About the Execution of ITS-Tools.L for PhaseVariation-PT-D30CS100
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15740.980 | 3600000.00 | 10097328.00 | 1287.30 | FFF?F?FF???????? | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
............................................................
/home/mcc/execution
total 30M
-rw-r--r-- 1 mcc users 5.1K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 24K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.6K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.1K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 13K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.4K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.6K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.2K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 117 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 355 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 4.9K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.9K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.0K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 9 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 30M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstoolsl
Input is PhaseVariation-PT-D30CS100, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r117-csrt-152666477300663
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-00
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-01
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-02
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-03
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-04
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-05
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-06
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-07
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-08
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-09
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-10
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-11
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-12
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-13
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-14
FORMULA_NAME PhaseVariation-PT-D30CS100-ReachabilityCardinality-15
=== Now, execution of the tool begins
BK_START 1527269910290
Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution]
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Loading property file ReachabilityCardinality.prop.
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-00 with value :(((pool__11_16_>=2)&&(!(pool__2_1_>=1)))&&(cell___15_16__B_<=cell___17_5__A_))
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-01 with value :(cell___28_9__B_>=2)
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-02 with value :((cell___1_26__B_>=3)&&(cell___26_20__B_<=cell___18_20__B_))
Read [invariant] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-03 with value :(((!(cell___11_1__B_<=pool__15_23_))||((cell___16_25__B_<=pool__5_10_)||(pool__21_17_>=2)))||((cell___28_2__A_<=pool__6_9_)&&((cell___9_1__B_<=cell___15_17__A_)||(cell___1_3__A_>=2))))
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-04 with value :((cell___8_8__B_>=2)&&(cell___27_26__B_>=1))
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-05 with value :((run_dot<=cell___22_17__A_)&&(cell___2_27__B_>=1))
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-06 with value :(cell___22_1__B_>=3)
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-07 with value :(!((!(cell___12_27__A_>=2))&&(!(cell___15_19__B_>=2))))
Read [invariant] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-08 with value :((pool__21_13_>=2)||(((cell___16_11__A_<=pool__15_18_)||(pool__11_21_<=pool__13_12_))||((cell___29_15__A_>=2)&&(cell___9_29__A_<=cell___25_24__B_))))
Read [invariant] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-09 with value :(cell___13_6__A_<=cell___7_8__B_)
Read [invariant] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-10 with value :(!((!(cell___11_26__B_<=cell___3_25__A_))&&(pool__21_29_<=cell___19_2__A_)))
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-11 with value :(!(cell___4_1__B_<=cell___20_5__B_))
Read [reachable] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-12 with value :((pool__20_24_>=2)&&((!(cell___5_23__B_>=3))&&(!(cell___11_29__A_>=1))))
Read [invariant] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-13 with value :((((pool__13_1_>=1)||(cell___8_27__A_>=2))||((pool__12_25_<=cell___10_26__A_)||(cell___2_3__B_<=cell___23_7__A_)))||((!(pool__5_6_>=1))||((pool__10_2_<=pool__4_4_)&&(cell___19_22__B_<=cell___5_15__B_))))
Read [invariant] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-14 with value :((((pool__17_3_<=cell___28_3__B_)&&(cell___20_20__A_>=1))||((cell___18_9__A_<=pool__30_5_)||(cell___28_17__A_<=cell___7_7__A_)))&&(cell___2_22__B_<=pool__9_23_))
Read [invariant] property : PhaseVariation-PT-D30CS100-ReachabilityCardinality-15 with value :(pool__12_18_<=pool__13_8_)
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
Normalized transition count is 1801
// Phase 1: matrix 1801 rows 2702 cols
invariant :cell___21_7__A_ + cell___21_7__B_ + pool__21_7_ = 1
invariant :cell___25_7__A_ + cell___25_7__B_ + pool__25_7_ = 1
invariant :cell___8_4__A_ + cell___8_4__B_ + pool__8_4_ = 1
invariant :cell___25_4__A_ + cell___25_4__B_ + pool__25_4_ = 1
invariant :cell___9_9__A_ + cell___9_9__B_ + pool__9_9_ = 1
invariant :cell___19_30__A_ + cell___19_30__B_ + pool__19_30_ = 1
invariant :cell___1_5__A_ + cell___1_5__B_ + pool__1_5_ = 1
invariant :cell___10_12__A_ + cell___10_12__B_ + pool__10_12_ = 1
invariant :cell___16_1__A_ + cell___16_1__B_ + pool__16_1_ = 1
invariant :cell___30_24__A_ + cell___30_24__B_ + pool__30_24_ = 1
invariant :cell___24_13__A_ + cell___24_13__B_ + pool__24_13_ = 1
invariant :cell___6_12__A_ + cell___6_12__B_ + pool__6_12_ = 1
invariant :cell___13_23__A_ + cell___13_23__B_ + pool__13_23_ = 1
invariant :cell___29_12__A_ + cell___29_12__B_ + pool__29_12_ = 1
invariant :cell___16_30__A_ + cell___16_30__B_ + pool__16_30_ = 1
invariant :cell___28_3__A_ + cell___28_3__B_ + pool__28_3_ = 1
invariant :cell___1_26__A_ + cell___1_26__B_ + pool__1_26_ = 1
invariant :cell___20_29__A_ + cell___20_29__B_ + pool__20_29_ = 1
invariant :cell___22_6__A_ + cell___22_6__B_ + pool__22_6_ = 1
invariant :cell___11_25__A_ + cell___11_25__B_ + pool__11_25_ = 1
invariant :cell___3_2__A_ + cell___3_2__B_ + pool__3_2_ = 1
invariant :cell___21_9__A_ + cell___21_9__B_ + pool__21_9_ = 1
invariant :cell___24_3__A_ + cell___24_3__B_ + pool__24_3_ = 1
invariant :cell___7_6__A_ + cell___7_6__B_ + pool__7_6_ = 1
invariant :cell___11_2__A_ + cell___11_2__B_ + pool__11_2_ = 1
invariant :cell___17_21__A_ + cell___17_21__B_ + pool__17_21_ = 1
invariant :cell___29_9__A_ + cell___29_9__B_ + pool__29_9_ = 1
invariant :cell___19_27__A_ + cell___19_27__B_ + pool__19_27_ = 1
invariant :cell___27_11__A_ + cell___27_11__B_ + pool__27_11_ = 1
invariant :cell___1_23__A_ + cell___1_23__B_ + pool__1_23_ = 1
invariant :cell___23_13__A_ + cell___23_13__B_ + pool__23_13_ = 1
invariant :cell___8_10__A_ + cell___8_10__B_ + pool__8_10_ = 1
invariant :cell___2_9__A_ + cell___2_9__B_ + pool__2_9_ = 1
invariant :cell___9_21__A_ + cell___9_21__B_ + pool__9_21_ = 1
invariant :cell___11_24__A_ + cell___11_24__B_ + pool__11_24_ = 1
invariant :cell___28_17__A_ + cell___28_17__B_ + pool__28_17_ = 1
invariant :cell___30_10__A_ + cell___30_10__B_ + pool__30_10_ = 1
invariant :cell___19_10__A_ + cell___19_10__B_ + pool__19_10_ = 1
invariant :cell___20_30__A_ + cell___20_30__B_ + pool__20_30_ = 1
invariant :cell___7_11__A_ + cell___7_11__B_ + pool__7_11_ = 1
invariant :cell___24_25__A_ + cell___24_25__B_ + pool__24_25_ = 1
invariant :cell___3_23__A_ + cell___3_23__B_ + pool__3_23_ = 1
invariant :cell___24_1__A_ + cell___24_1__B_ + pool__24_1_ = 1
invariant :cell___3_3__A_ + cell___3_3__B_ + pool__3_3_ = 1
invariant :cell___28_5__A_ + cell___28_5__B_ + pool__28_5_ = 1
invariant :cell___15_30__A_ + cell___15_30__B_ + pool__15_30_ = 1
invariant :cell___6_14__A_ + cell___6_14__B_ + pool__6_14_ = 1
invariant :cell___8_6__A_ + cell___8_6__B_ + pool__8_6_ = 1
invariant :cell___15_3__A_ + cell___15_3__B_ + pool__15_3_ = 1
invariant :cell___2_16__A_ + cell___2_16__B_ + pool__2_16_ = 1
invariant :cell___20_1__A_ + cell___20_1__B_ + pool__20_1_ = 1
invariant :cell___18_20__A_ + cell___18_20__B_ + pool__18_20_ = 1
invariant :cell___19_23__A_ + cell___19_23__B_ + pool__19_23_ = 1
invariant :cell___10_18__A_ + cell___10_18__B_ + pool__10_18_ = 1
invariant :cell___25_1__A_ + cell___25_1__B_ + pool__25_1_ = 1
invariant :cell___3_26__A_ + cell___3_26__B_ + pool__3_26_ = 1
invariant :cell___30_19__A_ + cell___30_19__B_ + pool__30_19_ = 1
invariant :cell___18_29__A_ + cell___18_29__B_ + pool__18_29_ = 1
invariant :cell___1_9__A_ + cell___1_9__B_ + pool__1_9_ = 1
invariant :cell___8_13__A_ + cell___8_13__B_ + pool__8_13_ = 1
invariant :cell___8_21__A_ + cell___8_21__B_ + pool__8_21_ = 1
invariant :cell___27_19__A_ + cell___27_19__B_ + pool__27_19_ = 1
invariant :cell___15_11__A_ + cell___15_11__B_ + pool__15_11_ = 1
invariant :cell___20_27__A_ + cell___20_27__B_ + pool__20_27_ = 1
invariant :cell___18_18__A_ + cell___18_18__B_ + pool__18_18_ = 1
invariant :cell___16_7__A_ + cell___16_7__B_ + pool__16_7_ = 1
invariant :cell___27_7__A_ + cell___27_7__B_ + pool__27_7_ = 1
invariant :cell___3_19__A_ + cell___3_19__B_ + pool__3_19_ = 1
invariant :cell___14_2__A_ + cell___14_2__B_ + pool__14_2_ = 1
invariant :cell___9_11__A_ + cell___9_11__B_ + pool__9_11_ = 1
invariant :cell___1_4__A_ + cell___1_4__B_ + pool__1_4_ = 1
invariant :cell___6_26__A_ + cell___6_26__B_ + pool__6_26_ = 1
invariant :cell___13_7__A_ + cell___13_7__B_ + pool__13_7_ = 1
invariant :cell___18_2__A_ + cell___18_2__B_ + pool__18_2_ = 1
invariant :cell___15_24__A_ + cell___15_24__B_ + pool__15_24_ = 1
invariant :cell___13_30__A_ + cell___13_30__B_ + pool__13_30_ = 1
invariant :cell___17_19__A_ + cell___17_19__B_ + pool__17_19_ = 1
invariant :cell___26_17__A_ + cell___26_17__B_ + pool__26_17_ = 1
invariant :cell___8_26__A_ + cell___8_26__B_ + pool__8_26_ = 1
invariant :cell___22_7__A_ + cell___22_7__B_ + pool__22_7_ = 1
invariant :cell___4_13__A_ + cell___4_13__B_ + pool__4_13_ = 1
invariant :cell___12_30__A_ + cell___12_30__B_ + pool__12_30_ = 1
invariant :cell___1_11__A_ + cell___1_11__B_ + pool__1_11_ = 1
invariant :cell___26_5__A_ + cell___26_5__B_ + pool__26_5_ = 1
invariant :cell___29_28__A_ + cell___29_28__B_ + pool__29_28_ = 1
invariant :cell___10_2__A_ + cell___10_2__B_ + pool__10_2_ = 1
invariant :cell___1_27__A_ + cell___1_27__B_ + pool__1_27_ = 1
invariant :cell___3_22__A_ + cell___3_22__B_ + pool__3_22_ = 1
invariant :cell___19_8__A_ + cell___19_8__B_ + pool__19_8_ = 1
invariant :cell___27_20__A_ + cell___27_20__B_ + pool__27_20_ = 1
invariant :cell___21_25__A_ + cell___21_25__B_ + pool__21_25_ = 1
invariant :cell___24_18__A_ + cell___24_18__B_ + pool__24_18_ = 1
invariant :cell___1_7__A_ + cell___1_7__B_ + pool__1_7_ = 1
invariant :cell___24_29__A_ + cell___24_29__B_ + pool__24_29_ = 1
invariant :cell___10_6__A_ + cell___10_6__B_ + pool__10_6_ = 1
invariant :cell___1_19__A_ + cell___1_19__B_ + pool__1_19_ = 1
invariant :cell___2_23__A_ + cell___2_23__B_ + pool__2_23_ = 1
invariant :cell___1_6__A_ + cell___1_6__B_ + pool__1_6_ = 1
invariant :cell___2_18__A_ + cell___2_18__B_ + pool__2_18_ = 1
invariant :cell___27_29__A_ + cell___27_29__B_ + pool__27_29_ = 1
invariant :cell___25_23__A_ + cell___25_23__B_ + pool__25_23_ = 1
invariant :cell___4_24__A_ + cell___4_24__B_ + pool__4_24_ = 1
invariant :cell___18_17__A_ + cell___18_17__B_ + pool__18_17_ = 1
invariant :cell___1_1__A_ + cell___1_1__B_ + pool__1_1_ = 1
invariant :cell___29_29__A_ + cell___29_29__B_ + pool__29_29_ = 1
invariant :cell___17_6__A_ + cell___17_6__B_ + pool__17_6_ = 1
invariant :cell___26_11__A_ + cell___26_11__B_ + pool__26_11_ = 1
invariant :cell___26_2__A_ + cell___26_2__B_ + pool__26_2_ = 1
invariant :cell___8_15__A_ + cell___8_15__B_ + pool__8_15_ = 1
invariant :cell___15_5__A_ + cell___15_5__B_ + pool__15_5_ = 1
invariant :cell___2_28__A_ + cell___2_28__B_ + pool__2_28_ = 1
invariant :cell___21_5__A_ + cell___21_5__B_ + pool__21_5_ = 1
invariant :cell___22_24__A_ + cell___22_24__B_ + pool__22_24_ = 1
invariant :cell___1_17__A_ + cell___1_17__B_ + pool__1_17_ = 1
invariant :cell___2_27__A_ + cell___2_27__B_ + pool__2_27_ = 1
invariant :cell___14_19__A_ + cell___14_19__B_ + pool__14_19_ = 1
invariant :cell___1_25__A_ + cell___1_25__B_ + pool__1_25_ = 1
invariant :cell___15_20__A_ + cell___15_20__B_ + pool__15_20_ = 1
invariant :cell___3_16__A_ + cell___3_16__B_ + pool__3_16_ = 1
invariant :cell___16_26__A_ + cell___16_26__B_ + pool__16_26_ = 1
