_network_4_0_AskP_2=0, P_poll__networl_2_1_AskP_4=0, P_network_0_3_RI_4=0, P_network_1_0_RP_2=0, P_network_5_3_AnnP_6=0, P_poll__networl_
3_1_AnnP_2=0, P_network_6_4_AI_4=0, P_masterList_2_4_5=1, P_poll__networl_0_4_AskP_3=0, P_network_1_5_RP_4=0, P_masterList_6_5_3=0, P_network_0_1_AskP_4=0, P_network_5_4_AI_3=0, P_network_4_5_RP_4=0, P_masterList_1_2_2=0, P_poll__networl_3_4_RI_4=0, P_poll__networl_4_4_AnsP_0=0, P_poll__networl_0_2_RP_2=0, P_poll__networl_5_0_AI_0=0, P_poll__networl_2_5_AnnP_5=0, P_network_1_3_RI_4=0, P_network_5_2_RP_6=0, P_masterList_4_1_6=0, P_network_6_1_RP_3=0, P_masterList_3_3_2=0, P_poll__networl_2_5_RI_1=0, P_poll__networl_0_0_RP_4=0, P_network_2_0_AnnP_6=0, P_poll__networl_0_5_AskP_4=0, P_network_3_1_RP_3=0, P_poll__networl_6_2_AnnP_6=0, P_network_6_4_RI_2=0, P_poll__networl_1_0_RP_1=0, P_network_4_4_AnnP_4=0, P_poll__networl_5_1_AskP_1=0, P_network_4_4_RP_5=0, P_network_3_6_AskP_3=0, P_network_3_0_RI_4=0, P_poll__networl_0_0_RP_0=0, P_network_1_2_AskP_6=0, P_poll__networl_5_6_AI_0=0, P_network_5_1_RP_4=0, P_poll__networl_3_5_AnnP_6=0, P_poll__networl_6_4_AI_5=0, P_network_3_4_AnnP_5=0, P_network_2_5_RP_3=0, P_network_6_3_AI_3=0, P_poll__networl_3_3_RI_3=0, P_network_0_6_RI_3=0, P_poll__networl_5_5_RI_1=0, P_network_5_3_RP_1=0, P_masterList_3_6_6=0, P_poll__networl_3_1_AI_0=0, P_network_2_0_AnnP_4=0, P_poll__networl_5_3_AnnP_6=0, P_network_4_0_AskP_4=0, P_poll__networl_5_3_RP_4=0, P_masterList_4_3_2=0, P_network_6_1_RI_4=0, P_poll__networl_6_0_RP_3=0, P_network_3_1_RI_4=0, P_poll__networl_4_2_RI_0=0, P_poll__networl_5_2_RP_5=0, P_network_5_3_RP_3=0, P_network_1_6_AnnP_5=0, P_network_2_2_AskP_6=0, P_masterList_1_4_5=1, P_poll__networl_5_6_AskP_2=0, P_network_4_3_AskP_3=0, P_poll__networl_5_5_RP_6=0, P_poll__networl_6_3_RP_0=0, P_network_2_6_RI_1=0, P_poll__networl_1_0_AskP_2=0, P_network_2_0_AnnP_3=0, P_masterList_3_1_3=0, P_poll__networl_0_1_AnnP_1=0, P_poll__networl_2_2_AskP_5=0, P_poll__networl_5_3_AnnP_2=0, P_network_4_3_RI_5=0, P_poll__networl_4_5_AnnP_3=0, P_masterList_4_5_5=0, P_network_2_6_RI_6=0, P_network_5_6_AnnP_5=0, P_poll__networl_6_2_AnsP_0=0, P_network_4_2_AskP_2=0, P_poll__networl_3_1_AskP_1=0, P_network_0_3_RI_5=0, P_poll__networl_4_0_RI_4=0, P_poll__networl_6_1_AnnP_4=0, P_network_3_5_AnnP_4=0, P_network_0_1_AnnP_1=0, P_network_2_3_AskP_4=0, P_masterList_0_3_1=0, P_network_0_2_AnnP_6=0, P_poll__networl_0_1_AskP_6=0, P_poll__networl_3_4_AnnP_6=0, P_masterList_1_3_1=0, P_poll__networl_6_6_AI_5=0, P_poll__networl_4_0_AnnP_5=0, P_network_4_6_AnnP_6=0, P_poll__networl_0_0_AI_5=0, P_network_6_6_AnnP_6=0, P_poll__networl_0_6_AnnP_5=0, P_poll__networl_6_2_AI_2=0, P_network_5_6_AI_5=0, P_network_1_3_AskP_3=0, P_poll__networl_1_4_RP_2=0, P_poll__networl_5_3_AI_4=0, P_poll__networl_2_2_AnnP_0=0, P_poll__networl_5_4_AI_4=0, P_poll__networl_2_4_RI_2=0, P_poll__networl_4_2_AskP_6=0, P_network_1_0_AnnP_6=0, P_poll__networl_3_6_RP_6=0, P_poll__networl_3_3_AnnP_6=0, P_poll__networl_1_4_AI_0=0, P_poll__networl_4_2_AI_6=0, P_poll__networl_3_5_RP_5=0, P_poll__networl_4_4_AskP_1=0, P_poll__networl_1_6_AI_0=0, P_masterList_0_4_5=0, P_masterList_0_6_2=0, P_network_1_2_AI_2=0, P_poll__networl_0_4_RI_0=0, P_poll__networl_4_5_AskP_3=0, P_poll__networl_2_3_RP_3=0, P_poll__networl_1_3_AskP_2=0, P_network_2_6_AI_4=0, P_masterList_2_4_2=0, P_poll__networl_0_2_RP_3=0, P_poll__networl_1_1_AI_6=0, P_poll__networl_0_0_AnnP_1=0, P_poll__networl_4_4_AI_1=0, P_network_3_0_RP_2=0, P_poll__networl_1_5_RI_6=0, P_poll__networl_1_6_AskP_6=0, P_network_2_3_RP_2=0, P_poll__networl_6_1_RP_1=0, P_network_3_1_AI_1=0, P_poll__networl_1_5_AnnP_2=0, P_poll__networl_5_4_AI_1=0, P_network_2_1_AI_6=0, P_network_6_2_RP_1=0, P_masterList_1_5_2=0, P_network_0_2_AI_4=0, P_poll__networl_1_0_RI_4=0, P_network_0_2_AskP_3=0, P_poll__networl_5_5_AnnP_3=0, P_poll__networl_3_1_RP_3=0, P_network_5_1_AskP_3=0, P_masterList_3_6_4=0, P_network_3_3_AskP_5=0, P_poll__networl_2_0_AnsP_0=0, P_poll__networl_6_2_RP_2=0, P_masterList_5_3_6=0, P_poll__networl_2_4_AskP_4=0, P_network_1_1_AnnP_2=0, P_network_4_5_RI_6=0, P_poll__networl_3_1_AI_5=0, P_poll__networl_3_3_AnsP_0=0, P_poll__networl_4_5_RP_4=0, P_poll__networl_4_1_RP_1=0, P_poll__networl_0_2_RI_0=0, P_masterList_3_2_0=0, P_poll__networl_6_4_RP_1=0, P_network_6_3_RP_3=0, P_poll__networl_3_6_AnnP_6=0, P_poll__networl_5_5_AI_2=0, P_poll__networl_2_3_AskP_6=0, P_network_2_3_AI_5=0, P_masterList_4_2_0=0, P_network_3_1_AnnP_1=0, P_poll__networl_2_5_AskP_0=0, P_dead_0=0, P_poll__networl_2_1_RI_5=0, P_poll__networl_4_4_AskP_6=0, P_poll__networl_3_3_RP_2=0, P_network_5_1_AskP_1=0, P_network_6_2_RI_1=0, P_poll__networl_1_3_AnnP_5=0, P_poll__networl_6_1_AnnP_3=0, P_poll__networl_1_3_AnnP_6=0, P_network_4_0_RP_3=0, P_masterList_5_1_3=0, P_network_3_4_RI_5=0, P_network_5_1_AnnP_5=0, P_poll__networl_3_0_RI_6=0, P_network_1_0_AI_4=0, P_masterList_4_5_0=0, P_poll__networl_0_1_RI_2=0, P_network_1_3_AskP_5=0, P_poll__networl_6_1_RI_5=0, P_network_5_6_AI_3=0, P_network_2_0_RI_4=0, P_poll__networl_3_6_AI_6=0, P_network_0_6_AskP_5=0, P_poll__networl_6_0_AnnP_3=0, P_poll__networl_6_1_RI_3=0, P_network_1_5_AI_2=0, P_poll__networl_6_3_AI_6=0, P_poll__networl_6_5_AI_4=0, P_network_1_0_RI_3=0, P_poll__networl_5_0_AskP_1=0, P_poll__networl_4_4_RP_6=0, P_poll__networl_5_3_RI_1=0, P_poll__networl_6_3_AskP_2=0, P_poll__networl_4_2_RI_4=0, P_poll__networl_6_1_AskP_3=0, P_poll__networl_0_2_RI_2=0, P_network_4_6_AnnP_5=0, P_poll__networl_1_3_AI_0=0, P_masterList_5_2_6=0, P_poll__networl_4_5_RI_4=0, P_poll__networl_5_3_AI_2=0, P_poll__networl_1_4_AnsP_0=0, P_network_2_5_AnnP_5=0, P_poll__networl_3_4_RI_5=0, P_poll__networl_4_0_AI_3=0, P_network_6_2_AI_2=0, P_poll__networl_4_5_RP_6=0, P_poll__networl_6_3_AnnP_3=0, P_poll__networl_2_5_AskP_2=0, P_poll__networl_0_3_AnnP_3=0, P_network_1_2_AnnP_3=0, P_network_6_1_RI_1=0, P_network_6_4_AI_1=0, P_masterList_2_5_1=0, P_network_4_0_AskP_3=0, P_masterList_0_5_3=0, P_poll__networl_2_2_AskP_2=0, P_masterList_6_2_5=0, P_poll__networl_0_1_AnnP_5=0, P_network_4_6_AskP_4=0, P_poll__networl_2_1_AnnP_6=0, P_poll__networl_4_2_RP_4=0, P_poll__networl_4_5_AnnP_0=0, P_poll__networl_4_6_AskP_4=0, P_poll__networl_0_6_RI_0=0, P_poll__networl_4_2_RI_1=0, P_poll__networl_6_2_RP_0=0, P_poll__networl_2_1_AnnP_2=0, P_poll__networl_5_2_RP_3=0, P_network_0_0_AI_6=0, P_network_4_3_AskP_2=0, P_network_3_5_RP_6=0, P_network_6_2_RI_6=0, P_network_1_3_AI_6=0, P_poll__networl_6_2_RI_1=0, P_poll__networl_0_6_RP_1=0, P_poll__networl_0_5_AnsP_0=0, P_poll__networl_5_0_AnnP_5=0, P_masterList_0_3_0=0, P_poll__networl_1_0_AI_2=0, P_masterList_6_1_6=0, P_poll__networl_0_2_RP_0=0, P_network_2_0_AskP_3=0, P_network_4_4_AI_1=0, P_network_3_2_AI_2=0, P_poll__networl_5_5_RP_4=0, P_masterList_4_6_5=0, P_network_6_3_AnnP_1=0, P_masterList_4_3_6=0, P_network_5_0_RI_6=0, P_network_2_6_AnnP_6=0, P_poll__networl_3_0_RI_4=0, P_poll__networl_0_2_AskP_2=0, P_poll__networl_3_4_AI_3=0, P_network_2_6_AskP_4=0, P_network_3_2_AnnP_3=0, P_network_5_2_AskP_2=0, P_poll__networl_1_1_AI_5=0, P_network_4_2_AnnP_2=0, P_poll__networl_6_4_RI_0=0, P_poll__networl_3_3_RP_0=0, P_poll__networl_5_6_AnnP_0=0, P_poll__networl_2_5_AnnP_1=0, P_poll__networl_5_6_AskP_6=0, P_network_3_1_AnnP_5=0, P_poll__networl_1_6_AnnP_4=0, P_network_3_5_AskP_2=0, P_network_0_0_AI_4=0, P_network_5_5_RI_3=0, P_network_4_2_RI_3=0, P_network_0_6_AskP_3=0, P_network_3_4_AnnP_3=0, P_network_5_3_AI_6=0, P_network_3_2_AI_3=0, P_network_2_0_RP_3=0, P_poll__networl_0_1_RP_2=0, P_masterList_2_6_4=0, P_poll__networl_3_4_AskP_2=0, P_network_1_3_AI_2=0, P_network_6_3_RI_1=0, P_network_3_3_RP_6=0, P_network_2_2_AnnP_3=0, P_poll__networl_3_6_RI_6=0, P_masterList_5_4_0=0, P_network_6_2_AI_4=0, P_poll__networl_2_0_AI_3=0, P_network_4_4_AskP_5=0, P_poll__networl_4_0_AskP_3=0, P_network_0_1_AI_4=0, P_poll__networl_1_6_RP_4=0, P_poll__networl_4_2_AskP_2=0, P_masterList_3_3_1=0, P_network_4_2_RI_1=0, P_poll__networl_0_2_RP_1=0, P_network_6_3_AskP_5=0, P_network_1_0_RI_6=0, P_network_2_3_RI_3=0, P_network_2_6_RI_4=0, P_poll__networl_5_0_AskP_3=0, P_network_2_1_AI_1=0, P_masterList_2_3_1=0, P_masterList_2_2_5=0, P_poll__networl_1_4_RI_5=0, P_network_2_4_AskP_1=0, P_poll__networl_1_0_RP_5=0, P_poll__networl_2_5_RI_4=0, P_masterList_4_6_2=0, P_network_1_1_RP_2=0, P_network_0_6_RI_4=0, P_network_5_1_RI_1=0, P_network_2_0_RP_1=0, P_poll__networl_3_4_RI_3=0, P_masterList_5_3_3=1, P_masterList_6_3_4=0, P_network_1_3_AskP_1=0, P_poll__networl_3_1_AnnP_4=0, P_poll__networl_2_0_AskP_3=0, P_poll__networl_4_3_AnnP_0=0, P_network_0_2_RP_1=0, P_poll__networl_5_2_AI_3=0, P_network_5_1_AI_4=0, P_network_5_2_RP_2=0, P_network_0_3_AnnP_1=0, P_network_0_4_RI_1=0, P_poll__networl_5_4_AI_2=0, P_network_6_5_RI_3=0, P_poll__networl_5_4_AnnP_1=0, P_poll__networl_4_3_AskP_4=0, P_poll__networl_2_3_RI_3=0, P_poll__networl_4_5_AskP_4=0, P_poll__networl_4_6_AskP_3=0, P_poll__networl_6_0_RI_5=0, P_network_4_1_RI_5=0, P_network_2_6_AI_1=0, P_network_5_2_RI_1=0, P_masterList_1_1_6=0, P_poll__networl_2_2_AI_0=0, P_network_5_6_AI_6=0, P_masterList_0_1_0=0, P_masterList_5_5_1=0, P_network_1_5_AnnP_1=0, P_network_1_6_RP_1=0, P_network_2_2_RP_6=0, P_network_2_3_RP_3=0, P_network_4_1_AnnP_1=0, P_poll__networl_6_6_AnsP_0=0, P_poll__networl_3_2_RP_6=0, P_network_2_1_RI_5=0, P_network_6_1_AskP_2=0, P_network_0_6_AI_5=0, P_network_5_1_AI_3=0, P_masterList_5_2_1=0, P_masterList_2_1_0=0, P_network_4_6_AskP_1=0, P_network_0_4_RP_6=0, P_poll__networl_2_1_AnnP_1=0, P_network_5_6_RP_2=0, P_poll__networl_6_0_AskP_2=0, P_poll__networl_5_0_RI_2=0, P_network_3_3_RP_5=0, P_network_3_5_AskP_1=0, P_poll__networl_1_6_AnnP_1=0, P_poll__networl_6_2_RP_5=0, P_poll__networl_3_1_AnsP_0=0, P_network_4_6_AskP_6=0, P_network_3_3_RI_6=0, P_poll__networl_2_4_AskP_6=0, P_network_0_4_RP_5=0, P_network_5_0_RP_1=0, P_poll__networl_6_1_RP_3=0, P_poll__networl_3_5_AnsP_0=0, P_poll__networl_4_1_AI_0=0, P_poll__networl_1_0_RI_1=0, P_masterList_1_4_0=0, P_poll__networl_5_2_RP_6=0, P_poll__networl_6_1_AnnP_5=0, P_poll__networl_0_4_AnnP_2=0, P_network_3_0_AskP_3=0, P_poll__networl_1_2_AskP_1=0, P_network_3_4_RP_1=0, P_poll__networl_5_4_AnsP_0=0, P_network_3_1_AnnP_6=0, P_poll__networl_6_3_AnsP_0=0, P_network_5_4_RP_2=0, P_network_3_0_AskP_2=0, P_poll__networl_3_6_AI_3=0, P_poll__networl_3_3_RP_5=0, P_poll__networl_5_6_RI_6=0, P_poll__networl_2_2_AI_6=0, P_network_6_0_RI_6=0, P_network_3_3_AnnP_6=0, P_poll__networl_3_3_AnnP_0=0, P_network_2_2_AI_2=0, P_poll__networl_1_6_AI_1=0, P_network_5_1_AI_6=0, P_network_0_0_AskP_2=0, P_poll__networl_3_4_AskP_4=0, P_network_0_6_RI_2=0, P_poll__networl_5_6_RI_0=0, P_poll__networl_5_0_AnnP_4=0, P_network_3_6_AnnP_6=0, P_network_6_2_RP_4=0, P_poll__networl_0_2_AI_5=0, P_poll__networl_5_4_RI_2=0, P_network_0_5_AnnP_1=0, P_network_4_3_AnnP_6=0, P_poll__networl_0_6_RI_1=0, P_poll__networl_2_0_RI_1=0, P_poll__networl_2_1_AI_0=0, P_network_3_1_RP_4=0, P_poll__networl_0_0_AskP_1=0, P_poll__networl_0_2_RP_4=0, P_poll__networl_3_4_RI_6=0, P_poll__networl_3_1_AnnP_6=0, P_poll__networl_4_4_RP_5=0, P_network_6_3_AskP_3=0, P_poll__networl_6_3_RP_3=0, P_poll__networl_6_5_AnnP_0=0, P_masterList_4_4_5=1, P_network_5_0_AnnP_2=0, P_poll__networl_4_1_AskP_6=0, P_poll__networl_0_6_RP_5=0, P_poll__networl_6_2_AI_0=0, P_poll__networl_5_0_AI_5=0, P_poll__networl_5_4_RI_6=0, P_poll__networl_0_2_AskP_3=0, P_network_3_3_RI_1=0, P_network_1_4_AI_5=0, P_poll__networl_2_3_RP_2=0, P_poll__networl_6_6_RP_5=0, P_poll__networl_0_5_RP_6=0, P_masterList_6_5_5=1, P_network_1_1_RP_1=0, P_masterList_4_2_1=0, P_masterList_5_6_0=0, P_network_1_1_AskP_5=0, P_network_4_5_AI_2=0, P_poll__networl_4_3_AskP_3=0, P_poll__networl_1_5_RP_3=0, P_poll__networl_6_3_RI_5=0, P_masterList_1_4_1=0, P_network_2_2_AnnP_1=0, P_poll__networl_0_6_RI_4=0, P_poll__networl_5_2_AI_0=0, P_poll__networl_5_4_RP_6=0, P_network_0_5_AskP_3=0, P_poll__networl_5_3_AskP_3=0, P_poll__networl_1_5_AskP_6=0, P_poll__networl_5_6_RI_4=0, P_poll__networl_3_4_RP_3=0, P_network_4_5_AI_1=0, P_poll__networl_1_4_AI_1=0, P_masterList_0_2_1=0, P_network_6_2_RI_3=0, P_poll__networl_2_1_RI_0=0, P_poll__networl_4_3_AskP_6=0, P_poll__networl_6_5_AskP_4=0, P_poll__networl_1_3_RP_0=0, P_network_6_2_RP_6=0, P_poll__networl_0_5_AI_0=0, P_masterList_2_4_0=0, P_poll__networl_6_6_AI_6=0, P_network_3_0_RP_4=0, P_network_4_0_AnnP_6=0, P_network_0_6_RI_5=0, P_poll__networl_1_3_AskP_4=0, P_network_4_5_AskP_3=0, P_network_6_5_AskP_2=0, P_poll__networl_6_2_AI_1=0, P_poll__networl_2_4_RP_3=0, P_poll__networl_2_5_AI_2=0, P_poll__networl_6_5_AskP_2=0, P_network_3_6_AskP_5=0, P_network_1_2_RP_1=0, P_poll__networl_4_6_AskP_1=0, P_poll__networl_6_5_AI_0=0, P_network_0_1_RI_6=0, P_network_4_1_AskP_5=0, P_network_0_3_AI_3=0, P_poll__networl_4_3_RI_3=0, P_network_0_5_RP_6=0, P_network_3_0_AskP_5=0, P_network_4_1_AskP_4=0, P_poll__networl_1_5_RP_0=0, P_poll__networl_5_5_RI_0=0, P_network_0_1_RP_5=0, P_poll__networl_5_1_AI_2=0, P_poll__networl_5_3_RP_5=0, P_network_1_0_AskP_6=0, P_network_0_2_RI_6=0, P_network_5_3_AI_3=0, P_network_3_0_AnnP_3=0, P_network_1_6_AnnP_2=0, P_network_4_0_RP_6=0, P_network_0_0_AskP_3=0, P_poll__networl_1_3_AI_4=0, P_network_4_0_AI_3=0, P_poll__networl_4_0_AI_2=0, P_poll__networl_2_6_AskP_1=0, P_poll__networl_0_5_RI_3=0, P_network_1_2_AnnP_4=0, P_poll__networl_6_2_AI_3=0, P_network_5_0_RI_5=0, P_poll__networl_1_2_AI_1=0, P_network_6_4_RP_5=0, P_poll__networl_4_2_RP_0=0, P_network_0_5_AskP_2=0, P_poll__networl_2_1_RP_3=0, P_masterList_0_3_2=0, P_masterList_2_2_4=0, P_network_6_5_AskP_6=0, P_poll__networl_4_4_RI_5=0, P_network_5_1_AskP_6=0, P_poll__networl_3_5_AskP_3=0, P_network_1_3_AnnP_6=0, P_poll__networl_2_5_RI_2=0, P_poll__networl_0_3_AI_1=0, P_network_1_4_AnnP_3=0, P_poll__networl_2_0_AskP_5=0, P_masterList_6_5_0=0, P_network_3_6_RI_3=0, P_poll__networl_6_5_RI_5=0, P_poll__networl_3_6_RI_2=0, P_crashed_4=0, P_network_5_5_AskP_3=0, P_poll__networl_1_0_RP_6=0, P_masterList_5_5_0=0, P_poll__networl_0_0_AnnP_2=0, P_poll__networl_6_5_RP_0=0, P_network_0_0_AI_2=0, P_network_4_3_RI_6=0, P_poll__networl_3_0_RP_5=0, P_network_6_0_AnnP_1=0, P_masterList_4_4_6=0, P_poll__networl_3_2_AnnP_5=0, P_poll__networl_5_6_AskP_3=0, P_poll__networl_3_2_AskP_6=0, P_network_2_6_RI_2=0, P_masterList_3_3_5=0, P_poll__networl_1_3_RI_5=0, P_network_6_3_AnnP_5=0, P_poll__networl_0_4_RI_1=0, P_poll__networl_1_0_AskP_0=0, P_poll__networl_2_3_AI_4=0, P_network_5_4_RP_4=0, P_poll__networl_2_1_AnsP_0=0, P_poll__networl_1_2_RI_4=0, P_poll__networl_1_3_AnnP_0=0, P_network_5_0_RI_2=0, P_network_1_3_AnnP_5=0, P_poll__networl_5_4_AskP_0=0, P_network_3_1_AskP_5=0, P_poll__networl_5_6_AnnP_1=0, P_network_0_5_RI_5=0, P_poll__networl_1_6_AskP_5=0, P_poll__networl_6_1_RP_0=0, P_poll__networl_5_1_AskP_5=0, P_poll__networl_4_2_RP_3=0, P_poll__networl_6_3_RI_2=0, P_network_4_0_AI_2=0, P_poll__networl_1_2_RI_0=0, P_network_5_6_AnnP_3=0, P_electionFailed_0=0, P_poll__networl_3_1_AnnP_5=0, P_network_5_2_RI_5=0, P_poll__networl_5_4_AI_3=0, P_poll__networl_1_4_AskP_4=0, P_network_1_3_RI_6=0, P_masterList_6_6_1=0, P_poll__networl_2_1_AskP_3=0, P_network_5_5_AskP_4=0, P_poll__networl_3_0_AskP_5=0, P_poll__networl_5_4_AnnP_6=0, P_masterList_0_6_6=0, P_network_6_1_AnnP_6=0, P_poll__networl_1_5_RP_1=0, P_network_4_4_RP_2=0, P_network_1_1_AI_1=0, P_network_2_1_RP_6=0, P_network_0_3_AI_2=0, P_network_1_2_RP_4=0, P_poll__networl_3_5_AskP_2=0, P_poll__networl_1_0_AnnP_2=0, P_network_1_2_AnnP_6=0, P_network_2_4_AI_6=0, P_network_5_2_AI_3=0, P_poll__networl_6_4_AskP_4=0, P_network_3_6_RI_1=0, P_poll__networl_4_6_RP_5=0, P_network_5_3_RI_1=0, P_masterList_0_2_0=0, P_electionFailed_4=0, P_poll__networl_3_3_AskP_6=0, P_network_4_3_AI_3=0, P_poll__networl_2_6_AnnP_0=0, P_poll__networl_3_5_AnnP_1=0, P_network_5_2_AnnP_2=0, P_network_5_6_AskP_1=0, P_poll__networl_0_3_AskP_2=0, P_poll__networl_0_2_RP_5=0, P_poll__networl_0_5_AskP_0=0, P_network_6_2_AskP_6=0, P_masterList_6_6_6=0, P_network_4_5_AI_5=0, P_poll__networl_2_2_RP_6=0, P_poll__networl_6_2_AskP_0=0, P_poll__networl_6_6_RP_4=0, P_network_0_1_RI_3=0, P_poll__networl_6_2_RP_1=0, P_network_4_0_RI_6=0, P_network_2_5_AI_2=0, P_network_1_3_AI_1=0, P_poll__networl_1_2_AnnP_6=0, P_network_6_2_RP_2=0, P_poll__networl_2_2_RI_0=0, P_poll__networl_4_1_RP_2=0, P_network_6_2_AnnP_2=0, P_poll__networl_0_0_RI_1=0, P_network_6_3_AI_6=0, P_poll__networl_0_5_AnnP_0=0, P_network_1_3_AnnP_1=0, P_poll__networl_2_4_RI_0=0, P_masterList_4_3_3=1, P_poll__networl_2_3_RP_1=0, P_poll__networl_5_1_AnsP_0=0, P_poll__networl_6_1_RI_0=0, P_network_3_2_AnnP_4=0, P_network_5_4_AI_1=0, P_network_5_5_AnnP_6=0, P_poll__networl_1_4_AI_5=0, P_netwo
rk_3_1_AskP_4=0, P_poll__networl_3_1_RI_3=0, P_network_1_3_AI_3=0, P_network_5_2_RP_5=0, P_network_2_1_AnnP_4=0, P_poll__networl_5_5_RI_6=0, P_network_5_3_RI_4=0, P_poll__networl_5_1_AnnP_3=0, P_poll__networl_3_3_AnnP_4=0, P_poll__networl_0_6_AskP_3=0, P_poll__networl_4_3_RI_1=0, P_poll__networl_4_0_AnnP_2=0, P_poll__networl_3_2_AnnP_1=0, P_poll__networl_6_0_AI_1=0, P_network_6_3_RP_5=0, P_network_1_6_RP_2=0, P_poll__networl_6_5_RI_0=0, P_network_0_6_RP_5=0, P_poll__networl_3_0_AnnP_4=0, P_poll__networl_0_6_AskP_4=0, P_masterList_1_1_4=0, P_network_0_2_RI_2=0, P_poll__networl_0_1_RP_1=0, P_masterList_5_5_3=0, P_network_3_5_AI_2=0, P_poll__networl_3_1_AskP_3=0, P_poll__networl_2_0_AI_6=0, P_poll__networl_5_2_AskP_2=0, P_network_0_2_RP_5=0, P_poll__networl_2_6_AnnP_4=0, P_network_3_5_AnnP_1=0, P_poll__networl_0_5_AI_1=0, P_network_2_1_AI_2=0, P_network_6_4_RP_6=0, P_poll__networl_2_4_AI_3=0, P_network_5_6_AnnP_1=0, P_poll__networl_6_6_AnnP_2=0, P_network_2_6_RP_3=0, P_poll__networl_4_3_RP_1=0, P_poll__networl_5_1_AnnP_4=0, P_masterList_2_6_6=0, P_network_0_0_AskP_5=0, P_poll__networl_1_4_RP_6=0, P_poll__networl_4_4_RP_4=0, P_poll__networl_2_5_AskP_1=0, P_electionFailed_6=0, P_poll__networl_4_5_AskP_5=0, P_poll__networl_2_3_AnnP_4=0, P_network_0_5_RP_5=0, P_poll__networl_4_0_AI_1=0, P_network_6_0_RP_4=0, P_network_0_5_AnnP_6=0, P_masterList_2_2_2=0, P_poll__networl_5_0_RI_1=0, P_poll__networl_6_4_RP_6=0, P_dead_4=0, P_network_2_6_AskP_2=0, P_network_5_1_RP_2=0, P_network_1_6_RI_4=0, P_poll__networl_3_2_AI_0=0, P_network_4_6_RI_4=0, P_poll__networl_6_6_AnnP_4=0, P_network_5_0_AskP_1=0, P_poll__networl_0_5_RP_5=0, P_poll__networl_1_1_AnnP_2=0, P_network_6_6_AnnP_4=0, P_network_0_2_AskP_1=0, P_poll__networl_3_1_AskP_2=0, P_network_1_4_AskP_2=0, P_masterList_3_2_5=0, P_poll__networl_3_3_AskP_0=0, P_network_4_4_AI_4=0, P_network_6_5_AnnP_6=0, P_poll__networl_4_6_AI_6=0, P_poll__networl_1_6_AskP_1=0, P_poll__networl_5_2_RP_2=0, P_masterList_6_3_6=0, P_poll__networl_5_1_RP_2=0, P_poll__networl_1_1_AnnP_6=0, P_poll__networl_2_0_RP_6=0, P_network_4_1_AI_6=0, P_poll__networl_6_1_AI_5=0, P_network_1_0_AnnP_4=0, P_network_6_3_AI_1=0, P_poll__networl_6_1_RP_4=0, P_network_1_2_AI_4=0, P_poll__networl_1_5_AI_3=0, P_poll__networl_3_0_AI_0=0, P_poll__networl_6_4_AnnP_6=0, P_network_5_3_AskP_2=0, P_poll__networl_2_1_RP_5=0, P_poll__networl_0_1_AskP_3=0, P_network_1_5_AI_4=0, P_masterList_1_1_5=0, P_network_1_0_RP_6=0, P_poll__networl_5_0_AnnP_0=0, P_network_3_0_RP_5=0, P_poll__networl_0_1_AskP_1=0, P_poll__networl_6_5_RI_6=0, P_poll__networl_2_2_AnsP_0=0, P_network_2_6_RP_1=0, P_network_3_3_RI_2=0, P_network_4_2_RP_5=0, P_poll__networl_0_0_AI_2=0, P_poll__networl_6_1_AskP_1=0, P_network_4_2_AnnP_3=0, P_network_3_2_RP_3=0, P_poll__networl_6_1_AI_1=0, P_masterList_2_1_2=0, P_network_4_4_RP_6=0, P_poll__networl_3_2_AnnP_3=0, P_network_6_6_AskP_5=0, P_poll__networl_6_6_AskP_6=0, P_poll__networl_2_1_AnnP_4=0, P_poll__networl_3_5_AnnP_0=0, P_poll__networl_3_6_AnnP_2=0, P_network_4_3_RI_1=0, P_poll__networl_5_5_AnnP_6=0, P_network_0_3_RI_6=0, P_poll__networl_5_5_AI_0=0, P_poll__networl_5_5_RI_3=0, P_poll__networl_6_1_RI_1=0, P_network_5_5_RP_6=0, P_poll__networl_1_6_AnsP_0=0, P_masterList_4_1_3=0, P_network_1_6_AI_3=0, P_network