fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r117-csrt-152666476800296
Last Updated
June 26, 2018

About the Execution of ITS-Tools.L for NeoElection-PT-3

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15754.840 5811.00 11973.00 96.40 0 3 9 0 6 3 0 3 0 0 0 0 0 0 0 0 normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.....................................................................................................
/home/mcc/execution
total 1.9M
-rw-r--r-- 1 mcc users 37K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 101K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 25K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 75K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 46K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 113K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 19K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 56K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 64K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 157K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 35K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 101K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 33K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 62K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 911K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstoolsl
Input is NeoElection-PT-3, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r117-csrt-152666476800296
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of positive values
NUM_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-3-UpperBounds-00
FORMULA_NAME NeoElection-PT-3-UpperBounds-01
FORMULA_NAME NeoElection-PT-3-UpperBounds-02
FORMULA_NAME NeoElection-PT-3-UpperBounds-03
FORMULA_NAME NeoElection-PT-3-UpperBounds-04
FORMULA_NAME NeoElection-PT-3-UpperBounds-05
FORMULA_NAME NeoElection-PT-3-UpperBounds-06
FORMULA_NAME NeoElection-PT-3-UpperBounds-07
FORMULA_NAME NeoElection-PT-3-UpperBounds-08
FORMULA_NAME NeoElection-PT-3-UpperBounds-09
FORMULA_NAME NeoElection-PT-3-UpperBounds-10
FORMULA_NAME NeoElection-PT-3-UpperBounds-11
FORMULA_NAME NeoElection-PT-3-UpperBounds-12
FORMULA_NAME NeoElection-PT-3-UpperBounds-13
FORMULA_NAME NeoElection-PT-3-UpperBounds-14
FORMULA_NAME NeoElection-PT-3-UpperBounds-15

=== Now, execution of the tool begins

BK_START 1527251328445

Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/UpperBounds.pnml.gal, -t, CGAL, -reachable-file, UpperBounds.prop, --nowitness], workingDir=/home/mcc/execution]

its-reach command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/UpperBounds.pnml.gal -t CGAL -reachable-file UpperBounds.prop --nowitness
Loading property file UpperBounds.prop.
Read [bounds] property : NeoElection-PT-3-UpperBounds-00 with value :