invariant :cell___7_29__A_ + cell___7_29__B_ + pool__7_29_ = 1
invariant :cell___8_24__A_ + cell___8_24__B_ + pool__8_24_ = 1
invariant :cell___6_16__A_ + cell___6_16__B_ + pool__6_16_ = 1
invariant :cell___15_25__A_ + cell___15_25__B_ + pool__15_25_ = 1
invariant :cell___28_20__A_ + cell___28_20__B_ + pool__28_20_ = 1
invariant :cell___27_14__A_ + cell___27_14__B_ + pool__27_14_ = 1
invariant :cell___24_8__A_ + cell___24_8__B_ + pool__24_8_ = 1
invariant :cell___8_19__A_ + cell___8_19__B_ + pool__8_19_ = 1
invariant :cell___30_9__A_ + cell___30_9__B_ + pool__30_9_ = 1
invariant :cell___25_29__A_ + cell___25_29__B_ + pool__25_29_ = 1
invariant :cell___7_25__A_ + cell___7_25__B_ + pool__7_25_ = 1
invariant :cell___10_14__A_ + cell___10_14__B_ + pool__10_14_ = 1
invariant :cell___13_22__A_ + cell___13_22__B_ + pool__13_22_ = 1
invariant :cell___25_12__A_ + cell___25_12__B_ + pool__25_12_ = 1
invariant :cell___5_21__A_ + cell___5_21__B_ + pool__5_21_ = 1
invariant :cell___15_23__A_ + cell___15_23__B_ + pool__15_23_ = 1
invariant :cell___6_17__A_ + cell___6_17__B_ + pool__6_17_ = 1
invariant :cell___17_18__A_ + cell___17_18__B_ + pool__17_18_ = 1
invariant :cell___25_18__A_ + cell___25_18__B_ + pool__25_18_ = 1
invariant :cell___1_10__A_ + cell___1_10__B_ + pool__1_10_ = 1
invariant :cell___12_5__A_ + cell___12_5__B_ + pool__12_5_ = 1
invariant :cell___12_11__A_ + cell___12_11__B_ + pool__12_11_ = 1
invariant :cell___26_8__A_ + cell___26_8__B_ + pool__26_8_ = 1
invariant :cell___28_28__A_ + cell___28_28__B_ + pool__28_28_ = 1
invariant :cell___14_30__A_ + cell___14_30__B_ + pool__14_30_ = 1
invariant :cell___19_16__A_ + cell___19_16__B_ + pool__19_16_ = 1
invariant :cell___17_10__A_ + cell___17_10__B_ + pool__17_10_ = 1
invariant :cell___9_12__A_ + cell___9_12__B_ + pool__9_12_ = 1
invariant :cell___11_16__A_ + cell___11_16__B_ + pool__11_16_ = 1
invariant :cell___30_18__A_ + cell___30_18__B_ + pool__30_18_ = 1
invariant :cell___14_21__A_ + cell___14_21__B_ + pool__14_21_ = 1
invariant :cell___24_21__A_ + cell___24_21__B_ + pool__24_21_ = 1
invariant :cell___29_7__A_ + cell___29_7__B_ + pool__29_7_ = 1
invariant :cell___3_24__A_ + cell___3_24__B_ + pool__3_24_ = 1
invariant :cell___7_3__A_ + cell___7_3__B_ + pool__7_3_ = 1
invariant :cell___11_8__A_ + cell___11_8__B_ + pool__11_8_ = 1
invariant :cell___20_18__A_ + cell___20_18__B_ + pool__20_18_ = 1
invariant :cell___15_1__A_ + cell___15_1__B_ + pool__15_1_ = 1
invariant :cell___23_12__A_ + cell___23_12__B_ + pool__23_12_ = 1
invariant :cell___3_25__A_ + cell___3_25__B_ + pool__3_25_ = 1
invariant :cell___12_18__A_ + cell___12_18__B_ + pool__12_18_ = 1
invariant :cell___8_29__A_ + cell___8_29__B_ + pool__8_29_ = 1
invariant :cell___13_1__A_ + cell___13_1__B_ + pool__13_1_ = 1
invariant :cell___9_18__A_ + cell___9_18__B_ + pool__9_18_ = 1
invariant :cell___15_17__A_ + cell___15_17__B_ + pool__15_17_ = 1
invariant :cell___9_29__A_ + cell___9_29__B_ + pool__9_29_ = 1
invariant :cell___12_12__A_ + cell___12_12__B_ + pool__12_12_ = 1
invariant :cell___24_11__A_ + cell___24_11__B_ + pool__24_11_ = 1
invariant :cell___19_14__A_ + cell___19_14__B_ + pool__19_14_ = 1
invariant :cell___3_18__A_ + cell___3_18__B_ + pool__3_18_ = 1
invariant :cell___25_20__A_ + cell___25_20__B_ + pool__25_20_ = 1
invariant :cell___25_30__A_ + cell___25_30__B_ + pool__25_30_ = 1
invariant :cell___25_24__A_ + cell___25_24__B_ + pool__25_24_ = 1
invariant :cell___19_19__A_ + cell___19_19__B_ + pool__19_19_ = 1
invariant :cell___19_5__A_ + cell___19_5__B_ + pool__19_5_ = 1
invariant :cell___17_30__A_ + cell___17_30__B_ + pool__17_30_ = 1
invariant :cell___5_7__A_ + cell___5_7__B_ + pool__5_7_ = 1
invariant :cell___24_26__A_ + cell___24_26__B_ + pool__24_26_ = 1
invariant :cell___21_2__A_ + cell___21_2__B_ + pool__21_2_ = 1
invariant :cell___30_26__A_ + cell___30_26__B_ + pool__30_26_ = 1
invariant :cell___7_26__A_ + cell___7_26__B_ + pool__7_26_ = 1
invariant :cell___18_5__A_ + cell___18_5__B_ + pool__18_5_ = 1
invariant :cell___17_5__A_ + cell___17_5__B_ + pool__17_5_ = 1
invariant :cell___22_9__A_ + cell___22_9__B_ + pool__22_9_ = 1
invariant :cell___30_28__A_ + cell___30_28__B_ + pool__30_28_ = 1
invariant :cell___25_22__A_ + cell___25_22__B_ + pool__25_22_ = 1
invariant :cell___8_20__A_ + cell___8_20__B_ + pool__8_20_ = 1
invariant :cell___30_1__A_ + cell___30_1__B_ + pool__30_1_ = 1
invariant :cell___16_6__A_ + cell___16_6__B_ + pool__16_6_ = 1
invariant :cell___7_10__A_ + cell___7_10__B_ + pool__7_10_ = 1
invariant :cell___5_16__A_ + cell___5_16__B_ + pool__5_16_ = 1
invariant :cell___5_8__A_ + cell___5_8__B_ + pool__5_8_ = 1
invariant :cell___11_27__A_ + cell___11_27__B_ + pool__11_27_ = 1
invariant :cell___26_6__A_ + cell___26_6__B_ + pool__26_6_ = 1
invariant :cell___21_26__A_ + cell___21_26__B_ + pool__21_26_ = 1
invariant :cell___26_14__A_ + cell___26_14__B_ + pool__26_14_ = 1
invariant :cell___15_12__A_ + cell___15_12__B_ + pool__15_12_ = 1
invariant :cell___20_14__A_ + cell___20_14__B_ + pool__20_14_ = 1
invariant :cell___17_27__A_ + cell___17_27__B_ + pool__17_27_ = 1
invariant :cell___25_10__A_ + cell___25_10__B_ + pool__25_10_ = 1
invariant :cell___4_9__A_ + cell___4_9__B_ + pool__4_9_ = 1
invariant :cell___11_7__A_ + cell___11_7__B_ + pool__11_7_ = 1
invariant :cell___18_1__A_ + cell___18_1__B_ + pool__18_1_ = 1
invariant :cell___26_23__A_ + cell___26_23__B_ + pool__26_23_ = 1
invariant :cell___13_5__A_ + cell___13_5__B_ + pool__13_5_ = 1
invariant :cell___6_9__A_ + cell___6_9__B_ + pool__6_9_ = 1
invariant :cell___13_14__A_ + cell___13_14__B_ + pool__13_14_ = 1
invariant :cell___18_6__A_ + cell___18_6__B_ + pool__18_6_ = 1
invariant :cell___2_13__A_ + cell___2_13__B_ + pool__2_13_ = 1
invariant :cell___17_14__A_ + cell___17_14__B_ + pool__17_14_ = 1
invariant :cell___30_30__A_ + cell___30_30__B_ + pool__30_30_ = 1
invariant :cell___5_5__A_ + cell___5_5__B_ + pool__5_5_ = 1
invariant :cell___21_10__A_ + cell___21_10__B_ + pool__21_10_ = 1
invariant :cell___24_5__A_ + cell___24_5__B_ + pool__24_5_ = 1
invariant :cell___12_3__A_ + cell___12_3__B_ + pool__12_3_ = 1
invariant :cell___28_2__A_ + cell___28_2__B_ + pool__28_2_ = 1
invariant :cell___14_6__A_ + cell___14_6__B_ + pool__14_6_ = 1
invariant :cell___22_18__A_ + cell___22_18__B_ + pool__22_18_ = 1
invariant :cell___6_19__A_ + cell___6_19__B_ + pool__6_19_ = 1
invariant :cell___17_23__A_ + cell___17_23__B_ + pool__17_23_ = 1
invariant :cell___29_4__A_ + cell___29_4__B_ + pool__29_4_ = 1
invariant :cell___5_15__A_ + cell___5_15__B_ + pool__5_15_ = 1
invariant :cell___27_5__A_ + cell___27_5__B_ + pool__27_5_ = 1
invariant :cell___29_21__A_ + cell___29_21__B_ + pool__29_21_ = 1
invariant :cell___18_3__A_ + cell___18_3__B_ + pool__18_3_ = 1
invariant :cell___2_14__A_ + cell___2_14__B_ + pool__2_14_ = 1
invariant :cell___27_27__A_ + cell___27_27__B_ + pool__27_27_ = 1
invariant :cell___22_21__A_ + cell___22_21__B_ + pool__22_21_ = 1
invariant :cell___27_30__A_ + cell___27_30__B_ + pool__27_30_ = 1
invariant :cell___23_6__A_ + cell___23_6__B_ + pool__23_6_ = 1
invariant :cell___21_29__A_ + cell___21_29__B_ + pool__21_29_ = 1
invariant :cell___16_25__A_ + cell___16_25__B_ + pool__16_25_ = 1
invariant :cell___25_11__A_ + cell___25_11__B_ + pool__25_11_ = 1
invariant :cell___1_20__A_ + cell___1_20__B_ + pool__1_20_ = 1
invariant :cell___18_10__A_ + cell___18_10__B_ + pool__18_10_ = 1
invariant :cell___7_18__A_ + cell___7_18__B_ + pool__7_18_ = 1
invariant :cell___14_20__A_ + cell___14_20__B_ + pool__14_20_ = 1
invariant :cell___8_17__A_ + cell___8_17__B_ + pool__8_17_ = 1
invariant :cell___22_22__A_ + cell___22_22__B_ + pool__22_22_ = 1
invariant :cell___28_23__A_ + cell___28_23__B_ + pool__28_23_ = 1
invariant :cell___2_22__A_ + cell___2_22__B_ + pool__2_22_ = 1
invariant :cell___6_30__A_ + cell___6_30__B_ + pool__6_30_ = 1
invariant :cell___21_24__A_ + cell___21_24__B_ + pool__21_24_ = 1
invariant :cell___22_19__A_ + cell___22_19__B_ + pool__22_19_ = 1
invariant :cell___23_21__A_ + cell___23_21__B_ + pool__23_21_ = 1
invariant :cell___13_4__A_ + cell___13_4__B_ + pool__13_4_ = 1
invariant :cell___9_5__A_ + cell___9_5__B_ + pool__9_5_ = 1
invariant :cell___5_6__A_ + cell___5_6__B_ + pool__5_6_ = 1
invariant :cell___3_1__A_ + cell___3_1__B_ + pool__3_1_ = 1
invariant :cell___9_15__A_ + cell___9_15__B_ + pool__9_15_ = 1
invariant :cell___24_4__A_ + cell___24_4__B_ + pool__24_4_ = 1
invariant :cell___14_3__A_ + cell___14_3__B_ + pool__14_3_ = 1
invariant :cell___14_9__A_ + cell___14_9__B_ + pool__14_9_ = 1
invariant :cell___26_7__A_ + cell___26_7__B_ + pool__26_7_ = 1
invariant :cell___2_11__A_ + cell___2_11__B_ + pool__2_11_ = 1
invariant :cell___23_23__A_ + cell___23_23__B_ + pool__23_23_ = 1
invariant :cell___25_28__A_ + cell___25_28__B_ + pool__25_28_ = 1
invariant :cell___29_18__A_ + cell___29_18__B_ + pool__29_18_ = 1
invariant :cell___16_23__A_ + cell___16_23__B_ + pool__16_23_ = 1
invariant :cell___3_9__A_ + cell___3_9__B_ + pool__3_9_ = 1
invariant :cell___27_9__A_ + cell___27_9__B_ + pool__27_9_ = 1
invariant :cell___10_29__A_ + cell___10_29__B_ + pool__10_29_ = 1
invariant :cell___14_8__A_ + cell___14_8__B_ + pool__14_8_ = 1
invariant :cell___24_24__A_ + cell___24_24__B_ + pool__24_24_ = 1
invariant :cell___17_8__A_ + cell___17_8__B_ + pool__17_8_ = 1
invariant :cell___29_27__A_ + cell___29_27__B_ + pool__29_27_ = 1
invariant :cell___1_14__A_ + cell___1_14__B_ + pool__1_14_ = 1
invariant :cell___4_18__A_ + cell___4_18__B_ + pool__4_18_ = 1
invariant :cell___1_12__A_ + cell___1_12__B_ + pool__1_12_ = 1
invariant :cell___21_18__A_ + cell___21_18__B_ + pool__21_18_ = 1
invariant :cell___7_13__A_ + cell___7_13__B_ + pool__7_13_ = 1
invariant :cell___11_11__A_ + cell___11_11__B_ + pool__11_11_ = 1
invariant :cell___22_8__A_ + cell___22_8__B_ + pool__22_8_ = 1
invariant :cell___11_6__A_ + cell___11_6__B_ + pool__11_6_ = 1
invariant :cell___23_9__A_ + cell___23_9__B_ + pool__23_9_ = 1
invariant :cell___4_28__A_ + cell___4_28__B_ + pool__4_28_ = 1
invariant :cell___12_4__A_ + cell___12_4__B_ + pool__12_4_ = 1
invariant :cell___22_30__A_ + cell___22_30__B_ + pool__22_30_ = 1
invariant :cell___23_15__A_ + cell___23_15__B_ + pool__23_15_ = 1
invariant :cell___15_13__A_ + cell___15_13__B_ + pool__15_13_ = 1
invariant :cell___22_14__A_ + cell___22_14__B_ + pool__22_14_ = 1
invariant :cell___10_20__A_ + cell___10_20__B_ + pool__10_20_ = 1
invariant :cell___12_17__A_ + cell___12_17__B_ + pool__12_17_ = 1
invariant :cell___16_24__A_ + cell___16_24__B_ + pool__16_24_ = 1
invariant :cell___2_19__A_ + cell___2_19__B_ + pool__2_19_ = 1
invariant :cell___27_22__A_ + cell___27_22__B_ + pool__27_22_ = 1
invariant :cell___3_8__A_ + cell___3_8__B_ + pool__3_8_ = 1
invariant :cell___8_30__A_ + cell___8_30__B_ + pool__8_30_ = 1
invariant :cell___28_6__A_ + cell___28_6__B_ + pool__28_6_ = 1
invariant :cell___17_2__A_ + cell___17_2__B_ + pool__17_2_ = 1
invariant :cell___13_16__A_ + cell___13_16__B_ + pool__13_16_ = 1
invariant :cell___24_9__A_ + cell___24_9__B_ + pool__24_9_ = 1
invariant :cell___27_28__A_ + cell___27_28__B_ + pool__27_28_ = 1
invariant :cell___15_21__A_ + cell___15_21__B_ + pool__15_21_ = 1
invariant :cell___10_13__A_ + cell___10_13__B_ + pool__10_13_ = 1
invariant :cell___24_10__A_ + cell___24_10__B_ + pool__24_10_ = 1
invariant :cell___13_17__A_ + cell___13_17__B_ + pool__13_17_ = 1
invariant :cell___29_3__A_ + cell___29_3__B_ + pool__29_3_ = 1
invariant :cell___18_28__A_ + cell___18_28__B_ + pool__18_28_ = 1
invariant :cell___24_2__A_ + cell___24_2__B_ + pool__24_2_ = 1
invariant :cell___5_9__A_ + cell___5_9__B_ + pool__5_9_ = 1
invariant :cell___13_15__A_ + cell___13_15__B_ + pool__13_15_ = 1
invariant :cell___29_5__A_ + cell___29_5__B_ + pool__29_5_ = 1
invariant :cell___3_27__A_ + cell___3_27__B_ + pool__3_27_ = 1
invariant :cell___9_13__A_ + cell___9_13__B_ + pool__9_13_ = 1
invariant :cell___25_2__A_ + cell___25_2__B_ + pool__25_2_ = 1
invariant :cell___12_9__A_ + cell___12_9__B_ + pool__12_9_ = 1
invariant :cell___8_28__A_ + cell___8_28__B_ + pool__8_28_ = 1
invariant :cell___24_28__A_ + cell___24_28__B_ + pool__24_28_ = 1
invariant :cell___2_10__A_ + cell___2_10__B_ + pool__2_10_ = 1
invariant :cell___22_16__A_ + cell___22_16__B_ + pool__22_16_ = 1
invariant :cell___11_22__A_ + cell___11_22__B_ + pool__11_22_ = 1
invariant :cell___14_27__A_ + cell___14_27__B_ + pool__14_27_ = 1
invariant :cell___12_2__A_ + cell___12_2__B_ + pool__12_2_ = 1
invariant :cell___22_27__A_ + cell___22_27__B_ + pool__22_27_ = 1
invariant :cell___28_10__A_ + cell___28_10__B_ + pool__28_10_ = 1
invariant :cell___23_4__A_ + cell___23_4__B_ + pool__23_4_ = 1
invariant :cell___19_1__A_ + cell___19_1__B_ + pool__19_1_ = 1
invariant :cell___22_5__A_ + cell___22_5__B_ + pool__22_5_ = 1