_5_1_AnnP_6=0, P_poll__networl_0_6_AskP_1=0, P_network_5_2_AnnP_6=0, P_poll__networl_3_6_RI_4=0, P_poll__networl_1_5_AI_6=0, P_network_2_2_AskP_3=0, P_network_6_6_RI_2=0, P_network_6_0_AskP_6=0, P_network_5_5_RP_2=0, P_network_1_2_AI_1=0, P_poll__networl_2_4_AI_1=0, P_poll__networl_6_0_AnnP_1=0, P_network_0_5_AnnP_4=0, P_poll__networl_1_2_AskP_6=0, P_poll__networl_0_5_RP_0=0, P_network_4_5_AskP_6=0, P_poll__networl_3_1_AnnP_1=0, P_poll__networl_4_4_RP_3=0, P_poll__networl_5_2_RP_0=0, P_poll__networl_4_0_AnnP_3=0, P_poll__networl_4_5_AnnP_6=0, P_network_0_1_AnnP_6=0, P_masterList_1_3_3=0, P_poll__networl_2_2_AnnP_4=0, P_poll__networl_4_3_AskP_2=0, P_network_6_5_RI_4=0, P_poll__networl_6_3_AI_4=0, P_poll__networl_0_0_AI_3=0, P_poll__networl_0_4_AnsP_0=0, P_network_4_5_RP_1=0, P_poll__networl_3_3_AI_4=0, P_network_6_6_AI_1=0, P_poll__networl_2_0_RI_6=0, P_poll__networl_5_1_AI_5=0, P_poll__networl_5_5_AnnP_5=0, P_poll__networl_2_5_RP_6=0, P_poll__networl_6_4_RI_3=0, P_network_2_1_RP_3=0, P_poll__networl_5_1_AnnP_1=0, P_network_4_1_AskP_6=0, P_poll__networl_4_0_AskP_4=0, P_poll__networl_1_4_AnnP_3=0, P_poll__networl_5_6_AskP_4=0, P_poll__networl_1_0_AskP_5=0, P_network_5_0_RI_1=0, P_network_4_2_AI_1=0, P_poll__networl_4_1_RI_1=0, P_poll__networl_0_5_AI_5=0, P_poll__networl_0_0_RI_2=0, P_poll__networl_3_3_AI_6=0, P_network_1_5_AnnP_4=0, P_poll__networl_0_1_RI_5=0, P_poll__networl_3_5_RP_2=0, P_network_2_4_AskP_3=0, P_poll__networl_3_2_RP_1=0, P_poll__networl_6_4_AnnP_1=0, P_poll__networl_0_2_AI_6=0, P_poll__networl_4_4_AI_3=0, P_masterList_0_5_0=0, P_network_2_5_RP_6=0, P_poll__networl_2_1_AI_5=0, P_network_4_1_RP_4=0, P_network_3_2_AI_6=0, P_poll__networl_3_0_RP_6=0, P_network_3_0_RI_1=0, P_poll__networl_1_1_AnnP_4=0, P_poll__networl_2_3_AskP_3=0, P_poll__networl_5_3_AI_1=0, P_network_1_0_AskP_5=0, P_poll__networl_0_1_AskP_2=0, P_masterList_1_4_4=0, P_network_6_3_RI_2=0, P_poll__networl_1_5_RI_2=0, P_poll__networl_1_1_AI_0=0, P_network_5_3_AI_4=0, P_poll__networl_1_6_AskP_3=0, P_poll__networl_2_6_RP_3=0, P_network_4_0_AI_1=0, P_poll__networl_0_4_AI_6=0, P_poll__networl_2_0_AnnP_0=0, P_poll__networl_3_1_AnnP_3=0, P_network_0_0_RP_2=0, P_poll__networl_0_0_RP_3=0, P_poll__networl_5_5_AskP_6=0, P_poll__networl_0_0_AnnP_6=0, P_network_5_3_RI_5=0, P_poll__networl_3_5_AnnP_4=0, P_poll__networl_0_2_RI_3=0, P_poll__networl_0_4_AnnP_5=0, P_poll__networl_6_2_AnnP_3=0, P_poll__networl_6_0_AnnP_2=0, P_crashed_0=0, P_poll__networl_3_0_AnnP_6=0, P_poll__networl_2_4_RP_4=0, P_poll__networl_3_2_AI_1=0, P_poll__networl_6_1_AskP_6=0, P_masterList_3_3_4=1, P_poll__networl_6_6_AskP_1=0, P_poll__networl_6_6_AnnP_1=0, P_poll__networl_0_5_AnnP_5=0, P_masterList_6_2_6=0, P_network_5_4_RI_2=0, P_poll__networl_5_4_AI_6=0, P_network_4_1_AnnP_4=0, P_network_5_4_AskP_4=0, P_poll__networl_5_6_AI_3=0, P_poll__networl_4_0_RP_4=0, P_network_3_2_RP_1=0, P_masterList_4_6_6=0, P_network_2_5_AI_5=0, P_network_3_1_RP_6=0, P_network_3_5_RI_5=0, P_masterList_3_2_3=0, P_poll__networl_4_3_RP_2=0, P_poll__networl_0_4_RI_3=0, P_poll__networl_4_5_RI_6=0, P_poll__networl_5_0_AnnP_2=0, P_poll__networl_6_4_AI_1=0, P_network_0_0_RI_5=0, P_poll__networl_6_0_AI_5=0, P_network_5_1_AI_5=0, P_network_2_1_AnnP_2=0, P_network_3_3_RP_2=0, P_network_2_1_AskP_5=0, P_poll__networl_5_4_AnnP_3=0, P_poll__networl_6_3_AI_1=0, P_network_5_3_AskP_5=0, P_poll__networl_0_6_RP_2=0, P_network_2_0_RI_6=0, P_network_3_1_AI_4=0, P_network_4_3_RP_1=0, P_network_0_4_AI_1=0, P_poll__networl_6_3_RP_4=0, P_poll__networl_4_4_AI_0=0, P_network_5_5_RP_5=0, P_network_0_4_RP_4=0, P_network_2_2_AskP_4=0, P_network_5_2_RP_1=0, P_masterList_3_4_0=0, P_network_3_1_AskP_6=0, P_network_3_5_RI_3=0, P_poll__networl_5_1_AnnP_6=0, P_network_4_1_RP_5=0, P_poll__networl_4_4_AnnP_1=0, P_poll__networl_4_2_AI_1=0, P_masterList_0_2_2=0, P_poll__networl_3_4_RI_0=0, P_network_1_4_AI_6=0, P_network_4_5_AnnP_6=0, P_poll__networl_1_5_AI_5=0, P_poll__networl_2_2_AI_1=0, P_poll__networl_0_1_RI_4=0, P_network_1_0_AskP_4=0, P_network_3_6_AnnP_1=0, P_network_3_4_AI_5=0, P_masterList_3_1_6=0, P_poll__networl_2_1_AI_6=0, P_masterList_3_2_1=0, P_masterList_5_1_1=1, P_network_1_5_AI_6=0, P_network_0_3_AnnP_2=0, P_network_1_2_RI_6=0, P_poll__networl_0_4_RI_4=0, P_network_6_2_RP_3=0, P_network_5_4_RP_1=0, P_poll__networl_0_5_RP_2=0, P_poll__networl_0_1_AI_5=0, P_network_5_2_RI_6=0, P_poll__networl_6_1_AskP_4=0, P_poll__networl_1_1_AskP_0=0, P_network_0_3_RP_5=0, P_poll__networl_2_3_AnnP_3=0, P_poll__networl_3_1_RI_4=0, P_network_0_4_AskP_1=0, P_network_3_0_RI_2=0, P_poll__networl_6_0_RP_2=0, P_poll__networl_5_4_AskP_3=0, P_poll__networl_4_1_AI_5=0, P_network_1_0_RI_4=0, P_network_1_6_AnnP_3=0, P_network_3_2_AskP_4=0, P_poll__networl_4_0_AskP_5=0, P_poll__networl_5_6_AskP_5=0, P_poll__networl_6_5_AnnP_3=0, P_network_5_0_RI_4=0, P_network_0_0_RP_3=0, P_network_1_1_RI_5=0, P_poll__networl_2_3_AI_5=0, P_poll__networl_4_2_AnnP_5=0, P_network_0_0_AnnP_4=0, P_masterList_6_1_0=0, P_poll__networl_0_3_AnnP_5=0, P_network_6_2_AskP_4=0, P_network_6_4_AskP_3=0, P_network_3_1_RI_1=0, P_masterList_1_3_0=0, P_network_6_6_AI_4=0, P_masterList_4_2_5=0, P_network_0_3_AI_6=0, P_network_4_3_AnnP_3=0, P_network_5_4_AnnP_2=0, P_network_6_1_AnnP_1=0, P_poll__networl_3_6_RP_3=0, P_network_4_6_AskP_3=0, P_network_6_4_RP_4=0, P_network_4_0_RP_2=0, P_network_2_5_AskP_3=0, P_poll__networl_3_1_RP_0=0, P_poll__networl_2_4_RP_2=0, P_poll__networl_0_3_RI_2=0, P_network_6_6_AskP_2=0, P_network_4_4_AI_6=0, P_poll__networl_4_2_AnnP_2=0, P_network_5_0_AI_4=0, P_network_0_3_RP_1=0, P_network_3_3_AnnP_5=0, P_network_6_1_RI_3=0, P_network_0_0_RP_5=0, P_network_0_4_RP_1=0, P_poll__networl_2_6_AskP_2=0, P_network_1_6_AI_6=0, P_poll__networl_5_3_RI_0=0, P_network_3_1_RI_6=0, P_network_4_2_AnnP_1=0, P_network_5_1_AskP_2=0, P_poll__networl_3_0_AskP_6=0, P_poll__networl_5_2_AnnP_5=0, P_network_2_6_AskP_5=0, P_network_4_2_AskP_6=0, P_network_5_6_AskP_5=0, P_masterList_6_3_5=0, P_network_0_4_RI_5=0, P_network_4_2_AI_6=0, P_poll__networl_4_5_RP_3=0, P_network_2_0_RI_1=0, P_poll__networl_2_0_RI_3=0, P_network_0_1_AI_6=0, P_poll__networl_4_4_RI_2=0, P_poll__networl_4_0_RI_2=0, P_network_6_0_AnnP_6=0, P_network_6_4_RI_3=0, P_network_0_3_AI_1=0, P_network_3_5_RI_2=0, P_poll__networl_6_4_RI_2=0, P_network_5_1_RP_3=0, P_network_6_0_AnnP_3=0, P_masterList_2_4_3=0, P_poll__networl_3_4_AskP_6=0, P_poll__networl_4_3_RI_4=0, P_poll__networl_3_2_AnnP_4=0, P_poll__networl_0_2_AnnP_5=0, P_poll__networl_5_1_AskP_6=0, P_poll__networl_1_5_RI_0=0, P_poll__networl_2_6_RI_4=0, P_poll__networl_6_4_AI_6=0, P_poll__networl_6_5_RP_5=0, P_masterList_5_3_5=0, P_poll__networl_4_1_AI_3=0, P_masterList_3_4_4=0, P_poll__networl_3_4_RI_1=0, P_network_3_0_RP_6=0, P_poll__networl_4_5_AI_1=0, P_poll__networl_3_3_RI_1=0, P_poll__networl_0_4_AskP_4=0, P_network_6_3_RP_4=0, P_network_1_5_AI_3=0, P_poll__networl_4_1_RP_0=0, P_poll__networl_2_4_AnnP_1=0, P_poll__networl_3_5_AskP_0=0, P_poll__networl_3_2_RI_6=0, P_poll__networl_5_2_AI_6=0, P_network_2_4_AI_3=0, P_poll__networl_6_1_AnnP_6=0, P_network_3_0_AnnP_6=0, P_poll__networl_0_1_AnnP_2=0, P_poll__networl_4_1_AnsP_0=0, P_poll__networl_5_4_AskP_5=0, P_network_4_0_AnnP_2=0, P_poll__networl_6_5_AnnP_5=0, P_network_3_6_RP_4=0, P_poll__networl_2_1_RI_3=0, P_network_6_1_RP_1=0, P_poll__networl_2_6_AskP_6=0, P_network_6_3_AI_4=0, P_network_0_1_RP_6=0, P_poll__networl_6_0_RP_1=0, P_poll__networl_6_2_AnnP_5=0, P_network_0_0_AnnP_3=0, P_poll__networl_1_2_AnnP_4=0, P_poll__networl_2_5_AI_6=0, P_poll__networl_0_0_RP_6=0, P_network_4_0_AI_6=0, P_network_2_0_AI_1=0, P_poll__networl_0_1_RP_4=0, P_network_3_4_AI_4=0, P_poll__networl_3_6_AskP_3=0, P_masterList_0_4_4=0, P_poll__networl_1_0_AnnP_1=0, P_masterList_6_4_3=0, P_poll__networl_4_1_RI_3=0, P_network_5_4_RP_3=0, P_poll__networl_4_5_AI_6=0, P_network_1_5_AI_5=0, P_network_2_4_RI_1=0, P_network_3_6_AI_5=0, P_network_3_5_AI_6=0, P_crashed_6=0, P_poll__networl_2_0_RI_5=0, P_poll__networl_2_5_AI_4=0, P_masterList_6_2_2=1, P_network_0_4_AnnP_1=0, P_poll__networl_4_1_AnnP_5=0, P_network_6_3_RI_3=0, P_poll__networl_1_5_AskP_4=0, P_network_4_4_AnnP_3=0, P_poll__networl_0_0_AnnP_5=0, P_poll__networl_0_0_AskP_5=0, P_poll__networl_1_3_AnnP_2=0, P_network_5_5_RP_4=0, P_network_1_3_RP_6=0, P_network_2_4_RP_4=0, P_network_4_1_RP_2=0, P_poll__networl_1_3_AI_1=0, P_masterList_1_6_3=0, P_poll__networl_1_3_AskP_5=0, P_poll__networl_3_1_RI_0=0, P_poll__networl_4_1_RI_2=0, P_poll__networl_6_3_RI_0=0, P_poll__networl_5_6_RI_5=0, P_network_6_0_RI_4=0, P_poll__networl_4_3_AskP_5=0, P_network_5_5_RP_1=0, P_poll__networl_5_3_RP_0=0, P_poll__networl_5_2_RI_1=0, P_network_0_3_AnnP_6=0, P_poll__networl_0_3_RP_5=0, P_poll__networl_1_3_RI_6=0, P_poll__networl_5_2_AnnP_4=0, P_network_0_1_AI_5=0, P_network_5_6_RP_6=0, P_poll__networl_4_0_AnnP_6=0, P_network_2_6_AskP_3=0, P_network_3_1_AI_3=0, P_poll__networl_0_6_AI_0=0, P_poll__networl_5_4_AskP_4=0, P_network_6_6_AskP_4=0, P_poll__networl_0_5_RI_2=0, P_masterList_5_6_3=0, P_network_1_4_RI_5=0, P_network_2_0_AI_4=0, P_masterList_3_4_1=0, P_network_5_5_RI_6=0, P_network_3_3_AnnP_2=0, P_network_4_5_AnnP_5=0, P_network_2_6_RP_2=0, P_network_0_3_RI_2=0, P_poll__networl_0_1_RI_6=0, P_poll__networl_1_6_RP_6=0, P_network_4_2_RI_6=0, P_network_5_4_AI_4=0, P_network_6_5_AskP_3=0, P_network_5_2_AnnP_1=0, P_poll__networl_4_3_AI_1=0, P_poll__networl_6_3_RP_1=0, P_network_1_5_AskP_6=0, P_poll__networl_4_4_RP_1=0, P_poll__networl_2_4_RI_5=0, P_poll__networl_4_5_RI_1=0, P_network_1_4_AnnP_6=0, P_poll__networl_0_4_AnnP_6=0, P_poll__networl_0_6_AnnP_0=0, P_poll__networl_1_4_AskP_2=0, P_poll__networl_3_4_AskP_5=0, P_network_1_4_AI_1=0, P_network_6_4_AskP_1=0, P_masterList_5_5_2=0, P_network_1_6_RI_1=0, P_poll__networl_2_5_RP_0=0, P_poll__networl_6_4_AnsP_0=0, P_network_5_3_AskP_4=0, P_poll__networl_0_2_AnsP_0=0, P_poll__networl_3_1_RI_2=0, P_poll__networl_2_5_AskP_6=0, P_network_1_5_RP_1=0, P_network_5_5_AskP_2=0, P_poll__networl_4_5_RI_2=0, P_poll__networl_5_2_AnnP_2=0, P_poll__networl_4_1_AI_4=0, P_network_3_0_RP_1=0, P_network_6_0_AnnP_4=0, P_poll__networl_1_0_AnsP_0=0, P_poll__networl_6_0_RP_4=0, P_masterList_3_5_0=0, P_poll__networl_4_0_AI_6=0, P_poll__networl_5_0_AnnP_6=0, P_masterList_5_3_2=0, P_poll__networl_3_4_AskP_1=0, P_network_4_4_RI_6=0, P_network_5_3_AskP_1=0, P_poll__networl_2_3_RI_4=0, P_poll__networl_6_1_AnnP_1=0, P_poll__networl_2_5_AnnP_4=0, P_network_5_3_AnnP_4=0, P_network_5_4_RI_3=0, P_network_5_6_AI_2=0, P_network_5_0_RP_3=0, P_poll__networl_0_6_AI_5=0, P_network_2_2_RP_5=0, P_network_2_4_RI_3=0, P_poll__networl_3_3_AnnP_1=0, P_poll__networl_3_2_AnnP_0=0, P_poll__networl_1_3_RI_1=0, P_poll__networl_1_3_RI_0=0, P_poll__networl_2_3_RP_0=0, P_network_3_0_AI_4=0, P_network_4_5_RI_1=0, P_poll__networl_0_2_AnnP_4=0, P_poll__networl_4_3_RI_5=0, P_network_5_3_RP_6=0, P_network_1_4_AnnP_1=0, P_network_4_5_RP_2=0, P_network_3_1_AnnP_2=0, P_poll__networl_1_2_AI_2=0, P_poll__networl_4_2_AnnP_0=0, P_poll__networl_4_3_RI_2=0, P_poll__networl_1_1_RP_4=0, P_poll__networl_6_6_AI_4=0, P_masterList_2_5_0=0, P_poll__networl_2_3_AnnP_5=0, P_network_4_3_AskP_6=0, P_poll__networl_1_2_AskP_0=0, P_poll__networl_0_3_RI_3=0, P_network_1_6_AnnP_1=0, P_poll__networl_2_5_RP_4=0, P_poll__networl_2_3_AnnP_2=0, P_poll__networl_4_2_RP_6=0, P_network_6_5_RI_6=0, P_network_3_3_AI_5=0, P_poll__networl_4_2_AnnP_6=0, P_network_6_2_RI_2=0, P_poll__networl_4_6_AskP_6=0, P_poll__networl_5_6_AI_4=0, P_network_1_3_RP_1=0, P_poll__networl_5_6_AI_2=0, P_network_5_5_AI_4=0, P_poll__networl_5_6_AnnP_5=0, P_poll__networl_0_4_AnnP_0=0, P_poll__networl_2_6_AnnP_3=0, P_poll__networl_5_2_AskP_4=0, P_network_2_0_AnnP_5=0, P_poll__networl_3_1_RP_6=0, P_masterList_6_4_5=0, P_poll__networl_0_4_RI_5=0, P_network_6_6_AnnP_1=0, P_network_0_6_AnnP_1=0, P_poll__networl_0_2_AI_4=0, P_network_3_5_AskP_6=0, P_network_5_6_AI_1=0, P_poll__networl_6_4_AskP_6=0, P_masterList_4_4_1=0, P_poll__networl_4_0_AnnP_1=0, P_network_6_6_RP_3=0, P_poll__networl_0_3_RP_0=0, P_network_1_1_AI_3=0, P_poll__networl_0_1_RI_1=0, P_poll__networl_2_0_AskP_2=0, P_network_3_2_RI_4=0, P_network_2_6_AnnP_3=0, P_masterList_0_2_3=0, P_poll__networl_3_5_RP_1=0, P_network_1_6_RP_4=0, P_network_2_3_AnnP_2=0, P_poll__networl_3_4_AnsP_0=0, P_poll__networl_6_5_AI_3=0, P_poll__networl_1_4_RI_6=0, P_network_3_3_AnnP_4=0, P_network_4_5_RI_2=0, P_poll__networl_0_4_RP_2=0, P_network_3_5_AskP_4=0, P_poll__networl_1_2_AI_6=0, P_network_3_2_AI_4=0, P_poll__networl_2_5_RP_2=0, P_poll__networl_3_1_RP_4=0, P_network_5_0_AnnP_4=0, P_poll__networl_4_3_AnnP_4=0, P_poll__networl_5_6_RP_4=0, P_masterList_6_5_2=0, P_network_1_4_AI_2=0, P_masterList_0_6_0=0, P_network_3_4_RP_2=0, P_masterList_1_5_4=0, P_poll__networl_1_4_AnnP_5=0, P_masterList_5_5_6=1, P_network_0_3_AskP_5=0, P_poll__networl_1_0_AI_4=0, P_poll__networl_4_4_AI_4=0, P_network_0_5_RP_1=0, P_network_2_4_RP_1=0, P_poll__networl_5_0_AI_4=0, P_network_1_1_AnnP_3=0, P_poll__networl_4_2_AI_4=0, P_network_3_3_AI_1=0, P_network_0_2_RP_6=0, P_poll__networl_3_6_RP_1=0, P_masterList_1_2_1=0, P_poll__networl_6_2_RI_3=0, P_poll__networl_4_6_AI_2=0, P_network_3_6_RI_2=0, P_network_6_1_RI_2=0, P_network_0_2_RI_1=0, P_network_6_0
_AI_5=0, P_poll__networl_2_6_AnnP_2=0, P_network_4_4_AnnP_1=0, P_poll__networl_0_2_AskP_5=0, P_poll__networl_2_1_AskP_1=0, P_network_3_2_AnnP_5=0, P_network_0_6_AnnP_2=0, P_masterList_2_1_1=1, P_poll__networl_3_2_AnnP_2=0, P_network_0_4_AI_3=0, P_poll__networl_0_3_AskP_3=0, P_poll__networl_0_3_RI_1=0, P_network_0_0_AnnP_1=0, P_masterList_3_4_6=0, P_poll__networl_1_3_AskP_3=0, P_network_3_1_RP_1=0, P_masterList_4_2_4=0, P_network_3_5_AskP_5=0, P_poll__networl_0_1_RI_3=0, P_poll__networl_2_6_RI_3=0, P_network_0_5_AskP_1=0, P_network_0_6_RP_2=0, P_network_6_0_AI_4=0, P_network_6_6_AskP_1=0, P_poll__networl_6_0_AI_0=0, P_poll__networl_6_6_RP_6=0, P_masterList_3_6_5=0, P_poll__networl_1_4_AskP_5=0, P_poll__networl_2_1_AnnP_0=0, P_poll__networl_1_2_AskP_2=0, P_network_6_1_AI_2=0, P_network_1_3_AI_4=0, P_poll__networl_4_5_AI_5=0, P_network_2_5_AskP_6=0, P_poll__networl_6_3_AI_5=0, P_poll__networl_2_2_RP_2=0, P_poll__networl_0_4_AskP_2=0, P_poll__networl_0_1_AnnP_0=0, P_network_3_4_AnnP_6=0, P_network_6_1_AskP_5=0, P_poll__networl_3_0_AI_2=0, P_network_1_6_AI_5=0, P_network_6_1_AskP_6=0, P_poll__networl_2_1_RI_4=0, P_masterList_0_6_4=0, P_poll__networl_1_3_AI_2=0, P_crashed_2=0, P_network_5_3_RP_4=0, P_network_2_6_AI_5=0, P_masterList_6_3_1=0, P_network_0_5_RI_3=0, P_network_2_6_AI_6=0, P_network_2_0_RP_6=0, P_network_6_1_AskP_4=0, P_poll__networl_1_1_AskP_4=0, P_network_3_6_RI_6=0, P_network_2_4_AnnP_4=0, P_poll__networl_1_2_RP_5=0, P_poll__networl_6_0_AI_6=0, P_poll__networl_5_5_RI_2=0, P_poll__networl_2_5_AskP_4=0, P_masterList_2_2_0=0, P_network_2_0_AI_2=0, P_poll__networl_1_2_RP_3=0, P_masterList_5_1_2=0, P_network_0_4_AnnP_6=0, P_poll__networl_3_2_AskP_3=0, P_poll__networl_5_5_AI_6=0, P_network_6_4_AskP_2=0, P_network_2_1_RP_1=0, P_masterList_5_1_5=0, P_network_4_0_RP_1=0, P_poll__networl_5_0_RP_6=0, P_masterList_2_6_5=0, P_poll__networl_2_6_RP_1=0, P_network_3_5_AnnP_6=0, P_network_4_4_AI_5=0, P_masterList_0_4_3=0, P_masterList_2_5_4=0, P_network_3_3_AskP_4=0, P_masterList_4_4_2=0, P_network_5_5_AI_1=0, P_poll__networl_1_4_RI_2=0, P_network_6_3_AnnP_3=0, P_poll__networl_3_3_AskP_3=0, P_poll__networl_6_2_RP_4=0, P_poll__networl_2_4_AnnP_0=0, P_network_6_6_AnnP_2=0, P_poll__networl_1_0_AnnP_5=0, P_network_3_4_RI_3=0, P_poll__networl_0_4_AnnP_3=0, P_poll__networl_5_3_AskP_4=0, P_poll__networl_0_2_AI_0=0, P_poll__networl_6_1_AI_4=0, P_network_4_6_AnnP_2=0, P_poll__networl_5_2_AnnP_1=0, P_poll__networl_5_4_AnnP_4=0, P_poll__networl_1_3_RP_3=0, P_network_2_5_AnnP_2=0, P_poll__networl_0_3_RP_1=0, P_poll__networl_1_6_AI_5=0, P_network_4_4_RI_3=0, P_network_2_3_AI_2=0, P_network_5_0_RI_3=0, P_poll__networl_0_4_RP_0=0, P_poll__networl_2_5_AnsP_0=0, P_poll__networl_5_6_RI_2=0, P_masterList_3_6_1=0, P_network_0_3_AnnP_4=0, P_network_6_0_RP_3=0, P_poll__networl_2_6_AI_6=0, P_network_3_2_RI_2=0, P_poll__networl_5_1_RI_1=0, P_masterList_4_1_1=1, P_poll__networl_3_1_RP_1=0, P_network_2_0_AskP_5=0, P_poll__networl_5_4_AskP_1=0, P_poll__networl_6_5_RP_1=0, P_poll__networl_0_2_AskP_0=0, P_poll__networl_3_1_AskP_4=0, P_network_2_2_RP_1=0, P_poll__networl_0_1_RP_5=0, P_poll__networl_2_3_AI_3=0, P_masterList_6_4_0=0, P_network_2_1_RI_2=0, P_masterList_6_5_4=0, P_poll__networl_2_5_AnnP_0=0, P_poll__networl_2_2_RP_1=0, P_poll__networl_3_3_AnnP_5=0, P_poll__networl_4_5_AnnP_1=0, P_network_5_5_RI_1=0, P_network_6_6_RI_1=0, P_network_1_6_AskP_3=0, P_network_0_0_RI_4=0, P_poll__networl_5_5_RP_1=0, P_network_3_4_AI_2=0, P_network_6_1_AnnP_4=0, P_poll__networl_4_4_RI_6=0, P_network_5_3_AI_1=0, P_poll__networl_1_4_AnnP_4=0, P_poll__networl_5_2_RI_0=0, P_poll__networl_0_5_RI_5=0, P_masterList_6_6_2=0, P_network_2_1_AI_5=0, P_network_2_3_RP_4=0, P_masterList_5_6_6=0, P_poll__networl_1_4_AnnP_1=0, P_network_2_3_AskP_3=0, P_network_5_1_AI_2=0, P_masterList_0_1_2=0, P_masterList_4_2_2=1, P_network_2_2_AnnP_2=0, P_network_5_5_AnnP_1=0, P_poll__networl_4_4_AI_5=0, P_poll__networl_1_1_RP_5=0, P_network_0_5_RI_4=0, P_network_2_2_AnnP_5=0, P_poll__networl_2_6_AI_5=0, P_network_6_2_RP_5=0, P_poll__networl_6_6_AskP_5=0, P_network_2_2_RI_6=0, P_poll__networl_2_3_AnnP_0=0, P_network_2_4_AI_4=0, P_poll__networl_0_3_AnsP_0=0, P_network_5_2_AskP_4=0, P_poll__networl_5_1_AI_6=0, P_network_3_6_AI_2=0, P_poll__networl_4_6_AnsP_0=0, P_poll__networl_2_2_RI_3=0, P_poll__networl_0_4_AskP_1=0, P_poll__networl_4_2_AskP_3=0, P_network_4_2_RP_2=0, P_masterList_5_2_2=1, P_network_5_1_RP_6=0, P_network_5_3_AskP_6=0, P_poll__networl_0_4_AI_0=0, P_poll__networl_1_5_AnsP_0=0, P_network_6_4_AI_3=0, P_network_5_4_RI_5=0, P_network_6_5_AnnP_3=0, P_poll__networl_3_1_AI_4=0, P_network_5_5_RI_2=0, P_poll__networl_2_2_AskP_4=0, P_poll__networl_0_5_AnnP_3=0, P_poll__networl_4_4_AnnP_5=0, P_network_5_5_AskP_6=0, P_network_5_4_AnnP_5=0, P_poll__networl_3_3_RI_4=0, P_poll__networl_4_4_AnnP_0=0, P_poll__networl_4_2_RI_6=0, P_network_3_1_AI_2=0, P_poll__networl_0_6_RP_4=0, P_poll__networl_6_0_AI_4=0, P_poll__networl_5_6_AnnP_2=0, P_poll__networl_6_6_RI_1=0, P_poll__networl_5_3_RP_6=0, P_poll__networl_6_5_AskP_0=0, P_network_1_1_AskP_1=0, P_network_0_6_RI_1=0, P_network_1_3_RI_1=0, P_poll__networl_4_1_AskP_4=0, P_network_6_3_RI_5=0, P_poll__networl_3_0_RI_3=0, P_masterList_5_3_0=0, P_network_3_6_AskP_1=0, P_poll__networl_5_2_AI_2=0, P_network_4_2_AI_5=0, P_poll__networl_0_5_AnnP_4=0, P_poll__networl_4_1_RP_4=0, P_poll__networl_3_3_AI_0=0, P_network_5_0_AI_2=0, P_poll__networl_0_5_AskP_1=0, P_poll__networl_5_0_RI_0=0, P_poll__networl_5_5_RP_0=0, P_masterList_2_5_5=0, P_network_1_0_RI_2=0, P_network_0_0_RI_3=0, P_network_4_4_AskP_4=0, P_poll__networl_3_6_AnnP_1=0, P_network_1_3_AskP_6=0, P_poll__networl_4_0_RI_1=0, P_poll__networl_0_4_AI_4=0, P_poll__networl_6_2_AI_6=0, P_network_6_4_RP_1=0, P_poll__networl_1_1_AskP_5=0, P_network_4_6_AskP_2=0, P_network_4_0_AskP_1=0, P_network_5_5_AI_2=0, P_poll__networl_5_3_AnnP_4=0, P_network_0_0_RP_1=0, P_poll__networl_2_1_AskP_0=0, P_network_1_5_AskP_1=0, P_network_6_5_AnnP_5=0, P_network_6_5_AskP_1=0, P_electionFailed_3=0, P_poll__networl_4_0_AI_5=0, P_poll__networl_1_5_AnnP_3=0, P_dead_1=0, P_network_1_5_AskP_2=0, P_network_2_3_AskP_2=0, P_network_4_3_RP_2=0, P_poll__networl_6_2_RI_2=0, P_poll__networl_6_0_RI_0=0, P_network_4_3_RP_3=0, P_poll__networl_1_1_AnnP_1=0, P_masterList_6_6_5=0, P_network_3_5_AnnP_2=0, P_network_4_1_RP_6=0, P_poll__networl_4_6_RI_1=0, P_poll__networl_0_3_AI_0=0, P_poll__networl_1_2_RP_0=0, P_network_3_4_AI_3=0, P_poll__networl_2_2_AI_4=0, P_network_2_0_AnnP_1=0, P_network_4_6_RI_2=0, P_network_4_3_AnnP_4=0, P_network_2_5_RP_5=0, P_poll__networl_5_0_AskP_6=0, P_poll__networl_2_4_RP_5=0, P_network_6_2_AnnP_1=0, P_poll__networl_4_1_RP_5=0, P_poll__networl_5_2_AskP_5=0, P_poll__networl_6_0_RP_5=0, P_poll__networl_0_6_AnnP_3=0, P_poll__networl_5_4_RP_2=0, P_poll__networl_6_5_AI_2=0, P_network_4_5_AI_6=0, P_network_0_0_RP_4=0, P_poll__networl_4_1_AskP_5=0, P_network_6_6_AnnP_3=0, P_poll__networl_5_3_AI_0=0, P_poll__networl_6_6_AskP_2=0, P_poll__networl_3_3_RP_3=0, P_network_1_6_AI_2=0, P_poll__networl_4_5_RP_2=0, P_poll__networl_1_2_AI_5=0, P_network_1_4_RI_3=0, P_network_6_2_AI_1=0, P_network_1_6_AskP_4=0, P_network_2_5_RP_1=0, P_poll__networl_5_1_RI_0=0, P_poll__networl_5_5_AskP_5=0, P_poll__networl_1_4_AnnP_2=0, P_network_3_2_AI_1=0, P_network_2_0_RI_2=0, P_poll__networl_5_3_RI_4=0, P_masterList_0_1_4=0, P_poll__networl_2_4_RI_4=0, P_poll__networl_1_6_RP_1=0, P_poll__networl_2_6_RI_0=0, P_network_0_6_AnnP_3=0, P_network_0_6_AnnP_4=0, P_network_6_1_AnnP_5=0, P_poll__networl_4_2_AskP_4=0, P_network_1_1_AskP_6=0, P_poll__networl_5_1_RP_0=0, P_poll__networl_6_5_AskP_6=0, P_poll__networl_4_3_RP_4=0, P_poll__networl_4_4_AI_6=0, P_network_2_2_RP_2=0, P_poll__networl_3_0_RI_1=0, P_poll__networl_0_6_AI_3=0, P_poll__networl_4_1_AnnP_2=0, P_network_4_1_AI_5=0, P_network_4_0_AskP_5=0, P_poll__networl_4_6_AI_1=0, P_poll__networl_4_1_AskP_1=0, P_network_4_6_RI_3=0, P_masterList_3_5_3=0, P_poll__networl_1_4_RP_0=0, P_poll__networl_2_3_AI_2=0, P_network_6_4_AnnP_6=0, P_poll__networl_2_3_AI_6=0, P_network_1_5_RI_1=0, P_network_1_4_RI_1=0, P_poll__networl_1_0_AskP_1=0, P_masterList_3_2_4=0, P_poll__networl_1_1_RP_6=0, P_poll__networl_3_6_AnnP_4=0, P_poll__networl_1_6_AnnP_2=0, P_network_4_1_AnnP_5=0, P_poll__networl_2_2_AskP_3=0, P_network_2_1_RP_2=0, P_network_5_4_AskP_2=0, P_poll__networl_4_6_RP_2=0, P_network_3_0_RP_3=0, P_poll__networl_0_4_AnnP_1=0, P_poll__networl_1_4_AskP_6=0, P_network_5_2_AskP_5=0, P_network_2_0_AskP_6=0, P_network_4_3_RI_4=0, P_network_3_6_RI_4=0, P_network_6_3_AnnP_4=0, P_network_0_5_AnnP_3=0, P_poll__networl_4_1_RI_4=0, P_masterList_2_2_6=0, P_masterList_5_2_4=0, P_poll__networl_2_2_RI_6=0, P_network_2_0_AskP_2=0, P_masterList_5_1_4=0, P_network_1_6_RI_2=0, P_poll__networl_6_2_AskP_5=0, P_network_3_1_AnnP_3=0, P_network_5_4_RI_4=0, P_network_3_6_AI_3=0, P_network_4_4_RI_4=0, P_network_4_2_AskP_5=0, P_poll__networl_3_6_AnnP_3=0, P_network_2_1_AskP_6=0, P_poll__networl_1_2_AnnP_1=0, P_poll__networl_2_6_RP_6=0, P_poll__networl_5_6_AI_1=0, P_poll__networl_1_0_RI_5=0, P_network_2_5_RP_4=0, P_poll__networl_4_6_RP_4=0, P_network_1_4_RI_4=0, P_poll__networl_2_5_RP_5=0, P_poll__networl_2_5_AnnP_2=0, P_network_3_3_AI_2=0, P_poll__networl_0_4_RP_1=0, P_network_4_1_AnnP_6=0, P_network_2_2_RI_4=0, P_network_4_0_AnnP_5=0, P_poll__networl_2_2_AnnP_2=0