Read [bounds] property : NeoElection-PT-3-UpperBounds-01 with value :P_masterState_0_F_0+P_masterState_0_F_1+P_masterState_0_F_2+P_masterState_0_F_3+P_masterState_0_T_0+P_masterState_0_T_1+P_masterState_0_T_2+P_masterState_0_T_3+P_masterState_1_F_0+P_masterState_1_F_1+P_masterState_1_F_2+P_masterState_1_F_3+P_masterState_1_T_0+P_masterState_1_T_1+P_masterState_1_T_2+P_masterState_1_T_3+P_masterState_2_F_0+P_masterState_2_F_1+P_masterState_2_F_2+P_masterState_2_F_3+P_masterState_2_T_0+P_masterState_2_T_1+P_masterState_2_T_2+P_masterState_2_T_3+P_masterState_3_F_0+P_masterState_3_F_1+P_masterState_3_F_2+P_masterState_3_F_3+P_masterState_3_T_0+P_masterState_3_T_1+P_masterState_3_T_2+P_masterState_3_T_3
Read [bounds] property : NeoElection-PT-3-UpperBounds-02 with value :P_negotiation_0_0_NONE+P_negotiation_0_0_CO+P_negotiation_0_0_DONE+P_negotiation_0_1_NONE+P_negotiation_0_1_CO+P_negotiation_0_1_DONE+P_negotiation_0_2_NONE+P_negotiation_0_2_CO+P_negotiation_0_2_DONE+P_negotiation_0_3_NONE+P_negotiation_0_3_CO+P_negotiation_0_3_DONE+P_negotiation_1_0_NONE+P_negotiation_1_0_CO+P_negotiation_1_0_DONE+P_negotiation_1_1_NONE+P_negotiation_1_1_CO+P_negotiation_1_1_DONE+P_negotiation_1_2_NONE+P_negotiation_1_2_CO+P_negotiation_1_2_DONE+P_negotiation_1_3_NONE+P_negotiation_1_3_CO+P_negotiation_1_3_DONE+P_negotiation_2_0_NONE+P_negotiation_2_0_CO+P_negotiation_2_0_DONE+P_negotiation_2_1_NONE+P_negotiation_2_1_CO+P_negotiation_2_1_DONE+P_negotiation_2_2_NONE+P_negotiation_2_2_CO+P_negotiation_2_2_DONE+P_negotiation_2_3_NONE+P_negotiation_2_3_CO+P_negotiation_2_3_DONE+P_negotiation_3_0_NONE+P_negotiation_3_0_CO+P_negotiation_3_0_DONE+P_negotiation_3_1_NONE+P_negotiation_3_1_CO+P_negotiation_3_1_DONE+P_negotiation_3_2_NONE+P_negotiation_3_2_CO+P_negotiation_3_2_DONE+P_negotiation_3_3_NONE+P_negotiation_3_3_CO+P_negotiation_3_3_DONE
Read [bounds] property : NeoElection-PT-3-UpperBounds-03 with value :P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2+P_poll__networl_0_0_AnsP_3+P_poll__networl_0_1_AnsP_1+P_poll__networl_0_1_AnsP_2+P_poll__networl_0_1_AnsP_3+P_poll__networl_0_2_AnsP_1+P_poll__networl_0_2_AnsP_2+P_poll__networl_0_2_AnsP_3+P_poll__networl_0_3_AnsP_1+P_poll__networl_0_3_AnsP_2+P_poll__networl_0_3_AnsP_3+P_poll__networl_1_0_AnsP_1+P_poll__networl_1_0_AnsP_2+P_poll__networl_1_0_AnsP_3+P_poll__networl_1_1_AnsP_1+P_poll__networl_1_1_AnsP_2+P_poll__networl_1_1_AnsP_3+P_poll__networl_1_2_AnsP_1+P_poll__networl_1_2_AnsP_2+P_poll__networl_1_2_AnsP_3+P_poll__networl_1_3_AnsP_1+P_poll__networl_1_3_AnsP_2+P_poll__networl_1_3_AnsP_3+P_poll__networl_2_0_AnsP_1+P_poll__networl_2_0_AnsP_2+P_poll__networl_2_0_AnsP_3+P_poll__networl_2_1_AnsP_1+P_poll__networl_2_1_AnsP_2+P_poll__networl_2_1_AnsP_3+P_poll__networl_2_2_AnsP_1+P_poll__networl_2_2_AnsP_2+P_poll__networl_2_2_AnsP_3+P_poll__networl_2_3_AnsP_1+P_poll__networl_2_3_AnsP_2+P_poll__networl_2_3_AnsP_3+P_poll__networl_3_0_AnsP_1+P_poll__networl_3_0_AnsP_2+P_poll__networl_3_0_AnsP_3+P_poll__networl_3_1_AnsP_1+P_poll__networl_3_1_AnsP_2+P_poll__networl_3_1_AnsP_3+P_poll__networl_3_2_AnsP_1+P_poll__networl_3_2_AnsP_2+P_poll__networl_3_2_AnsP_3+P_poll__networl_3_3_AnsP_1+P_poll__networl_3_3_AnsP_2+P_poll__networl_3_3_AnsP_3