invariant :cell___17_9__A_ + cell___17_9__B_ + pool__17_9_ = 1
invariant :cell___30_11__A_ + cell___30_11__B_ + pool__30_11_ = 1
invariant :cell___4_19__A_ + cell___4_19__B_ + pool__4_19_ = 1
invariant :cell___5_27__A_ + cell___5_27__B_ + pool__5_27_ = 1
invariant :cell___9_20__A_ + cell___9_20__B_ + pool__9_20_ = 1
invariant :cell___9_30__A_ + cell___9_30__B_ + pool__9_30_ = 1
invariant :cell___25_13__A_ + cell___25_13__B_ + pool__25_13_ = 1
invariant :cell___2_7__A_ + cell___2_7__B_ + pool__2_7_ = 1
invariant :cell___11_29__A_ + cell___11_29__B_ + pool__11_29_ = 1
invariant :cell___2_25__A_ + cell___2_25__B_ + pool__2_25_ = 1
invariant :cell___28_8__A_ + cell___28_8__B_ + pool__28_8_ = 1
invariant :cell___6_20__A_ + cell___6_20__B_ + pool__6_20_ = 1
invariant :cell___1_28__A_ + cell___1_28__B_ + pool__1_28_ = 1
invariant :cell___21_13__A_ + cell___21_13__B_ + pool__21_13_ = 1
invariant :cell___17_12__A_ + cell___17_12__B_ + pool__17_12_ = 1
invariant :cell___16_20__A_ + cell___16_20__B_ + pool__16_20_ = 1
invariant :cell___27_25__A_ + cell___27_25__B_ + pool__27_25_ = 1
invariant :cell___6_28__A_ + cell___6_28__B_ + pool__6_28_ = 1
invariant :cell___28_11__A_ + cell___28_11__B_ + pool__28_11_ = 1
invariant :cell___7_7__A_ + cell___7_7__B_ + pool__7_7_ = 1
invariant :cell___28_25__A_ + cell___28_25__B_ + pool__28_25_ = 1
invariant :cell___18_16__A_ + cell___18_16__B_ + pool__18_16_ = 1
invariant :cell___6_24__A_ + cell___6_24__B_ + pool__6_24_ = 1
invariant :cell___18_30__A_ + cell___18_30__B_ + pool__18_30_ = 1
invariant :cell___25_27__A_ + cell___25_27__B_ + pool__25_27_ = 1
invariant :cell___10_5__A_ + cell___10_5__B_ + pool__10_5_ = 1
invariant :cell___16_15__A_ + cell___16_15__B_ + pool__16_15_ = 1
invariant :cell___23_10__A_ + cell___23_10__B_ + pool__23_10_ = 1
invariant :cell___13_21__A_ + cell___13_21__B_ + pool__13_21_ = 1
invariant :cell___30_21__A_ + cell___30_21__B_ + pool__30_21_ = 1
invariant :cell___7_30__A_ + cell___7_30__B_ + pool__7_30_ = 1
invariant :cell___15_19__A_ + cell___15_19__B_ + pool__15_19_ = 1
invariant :cell___29_16__A_ + cell___29_16__B_ + pool__29_16_ = 1
invariant :cell___12_7__A_ + cell___12_7__B_ + pool__12_7_ = 1
invariant :cell___29_1__A_ + cell___29_1__B_ + pool__29_1_ = 1
invariant :cell___15_22__A_ + cell___15_22__B_ + pool__15_22_ = 1
invariant :cell___9_22__A_ + cell___9_22__B_ + pool__9_22_ = 1
invariant :cell___5_25__A_ + cell___5_25__B_ + pool__5_25_ = 1
invariant :cell___7_14__A_ + cell___7_14__B_ + pool__7_14_ = 1
invariant :cell___22_13__A_ + cell___22_13__B_ + pool__22_13_ = 1
invariant :cell___30_7__A_ + cell___30_7__B_ + pool__30_7_ = 1
invariant :cell___19_7__A_ + cell___19_7__B_ + pool__19_7_ = 1
invariant :cell___20_19__A_ + cell___20_19__B_ + pool__20_19_ = 1
invariant :cell___17_20__A_ + cell___17_20__B_ + pool__17_20_ = 1
invariant :cell___17_13__A_ + cell___17_13__B_ + pool__17_13_ = 1
invariant :cell___12_1__A_ + cell___12_1__B_ + pool__12_1_ = 1
invariant :cell___23_1__A_ + cell___23_1__B_ + pool__23_1_ = 1
invariant :cell___1_22__A_ + cell___1_22__B_ + pool__1_22_ = 1
invariant :cell___20_6__A_ + cell___20_6__B_ + pool__20_6_ = 1
invariant :cell___28_22__A_ + cell___28_22__B_ + pool__28_22_ = 1
invariant :cell___5_11__A_ + cell___5_11__B_ + pool__5_11_ = 1
invariant :cell___3_12__A_ + cell___3_12__B_ + pool__3_12_ = 1
invariant :cell___9_25__A_ + cell___9_25__B_ + pool__9_25_ = 1
invariant :cell___7_15__A_ + cell___7_15__B_ + pool__7_15_ = 1
invariant :cell___16_29__A_ + cell___16_29__B_ + pool__16_29_ = 1
invariant :cell___6_8__A_ + cell___6_8__B_ + pool__6_8_ = 1
invariant :cell___17_4__A_ + cell___17_4__B_ + pool__17_4_ = 1
invariant :cell___23_11__A_ + cell___23_11__B_ + pool__23_11_ = 1
invariant :cell___20_2__A_ + cell___20_2__B_ + pool__20_2_ = 1
invariant :cell___20_3__A_ + cell___20_3__B_ + pool__20_3_ = 1
invariant :cell___20_8__A_ + cell___20_8__B_ + pool__20_8_ = 1
invariant :cell___22_29__A_ + cell___22_29__B_ + pool__22_29_ = 1
invariant :cell___3_29__A_ + cell___3_29__B_ + pool__3_29_ = 1
invariant :cell___27_8__A_ + cell___27_8__B_ + pool__27_8_ = 1
invariant :cell___28_24__A_ + cell___28_24__B_ + pool__28_24_ = 1
invariant :cell___2_26__A_ + cell___2_26__B_ + pool__2_26_ = 1
invariant :cell___4_2__A_ + cell___4_2__B_ + pool__4_2_ = 1
invariant :cell___11_15__A_ + cell___11_15__B_ + pool__11_15_ = 1
invariant :cell___18_15__A_ + cell___18_15__B_ + pool__18_15_ = 1
invariant :cell___15_14__A_ + cell___15_14__B_ + pool__15_14_ = 1
invariant :cell___6_18__A_ + cell___6_18__B_ + pool__6_18_ = 1
invariant :cell___16_22__A_ + cell___16_22__B_ + pool__16_22_ = 1
invariant :cell___18_12__A_ + cell___18_12__B_ + pool__18_12_ = 1
invariant :cell___11_12__A_ + cell___11_12__B_ + pool__11_12_ = 1
invariant :cell___1_16__A_ + cell___1_16__B_ + pool__1_16_ = 1
invariant :cell___26_20__A_ + cell___26_20__B_ + pool__26_20_ = 1
invariant :cell___7_8__A_ + cell___7_8__B_ + pool__7_8_ = 1
invariant :cell___3_5__A_ + cell___3_5__B_ + pool__3_5_ = 1
invariant :cell___20_17__A_ + cell___20_17__B_ + pool__20_17_ = 1
invariant :cell___1_3__A_ + cell___1_3__B_ + pool__1_3_ = 1
invariant :cell___4_12__A_ + cell___4_12__B_ + pool__4_12_ = 1
invariant :cell___24_16__A_ + cell___24_16__B_ + pool__24_16_ = 1
invariant :cell___15_10__A_ + cell___15_10__B_ + pool__15_10_ = 1
invariant :cell___22_11__A_ + cell___22_11__B_ + pool__22_11_ = 1
invariant :cell___22_25__A_ + cell___22_25__B_ + pool__22_25_ = 1
invariant :cell___5_4__A_ + cell___5_4__B_ + pool__5_4_ = 1
invariant :cell___13_29__A_ + cell___13_29__B_ + pool__13_29_ = 1
invariant :cell___24_17__A_ + cell___24_17__B_ + pool__24_17_ = 1
invariant :cell___15_6__A_ + cell___15_6__B_ + pool__15_6_ = 1
invariant :cell___9_19__A_ + cell___9_19__B_ + pool__9_19_ = 1
invariant :cell___13_24__A_ + cell___13_24__B_ + pool__13_24_ = 1
invariant :cell___3_6__A_ + cell___3_6__B_ + pool__3_6_ = 1
invariant :cell___5_1__A_ + cell___5_1__B_ + pool__5_1_ = 1
invariant :cell___9_1__A_ + cell___9_1__B_ + pool__9_1_ = 1
invariant :cell___10_7__A_ + cell___10_7__B_ + pool__10_7_ = 1
invariant :cell___30_3__A_ + cell___30_3__B_ + pool__30_3_ = 1
invariant :cell___7_12__A_ + cell___7_12__B_ + pool__7_12_ = 1
invariant :cell___29_25__A_ + cell___29_25__B_ + pool__29_25_ = 1
invariant :cell___11_23__A_ + cell___11_23__B_ + pool__11_23_ = 1
invariant :cell___21_20__A_ + cell___21_20__B_ + pool__21_20_ = 1
invariant :cell___16_9__A_ + cell___16_9__B_ + pool__16_9_ = 1
invariant :cell___17_17__A_ + cell___17_17__B_ + pool__17_17_ = 1
invariant :cell___21_8__A_ + cell___21_8__B_ + pool__21_8_ = 1
invariant :cell___13_27__A_ + cell___13_27__B_ + pool__13_27_ = 1
invariant :cell___21_16__A_ + cell___21_16__B_ + pool__21_16_ = 1
invariant :cell___10_17__A_ + cell___10_17__B_ + pool__10_17_ = 1
invariant :cell___11_3__A_ + cell___11_3__B_ + pool__11_3_ = 1
invariant :cell___22_2__A_ + cell___22_2__B_ + pool__22_2_ = 1
invariant :cell___15_8__A_ + cell___15_8__B_ + pool__15_8_ = 1
invariant :cell___25_25__A_ + cell___25_25__B_ + pool__25_25_ = 1
invariant :cell___23_25__A_ + cell___23_25__B_ + pool__23_25_ = 1
invariant :cell___7_22__A_ + cell___7_22__B_ + pool__7_22_ = 1
invariant :cell___28_14__A_ + cell___28_14__B_ + pool__28_14_ = 1
invariant :cell___21_1__A_ + cell___21_1__B_ + pool__21_1_ = 1
invariant :cell___23_27__A_ + cell___23_27__B_ + pool__23_27_ = 1
invariant :cell___10_19__A_ + cell___10_19__B_ + pool__10_19_ = 1
invariant :cell___9_8__A_ + cell___9_8__B_ + pool__9_8_ = 1
invariant :cell___25_6__A_ + cell___25_6__B_ + pool__25_6_ = 1
invariant :cell___8_8__A_ + cell___8_8__B_ + pool__8_8_ = 1
invariant :cell___12_28__A_ + cell___12_28__B_ + pool__12_28_ = 1
invariant :cell___30_2__A_ + cell___30_2__B_ + pool__30_2_ = 1
invariant :cell___30_25__A_ + cell___30_25__B_ + pool__30_25_ = 1
invariant :cell___6_11__A_ + cell___6_11__B_ + pool__6_11_ = 1
invariant :cell___21_15__A_ + cell___21_15__B_ + pool__21_15_ = 1
invariant :cell___17_22__A_ + cell___17_22__B_ + pool__17_22_ = 1
invariant :cell___27_2__A_ + cell___27_2__B_ + pool__27_2_ = 1
invariant :cell___22_3__A_ + cell___22_3__B_ + pool__22_3_ = 1
invariant :cell___18_22__A_ + cell___18_22__B_ + pool__18_22_ = 1
invariant :cell___19_2__A_ + cell___19_2__B_ + pool__19_2_ = 1
invariant :cell___1_8__A_ + cell___1_8__B_ + pool__1_8_ = 1
invariant :cell___4_16__A_ + cell___4_16__B_ + pool__4_16_ = 1
invariant :cell___11_26__A_ + cell___11_26__B_ + pool__11_26_ = 1
invariant :cell___15_9__A_ + cell___15_9__B_ + pool__15_9_ = 1
invariant :cell___24_15__A_ + cell___24_15__B_ + pool__24_15_ = 1
invariant :cell___8_23__A_ + cell___8_23__B_ + pool__8_23_ = 1
invariant :cell___26_24__A_ + cell___26_24__B_ + pool__26_24_ = 1
invariant :cell___1_30__A_ + cell___1_30__B_ + pool__1_30_ = 1
invariant :cell___4_17__A_ + cell___4_17__B_ + pool__4_17_ = 1
invariant :cell___2_21__A_ + cell___2_21__B_ + pool__2_21_ = 1
invariant :cell___27_26__A_ + cell___27_26__B_ + pool__27_26_ = 1
invariant :cell___4_21__A_ + cell___4_21__B_ + pool__4_21_ = 1
invariant :cell___11_19__A_ + cell___11_19__B_ + pool__11_19_ = 1
invariant :cell___19_29__A_ + cell___19_29__B_ + pool__19_29_ = 1
invariant :cell___5_18__A_ + cell___5_18__B_ + pool__5_18_ = 1
invariant :cell___9_23__A_ + cell___9_23__B_ + pool__9_23_ = 1
invariant :cell___19_3__A_ + cell___19_3__B_ + pool__19_3_ = 1
invariant :cell___24_6__A_ + cell___24_6__B_ + pool__24_6_ = 1
invariant :cell___4_10__A_ + cell___4_10__B_ + pool__4_10_ = 1
invariant :cell___26_19__A_ + cell___26_19__B_ + pool__26_19_ = 1
invariant :cell___15_4__A_ + cell___15_4__B_ + pool__15_4_ = 1
invariant :cell___1_24__A_ + cell___1_24__B_ + pool__1_24_ = 1
invariant :cell___19_26__A_ + cell___19_26__B_ + pool__19_26_ = 1
invariant :cell___29_23__A_ + cell___29_23__B_ + pool__29_23_ = 1
invariant :cell___5_14__A_ + cell___5_14__B_ + pool__5_14_ = 1
invariant :cell___16_16__A_ + cell___16_16__B_ + pool__16_16_ = 1
invariant :cell___29_24__A_ + cell___29_24__B_ + pool__29_24_ = 1
invariant :cell___17_3__A_ + cell___17_3__B_ + pool__17_3_ = 1
invariant :cell___16_14__A_ + cell___16_14__B_ + pool__16_14_ = 1
invariant :cell___6_27__A_ + cell___6_27__B_ + pool__6_27_ = 1
invariant :cell___10_1__A_ + cell___10_1__B_ + pool__10_1_ = 1
invariant :cell___18_25__A_ + cell___18_25__B_ + pool__18_25_ = 1
invariant :cell___29_11__A_ + cell___29_11__B_ + pool__29_11_ = 1
invariant :cell___8_3__A_ + cell___8_3__B_ + pool__8_3_ = 1
invariant :cell___25_5__A_ + cell___25_5__B_ + pool__25_5_ = 1
invariant :cell___16_12__A_ + cell___16_12__B_ + pool__16_12_ = 1
invariant :cell___24_20__A_ + cell___24_20__B_ + pool__24_20_ = 1
invariant :cell___4_22__A_ + cell___4_22__B_ + pool__4_22_ = 1
invariant :cell___5_22__A_ + cell___5_22__B_ + pool__5_22_ = 1
invariant :cell___10_16__A_ + cell___10_16__B_ + pool__10_16_ = 1
invariant :cell___16_4__A_ + cell___16_4__B_ + pool__16_4_ = 1
invariant :cell___25_8__A_ + cell___25_8__B_ + pool__25_8_ = 1
invariant :cell___17_7__A_ + cell___17_7__B_ + pool__17_7_ = 1
invariant :cell___8_5__A_ + cell___8_5__B_ + pool__8_5_ = 1
invariant :cell___20_10__A_ + cell___20_10__B_ + pool__20_10_ = 1
invariant :cell___30_22__A_ + cell___30_22__B_ + pool__30_22_ = 1
invariant :cell___12_29__A_ + cell___12_29__B_ + pool__12_29_ = 1
invariant :cell___27_16__A_ + cell___27_16__B_ + pool__27_16_ = 1
invariant :cell___2_2__A_ + cell___2_2__B_ + pool__2_2_ = 1
invariant :cell___16_27__A_ + cell___16_27__B_ + pool__16_27_ = 1
invariant :cell___30_17__A_ + cell___30_17__B_ + pool__30_17_ = 1
invariant :cell___22_4__A_ + cell___22_4__B_ + pool__22_4_ = 1
invariant :cell___15_2__A_ + cell___15_2__B_ + pool__15_2_ = 1
invariant :cell___21_4__A_ + cell___21_4__B_ + pool__21_4_ = 1
invariant :cell___26_30__A_ + cell___26_30__B_ + pool__26_30_ = 1
invariant :cell___27_17__A_ + cell___27_17__B_ + pool__27_17_ = 1
invariant :cell___1_29__A_ + cell___1_29__B_ + pool__1_29_ = 1
invariant :cell___4_29__A_ + cell___4_29__B_ + pool__4_29_ = 1
invariant :cell___15_18__A_ + cell___15_18__B_ + pool__15_18_ = 1
invariant :cell___28_19__A_ + cell___28_19__B_ + pool__28_19_ = 1
invariant :cell___30_13__A_ + cell___30_13__B_ + pool__30_13_ = 1
invariant :cell___10_28__A_ + cell___10_28__B_ + pool__10_28_ = 1
invariant :cell___28_30__A_ + cell___28_30__B_ + pool__28_30_ = 1
invariant :cell___10_21__A_ + cell___10_21__B_ + pool__10_21_ = 1
invariant :cell___4_26__A_ + cell___4_26__B_ + pool__4_26_ = 1
invariant :cell___17_28__A_ + cell___17_28__B_ + pool__17_28_ = 1
invariant :cell___6_2__A_ + cell___6_2__B_ + pool__6_2_ = 1
invariant :cell___17_15__A_ + cell___17_15__B_ + pool__17_15_ = 1
invariant :cell___29_15__A_ + cell___29_15__B_ + pool__29_15_ = 1
invariant :cell___4_27__A_ + cell___4_27__B_ + pool__4_27_ = 1
invariant :cell___27_21__A_ + cell___27_21__B_ + pool__27_21_ = 1