May 26, 2018 8:26:12 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Simplified 9400 expressions due to constant valuations.
May 26, 2018 8:26:12 AM fr.lip6.move.gal.instantiate.Simplifier simplifyFalseTransitions
INFO: Removed 430 false transitions.
May 26, 2018 8:26:13 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 27 fixed domain variables (out of 1281 variables) in GAL type NeoElection_PT_6_flat
May 26, 2018 8:26:13 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 3907 ms
FORMULA NeoElection-PT-6-ReachabilityCardinality-15 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-ReachabilityCardinality-13 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-ReachabilityCardinality-10 TRUE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-ReachabilityCardinality-08 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
FORMULA NeoElection-PT-6-ReachabilityCardinality-07 FALSE TECHNIQUES TOPOLOGICAL INITIAL_STATE
Using solver Z3 to compute partial order matrices.
Built C files in :
/mcc-data
May 26, 2018 8:26:14 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 27 fixed domain variables (out of 1281 variables) in GAL type NeoElection_PT_6_flat
May 26, 2018 8:26:14 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 27 constant array cells/variables (out of 1281 variables) in type NeoElection_PT_6_flat
May 26, 2018 8:26:14 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_negotiation_3_0_NONE,P_negotiation_0_3_NONE,P_negotiation_0_0_NONE,P_sendAnnPs__broadcasting_0_2,P_negotiation_0_4_NONE,P_sendAnnPs__broadcasting_0_5,P_negotiation_0_5_NONE,P_negotiation_1_0_NONE,P_startNeg__broadcasting_0_4,P_negotiation_4_0_NONE,P_startNeg__broadcasting_0_2,P_negotiation_6_0_NONE,P_negotiation_0_1_NONE,P_negotiation_0_2_NONE,P_negotiation_4_4_NONE,P_startNeg__broadcasting_0_3,P_negotiation_5_5_NONE,P_sendAnnPs__broadcasting_0_3,P_negotiation_0_6_NONE,P_startNeg__broadcasting_0_5,P_negotiation_6_6_NONE,P_negotiation_5_0_NONE,P_negotiation_1_1_NONE,P_sendAnnPs__broadcasting_0_4,P_negotiation_3_3_NONE,P_negotiation_2_2_NONE,P_negotiation_2_0_NONE,
May 26, 2018 8:26:14 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 27 fixed domain variables (out of 1281 variables) in GAL type NeoElection_PT_6_flat
May 26, 2018 8:26:14 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 27 constant array cells/variables (out of 1281 variables) in type NeoElection_PT_6_flat
May 26, 2018 8:26:14 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_negotiation_0_2_NONE,P_negotiation_0_5_NONE,P_negotiation_2_0_NONE,P_negotiation_1_1_NONE,P_negotiation_0_3_NONE,P_sendAnnPs__broadcasting_0_3,P_startNeg__broadcasting_0_5,P_negotiation_1_0_NONE,P_negotiation_0_1_NONE,P_negotiation_5_5_NONE,P_negotiation_5_0_NONE,P_negotiation_4_4_NONE,P_startNeg__broadcasting_0_2,P_negotiation_0_0_NONE,P_negotiation_4_0_NONE,P_negotiation_0_6_NONE,P_negotiation_6_6_NONE,P_negotiation_3_3_NONE,P_sendAnnPs__broadcasting_0_4,P_startNeg__broadcasting_0_3,P_negotiation_2_2_NONE,P_startNeg__broadcasting_0_4,P_sendAnnPs__broadcasting_0_2,P_negotiation_3_0_NONE,P_sendAnnPs__broadcasting_0_5,P_negotiation_6_0_NONE,P_negotiation_0_4_NONE,
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 27 fixed domain variables (out of 1281 variables) in GAL type NeoElection_PT_6_flat
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 27 constant array cells/variables (out of 1281 variables) in type NeoElection_PT_6_flat
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_negotiation_0_2_NONE,P_negotiation_0_5_NONE,P_negotiation_2_0_NONE,P_negotiation_1_1_NONE,P_negotiation_0_3_NONE,P_sendAnnPs__broadcasting_0_3,P_startNeg__broadcasting_0_5,P_negotiation_1_0_NONE,P_negotiation_0_1_NONE,P_negotiation_5_5_NONE,P_negotiation_5_0_NONE,P_negotiation_4_4_NONE,P_startNeg__broadcasting_0_2,P_negotiation_0_0_NONE,P_negotiation_4_0_NONE,P_negotiation_0_6_NONE,P_negotiation_6_6_NONE,P_negotiation_3_3_NONE,P_sendAnnPs__broadcasting_0_4,P_startNeg__broadcasting_0_3,P_negotiation_2_2_NONE,P_startNeg__broadcasting_0_4,P_sendAnnPs__broadcasting_0_2,P_negotiation_3_0_NONE,P_sendAnnPs__broadcasting_0_5,P_negotiation_6_0_NONE,P_negotiation_0_4_NONE,
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Removed 27 constant variables :P_negotiation_0_2_NONE=0, P_negotiation_0_5_NONE=0, P_negotiation_2_0_NONE=0, P_negotiation_1_1_NONE=0, P_negotiation_0_3_NONE=0, P_sendAnnPs__broadcasting_0_3=0, P_startNeg__broadcasting_0_5=0, P_negotiation_1_0_NONE=0, P_negotiation_0_1_NONE=0, P_negotiation_5_5_NONE=0, P_negotiation_5_0_NONE=0, P_negotiation_4_4_NONE=0, P_startNeg__broadcasting_0_2=0, P_negotiation_0_0_NONE=0, P_negotiation_4_0_NONE=0, P_negotiation_0_6_NONE=0, P_negotiation_6_6_NONE=0, P_negotiation_3_3_NONE=0, P_sendAnnPs__broadcasting_0_4=0, P_startNeg__broadcasting_0_3=0, P_negotiation_2_2_NONE=0, P_startNeg__broadcasting_0_4=0, P_sendAnnPs__broadcasting_0_2=0, P_negotiation_3_0_NONE=0, P_sendAnnPs__broadcasting_0_5=0, P_negotiation_6_0_NONE=0, P_negotiation_0_4_NONE=0
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Simplified 46 expressions due to constant valuations.
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 27 fixed domain variables (out of 1281 variables) in GAL type NeoElection_PT_6_flat
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 27 constant array cells/variables (out of 1281 variables) in type NeoElection_PT_6_flat
May 26, 2018 8:26:16 AM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_negotiation_3_0_NONE,P_negotiation_0_3_NONE,P_negotiation_0_0_NONE,P_sendAnnPs__broadcasting_0_2,P_negotiation_0_4_NONE,P_sendAnnPs__broadcasting_0_5,P_negotiation_0_5_NONE,P_negotiation_1_0_NONE,P_startNeg__broadcasting_0_4,P_negotiation_4_0_NONE,P_startNeg__broadcasting_0_2,P_negotiation_6_0_NONE,P_negotiation_0_1_NONE,P_negotiation_0_2_NONE,P_negotiation_4_4_NONE,P_startNeg__broadcasting_0_3,P_negotiation_5_5_NONE,P_sendAnnPs__broadcasting_0_3,P_negotiation_0_6_NONE,P_startNeg__broadcasting_0_5,P_negotiation_6_6_NONE,P_negotiation_5_0_NONE,P_negotiation_1_1_NONE,P_sendAnnPs__broadcasting_0_4,P_negotiation_3_3_NONE,P_negotiation_2_2_NONE,P_negotiation_2_0_NONE,
May 26, 2018 8:26:17 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Removed 27 constant variables :P_negotiation_3_0_NONE=0, P_negotiation_0_3_NONE=0, P_negotiation_0_0_NONE=0, P_sendAnnPs__broadcasting_0_2=0, P_negotiation_0_4_NONE=0, P_sendAnnPs__broadcasting_0_5=0, P_negotiation_0_5_NONE=0, P_negotiation_1_0_NONE=0, P_startNeg__broadcasting_0_4=0, P_negotiation_4_0_NONE=0, P_startNeg__broadcasting_0_2=0, P_negotiation_6_0_NONE=0, P_negotiation_0_1_NONE=0, P_negotiation_0_2_NONE=0, P_negotiation_4_4_NONE=0, P_startNeg__broadcasting_0_3=0, P_negotiation_5_5_NONE=0, P_sendAnnPs__broadcasting_0_3=0, P_negotiation_0_6_NONE=0, P_startNeg__broadcasting_0_5=0, P_negotiation_6_6_NONE=0, P_negotiation_5_0_NONE=0, P_negotiation_1_1_NONE=0, P_sendAnnPs__broadcasting_0_4=0, P_negotiation_3_3_NONE=0, P_negotiation_2_2_NONE=0, P_negotiation_2_0_NONE=0
May 26, 2018 8:26:17 AM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Simplified 46 expressions due to constant valuations.
May 26, 2018 8:26:17 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 3390 ms
May 26, 2018 8:26:18 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /mcc-data/ReachabilityCardinality.pnml.gal : 368 ms
May 26, 2018 8:26:18 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 4345 ms
May 26, 2018 8:26:18 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /mcc-data/ReachabilityCardinality.prop : 52 ms
Invoking ITS tools like this :CommandLine [args=[/usr/share/itscl/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201804131302/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /mcc-data/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/mcc-data]

its-reach command run as :

/usr/share/itscl/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201804131302/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /mcc-data/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
May 26, 2018 8:26:19 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 8005 transitions.
Loading property file ReachabilityCardinality.prop.
May 26, 2018 8:26:20 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 8005 transitions.
Read [invariant] property : NeoElection-PT-6-ReachabilityCardinality-00 with value :((((((((P_poll__pollEnd_0+P_poll__pollEnd_1)+P_poll__pollEnd_2)+P_poll__pollEnd_3)+P_poll__pollEnd_4)+P_poll__pollEnd_5)+P_poll__pollEnd_6)<=(((((((((((((((((((((((((((((((((((((P_sendAnnPs__broadcasting_0_1+P_sendAnnPs__broadcasting_0_6)+P_sendAnnPs__broadcasting_1_1)+P_sendAnnPs__broadcasting_1_2)+P_sendAnnPs__broadcasting_1_3)+P_sendAnnPs__broadcasting_1_4)+P_sendAnnPs__broadcasting_1_5)+P_sendAnnPs__broadcasting_1_6)+P_sendAnnPs__broadcasting_2_1)+P_sendAnnPs__broadcasting_2_2)+P_sendAnnPs__broadcasting_2_3)+P_sendAnnPs__broadcasting_2_4)+P_sendAnnPs__broadcasting_2_5)+P_sendAnnPs__broadcasting_2_6)+P_sendAnnPs__broadcasting_3_1)+P_sendAnnPs__broadcasting_3_2)+P_sendAnnPs__broadcasting_3_3)+P_sendAnnPs__broadcasting_3_4)+P_sendAnnPs__broadcasting_3_5)+P_sendAnnPs__broadcasting_3_6)+P_sendAnnPs__broadcasting_4_1)+P_sendAnnPs__broadcasting_4_2)+P_sendAnnPs__broadcasting_4_3)+P_sendAnnPs__broadcasting_4_4)+P_sendAnnPs__broadcasting_4_5)+P_sendAnnPs__broadcasting_4_6)+P_sendAnnPs__broadcasting_5_1)+P_sendAnnPs__broadcasting_5_2)+P_sendAnnPs__broadcasting_5_3)+P_sendAnnPs__broadcasting_5_4)+P_sendAnnPs__broadcasting_5_5)+P_sendAnnPs__broadcasting_5_6)+P_sendAnnPs__broadcasting_6_1)+P_sendAnnPs__broadcasting_6_2)+P_sendAnnPs__broadcasting_6_3)+P_sendAnnPs__broadcasting_6_4)+P_sendAnnPs__broadcasting_6_5)+P_sendAnnPs__broadcasting_6_6))||(!(((((((P_electedPrimary_0+P_electedPrimary_1)+P_electedPrimary_2)+P_electedPrimary_3)+P_electedPrimary_4)+P_electedPrimary_5)+P_electedPrimary_6)<=((((((P_poll__pollEnd_0+P_poll__pollEnd_1)+P_poll__pollEnd_2)+P_poll__pollEnd_3)+P_poll__pollEnd_4)+P_poll__pollEnd_5)+P_poll__pollEnd_6))))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-01 with value :(!((!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2)+P_poll__networl_0_0_AnsP_3)+P_poll__networl_0_0_AnsP_4)+P_poll__networl_0_0_AnsP_5)+P_poll__networl_0_0_AnsP_6)+P_poll__networl_0_1_AnsP_1)+P_poll__networl_0_1_AnsP_2)+P_poll__networl_0_1_AnsP_3)+P_poll__networl_0_1_AnsP_4)+P_poll__networl_0_1_AnsP_5)+P_poll__networl_0_1_AnsP_6)+P_poll__networl_0_2_AnsP_1)+P_poll__networl_0_2_AnsP_2)+P_poll__networl_0_2_AnsP_3)+P_poll__networl_0_2_AnsP_4)+P_poll__networl_0_2_AnsP_5)+P_poll__networl_0_2_AnsP_6)+P_poll__networl_0_3_AnsP_1)+P_poll__networl_0_3_AnsP_2)+P_poll__networl_0_3_AnsP_3)+P_poll__networl_0_3_AnsP_4)+P_poll__networl_0_3_AnsP_5)+P_poll__networl_0_3_AnsP_6)+P_poll__networl_0_4_AnsP_1)+P_poll__networl_0_4_AnsP_2)+P_poll__networl_0_4_AnsP_3)+P_poll__networl_0_4_AnsP_4)+P_poll__networl_0_4_AnsP_5)+P_poll__networl_0_4_AnsP_6)+P_poll__networl_0_5_AnsP_1)+P_poll__networl_0_5_AnsP_2)+P_poll__networl_0_5_AnsP_3)+P_poll__networl_0_5_AnsP_4)+P_poll__networl_0_5_AnsP_5)+P_poll__networl_0_5_AnsP_6)+P_poll__networl_0_6_AnsP_1)+P_poll__networl_0_6_AnsP_2)+P_poll__networl_0_6_AnsP_3)+P_poll__networl_0_6_AnsP_4)+P_poll__networl_0_6_AnsP_5)+P_poll__networl_0_6_AnsP_6)+P_poll__networl_1_0_AnsP_1)+P_poll__networl_1_0_AnsP_2)+P_poll__networl_1_0_AnsP_3)+P_poll__networl_1_0_AnsP_4)+P_poll__networl_1_0_AnsP_5)+P_poll__networl_1_0_AnsP_6)+P_poll__networl_1_1_AnsP_1)+P_poll__networl_1_1_AnsP_2)+P_poll__networl_1_1_AnsP_3)+P_poll__networl_1_1_AnsP_4)+P_poll__networl_1_1_AnsP_5)+P_poll__networl_1_1_AnsP_6)+P_poll__networl_1_2_AnsP_1)+P_poll__networl_1_2_AnsP_2)+P_poll__networl_1_2_AnsP_3)+P_poll__networl_1_2_AnsP_4)+P_poll__networl_1_2_AnsP_5)+P_poll__networl_1_2_AnsP_6)+P_poll__networl_1_3_AnsP_1)+P_poll__networl_1_3_AnsP_2)+P_poll__networl_1_3_AnsP_3)+P_poll__networl_1_3_AnsP_4)+P_poll__networl_1_3_AnsP_5)+P_poll__networl_1_3_AnsP_6)+P_poll__networl_1_4_AnsP_1)+P_poll__networl_1_4_AnsP_2)+P_poll__networl_1_4_AnsP_3)+P_poll__networl_1_4_AnsP_4)+P_poll__networl_1_4_AnsP_5)+P_poll__networl_1_4_AnsP_6)+P_poll__networl_1_5_AnsP_1)+P_poll__networl_1_5_AnsP_2)+P_poll__networl_1_5_AnsP_3)+P_poll__networl_1_5_AnsP_4)+P_poll__networl_1_5_AnsP_5)+P_poll__networl_1_5_AnsP_6)+P_poll__networl_1_6_AnsP_1)+P_poll__networl_1_6_AnsP_2)+P_poll__networl_1_6_AnsP_3)+P_poll__networl_1_6_AnsP_4)+P_poll__networl_1_6_AnsP_5)+P_poll__networl_1_6_AnsP_6)+P_poll__networl_2_0_AnsP_1)+P_poll__networl_2_0_AnsP_2)+P_poll__networl_2_0_AnsP_3)+P_poll__networl_2_0_AnsP_4)+P_poll__networl_2_0_AnsP_5)+P_poll__networl_2_0_AnsP_6)+P_poll__networl_2_1_AnsP_1)+P_poll__networl_2_1_AnsP_2)+P_poll__networl_2_1_AnsP_3)+P_poll__networl_2_1_AnsP_4)+P_poll__networl_2_1_AnsP_5)+P_poll__networl_2_1_AnsP_6)+P_poll__networl_2_2_AnsP_1)+P_poll__networl_2_2_AnsP_2)+P_poll__networl_2_2_AnsP_3)+P_poll__networl_2_2_AnsP_4)+P_poll__networl_2_2_AnsP_5)+P_poll__networl_2_2_AnsP_6)+P_poll__networl_2_3_AnsP_1)+P_poll__networl_2_3_AnsP_2)+P_poll__networl_2_3_AnsP_3)+P_poll__networl_2_3_AnsP_4)+P_poll__networl_2_3_AnsP_5)+P_poll__networl_2_3_AnsP_6)+P_poll__networl_2_4_AnsP_1)+P_poll__networl_2_4_AnsP_2)+P_poll__networl_2_4_AnsP_3)+P_poll__networl_2_4_AnsP_4)+P_poll__networl_2_4_AnsP_5)+P_poll__networl_2_4_AnsP_6)+P_poll__networl_2_5_AnsP_1)+P_poll__networl_2_5_AnsP_2)+P_poll__networl_2_5_AnsP_3)+P_poll__networl_2_5_AnsP_4)+P_poll__networl_2_5_AnsP_5)+P_poll__networl_2_5_AnsP_6)+P_poll__networl_2_6_AnsP_1)+P_poll__networl_2_6_AnsP_2)+P_poll__networl_2_6_AnsP_3)+P_poll__networl_2_6_AnsP_4)+P_poll__networl_2_6_AnsP_5)+P_poll__networl_2_6_AnsP_6)+P_poll__networl_3_0_AnsP_1)+P_poll__networl_3_0_AnsP_2)+P_poll__networl_3_0_AnsP_3)+P_poll__networl_3_0_AnsP_4)+P_poll__networl_3_0_AnsP_5)+P_poll__networl_3_0_AnsP_6)+P_poll__networl_3_1_AnsP_1)+P_poll__networl_3_1_AnsP_2)+P_poll__networl_3_1_AnsP_3)+P_poll__networl_3_1_AnsP_4)+P_poll__networl_3_1_AnsP_5)+P_poll__networl_3_1_AnsP_6)+P_poll__networl_3_2_AnsP_1)+P_poll__networl_3_2_AnsP_2)+P_poll__networl_3_2_AnsP_3)+P_poll__networl_3_2_AnsP_4)+P_poll__networl_3_2_AnsP_5)+P_poll__networl_3_2_AnsP_6)+P_poll__networl_3_3_AnsP_1)+P_poll__networl_3_3_AnsP_2)+P_poll__networl_3_3_AnsP_3)+P_poll__networl_3_3_AnsP_4)+P_poll__networl_3_3_AnsP_5)+P_poll__networl_3_3_AnsP_6)+P_poll__networl_3_4_AnsP_1)+P_poll__networl_3_4_AnsP_2)+P_poll__networl_3_4_AnsP_3)+P_poll__networl_3_4_AnsP_4)+P_poll__networl_3_4_AnsP_5)+P_poll__networl_3_4_AnsP_6)+P_poll__networl_3_5_AnsP_1)+P_poll__networl_3_5_AnsP_2)+P_poll__networl_3_5_AnsP_3)+P_poll__networl_3_5_AnsP_4)+P_poll__networl_3_5_AnsP_5)+P_poll__networl_3_5_AnsP_6)+P_poll__networl_3_6_AnsP_1)+P_poll__networl_3_6_AnsP_2)+P_poll__networl_3_6_AnsP_3)+P_poll__networl_3_6_AnsP_4)+P_poll__networl_3_6_AnsP_5)+P_poll__networl_3_6_AnsP_6)+P_poll__networl_4_0_AnsP_1)+P_poll__networl_4_0_AnsP_2)+P_poll__networl_4_0_AnsP_3)+P_poll__networl_4_0_AnsP_4)+P_poll__networl_4_0_AnsP_5)+P_poll__networl_4_0_AnsP_6)+P_poll__networl_4_1_AnsP_1)+P_poll__networl_4_1_AnsP_2)+P_poll__networl_4_1_AnsP_3)+P_poll__networl_4_1_AnsP_4)+P_poll__networl_4_1_AnsP_5)+P_poll__networl_4_1_AnsP_6)+P_poll__networl_4_2_AnsP_1)+P_poll__networl_4_2_AnsP_2)+P_poll__networl_4_2_AnsP_3)+P_poll__networl_4_2_AnsP_4)+P_poll__networl_4_2_AnsP_5)+P_poll__networl_4_2_AnsP_6)+P_poll__networl_4_3_AnsP_1)+P_poll__networl_4_3_AnsP_2)+P_poll__networl_4_3_AnsP_3)+P_poll__networl_4_3_AnsP_4)+P_poll__networl_4_3_AnsP_5)+P_poll__networl_4_3_AnsP_6)+P_poll__networl_4_4_AnsP_1)+P_poll__networl_4_4_AnsP_2)+P_poll__networl_4_4_AnsP_3)+P_poll__networl_4_4_AnsP_4)+P_poll__networl_4_4_AnsP_5)+P_poll__networl_4_4_AnsP_6)+P_poll__networl_4_5_AnsP_1)+P_poll__networl_4_5_AnsP_2)+P_poll__networl_4_5_AnsP_3)+P_poll__networl_4_5_AnsP_4)+P_poll__networl_4_5_AnsP_5)+P_poll__networl_4_5_AnsP_6)+P_poll__networl_4_6_AnsP_1)+P_poll__networl_4_6_AnsP_2)+P_poll__networl_4_6_AnsP_3)+P_poll__networl_4_6_AnsP_4)+P_poll__networl_4_6_AnsP_5)+P_poll__networl_4_6_AnsP_6)+P_poll__networl_5_0_AnsP_1)+P_poll__networl_5_0_AnsP_2)+P_poll__networl_5_0_AnsP_3)+P_poll__networl_5_0_AnsP_4)+P_poll__networl_5_0_AnsP_5)+P_poll__networl_5_0_AnsP_6)+P_poll__networl_5_1_AnsP_1)+P_poll__networl_5_1_AnsP_2)+P_poll__networl_5_1_AnsP_3)+P_poll__networl_5_1_AnsP_4)+P_poll__networl_5_1_AnsP_5)+P_poll__networl_5_1_AnsP_6)+P_poll__networl_5_2_AnsP_1)+P_poll__networl_5_2_AnsP_2)+P_poll__networl_5_2_AnsP_3)+P_poll__networl_5_2_AnsP_4)+P_poll__networl_5_2_AnsP_5)+P_poll__networl_5_2_AnsP_6)+P_poll__networl_5_3_AnsP_1)+P_poll__networl_5_3_AnsP_2)+P_poll__networl_5_3_AnsP_3)+P_poll__networl_5_3_AnsP_4)+P_poll__networl_5_3_AnsP_5)+P_poll__networl_5_3_AnsP_6)+P_poll__networl_5_4_AnsP_1)+P_poll__networl_5_4_AnsP_2)+P_poll__networl_5_4_AnsP_3)+P_poll__networl_5_4_AnsP_4)+P_poll__networl_5_4_AnsP_5)+P_poll__networl_5_4_AnsP_6)+P_poll__networl_5_5_AnsP_1)+P_poll__networl_5_5_AnsP_2)+P_poll__networl_5_5_AnsP_3)+P_poll__networl_5_5_AnsP_4)+P_poll__networl_5_5_AnsP_5)+P_poll__networl_5_5_AnsP_6)+P_poll__networl_5_6_AnsP_1)+P_poll__networl_5_6_AnsP_2)+P_poll__networl_5_6_AnsP_3)+P_poll__networl_5_6_AnsP_4)+P_poll__networl_5_6_AnsP_5)+P_poll__networl_5_