Read [bounds] property : NeoElection-PT-3-UpperBounds-04 with value :P_network_0_0_AskP_0+P_network_0_0_AnsP_0+P_network_0_0_AnsP_1+P_network_0_0_AnsP_2+P_network_0_0_AnsP_3+P_network_0_0_RI_0+P_network_0_0_AI_0+P_network_0_0_AnnP_0+P_network_0_0_RP_0+P_network_0_1_AskP_0+P_network_0_1_AnsP_0+P_network_0_1_AnsP_1+P_network_0_1_AnsP_2+P_network_0_1_AnsP_3+P_network_0_1_RI_0+P_network_0_1_AI_0+P_network_0_1_AnnP_0+P_network_0_1_RP_0+P_network_0_2_AskP_0+P_network_0_2_AnsP_0+P_network_0_2_AnsP_1+P_network_0_2_AnsP_2+P_network_0_2_AnsP_3+P_network_0_2_RI_0+P_network_0_2_AI_0+P_network_0_2_AnnP_0+P_network_0_2_RP_0+P_network_0_3_AskP_0+P_network_0_3_AnsP_0+P_network_0_3_AnsP_1+P_network_0_3_AnsP_2+P_network_0_3_AnsP_3+P_network_0_3_RI_0+P_network_0_3_AI_0+P_network_0_3_AnnP_0+P_network_0_3_RP_0+P_network_1_0_AskP_0+P_network_1_0_AnsP_0+P_network_1_0_AnsP_1+P_network_1_0_AnsP_2+P_network_1_0_AnsP_3+P_network_1_0_RI_0+P_network_1_0_AI_0+P_network_1_0_AnnP_0+P_network_1_0_RP_0+P_network_1_1_AskP_0+P_network_1_1_AnsP_0+P_network_1_1_AnsP_1+P_network_1_1_AnsP_2+P_network_1_1_AnsP_3+P_network_1_1_RI_0+P_network_1_1_AI_0+P_network_1_1_AnnP_0+P_network_1_1_RP_0+P_network_1_2_AskP_0+P_network_1_2_AnsP_0+P_network_1_2_AnsP_1+P_network_1_2_AnsP_2+P_network_1_2_AnsP_3+P_network_1_2_RI_0+P_network_1_2_AI_0+P_network_1_2_AnnP_0+P_network_1_2_RP_0+P_network_1_3_AskP_0+P_network_1_3_AnsP_0+P_network_1_3_AnsP_1+P_network_1_3_AnsP_2+P_network_1_3_AnsP_3+P_network_1_3_RI_0+P_network_1_3_AI_0+P_network_1_3_AnnP_0+P_network_1_3_RP_0+P_network_2_0_AskP_0+P_network_2_0_AnsP_0+P_network_2_0_AnsP_1+P_network_2_0_AnsP_2+P_network_2_0_AnsP_3+P_network_2_0_RI_0+P_network_2_0_AI_0+P_network_2_0_AnnP_0+P_network_2_0_RP_0+P_network_2_1_AskP_0+P_network_2_1_AnsP_0+P_network_2_1_AnsP_1+P_network_2_1_AnsP_2+P_network_2_1_AnsP_3+P_network_2_1_RI_0+P_network_2_1_AI_0+P_network_2_1_AnnP_0+P_network_2_1_RP_0+P_network_2_2_AskP_0+P_network_2_2_AnsP_0+P_network_2_2_AnsP_1+P_network_2_2_AnsP_2+P_network_2_2_AnsP_3+P_network_2_2_RI_0+P_network_2_2_AI_0+P_network_2_2_AnnP_0+P_network_2_2_RP_0+P_network_2_3_AskP_0+P_network_2_3_AnsP_0+P_network_2_3_AnsP_1+P_network_2_3_AnsP_2+P_network_2_3_AnsP_3+P_network_2_3_RI_0+P_network_2_3_AI_0+P_network_2_3_AnnP_0+P_network_2_3_RP_0+P_network_3_0_AskP_0+P_network_3_0_AnsP_0+P_network_3_0_AnsP_1+P_network_3_0_AnsP_2+P_network_3_0_AnsP_3+P_network_3_0_RI_0+P_network_3_0_AI_0+P_network_3_0_AnnP_0+P_network_3_0_RP_0+P_network_3_1_AskP_0+P_network_3_1_AnsP_0+P_network_3_1_AnsP_1+P_network_3_1_AnsP_2+P_network_3_1_AnsP_3+P_network_3_1_RI_0+P_network_3_1_AI_0+P_network_3_1_AnnP_0+P_network_3_1_RP_0+P_network_3_2_AskP_0+P_network_3_2_AnsP_0+P_network_3_2_AnsP_1+P_network_3_2_AnsP_2+P_network_3_2_AnsP_3+P_network_3_2_RI_0+P_network_3_2_AI_0+P_network_3_2_AnnP_0+P_network_3_2_RP_0+P_network_3_3_AskP_0+P_network_3_3_AnsP_0+P_network_3_3_AnsP_1+P_network_3_3_AnsP_2+P_network_3_3_AnsP_3+P_network_3_3_RI_0+P_network_3_3_AI_0+P_network_3_3_AnnP_0+P_network_3_3_RP_0