invariant :cell___21_30__A_ + cell___21_30__B_ + pool__21_30_ = 1
invariant :cell___29_22__A_ + cell___29_22__B_ + pool__29_22_ = 1
invariant :cell___19_20__A_ + cell___19_20__B_ + pool__19_20_ = 1
invariant :cell___23_29__A_ + cell___23_29__B_ + pool__23_29_ = 1
invariant :cell___1_13__A_ + cell___1_13__B_ + pool__1_13_ = 1
invariant :cell___20_5__A_ + cell___20_5__B_ + pool__20_5_ = 1
invariant :cell___19_17__A_ + cell___19_17__B_ + pool__19_17_ = 1
invariant :cell___30_27__A_ + cell___30_27__B_ + pool__30_27_ = 1
invariant :cell___25_21__A_ + cell___25_21__B_ + pool__25_21_ = 1
invariant :cell___9_17__A_ + cell___9_17__B_ + pool__9_17_ = 1
invariant :cell___5_23__A_ + cell___5_23__B_ + pool__5_23_ = 1
invariant :cell___18_8__A_ + cell___18_8__B_ + pool__18_8_ = 1
invariant :cell___10_15__A_ + cell___10_15__B_ + pool__10_15_ = 1
invariant :cell___19_15__A_ + cell___19_15__B_ + pool__19_15_ = 1
invariant :cell___6_21__A_ + cell___6_21__B_ + pool__6_21_ = 1
invariant :cell___15_26__A_ + cell___15_26__B_ + pool__15_26_ = 1
invariant :cell___28_18__A_ + cell___28_18__B_ + pool__28_18_ = 1
invariant :cell___26_18__A_ + cell___26_18__B_ + pool__26_18_ = 1
invariant :cell___26_16__A_ + cell___26_16__B_ + pool__26_16_ = 1
invariant :cell___5_3__A_ + cell___5_3__B_ + pool__5_3_ = 1
invariant :cell___24_7__A_ + cell___24_7__B_ + pool__24_7_ = 1
invariant :cell___30_6__A_ + cell___30_6__B_ + pool__30_6_ = 1
invariant :cell___23_26__A_ + cell___23_26__B_ + pool__23_26_ = 1
invariant :cell___25_17__A_ + cell___25_17__B_ + pool__25_17_ = 1
invariant :cell___6_5__A_ + cell___6_5__B_ + pool__6_5_ = 1
invariant :cell___18_23__A_ + cell___18_23__B_ + pool__18_23_ = 1
invariant :cell___1_21__A_ + cell___1_21__B_ + pool__1_21_ = 1
invariant :cell___29_10__A_ + cell___29_10__B_ + pool__29_10_ = 1
invariant :cell___12_24__A_ + cell___12_24__B_ + pool__12_24_ = 1
invariant :cell___12_6__A_ + cell___12_6__B_ + pool__12_6_ = 1
invariant :cell___19_25__A_ + cell___19_25__B_ + pool__19_25_ = 1
invariant :cell___6_3__A_ + cell___6_3__B_ + pool__6_3_ = 1
invariant :cell___22_26__A_ + cell___22_26__B_ + pool__22_26_ = 1
invariant :cell___12_8__A_ + cell___12_8__B_ + pool__12_8_ = 1
invariant :cell___21_21__A_ + cell___21_21__B_ + pool__21_21_ = 1
invariant :cell___11_9__A_ + cell___11_9__B_ + pool__11_9_ = 1
invariant :cell___15_27__A_ + cell___15_27__B_ + pool__15_27_ = 1
invariant :cell___20_15__A_ + cell___20_15__B_ + pool__20_15_ = 1
invariant :cell___23_28__A_ + cell___23_28__B_ + pool__23_28_ = 1
invariant :cell___9_7__A_ + cell___9_7__B_ + pool__9_7_ = 1
invariant :cell___4_4__A_ + cell___4_4__B_ + pool__4_4_ = 1
invariant :cell___26_26__A_ + cell___26_26__B_ + pool__26_26_ = 1
invariant :cell___2_20__A_ + cell___2_20__B_ + pool__2_20_ = 1
invariant :cell___25_26__A_ + cell___25_26__B_ + pool__25_26_ = 1
invariant :cell___23_30__A_ + cell___23_30__B_ + pool__23_30_ = 1
invariant :cell___7_2__A_ + cell___7_2__B_ + pool__7_2_ = 1
invariant :cell___4_5__A_ + cell___4_5__B_ + pool__4_5_ = 1
invariant :cell___12_23__A_ + cell___12_23__B_ + pool__12_23_ = 1
invariant :cell___5_10__A_ + cell___5_10__B_ + pool__5_10_ = 1
invariant :cell___12_16__A_ + cell___12_16__B_ + pool__12_16_ = 1
invariant :cell___19_9__A_ + cell___19_9__B_ + pool__19_9_ = 1
invariant :cell___10_25__A_ + cell___10_25__B_ + pool__10_25_ = 1
invariant :cell___28_26__A_ + cell___28_26__B_ + pool__28_26_ = 1
invariant :cell___8_14__A_ + cell___8_14__B_ + pool__8_14_ = 1
invariant :cell___3_7__A_ + cell___3_7__B_ + pool__3_7_ = 1
invariant :cell___12_13__A_ + cell___12_13__B_ + pool__12_13_ = 1
invariant :cell___23_17__A_ + cell___23_17__B_ + pool__23_17_ = 1
invariant :cell___20_25__A_ + cell___20_25__B_ + pool__20_25_ = 1
invariant :cell___16_19__A_ + cell___16_19__B_ + pool__16_19_ = 1
invariant :cell___29_2__A_ + cell___29_2__B_ + pool__29_2_ = 1
invariant :cell___7_17__A_ + cell___7_17__B_ + pool__7_17_ = 1
invariant :cell___4_8__A_ + cell___4_8__B_ + pool__4_8_ = 1
invariant :cell___4_11__A_ + cell___4_11__B_ + pool__4_11_ = 1
invariant :cell___20_24__A_ + cell___20_24__B_ + pool__20_24_ = 1
invariant :cell___22_17__A_ + cell___22_17__B_ + pool__22_17_ = 1
invariant :cell___9_10__A_ + cell___9_10__B_ + pool__9_10_ = 1
invariant :cell___24_12__A_ + cell___24_12__B_ + pool__24_12_ = 1
invariant :cell___10_24__A_ + cell___10_24__B_ + pool__10_24_ = 1
invariant :cell___11_28__A_ + cell___11_28__B_ + pool__11_28_ = 1
invariant :cell___27_10__A_ + cell___27_10__B_ + pool__27_10_ = 1
invariant :cell___4_3__A_ + cell___4_3__B_ + pool__4_3_ = 1
invariant :cell___8_22__A_ + cell___8_22__B_ + pool__8_22_ = 1
invariant :cell___2_6__A_ + cell___2_6__B_ + pool__2_6_ = 1
invariant :cell___7_24__A_ + cell___7_24__B_ + pool__7_24_ = 1
invariant :cell___26_3__A_ + cell___26_3__B_ + pool__26_3_ = 1
invariant :cell___3_21__A_ + cell___3_21__B_ + pool__3_21_ = 1
invariant :cell___3_11__A_ + cell___3_11__B_ + pool__3_11_ = 1
invariant :cell___9_2__A_ + cell___9_2__B_ + pool__9_2_ = 1
invariant :cell___4_30__A_ + cell___4_30__B_ + pool__4_30_ = 1
invariant :cell___29_8__A_ + cell___29_8__B_ + pool__29_8_ = 1
invariant :cell___5_28__A_ + cell___5_28__B_ + pool__5_28_ = 1
invariant :cell___7_5__A_ + cell___7_5__B_ + pool__7_5_ = 1
invariant :cell___15_29__A_ + cell___15_29__B_ + pool__15_29_ = 1
invariant :cell___26_12__A_ + cell___26_12__B_ + pool__26_12_ = 1
invariant :cell___6_6__A_ + cell___6_6__B_ + pool__6_6_ = 1
invariant :cell___26_28__A_ + cell___26_28__B_ + pool__26_28_ = 1
invariant :cell___27_13__A_ + cell___27_13__B_ + pool__27_13_ = 1
invariant :cell___18_26__A_ + cell___18_26__B_ + pool__18_26_ = 1
invariant :cell___4_20__A_ + cell___4_20__B_ + pool__4_20_ = 1
invariant :cell___15_15__A_ + cell___15_15__B_ + pool__15_15_ = 1
invariant :cell___7_16__A_ + cell___7_16__B_ + pool__7_16_ = 1
invariant :cell___7_4__A_ + cell___7_4__B_ + pool__7_4_ = 1
invariant :cell___19_28__A_ + cell___19_28__B_ + pool__19_28_ = 1
invariant :cell___2_4__A_ + cell___2_4__B_ + pool__2_4_ = 1
invariant :cell___2_8__A_ + cell___2_8__B_ + pool__2_8_ = 1
invariant :cell___25_14__A_ + cell___25_14__B_ + pool__25_14_ = 1
invariant :cell___19_24__A_ + cell___19_24__B_ + pool__19_24_ = 1
invariant :cell___12_22__A_ + cell___12_22__B_ + pool__12_22_ = 1
invariant :cell___21_28__A_ + cell___21_28__B_ + pool__21_28_ = 1
invariant :cell___11_14__A_ + cell___11_14__B_ + pool__11_14_ = 1
invariant :cell___12_21__A_ + cell___12_21__B_ + pool__12_21_ = 1
invariant :cell___8_12__A_ + cell___8_12__B_ + pool__8_12_ = 1
invariant :cell___4_25__A_ + cell___4_25__B_ + pool__4_25_ = 1
invariant :cell___13_28__A_ + cell___13_28__B_ + pool__13_28_ = 1
invariant :cell___14_16__A_ + cell___14_16__B_ + pool__14_16_ = 1
invariant :cell___14_11__A_ + cell___14_11__B_ + pool__14_11_ = 1
invariant :cell___4_6__A_ + cell___4_6__B_ + pool__4_6_ = 1
invariant :cell___23_16__A_ + cell___23_16__B_ + pool__23_16_ = 1
invariant :cell___23_14__A_ + cell___23_14__B_ + pool__23_14_ = 1
invariant :cell___28_21__A_ + cell___28_21__B_ + pool__28_21_ = 1
invariant :cell___16_21__A_ + cell___16_21__B_ + pool__16_21_ = 1
invariant :pool__10_10_ + pool__10_11_ + pool__10_12_ + pool__10_13_ + pool__10_14_ + pool__10_15_ + pool__10_16_ + pool__10_17_ + pool__10_18_ + pool__10_19_ + pool__10_1_ + pool__10_20_ + pool__10_21_ + pool__10_22_ + pool__10_23_ + pool__10_24_ + pool__10_25_ + pool__10_26_ + pool__10_27_ + pool__10_28_ + pool__10_29_ + pool__10_2_ + pool__10_30_ + pool__10_3_ + pool__10_4_ + pool__10_5_ + pool__10_6_ + pool__10_7_ + pool__10_8_ + pool__10_9_ + pool__11_10_ + pool__11_11_ + pool__11_12_ + pool__11_13_ + pool__11_14_ + pool__11_15_ + pool__11_16_ + pool__11_17_ + pool__11_18_ + pool__11_19_ + pool__11_1_ + pool__11_20_ + pool__11_21_ + pool__11_22_ + pool__11_23_ + pool__11_24_ + pool__11_25_ + pool__11_26_ + pool__11_27_ + pool__11_28_ + pool__11_29_ + pool__11_2_ + pool__11_30_ + pool__11_3_ + pool__11_4_ + pool__11_5_ + pool__11_6_ + pool__11_7_ + pool__11_8_ + pool__11_9_ + pool__12_10_ + pool__12_11_ + pool__12_12_ + pool__12_13_ + pool__12_14_ + pool__12_15_ + pool__12_16_ + pool__12_17_ + pool__12_18_ + pool__12_19_ + pool__12_1_ + pool__12_20_ + pool__12_21_ + pool__12_22_ + pool__12_23_ + pool__12_24_ + pool__12_25_ + pool__12_26_ + pool__12_27_ + pool__12_28_ + pool__12_29_ + pool__12_2_ + pool__12_30_ + pool__12_3_ + pool__12_4_ + pool__12_5_ + pool__12_6_ + pool__12_7_ + pool__12_8_ + pool__12_9_ + pool__13_10_ + pool__13_11_ + pool__13_12_ + pool__13_13_ + pool__13_14_ + pool__13_15_ + pool__13_16_ + pool__13_17_ + pool__13_18_ + pool__13_19_ + pool__13_1_ + pool__13_20_ + pool__13_21_ + pool__13_22_ + pool__13_23_ + pool__13_24_ + pool__13_25_ + pool__13_26_ + pool__13_27_ + pool__13_28_ + pool__13_29_ + pool__13_2_ + pool__13_30_ + pool__13_3_ + pool__13_4_ + pool__13_5_ + pool__13_6_ + pool__13_7_ + pool__13_8_ + pool__13_9_ + pool__14_10_ + pool__14_11_ + pool__14_12_ + pool__14_13_ + pool__14_14_ + pool__14_15_ + pool__14_16_ + pool__14_17_ + pool__14_18_ + pool__14_19_ + pool__14_1_ + pool__14_20_ + pool__14_21_ + pool__14_22_ + pool__14_23_ + pool__14_24_ + pool__14_25_ + pool__14_26_ + pool__14_27_ + pool__14_28_ + pool__14_29_ + pool__14_2_ + pool__14_30_ + pool__14_3_ + pool__14_4_ + pool__14_5_ + pool__14_6_ + pool__14_7_ + pool__14_8_ + pool__14_9_ + pool__15_10_ + pool__15_11_ + pool__15_12_ + pool__15_13_ + pool__15_14_ + pool__15_15_ + pool__15_16_ + pool__15_17_ + pool__15_18_ + pool__15_19_ + pool__15_1_ + pool__15_20_ + pool__15_21_ + pool__15_22_ + pool__15_23_ + pool__15_24_ + pool__15_25_ + pool__15_26_ + pool__15_27_ + pool__15_28_ + pool__15_29_ + pool__15_2_ + pool__15_30_ + pool__15_3_ + pool__15_4_ + pool__15_5_ + pool__15_6_ + pool__15_7_ + pool__15_8_ + pool__15_9_ + pool__16_10_ + pool__16_11_ + pool__16_12_ + pool__16_13_ + pool__16_14_ + pool__16_15_ + pool__16_16_ + pool__16_17_ + pool__16_18_ + pool__16_19_ + pool__16_1_ + pool__16_20_ + pool__16_21_ + pool__16_22_ + pool__16_23_ + pool__16_24_ + pool__16_25_ + pool__16_26_ + pool__16_27_ + pool__16_28_ + pool__16_29_ + pool__16_2_ + pool__16_30_ + pool__16_3_ + pool__16_4_ + pool__16_5_ + pool__16_6_ + pool__16_7_ + pool__16_8_ + pool__16_9_ + pool__17_10_ + pool__17_11_ + pool__17_12_ + pool__17_13_ + pool__17_14_ + pool__17_15_ + pool__17_16_ + pool__17_17_ + pool__17_18_ + pool__17_19_ + pool__17_1_ + pool__17_20_ + pool__17_21_ + pool__17_22_ + pool__17_23_ + pool__17_24_ + pool__17_25_ + pool__17_26_ + pool__17_27_ + pool__17_28_ + pool__17_29_ + pool__17_2_ + pool__17_30_ + pool__17_3_ + pool__17_4_ + pool__17_5_ + pool__17_6_ + pool__17_7_ + pool__17_8_ + pool__17_9_ + pool__18_10_ + pool__18_11_ + pool__18_12_ + pool__18_13_ + pool__18_14_ + pool__18_15_ + pool__18_16_ + pool__18_17_ + pool__18_18_ + pool__18_19_ + pool__18_1_ + pool__18_20_ + pool__18_21_ + pool__18_22_ + pool__18_23_ + pool__18_24_ + pool__18_25_ + pool__18_26_ + pool__18_27_ + pool__18_28_ + pool__18_29_ + pool__18_2_ + pool__18_30_ + pool__18_3_ + pool__18_4_ + pool__18_5_ + pool__18_6_ + pool__18_7_ + pool__18_8_ + pool__18_9_ + pool__19_10_ + pool__19_11_ + pool__19_12_ + pool__19_13_ + pool__19_14_ + pool__19_15_ + pool__19_16_ + pool__19_17_ + pool__19_18_ + pool__19_19_ + pool__19_1_ + pool__19_20_ + pool__19_21_ + pool__19_22_ + pool__19_23_ + pool__19_24_ + pool__19_25_ + pool__19_26_ + pool__19_27_ + pool__19_28_ + pool__19_29_ + pool__19_2_ + pool__19_30_ + pool__19_3_ + pool__19_4_ + pool__19_5_ + pool__19_6_ + pool__19_7_ + pool__19_8_ + pool__19_9_ + pool__1_10_ + pool__1_11_ + pool__1_12_ + pool__1_13_ + pool__1_14_ + pool__1_15_ + pool__1_16_ + pool__1_17_ + pool__1_18_ + pool__1_19_ + pool__1_1_ + pool__1_20_ + pool__1_21_ + pool__1_22_ + pool__1_23_ + pool__1_24_ + pool__1_25_ + pool__1_26_ + pool__1_27_ + pool__1_28_ + pool__1_29_ + pool__1_2_ + pool__1_30_ + pool__1_3_ + pool__1_4_ + pool__1_5_ + pool__1_6_ + pool__1_7_ + pool__1_8_ + pool__1_9_ + pool__20_10_ + pool__20_11_ + pool__20_12_ + pool__20_13_ + pool__20_14_ + pool__20_15_ + pool__20_16_ + pool__20_17_ + pool__20_18_ + pool__20_19_ + pool__20_1_ + pool__20_20_ + pool__20_21_ + pool__20_22_ + pool__20_23_ + pool__20_24_ + pool__20_25_ + pool__20_26_ + pool__20_27_ + pool__20_28_ + pool__20_29_ + pool__20_2_ + pool__20_30_ + pool__20_3_ + pool__20_4_ + pool__20_5_ + pool__20_6_ + pool__20_7_ + pool__20_8_ + pool__20_9_ + pool__21_10_ + pool__21_11_ + pool__21_12_ + pool__21_13_ + pool__21_14_ + pool__21_15_ + pool__21_16_ + pool__21_17_ + pool__21_18_ + pool__21_19_ + pool__21_1_ + pool__21_20_ + pool__21_21_ + pool__21_22_ + pool__21_23_ + pool__21_24_ + pool__21_25_ + pool__21_26_ + pool__21_27_ + pool__21_28_ + pool__21_29_ + pool__21_2_ + pool__21_30_ + pool__21_3_ + pool__21_4_ + pool__21_5_ + pool__21_6_ + pool__21_7_ + pool__21_8_ + pool__21_9_ + pool__22_10_ + pool__22_11_ + pool__22_12_ + pool__22_13_ + pool__22_14_ + pool__22_15_ + pool__22_16_ + pool__22_17_ + pool__22_18_ + pool__22_19_ + pool__22_1_ + pool__22_20_ + pool__22_21_ + pool__22_22_ + pool__22_23_ + pool__22_24_ + pool__22_25_ + pool__22_26_ + pool__22_27_ + pool__22_28_ + pool__22_29_ + pool__22_2_ + pool__22_30_ + pool__22_3_ + pool__22_4_ + pool__22_5_ + pool__22_6_ + pool__22_7_ + pool__22_8_ + pool__22_9_ + pool__23_10_ + pool__23_11_ + pool__23_12_ + pool__23_13_ + pool__23_14_ + pool__23_15_ + pool__23_16_ + pool__23_17_ + pool__23_18_ + pool__23_19_ + pool__23_1_ + pool__23_20_ + pool__23_21_ + pool__23_22_ + pool__23_23_ + pool__23_24_ + pool__23_25_ + pool__23_26_ + pool__23_27_ + pool__23_28_ + pool__23_29_ + pool__23_2_ + pool__23_30_ + pool__23_3_ + pool__23_4_ + pool__23_5_ + pool__23_6_ + pool__23_7_ + pool__23_8_ + pool__23_9_ + pool__24_10_ + pool__24_11_ + pool__24_12_ + pool__24_13_ + pool__24_14_ + pool__24_15_ + pool__24_16_ + pool__24_17_ + pool__24_18_ + pool__24_19_ + pool__24_1_ + pool__24_20_ + pool__24_21_ + pool__24_22_ + pool__24_23_ + pool__24_24_ + pool__24_25_ + pool__24_26_ + pool__24_27_ + pool__24_28_ + pool__24_29_ + pool__24_2_ + pool__24_30_ + pool__24_3_ + pool__24_4_ + pool__24_5_ + pool__24_6_ + pool__24_7_ + pool__24_8_ + pool__24_9_ + pool__25_10_ + pool__25_11_ + pool__25_12_ + pool__25_13_ + pool__25_14_ + pool__25_15_ + pool__25_16_ + pool__25_17_ + pool__25_18_ + pool__25_19_ + pool__25_1_ + pool__25_20_ + pool__25_21_ + pool__25_22_ + pool__25_23_ + pool__25_24_ + pool__25_25_ + pool__25_26_ + pool__25_27_ + pool__25_28_ + pool__25_29_ + pool__25_2_ + pool__25_30_ + pool__25_3_ + pool__25_4_ + pool__25_5_ + pool__25_6_ + pool__25_7_ + pool__25_8_ + pool__25_9_ + pool__26_10_ + pool__26_11_ + pool__26_12_ + pool__26_13_ + pool__26_14_ + pool__26_15_ + pool__26_16_ + pool__26_17_ + pool__26_18_ + pool__26_19_ + pool__26_1_ + pool__26_20_ + pool__26_21_ + pool__26_22_ + pool__26_23_ + pool__26_24_ + pool__26_25_ + pool__26_26_ + pool__26_27_ + pool__26_28_ + pool__26_29_ + pool__26_2_ + pool__26_30_ + pool__26_3_ + pool__26_4_ + pool__26_5_ + pool__26_6_ + pool__26_7_ + pool__26_8_ + pool__26_9_ + pool__27_10_ + pool__27_11_ + pool__27_12_ + pool__27_13_ + pool__27_14_ + pool__27_15_ + pool__27_16_ + pool__27_17_ + pool__27_18_ + pool__27_19_ + pool__27_1_ + pool__27_20_ + pool__27_21_ + pool__27_22_ + pool__27_23_ + pool__27_24_ + pool__27_25_ + pool__27_26_ + pool__27_27_ + pool__27_28_ + pool__27_29_ + pool__27_2_ + pool__27_30_ + pool__27_3_ + pool__27_4_ + pool__27_5_ + pool__27_6_ + pool__27_7_ + pool__27_8_ + pool__27_9_ + pool__28_10_ + pool__28_11_ + pool__28_12_ + pool__28_13_ + pool__28_14_ + pool__28_15_ + pool__28_16_ + pool__28_17_ + pool__28_18_ + pool__28_19_ + pool__28_1_ + pool__28_20_ + pool__28_21_ + pool__28_22_ + pool__28_23_ + pool__28_24_ + pool__28_25_ + pool__28_26_ + pool__28_27_ + pool__28_28_ + pool__28_29_ + pool__28_2_ + pool__28_30_ + pool__28_3_ + pool__28_4_ + pool__28_5_ + pool__28_6_ + pool__28_7_ + pool__28_8_ + pool__28_9_ + pool__29_10_ + pool__29_11_ + pool__29_12_ + pool__29_13_ + pool__29_14_ + pool__29_15_ + pool__29_16_ + pool__29_17_ + pool__29_18_ + pool__29_19_ + pool__29_1_ + pool__29_20_ + pool__29_21_ + pool__29_22_ + pool__29_23_ + pool__29_24_ + pool__29_25_ + pool__29_26_ + pool__29_27_ + pool__29_28_ + pool__29_29_ + pool__29_2_ + pool__29_30_ + pool__29_3_ + pool__29_4_ + pool__29_5_ + pool__29_6_ + pool__29_7_ + pool__29_8_ + pool__29_9_ + pool__2_10_ + pool__2_11_ + pool__2_12_ + pool__2_13_ + pool__2_14_ + pool__2_15_ + pool__2_16_ + pool__2_17_ + pool__2_18_ + pool__2_19_ + pool__2_1_ + pool__2_20_ + pool__2_21_ + pool__2_22_ + pool__2_23_ + pool__2_24_ + pool__2_25_ + pool__2_26_ + pool__2_27_ + pool__2_28_ + pool__2_29_ + pool__2_2_ + pool__2_30_ + pool__2_3_ + pool__2_4_ + pool__2_5_ + pool__2_6_ + pool__2_7_ + pool__2_8_ + pool__2_9_ + pool__30_10_ + pool__30_11_ + pool__30_12_ + pool__30_13_ + pool__30_14_ + pool__30_15_ + pool__30_16_ + pool__30_17_ + pool__30_18_ + pool__30_19_ + pool__30_1_ + pool__30_20_ + pool__30_21_ + pool__30_22_ + pool__30_23_ + pool__30_24_ + pool__30_25_ + pool__30_26_ + pool__30_27_ + pool__30_28_ + pool__30_29_ + pool__30_2_ + pool__30_30_ + pool__30_3_ + pool__30_4_ + pool__30_5_ + pool__30_6_ + pool__30_7_ + pool__30_8_ + pool__30_9_ + pool__3_10_ + pool__3_11_ + pool__3_12_ + pool__3_13_ + pool__3_14_ + pool__3_15_ + pool__3_16_ + pool__3_17_ + pool__3_18_ + pool__3_19_ + pool__3_1_ + pool__3_20_ + pool__3_21_ + pool__3_22_ + pool__3_23_ + pool__3_24_ + pool__3_25_ + pool__3_26_ + pool__3_27_ + pool__3_28_ + pool__3_29_ + pool__3_2_ + pool__3_30_ + pool__3_3_ + pool__3_4_ + pool__3_5_ + pool__3_6_ + pool__3_7_ + pool__3_8_ + pool__3_9_ + pool__4_10_ + pool__4_11_ + pool__4_12_ + pool__4_13_ + pool__4_14_ + pool__4_15_ + pool__4_16_ + pool__4_17_ + pool__4_18_ + pool__4_19_ + pool__4_1_ + pool__4_20_ + pool__4_21_ + pool__4_22_ + pool__4_23_ + pool__4_24_ + pool__4_25_ + pool__4_26_ + pool__4_27_ + pool__4_28_ + pool__4_29_ + pool__4_2_ + pool__4_30_ + pool__4_3_ + pool__4_4_ + pool__4_5_ + pool__4_6_ + pool__4_7_ + pool__4_8_ + pool__4_9_ + pool__5_10_ + pool__5_11_ + pool__5_12_ + pool__5_13_ + pool__5_14_ + pool__5_15_ + pool__5_16_ + pool__5_17_ + pool__5_18_ + pool__5_19_ + pool__5_1_ + pool__5_20_ + pool__5_21_ + pool__5_22_ + pool__5_23_ + pool__5_24_ + pool__5_25_ + pool__5_26_ + pool__5_27_ + pool__5_28_ + pool__5_29_ + pool__5_2_ + pool__5_30_ + pool__5_3_ + pool__5_4_ + pool__5_5_ + pool__5_6_ + pool__5_7_ + pool__5_8_ + pool__5_9_ + pool__6_10_ + pool__6_11_ + pool__6_12_ + pool__6_13_ + pool__6_14_ + pool__6_15_ + pool__6_16_ + pool__6_17_ + pool__6_18_ + pool__6_19_ + pool__6_1_ + pool__6_20_ + pool__6_21_ + pool__6_22_ + pool__6_23_ + pool__6_24_ + pool__6_25_ + pool__6_26_ + pool__6_27_ + pool__6_28_ + pool__6_29_ + pool__6_2_ + pool__6_30_ + pool__6_3_ + pool__6_4_ + pool__6_5_ + pool__6_6_ + pool__6_7_ + pool__6_8_ + pool__6_9_ + pool__7_10_ + pool__7_11_ + pool__7_12_ + pool__7_13_ + pool__7_14_ + pool__7_15_ + pool__7_16_ + pool__7_17_ + pool__7_18_ + pool__7_19_ + pool__7_1_ + pool__7_20_ + pool__7_21_ + pool__7_22_ + pool__7_23_ + pool__7_24_ + pool__7_25_ + pool__7_26_ + pool__7_27_ + pool__7_28_ + pool__7_29_ + pool__7_2_ + pool__7_30_ + pool__7_3_ + pool__7_4_ + pool__7_5_ + pool__7_6_ + pool__7_7_ + pool__7_8_ + pool__7_9_ + pool__8_10_ + pool__8_11_ + pool__8_12_ + pool__8_13_ + pool__8_14_ + pool__8_15_ + pool__8_16_ + pool__8_17_ + pool__8_18_ + pool__8_19_ + pool__8_1_ + pool__8_20_ + pool__8_21_ + pool__8_22_ + pool__8_23_ + pool__8_24_ + pool__8_25_ + pool__8_26_ + pool__8_27_ + pool__8_28_ + pool__8_29_ + pool__8_2_ + pool__8_30_ + pool__8_3_ + pool__8_4_ + pool__8_5_ + pool__8_6_ + pool__8_7_ + pool__8_8_ + pool__8_9_ + pool__9_10_ + pool__9_11_ + pool__9_12_ + pool__9_13_ + pool__9_14_ + pool__9_15_ + pool__9_16_ + pool__9_17_ + pool__9_18_ + pool__9_19_ + pool__9_1_ + pool__9_20_ + pool__9_21_ + pool__9_22_ + pool__9_23_ + pool__9_24_ + pool__9_25_ + pool__9_26_ + pool__9_27_ + pool__9_28_ + pool__9_29_ + pool__9_2_ + pool__9_30_ + pool__9_3_ + pool__9_4_ + pool__9_5_ + pool__9_6_ + pool__9_7_ + pool__9_8_ + pool__9_9_ + size_dot = 900
invariant :cell___13_8__A_ + cell___13_8__B_ + pool__13_8_ = 1
invariant :cell___23_22__A_ + cell___23_22__B_ + pool__23_22_ = 1
invariant :cell___13_20__A_ + cell___13_20__B_ + pool__13_20_ = 1
invariant :cell___11_20__A_ + cell___11_20__B_ + pool__11_20_ = 1
invariant :cell___20_9__A_ + cell___20_9__B_ + pool__20_9_ = 1
invariant :cell___16_11__A_ + cell___16_11__B_ + pool__16_11_ = 1
invariant :cell___27_3__A_ + cell___27_3__B_ + pool__27_3_ = 1
invariant :cell___3_15__A_ + cell___3_15__B_ + pool__3_15_ = 1
invariant :cell___7_23__A_ + cell___7_23__B_ + pool__7_23_ = 1
invariant :cell___19_6__A_ + cell___19_6__B_ + pool__19_6_ = 1
invariant :cell___20_12__A_ + cell___20_12__B_ + pool__20_12_ = 1
invariant :cell___23_7__A_ + cell___23_7__B_ + pool__23_7_ = 1
invariant :cell___20_21__A_ + cell___20_21__B_ + pool__20_21_ = 1
invariant :cell___2_30__A_ + cell___2_30__B_ + pool__2_30_ = 1
invariant :cell___1_18__A_ + cell___1_18__B_ + pool__1_18_ = 1
invariant :cell___20_26__A_ + cell___20_26__B_ + pool__20_26_ = 1
invariant :cell___10_9__A_ + cell___10_9__B_ + pool__10_9_ = 1
invariant :cell___9_28__A_ + cell___9_28__B_ + pool__9_28_ = 1
invariant :cell___10_30__A_ + cell___10_30__B_ + pool__10_30_ = 1
invariant :cell___19_4__A_ + cell___19_4__B_ + pool__19_4_ = 1
invariant :cell___26_4__A_ + cell___26_4__B_ + pool__26_4_ = 1
invariant :cell___9_14__A_ + cell___9_14__B_ + pool__9_14_ = 1
invariant :cell___14_28__A_ + cell___14_28__B_ + pool__14_28_ = 1
invariant :cell___27_24__A_ + cell___27_24__B_ + pool__27_24_ = 1
invariant :cell___12_20__A_ + cell___12_20__B_ + pool__12_20_ = 1
invariant :cell___23_8__A_ + cell___23_8__B_ + pool__23_8_ = 1
invariant :cell___6_22__A_ + cell___6_22__B_ + pool__6_22_ = 1
invariant :cell___3_4__A_ + cell___3_4__B_ + pool__3_4_ = 1
invariant :cell___10_26__A_ + cell___10_26__B_ + pool__10_26_ = 1
invariant :cell___18_19__A_ + cell___18_19__B_ + pool__18_19_ = 1
invariant :cell___23_2__A_ + cell___23_2__B_ + pool__23_2_ = 1
invariant :cell___8_9__A_ + cell___8_9__B_ + pool__8_9_ = 1
invariant :cell___21_6__A_ + cell___21_6__B_ + pool__21_6_ = 1
invariant :cell___22_10__A_ + cell___22_10__B_ + pool__22_10_ = 1
invariant :cell___2_29__A_ + cell___2_29__B_ + pool__2_29_ = 1
invariant :cell___29_20__A_ + cell___29_20__B_ + pool__29_20_ = 1
invariant :cell___16_10__A_ + cell___16_10__B_ + pool__16_10_ = 1
invariant :cell___13_3__A_ + cell___13_3__B_ + pool__13_3_ = 1
invariant :cell___25_16__A_ + cell___25_16__B_ + pool__25_16_ = 1
invariant :cell___8_11__A_ + cell___8_11__B_ + pool__8_11_ = 1
invariant :cell___14_22__A_ + cell___14_22__B_ + pool__14_22_ = 1
invariant :cell___21_23__A_ + cell___21_23__B_ + pool__21_23_ = 1
invariant :cell___30_20__A_ + cell___30_20__B_ + pool__30_20_ = 1
invariant :cell___19_12__A_ + cell___19_12__B_ + pool__19_12_ = 1
invariant :cell___19_22__A_ + cell___19_22__B_ + pool__19_22_ = 1
invariant :cell___20_11__A_ + cell___20_11__B_ + pool__20_11_ = 1
invariant :cell___11_5__A_ + cell___11_5__B_ + pool__11_5_ = 1
invariant :cell___29_26__A_ + cell___29_26__B_ + pool__29_26_ = 1
invariant :cell___7_20__A_ + cell___7_20__B_ + pool__7_20_ = 1
invariant :cell___7_9__A_ + cell___7_9__B_ + pool__7_9_ = 1
invariant :cell___27_12__A_ + cell___27_12__B_ + pool__27_12_ = 1
invariant :cell___13_10__A_ + cell___13_10__B_ + pool__13_10_ = 1
invariant :cell___17_11__A_ + cell___17_11__B_ + pool__17_11_ = 1
invariant :cell___29_30__A_ + cell___29_30__B_ + pool__29_30_ = 1
invariant :cell___22_1__A_ + cell___22_1__B_ + pool__22_1_ = 1
invariant :cell___20_4__A_ + cell___20_4__B_ + pool__20_4_ = 1
invariant :cell___2_24__A_ + cell___2_24__B_ + pool__2_24_ = 1
invariant :cell___6_25__A_ + cell___6_25__B_ + pool__6_25_ = 1
invariant :cell___24_19__A_ + cell___24_19__B_ + pool__24_19_ = 1
invariant :cell___21_14__A_ + cell___21_14__B_ + pool__21_14_ = 1
invariant :cell___13_11__A_ + cell___13_11__B_ + pool__13_11_ = 1
invariant :cell___14_17__A_ + cell___14_17__B_ + pool__14_17_ = 1
invariant :cell___13_9__A_ + cell___13_9__B_ + pool__13_9_ = 1
invariant :cell___2_12__A_ + cell___2_12__B_ + pool__2_12_ = 1
invariant :cell___9_24__A_ + cell___9_24__B_ + pool__9_24_ = 1
invariant :cell___18_7__A_ + cell___18_7__B_ + pool__18_7_ = 1
invariant :cell___2_5__A_ + cell___2_5__B_ + pool__2_5_ = 1
invariant :cell___14_23__A_ + cell___14_23__B_ + pool__14_23_ = 1
invariant :cell___26_9__A_ + cell___26_9__B_ + pool__26_9_ = 1
invariant :cell___11_30__A_ + cell___11_30__B_ + pool__11_30_ = 1
invariant :cell___24_30__A_ + cell___24_30__B_ + pool__24_30_ = 1
invariant :cell___13_6__A_ + cell___13_6__B_ + pool__13_6_ = 1
invariant :cell___20_16__A_ + cell___20_16__B_ + pool__20_16_ = 1
invariant :cell___17_16__A_ + cell___17_16__B_ + pool__17_16_ = 1
invariant :cell___6_7__A_ + cell___6_7__B_ + pool__6_7_ = 1
invariant :cell___20_13__A_ + cell___20_13__B_ + pool__20_13_ = 1
invariant :cell___21_19__A_ + cell___21_19__B_ + pool__21_19_ = 1
invariant :cell___12_15__A_ + cell___12_15__B_ + pool__12_15_ = 1
invariant :cell___23_5__A_ + cell___23_5__B_ + pool__23_5_ = 1
invariant :cell___30_29__A_ + cell___30_29__B_ + pool__30_29_ = 1
invariant :cell___28_4__A_ + cell___28_4__B_ + pool__28_4_ = 1
invariant :cell___13_2__A_ + cell___13_2__B_ + pool__13_2_ = 1
invariant :cell___16_2__A_ + cell___16_2__B_ + pool__16_2_ = 1
invariant :cell___18_13__A_ + cell___18_13__B_ + pool__18_13_ = 1
invariant :cell___28_12__A_ + cell___28_12__B_ + pool__28_12_ = 1