6_AnsP_6)+P_poll__networl_6_0_AnsP_1)+P_poll__networl_6_0_AnsP_2)+P_poll__networl_6_0_AnsP_3)+P_poll__networl_6_0_AnsP_4)+P_poll__networl_6_0_AnsP_5)+P_poll__networl_6_0_AnsP_6)+P_poll__networl_6_1_AnsP_1)+P_poll__networl_6_1_AnsP_2)+P_poll__networl_6_1_AnsP_3)+P_poll__networl_6_1_AnsP_4)+P_poll__networl_6_1_AnsP_5)+P_poll__networl_6_1_AnsP_6)+P_poll__networl_6_2_AnsP_1)+P_poll__networl_6_2_AnsP_2)+P_poll__networl_6_2_AnsP_3)+P_poll__networl_6_2_AnsP_4)+P_poll__networl_6_2_AnsP_5)+P_poll__networl_6_2_AnsP_6)+P_poll__networl_6_3_AnsP_1)+P_poll__networl_6_3_AnsP_2)+P_poll__networl_6_3_AnsP_3)+P_poll__networl_6_3_AnsP_4)+P_poll__networl_6_3_AnsP_5)+P_poll__networl_6_3_AnsP_6)+P_poll__networl_6_4_AnsP_1)+P_poll__networl_6_4_AnsP_2)+P_poll__networl_6_4_AnsP_3)+P_poll__networl_6_4_AnsP_4)+P_poll__networl_6_4_AnsP_5)+P_poll__networl_6_4_AnsP_6)+P_poll__networl_6_5_AnsP_1)+P_poll__networl_6_5_AnsP_2)+P_poll__networl_6_5_AnsP_3)+P_poll__networl_6_5_AnsP_4)+P_poll__networl_6_5_AnsP_5)+P_poll__networl_6_5_AnsP_6)+P_poll__networl_6_6_AnsP_1)+P_poll__networl_6_6_AnsP_2)+P_poll__networl_6_6_AnsP_3)+P_poll__networl_6_6_AnsP_4)+P_poll__networl_6_6_AnsP_5)+P_poll__networl_6_6_AnsP_6)>=1))||((((((((P_poll__handlingMessage_0+P_poll__handlingMessage_1)+P_poll__handlingMessage_2)+P_poll__handlingMessage_3)+P_poll__handlingMessage_4)+P_poll__handlingMessage_5)+P_poll__handlingMessage_6)<=(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_masterState_0_F_0+P_masterState_0_F_1)+P_masterState_0_F_2)+P_masterState_0_F_3)+P_masterState_0_F_4)+P_masterState_0_F_5)+P_masterState_0_F_6)+P_masterState_0_T_0)+P_masterState_0_T_1)+P_masterState_0_T_2)+P_masterState_0_T_3)+P_masterState_0_T_4)+P_masterState_0_T_5)+P_masterState_0_T_6)+P_masterState_1_F_0)+P_masterState_1_F_1)+P_masterState_1_F_2)+P_masterState_1_F_3)+P_masterState_1_F_4)+P_masterState_1_F_5)+P_masterState_1_F_6)+P_masterState_1_T_0)+P_masterState_1_T_1)+P_masterState_1_T_2)+P_masterState_1_T_3)+P_masterState_1_T_4)+P_masterState_1_T_5)+P_masterState_1_T_6)+P_masterState_2_F_0)+P_masterState_2_F_1)+P_masterState_2_F_2)+P_masterState_2_F_3)+P_masterState_2_F_4)+P_masterState_2_F_5)+P_masterState_2_F_6)+P_masterState_2_T_0)+P_masterState_2_T_1)+P_masterState_2_T_2)+P_masterState_2_T_3)+P_masterState_2_T_4)+P_masterState_2_T_5)+P_masterState_2_T_6)+P_masterState_3_F_0)+P_masterState_3_F_1)+P_masterState_3_F_2)+P_masterState_3_F_3)+P_masterState_3_F_4)+P_masterState_3_F_5)+P_masterState_3_F_6)+P_masterState_3_T_0)+P_masterState_3_T_1)+P_masterState_3_T_2)+P_masterState_3_T_3)+P_masterState_3_T_4)+P_masterState_3_T_5)+P_masterState_3_T_6)+P_masterState_4_F_0)+P_masterState_4_F_1)+P_masterState_4_F_2)+P_masterState_4_F_3)+P_masterState_4_F_4)+P_masterState_4_F_5)+P_masterState_4_F_6)+P_masterState_4_T_0)+P_masterState_4_T_1)+P_masterState_4_T_2)+P_masterState_4_T_3)+P_masterState_4_T_4)+P_masterState_4_T_5)+P_masterState_4_T_6)+P_masterState_5_F_0)+P_masterState_5_F_1)+P_masterState_5_F_2)+P_masterState_5_F_3)+P_masterState_5_F_4)+P_masterState_5_F_5)+P_masterState_5_F_6)+P_masterState_5_T_0)+P_masterState_5_T_1)+P_masterState_5_T_2)+P_masterState_5_T_3)+P_masterState_5_T_4)+P_masterState_5_T_5)+P_masterState_5_T_6)+P_masterState_6_F_0)+P_masterState_6_F_1)+P_masterState_6_F_2)+P_masterState_6_F_3)+P_masterState_6_F_4)+P_masterState_6_F_5)+P_masterState_6_F_6)+P_masterState_6_T_0)+P_masterState_6_T_1)+P_masterState_6_T_2)+P_masterState_6_T_3)+P_masterState_6_T_4)+P_masterState_6_T_5)+P_masterState_6_T_6))&&((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_negotiation_0_0_CO+P_negotiation_0_0_DONE)+P_negotiation_0_1_CO)+P_negotiation_0_1_DONE)+P_negotiation_0_2_CO)+P_negotiation_0_2_DONE)+P_negotiation_0_3_CO)+P_negotiation_0_3_DONE)+P_negotiation_0_4_CO)+P_negotiation_0_4_DONE)+P_negotiation_0_5_CO)+P_negotiation_0_5_DONE)+P_negotiation_0_6_CO)+P_negotiation_0_6_DONE)+P_negotiation_1_0_CO)+P_negotiation_1_0_DONE)+P_negotiation_1_1_CO)+P_negotiation_1_1_DONE)+P_negotiation_1_2_NONE)+P_negotiation_1_2_CO)+P_negotiation_1_2_DONE)+P_negotiation_1_3_NONE)+P_negotiation_1_3_CO)+P_negotiation_1_3_DONE)+P_negotiation_1_4_NONE)+P_negotiation_1_4_CO)+P_negotiation_1_4_DONE)+P_negotiation_1_5_NONE)+P_negotiation_1_5_CO)+P_negotiation_1_5_DONE)+P_negotiation_1_6_NONE)+P_negotiation_1_6_CO)+P_negotiation_1_6_DONE)+P_negotiation_2_0_CO)+P_negotiation_2_0_DONE)+P_negotiation_2_1_NONE)+P_negotiation_2_1_CO)+P_negotiation_2_1_DONE)+P_negotiation_2_2_CO)+P_negotiation_2_2_DONE)+P_negotiation_2_3_NONE)+P_negotiation_2_3_CO)+P_negotiation_2_3_DONE)+P_negotiation_2_4_NONE)+P_negotiation_2_4_CO)+P_negotiation_2_4_DONE)+P_negotiation_2_5_NONE)+P_negotiation_2_5_CO)+P_negotiation_2_5_DONE)+P_negotiation_2_6_NONE)+P_negotiation_2_6_CO)+P_negotiation_2_6_DONE)+P_negotiation_3_0_CO)+P_negotiation_3_0_DONE)+P_negotiation_3_1_NONE)+P_negotiation_3_1_CO)+P_negotiation_3_1_DONE)+P_negotiation_3_2_NONE)+P_negotiation_3_2_CO)+P_negotiation_3_2_DONE)+P_negotiation_3_3_CO)+P_negotiation_3_3_DONE)+P_negotiation_3_4_NONE)+P_negotiation_3_4_CO)+P_negotiation_3_4_DONE)+P_negotiation_3_5_NONE)+P_negotiation_3_5_CO)+P_negotiation_3_5_DONE)+P_negotiation_3_6_NONE)+P_negotiation_3_6_CO)+P_negotiation_3_6_DONE)+P_negotiation_4_0_CO)+P_negotiation_4_0_DONE)+P_negotiation_4_1_NONE)+P_negotiation_4_1_CO)+P_negotiation_4_1_DONE)+P_negotiation_4_2_NONE)+P_negotiation_4_2_CO)+P_negotiation_4_2_DONE)+P_negotiation_4_3_NONE)+P_negotiation_4_3_CO)+P_negotiation_4_3_DONE)+P_negotiation_4_4_CO)+P_negotiation_4_4_DONE)+P_negotiation_4_5_NONE)+P_negotiation_4_5_CO)+P_negotiation_4_5_DONE)+P_negotiation_4_6_NONE)+P_negotiation_4_6_CO)+P_negotiation_4_6_DONE)+P_negotiation_5_0_CO)+P_negotiation_5_0_DONE)+P_negotiation_5_1_NONE)+P_negotiation_5_1_CO)+P_negotiation_5_1_DONE)+P_negotiation_5_2_NONE)+P_negotiation_5_2_CO)+P_negotiation_5_2_DONE)+P_negotiation_5_3_NONE)+P_negotiation_5_3_CO)+P_negotiation_5_3_DONE)+P_negotiation_5_4_NONE)+P_negotiation_5_4_CO)+P_negotiation_5_4_DONE)+P_negotiation_5_5_CO)+P_negotiation_5_5_DONE)+P_negotiation_5_6_NONE)+P_negotiation_5_6_CO)+P_negotiation_5_6_DONE)+P_negotiation_6_0_CO)+P_negotiation_6_0_DONE)+P_negotiation_6_1_NONE)+P_negotiation_6_1_CO)+P_negotiation_6_1_DONE)+P_negotiation_6_2_NONE)+P_negotiation_6_2_CO)+P_negotiation_6_2_DONE)+P_negotiation_6_3_NONE)+P_negotiation_6_3_CO)+P_negotiation_6_3_DONE)+P_negotiation_6_4_NONE)+P_negotiation_6_4_CO)+P_negotiation_6_4_DONE)+P_negotiation_6_5_NONE)+P_negotiation_6_5_CO)+P_negotiation_6_5_DONE)+P_negotiation_6_6_CO)+P_negotiation_6_6_DONE)<=((((((P_poll__handlingMessage_0+P_poll__handlingMessage_1)+P_poll__handlingMessage_2)+P_poll__handlingMessage_3)+P_poll__handlingMessage_4)+P_poll__handlingMessage_5)+P_poll__handlingMessage_6)))))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-02 with value :(!((((((((P_electedPrimary_0+P_electedPrimary_1)+P_electedPrimary_2)+P_electedPrimary_3)+P_electedPrimary_4)+P_electedPrimary_5)+P_electedPrimary_6)>=0)||(!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_masterState_0_F_0+P_masterState_0_F_1)+P_masterState_0_F_2)+P_masterState_0_F_3)+P_masterState_0_F_4)+P_masterState_0_F_5)+P_masterState_0_F_6)+P_masterState_0_T_0)+P_masterState_0_T_1)+P_masterState_0_T_2)+P_masterState_0_T_3)+P_masterState_0_T_4)+P_masterState_0_T_5)+P_masterState_0_T_6)+P_masterState_1_F_0)+P_masterState_1_F_1)+P_masterState_1_F_2)+P_masterState_1_F_3)+P_masterState_1_F_4)+P_masterState_1_F_5)+P_masterState_1_F_6)+P_masterState_1_T_0)+P_masterState_1_T_1)+P_masterState_1_T_2)+P_masterState_1_T_3)+P_masterState_1_T_4)+P_masterState_1_T_5)+P_masterState_1_T_6)+P_masterState_2_F_0)+P_masterState_2_F_1)+P_masterState_2_F_2)+P_masterState_2_F_3)+P_masterState_2_F_4)+P_masterState_2_F_5)+P_masterState_2_F_6)+P_masterState_2_T_0)+P_masterState_2_T_1)+P_masterState_2_T_2)+P_masterState_2_T_3)+P_masterState_2_T_4)+P_masterState_2_T_5)+P_masterState_2_T_6)+P_masterState_3_F_0)+P_masterState_3_F_1)+P_masterState_3_F_2)+P_masterState_3_F_3)+P_masterState_3_F_4)+P_masterState_3_F_5)+P_masterState_3_F_6)+P_masterState_3_T_0)+P_masterState_3_T_1)+P_masterState_3_T_2)+P_masterState_3_T_3)+P_masterState_3_T_4)+P_masterState_3_T_5)+P_masterState_3_T_6)+P_masterState_4_F_0)+P_masterState_4_F_1)+P_masterState_4_F_2)+P_masterState_4_F_3)+P_masterState_4_F_4)+P_masterState_4_F_5)+P_masterState_4_F_6)+P_masterState_4_T_0)+P_masterState_4_T_1)+P_masterState_4_T_2)+P_masterState_4_T_3)+P_masterState_4_T_4)+P_masterState_4_T_5)+P_masterState_4_T_6)+P_masterState_5_F_0)+P_masterState_5_F_1)+P_masterState_5_F_2)+P_masterState_5_F_3)+P_masterState_5_F_4)+P_masterState_5_F_5)+P_masterState_5_F_6)+P_masterState_5_T_0)+P_masterState_5_T_1)+P_masterState_5_T_2)+P_masterState_5_T_3)+P_masterState_5_T_4)+P_masterState_5_T_5)+P_masterState_5_T_6)+P_masterState_6_F_0)+P_masterState_6_F_1)+P_masterState_6_F_2)+P_masterState_6_F_3)+P_masterState_6_F_4)+P_masterState_6_F_5)+P_masterState_6_F_6)+P_masterState_6_T_0)+P_masterState_6_T_1)+P_masterState_6_T_2)+P_masterState_6_T_3)+P_masterState_6_T_4)+P_masterState_6_T_5)+P_masterState_6_T_6)<=((((((P_electionInit_0+P_electionInit_1)+P_electionInit_2)+P_electionInit_3)+P_electionInit_4)+P_electionInit_5)+P_electionInit_6)))))
Read [invariant] property : NeoElection-PT-6-ReachabilityCardinality-03 with value :(((((((P_electedSecondary_0+P_electedSecondary_1)+P_electedSecondary_2)+P_electedSecondary_3)+P_electedSecondary_4)+P_electedSecondary_5)+P_electedSecondary_6)<=((((((((((((((((((((P_stage_0_NEG+P_stage_0_PRIM)+P_stage_0_SEC)+P_stage_1_NEG)+P_stage_1_PRIM)+P_stage_1_SEC)+P_stage_2_NEG)+P_stage_2_PRIM)+P_stage_2_SEC)+P_stage_3_NEG)+P_stage_3_PRIM)+P_stage_3_SEC)+P_stage_4_NEG)+P_stage_4_PRIM)+P_stage_4_SEC)+P_stage_5_NEG)+P_stage_5_PRIM)+P_stage_5_SEC)+P_stage_6_NEG)+P_stage_6_PRIM)+P_stage_6_SEC))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-04 with value :((!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_negotiation_0_0_CO+P_negotiation_0_0_DONE)+P_negotiation_0_1_CO)+P_negotiation_0_1_DONE)+P_negotiation_0_2_CO)+P_negotiation_0_2_DONE)+P_negotiation_0_3_CO)+P_negotiation_0_3_DONE)+P_negotiation_0_4_CO)+P_negotiation_0_4_DONE)+P_negotiation_0_5_CO)+P_negotiation_0_5_DONE)+P_negotiation_0_6_CO)+P_negotiation_0_6_DONE)+P_negotiation_1_0_CO)+P_negotiation_1_0_DONE)+P_negotiation_1_1_CO)+P_negotiation_1_1_DONE)+P_negotiation_1_2_NONE)+P_negotiation_1_2_CO)+P_negotiation_1_2_DONE)+P_negotiation_1_3_NONE)+P_negotiation_1_3_CO)+P_negotiation_1_3_DONE)+P_negotiation_1_4_NONE)+P_negotiation_1_4_CO)+P_negotiation_1_4_DONE)+P_negotiation_1_5_NONE)+P_negotiation_1_5_CO)+P_negotiation_1_5_DONE)+P_negotiation_1_6_NONE)+P_negotiation_1_6_CO)+P_negotiation_1_6_DONE)+P_negotiation_2_0_CO)+P_negotiation_2_0_DONE)+P_negotiation_2_1_NONE)+P_negotiation_2_1_CO)+P_negotiation_2_1_DONE)+P_negotiation_2_2_CO)+P_negotiation_2_2_DONE)+P_negotiation_2_3_NONE)+P_negotiation_2_3_CO)+P_negotiation_2_3_DONE)+P_negotiation_2_4_NONE)+P_negotiation_2_4_CO)+P_negotiation_2_4_DONE)+P_negotiation_2_5_NONE)+P_negotiation_2_5_CO)+P_negotiation_2_5_DONE)+P_negotiation_2_6_NONE)+P_negotiation_2_6_CO)+P_negotiation_2_6_DONE)+P_negotiation_3_0_CO)+P_negotiation_3_0_DONE)+P_negotiation_3_1_NONE)+P_negotiation_3_1_CO)+P_negotiation_3_1_DONE)+P_negotiation_3_2_NONE)+P_negotiation_3_2_CO)+P_negotiation_3_2_DONE)+P_negotiation_3_3_CO)+P_negotiation_3_3_DONE)+P_negotiation_3_4_NONE)+P_negotiation_3_4_CO)+P_negotiation_3_4_DONE)+P_negotiation_3_5_NONE)+P_negotiation_3_5_CO)+P_negotiation_3_5_DONE)+P_negotiation_3_6_NONE)+P_negotiation_3_6_CO)+P_negotiation_3_6_DONE)+P_negotiation_4_0_CO)+P_negotiation_4_0_DONE)+P_negotiation_4_1_NONE)+P_negotiation_4_1_CO)+P_negotiation_4_1_DONE)+P_negotiation_4_2_NONE)+P_negotiation_4_2_CO)+P_negotiation_4_2_DONE)+P_negotiation_4_3_NONE)+P_negotiation_4_3_CO)+P_negotiation_4_3_DONE)+P_negotiation_4_4_CO)+P_negotiation_4_4_DONE)+P_negotiation_4_5_NONE)+P_negotiation_4_5_CO)+P_negotiation_4_5_DONE)+P_negotiation_4_6_NONE)+P_negotiation_4_6_CO)+P_negotiation_4_6_DONE)+P_negotiation_5_0_CO)+P_negotiation_5_0_DONE)+P_negotiation_5_1_NONE)+P_negotiation_5_1_CO)+P_negotiation_5_1_DONE)+P_negotiation_5_2_NONE)+P_negotiation_5_2_CO)+P_negotiation_5_2_DONE)+P_negotiation_5_3_NONE)+P_negotiation_5_3_CO)+P_negotiation_5_3_DONE)+P_negotiation_5_4_NONE)+P_negotiation_5_4_CO)+P_negotiation_5_4_DONE)+P_negotiation_5_5_CO)+P_negotiation_5_5_DONE)+P_negotiation_5_6_NONE)+P_negotiation_5_6_CO)+P_negotiation_5_6_DONE)+P_negotiation_6_0_CO)+P_negotiation_6_0_DONE)+P_negotiation_6_1_NONE)+P_negotiation_6_1_CO)+P_negotiation_6_1_DONE)+P_negotiation_6_2_NONE)+P_negotiation_6_2_CO)+P_negotiation_6_2_DONE)+P_negotiation_6_3_NONE)+P_negotiation_6_3_CO)+P_negotiation_6_3_DONE)+P_negotiation_6_4_NONE)+P_negotiation_6_4_CO)+P_negotiation_6_4_DONE)+P_negotiation_6_5_NONE)+P_negotiation_6_5_CO)+P_negotiation_6_5_DONE)+P_negotiation_6_6_CO)+P_negotiation_6_6_DONE)>=2))&&((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2)+P_poll__networl_0_0_AnsP_3)+P_poll__networl_0_0_AnsP_4)+P_poll__networl_0_0_AnsP_5)+P_poll__networl_0_0_AnsP_6)+P_poll__networl_0_1_AnsP_1)+P_poll__networl_0_1_AnsP_2)+P_poll__networl_0_1_AnsP_3)+P_poll__networl_0_1_AnsP_4)+P_poll__networl_0_1_AnsP_5)+P_poll__networl_0_1_AnsP_6)+P_poll__networl_0_2_AnsP_1)+P_poll__networl_0_2_AnsP_2)+P_poll__networl_0_2_AnsP_3)+P_poll__networl_0_2_AnsP_4)+P_poll__networl_0_2_AnsP_5)+P_poll__networl_0_2_AnsP_6)+P_poll__networl_0_3_AnsP_1)+P_poll__networl_0_3_AnsP_2)+P_poll__networl_0_3_AnsP_3)+P_poll__networl_0_3_AnsP_4)+P_poll__networl_0_3_AnsP_5)+P_poll__networl_0_3_AnsP_6)+P_poll__networl_0_4_AnsP_1)+P_poll__networl_0_4_AnsP_2)+P_poll__networl_0_4_AnsP_3)+P_poll__networl_0_4_AnsP_4)+P_poll__networl_0_4_AnsP_5)+P_poll__networl_0_4_AnsP_6)+P_poll__networl_0_5_AnsP_1)+P_poll__networl_0_5_AnsP_2)+P_poll__networl_0_5_AnsP_3)+P_poll__networl_0_5_AnsP_4)+P_poll__networl_0_5_AnsP_5)+P_poll__networl_0_5_AnsP_6)+P_poll__networl_0_6_AnsP_1)+P_poll__networl_0_6_AnsP_2)+P_poll__networl_0_6_AnsP_3)+P_poll__networl_0_6_AnsP_4)+P_poll__networl_0_6_AnsP_5)+P_poll__networl_0_6_AnsP_6)+P_poll__networl_1_0_AnsP_1)+P_poll__networl_1_0_AnsP_2)+P_poll__networl_1_0_AnsP_3)+P_poll__networl_1_0_AnsP_4)+P_poll__networl_1_0_AnsP_5)+P_poll__networl_1_0_AnsP_6)+P_poll__networl_1_1_AnsP_1)+P_poll__networl_1_1_AnsP_2)+P_poll__networl_1_1_AnsP_3)+P_poll__networl_1_1_AnsP_4)+P_poll__networl_1_1_AnsP_5)+P_poll__networl_1_1_AnsP_6)+P_poll__networl_1_2_AnsP_1)+P_poll__networl_1_2_AnsP_2)+P_poll__networl_1_2_AnsP_3)+P_poll__networl_1_2_AnsP_4)+P_poll__networl_1_2_AnsP_5)+P_poll__networl_1_2_AnsP_6)+P_poll__networl_1_3_AnsP_1)+P_poll__networl_1_3_AnsP_2)+P_poll__networl_1_3_AnsP_3)+P_poll__networl_1_3_AnsP_4)+P_poll__networl_1_3_AnsP_5)+P_poll__networl_1_3_AnsP_6)+P_poll__networl_1_4_AnsP_1)+P_poll__networl_1_4_AnsP_2)+P_poll__networl_1_4_AnsP_3)+P_poll__networl_1_4_AnsP_4)+P_poll__networl_1_4_AnsP_5)+P_poll__networl_1_4_AnsP_6)+P_poll__networl_1_5_AnsP_1)+P_poll__networl_1_5_AnsP_2)+P_poll__networl_1_5_AnsP_3)+P_poll__networl_1_5_AnsP_4)+P_poll__networl_1_5_AnsP_5)+P_poll__networl_1_5_AnsP_6)+P_poll__networl_1_6_AnsP_1)+P_poll__networl_1_6_AnsP_2)+P_poll__networl_1_6_AnsP_3)+P_poll__networl_1_6_AnsP_4)+P_poll__networl_1_6_AnsP_5)+P_poll__networl_1_6_AnsP_6)+P_poll__networl_2_0_AnsP_1)+P_poll__networl_2_0_AnsP_2)+P_poll__networl_2_0_AnsP_3)+P_poll__networl_2_0_AnsP_4)+P_poll__networl_2_0_AnsP_5)+P_poll__networl_2_0_AnsP_6)+P_poll__networl_2_1_AnsP_1)+P_poll__networl_2_1_AnsP_2)+P_poll__networl_2_1_AnsP_3)+P_poll__networl_2_1_AnsP_4)+P_poll__networl_2_1_AnsP_5)+P_poll__networl_2_1_AnsP_6)+P_poll__networl_2_2_AnsP_1)+P_poll__networl_2_2_AnsP_2)+P_poll__networl_2_2_AnsP_3)+P_poll__networl_2_2_AnsP_4)+P_poll__networl_2_2_AnsP_5)+P_poll__networl_2_2_AnsP_6)+P_poll__networl_2_3_AnsP_1)+P_poll__networl_2_3_AnsP_2)+P_poll__networl_2_3_AnsP_3)+P_poll__networl_2_3_AnsP_4)+P_poll__networl_2_3_AnsP_5)+P_poll__networl_2_3_AnsP_6)+P_poll__networl_2_4_AnsP_1)+P_poll__networl_2_4_AnsP_2)+P_poll__networl_2_4_AnsP_3)+P_poll__networl_2_4_AnsP_4)+P_poll__networl_2_4_AnsP_5)+P_poll__networl_2_4_AnsP_6)+P_poll__networl_2_5_AnsP_1)+P_poll__networl_2_5_AnsP_2)+P_poll__networl_2_5_AnsP_3)+P_poll__networl_2_5_AnsP_4)+P_poll__networl_2_5_AnsP_5)+P_poll__networl_2_5_AnsP_6)+P_poll__networl_2_6_AnsP_1)+P_poll__networl_2_6_AnsP_2)+P_poll__networl_2_6_AnsP_3)+P_poll__networl_2_6_AnsP_4)+P_poll__networl_2_6_AnsP_5)+P_poll__networl_2_6_AnsP_6)+P_poll__networl_3_0_AnsP_1)+P_poll__networl_3_0_AnsP_2)+P_poll__networl_3_0_AnsP_3)+P_poll__networl_3_0_AnsP_4)+P_poll__networl_3_0_AnsP_5)+P_poll__networl_3_0_AnsP_6)+P_poll__networl_3_1_AnsP_1)+P_poll__networl_3_1_AnsP_2)+P_poll__networl_3_1_AnsP_3)+P_poll__networl_3_1_AnsP_4)+P_poll__networl_3_1_AnsP_5)+P_poll__networl_3_1_AnsP_6)+P_poll__networl_3_2_AnsP_1)+P_poll__networl_3_2_AnsP_2)+P_poll__networl_3_2_AnsP_3)+P_poll__networl_3_2_AnsP_4)+P_poll__networl_3_2_AnsP_5)+P_poll__networl_3_2_AnsP_6)+P_poll__networl_3_3_AnsP_1)+P_poll__networl_3_3_AnsP_2)+P_poll__networl_3_3_AnsP_3)+P_poll__networl_3_3_AnsP_4)+P_poll__networl_3_3_AnsP_5)+P_poll__networl_3_3_AnsP_6)+P_poll__networl_3_4_AnsP_1)+P_poll__networl_3_4_AnsP_2)+P_poll__networl_3_4_AnsP_3)+P_poll__networl_3_4_AnsP_4)+P_poll__networl_3_4_AnsP_5)+P_poll__networl_3_4_AnsP_6)+P_poll__networl_3_5_AnsP_1)+P_poll__networl_3_5_AnsP_2)+P_poll__networl_3_5_AnsP_3)+P_poll__networl_3_5_AnsP_4)+P_poll__networl_3_5_AnsP_5)+P_poll__networl_3_5_AnsP_6)+P_poll__networl_3_6_AnsP_1)+P_poll__networl_3_6_AnsP_2)+P_poll__networl_3_6_AnsP_3)+P_poll__networl_3_6_AnsP_4)+P_poll__networl_3_6_AnsP_5)+P_poll__networl_3_6_AnsP_6)+P_poll__networl_4_0_AnsP_1)+P_poll__networl_4_0_AnsP_2)+P_poll__networl_4_0_AnsP_3)+P_poll__networl_4_0_AnsP_4)+P_poll__networl_4_0_AnsP_5)+P_poll__networl_4_0_AnsP_6)+P_poll__networl_4_1_AnsP_1)+P_poll__networl_4_1_AnsP_2)+P_poll__networl_4_1_AnsP_3)+P_poll__networl_4_1_AnsP_4)+P_poll__networl_4_1_AnsP_5)+P_poll__networl_4_1_AnsP_6)+P_poll__networl_4_2_AnsP_1)+P_poll__networl_4_2_AnsP_2)+P_poll__networl_4_2_AnsP_3)+P_poll__networl_4_2_AnsP_4)+P_poll__networl_4_2_AnsP_5)+P_poll__networl_4_2_AnsP_6)+P_poll__networl_4_3_AnsP_1)+P_poll__networl_4_3_AnsP_2)+P_poll__networl_4_3_AnsP_3)+P_poll__networl_4_3_AnsP_4)+P_poll__networl_4_3_AnsP_5)+P_poll__networl_4_3_AnsP_6)+P_poll__networl_4_4_AnsP_1)+P_poll__networl_4_4_AnsP_2)+P_poll__networl_4_4_AnsP_3)+P_poll__networl_4_4_AnsP_4)+P_poll__networl_4_4_AnsP_5)+P_poll__networl_4_4_AnsP_6)+P_poll__networl_4_5_AnsP_1)+P_poll__networl_4_5_AnsP_2)+P_poll__networl_4_5_AnsP_3)+P_poll__networl_4_5_AnsP_4)+P_poll__networl_4_5_AnsP_5)+P_poll__networl_4_5_AnsP_6)+P_poll__networl_4_6_AnsP_1)+P_poll__networl_4_6_AnsP_2)+P_poll__networl_4_6_AnsP_3)+P_poll__networl_4_6_AnsP_4)+P_poll__networl_4_6_AnsP_5)+P_poll__networl_4_6_AnsP_6)+P_poll__networl_5_0_AnsP_1)+P_poll__networl_5_0_AnsP_2)+P_poll__networl_5_0_AnsP_3)+P_poll__networl_5_0_AnsP_4)+P_poll__networl_5_0_AnsP_5)+P_poll__networl_5_0_AnsP_6)+P_poll__networl_5_1_AnsP_1)+P_poll__networl_5_1_AnsP_2)+P_poll__networl_5_1_AnsP_3)+P_poll__networl_5_1_AnsP_4)+P_poll__networl_5_1_AnsP_5)+P_poll__networl_5_1_AnsP_6)+P_poll__networl_5_2_AnsP_1)+P_poll__networl_5_2_AnsP_2)+P_poll__networl_5_2_AnsP_3)+P_poll__networl_5_2_AnsP_4)+P_poll__networl_5_2_AnsP_5)+P_poll__networl_5_2_AnsP_6)+P_poll__networl_5_3_AnsP_1)+P_poll__networl_5_3_AnsP_2)+P_poll__networl_5_3_AnsP_3)+P_poll__networl_5_3_AnsP_4)+P_poll__networl_5_3_AnsP_5)+P_poll__networl_5_3_AnsP_6)+P_poll__networl_5_4_AnsP_1)+P_poll__networl_5_4_AnsP_2)+P_poll__networl_5_4_AnsP_3)+P_poll__networl_5_4_AnsP_4)+P_poll__networl_5_4_AnsP_5)+P_poll__networl_5_4_AnsP_6)+P_poll__networl_5_5_AnsP_1)+P_poll__networl_5_5_AnsP_2)+P_poll__networl_5_5_AnsP_3)+P_poll__networl_5_5_AnsP_4)+P_poll__networl_5_5_AnsP_5)+P_poll__networl_5_5_AnsP_6)+P_poll__networl_5_6_AnsP_1)+P_poll__networl_5_6_AnsP_2)+P_poll__networl_5_6_AnsP_3)+P_poll__networl_5_6_AnsP_4)+P_poll__networl_5_6_AnsP_5)+P_poll__networl_5_6_AnsP_6)+P_poll__networl_6_0_AnsP_1)+P_poll__networl_6_0_AnsP_2)+P_poll__networl_6_0_AnsP_3)+P_poll__networl_6_0_AnsP_4)+P_poll__networl_6_0_AnsP_5)+P_poll__networl_6_0_AnsP_6)+P_poll__networl_6_1_AnsP_1)+P_poll__networl_6_1_AnsP_2)+P_poll__networl_6_1_AnsP_3)+P_poll__networl_6_1_AnsP_4)+P_poll__networl_6_1_AnsP_5)+P_poll__networl_6_1_AnsP_6)+P_poll__networl_6_2_AnsP_1)+P_poll__networl_6_2_AnsP_2)+P_poll__networl_6_2_AnsP_3)+P_poll__networl_6_2_AnsP_4)+P_poll__networl_6_2_AnsP_5)+P_poll__networl_6_2_AnsP_6)+P_poll__networl_6_3_AnsP_1)+P_poll__networl_6_3_AnsP_2)+P_poll__networl_6_3_AnsP_3)+P_poll__networl_6_3_AnsP_4)+P_poll__networl_6_3_AnsP_5)+P_poll__networl_6_3_AnsP_6)+P_poll__networl_6_4_AnsP_1)+P_poll__networl_6_4_AnsP_2)+P_poll__networl_6_4_AnsP_3)+P_poll__networl_6_4_AnsP_4)+P_poll__networl_6_4_AnsP_5)+P_poll__networl_6_4_AnsP_6)+P_poll__networl_6_5_AnsP_1)+P_poll__networl_6_5_AnsP_2)+P_poll__networl_6_5_AnsP_3)+P_poll__networl_6_5_AnsP_4)+P_poll__networl_6_5_AnsP_5)+P_poll__networl_6_5_AnsP_6)+P_poll__networl_6_6_AnsP_1)+P_poll__networl_6_6_AnsP_2)+P_poll__networl_6_6_AnsP_3)+P_poll__networl_6_6_AnsP_4)+P_poll__networl_6_6_AnsP_5)+P_poll__networl_6_6_AnsP_6)>=1))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-05 with value :(!