Read [bounds] property : NeoElection-PT-3-UpperBounds-05 with value :P_masterState_0_F_0+P_masterState_0_F_1+P_masterState_0_F_2+P_masterState_0_F_3+P_masterState_0_T_0+P_masterState_0_T_1+P_masterState_0_T_2+P_masterState_0_T_3+P_masterState_1_F_0+P_masterState_1_F_1+P_masterState_1_F_2+P_masterState_1_F_3+P_masterState_1_T_0+P_masterState_1_T_1+P_masterState_1_T_2+P_masterState_1_T_3+P_masterState_2_F_0+P_masterState_2_F_1+P_masterState_2_F_2+P_masterState_2_F_3+P_masterState_2_T_0+P_masterState_2_T_1+P_masterState_2_T_2+P_masterState_2_T_3+P_masterState_3_F_0+P_masterState_3_F_1+P_masterState_3_F_2+P_masterState_3_F_3+P_masterState_3_T_0+P_masterState_3_T_1+P_masterState_3_T_2+P_masterState_3_T_3
Read [bounds] property : NeoElection-PT-3-UpperBounds-06 with value :P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2+P_poll__networl_0_0_AnsP_3+P_poll__networl_0_1_AnsP_1+P_poll__networl_0_1_AnsP_2+P_poll__networl_0_1_AnsP_3+P_poll__networl_0_2_AnsP_1+P_poll__networl_0_2_AnsP_2+P_poll__networl_0_2_AnsP_3+P_poll__networl_0_3_AnsP_1+P_poll__networl_0_3_AnsP_2+P_poll__networl_0_3_AnsP_3+P_poll__networl_1_0_AnsP_1+P_poll__networl_1_0_AnsP_2+P_poll__networl_1_0_AnsP_3+P_poll__networl_1_1_AnsP_1+P_poll__networl_1_1_AnsP_2+P_poll__networl_1_1_AnsP_3+P_poll__networl_1_2_AnsP_1+P_poll__networl_1_2_AnsP_2+P_poll__networl_1_2_AnsP_3+P_poll__networl_1_3_AnsP_1+P_poll__networl_1_3_AnsP_2+P_poll__networl_1_3_AnsP_3+P_poll__networl_2_0_AnsP_1+P_poll__networl_2_0_AnsP_2+P_poll__networl_2_0_AnsP_3+P_poll__networl_2_1_AnsP_1+P_poll__networl_2_1_AnsP_2+P_poll__networl_2_1_AnsP_3+P_poll__networl_2_2_AnsP_1+P_poll__networl_2_2_AnsP_2+P_poll__networl_2_2_AnsP_3+P_poll__networl_2_3_AnsP_1+P_poll__networl_2_3_AnsP_2+P_poll__networl_2_3_AnsP_3+P_poll__networl_3_0_AnsP_1+P_poll__networl_3_0_AnsP_2+P_poll__networl_3_0_AnsP_3+P_poll__networl_3_1_AnsP_1+P_poll__networl_3_1_AnsP_2+P_poll__networl_3_1_AnsP_3+P_poll__networl_3_2_AnsP_1+P_poll__networl_3_2_AnsP_2+P_poll__networl_3_2_AnsP_3+P_poll__networl_3_3_AnsP_1+P_poll__networl_3_3_AnsP_2+P_poll__networl_3_3_AnsP_3
Read [bounds] property : NeoElection-PT-3-UpperBounds-07 with value :P_poll__handlingMessage_0+P_poll__handlingMessage_1+P_poll__handlingMessage_2+P_poll__handlingMessage_3
Read [bounds] property : NeoElection-PT-3-UpperBounds-08 with value :
Read [bounds] property : NeoElection-PT-3-UpperBounds-09 with value :
Read [bounds] property : NeoElection-PT-3-UpperBounds-10 with value :
Read [bounds] property : NeoElection-PT-3-UpperBounds-11 with value :P_sendAnnPs__broadcasting_1_2
Read [bounds] property : NeoElection-PT-3-UpperBounds-12 with value :P_network_0_0_AskP_0
Read [bounds] property : NeoElection-PT-3-UpperBounds-13 with value :
Read [bounds] property : NeoElection-PT-3-UpperBounds-14 with value :P_network_1_0_RP_0
Read [bounds] property : NeoElection-PT-3-UpperBounds-15 with value :P_negotiation_3_3_CO
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection\_PT\_3\_flat,974325,1.20458,38792,2,7789,5,77328,6,0,2074,56367,0
Total reachable state count : 974325

Verifying 16 reachability properties.