invariant :cell___25_19__A_ + cell___25_19__B_ + pool__25_19_ = 1
invariant :cell___15_7__A_ + cell___15_7__B_ + pool__15_7_ = 1
invariant :cell___27_6__A_ + cell___27_6__B_ + pool__27_6_ = 1
invariant :cell___4_15__A_ + cell___4_15__B_ + pool__4_15_ = 1
invariant :cell___21_3__A_ + cell___21_3__B_ + pool__21_3_ = 1
invariant :cell___26_25__A_ + cell___26_25__B_ + pool__26_25_ = 1
invariant :cell___5_20__A_ + cell___5_20__B_ + pool__5_20_ = 1
invariant :cell___7_19__A_ + cell___7_19__B_ + pool__7_19_ = 1
invariant :cell___21_27__A_ + cell___21_27__B_ + pool__21_27_ = 1
invariant :cell___4_23__A_ + cell___4_23__B_ + pool__4_23_ = 1
invariant :cell___7_28__A_ + cell___7_28__B_ + pool__7_28_ = 1
invariant :cell___8_16__A_ + cell___8_16__B_ + pool__8_16_ = 1
invariant :cell___14_25__A_ + cell___14_25__B_ + pool__14_25_ = 1
invariant :cell___1_15__A_ + cell___1_15__B_ + pool__1_15_ = 1
invariant :cell___26_15__A_ + cell___26_15__B_ + pool__26_15_ = 1
invariant :cell___8_18__A_ + cell___8_18__B_ + pool__8_18_ = 1
invariant :cell___14_12__A_ + cell___14_12__B_ + pool__14_12_ = 1
invariant :cell___5_2__A_ + cell___5_2__B_ + pool__5_2_ = 1
invariant :cell___14_14__A_ + cell___14_14__B_ + pool__14_14_ = 1
invariant :cell___9_3__A_ + cell___9_3__B_ + pool__9_3_ = 1
invariant :cell___9_16__A_ + cell___9_16__B_ + pool__9_16_ = 1
invariant :cell___11_21__A_ + cell___11_21__B_ + pool__11_21_ = 1
invariant :cell___12_10__A_ + cell___12_10__B_ + pool__12_10_ = 1
invariant :cell___12_27__A_ + cell___12_27__B_ + pool__12_27_ = 1
invariant :cell___18_14__A_ + cell___18_14__B_ + pool__18_14_ = 1
invariant :cell___13_12__A_ + cell___13_12__B_ + pool__13_12_ = 1
invariant :cell___23_24__A_ + cell___23_24__B_ + pool__23_24_ = 1
invariant :cell___5_26__A_ + cell___5_26__B_ + pool__5_26_ = 1
invariant :cell___30_23__A_ + cell___30_23__B_ + pool__30_23_ = 1
invariant :cell___6_4__A_ + cell___6_4__B_ + pool__6_4_ = 1
invariant :cell___26_22__A_ + cell___26_22__B_ + pool__26_22_ = 1
invariant :cell___28_16__A_ + cell___28_16__B_ + pool__28_16_ = 1
invariant :cell___26_10__A_ + cell___26_10__B_ + pool__26_10_ = 1
invariant :cell___30_8__A_ + cell___30_8__B_ + pool__30_8_ = 1
invariant :cell___30_4__A_ + cell___30_4__B_ + pool__30_4_ = 1
invariant :cell___19_11__A_ + cell___19_11__B_ + pool__19_11_ = 1
invariant :cell___18_11__A_ + cell___18_11__B_ + pool__18_11_ = 1
invariant :cell___14_1__A_ + cell___14_1__B_ + pool__14_1_ = 1
invariant :cell___3_10__A_ + cell___3_10__B_ + pool__3_10_ = 1
invariant :cell___25_3__A_ + cell___25_3__B_ + pool__25_3_ = 1
invariant :cell___15_28__A_ + cell___15_28__B_ + pool__15_28_ = 1
invariant :cell___16_28__A_ + cell___16_28__B_ + pool__16_28_ = 1
invariant :cell___8_25__A_ + cell___8_25__B_ + pool__8_25_ = 1
invariant :cell___19_21__A_ + cell___19_21__B_ + pool__19_21_ = 1
invariant :cell___20_28__A_ + cell___20_28__B_ + pool__20_28_ = 1
invariant :cell___16_17__A_ + cell___16_17__B_ + pool__16_17_ = 1
invariant :cell___23_19__A_ + cell___23_19__B_ + pool__23_19_ = 1
invariant :cell___4_7__A_ + cell___4_7__B_ + pool__4_7_ = 1
invariant :cell___10_10__A_ + cell___10_10__B_ + -1'pool__10_11_ + -1'pool__10_12_ + -1'pool__10_13_ + -1'pool__10_14_ + -1'pool__10_15_ + -1'pool__10_16_ + -1'pool__10_17_ + -1'pool__10_18_ + -1'pool__10_19_ + -1'pool__10_1_ + -1'pool__10_20_ + -1'pool__10_21_ + -1'pool__10_22_ + -1'pool__10_23_ + -1'pool__10_24_ + -1'pool__10_25_ + -1'pool__10_26_ + -1'pool__10_27_ + -1'pool__10_28_ + -1'pool__10_29_ + -1'pool__10_2_ + -1'pool__10_30_ + -1'pool__10_3_ + -1'pool__10_4_ + -1'pool__10_5_ + -1'pool__10_6_ + -1'pool__10_7_ + -1'pool__10_8_ + -1'pool__10_9_ + -1'pool__11_10_ + -1'pool__11_11_ + -1'pool__11_12_ + -1'pool__11_13_ + -1'pool__11_14_ + -1'pool__11_15_ + -1'pool__11_16_ + -1'pool__11_17_ + -1'pool__11_18_ + -1'pool__11_19_ + -1'pool__11_1_ + -1'pool__11_20_ + -1'pool__11_21_ + -1'pool__11_22_ + -1'pool__11_23_ + -1'pool__11_24_ + -1'pool__11_25_ + -1'pool__11_26_ + -1'pool__11_27_ + -1'pool__11_28_ + -1'pool__11_29_ + -1'pool__11_2_ + -1'pool__11_30_ + -1'pool__11_3_ + -1'pool__11_4_ + -1'pool__11_5_ + -1'pool__11_6_ + -1'pool__11_7_ + -1'pool__11_8_ + -1'pool__11_9_ + -1'pool__12_10_ + -1'pool__12_11_ + -1'pool__12_12_ + -1'pool__12_13_ + -1'pool__12_14_ + -1'pool__12_15_ + -1'pool__12_16_ + -1'pool__12_17_ + -1'pool__12_18_ + -1'pool__12_19_ + -1'pool__12_1_ + -1'pool__12_20_ + -1'pool__12_21_ + -1'pool__12_22_ + -1'pool__12_23_ + -1'pool__12_24_ + -1'pool__12_25_ + -1'pool__12_26_ + -1'pool__12_27_ + -1'pool__12_28_ + -1'pool__12_29_ + -1'pool__12_2_ + -1'pool__12_30_ + -1'pool__12_3_ + -1'pool__12_4_ + -1'pool__12_5_ + -1'pool__12_6_ + -1'pool__12_7_ + -1'pool__12_8_ + -1'pool__12_9_ + -1'pool__13_10_ + -1'pool__13_11_ + -1'pool__13_12_ + -1'pool__13_13_ + -1'pool__13_14_ + -1'pool__13_15_ + -1'pool__13_16_ + -1'pool__13_17_ + -1'pool__13_18_ + -1'pool__13_19_ + -1'pool__13_1_ + -1'pool__13_20_ + -1'pool__13_21_ + -1'pool__13_22_ + -1'pool__13_23_ + -1'pool__13_24_ + -1'pool__13_25_ + -1'pool__13_26_ + -1'pool__13_27_ + -1'pool__13_28_ + -1'pool__13_29_ + -1'pool__13_2_ + -1'pool__13_30_ + -1'pool__13_3_ + -1'pool__13_4_ + -1'pool__13_5_ + -1'pool__13_6_ + -1'pool__13_7_ + -1'pool__13_8_ + -1'pool__13_9_ + -1'pool__14_10_ + -1'pool__14_11_ + -1'pool__14_12_ + -1'pool__14_13_ + -1'pool__14_14_ + -1'pool__14_15_ + -1'pool__14_16_ + -1'pool__14_17_ + -1'pool__14_18_ + -1'pool__14_19_ + -1'pool__14_1_ + -1'pool__14_20_ + -1'pool__14_21_ + -1'pool__14_22_ + -1'pool__14_23_ + -1'pool__14_24_ + -1'pool__14_25_ + -1'pool__14_26_ + -1'pool__14_27_ + -1'pool__14_28_ + -1'pool__14_29_ + -1'pool__14_2_ + -1'pool__14_30_ + -1'pool__14_3_ + -1'pool__14_4_ + -1'pool__14_5_ + -1'pool__14_6_ + -1'pool__14_7_ + -1'pool__14_8_ + -1'pool__14_9_ + -1'pool__15_10_ + -1'pool__15_11_ + -1'pool__15_12_ + -1'pool__15_13_ + -1'pool__15_14_ + -1'pool__15_15_ + -1'pool__15_16_ + -1'pool__15_17_ + -1'pool__15_18_ + -1'pool__15_19_ + -1'pool__15_1_ + -1'pool__15_20_ + -1'pool__15_21_ + -1'pool__15_22_ + -1'pool__15_23_ + -1'pool__15_24_ + -1'pool__15_25_ + -1'pool__15_26_ + -1'pool__15_27_ + -1'pool__15_28_ + -1'pool__15_29_ + -1'pool__15_2_ + -1'pool__15_30_ + -1'pool__15_3_ + -1'pool__15_4_ + -1'pool__15_5_ + -1'pool__15_6_ + -1'pool__15_7_ + -1'pool__15_8_ + -1'pool__15_9_ + -1'pool__16_10_ + -1'pool__16_11_ + -1'pool__16_12_ + -1'pool__16_13_ + -1'pool__16_14_ + -1'pool__16_15_ + -1'pool__16_16_ + -1'pool__16_17_ + -1'pool__16_18_ + -1'pool__16_19_ + -1'pool__16_1_ + -1'pool__16_20_ + -1'pool__16_21_ + -1'pool__16_22_ + -1'pool__16_23_ + -1'pool__16_24_ + -1'pool__16_25_ + -1'pool__16_26_ + -1'pool__16_27_ + -1'pool__16_28_ + -1'pool__16_29_ + -1'pool__16_2_ + -1'pool__16_30_ + -1'pool__16_3_ + -1'pool__16_4_ + -1'pool__16_5_ + -1'pool__16_6_ + -1'pool__16_7_ + -1'pool__16_8_ + -1'pool__16_9_ + -1'pool__17_10_ + -1'pool__17_11_ + -1'pool__17_12_ + -1'pool__17_13_ + -1'pool__17_14_ + -1'pool__17_15_ + -1'pool__17_16_ + -1'pool__17_17_ + -1'pool__17_18_ + -1'pool__17_19_ + -1'pool__17_1_ + -1'pool__17_20_ + -1'pool__17_21_ + -1'pool__17_22_ + -1'pool__17_23_ + -1'pool__17_24_ + -1'pool__17_25_ + -1'pool__17_26_ + -1'pool__17_27_ + -1'pool__17_28_ + -1'pool__17_29_ + -1'pool__17_2_ + -1'pool__17_30_ + -1'pool__17_3_ + -1'pool__17_4_ + -1'pool__17_5_ + -1'pool__17_6_ + -1'pool__17_7_ + -1'pool__17_8_ + -1'pool__17_9_ + -1'pool__18_10_ + -1'pool__18_11_ + -1'pool__18_12_ + -1'pool__18_13_ + -1'pool__18_14_ + -1'pool__18_15_ + -1'pool__18_16_ + -1'pool__18_17_ + -1'pool__18_18_ + -1'pool__18_19_ + -1'pool__18_1_ + -1'pool__18_20_ + -1'pool__18_21_ + -1'pool__18_22_ + -1'pool__18_23_ + -1'pool__18_24_ + -1'pool__18_25_ + -1'pool__18_26_ + -1'pool__18_27_ + -1'pool__18_28_ + -1'pool__18_29_ + -1'pool__18_2_ + -1'pool__18_30_ + -1'pool__18_3_ + -1'pool__18_4_ + -1'pool__18_5_ + -1'pool__18_6_ + -1'pool__18_7_ + -1'pool__18_8_ + -1'pool__18_9_ + -1'pool__19_10_ + -1'pool__19_11_ + -1'pool__19_12_ + -1'pool__19_13_ + -1'pool__19_14_ + -1'pool__19_15_ + -1'pool__19_16_ + -1'pool__19_17_ + -1'pool__19_18_ + -1'pool__19_19_ + -1'pool__19_1_ + -1'pool__19_20_ + -1'pool__19_21_ + -1'pool__19_22_ + -1'pool__19_23_ + -1'pool__19_24_ + -1'pool__19_25_ + -1'pool__19_26_ + -1'pool__19_27_ + -1'pool__19_28_ + -1'pool__19_29_ + -1'pool__19_2_ + -1'pool__19_30_ + -1'pool__19_3_ + -1'pool__19_4_ + -1'pool__19_5_ + -1'pool__19_6_ + -1'pool__19_7_ + -1'pool__19_8_ + -1'pool__19_9_ + -1'pool__1_10_ + -1'pool__1_11_ + -1'pool__1_12_ + -1'pool__1_13_ + -1'pool__1_14_ + -1'pool__1_15_ + -1'pool__1_16_ + -1'pool__1_17_ + -1'pool__1_18_ + -1'pool__1_19_ + -1'pool__1_1_ + -1'pool__1_20_ + -1'pool__1_21_ + -1'pool__1_22_ + -1'pool__1_23_ + -1'pool__1_24_ + -1'pool__1_25_ + -1'pool__1_26_ + -1'pool__1_27_ + -1'pool__1_28_ + -1'pool__1_29_ + -1'pool__1_2_ + -1'pool__1_30_ + -1'pool__1_3_ + -1'pool__1_4_ + -1'pool__1_5_ + -1'pool__1_6_ + -1'pool__1_7_ + -1'pool__1_8_ + -1'pool__1_9_ + -1'pool__20_10_ + -1'pool__20_11_ + -1'pool__20_12_ + -1'pool__20_13_ + -1'pool__20_14_ + -1'pool__20_15_ + -1'pool__20_16_ + -1'pool__20_17_ + -1'pool__20_18_ + -1'pool__20_19_ + -1'pool__20_1_ + -1'pool__20_20_ + -1'pool__20_21_ + -1'pool__20_22_ + -1'pool__20_23_ + -1'pool__20_24_ + -1'pool__20_25_ + -1'pool__20_26_ + -1'pool__20_27_ + -1'pool__20_28_ + -1'pool__20_29_ + -1'pool__20_2_ + -1'pool__20_30_ + -1'pool__20_3_ + -1'pool__20_4_ + -1'pool__20_5_ + -1'pool__20_6_ + -1'pool__20_7_ + -1'pool__20_8_ + -1'pool__20_9_ + -1'pool__21_10_ + -1'pool__21_11_ + -1'pool__21_12_ + -1'pool__21_13_ + -1'pool__21_14_ + -1'pool__21_15_ + -1'pool__21_16_ + -1'pool__21_17_ + -1'pool__21_18_ + -1'pool__21_19_ + -1'pool__21_1_ + -1'pool__21_20_ + -1'pool__21_21_ + -1'pool__21_22_ + -1'pool__21_23_ + -1'pool__21_24_ + -1'pool__21_25_ + -1'pool__21_26_ + -1'pool__21_27_ + -1'pool__21_28_ + -1'pool__21_29_ + -1'pool__21_2_ + -1'pool__21_30_ + -1'pool__21_3_ + -1'pool__21_4_ + -1'pool__21_5_ + -1'pool__21_6_ + -1'pool__21_7_ + -1'pool__21_8_ + -1'pool__21_9_ + -1'pool__22_10_ + -1'pool__22_11_ + -1'pool__22_12_ + -1'pool__22_13_ + -1'pool__22_14_ + -1'pool__22_15_ + -1'pool__22_16_ + -1'pool__22_17_ + -1'pool__22_18_ + -1'pool__22_19_ + -1'pool__22_1_ + -1'pool__22_20_ + -1'pool__22_21_ + -1'pool__22_22_ + -1'pool__22_23_ + -1'pool__22_24_ + -1'pool__22_25_ + -1'pool__22_26_ + -1'pool__22_27_ + -1'pool__22_28_ + -1'pool__22_29_ + -1'pool__22_2_ + -1'pool__22_30_ + -1'pool__22_3_ + -1'pool__22_4_ + -1'pool__22_5_ + -1'pool__22_6_ + -1'pool__22_7_ + -1'pool__22_8_ + -1'pool__22_9_ + -1'pool__23_10_ + -1'pool__23_11_ + -1'pool__23_12_ + -1'pool__23_13_ + -1'pool__23_14_ + -1'pool__23_15_ + -1'pool__23_16_ + -1'pool__23_17_ + -1'pool__23_18_ + -1'pool__23_19_ + -1'pool__23_1_ + -1'pool__23_20_ + -1'pool__23_21_ + -1'pool__23_22_ + -1'pool__23_23_ + -1'pool__23_24_ + -1'pool__23_25_ + -1'pool__23_26_ + -1'pool__23_27_ + -1'pool__23_28_ + -1'pool__23_29_ + -1'pool__23_2_ + -1'pool__23_30_ + -1'pool__23_3_ + -1'pool__23_4_ + -1'pool__23_5_ + -1'pool__23_6_ + -1'pool__23_7_ + -1'pool__23_8_ + -1'pool__23_9_ + -1'pool__24_10_ + -1'pool__24_11_ + -1'pool__24_12_ + -1'pool__24_13_ + -1'pool__24_14_ + -1'pool__24_15_ + -1'pool__24_16_ + -1'pool__24_17_ + -1'pool__24_18_ + -1'pool__24_19_ + -1'pool__24_1_ + -1'pool__24_20_ + -1'pool__24_21_ + -1'pool__24_22_ + -1'pool__24_23_ + -1'pool__24_24_ + -1'pool__24_25_ + -1'pool__24_26_ + -1'pool__24_27_ + -1'pool__24_28_ + -1'pool__24_29_ + -1'pool__24_2_ + -1'pool__24_30_ + -1'pool__24_3_ + -1'pool__24_4_ + -1'pool__24_5_ + -1'pool__24_6_ + -1'pool__24_7_ + -1'pool__24_8_ + -1'pool__24_9_ + -1'pool__25_10_ + -1'pool__25_11_ + -1'pool__25_12_ + -1'pool__25_13_ + -1'pool__25_14_ + -1'pool__25_15_ + -1'pool__25_16_ + -1'pool__25_17_ + -1'pool__25_18_ + -1'pool__25_19_ + -1'pool__25_1_ + -1'pool__25_20_ + -1'pool__25_21_ + -1'pool__25_22_ + -1'pool__25_23_ + -1'pool__25_24_ + -1'pool__25_25_ + -1'pool__25_26_ + -1'pool__25_27_ + -1'pool__25_28_ + -1'pool__25_29_ + -1'pool__25_2_ + -1'pool__25_30_ + -1'pool__25_3_ + -1'pool__25_4_ + -1'pool__25_5_ + -1'pool__25_6_ + -1'pool__25_7_ + -1'pool__25_8_ + -1'pool__25_9_ + -1'pool__26_10_ + -1'pool__26_11_ + -1'pool__26_12_ + -1'pool__26_13_ + -1'pool__26_14_ + -1'pool__26_15_ + -1'pool__26_16_ + -1'pool__26_17_ + -1'pool__26_18_ + -1'pool__26_19_ + -1'pool__26_1_ + -1'pool__26_20_ + -1'pool__26_21_ + -1'pool__26_22_ + -1'pool__26_23_ + -1'pool__26_24_ + -1'pool__26_25_ + -1'pool__26_26_ + -1'pool__26_27_ + -1'pool__26_28_ + -1'pool__26_29_ + -1'pool__26_2_ + -1'pool__26_30_ + -1'pool__26_3_ + -1'pool__26_4_ + -1'pool__26_5_ + -1'pool__26_6_ + -1'pool__26_7_ + -1'pool__26_8_ + -1'pool__26_9_ + -1'pool__27_10_ + -1'pool__27_11_ + -1'pool__27_12_ + -1'pool__27_13_ + -1'pool__27_14_ + -1'pool__27_15_ + -1'pool__27_16_ + -1'pool__27_17_ + -1'pool__27_18_ + -1'pool__27_19_ + -1'pool__27_1_ + -1'pool__27_20_ + -1'pool__27_21_ + -1'pool__27_22_ + -1'pool__27_23_ + -1'pool__27_24_ + -1'pool__27_25_ + -1'pool__27_26_ + -1'pool__27_27_ + -1'pool__27_28_ + -1'pool__27_29_ + -1'pool__27_2_ + -1'pool__27_30_ + -1'pool__27_3_ + -1'pool__27_4_ + -1'pool__27_5_ + -1'pool__27_6_ + -1'pool__27_7_ + -1'pool__27_8_ + -1'pool__27_9_ + -1'pool__28_10_ + -1'pool__28_11_ + -1'pool__28_12_ + -1'pool__28_13_ + -1'pool__28_14_ + -1'pool__28_15_ + -1'pool__28_16_ + -1'pool__28_17_ + -1'pool__28_18_ + -1'pool__28_19_ + -1'pool__28_1_ + -1'pool__28_20_ + -1'pool__28_21_ + -1'pool__28_22_ + -1'pool__28_23_ + -1'pool__28_24_ + -1'pool__28_25_ + -1'pool__28_26_ + -1'pool__28_27_ + -1'pool__28_28_ + -1'pool__28_29_ + -1'pool__28_2_ + -1'pool__28_30_ + -1'pool__28_3_ + -1'pool__28_4_ + -1'pool__28_5_ + -1'pool__28_6_ + -1'pool__28_7_ + -1'pool__28_8_ + -1'pool__28_9_ + -1'pool__29_10_ + -1'pool__29_11_ + -1'pool__29_12_ + -1'pool__29_13_ + -1'pool__29_14_ + -1'pool__29_15_ + -1'pool__29_16_ + -1'pool__29_17_ + -1'pool__29_18_ + -1'pool__29_19_ + -1'pool__29_1_ + -1'pool__29_20_ + -1'pool__29_21_ + -1'pool__29_22_ + -1'pool__29_23_ + -1'pool__29_24_ + -1'pool__29_25_ + -1'pool__29_26_ + -1'pool__29_27_ + -1'pool__29_28_ + -1'pool__29_29_ + -1'pool__29_2_ + -1'pool__29_30_ + -1'pool__29_3_ + -1'pool__29_4_ + -1'pool__29_5_ + -1'pool__29_6_ + -1'pool__29_7_ + -1'pool__29_8_ + -1'pool__29_9_ + -1'pool__2_10_ + -1'pool__2_11_ + -1'pool__2_12_ + -1'pool__2_13_ + -1'pool__2_14_ + -1'pool__2_15_ + -1'pool__2_16_ + -1'pool__2_17_ + -1'pool__2_18_ + -1'pool__2_19_ + -1'pool__2_1_ + -1'pool__2_20_ + -1'pool__2_21_ + -1'pool__2_22_ + -1'pool__2_23_ + -1'pool__2_24_ + -1'pool__2_25_ + -1'pool__2_26_ + -1'pool__2_27_ + -1'pool__2_28_ + -1'pool__2_29_ + -1'pool__2_2_ + -1'pool__2_30_ + -1'pool__2_3_ + -1'pool__2_4_ + -1'pool__2_5_ + -1'pool__2_6_ + -1'pool__2_7_ + -1'pool__2_8_ + -1'pool__2_9_ + -1'pool__30_10_ + -1'pool__30_11_ + -1'pool__30_12_ + -1'pool__30_13_ + -1'pool__30_14_ + -1'pool__30_15_ + -1'pool__30_16_ + -1'pool__30_17_ + -1'pool__30_18_ + -1'pool__30_19_ + -1'pool__30_1_ + -1'pool__30_20_ + -1'pool__30_21_ + -1'pool__30_22_ + -1'pool__30_23_ + -1'pool__30_24_ + -1'pool__30_25_ + -1'pool__30_26_ + -1'pool__30_27_ + -1'pool__30_28_ + -1'pool__30_29_ + -1'pool__30_2_ + -1'pool__30_30_ + -1'pool__30_3_ + -1'pool__30_4_ + -1'pool__30_5_ + -1'pool__30_6_ + -1'pool__30_7_ + -1'pool__30_8_ + -1'pool__30_9_ + -1'pool__3_10_ + -1'pool__3_11_ + -1'pool__3_12_ + -1'pool__3_13_ + -1'pool__3_14_ + -1'pool__3_15_ + -1'pool__3_16_ + -1'pool__3_17_ + -1'pool__3_18_ + -1'pool__3_19_ + -1'pool__3_1_ + -1'pool__3_20_ + -1'pool__3_21_ + -1'pool__3_22_ + -1'pool__3_23_ + -1'pool__3_24_ + -1'pool__3_25_ + -1'pool__3_26_ + -1'pool__3_27_ + -1'pool__3_28_ + -1'pool__3_29_ + -1'pool__3_2_ + -1'pool__3_30_ + -1'pool__3_3_ + -1'pool__3_4_ + -1'pool__3_5_ + -1'pool__3_6_ + -1'pool__3_7_ + -1'pool__3_8_ + -1'pool__3_9_ + -1'pool__4_10_ + -1'pool__4_11_ + -1'pool__4_12_ + -1'pool__4_13_ + -1'pool__4_14_ + -1'pool__4_15_ + -1'pool__4_16_ + -1'pool__4_17_ + -1'pool__4_18_ + -1'pool__4_19_ + -1'pool__4_1_ + -1'pool__4_20_ + -1'pool__4_21_ + -1'pool__4_22_ + -1'pool__4_23_ + -1'pool__4_24_ + -1'pool__4_25_ + -1'pool__4_26_ + -1'pool__4_27_ + -1'pool__4_28_ + -1'pool__4_29_ + -1'pool__4_2_ + -1'pool__4_30_ + -1'pool__4_3_ + -1'pool__4_4_ + -1'pool__4_5_ + -1'pool__4_6_ + -1'pool__4_7_ + -1'pool__4_8_ + -1'pool__4_9_ + -1'pool__5_10_ + -1'pool__5_11_ + -1'pool__5_12_ + -1'pool__5_13_ + -1'pool__5_14_ + -1'pool__5_15_ + -1'pool__5_16_ + -1'pool__5_17_ + -1'pool__5_18_ + -1'pool__5_19_ + -1'pool__5_1_ + -1'pool__5_20_ + -1'pool__5_21_ + -1'pool__5_22_ + -1'pool__5_23_ + -1'pool__5_24_ + -1'pool__5_25_ + -1'pool__5_26_ + -1'pool__5_27_ + -1'pool__5_28_ + -1'pool__5_29_ + -1'pool__5_2_ + -1'pool__5_30_ + -1'pool__5_3_ + -1'pool__5_4_ + -1'pool__5_5_ + -1'pool__5_6_ + -1'pool__5_7_ + -1'pool__5_8_ + -1'pool__5_9_ + -1'pool__6_10_ + -1'pool__6_11_ + -1'pool__6_12_ + -1'pool__6_13_ + -1'pool__6_14_ + -1'pool__6_15_ + -1'pool__6_16_ + -1'pool__6_17_ + -1'pool__6_18_ + -1'pool__6_19_ + -1'pool__6_1_ + -1'pool__6_20_ + -1'pool__6_21_ + -1'pool__6_22_ + -1'pool__6_23_ + -1'pool__6_24_ + -1'pool__6_25_ + -1'pool__6_26_ + -1'pool__6_27_ + -1'pool__6_28_ + -1'pool__6_29_ + -1'pool__6_2_ + -1'pool__6_30_ + -1'pool__6_3_ + -1'pool__6_4_ + -1'pool__6_5_ + -1'pool__6_6_ + -1'pool__6_7_ + -1'pool__6_8_ + -1'pool__6_9_ + -1'pool__7_10_ + -1'pool__7_11_ + -1'pool__7_12_ + -1'pool__7_13_ + -1'pool__7_14_ + -1'pool__7_15_ + -1'pool__7_16_ + -1'pool__7_17_ + -1'pool__7_18_ + -1'pool__7_19_ + -1'pool__7_1_ + -1'pool__7_20_ + -1'pool__7_21_ + -1'pool__7_22_ + -1'pool__7_23_ + -1'pool__7_24_ + -1'pool__7_25_ + -1'pool__7_26_ + -1'pool__7_27_ + -1'pool__7_28_ + -1'pool__7_29_ + -1'pool__7_2_ + -1'pool__7_30_ + -1'pool__7_3_ + -1'pool__7_4_ + -1'pool__7_5_ + -1'pool__7_6_ + -1'pool__7_7_ + -1'pool__7_8_ + -1'pool__7_9_ + -1'pool__8_10_ + -1'pool__8_11_ + -1'pool__8_12_ + -1'pool__8_13_ + -1'pool__8_14_ + -1'pool__8_15_ + -1'pool__8_16_ + -1'pool__8_17_ + -1'pool__8_18_ + -1'pool__8_19_ + -1'pool__8_1_ + -1'pool__8_20_ + -1'pool__8_21_ + -1'pool__8_22_ + -1'pool__8_23_ + -1'pool__8_24_ + -1'pool__8_25_ + -1'pool__8_26_ + -1'pool__8_27_ + -1'pool__8_28_ + -1'pool__8_29_ + -1'pool__8_2_ + -1'pool__8_30_ + -1'pool__8_3_ + -1'pool__8_4_ + -1'pool__8_5_ + -1'pool__8_6_ + -1'pool__8_7_ + -1'pool__8_8_ + -1'pool__8_9_ + -1'pool__9_10_ + -1'pool__9_11_ + -1'pool__9_12_ + -1'pool__9_13_ + -1'pool__9_14_ + -1'pool__9_15_ + -1'pool__9_16_ + -1'pool__9_17_ + -1'pool__9_18_ + -1'pool__9_19_ + -1'pool__9_1_ + -1'pool__9_20_ + -1'pool__9_21_ + -1'pool__9_22_ + -1'pool__9_23_ + -1'pool__9_24_ + -1'pool__9_25_ + -1'pool__9_26_ + -1'pool__9_27_ + -1'pool__9_28_ + -1'pool__9_29_ + -1'pool__9_2_ + -1'pool__9_30_ + -1'pool__9_3_ + -1'pool__9_4_ + -1'pool__9_5_ + -1'pool__9_6_ + -1'pool__9_7_ + -1'pool__9_8_ + -1'pool__9_9_ + -1'size_dot = -899
invariant :cell___20_23__A_ + cell___20_23__B_ + pool__20_23_ = 1
invariant :cell___21_17__A_ + cell___21_17__B_ + pool__21_17_ = 1
invariant :cell___26_1__A_ + cell___26_1__B_ + pool__26_1_ = 1
invariant :cell___6_13__A_ + cell___6_13__B_ + pool__6_13_ = 1
invariant :cell___5_17__A_ + cell___5_17__B_ + pool__5_17_ = 1
invariant :cell___16_3__A_ + cell___16_3__B_ + pool__16_3_ = 1
invariant :cell___24_27__A_ + cell___24_27__B_ + pool__24_27_ = 1
invariant :cell___13_18__A_ + cell___13_18__B_ + pool__13_18_ = 1
invariant :cell___28_1__A_ + cell___28_1__B_ + pool__28_1_ = 1
invariant :cell___6_10__A_ + cell___6_10__B_ + pool__6_10_ = 1
invariant :cell___14_18__A_ + cell___14_18__B_ + pool__14_18_ = 1
invariant :cell___7_1__A_ + cell___7_1__B_ + pool__7_1_ = 1
invariant :cell___11_10__A_ + cell___11_10__B_ + pool__11_10_ = 1
invariant :cell___28_9__A_ + cell___28_9__B_ + pool__28_9_ = 1
invariant :cell___4_14__A_ + cell___4_14__B_ + pool__4_14_ = 1
invariant :cell___21_22__A_ + cell___21_22__B_ + pool__21_22_ = 1
invariant :cell___27_15__A_ + cell___27_15__B_ + pool__27_15_ = 1
invariant :cell___9_26__A_ + cell___9_26__B_ + pool__9_26_ = 1
invariant :cell___9_6__A_ + cell___9_6__B_ + pool__9_6_ = 1
invariant :cell___18_24__A_ + cell___18_24__B_ + pool__18_24_ = 1
invariant :cell___20_20__A_ + cell___20_20__B_ + pool__20_20_ = 1
invariant :cell___12_19__A_ + cell___12_19__B_ + pool__12_19_ = 1
invariant :cell___5_30__A_ + cell___5_30__B_ + pool__5_30_ = 1
invariant :cell___10_22__A_ + cell___10_22__B_ + pool__10_22_ = 1
invariant :cell___29_13__A_ + cell___29_13__B_ + pool__29_13_ = 1
invariant :cell___11_1__A_ + cell___11_1__B_ + pool__11_1_ = 1
invariant :cell___5_29__A_ + cell___5_29__B_ + pool__5_29_ = 1
invariant :cell___8_27__A_ + cell___8_27__B_ + pool__8_27_ = 1
invariant :cell___13_19__A_ + cell___13_19__B_ + pool__13_19_ = 1
invariant :cell___23_18__A_ + cell___23_18__B_ + pool__23_18_ = 1
invariant :cell___17_1__A_ + cell___17_1__B_ + pool__17_1_ = 1
invariant :cell___3_13__A_ + cell___3_13__B_ + pool__3_13_ = 1
invariant :cell___4_1__A_ + cell___4_1__B_ + pool__4_1_ = 1
invariant :cell___21_12__A_ + cell___21_12__B_ + pool__21_12_ = 1
invariant :cell___22_20__A_ + cell___22_20__B_ + pool__22_20_ = 1
invariant :cell___3_28__A_ + cell___3_28__B_ + pool__3_28_ = 1
invariant :cell___5_24__A_ + cell___5_24__B_ + pool__5_24_ = 1
invariant :cell___8_2__A_ + cell___8_2__B_ + pool__8_2_ = 1
invariant :cell___14_4__A_ + cell___14_4__B_ + pool__14_4_ = 1
invariant :cell___13_13__A_ + cell___13_13__B_ + pool__13_13_ = 1
invariant :cell___3_17__A_ + cell___3_17__B_ + pool__3_17_ = 1
invariant :cell___2_3__A_ + cell___2_3__B_ + pool__2_3_ = 1
invariant :cell___3_14__A_ + cell___3_14__B_ + pool__3_14_ = 1
invariant :cell___6_23__A_ + cell___6_23__B_ + pool__6_23_ = 1
invariant :cell___5_13__A_ + cell___5_13__B_ + pool__5_13_ = 1
invariant :cell___6_15__A_ + cell___6_15__B_ + pool__6_15_ = 1
invariant :cell___27_1__A_ + cell___27_1__B_ + pool__27_1_ = 1
invariant :cell___20_7__A_ + cell___20_7__B_ + pool__20_7_ = 1
invariant :cell___5_12__A_ + cell___5_12__B_ + pool__5_12_ = 1
invariant :cell___30_5__A_ + cell___30_5__B_ + pool__30_5_ = 1
invariant :cell___29_6__A_ + cell___29_6__B_ + pool__29_6_ = 1
invariant :cell___14_26__A_ + cell___14_26__B_ + pool__14_26_ = 1
invariant :cell___9_4__A_ + cell___9_4__B_ + pool__9_4_ = 1
invariant :cell___16_5__A_ + cell___16_5__B_ + pool__16_5_ = 1
invariant :cell___22_23__A_ + cell___22_23__B_ + pool__22_23_ = 1
invariant :cell___26_27__A_ + cell___26_27__B_ + pool__26_27_ = 1
invariant :cell___3_20__A_ + cell___3_20__B_ + pool__3_20_ = 1
invariant :cell___16_18__A_ + cell___16_18__B_ + pool__16_18_ = 1
invariant :cell___5_19__A_ + cell___5_19__B_ + pool__5_19_ = 1
invariant :cell___28_13__A_ + cell___28_13__B_ + pool__28_13_ = 1
invariant :cell___17_26__A_ + cell___17_26__B_ + pool__17_26_ = 1
invariant :cell___14_10__A_ + cell___14_10__B_ + pool__14_10_ = 1
invariant :cell___10_27__A_ + cell___10_27__B_ + pool__10_27_ = 1
invariant :cell___1_2__A_ + cell___1_2__B_ + pool__1_2_ = 1
invariant :cell___14_15__A_ + cell___14_15__B_ + pool__14_15_ = 1
invariant :cell___14_5__A_ + cell___14_5__B_ + pool__14_5_ = 1
invariant :cell___28_29__A_ + cell___28_29__B_ + pool__28_29_ = 1
invariant :cell___14_24__A_ + cell___14_24__B_ + pool__14_24_ = 1
invariant :cell___27_4__A_ + cell___27_4__B_ + pool__27_4_ = 1
invariant :cell___11_4__A_ + cell___11_4__B_ + pool__11_4_ = 1
invariant :cell___12_26__A_ + cell___12_26__B_ + pool__12_26_ = 1
invariant :cell___11_17__A_ + cell___11_17__B_ + pool__11_17_ = 1
invariant :cell___2_17__A_ + cell___2_17__B_ + pool__2_17_ = 1
invariant :cell___29_14__A_ + cell___29_14__B_ + pool__29_14_ = 1
invariant :cell___8_1__A_ + cell___8_1__B_ + pool__8_1_ = 1
invariant :cell___15_16__A_ + cell___15_16__B_ + pool__15_16_ = 1
invariant :cell___26_13__A_ + cell___26_13__B_ + pool__26_13_ = 1
invariant :cell___30_12__A_ + cell___30_12__B_ + pool__30_12_ = 1
invariant :cell___27_23__A_ + cell___27_23__B_ + pool__27_23_ = 1
invariant :cell___26_29__A_ + cell___26_29__B_ + pool__26_29_ = 1
invariant :cell___13_26__A_ + cell___13_26__B_ + pool__13_26_ = 1
invariant :cell___17_24__A_ + cell___17_24__B_ + pool__17_24_ = 1
invariant :cell___10_8__A_ + cell___10_8__B_ + pool__10_8_ = 1
invariant :cell___10_11__A_ + cell___10_11__B_ + pool__10_11_ = 1
invariant :cell___14_29__A_ + cell___14_29__B_ + pool__14_29_ = 1
invariant :cell___28_7__A_ + cell___28_7__B_ + pool__28_7_ = 1
invariant :cell___8_7__A_ + cell___8_7__B_ + pool__8_7_ = 1
invariant :cell___30_15__A_ + cell___30_15__B_ + pool__30_15_ = 1
invariant :cell___12_25__A_ + cell___12_25__B_ + pool__12_25_ = 1
invariant :cell___2_1__A_ + cell___2_1__B_ + pool__2_1_ = 1
invariant :cell___18_4__A_ + cell___18_4__B_ + pool__18_4_ = 1
invariant :cell___20_22__A_ + cell___20_22__B_ + pool__20_22_ = 1
invariant :cell___23_20__A_ + cell___23_20__B_ + pool__23_20_ = 1
invariant :cell___3_30__A_ + cell___3_30__B_ + pool__3_30_ = 1
invariant :cell___30_14__A_ + cell___30_14__B_ + pool__30_14_ = 1
invariant :cell___11_18__A_ + cell___11_18__B_ + pool__11_18_ = 1
invariant :cell___29_17__A_ + cell___29_17__B_ + pool__29_17_ = 1
invariant :cell___10_23__A_ + cell___10_23__B_ + pool__10_23_ = 1
invariant :cell___30_16__A_ + cell___30_16__B_ + pool__30_16_ = 1
invariant :cell___29_19__A_ + cell___29_19__B_ + pool__29_19_ = 1
invariant :cell___19_13__A_ + cell___19_13__B_ + pool__19_13_ = 1
invariant :cell___10_4__A_ + cell___10_4__B_ + pool__10_4_ = 1
invariant :cell___2_15__A_ + cell___2_15__B_ + pool__2_15_ = 1
invariant :cell___9_27__A_ + cell___9_27__B_ + pool__9_27_ = 1
invariant :cell___22_12__A_ + cell___22_12__B_ + pool__22_12_ = 1
invariant :cell___11_13__A_ + cell___11_13__B_ + pool__11_13_ = 1