((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2)+P_poll__networl_0_0_AnsP_3)+P_poll__networl_0_0_AnsP_4)+P_poll__networl_0_0_AnsP_5)+P_poll__networl_0_0_AnsP_6)+P_poll__networl_0_1_AnsP_1)+P_poll__networl_0_1_AnsP_2)+P_poll__networl_0_1_AnsP_3)+P_poll__networl_0_1_AnsP_4)+P_poll__networl_0_1_AnsP_5)+P_poll__networl_0_1_AnsP_6)+P_poll__networl_0_2_AnsP_1)+P_poll__networl_0_2_AnsP_2)+P_poll__networl_0_2_AnsP_3)+P_poll__networl_0_2_AnsP_4)+P_poll__networl_0_2_AnsP_5)+P_poll__networl_0_2_AnsP_6)+P_poll__networl_0_3_AnsP_1)+P_poll__networl_0_3_AnsP_2)+P_poll__networl_0_3_AnsP_3)+P_poll__networl_0_3_AnsP_4)+P_poll__networl_0_3_AnsP_5)+P_poll__networl_0_3_AnsP_6)+P_poll__networl_0_4_AnsP_1)+P_poll__networl_0_4_AnsP_2)+P_poll__networl_0_4_AnsP_3)+P_poll__networl_0_4_AnsP_4)+P_poll__networl_0_4_AnsP_5)+P_poll__networl_0_4_AnsP_6)+P_poll__networl_0_5_AnsP_1)+P_poll__networl_0_5_AnsP_2)+P_poll__networl_0_5_AnsP_3)+P_poll__networl_0_5_AnsP_4)+P_poll__networl_0_5_AnsP_5)+P_poll__networl_0_5_AnsP_6)+P_poll__networl_0_6_AnsP_1)+P_poll__networl_0_6_AnsP_2)+P_poll__networl_0_6_AnsP_3)+P_poll__networl_0_6_AnsP_4)+P_poll__networl_0_6_AnsP_5)+P_poll__networl_0_6_AnsP_6)+P_poll__networl_1_0_AnsP_1)+P_poll__networl_1_0_AnsP_2)+P_poll__networl_1_0_AnsP_3)+P_poll__networl_1_0_AnsP_4)+P_poll__networl_1_0_AnsP_5)+P_poll__networl_1_0_AnsP_6)+P_poll__networl_1_1_AnsP_1)+P_poll__networl_1_1_AnsP_2)+P_poll__networl_1_1_AnsP_3)+P_poll__networl_1_1_AnsP_4)+P_poll__networl_1_1_AnsP_5)+P_poll__networl_1_1_AnsP_6)+P_poll__networl_1_2_AnsP_1)+P_poll__networl_1_2_AnsP_2)+P_poll__networl_1_2_AnsP_3)+P_poll__networl_1_2_AnsP_4)+P_poll__networl_1_2_AnsP_5)+P_poll__networl_1_2_AnsP_6)+P_poll__networl_1_3_AnsP_1)+P_poll__networl_1_3_AnsP_2)+P_poll__networl_1_3_AnsP_3)+P_poll__networl_1_3_AnsP_4)+P_poll__networl_1_3_AnsP_5)+P_poll__networl_1_3_AnsP_6)+P_poll__networl_1_4_AnsP_1)+P_poll__networl_1_4_AnsP_2)+P_poll__networl_1_4_AnsP_3)+P_poll__networl_1_4_AnsP_4)+P_poll__networl_1_4_AnsP_5)+P_poll__networl_1_4_AnsP_6)+P_poll__networl_1_5_AnsP_1)+P_poll__networl_1_5_AnsP_2)+P_poll__networl_1_5_AnsP_3)+P_poll__networl_1_5_AnsP_4)+P_poll__networl_1_5_AnsP_5)+P_poll__networl_1_5_AnsP_6)+P_poll__networl_1_6_AnsP_1)+P_poll__networl_1_6_AnsP_2)+P_poll__networl_1_6_AnsP_3)+P_poll__networl_1_6_AnsP_4)+P_poll__networl_1_6_AnsP_5)+P_poll__networl_1_6_AnsP_6)+P_poll__networl_2_0_AnsP_1)+P_poll__networl_2_0_AnsP_2)+P_poll__networl_2_0_AnsP_3)+P_poll__networl_2_0_AnsP_4)+P_poll__networl_2_0_AnsP_5)+P_poll__networl_2_0_AnsP_6)+P_poll__networl_2_1_AnsP_1)+P_poll__networl_2_1_AnsP_2)+P_poll__networl_2_1_AnsP_3)+P_poll__networl_2_1_AnsP_4)+P_poll__networl_2_1_AnsP_5)+P_poll__networl_2_1_AnsP_6)+P_poll__networl_2_2_AnsP_1)+P_poll__networl_2_2_AnsP_2)+P_poll__networl_2_2_AnsP_3)+P_poll__networl_2_2_AnsP_4)+P_poll__networl_2_2_AnsP_5)+P_poll__networl_2_2_AnsP_6)+P_poll__networl_2_3_AnsP_1)+P_poll__networl_2_3_AnsP_2)+P_poll__networl_2_3_AnsP_3)+P_poll__networl_2_3_AnsP_4)+P_poll__networl_2_3_AnsP_5)+P_poll__networl_2_3_AnsP_6)+P_poll__networl_2_4_AnsP_1)+P_poll__networl_2_4_AnsP_2)+P_poll__networl_2_4_AnsP_3)+P_poll__networl_2_4_AnsP_4)+P_poll__networl_2_4_AnsP_5)+P_poll__networl_2_4_AnsP_6)+P_poll__networl_2_5_AnsP_1)+P_poll__networl_2_5_AnsP_2)+P_poll__networl_2_5_AnsP_3)+P_poll__networl_2_5_AnsP_4)+P_poll__networl_2_5_AnsP_5)+P_poll__networl_2_5_AnsP_6)+P_poll__networl_2_6_AnsP_1)+P_poll__networl_2_6_AnsP_2)+P_poll__networl_2_6_AnsP_3)+P_poll__networl_2_6_AnsP_4)+P_poll__networl_2_6_AnsP_5)+P_poll__networl_2_6_AnsP_6)+P_poll__networl_3_0_AnsP_1)+P_poll__networl_3_0_AnsP_2)+P_poll__networl_3_0_AnsP_3)+P_poll__networl_3_0_AnsP_4)+P_poll__networl_3_0_AnsP_5)+P_poll__networl_3_0_AnsP_6)+P_poll__networl_3_1_AnsP_1)+P_poll__networl_3_1_AnsP_2)+P_poll__networl_3_1_AnsP_3)+P_poll__networl_3_1_AnsP_4)+P_poll__networl_3_1_AnsP_5)+P_poll__networl_3_1_AnsP_6)+P_poll__networl_3_2_AnsP_1)+P_poll__networl_3_2_AnsP_2)+P_poll__networl_3_2_AnsP_3)+P_poll__networl_3_2_AnsP_4)+P_poll__networl_3_2_AnsP_5)+P_poll__networl_3_2_AnsP_6)+P_poll__networl_3_3_AnsP_1)+P_poll__networl_3_3_AnsP_2)+P_poll__networl_3_3_AnsP_3)+P_poll__networl_3_3_AnsP_4)+P_poll__networl_3_3_AnsP_5)+P_poll__networl_3_3_AnsP_6)+P_poll__networl_3_4_AnsP_1)+P_poll__networl_3_4_AnsP_2)+P_poll__networl_3_4_AnsP_3)+P_poll__networl_3_4_AnsP_4)+P_poll__networl_3_4_AnsP_5)+P_poll__networl_3_4_AnsP_6)+P_poll__networl_3_5_AnsP_1)+P_poll__networl_3_5_AnsP_2)+P_poll__networl_3_5_AnsP_3)+P_poll__networl_3_5_AnsP_4)+P_poll__networl_3_5_AnsP_5)+P_poll__networl_3_5_AnsP_6)+P_poll__networl_3_6_AnsP_1)+P_poll__networl_3_6_AnsP_2)+P_poll__networl_3_6_AnsP_3)+P_poll__networl_3_6_AnsP_4)+P_poll__networl_3_6_AnsP_5)+P_poll__networl_3_6_AnsP_6)+P_poll__networl_4_0_AnsP_1)+P_poll__networl_4_0_AnsP_2)+P_poll__networl_4_0_AnsP_3)+P_poll__networl_4_0_AnsP_4)+P_poll__networl_4_0_AnsP_5)+P_poll__networl_4_0_AnsP_6)+P_poll__networl_4_1_AnsP_1)+P_poll__networl_4_1_AnsP_2)+P_poll__networl_4_1_AnsP_3)+P_poll__networl_4_1_AnsP_4)+P_poll__networl_4_1_AnsP_5)+P_poll__networl_4_1_AnsP_6)+P_poll__networl_4_2_AnsP_1)+P_poll__networl_4_2_AnsP_2)+P_poll__networl_4_2_AnsP_3)+P_poll__networl_4_2_AnsP_4)+P_poll__networl_4_2_AnsP_5)+P_poll__networl_4_2_AnsP_6)+P_poll__networl_4_3_AnsP_1)+P_poll__networl_4_3_AnsP_2)+P_poll__networl_4_3_AnsP_3)+P_poll__networl_4_3_AnsP_4)+P_poll__networl_4_3_AnsP_5)+P_poll__networl_4_3_AnsP_6)+P_poll__networl_4_4_AnsP_1)+P_poll__networl_4_4_AnsP_2)+P_poll__networl_4_4_AnsP_3)+P_poll__networl_4_4_AnsP_4)+P_poll__networl_4_4_AnsP_5)+P_poll__networl_4_4_AnsP_6)+P_poll__networl_4_5_AnsP_1)+P_poll__networl_4_5_AnsP_2)+P_poll__networl_4_5_AnsP_3)+P_poll__networl_4_5_AnsP_4)+P_poll__networl_4_5_AnsP_5)+P_poll__networl_4_5_AnsP_6)+P_poll__networl_4_6_AnsP_1)+P_poll__networl_4_6_AnsP_2)+P_poll__networl_4_6_AnsP_3)+P_poll__networl_4_6_AnsP_4)+P_poll__networl_4_6_AnsP_5)+P_poll__networl_4_6_AnsP_6)+P_poll__networl_5_0_AnsP_1)+P_poll__networl_5_0_AnsP_2)+P_poll__networl_5_0_AnsP_3)+P_poll__networl_5_0_AnsP_4)+P_poll__networl_5_0_AnsP_5)+P_poll__networl_5_0_AnsP_6)+P_poll__networl_5_1_AnsP_1)+P_poll__networl_5_1_AnsP_2)+P_poll__networl_5_1_AnsP_3)+P_poll__networl_5_1_AnsP_4)+P_poll__networl_5_1_AnsP_5)+P_poll__networl_5_1_AnsP_6)+P_poll__networl_5_2_AnsP_1)+P_poll__networl_5_2_AnsP_2)+P_poll__networl_5_2_AnsP_3)+P_poll__networl_5_2_AnsP_4)+P_poll__networl_5_2_AnsP_5)+P_poll__networl_5_2_AnsP_6)+P_poll__networl_5_3_AnsP_1)+P_poll__networl_5_3_AnsP_2)+P_poll__networl_5_3_AnsP_3)+P_poll__networl_5_3_AnsP_4)+P_poll__networl_5_3_AnsP_5)+P_poll__networl_5_3_AnsP_6)+P_poll__networl_5_4_AnsP_1)+P_poll__networl_5_4_AnsP_2)+P_poll__networl_5_4_AnsP_3)+P_poll__networl_5_4_AnsP_4)+P_poll__networl_5_4_AnsP_5)+P_poll__networl_5_4_AnsP_6)+P_poll__networl_5_5_AnsP_1)+P_poll__networl_5_5_AnsP_2)+P_poll__networl_5_5_AnsP_3)+P_poll__networl_5_5_AnsP_4)+P_poll__networl_5_5_AnsP_5)+P_poll__networl_5_5_AnsP_6)+P_poll__networl_5_6_AnsP_1)+P_poll__networl_5_6_AnsP_2)+P_poll__networl_5_6_AnsP_3)+P_poll__networl_5_6_AnsP_4)+P_poll__networl_5_6_AnsP_5)+P_poll__networl_5_6_AnsP_6)+P_poll__networl_6_0_AnsP_1)+P_poll__networl_6_0_AnsP_2)+P_poll__networl_6_0_AnsP_3)+P_poll__networl_6_0_AnsP_4)+P_poll__networl_6_0_AnsP_5)+P_poll__networl_6_0_AnsP_6)+P_poll__networl_6_1_AnsP_1)+P_poll__networl_6_1_AnsP_2)+P_poll__networl_6_1_AnsP_3)+P_poll__networl_6_1_AnsP_4)+P_poll__networl_6_1_AnsP_5)+P_poll__networl_6_1_AnsP_6)+P_poll__networl_6_2_AnsP_1)+P_poll__networl_6_2_AnsP_2)+P_poll__networl_6_2_AnsP_3)+P_poll__networl_6_2_AnsP_4)+P_poll__networl_6_2_AnsP_5)+P_poll__networl_6_2_AnsP_6)+P_poll__networl_6_3_AnsP_1)+P_poll__networl_6_3_AnsP_2)+P_poll__networl_6_3_AnsP_3)+P_poll__networl_6_3_AnsP_4)+P_poll__networl_6_3_AnsP_5)+P_poll__networl_6_3_AnsP_6)+P_poll__networl_6_4_AnsP_1)+P_poll__networl_6_4_AnsP_2)+P_poll__networl_6_4_AnsP_3)+P_poll__networl_6_4_AnsP_4)+P_poll__networl_6_4_AnsP_5)+P_poll__networl_6_4_AnsP_6)+P_poll__networl_6_5_AnsP_1)+P_poll__networl_6_5_AnsP_2)+P_poll__networl_6_5_AnsP_3)+P_poll__networl_6_5_AnsP_4)+P_poll__networl_6_5_AnsP_5)+P_poll__networl_6_5_AnsP_6)+P_poll__networl_6_6_AnsP_1)+P_poll__networl_6_6_AnsP_2)+P_poll__networl_6_6_AnsP_3)+P_poll__networl_6_6_AnsP_4)+P_poll__networl_6_6_AnsP_5)+P_poll__networl_6_6_AnsP_6)>=0))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-06 with value :((((((((P_poll__handlingMessage_0+P_poll__handlingMessage_1)+P_poll__handlingMessage_2)+P_poll__handlingMessage_3)+P_poll__handlingMessage_4)+P_poll__handlingMessage_5)+P_poll__handlingMessage_6)<=0)&&(!(((((((((((((((((((((((((((((((((((((((P_startNeg__broadcasting_0_1+P_startNeg__broadcasting_0_6)+P_startNeg__broadcasting_1_1)+P_startNeg__broadcasting_1_2)+P_startNeg__broadcasting_1_3)+P_startNeg__broadcasting_1_4)+P_startNeg__broadcasting_1_5)+P_startNeg__broadcasting_1_6)+P_startNeg__broadcasting_2_1)+P_startNeg__broadcasting_2_2)+P_startNeg__broadcasting_2_3)+P_startNeg__broadcasting_2_4)+P_startNeg__broadcasting_2_5)+P_startNeg__broadcasting_2_6)+P_startNeg__broadcasting_3_1)+P_startNeg__broadcasting_3_2)+P_startNeg__broadcasting_3_3)+P_startNeg__broadcasting_3_4)+P_startNeg__broadcasting_3_5)+P_startNeg__broadcasting_3_6)+P_startNeg__broadcasting_4_1)+P_startNeg__broadcasting_4_2)+P_startNeg__broadcasting_4_3)+P_startNeg__broadcasting_4_4)+P_startNeg__broadcasting_4_5)+P_startNeg__broadcasting_4_6)+P_startNeg__broadcasting_5_1)+P_startNeg__broadcasting_5_2)+P_startNeg__broadcasting_5_3)+P_startNeg__broadcasting_5_4)+P_startNeg__broadcasting_5_5)+P_startNeg__broadcasting_5_6)+P_startNeg__broadcasting_6_1)+P_startNeg__broadcasting_6_2)+P_startNeg__broadcasting_6_3)+P_startNeg__broadcasting_6_4)+P_startNeg__broadcasting_6_5)+P_startNeg__broadcasting_6_6)>=0)&&((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2)+P_poll__networl_0_0_AnsP_3)+P_poll__networl_0_0_AnsP_4)+P_poll__networl_0_0_AnsP_5)+P_poll__networl_0_0_AnsP_6)+P_poll__networl_0_1_AnsP_1)+P_poll__networl_0_1_AnsP_2)+P_poll__networl_0_1_AnsP_3)+P_poll__networl_0_1_AnsP_4)+P_poll__networl_0_1_AnsP_5)+P_poll__networl_0_1_AnsP_6)+P_poll__networl_0_2_AnsP_1)+P_poll__networl_0_2_AnsP_2)+P_poll__networl_0_2_AnsP_3)+P_poll__networl_0_2_AnsP_4)+P_poll__networl_0_2_AnsP_5)+P_poll__networl_0_2_AnsP_6)+P_poll__networl_0_3_AnsP_1)+P_poll__networl_0_3_AnsP_2)+P_poll__networl_0_3_AnsP_3)+P_poll__networl_0_3_AnsP_4)+P_poll__networl_0_3_AnsP_5)+P_poll__networl_0_3_AnsP_6)+P_poll__networl_0_4_AnsP_1)+P_poll__networl_0_4_AnsP_2)+P_poll__networl_0_4_AnsP_3)+P_poll__networl_0_4_AnsP_4)+P_poll__networl_0_4_AnsP_5)+P_poll__networl_0_4_AnsP_6)+P_poll__networl_0_5_AnsP_1)+P_poll__networl_0_5_AnsP_2)+P_poll__networl_0_5_AnsP_3)+P_poll__networl_0_5_AnsP_4)+P_poll__networl_0_5_AnsP_5)+P_poll__networl_0_5_AnsP_6)+P_poll__networl_0_6_AnsP_1)+P_poll__networl_0_6_AnsP_2)+P_poll__networl_0_6_AnsP_3)+P_poll__networl_0_6_AnsP_4)+P_poll__networl_0_6_AnsP_5)+P_poll__networl_0_6_AnsP_6)+P_poll__networl_1_0_AnsP_1)+P_poll__networl_1_0_AnsP_2)+P_poll__networl_1_0_AnsP_3)+P_poll__networl_1_0_AnsP_4)+P_poll__networl_1_0_AnsP_5)+P_poll__networl_1_0_AnsP_6)+P_poll__networl_1_1_AnsP_1)+P_poll__networl_1_1_AnsP_2)+P_poll__networl_1_1_AnsP_3)+P_poll__networl_1_1_AnsP_4)+P_poll__networl_1_1_AnsP_5)+P_poll__networl_1_1_AnsP_6)+P_poll__networl_1_2_AnsP_1)+P_poll__networl_1_2_AnsP_2)+P_poll__networl_1_2_AnsP_3)+P_poll__networl_1_2_AnsP_4)+P_poll__networl_1_2_AnsP_5)+P_poll__networl_1_2_AnsP_6)+P_poll__networl_1_3_AnsP_1)+P_poll__networl_1_3_AnsP_2)+P_poll__networl_1_3_AnsP_3)+P_poll__networl_1_3_AnsP_4)+P_poll__networl_1_3_AnsP_5)+P_poll__networl_1_3_AnsP_6)+P_poll__networl_1_4_AnsP_1)+P_poll__networl_1_4_AnsP_2)+P_poll__networl_1_4_AnsP_3)+P_poll__networl_1_4_AnsP_4)+P_poll__networl_1_4_AnsP_5)+P_poll__networl_1_4_AnsP_6)+P_poll__networl_1_5_AnsP_1)+P_poll__networl_1_5_AnsP_2)+P_poll__networl_1_5_AnsP_3)+P_poll__networl_1_5_AnsP_4)+P_poll__networl_1_5_AnsP_5)+P_poll__networl_1_5_AnsP_6)+P_poll__networl_1_6_AnsP_1)+P_poll__networl_1_6_AnsP_2)+P_poll__networl_1_6_AnsP_3)+P_poll__networl_1_6_AnsP_4)+P_poll__networl_1_6_AnsP_5)+P_poll__networl_1_6_AnsP_6)+P_poll__networl_2_0_AnsP_1)+P_poll__networl_2_0_AnsP_2)+P_poll__networl_2_0_AnsP_3)+P_poll__networl_2_0_AnsP_4)+P_poll__networl_2_0_AnsP_5)+P_poll__networl_2_0_AnsP_6)+P_poll__networl_2_1_AnsP_1)+P_poll__networl_2_1_AnsP_2)+P_poll__networl_2_1_AnsP_3)+P_poll__networl_2_1_AnsP_4)+P_poll__networl_2_1_AnsP_5)+P_poll__networl_2_1_AnsP_6)+P_poll__networl_2_2_AnsP_1)+P_poll__networl_2_2_AnsP_2)+P_poll__networl_2_2_AnsP_3)+P_poll__networl_2_2_AnsP_4)+P_poll__networl_2_2_AnsP_5)+P_poll__networl_2_2_AnsP_6)+P_poll__networl_2_3_AnsP_1)+P_poll__networl_2_3_AnsP_2)+P_poll__networl_2_3_AnsP_3)+P_poll__networl_2_3_AnsP_4)+P_poll__networl_2_3_AnsP_5)+P_poll__networl_2_3_AnsP_6)+P_poll__networl_2_4_AnsP_1)+P_poll__networl_2_4_AnsP_2)+P_poll__networl_2_4_AnsP_3)+P_poll__networl_2_4_AnsP_4)+P_poll__networl_2_4_AnsP_5)+P_poll__networl_2_4_AnsP_6)+P_poll__networl_2_5_AnsP_1)+P_poll__networl_2_5_AnsP_2)+P_poll__networl_2_5_AnsP_3)+P_poll__networl_2_5_AnsP_4)+P_poll__networl_2_5_AnsP_5)+P_poll__networl_2_5_AnsP_6)+P_poll__networl_2_6_AnsP_1)+P_poll__networl_2_6_AnsP_2)+P_poll__networl_2_6_AnsP_3)+P_poll__networl_2_6_AnsP_4)+P_poll__networl_2_6_AnsP_5)+P_poll__networl_2_6_AnsP_6)+P_poll__networl_3_0_AnsP_1)+P_poll__networl_3_0_AnsP_2)+P_poll__networl_3_0_AnsP_3)+P_poll__networl_3_0_AnsP_4)+P_poll__networl_3_0_AnsP_5)+P_poll__networl_3_0_AnsP_6)+P_poll__networl_3_1_AnsP_1)+P_poll__networl_3_1_AnsP_2)+P_poll__networl_3_1_AnsP_3)+P_poll__networl_3_1_AnsP_4)+P_poll__networl_3_1_AnsP_5)+P_poll__networl_3_1_AnsP_6)+P_poll__networl_3_2_AnsP_1)+P_poll__networl_3_2_AnsP_2)+P_poll__networl_3_2_AnsP_3)+P_poll__networl_3_2_AnsP_4)+P_poll__networl_3_2_AnsP_5)+P_poll__networl_3_2_AnsP_6)+P_poll__networl_3_3_AnsP_1)+P_poll__networl_3_3_AnsP_2)+P_poll__networl_3_3_AnsP_3)+P_poll__networl_3_3_AnsP_4)+P_poll__networl_3_3_AnsP_5)+P_poll__networl_3_3_AnsP_6)+P_poll__networl_3_4_AnsP_1)+P_poll__networl_3_4_AnsP_2)+P_poll__networl_3_4_AnsP_3)+P_poll__networl_3_4_AnsP_4)+P_poll__networl_3_4_AnsP_5)+P_poll__networl_3_4_AnsP_6)+P_poll__networl_3_5_AnsP_1)+P_poll__networl_3_5_AnsP_2)+P_poll__networl_3_5_AnsP_3)+P_poll__networl_3_5_AnsP_4)+P_poll__networl_3_5_AnsP_5)+P_poll__networl_3_5_AnsP_6)+P_poll__networl_3_6_AnsP_1)+P_poll__networl_3_6_AnsP_2)+P_poll__networl_3_6_AnsP_3)+P_poll__networl_3_6_AnsP_4)+P_poll__networl_3_6_AnsP_5)+P_poll__networl_3_6_AnsP_6)+P_poll__networl_4_0_AnsP_1)+P_poll__networl_4_0_AnsP_2)+P_poll__networl_4_0_AnsP_3)+P_poll__networl_4_0_AnsP_4)+P_poll__networl_4_0_AnsP_5)+P_poll__networl_4_0_AnsP_6)+P_poll__networl_4_1_AnsP_1)+P_poll__networl_4_1_AnsP_2)+P_poll__networl_4_1_AnsP_3)+P_poll__networl_4_1_AnsP_4)+P_poll__networl_4_1_AnsP_5)+P_poll__networl_4_1_AnsP_6)+P_poll__networl_4_2_AnsP_1)+P_poll__networl_4_2_AnsP_2)+P_poll__networl_4_2_AnsP_3)+P_poll__networl_4_2_AnsP_4)+P_poll__networl_4_2_AnsP_5)+P_poll__networl_4_2_AnsP_6)+P_poll__networl_4_3_AnsP_1)+P_poll__networl_4_3_AnsP_2)+P_poll__networl_4_3_AnsP_3)+P_poll__networl_4_3_AnsP_4)+P_poll__networl_4_3_AnsP_5)+P_poll__networl_4_3_AnsP_6)+P_poll__networl_4_4_AnsP_1)+P_poll__networl_4_4_AnsP_2)+P_poll__networl_4_4_AnsP_3)+P_poll__networl_4_4_AnsP_4)+P_poll__networl_4_4_AnsP_5)+P_poll__networl_4_4_AnsP_6)+P_poll__networl_4_5_AnsP_1)+P_poll__networl_4_5_AnsP_2)+P_poll__networl_4_5_AnsP_3)+P_poll__networl_4_5_AnsP_4)+P_poll__networl_4_5_AnsP_5)+P_poll__networl_4_5_AnsP_6)+P_poll__networl_4_6_AnsP_1)+P_poll__networl_4_6_AnsP_2)+P_poll__networl_4_6_AnsP_3)+P_poll__networl_4_6_AnsP_4)+P_poll__networl_4_6_AnsP_5)+P_poll__networl_4_6_AnsP_6)+P_poll__networl_5_0_AnsP_1)+P_poll__networl_5_0_AnsP_2)+P_poll__networl_5_0_AnsP_3)+P_poll__networl_5_0_AnsP_4)+P_poll__networl_5_0_AnsP_5)+P_poll__networl_5_0_AnsP_6)+P_poll__networl_5_1_AnsP_1)+P_poll__networl_5_1_AnsP_2)+P_poll__networl_5_1_AnsP_3)+P_poll__networl_5_1_AnsP_4)+P_poll__networl_5_1_AnsP_5)+P_poll__networl_5_1_AnsP_6)+P_poll__networl_5_2_AnsP_1)+P_poll__networl_5_2_AnsP_2)+P_poll__networl_5_2_AnsP_3)+P_poll__networl_5_2_AnsP_4)+P_poll__networl_5_2_AnsP_5)+P_poll__networl_5_2_AnsP_6)+P_poll__networl_5_3_AnsP_1)+P_poll__networl_5_3_AnsP_2)+P_poll__networl_5_3_AnsP_3)+P_poll__networl_5_3_AnsP_4)+P_poll__networl_5_3_AnsP_5)+P_poll__networl_5_3_AnsP_6)+P_poll__networl_5_4_AnsP_1)+P_poll__networl_5_4_AnsP_2)+P_poll__networl_5_4_AnsP_3)+P_poll__networl_5_4_AnsP_4)+P_poll__networl_5_4_AnsP_5)+P_poll__networl_5_4_AnsP_6)+P_poll__networl_5_5_AnsP_1)+P_poll__networl_5_5_AnsP_2)+P_poll__networl_5_5_AnsP_3)+P_poll__networl_5_5_AnsP_4)+P_poll__networl_5_5_AnsP_5)+P_poll__networl_5_5_AnsP_6)+P_poll__networl_5_6_AnsP_1)+P_poll__networl_5_6_AnsP_2)+P_poll__networl_5_6_AnsP_3)+P_poll__networl_5_6_AnsP_4)+P_poll__networl_5_6_AnsP_5)+P_poll__networl_5_6_AnsP_6)+P_poll__networl_6_0_AnsP_1)+P_poll__networl_6_0_AnsP_2)+P_poll__networl_6_0_AnsP_3)+P_poll__networl_6_0_AnsP_4)+P_poll__networl_6_0_AnsP_5)+P_poll__networl_6_0_AnsP_6)+P_poll__networl_6_1_AnsP_1)+P_poll__networl_6_1_AnsP_2)+P_poll__networl_6_1_AnsP_3)+P_poll__networl_6_1_AnsP_4)+P_poll__networl_6_1_AnsP_5)+P_poll__networl_6_1_AnsP_6)+P_poll__networl_6_2_AnsP_1)+P_poll__networl_6_2_AnsP_2)+P_poll__networl_6_2_AnsP_3)+P_poll__networl_6_2_AnsP_4)+P_poll__networl_6_2_AnsP_5)+P_poll__networl_6_2_AnsP_6)+P_poll__networl_6_3_AnsP_1)+P_poll__networl_6_3_AnsP_2)+P_poll__networl_6_3_AnsP_3)+P_poll__networl_6_3_AnsP_4)+P_poll__networl_6_3_AnsP_5)+P_poll__networl_6_3_AnsP_6)+P_poll__networl_6_4_AnsP_1)+P_poll__networl_6_4_AnsP_2)+P_poll__networl_6_4_AnsP_3)+P_poll__networl_6_4_AnsP_4)+P_poll__networl_6_4_AnsP_5)+P_poll__networl_6_4_AnsP_6)+P_poll__networl_6_5_AnsP_1)+P_poll__networl_6_5_AnsP_2)+P_poll__networl_6_5_AnsP_3)+P_poll__networl_6_5_AnsP_4)+P_poll__networl_6_5_AnsP_5)+P_poll__networl_6_5_AnsP_6)+P_poll__networl_6_6_AnsP_1)+P_poll__networl_6_6_AnsP_2)+P_poll__networl_6_6_AnsP_3)+P_poll__networl_6_6_AnsP_4)+P_poll__networl_6_6_AnsP_5)+P_poll__networl_6_6_AnsP_6)<=((((((P_poll__pollEnd_0+P_poll__pollEnd_1)+P_poll__pollEnd_2)+P_poll__pollEnd_3)+P_poll__pollEnd_4)+P_poll__pollEnd_5)+P_poll__pollEnd_6)))))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-09 with value :(!(P_masterState_3_T_0>=1))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-11 with value :(P_negotiation_5_4_NONE>=3)
Read [invariant] property : NeoElection-PT-6-ReachabilityCardinality-12 with value :((!((P_poll__networl_5_4_AnsP_2<=P_negotiation_1_0_CO)||(P_network_0_0_AskP_0<=P_sendAnnPs__broadcasting_3_3)))||(P_network_6_1_RP_0>=0))
Read [reachable] property : NeoElection-PT-6-ReachabilityCardinality-14 with value :(((P_poll__networl_2_2_AnsP_3>=2)&&(P_network_4_4_AnnP_0>=0))&&(P_poll__networl_6_2_AnsP_3>=3))
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
Normalized transition count is 6732
// Phase 1: matrix 6732 rows 1281 cols
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 11 in 13737 ms.
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-00(UNSAT) depth K=0 took 103 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-01(UNSAT) depth K=0 took 21 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-02(UNSAT) depth K=0 took 2 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-03(UNSAT) depth K=0 took 1 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-04(UNSAT) depth K=0 took 25 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-05(UNSAT) depth K=0 took 5 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-06(UNSAT) depth K=0 took 22 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-09(UNSAT) depth K=0 took 1 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-11(UNSAT) depth K=0 took 0 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-12(UNSAT) depth K=0 took 0 ms
May 26, 2018 8:26:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-14(UNSAT) depth K=0 took 1 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-00(UNSAT) depth K=1 took 205 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-01(UNSAT) depth K=1 took 101 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-02(UNSAT) depth K=1 took 28 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-03(UNSAT) depth K=1 took 3 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-04(UNSAT) depth K=1 took 198 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-05(UNSAT) depth K=1 took 61 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-06(UNSAT) depth K=1 took 71 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-09(UNSAT) depth K=1 took 1 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-11(UNSAT) depth K=1 took 17 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-12(UNSAT) depth K=1 took 1 ms
May 26, 2018 8:26:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-14(UNSAT) depth K=1 took 0 ms
May 26, 2018 8:26:34 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 8005 transitions.
invariant :P_negotiation_5_0_CO + P_negotiation_5_0_DONE = 0
invariant :P_negotiation_4_6_NONE + P_negotiation_4_6_CO + P_negotiation_4_6_DONE = 1
invariant :P_negotiation_4_3_CO + P_negotiation_4_3_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_4 + -1'P_startNeg__broadcasting_4_5 = 1
invariant :P_negotiation_4_3_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_electionInit_1 + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_1 + P_startNeg__broadcasting_1_2 + P_startNeg__broadcasting_1_3 + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_electedPrimary_2 + P_electedSecondary_2 + P_negotiation_2_6_NONE + P_poll__handlingMessage_2 + P_poll__pollEnd_2 + P_polling_2 + P_sendAnnPs__broadcasting_2_1 + P_sendAnnPs__broadcasting_2_2 + P_sendAnnPs__broadcasting_2_3 + P_sendAnnPs__broadcasting_2_4 + P_sendAnnPs__broadcasting_2_5 + P_sendAnnPs__broadcasting_2_6 + -1'P_stage_2_PRIM + -1'P_stage_2_SEC + P_startNeg__broadcasting_2_6 = 1
invariant :P_electionInit_5 + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_1 + P_startNeg__broadcasting_5_2 + P_startNeg__broadcasting_5_3 + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_5_0_NONE = 0
invariant :P_sendAnnPs__broadcasting_0_4 = 0
invariant :P_negotiation_3_1_CO + P_negotiation_3_1_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_2 + -1'P_startNeg__broadcasting_3_3 + -1'P_startNeg__broadcasting_3_4 + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_electionInit_0 + P_startNeg__broadcasting_0_1 = 0
invariant :P_negotiation_2_0_NONE = 0
invariant :P_negotiation_0_0_CO + P_negotiation_0_0_DONE = 0
invariant :P_negotiation_0_0_NONE = 0
invariant :P_negotiation_2_4_CO + P_negotiation_2_4_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_4 + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_negotiation_5_1_CO + P_negotiation_5_1_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_2 + -1'P_startNeg__broadcasting_5_3 + -1'P_startNeg__broadcasting_5_4 + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_negotiation_1_4_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_startNeg__broadcasting_0_4 = 0
invariant :P_masterState_5_F_0 + P_masterState_5_F_1 + P_masterState_5_F_2 + P_masterState_5_F_3 + P_masterState_5_F_4 + P_masterState_5_F_5 + P_masterState_5_F_6 + P_masterState_5_T_0 + P_masterState_5_T_1 + P_masterState_5_T_2 + P_masterState_5_T_3 + P_masterState_5_T_4 + P_masterState_5_T_5 + P_masterState_5_T_6 = 1
invariant :P_negotiation_1_5_CO + P_negotiation_1_5_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_negotiation_6_5_NONE + P_negotiation_6_5_CO + P_negotiation_6_5_DONE = 1
invariant :P_negotiation_3_2_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_3 + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_poll__waitingMessage_1 + P_stage_1_PRIM + P_stage_1_SEC = 0
invariant :P_electedPrimary_0 + P_sendAnnPs__broadcasting_0_1 + -1'P_stage_0_PRIM = 0
invariant :P_negotiation_1_5_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_5 = 0
invariant :P_negotiation_2_1_CO + P_negotiation_2_1_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_2 + -1'P_startNeg__broadcasting_2_3 + -1'P_startNeg__broadcasting_2_4 + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_negotiation_5_5_CO + P_negotiation_5_5_DONE = 1
invariant :P_electedPrimary_1 + P_electedSecondary_1 + P_negotiation_1_6_NONE + P_poll__handlingMessage_1 + P_poll__pollEnd_1 + P_polling_1 + P_sendAnnPs__broadcasting_1_1 + P_sendAnnPs__broadcasting_1_2 + P_sendAnnPs__broadcasting_1_3 + P_sendAnnPs__broadcasting_1_4 + P_sendAnnPs__broadcasting_1_5 + P_sendAnnPs__broadcasting_1_6 + -1'P_stage_1_PRIM + -1'P_stage_1_SEC + P_startNeg__broadcasting_1_6 = 1
invariant :P_stage_1_NEG + P_stage_1_PRIM + P_stage_1_SEC = 1
invariant :P_negotiation_1_0_CO + P_negotiation_1_0_DONE = 0
invariant :P_negotiation_3_3_CO + P_negotiation_3_3_DONE = 1
invariant :P_negotiation_4_2_CO + P_negotiation_4_2_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_3 + -1'P_startNeg__broadcasting_4_4 + -1'P_startNeg__broadcasting_4_5 = 1
invariant :P_negotiation_3_0_NONE = 0
invariant :P_negotiation_3_0_CO + P_negotiation_3_0_DONE = 0
invariant :P_negotiation_1_4_CO + P_negotiation_1_4_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_4 + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_negotiation_2_2_NONE = 0
invariant :P_masterState_0_F_0 + P_masterState_0_F_1 + P_masterState_0_F_2 + P_masterState_0_F_3 + P_masterState_0_F_4 + P_masterState_0_F_5 + P_masterState_0_F_6 + P_masterState_0_T_0 + P_masterState_0_T_1 + P_masterState_0_T_2 + P_masterState_0_T_3 + P_masterState_0_T_4 + P_masterState_0_T_5 + P_masterState_0_T_6 = 0
invariant :P_negotiation_0_5_CO + P_negotiation_0_5_DONE = 0
invariant :P_poll__waitingMessage_2 + P_stage_2_PRIM + P_stage_2_SEC = 0
invariant :P_negotiation_2_0_CO + P_negotiation_2_0_DONE = 0
invariant :P_negotiation_4_0_NONE = 0
invariant :P_negotiation_5_6_NONE + P_negotiation_5_6_CO + P_negotiation_5_6_DONE = 1
invariant :P_negotiation_3_1_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_2 + P_startNeg__broadcasting_3_3 + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_electedPrimary_6 + P_electedSecondary_6 + P_negotiation_6_5_NONE + P_poll__handlingMessage_6 + P_poll__pollEnd_6 + P_polling_6 + P_sendAnnPs__broadcasting_6_1 + P_sendAnnPs__broadcasting_6_2 + P_sendAnnPs__broadcasting_6_3 + P_sendAnnPs__broadcasting_6_4 + P_sendAnnPs__broadcasting_6_5 + P_sendAnnPs__broadcasting_6_6 + -1'P_stage_6_PRIM + -1'P_stage_6_SEC + P_startNeg__broadcasting_6_6 = 1
invariant :P_negotiation_6_2_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_3 + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_poll__waitingMessage_5 + P_stage_5_PRIM + P_stage_5_SEC = 0
invariant :P_negotiation_6_4_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_5 = 0
invariant :P_negotiation_6_1_CO + P_negotiation_6_1_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_2 + -1'P_startNeg__broadcasting_6_3 + -1'P_startNeg__broadcasting_6_4 + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_negotiation_0_2_CO + P_negotiation_0_2_DONE = 0
invariant :P_negotiation_1_6_NONE + P_negotiation_1_6_CO + P_negotiation_1_6_DONE = 1
invariant :P_sendAnnPs__broadcasting_0_5 = 0
invariant :P_negotiation_5_4_CO + P_negotiation_5_4_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_poll__waitingMessage_4 + P_stage_4_PRIM + P_stage_4_SEC = 0
invariant :P_electedPrimary_4 + P_electedSecondary_4 + P_negotiation_4_6_NONE + P_poll__handlingMessage_4 + P_poll__pollEnd_4 + P_polling_4 + P_sendAnnPs__broadcasting_4_1 + P_sendAnnPs__broadcasting_4_2 + P_sendAnnPs__broadcasting_4_3 + P_sendAnnPs__broadcasting_4_4 + P_sendAnnPs__broadcasting_4_5 + P_sendAnnPs__broadcasting_4_6 + -1'P_stage_4_PRIM + -1'P_stage_4_SEC + P_startNeg__broadcasting_4_6 = 1
invariant :P_masterState_6_F_0 + P_masterState_6_F_1 + P_masterState_6_F_2 + P_masterState_6_F_3 + P_masterState_6_F_4 + P_masterState_6_F_5 + P_masterState_6_F_6 + P_masterState_6_T_0 + P_masterState_6_T_1 + P_masterState_6_T_2 + P_masterState_6_T_3 + P_masterState_6_T_4 + P_masterState_6_T_5 + P_masterState_6_T_6 = 1
invariant :P_negotiation_5_3_CO + P_negotiation_5_3_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_4 + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_negotiation_3_5_CO + P_negotiation_3_5_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_negotiation_6_4_CO + P_negotiation_6_4_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_stage_4_NEG + P_stage_4_PRIM + P_stage_4_SEC = 1
invariant :P_negotiation_3_5_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_5 = 0
invariant :P_negotiation_4_5_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_5 = 0
invariant :P_negotiation_5_2_CO + P_negotiation_5_2_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_3 + -1'P_startNeg__broadcasting_5_4 + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_negotiation_4_1_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_2 + P_startNeg__broadcasting_4_3 + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_negotiation_2_6_NONE + P_negotiation_2_6_CO + P_negotiation_2_6_DONE = 1
invariant :P_negotiation_0_3_CO + P_negotiation_0_3_DONE = 0
invariant :P_stage_0_NEG + P_stage_0_PRIM + P_stage_0_SEC = 0
invariant :P_negotiation_4_4_CO + P_negotiation_4_4_DONE = 1
invariant :P_sendAnnPs__broadcasting_0_3 = 0
invariant :P_negotiation_5_5_NONE = 0
invariant :P_negotiation_6_2_CO + P_negotiation_6_2_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_3 + -1'P_startNeg__broadcasting_6_4 + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_negotiation_5_4_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_4_2_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_3 + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_electedPrimary_5 + P_electedSecondary_5 + P_negotiation_5_6_NONE + P_poll__handlingMessage_5 + P_poll__pollEnd_5 + P_polling_5 + P_sendAnnPs__broadcasting_5_1 + P_sendAnnPs__broadcasting_5_2 + P_sendAnnPs__broadcasting_5_3 + P_sendAnnPs__broadcasting_5_4 + P_sendAnnPs__broadcasting_5_5 + P_sendAnnPs__broadcasting_5_6 + -1'P_stage_5_PRIM + -1'P_stage_5_SEC + P_startNeg__broadcasting_5_6 = 1
invariant :P_stage_2_NEG + P_stage_2_PRIM + P_stage_2_SEC = 1
invariant :P_negotiation_2_5_CO + P_negotiation_2_5_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_electionInit_6 + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_1 + P_startNeg__broadcasting_6_2 + P_startNeg__broadcasting_6_3 + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_electionInit_4 + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_1 + P_startNeg__broadcasting_4_2 + P_startNeg__broadcasting_4_3 + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_negotiation_0_4_NONE = 0
invariant :P_negotiation_6_6_CO + P_negotiation_6_6_DONE = 1
invariant :P_masterState_2_F_0 + P_masterState_2_F_1 + P_masterState_2_F_2 + P_masterState_2_F_3 + P_masterState_2_F_4 + P_masterState_2_F_5 + P_masterState_2_F_6 + P_masterState_2_T_0 + P_masterState_2_T_1 + P_masterState_2_T_2 + P_masterState_2_T_3 + P_masterState_2_T_4 + P_masterState_2_T_5 + P_masterState_2_T_6 = 1
May 26, 2018 8:26:39 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 136 place invariants in 7333 ms
invariant :P_negotiation_4_4_NONE = 0
invariant :P_stage_5_NEG + P_stage_5_PRIM + P_stage_5_SEC = 1
invariant :P_negotiation_1_1_CO + P_negotiation_1_1_DONE = 1
invariant :P_poll__waitingMessage_0 + P_stage_0_PRIM + P_stage_0_SEC = 0
invariant :P_startNeg__broadcasting_0_5 = 0
invariant :P_negotiation_6_0_NONE = 0
invariant :P_poll__waitingMessage_3 + P_stage_3_PRIM + P_stage_3_SEC = 0
invariant :P_negotiation_1_2_CO + P_negotiation_1_2_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_2 + -1'P_startNeg__broadcasting_1_3 + -1'P_startNeg__broadcasting_1_4 + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_negotiation_2_4_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_5_2_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_3 + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_1_3_CO + P_negotiation_1_3_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_3 + -1'P_startNeg__broadcasting_1_4 + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_negotiation_6_1_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_2 + P_startNeg__broadcasting_6_3 + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_negotiation_2_2_CO + P_negotiation_2_2_DONE = 1
invariant :P_negotiation_6_6_NONE = 0
invariant :P_negotiation_0_1_NONE = 0
invariant :P_negotiation_3_2_CO + P_negotiation_3_2_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_3 + -1'P_startNeg__broadcasting_3_4 + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_negotiation_3_3_NONE = 0
invariant :P_sendAnnPs__broadcasting_0_2 = 0
invariant :P_negotiation_6_3_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_negotiation_2_1_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_2 + P_startNeg__broadcasting_2_3 + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_2_3_CO + P_negotiation_2_3_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_3 + -1'P_startNeg__broadcasting_2_4 + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_negotiation_1_2_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_2 + P_startNeg__broadcasting_1_3 + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_negotiation_5_1_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_2 + P_startNeg__broadcasting_5_3 + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_6_0_CO + P_negotiation_6_0_DONE = 0
invariant :P_negotiation_0_4_CO + P_negotiation_0_4_DONE = 0
invariant :P_electionInit_3 + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_1 + P_startNeg__broadcasting_3_2 + P_startNeg__broadcasting_3_3 + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_negotiation_0_5_NONE = 0
invariant :P_poll__waitingMessage_6 + P_stage_6_PRIM + P_stage_6_SEC = 0
invariant :P_negotiation_4_1_CO + P_negotiation_4_1_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_2 + -1'P_startNeg__broadcasting_4_3 + -1'P_startNeg__broadcasting_4_4 + -1'P_startNeg__broadcasting_4_5 = 1
invariant :P_negotiation_4_5_CO + P_negotiation_4_5_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_5 = 1
invariant :P_negotiation_4_0_CO + P_negotiation_4_0_DONE = 0
invariant :P_startNeg__broadcasting_0_3 = 0
invariant :P_negotiation_1_3_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_3 + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_negotiation_1_0_NONE = 0
invariant :P_negotiation_0_6_NONE = 0
invariant :P_stage_6_NEG + P_stage_6_PRIM + P_stage_6_SEC = 1
invariant :P_negotiation_3_4_CO + P_negotiation_3_4_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_4 + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_negotiation_0_3_NONE = 0
invariant :P_negotiation_0_2_NONE = 0
invariant :P_negotiation_2_3_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_3 + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_0_6_CO + P_negotiation_0_6_DONE = 0
invariant :P_masterState_1_F_0 + P_masterState_1_F_1 + P_masterState_1_F_2 + P_masterState_1_F_3 + P_masterState_1_F_4 + P_masterState_1_F_5 + P_masterState_1_F_6 + P_masterState_1_T_0 + P_masterState_1_T_1 + P_masterState_1_T_2 + P_masterState_1_T_3 + P_masterState_1_T_4 + P_masterState_1_T_5 + P_masterState_1_T_6 = 1
invariant :P_negotiation_5_3_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_masterState_4_F_0 + P_masterState_4_F_1 + P_masterState_4_F_2 + P_masterState_4_F_3 + P_masterState_4_F_4 + P_masterState_4_F_5 + P_masterState_4_F_6 + P_masterState_4_T_0 + P_masterState_4_T_1 + P_masterState_4_T_2 + P_masterState_4_T_3 + P_masterState_4_T_4 + P_masterState_4_T_5 + P_masterState_4_T_6 = 1
invariant :P_electionInit_2 + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_1 + P_startNeg__broadcasting_2_2 + P_startNeg__broadcasting_2_3 + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_1_1_NONE = 0
invariant :P_negotiation_2_5_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_5 = 0
invariant :P_electedSecondary_0 + P_poll__handlingMessage_0 + P_poll__pollEnd_0 + P_polling_0 + P_sendAnnPs__broadcasting_0_6 + -1'P_stage_0_SEC + P_startNeg__broadcasting_0_6 = 0
invariant :P_electedPrimary_3 + P_electedSecondary_3 + P_negotiation_3_6_NONE + P_poll__handlingMessage_3 + P_poll__pollEnd_3 + P_polling_3 + P_sendAnnPs__broadcasting_3_1 + P_sendAnnPs__broadcasting_3_2 + P_sendAnnPs__broadcasting_3_3 + P_sendAnnPs__broadcasting_3_4 + P_sendAnnPs__broadcasting_3_5 + P_sendAnnPs__broadcasting_3_6 + -1'P_stage_3_PRIM + -1'P_stage_3_SEC + P_startNeg__broadcasting_3_6 = 1
invariant :P_negotiation_3_4_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_startNeg__broadcasting_0_2 = 0
invariant :P_masterState_3_F_0 + P_masterState_3_F_1 + P_masterState_3_F_2 + P_masterState_3_F_3 + P_masterState_3_F_4 + P_masterState_3_F_5 + P_masterState_3_F_6 + P_masterState_3_T_0 + P_masterState_3_T_1 + P_masterState_3_T_2 + P_masterState_3_T_3 + P_masterState_3_T_4 + P_masterState_3_T_5 + P_masterState_3_T_6 = 1
invariant :P_negotiation_0_1_CO + P_negotiation_0_1_DONE = 0
invariant :P_negotiation_6_3_CO + P_negotiation_6_3_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_4 + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_stage_3_NEG + P_stage_3_PRIM + P_stage_3_SEC = 1
invariant :P_negotiation_3_6_NONE + P_negotiation_3_6_CO + P_negotiation_3_6_DONE = 1
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
Normalized transition count is 6732
// Phase 1: matrix 6732 rows 1254 cols
May 26, 2018 8:26:43 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-00(UNSAT) depth K=2 took 9570 ms
invariant :P_stage_2_NEG + P_stage_2_PRIM + P_stage_2_SEC = 1
invariant :P_stage_3_NEG + P_stage_3_PRIM + P_stage_3_SEC = 1
invariant :P_masterState_2_F_0 + P_masterState_2_F_1 + P_masterState_2_F_2 + P_masterState_2_F_3 + P_masterState_2_F_4 + P_masterState_2_F_5 + P_masterState_2_F_6 + P_masterState_2_T_0 + P_masterState_2_T_1 + P_masterState_2_T_2 + P_masterState_2_T_3 + P_masterState_2_T_4 + P_masterState_2_T_5 + P_masterState_2_T_6 = 1
invariant :P_negotiation_4_2_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_3 + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_masterState_4_F_0 + P_masterState_4_F_1 + P_masterState_4_F_2 + P_masterState_4_F_3 + P_masterState_4_F_4 + P_masterState_4_F_5 + P_masterState_4_F_6 + P_masterState_4_T_0 + P_masterState_4_T_1 + P_masterState_4_T_2 + P_masterState_4_T_3 + P_masterState_4_T_4 + P_masterState_4_T_5 + P_masterState_4_T_6 = 1