invariant :cell___18_21__A_ + cell___18_21__B_ + pool__18_21_ = 1
invariant :cell___24_22__A_ + cell___24_22__B_ + pool__24_22_ = 1
invariant :cell___14_7__A_ + cell___14_7__B_ + pool__14_7_ = 1
invariant :cell___16_8__A_ + cell___16_8__B_ + pool__16_8_ = 1
invariant :cell___28_15__A_ + cell___28_15__B_ + pool__28_15_ = 1
invariant :cell___7_27__A_ + cell___7_27__B_ + pool__7_27_ = 1
invariant :cell___17_25__A_ + cell___17_25__B_ + pool__17_25_ = 1
invariant :cell___22_15__A_ + cell___22_15__B_ + pool__22_15_ = 1
invariant :cell___16_13__A_ + cell___16_13__B_ + pool__16_13_ = 1
invariant :cell___10_3__A_ + cell___10_3__B_ + pool__10_3_ = 1
invariant :cell___27_18__A_ + cell___27_18__B_ + pool__27_18_ = 1
invariant :cell___21_11__A_ + cell___21_11__B_ + pool__21_11_ = 1
invariant :cell___17_29__A_ + cell___17_29__B_ + pool__17_29_ = 1
invariant :cell___13_25__A_ + cell___13_25__B_ + pool__13_25_ = 1
invariant :cell___24_23__A_ + cell___24_23__B_ + pool__24_23_ = 1
invariant :cell___18_27__A_ + cell___18_27__B_ + pool__18_27_ = 1
invariant :cell___18_9__A_ + cell___18_9__B_ + pool__18_9_ = 1
invariant :cell___28_27__A_ + cell___28_27__B_ + pool__28_27_ = 1
invariant :cell___7_21__A_ + cell___7_21__B_ + pool__7_21_ = 1
invariant :cell___23_3__A_ + cell___23_3__B_ + pool__23_3_ = 1
invariant :cell___6_29__A_ + cell___6_29__B_ + pool__6_29_ = 1
invariant :cell___19_18__A_ + cell___19_18__B_ + pool__19_18_ = 1
invariant :cell___6_1__A_ + cell___6_1__B_ + pool__6_1_ = 1
invariant :cell___12_14__A_ + cell___12_14__B_ + pool__12_14_ = 1
invariant :cell___22_28__A_ + cell___22_28__B_ + pool__22_28_ = 1
invariant :cell___14_13__A_ + cell___14_13__B_ + pool__14_13_ = 1
invariant :cell___25_9__A_ + cell___25_9__B_ + pool__25_9_ = 1
invariant :cell___26_21__A_ + cell___26_21__B_ + pool__26_21_ = 1
invariant :cell___25_15__A_ + cell___25_15__B_ + pool__25_15_ = 1
invariant :cell___24_14__A_ + cell___24_14__B_ + pool__24_14_ = 1
FORMULA PhaseVariation-PT-D30CS100-ReachabilityCardinality-00 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA PhaseVariation-PT-D30CS100-ReachabilityCardinality-01 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA PhaseVariation-PT-D30CS100-ReachabilityCardinality-02 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution] killed by timeout after 400 SECONDS
FORMULA PhaseVariation-PT-D30CS100-ReachabilityCardinality-04 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA PhaseVariation-PT-D30CS100-ReachabilityCardinality-06 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
FORMULA PhaseVariation-PT-D30CS100-ReachabilityCardinality-07 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityCardinality -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityCardinality -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 25, 2018 5:38:32 PM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -louvain, -smt]
May 25, 2018 5:38:32 PM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 25, 2018 5:38:34 PM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 1600 ms
May 25, 2018 5:38:34 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2702 places.
May 25, 2018 5:38:35 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 30977 transitions.
May 25, 2018 5:38:42 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 6957 ms
May 25, 2018 5:38:48 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 30977 transitions.
May 25, 2018 5:38:48 PM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Too many transitions (30977) to apply POR reductions. Disabling POR matrices.
May 25, 2018 5:38:50 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 6956 ms
May 25, 2018 5:38:51 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 7023 ms
May 25, 2018 5:38:51 PM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 6742ms conformant to PINS in folder :/home/mcc/execution
May 25, 2018 5:38:51 PM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 473 ms
May 25, 2018 5:38:51 PM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 0 ms
May 25, 2018 5:38:53 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 30977 transitions.
May 25, 2018 5:39:08 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 16 in 17334 ms.
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-00(UNSAT) depth K=0 took 626 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-01(UNSAT) depth K=0 took 33 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-02(UNSAT) depth K=0 took 8 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-03(UNSAT) depth K=0 took 55 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-04(UNSAT) depth K=0 took 19 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-05(UNSAT) depth K=0 took 63 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-06(UNSAT) depth K=0 took 23 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-07(UNSAT) depth K=0 took 55 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-08(UNSAT) depth K=0 took 63 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-09(UNSAT) depth K=0 took 9 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-10(UNSAT) depth K=0 took 37 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-11(UNSAT) depth K=0 took 23 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-12(UNSAT) depth K=0 took 29 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-13(UNSAT) depth K=0 took 7 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-14(UNSAT) depth K=0 took 27 ms
May 25, 2018 5:39:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-15(UNSAT) depth K=0 took 9 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-00(UNSAT) depth K=1 took 21 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-01(UNSAT) depth K=1 took 27 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-02(UNSAT) depth K=1 took 7 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-03(UNSAT) depth K=1 took 37 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-04(UNSAT) depth K=1 took 7 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-05(UNSAT) depth K=1 took 57 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-06(UNSAT) depth K=1 took 20 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-07(UNSAT) depth K=1 took 127 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-08(UNSAT) depth K=1 took 25 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-09(UNSAT) depth K=1 took 15 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-10(UNSAT) depth K=1 took 7 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-11(UNSAT) depth K=1 took 6 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-12(UNSAT) depth K=1 took 12 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-13(UNSAT) depth K=1 took 6 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-14(UNSAT) depth K=1 took 12 ms
May 25, 2018 5:39:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-15(UNSAT) depth K=1 took 7 ms
May 25, 2018 5:39:11 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 30977 transitions.
May 25, 2018 5:39:27 PM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 901 place invariants in 2838 ms
May 25, 2018 5:41:08 PM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 2702 variables to be positive in 104233 ms
May 25, 2018 5:41:51 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate PhaseVariation-PT-D30CS100-ReachabilityCardinality-00
May 25, 2018 5:41:51 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for PhaseVariation-PT-D30CS100-ReachabilityCardinality-00
May 25, 2018 5:41:51 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-00(FALSE) depth K=0 took 42384 ms
May 25, 2018 5:42:07 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-00(UNSAT) depth K=2 took 177112 ms
May 25, 2018 5:42:51 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate PhaseVariation-PT-D30CS100-ReachabilityCardinality-01
May 25, 2018 5:42:51 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for PhaseVariation-PT-D30CS100-ReachabilityCardinality-01
May 25, 2018 5:42:51 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-01(FALSE) depth K=0 took 60456 ms
May 25, 2018 5:42:55 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-01(UNSAT) depth K=2 took 47692 ms
May 25, 2018 5:43:42 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate PhaseVariation-PT-D30CS100-ReachabilityCardinality-02
May 25, 2018 5:43:42 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for PhaseVariation-PT-D30CS100-ReachabilityCardinality-02
May 25, 2018 5:43:42 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-02(FALSE) depth K=0 took 50854 ms
May 25, 2018 5:43:44 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-02(UNSAT) depth K=2 took 49404 ms
May 25, 2018 5:45:02 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-03(UNSAT) depth K=2 took 77292 ms
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution] killed by timeout after 400 SECONDS
at fr.lip6.move.gal.application.LTSminRunner$1.run(LTSminRunner.java:78)
at java.lang.Thread.run(Thread.java:748)
May 25, 2018 5:47:09 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-04(UNSAT) depth K=2 took 127464 ms
May 25, 2018 5:54:17 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-05(UNSAT) depth K=2 took 428284 ms
ITS-tools command line returned an error code 137
May 25, 2018 5:59:52 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesPhaseVariation-PT-D30CS100-ReachabilityCardinality-03
May 25, 2018 5:59:52 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-03(SAT) depth K=0 took 969233 ms
May 25, 2018 6:00:43 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-06(UNSAT) depth K=2 took 385286 ms
May 25, 2018 6:00:57 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate PhaseVariation-PT-D30CS100-ReachabilityCardinality-04
May 25, 2018 6:00:57 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for PhaseVariation-PT-D30CS100-ReachabilityCardinality-04
May 25, 2018 6:00:57 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-04(FALSE) depth K=0 took 65434 ms
May 25, 2018 6:01:58 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-07(UNSAT) depth K=2 took 75437 ms
May 25, 2018 6:03:23 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-08(UNSAT) depth K=2 took 84399 ms
May 25, 2018 6:05:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-09(UNSAT) depth K=2 took 102527 ms
May 25, 2018 6:07:13 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-10(UNSAT) depth K=2 took 127503 ms
May 25, 2018 6:09:23 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-11(UNSAT) depth K=2 took 130046 ms
May 25, 2018 6:10:16 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-12(UNSAT) depth K=2 took 53762 ms
May 25, 2018 6:11:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-13(UNSAT) depth K=2 took 53320 ms
May 25, 2018 6:11:29 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesPhaseVariation-PT-D30CS100-ReachabilityCardinality-05
May 25, 2018 6:11:29 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-05(SAT) depth K=0 took 632247 ms
May 25, 2018 6:12:02 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate PhaseVariation-PT-D30CS100-ReachabilityCardinality-06
May 25, 2018 6:12:02 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for PhaseVariation-PT-D30CS100-ReachabilityCardinality-06
May 25, 2018 6:12:02 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-06(FALSE) depth K=0 took 32655 ms
May 25, 2018 6:12:34 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-14(UNSAT) depth K=2 took 84802 ms
May 25, 2018 6:12:40 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate PhaseVariation-PT-D30CS100-ReachabilityCardinality-07
May 25, 2018 6:12:40 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for PhaseVariation-PT-D30CS100-ReachabilityCardinality-07
May 25, 2018 6:12:40 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-07(FALSE) depth K=0 took 38540 ms
May 25, 2018 6:15:49 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-15(UNSAT) depth K=2 took 194434 ms
May 25, 2018 6:28:59 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-03(UNSAT) depth K=3 took 789844 ms
May 25, 2018 6:33:26 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesPhaseVariation-PT-D30CS100-ReachabilityCardinality-08
May 25, 2018 6:33:26 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS100-ReachabilityCardinality-08(SAT) depth K=0 took 1245519 ms
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PhaseVariation-PT-D30CS100"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="itstoolsl"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/PhaseVariation-PT-D30CS100.tgz
mv PhaseVariation-PT-D30CS100 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstoolsl"
echo " Input is PhaseVariation-PT-D30CS100, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r117-csrt-152666477300663"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;