invariant :P_poll__waitingMessage_0 + P_stage_0_PRIM + P_stage_0_SEC = 0
invariant :P_negotiation_5_4_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_5 = 0
invariant :P_electedPrimary_3 + P_electedSecondary_3 + P_negotiation_3_6_NONE + P_poll__handlingMessage_3 + P_poll__pollEnd_3 + P_polling_3 + P_sendAnnPs__broadcasting_3_1 + P_sendAnnPs__broadcasting_3_2 + P_sendAnnPs__broadcasting_3_3 + P_sendAnnPs__broadcasting_3_4 + P_sendAnnPs__broadcasting_3_5 + P_sendAnnPs__broadcasting_3_6 + -1'P_stage_3_PRIM + -1'P_stage_3_SEC + P_startNeg__broadcasting_3_6 = 1
invariant :P_negotiation_6_1_CO + P_negotiation_6_1_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_2 + -1'P_startNeg__broadcasting_6_3 + -1'P_startNeg__broadcasting_6_4 + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_poll__waitingMessage_5 + P_stage_5_PRIM + P_stage_5_SEC = 0
invariant :P_negotiation_5_4_CO + P_negotiation_5_4_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_electedPrimary_6 + P_electedSecondary_6 + P_negotiation_6_5_NONE + P_poll__handlingMessage_6 + P_poll__pollEnd_6 + P_polling_6 + P_sendAnnPs__broadcasting_6_1 + P_sendAnnPs__broadcasting_6_2 + P_sendAnnPs__broadcasting_6_3 + P_sendAnnPs__broadcasting_6_4 + P_sendAnnPs__broadcasting_6_5 + P_sendAnnPs__broadcasting_6_6 + -1'P_stage_6_PRIM + -1'P_stage_6_SEC + P_startNeg__broadcasting_6_6 = 1
invariant :P_negotiation_2_5_CO + P_negotiation_2_5_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_electedPrimary_2 + P_electedSecondary_2 + P_negotiation_2_6_NONE + P_poll__handlingMessage_2 + P_poll__pollEnd_2 + P_polling_2 + P_sendAnnPs__broadcasting_2_1 + P_sendAnnPs__broadcasting_2_2 + P_sendAnnPs__broadcasting_2_3 + P_sendAnnPs__broadcasting_2_4 + P_sendAnnPs__broadcasting_2_5 + P_sendAnnPs__broadcasting_2_6 + -1'P_stage_2_PRIM + -1'P_stage_2_SEC + P_startNeg__broadcasting_2_6 = 1
invariant :P_negotiation_1_3_CO + P_negotiation_1_3_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_3 + -1'P_startNeg__broadcasting_1_4 + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_negotiation_2_3_CO + P_negotiation_2_3_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_3 + -1'P_startNeg__broadcasting_2_4 + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_negotiation_3_1_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_2 + P_startNeg__broadcasting_3_3 + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_negotiation_3_6_NONE + P_negotiation_3_6_CO + P_negotiation_3_6_DONE = 1
invariant :P_negotiation_4_0_CO + P_negotiation_4_0_DONE = 0
invariant :P_negotiation_1_3_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_3 + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_electionInit_2 + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_1 + P_startNeg__broadcasting_2_2 + P_startNeg__broadcasting_2_3 + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_0_4_CO + P_negotiation_0_4_DONE = 0
invariant :P_electionInit_0 + P_startNeg__broadcasting_0_1 = 0
invariant :P_electedPrimary_0 + P_sendAnnPs__broadcasting_0_1 + -1'P_stage_0_PRIM = 0
invariant :P_negotiation_5_3_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_5_1_CO + P_negotiation_5_1_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_2 + -1'P_startNeg__broadcasting_5_3 + -1'P_startNeg__broadcasting_5_4 + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_negotiation_3_4_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_negotiation_5_2_CO + P_negotiation_5_2_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_3 + -1'P_startNeg__broadcasting_5_4 + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_negotiation_2_1_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_2 + P_startNeg__broadcasting_2_3 + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_electionInit_3 + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_1 + P_startNeg__broadcasting_3_2 + P_startNeg__broadcasting_3_3 + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_poll__waitingMessage_3 + P_stage_3_PRIM + P_stage_3_SEC = 0
invariant :P_negotiation_6_5_NONE + P_negotiation_6_5_CO + P_negotiation_6_5_DONE = 1
invariant :P_negotiation_1_2_CO + P_negotiation_1_2_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_2 + -1'P_startNeg__broadcasting_1_3 + -1'P_startNeg__broadcasting_1_4 + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_negotiation_4_4_CO + P_negotiation_4_4_DONE = 1
invariant :P_negotiation_3_4_CO + P_negotiation_3_4_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_4 + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_negotiation_5_1_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_2 + P_startNeg__broadcasting_5_3 + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_6_0_CO + P_negotiation_6_0_DONE = 0
invariant :P_poll__waitingMessage_2 + P_stage_2_PRIM + P_stage_2_SEC = 0
invariant :P_stage_5_NEG + P_stage_5_PRIM + P_stage_5_SEC = 1
invariant :P_negotiation_6_6_CO + P_negotiation_6_6_DONE = 1
invariant :P_stage_0_NEG + P_stage_0_PRIM + P_stage_0_SEC = 0
invariant :P_electionInit_5 + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_1 + P_startNeg__broadcasting_5_2 + P_startNeg__broadcasting_5_3 + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_4_5_CO + P_negotiation_4_5_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_5 = 1
invariant :P_electionInit_6 + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_1 + P_startNeg__broadcasting_6_2 + P_startNeg__broadcasting_6_3 + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_electedPrimary_5 + P_electedSecondary_5 + P_negotiation_5_6_NONE + P_poll__handlingMessage_5 + P_poll__pollEnd_5 + P_polling_5 + P_sendAnnPs__broadcasting_5_1 + P_sendAnnPs__broadcasting_5_2 + P_sendAnnPs__broadcasting_5_3 + P_sendAnnPs__broadcasting_5_4 + P_sendAnnPs__broadcasting_5_5 + P_sendAnnPs__broadcasting_5_6 + -1'P_stage_5_PRIM + -1'P_stage_5_SEC + P_startNeg__broadcasting_5_6 = 1
invariant :P_negotiation_0_6_CO + P_negotiation_0_6_DONE = 0
invariant :P_electedPrimary_1 + P_electedSecondary_1 + P_negotiation_1_6_NONE + P_poll__handlingMessage_1 + P_poll__pollEnd_1 + P_polling_1 + P_sendAnnPs__broadcasting_1_1 + P_sendAnnPs__broadcasting_1_2 + P_sendAnnPs__broadcasting_1_3 + P_sendAnnPs__broadcasting_1_4 + P_sendAnnPs__broadcasting_1_5 + P_sendAnnPs__broadcasting_1_6 + -1'P_stage_1_PRIM + -1'P_stage_1_SEC + P_startNeg__broadcasting_1_6 = 1
invariant :P_stage_6_NEG + P_stage_6_PRIM + P_stage_6_SEC = 1
invariant :P_negotiation_0_3_CO + P_negotiation_0_3_DONE = 0
invariant :P_negotiation_2_0_CO + P_negotiation_2_0_DONE = 0
invariant :P_negotiation_4_1_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_2 + P_startNeg__broadcasting_4_3 + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_negotiation_2_3_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_3 + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_2_4_CO + P_negotiation_2_4_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_4 + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_negotiation_6_2_CO + P_negotiation_6_2_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_3 + -1'P_startNeg__broadcasting_6_4 + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_stage_4_NEG + P_stage_4_PRIM + P_stage_4_SEC = 1
invariant :P_negotiation_1_1_CO + P_negotiation_1_1_DONE = 1
invariant :P_negotiation_5_2_NONE + -1'P_negotiation_5_6_NONE + P_startNeg__broadcasting_5_3 + P_startNeg__broadcasting_5_4 + P_startNeg__broadcasting_5_5 = 0
invariant :P_negotiation_1_5_CO + P_negotiation_1_5_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_negotiation_6_3_CO + P_negotiation_6_3_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_4 + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_negotiation_2_6_NONE + P_negotiation_2_6_CO + P_negotiation_2_6_DONE = 1
invariant :P_poll__waitingMessage_6 + P_stage_6_PRIM + P_stage_6_SEC = 0
invariant :P_negotiation_2_2_CO + P_negotiation_2_2_DONE = 1
invariant :P_negotiation_4_3_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_negotiation_0_0_CO + P_negotiation_0_0_DONE = 0
invariant :P_negotiation_3_2_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_3 + P_startNeg__broadcasting_3_4 + P_startNeg__broadcasting_3_5 = 0
invariant :P_negotiation_5_6_NONE + P_negotiation_5_6_CO + P_negotiation_5_6_DONE = 1
invariant :P_negotiation_1_5_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_5 = 0
invariant :P_negotiation_3_5_CO + P_negotiation_3_5_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_negotiation_2_5_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_6_3_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_masterState_6_F_0 + P_masterState_6_F_1 + P_masterState_6_F_2 + P_masterState_6_F_3 + P_masterState_6_F_4 + P_masterState_6_F_5 + P_masterState_6_F_6 + P_masterState_6_T_0 + P_masterState_6_T_1 + P_masterState_6_T_2 + P_masterState_6_T_3 + P_masterState_6_T_4 + P_masterState_6_T_5 + P_masterState_6_T_6 = 1
invariant :P_negotiation_2_1_CO + P_negotiation_2_1_DONE + P_negotiation_2_6_NONE + -1'P_startNeg__broadcasting_2_2 + -1'P_startNeg__broadcasting_2_3 + -1'P_startNeg__broadcasting_2_4 + -1'P_startNeg__broadcasting_2_5 = 1
invariant :P_negotiation_2_4_NONE + -1'P_negotiation_2_6_NONE + P_startNeg__broadcasting_2_4 + P_startNeg__broadcasting_2_5 = 0
invariant :P_negotiation_4_1_CO + P_negotiation_4_1_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_2 + -1'P_startNeg__broadcasting_4_3 + -1'P_startNeg__broadcasting_4_4 + -1'P_startNeg__broadcasting_4_5 = 1
invariant :P_negotiation_6_2_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_3 + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_negotiation_1_6_NONE + P_negotiation_1_6_CO + P_negotiation_1_6_DONE = 1
invariant :P_electionInit_4 + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_1 + P_startNeg__broadcasting_4_2 + P_startNeg__broadcasting_4_3 + P_startNeg__broadcasting_4_4 + P_startNeg__broadcasting_4_5 = 0
invariant :P_negotiation_4_6_NONE + P_negotiation_4_6_CO + P_negotiation_4_6_DONE = 1
invariant :P_negotiation_6_1_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_2 + P_startNeg__broadcasting_6_3 + P_startNeg__broadcasting_6_4 + P_startNeg__broadcasting_6_5 = 0
invariant :P_negotiation_3_3_CO + P_negotiation_3_3_DONE = 1
invariant :P_negotiation_1_4_CO + P_negotiation_1_4_DONE + P_negotiation_1_6_NONE + -1'P_startNeg__broadcasting_1_4 + -1'P_startNeg__broadcasting_1_5 = 1
invariant :P_poll__waitingMessage_4 + P_stage_4_PRIM + P_stage_4_SEC = 0
invariant :P_negotiation_1_0_CO + P_negotiation_1_0_DONE = 0
invariant :P_negotiation_5_0_CO + P_negotiation_5_0_DONE = 0
invariant :P_electedPrimary_4 + P_electedSecondary_4 + P_negotiation_4_6_NONE + P_poll__handlingMessage_4 + P_poll__pollEnd_4 + P_polling_4 + P_sendAnnPs__broadcasting_4_1 + P_sendAnnPs__broadcasting_4_2 + P_sendAnnPs__broadcasting_4_3 + P_sendAnnPs__broadcasting_4_4 + P_sendAnnPs__broadcasting_4_5 + P_sendAnnPs__broadcasting_4_6 + -1'P_stage_4_PRIM + -1'P_stage_4_SEC + P_startNeg__broadcasting_4_6 = 1
invariant :P_negotiation_0_1_CO + P_negotiation_0_1_DONE = 0
invariant :P_negotiation_4_5_NONE + -1'P_negotiation_4_6_NONE + P_startNeg__broadcasting_4_5 = 0
invariant :P_negotiation_1_2_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_2 + P_startNeg__broadcasting_1_3 + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_negotiation_3_5_NONE + -1'P_negotiation_3_6_NONE + P_startNeg__broadcasting_3_5 = 0
invariant :P_electionInit_1 + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_1 + P_startNeg__broadcasting_1_2 + P_startNeg__broadcasting_1_3 + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_masterState_0_F_0 + P_masterState_0_F_1 + P_masterState_0_F_2 + P_masterState_0_F_3 + P_masterState_0_F_4 + P_masterState_0_F_5 + P_masterState_0_F_6 + P_masterState_0_T_0 + P_masterState_0_T_1 + P_masterState_0_T_2 + P_masterState_0_T_3 + P_masterState_0_T_4 + P_masterState_0_T_5 + P_masterState_0_T_6 = 0
invariant :P_negotiation_3_1_CO + P_negotiation_3_1_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_2 + -1'P_startNeg__broadcasting_3_3 + -1'P_startNeg__broadcasting_3_4 + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_negotiation_6_4_NONE + -1'P_negotiation_6_5_NONE + P_startNeg__broadcasting_6_5 = 0
invariant :P_masterState_5_F_0 + P_masterState_5_F_1 + P_masterState_5_F_2 + P_masterState_5_F_3 + P_masterState_5_F_4 + P_masterState_5_F_5 + P_masterState_5_F_6 + P_masterState_5_T_0 + P_masterState_5_T_1 + P_masterState_5_T_2 + P_masterState_5_T_3 + P_masterState_5_T_4 + P_masterState_5_T_5 + P_masterState_5_T_6 = 1
invariant :P_negotiation_0_2_CO + P_negotiation_0_2_DONE = 0
invariant :P_negotiation_0_5_CO + P_negotiation_0_5_DONE = 0
invariant :P_negotiation_5_5_CO + P_negotiation_5_5_DONE = 1
invariant :P_negotiation_3_0_CO + P_negotiation_3_0_DONE = 0
invariant :P_negotiation_1_4_NONE + -1'P_negotiation_1_6_NONE + P_startNeg__broadcasting_1_4 + P_startNeg__broadcasting_1_5 = 0
invariant :P_masterState_3_F_0 + P_masterState_3_F_1 + P_masterState_3_F_2 + P_masterState_3_F_3 + P_masterState_3_F_4 + P_masterState_3_F_5 + P_masterState_3_F_6 + P_masterState_3_T_0 + P_masterState_3_T_1 + P_masterState_3_T_2 + P_masterState_3_T_3 + P_masterState_3_T_4 + P_masterState_3_T_5 + P_masterState_3_T_6 = 1
invariant :P_negotiation_3_2_CO + P_negotiation_3_2_DONE + P_negotiation_3_6_NONE + -1'P_startNeg__broadcasting_3_3 + -1'P_startNeg__broadcasting_3_4 + -1'P_startNeg__broadcasting_3_5 = 1
invariant :P_negotiation_5_3_CO + P_negotiation_5_3_DONE + P_negotiation_5_6_NONE + -1'P_startNeg__broadcasting_5_4 + -1'P_startNeg__broadcasting_5_5 = 1
invariant :P_negotiation_4_3_CO + P_negotiation_4_3_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_4 + -1'P_startNeg__broadcasting_4_5 = 1
invariant :P_stage_1_NEG + P_stage_1_PRIM + P_stage_1_SEC = 1
invariant :P_negotiation_6_4_CO + P_negotiation_6_4_DONE + P_negotiation_6_5_NONE + -1'P_startNeg__broadcasting_6_5 = 1
invariant :P_poll__waitingMessage_1 + P_stage_1_PRIM + P_stage_1_SEC = 0
invariant :P_electedSecondary_0 + P_poll__handlingMessage_0 + P_poll__pollEnd_0 + P_polling_0 + P_sendAnnPs__broadcasting_0_6 + -1'P_stage_0_SEC + P_startNeg__broadcasting_0_6 = 0
invariant :P_masterState_1_F_0 + P_masterState_1_F_1 + P_masterState_1_F_2 + P_masterState_1_F_3 + P_masterState_1_F_4 + P_masterState_1_F_5 + P_masterState_1_F_6 + P_masterState_1_T_0 + P_masterState_1_T_1 + P_masterState_1_T_2 + P_masterState_1_T_3 + P_masterState_1_T_4 + P_masterState_1_T_5 + P_masterState_1_T_6 = 1
invariant :P_negotiation_4_2_CO + P_negotiation_4_2_DONE + P_negotiation_4_6_NONE + -1'P_startNeg__broadcasting_4_3 + -1'P_startNeg__broadcasting_4_4 + -1'P_startNeg__broadcasting_4_5 = 1
May 26, 2018 8:26:45 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 109 place invariants in 4855 ms
May 26, 2018 8:26:47 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:48 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:48 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:49 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:50 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:52 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:53 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:54 AM fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver checkSat
WARNING: SMT solver unexpectedly returned 'unknown' answer, retrying.
May 26, 2018 8:26:54 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-01(UNSAT) depth K=2 took 11133 ms
May 26, 2018 8:26:54 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 1280 variables to be positive in 23158 ms
May 26, 2018 8:26:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver computeAblingMatrix
INFO: Computing symmetric may disable matrix : 8005 transitions.
May 26, 2018 8:26:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of disable matrix completed :0/8005 took 8 ms. Total solver calls (SAT/UNSAT): 0(0/0)
May 26, 2018 8:26:56 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-02(UNSAT) depth K=2 took 1433 ms
May 26, 2018 8:26:57 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of disable matrix completed :3474/8005 took 3008 ms. Total solver calls (SAT/UNSAT): 0(0/0)
May 26, 2018 8:27:00 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of Complete disable matrix. took 5798 ms. Total solver calls (SAT/UNSAT): 0(0/0)
May 26, 2018 8:27:05 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-03(UNSAT) depth K=2 took 9730 ms
May 26, 2018 8:27:06 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 1254 variables to be positive in 25896 ms
May 26, 2018 8:27:06 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver computeAblingMatrix
INFO: Computing symmetric may enable matrix : 8005 transitions.
May 26, 2018 8:27:06 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of enable matrix completed :0/8005 took 20 ms. Total solver calls (SAT/UNSAT): 0(0/0)
May 26, 2018 8:27:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of enable matrix completed :4121/8005 took 3020 ms. Total solver calls (SAT/UNSAT): 0(0/0)
May 26, 2018 8:27:11 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of Complete enable matrix. took 5576 ms. Total solver calls (SAT/UNSAT): 0(0/0)
May 26, 2018 8:27:15 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-04(UNSAT) depth K=2 took 9990 ms
May 26, 2018 8:27:25 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-05(UNSAT) depth K=2 took 9645 ms
May 26, 2018 8:27:45 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-06(UNSAT) depth K=2 took 19614 ms
May 26, 2018 8:27:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-09(UNSAT) depth K=2 took 5914 ms
May 26, 2018 8:27:55 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-11(UNSAT) depth K=2 took 4770 ms
May 26, 2018 8:28:07 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-12(UNSAT) depth K=2 took 11525 ms
May 26, 2018 8:28:10 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-14(UNSAT) depth K=2 took 3124 ms
May 26, 2018 8:28:26 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-00(UNSAT) depth K=3 took 15837 ms
May 26, 2018 8:35:36 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesNeoElection-PT-6-ReachabilityCardinality-00
May 26, 2018 8:35:36 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property NeoElection-PT-6-ReachabilityCardinality-00(SAT) depth K=0 took 510056 ms
May 26, 2018 8:40:12 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-01(UNSAT) depth K=3 took 706239 ms
May 26, 2018 8:40:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-02(UNSAT) depth K=3 took 19771 ms
May 26, 2018 8:43:20 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-03(UNSAT) depth K=3 took 168258 ms
May 26, 2018 8:49:04 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-04(UNSAT) depth K=3 took 343506 ms
ITS-tools command line returned an error code 137
May 26, 2018 8:54:54 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-05(UNSAT) depth K=3 took 349681 ms
May 26, 2018 9:03:36 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-06(UNSAT) depth K=3 took 522920 ms
May 26, 2018 9:04:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-09(UNSAT) depth K=3 took 37528 ms
May 26, 2018 9:07:56 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-11(UNSAT) depth K=3 took 221727 ms
May 26, 2018 9:10:09 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-12(UNSAT) depth K=3 took 133092 ms
May 26, 2018 9:10:22 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property NeoElection-PT-6-ReachabilityCardinality-14(UNSAT) depth K=3 took 13510 ms
May 26, 2018 9:10:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver computeCoEnablingMatrix
INFO: Computing symmetric co enabling matrix : 8005 transitions.
May 26, 2018 9:10:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(0/8005) took 1514 ms. Total solver calls (SAT/UNSAT): 1397(1397/0)
May 26, 2018 9:10:57 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(3/8005) took 4630 ms. Total solver calls (SAT/UNSAT): 5063(5063/0)
May 26, 2018 9:11:01 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(8/8005) took 8161 ms. Total solver calls (SAT/UNSAT): 10709(7910/2799)
May 26, 2018 9:11:04 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(12/8005) took 11673 ms. Total solver calls (SAT/UNSAT): 16311(7910/8401)
May 26, 2018 9:11:07 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(15/8005) took 15088 ms. Total solver calls (SAT/UNSAT): 20340(9221/11119)
May 26, 2018 9:11:12 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(17/8005) took 19376 ms. Total solver calls (SAT/UNSAT): 22980(11861/11119)
May 26, 2018 9:11:15 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(19/8005) took 22635 ms. Total solver calls (SAT/UNSAT): 25612(14493/11119)
May 26, 2018 9:11:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(23/8005) took 26750 ms. Total solver calls (SAT/UNSAT): 30857(18416/12441)
May 26, 2018 9:11:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(26/8005) took 30498 ms. Total solver calls (SAT/UNSAT): 34787(22346/12441)
May 26, 2018 9:11:27 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(30/8005) took 34156 ms. Total solver calls (SAT/UNSAT): 39773(26094/13679)
May 26, 2018 9:11:30 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(34/8005) took 37874 ms. Total solver calls (SAT/UNSAT): 44674(30986/13688)
May 26, 2018 9:11:34 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(39/8005) took 41525 ms. Total solver calls (SAT/UNSAT): 50772(35862/14910)
May 26, 2018 9:11:38 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(43/8005) took 45191 ms. Total solver calls (SAT/UNSAT): 55629(39503/16126)
May 26, 2018 9:11:41 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(47/8005) took 49024 ms. Total solver calls (SAT/UNSAT): 60478(44344/16134)
May 26, 2018 9:11:45 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(52/8005) took 52730 ms. Total solver calls (SAT/UNSAT): 66230(48949/17281)
May 26, 2018 9:11:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(56/8005) took 56002 ms. Total solver calls (SAT/UNSAT): 70753(52340/18413)
May 26, 2018 9:11:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(61/8005) took 59843 ms. Total solver calls (SAT/UNSAT): 76399(57978/18421)
May 26, 2018 9:11:56 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(66/8005) took 63410 ms. Total solver calls (SAT/UNSAT): 82011(62457/19554)
May 26, 2018 9:11:59 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(71/8005) took 66815 ms. Total solver calls (SAT/UNSAT): 87597(66925/20672)
May 26, 2018 9:12:03 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(75/8005) took 70856 ms. Total solver calls (SAT/UNSAT): 92054(71374/20680)
May 26, 2018 9:12:07 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(79/8005) took 74175 ms. Total solver calls (SAT/UNSAT): 96300(74572/21728)
May 26, 2018 9:12:10 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(83/8005) took 77755 ms. Total solver calls (SAT/UNSAT): 100471(78726/21745)
May 26, 2018 9:12:13 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(87/8005) took 80794 ms. Total solver calls (SAT/UNSAT): 104623(81846/22777)
May 26, 2018 9:12:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(91/8005) took 83870 ms. Total solver calls (SAT/UNSAT): 108753(84934/23819)
May 26, 2018 9:12:20 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(95/8005) took 87319 ms. Total solver calls (SAT/UNSAT): 112881(89054/23827)
May 26, 2018 9:12:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(99/8005) took 90380 ms. Total solver calls (SAT/UNSAT): 116982(92128/24854)
May 26, 2018 9:12:26 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(103/8005) took 93626 ms. Total solver calls (SAT/UNSAT): 121075(96213/24862)
May 26, 2018 9:12:29 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(107/8005) took 96856 ms. Total solver calls (SAT/UNSAT): 125146(99264/25882)
May 26, 2018 9:12:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(111/8005) took 100067 ms. Total solver calls (SAT/UNSAT): 129205(103306/25899)
May 26, 2018 9:12:36 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(116/8005) took 103538 ms. Total solver calls (SAT/UNSAT): 133973(107126/26847)
May 26, 2018 9:12:39 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(119/8005) took 106983 ms. Total solver calls (SAT/UNSAT): 136815(109010/27805)
May 26, 2018 9:12:43 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(122/8005) took 110826 ms. Total solver calls (SAT/UNSAT): 139662(111857/27805)
May 26, 2018 9:12:47 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(125/8005) took 114695 ms. Total solver calls (SAT/UNSAT): 142494(114672/27822)
May 26, 2018 9:12:50 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(128/8005) took 118012 ms. Total solver calls (SAT/UNSAT): 145314(116558/28756)
May 26, 2018 9:12:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(131/8005) took 121945 ms. Total solver calls (SAT/UNSAT): 148129(119365/28764)
May 26, 2018 9:12:57 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(134/8005) took 124951 ms. Total solver calls (SAT/UNSAT): 150929(121229/29700)
May 26, 2018 9:13:01 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(139/8005) took 128571 ms. Total solver calls (SAT/UNSAT): 155587(125870/29717)
May 26, 2018 9:13:04 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(144/8005) took 132100 ms. Total solver calls (SAT/UNSAT): 160215(129578/30637)
May 26, 2018 9:13:08 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(147/8005) took 135482 ms. Total solver calls (SAT/UNSAT): 162973(131406/31567)
May 26, 2018 9:13:11 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(151/8005) took 139066 ms. Total solver calls (SAT/UNSAT): 166653(135086/31567)
May 26, 2018 9:13:14 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(153/8005) took 142133 ms. Total solver calls (SAT/UNSAT): 168484(136900/31584)
May 26, 2018 9:13:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(157/8005) took 146505 ms. Total solver calls (SAT/UNSAT): 171936(139495/32441)
May 26, 2018 9:13:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(160/8005) took 150234 ms. Total solver calls (SAT/UNSAT): 174516(142058/32458)
May 26, 2018 9:13:26 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(163/8005) took 153816 ms. Total solver calls (SAT/UNSAT): 177084(143776/33308)
May 26, 2018 9:13:30 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(166/8005) took 157773 ms. Total solver calls (SAT/UNSAT): 179647(146330/33317)
May 26, 2018 9:13:33 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(169/8005) took 160902 ms. Total solver calls (SAT/UNSAT): 182195(148027/34168)
May 26, 2018 9:13:37 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(172/8005) took 165045 ms. Total solver calls (SAT/UNSAT): 184742(150574/34168)
May 26, 2018 9:13:41 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(175/8005) took 168429 ms. Total solver calls (SAT/UNSAT): 187269(152248/35021)
May 26, 2018 9:13:44 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(178/8005) took 171567 ms. Total solver calls (SAT/UNSAT): 189801(154780/35021)
May 26, 2018 9:13:47 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(181/8005) took 174897 ms. Total solver calls (SAT/UNSAT): 192318(157280/35038)
May 26, 2018 9:13:50 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(184/8005) took 178040 ms. Total solver calls (SAT/UNSAT): 194823(158956/35867)
May 26, 2018 9:13:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(188/8005) took 181432 ms. Total solver calls (SAT/UNSAT): 198154(162270/35884)
May 26, 2018 9:13:57 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(193/8005) took 184726 ms. Total solver calls (SAT/UNSAT): 202292(165586/36706)
May 26, 2018 9:14:01 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(197/8005) took 188168 ms. Total solver calls (SAT/UNSAT): 205581(168043/37538)
May 26, 2018 9:14:04 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(202/8005) took 191587 ms. Total solver calls (SAT/UNSAT): 209679(172124/37555)
May 26, 2018 9:14:08 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(208/8005) took 195290 ms. Total solver calls (SAT/UNSAT): 218046(172124/45922)
May 26, 2018 9:14:11 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(212/8005) took 198344 ms. Total solver calls (SAT/UNSAT): 223604(172124/51480)
May 26, 2018 9:14:14 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(216/8005) took 202029 ms. Total solver calls (SAT/UNSAT): 229146(172124/57022)
May 26, 2018 9:14:18 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(220/8005) took 205481 ms. Total solver calls (SAT/UNSAT): 234672(172124/62548)
May 26, 2018 9:14:22 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(224/8005) took 209247 ms. Total solver calls (SAT/UNSAT): 240182(172124/68058)
May 26, 2018 9:14:25 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(228/8005) took 212730 ms. Total solver calls (SAT/UNSAT): 245676(172124/73552)
May 26, 2018 9:14:28 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(234/8005) took 216070 ms. Total solver calls (SAT/UNSAT): 253887(172124/81763)
May 26, 2018 9:14:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(240/8005) took 219515 ms. Total solver calls (SAT/UNSAT): 262062(172124/89938)
May 26, 2018 9:14:35 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(246/8005) took 222929 ms. Total solver calls (SAT/UNSAT): 270201(172124/98077)
May 26, 2018 9:14:39 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(252/8005) took 226463 ms. Total solver calls (SAT/UNSAT): 278304(172124/106180)
May 26, 2018 9:14:43 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(256/8005) took 230238 ms. Total solver calls (SAT/UNSAT): 283686(172124/111562)
May 26, 2018 9:14:46 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(260/8005) took 233569 ms. Total solver calls (SAT/UNSAT): 289052(172124/116928)
May 26, 2018 9:14:49 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(264/8005) took 237007 ms. Total solver calls (SAT/UNSAT): 294402(172124/122278)
May 26, 2018 9:14:53 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(268/8005) took 240249 ms. Total solver calls (SAT/UNSAT): 299736(172124/127612)
May 26, 2018 9:14:56 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(272/8005) took 243484 ms. Total solver calls (SAT/UNSAT): 305054(172124/132930)
May 26, 2018 9:14:59 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(276/8005) took 246623 ms. Total solver calls (SAT/UNSAT): 310356(172124/138232)
May 26, 2018 9:15:02 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(280/8005) took 249839 ms. Total solver calls (SAT/UNSAT): 315642(172124/143518)
May 26, 2018 9:15:05 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(284/8005) took 253070 ms. Total solver calls (SAT/UNSAT): 320912(172124/148788)
May 26, 2018 9:15:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(289/8005) took 257015 ms. Total solver calls (SAT/UNSAT): 327477(172124/155353)
May 26, 2018 9:15:13 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(293/8005) took 260888 ms. Total solver calls (SAT/UNSAT): 332711(172124/160587)
May 26, 2018 9:15:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(297/8005) took 264060 ms. Total solver calls (SAT/UNSAT): 337929(172124/165805)
May 26, 2018 9:15:20 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(303/8005) took 267461 ms. Total solver calls (SAT/UNSAT): 345726(172124/173602)
May 26, 2018 9:15:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(309/8005) took 270840 ms. Total solver calls (SAT/UNSAT): 353487(172124/181363)
May 26, 2018 9:15:27 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(315/8005) took 274236 ms. Total solver calls (SAT/UNSAT): 361212(172124/189088)
May 26, 2018 9:15:30 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(321/8005) took 277948 ms. Total solver calls (SAT/UNSAT): 368901(172124/196777)
May 26, 2018 9:15:34 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(326/8005) took 281349 ms. Total solver calls (SAT/UNSAT): 375281(172124/203157)
May 26, 2018 9:15:37 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(331/8005) took 284667 ms. Total solver calls (SAT/UNSAT): 381636(172124/209512)
May 26, 2018 9:15:41 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(335/8005) took 288317 ms. Total solver calls (SAT/UNSAT): 386702(172124/214578)
May 26, 2018 9:15:44 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(339/8005) took 292101 ms. Total solver calls (SAT/UNSAT): 391752(172124/219628)
May 26, 2018 9:15:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(343/8005) took 295690 ms. Total solver calls (SAT/UNSAT): 396786(172124/224662)
May 26, 2018 9:15:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(347/8005) took 299270 ms. Total solver calls (SAT/UNSAT): 401804(172124/229680)
May 26, 2018 9:15:55 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(351/8005) took 303022 ms. Total solver calls (SAT/UNSAT): 406806(172124/234682)
May 26, 2018 9:15:59 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(355/8005) took 306709 ms. Total solver calls (SAT/UNSAT): 411792(172124/239668)
May 26, 2018 9:16:03 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(359/8005) took 310252 ms. Total solver calls (SAT/UNSAT): 416762(172124/244638)
May 26, 2018 9:16:06 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(364/8005) took 313580 ms. Total solver calls (SAT/UNSAT): 422952(172124/250828)
May 26, 2018 9:16:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(370/8005) took 316859 ms. Total solver calls (SAT/UNSAT): 430347(172124/258223)
May 26, 2018 9:16:12 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(376/8005) took 319963 ms. Total solver calls (SAT/UNSAT): 437706(172124/265582)
May 26, 2018 9:16:15 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(380/8005) took 323016 ms. Total solver calls (SAT/UNSAT): 442592(172124/270468)
May 26, 2018 9:16:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(384/8005) took 326654 ms. Total solver calls (SAT/UNSAT): 447462(172124/275338)
May 26, 2018 9:16:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(388/8005) took 330149 ms. Total solver calls (SAT/UNSAT): 452316(172124/280192)
May 26, 2018 9:16:26 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(392/8005) took 333551 ms. Total solver calls (SAT/UNSAT): 457154(172124/285030)
May 26, 2018 9:16:29 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(396/8005) took 336765 ms. Total solver calls (SAT/UNSAT): 461976(172124/289852)
May 26, 2018 9:16:33 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(400/8005) took 340241 ms. Total solver calls (SAT/UNSAT): 466782(172124/294658)
May 26, 2018 9:16:36 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(404/8005) took 343636 ms. Total solver calls (SAT/UNSAT): 471572(172124/299448)
May 26, 2018 9:16:39 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(409/8005) took 346763 ms. Total solver calls (SAT/UNSAT): 477537(172124/305413)
May 26, 2018 9:16:42 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(415/8005) took 349872 ms. Total solver calls (SAT/UNSAT): 484662(172124/312538)
May 26, 2018 9:16:45 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(421/8005) took 353127 ms. Total solver calls (SAT/UNSAT): 491751(172124/319627)
May 26, 2018 9:16:49 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(426/8005) took 357034 ms. Total solver calls (SAT/UNSAT): 497631(172124/325507)
May 26, 2018 9:16:53 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(432/8005) took 360482 ms. Total solver calls (SAT/UNSAT): 504654(172124/332530)
May 26, 2018 9:16:56 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(439/8005) took 363874 ms. Total solver calls (SAT/UNSAT): 512802(172124/340678)
May 26, 2018 9:17:00 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(443/8005) took 367204 ms. Total solver calls (SAT/UNSAT): 517436(172124/345312)
May 26, 2018 9:17:03 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(448/8005) took 370285 ms. Total solver calls (SAT/UNSAT): 523206(172124/351082)
May 26, 2018 9:17:06 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(455/8005) took 373659 ms. Total solver calls (SAT/UNSAT): 531242(172124/359118)
May 26, 2018 9:17:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(459/8005) took 376738 ms. Total solver calls (SAT/UNSAT): 535812(172124/363688)
May 26, 2018 9:17:13 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(465/8005) took 380191 ms. Total solver calls (SAT/UNSAT): 542637(172124/370513)
May 26, 2018 9:17:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(472/8005) took 383301 ms. Total solver calls (SAT/UNSAT): 550554(172124/378430)
May 26, 2018 9:17:20 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(478/8005) took 387210 ms. Total solver calls (SAT/UNSAT): 557301(172124/385177)
May 26, 2018 9:17:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(483/8005) took 390868 ms. Total solver calls (SAT/UNSAT): 562896(172124/390772)
May 26, 2018 9:17:27 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(488/8005) took 394214 ms. Total solver calls (SAT/UNSAT): 568466(172124/396342)
May 26, 2018 9:17:30 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(495/8005) took 397718 ms. Total solver calls (SAT/UNSAT): 576222(172124/404098)
May 26, 2018 9:17:33 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(503/8005) took 400793 ms. Total solver calls (SAT/UNSAT): 585026(172124/412902)
May 26, 2018 9:17:36 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(510/8005) took 403859 ms. Total solver calls (SAT/UNSAT): 592677(172124/420553)
May 26, 2018 9:17:40 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(518/8005) took 407349 ms. Total solver calls (SAT/UNSAT): 601361(172124/429237)
May 26, 2018 9:17:43 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(525/8005) took 410612 ms. Total solver calls (SAT/UNSAT): 608907(172124/436783)
May 26, 2018 9:17:46 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(532/8005) took 413821 ms. Total solver calls (SAT/UNSAT): 616404(172124/444280)
May 26, 2018 9:17:49 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(539/8005) took 416894 ms. Total solver calls (SAT/UNSAT): 623852(172124/451728)
May 26, 2018 9:17:53 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(547/8005) took 420267 ms. Total solver calls (SAT/UNSAT): 632304(172124/460180)
May 26, 2018 9:17:56 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(555/8005) took 423620 ms. Total solver calls (SAT/UNSAT): 640692(172124/468568)
May 26, 2018 9:17:59 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(563/8005) took 426979 ms. Total solver calls (SAT/UNSAT): 649016(172124/476892)
May 26, 2018 9:18:03 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(568/8005) took 430208 ms. Total solver calls (SAT/UNSAT): 654186(172124/482062)
May 26, 2018 9:18:06 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(576/8005) took 433484 ms. Total solver calls (SAT/UNSAT): 662406(172124/490282)
May 26, 2018 9:18:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(582/8005) took 436756 ms. Total solver calls (SAT/UNSAT): 668529(172124/496405)
May 26, 2018 9:18:12 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(590/8005) took 440114 ms. Total solver calls (SAT/UNSAT): 676637(172124/504513)
May 26, 2018 9:18:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(597/8005) took 443201 ms. Total solver calls (SAT/UNSAT): 683679(172124/511555)
May 26, 2018 9:18:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(604/8005) took 446272 ms. Total solver calls (SAT/UNSAT): 690672(172124/518548)
May 26, 2018 9:18:22 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(612/8005) took 449530 ms. Total solver calls (SAT/UNSAT): 698604(172124/526480)
May 26, 2018 9:18:25 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(620/8005) took 452817 ms. Total solver calls (SAT/UNSAT): 706472(172124/534348)
May 26, 2018 9:18:28 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(628/8005) took 456050 ms. Total solver calls (SAT/UNSAT): 714276(172124/542152)
May 26, 2018 9:18:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(636/8005) took 459313 ms. Total solver calls (SAT/UNSAT): 722016(172124/549892)
May 26, 2018 9:18:35 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(644/8005) took 462726 ms. Total solver calls (SAT/UNSAT): 729692(172124/557568)
May 26, 2018 9:18:38 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(650/8005) took 465730 ms. Total solver calls (SAT/UNSAT): 735407(172124/563283)
May 26, 2018 9:18:41 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(659/8005) took 469034 ms. Total solver calls (SAT/UNSAT): 743912(172124/571788)
May 26, 2018 9:18:45 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(668/8005) took 472299 ms. Total solver calls (SAT/UNSAT): 752336(172124/580212)
May 26, 2018 9:18:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(676/8005) took 475380 ms. Total solver calls (SAT/UNSAT): 759756(172124/587632)
May 26, 2018 9:18:51 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(684/8005) took 478387 ms. Total solver calls (SAT/UNSAT): 767112(172124/594988)
May 26, 2018 9:18:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(692/8005) took 481569 ms. Total solver calls (SAT/UNSAT): 774404(172124/602280)
May 26, 2018 9:18:57 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(699/8005) took 484701 ms. Total solver calls (SAT/UNSAT): 780732(172124/608608)
May 26, 2018 9:19:00 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(707/8005) took 487755 ms. Total solver calls (SAT/UNSAT): 787904(172124/615780)
May 26, 2018 9:19:03 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(716/8005) took 491072 ms. Total solver calls (SAT/UNSAT): 795896(172124/623772)
May 26, 2018 9:19:07 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(726/8005) took 494355 ms. Total solver calls (SAT/UNSAT): 804681(172124/632557)
May 26, 2018 9:19:10 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(735/8005) took 497592 ms. Total solver calls (SAT/UNSAT): 812502(172124/640378)
May 26, 2018 9:19:13 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(744/8005) took 500681 ms. Total solver calls (SAT/UNSAT): 820242(172124/648118)
May 26, 2018 9:19:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(754/8005) took 503738 ms. Total solver calls (SAT/UNSAT): 828747(172124/656623)
May 26, 2018 9:19:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(763/8005) took 506849 ms. Total solver calls (SAT/UNSAT): 836316(172124/664192)
May 26, 2018 9:19:22 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(773/8005) took 510086 ms. Total solver calls (SAT/UNSAT): 844631(172124/672507)
May 26, 2018 9:19:25 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(782/8005) took 513102 ms. Total solver calls (SAT/UNSAT): 852029(172124/679905)
May 26, 2018 9:19:29 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(791/8005) took 516526 ms. Total solver calls (SAT/UNSAT): 859843(172124/687719)
May 26, 2018 9:19:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(797/8005) took 519538 ms. Total solver calls (SAT/UNSAT): 867658(172124/695534)
May 26, 2018 9:19:35 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(803/8005) took 522647 ms. Total solver calls (SAT/UNSAT): 875437(172124/703313)
May 26, 2018 9:19:38 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(809/8005) took 525702 ms. Total solver calls (SAT/UNSAT): 883180(172124/711056)
May 26, 2018 9:19:41 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(815/8005) took 528810 ms. Total solver calls (SAT/UNSAT): 890887(172124/718763)
May 26, 2018 9:19:44 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(821/8005) took 531905 ms. Total solver calls (SAT/UNSAT): 898558(172124/726434)
May 26, 2018 9:19:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(829/8005) took 535197 ms. Total solver calls (SAT/UNSAT): 908730(172124/736606)
May 26, 2018 9:19:51 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(836/8005) took 538682 ms. Total solver calls (SAT/UNSAT): 917578(172124/745454)
May 26, 2018 9:19:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(843/8005) took 541994 ms. Total solver calls (SAT/UNSAT): 926377(172124/754253)
May 26, 2018 9:19:57 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(850/8005) took 545126 ms. Total solver calls (SAT/UNSAT): 935127(172124/763003)
May 26, 2018 9:20:01 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(856/8005) took 548176 ms. Total solver calls (SAT/UNSAT): 942588(172124/770464)
May 26, 2018 9:20:04 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(862/8005) took 551707 ms. Total solver calls (SAT/UNSAT): 950013(172351/777662)
May 26, 2018 9:20:07 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(866/8005) took 554886 ms. Total solver calls (SAT/UNSAT): 954943(172819/782124)
May 26, 2018 9:20:11 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(871/8005) took 558573 ms. Total solver calls (SAT/UNSAT): 961083(173404/787679)
May 26, 2018 9:20:14 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(875/8005) took 561594 ms. Total solver calls (SAT/UNSAT): 965977(173871/792106)
May 26, 2018 9:20:17 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(880/8005) took 565130 ms. Total solver calls (SAT/UNSAT): 972072(174444/797628)
May 26, 2018 9:20:21 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(885/8005) took 568871 ms. Total solver calls (SAT/UNSAT): 978142(175024/803118)
May 26, 2018 9:20:25 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(889/8005) took 572237 ms. Total solver calls (SAT/UNSAT): 982980(175487/807493)
May 26, 2018 9:20:28 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(894/8005) took 575752 ms. Total solver calls (SAT/UNSAT): 989005(176055/812950)
May 26, 2018 9:20:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(899/8005) took 579539 ms. Total solver calls (SAT/UNSAT): 995005(176630/818375)
May 26, 2018 9:20:35 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(903/8005) took 582641 ms. Total solver calls (SAT/UNSAT): 999787(177089/822698)
May 26, 2018 9:20:38 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(907/8005) took 585744 ms. Total solver calls (SAT/UNSAT): 1004553(177538/827015)
May 26, 2018 9:20:42 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(910/8005) took 589214 ms. Total solver calls (SAT/UNSAT): 1008117(177880/830237)
May 26, 2018 9:20:45 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(915/8005) took 592216 ms. Total solver calls (SAT/UNSAT): 1014037(178450/835587)
May 26, 2018 9:20:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(921/8005) took 595685 ms. Total solver calls (SAT/UNSAT): 1021108(179122/841986)
May 26, 2018 9:20:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(927/8005) took 599169 ms. Total solver calls (SAT/UNSAT): 1028143(179800/848343)
May 26, 2018 9:20:55 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(931/8005) took 602293 ms. Total solver calls (SAT/UNSAT): 1032816(180255/852561)
May 26, 2018 9:20:58 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(935/8005) took 605597 ms. Total solver calls (SAT/UNSAT): 1037482(180712/856770)
May 26, 2018 9:21:01 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(939/8005) took 608906 ms. Total solver calls (SAT/UNSAT): 1042132(181175/860957)
May 26, 2018 9:21:04 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(943/8005) took 611997 ms. Total solver calls (SAT/UNSAT): 1046766(181635/865131)
May 26, 2018 9:21:08 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(947/8005) took 615335 ms. Total solver calls (SAT/UNSAT): 1051384(182088/869296)
May 26, 2018 9:21:11 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(952/8005) took 618503 ms. Total solver calls (SAT/UNSAT): 1057134(182663/874471)
May 26, 2018 9:21:14 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(956/8005) took 621687 ms. Total solver calls (SAT/UNSAT): 1061716(183119/878597)
May 26, 2018 9:21:17 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(961/8005) took 624743 ms. Total solver calls (SAT/UNSAT): 1067421(183682/883739)
May 26, 2018 9:21:20 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(965/8005) took 628028 ms. Total solver calls (SAT/UNSAT): 1071967(184138/887829)
May 26, 2018 9:21:24 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(971/8005) took 631511 ms. Total solver calls (SAT/UNSAT): 1078756(184817/893939)
May 26, 2018 9:21:27 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(975/8005) took 634865 ms. Total solver calls (SAT/UNSAT): 1083262(185262/898000)
May 26, 2018 9:21:30 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(979/8005) took 637881 ms. Total solver calls (SAT/UNSAT): 1087752(185714/902038)
May 26, 2018 9:21:34 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(985/8005) took 641347 ms. Total solver calls (SAT/UNSAT): 1094457(186387/908070)
May 26, 2018 9:21:37 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(989/8005) took 644752 ms. Total solver calls (SAT/UNSAT): 1098907(186828/912079)
May 26, 2018 9:21:40 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(993/8005) took 647923 ms. Total solver calls (SAT/UNSAT): 1103341(187276/916065)
May 26, 2018 9:21:43 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(998/8005) took 650936 ms. Total solver calls (SAT/UNSAT): 1108861(187832/921029)
May 26, 2018 9:21:47 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1003/8005) took 654203 ms. Total solver calls (SAT/UNSAT): 1114353(188377/925976)
May 26, 2018 9:21:50 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1009/8005) took 657269 ms. Total solver calls (SAT/UNSAT): 1120908(189036/931872)
May 26, 2018 9:21:53 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1015/8005) took 660705 ms. Total solver calls (SAT/UNSAT): 1127427(189690/937737)
May 26, 2018 9:21:56 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1021/8005) took 663707 ms. Total solver calls (SAT/UNSAT): 1133910(190337/943573)
May 26, 2018 9:21:59 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1027/8005) took 666830 ms. Total solver calls (SAT/UNSAT): 1140357(190986/949371)
May 26, 2018 9:22:02 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1032/8005) took 670086 ms. Total solver calls (SAT/UNSAT): 1145702(191519/954183)
May 26, 2018 9:22:06 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1037/8005) took 673479 ms. Total solver calls (SAT/UNSAT): 1151022(192058/958964)
May 26, 2018 9:22:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1041/8005) took 676708 ms. Total solver calls (SAT/UNSAT): 1155260(192486/962774)
May 26, 2018 9:22:12 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1046/8005) took 680024 ms. Total solver calls (SAT/UNSAT): 1160535(193014/967521)
May 26, 2018 9:22:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1050/8005) took 683158 ms. Total solver calls (SAT/UNSAT): 1164737(193442/971295)
May 26, 2018 9:22:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1054/8005) took 686214 ms. Total solver calls (SAT/UNSAT): 1168923(193866/975057)
May 26, 2018 9:22:22 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1059/8005) took 689696 ms. Total solver calls (SAT/UNSAT): 1174133(194389/979744)
May 26, 2018 9:22:25 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1063/8005) took 692765 ms. Total solver calls (SAT/UNSAT): 1178283(194813/983470)
May 26, 2018 9:22:28 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1069/8005) took 695976 ms. Total solver calls (SAT/UNSAT): 1184478(195444/989034)
May 26, 2018 9:22:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1076/8005) took 699316 ms. Total solver calls (SAT/UNSAT): 1191654(196166/995488)
May 26, 2018 9:22:35 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1083/8005) took 702631 ms. Total solver calls (SAT/UNSAT): 1198780(196889/1001891)
May 26, 2018 9:22:38 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1090/8005) took 705891 ms. Total solver calls (SAT/UNSAT): 1205857(197603/1008254)
May 26, 2018 9:22:42 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1097/8005) took 709188 ms. Total solver calls (SAT/UNSAT): 1212885(198319/1014566)
May 26, 2018 9:22:45 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1104/8005) took 712687 ms. Total solver calls (SAT/UNSAT): 1219864(199026/1020838)
May 26, 2018 9:22:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1109/8005) took 715753 ms. Total solver calls (SAT/UNSAT): 1224819(199533/1025286)
May 26, 2018 9:22:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1114/8005) took 719508 ms. Total solver calls (SAT/UNSAT): 1229749(200031/1029718)
May 26, 2018 9:22:55 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1120/8005) took 722569 ms. Total solver calls (SAT/UNSAT): 1235632(200637/1034995)
May 26, 2018 9:22:58 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1127/8005) took 726001 ms. Total solver calls (SAT/UNSAT): 1242450(201337/1041113)
May 26, 2018 9:23:02 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1133/8005) took 729642 ms. Total solver calls (SAT/UNSAT): 1248255(201930/1046325)
May 26, 2018 9:23:05 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1139/8005) took 733022 ms. Total solver calls (SAT/UNSAT): 1254024(202525/1051499)
May 26, 2018 9:23:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1145/8005) took 736593 ms. Total solver calls (SAT/UNSAT): 1259752(203107/1056645)
May 26, 2018 9:23:13 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1150/8005) took 740256 ms. Total solver calls (SAT/UNSAT): 1264497(203595/1060902)
May 26, 2018 9:23:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1155/8005) took 743685 ms. Total solver calls (SAT/UNSAT): 1269217(204080/1065137)
May 26, 2018 9:23:20 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1160/8005) took 747157 ms. Total solver calls (SAT/UNSAT): 1273912(204558/1069354)
May 26, 2018 9:23:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1165/8005) took 750708 ms. Total solver calls (SAT/UNSAT): 1278582(205040/1073542)
May 26, 2018 9:23:26 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1170/8005) took 754004 ms. Total solver calls (SAT/UNSAT): 1283227(205513/1077714)
May 26, 2018 9:23:29 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1174/8005) took 757038 ms. Total solver calls (SAT/UNSAT): 1286925(205897/1081028)
May 26, 2018 9:23:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1178/8005) took 760076 ms. Total solver calls (SAT/UNSAT): 1290607(206279/1084328)
May 26, 2018 9:23:36 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1182/8005) took 763300 ms. Total solver calls (SAT/UNSAT): 1294273(206659/1087614)
May 26, 2018 9:23:39 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1187/8005) took 766906 ms. Total solver calls (SAT/UNSAT): 1298833(207127/1091706)
May 26, 2018 9:23:43 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1192/8005) took 770402 ms. Total solver calls (SAT/UNSAT): 1303368(207600/1095768)
May 26, 2018 9:23:46 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1196/8005) took 773718 ms. Total solver calls (SAT/UNSAT): 1306978(207976/1099002)
May 26, 2018 9:23:49 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1200/8005) took 776819 ms. Total solver calls (SAT/UNSAT): 1310572(208345/1102227)
May 26, 2018 9:23:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1204/8005) took 780019 ms. Total solver calls (SAT/UNSAT): 1314150(208721/1105429)
May 26, 2018 9:23:56 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1211/8005) took 783221 ms. Total solver calls (SAT/UNSAT): 1320373(209370/1111003)
May 26, 2018 9:23:59 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1218/8005) took 786310 ms. Total solver calls (SAT/UNSAT): 1326547(210000/1116547)
May 26, 2018 9:24:02 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1225/8005) took 789556 ms. Total solver calls (SAT/UNSAT): 1332672(210636/1122036)
May 26, 2018 9:24:05 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1231/8005) took 793039 ms. Total solver calls (SAT/UNSAT): 1337883(211169/1126714)
May 26, 2018 9:24:09 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1237/8005) took 796331 ms. Total solver calls (SAT/UNSAT): 1343058(211709/1131349)
May 26, 2018 9:24:12 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1244/8005) took 799805 ms. Total solver calls (SAT/UNSAT): 1349050(212326/1136724)
May 26, 2018 9:24:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1251/8005) took 803150 ms. Total solver calls (SAT/UNSAT): 1354993(212949/1142044)
May 26, 2018 9:24:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1258/8005) took 806511 ms. Total solver calls (SAT/UNSAT): 1360887(213559/1147328)
May 26, 2018 9:24:22 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1265/8005) took 809788 ms. Total solver calls (SAT/UNSAT): 1366732(214175/1152557)
May 26, 2018 9:24:25 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1272/8005) took 813024 ms. Total solver calls (SAT/UNSAT): 1372528(214778/1157750)
May 26, 2018 9:24:29 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1279/8005) took 816341 ms. Total solver calls (SAT/UNSAT): 1378275(215387/1162888)
May 26, 2018 9:24:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1286/8005) took 819606 ms. Total solver calls (SAT/UNSAT): 1386325(215474/1170851)
May 26, 2018 9:24:35 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1293/8005) took 823028 ms. Total solver calls (SAT/UNSAT): 1394718(215474/1179244)
May 26, 2018 9:24:39 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1300/8005) took 826262 ms. Total solver calls (SAT/UNSAT): 1403062(215474/1187588)
May 26, 2018 9:24:42 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1306/8005) took 829421 ms. Total solver calls (SAT/UNSAT): 1410175(215474/1194701)
May 26, 2018 9:24:45 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1312/8005) took 832821 ms. Total solver calls (SAT/UNSAT): 1417252(215474/1201778)
May 26, 2018 9:24:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1318/8005) took 835864 ms. Total solver calls (SAT/UNSAT): 1424293(215474/1208819)
May 26, 2018 9:24:52 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1326/8005) took 839171 ms. Total solver calls (SAT/UNSAT): 1433625(215474/1218151)
May 26, 2018 9:24:55 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1334/8005) took 842430 ms. Total solver calls (SAT/UNSAT): 1442893(215474/1227419)
May 26, 2018 9:24:59 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1340/8005) took 846275 ms. Total solver calls (SAT/UNSAT): 1449814(215927/1233887)
May 26, 2018 9:25:02 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1345/8005) took 849682 ms. Total solver calls (SAT/UNSAT): 1455559(216501/1239058)
May 26, 2018 9:25:05 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1350/8005) took 852935 ms. Total solver calls (SAT/UNSAT): 1461279(217071/1244208)
May 26, 2018 9:25:08 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1355/8005) took 856114 ms. Total solver calls (SAT/UNSAT): 1466974(217634/1249340)
May 26, 2018 9:25:12 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1360/8005) took 859796 ms. Total solver calls (SAT/UNSAT): 1472644(218202/1254442)
May 26, 2018 9:25:16 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1365/8005) took 863173 ms. Total solver calls (SAT/UNSAT): 1478289(218767/1259522)
May 26, 2018 9:25:19 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1371/8005) took 866766 ms. Total solver calls (SAT/UNSAT): 1485030(219438/1265592)
May 26, 2018 9:25:23 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1376/8005) took 870233 ms. Total solver calls (SAT/UNSAT): 1490620(219999/1270621)
May 26, 2018 9:25:26 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1380/8005) took 873329 ms. Total solver calls (SAT/UNSAT): 1495074(220447/1274627)
May 26, 2018 9:25:29 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1384/8005) took 876428 ms. Total solver calls (SAT/UNSAT): 1499512(220888/1278624)
May 26, 2018 9:25:32 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1388/8005) took 879836 ms. Total solver calls (SAT/UNSAT): 1503934(221334/1282600)
May 26, 2018 9:25:36 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1392/8005) took 883212 ms. Total solver calls (SAT/UNSAT): 1508340(221778/1286562)
May 26, 2018 9:25:39 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1396/8005) took 886238 ms. Total solver calls (SAT/UNSAT): 1512718(222199/1290519)
May 26, 2018 9:25:42 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1400/8005) took 889348 ms. Total solver calls (SAT/UNSAT): 1517080(222627/1294453)
May 26, 2018 9:25:45 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1404/8005) took 892362 ms. Total solver calls (SAT/UNSAT): 1521426(223055/1298371)
May 26, 2018 9:25:48 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1409/8005) took 895847 ms. Total solver calls (SAT/UNSAT): 1526836(223580/1303256)
May 26, 2018 9:25:51 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1413/8005) took 898869 ms. Total solver calls (SAT/UNSAT): 1531146(224004/1307142)
May 26, 2018 9:25:54 AM fr.lip6.move.gal.gal2smt.bmc.NecessaryEnablingsolver printStats
INFO: Computation of co-enabling matrix(1417/8005) took 901901 ms. Total solver calls (SAT/UNSAT): 1535440(224428/1311012)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-6"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="mcc4mcc-structural"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-6.tgz
mv NeoElection-PT-6 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool mcc4mcc-structural"
echo " Input is NeoElection-PT-6, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r119-csrt-152666479800320"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;