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-00 :0 <= <= 0
FORMULA NeoElection-PT-3-UpperBounds-00 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-00,0,1.20704,38948,1,0,6,77328,9,1,2411,56367,3
Min sum of variable value : 0
Maximum sum along a path : 3
Bounds property NeoElection-PT-3-UpperBounds-01 :0 <= P_masterState_0_F_0+P_masterState_0_F_1+P_masterState_0_F_2+P_masterState_0_F_3+P_masterState_0_T_0+P_masterState_0_T_1+P_masterState_0_T_2+P_masterState_0_T_3+P_masterState_1_F_0+P_masterState_1_F_1+P_masterState_1_F_2+P_masterState_1_F_3+P_masterState_1_T_0+P_masterState_1_T_1+P_masterState_1_T_2+P_masterState_1_T_3+P_masterState_2_F_0+P_masterState_2_F_1+P_masterState_2_F_2+P_masterState_2_F_3+P_masterState_2_T_0+P_masterState_2_T_1+P_masterState_2_T_2+P_masterState_2_T_3+P_masterState_3_F_0+P_masterState_3_F_1+P_masterState_3_F_2+P_masterState_3_F_3+P_masterState_3_T_0+P_masterState_3_T_1+P_masterState_3_T_2+P_masterState_3_T_3 <= 3
FORMULA NeoElection-PT-3-UpperBounds-01 3 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-01,0,1.21748,39024,1,0,7,77328,10,1,3038,56367,4
Min sum of variable value : 0
Maximum sum along a path : 9
Bounds property NeoElection-PT-3-UpperBounds-02 :0 <= P_negotiation_0_0_NONE+P_negotiation_0_0_CO+P_negotiation_0_0_DONE+P_negotiation_0_1_NONE+P_negotiation_0_1_CO+P_negotiation_0_1_DONE+P_negotiation_0_2_NONE+P_negotiation_0_2_CO+P_negotiation_0_2_DONE+P_negotiation_0_3_NONE+P_negotiation_0_3_CO+P_negotiation_0_3_DONE+P_negotiation_1_0_NONE+P_negotiation_1_0_CO+P_negotiation_1_0_DONE+P_negotiation_1_1_NONE+P_negotiation_1_1_CO+P_negotiation_1_1_DONE+P_negotiation_1_2_NONE+P_negotiation_1_2_CO+P_negotiation_1_2_DONE+P_negotiation_1_3_NONE+P_negotiation_1_3_CO+P_negotiation_1_3_DONE+P_negotiation_2_0_NONE+P_negotiation_2_0_CO+P_negotiation_2_0_DONE+P_negotiation_2_1_NONE+P_negotiation_2_1_CO+P_negotiation_2_1_DONE+P_negotiation_2_2_NONE+P_negotiation_2_2_CO+P_negotiation_2_2_DONE+P_negotiation_2_3_NONE+P_negotiation_2_3_CO+P_negotiation_2_3_DONE+P_negotiation_3_0_NONE+P_negotiation_3_0_CO+P_negotiation_3_0_DONE+P_negotiation_3_1_NONE+P_negotiation_3_1_CO+P_negotiation_3_1_DONE+P_negotiation_3_2_NONE+P_negotiation_3_2_CO+P_negotiation_3_2_DONE+P_negotiation_3_3_NONE+P_negotiation_3_3_CO+P_negotiation_3_3_DONE <= 9
FORMULA NeoElection-PT-3-UpperBounds-02 9 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-02,0,1.231,39024,1,0,8,77328,11,1,3729,56367,5
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-03 :0 <= P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2+P_poll__networl_0_0_AnsP_3+P_poll__networl_0_1_AnsP_1+P_poll__networl_0_1_AnsP_2+P_poll__networl_0_1_AnsP_3+P_poll__networl_0_2_AnsP_1+P_poll__networl_0_2_AnsP_2+P_poll__networl_0_2_AnsP_3+P_poll__networl_0_3_AnsP_1+P_poll__networl_0_3_AnsP_2+P_poll__networl_0_3_AnsP_3+P_poll__networl_1_0_AnsP_1+P_poll__networl_1_0_AnsP_2+P_poll__networl_1_0_AnsP_3+P_poll__networl_1_1_AnsP_1+P_poll__networl_1_1_AnsP_2+P_poll__networl_1_1_AnsP_3+P_poll__networl_1_2_AnsP_1+P_poll__networl_1_2_AnsP_2+P_poll__networl_1_2_AnsP_3+P_poll__networl_1_3_AnsP_1+P_poll__networl_1_3_AnsP_2+P_poll__networl_1_3_AnsP_3+P_poll__networl_2_0_AnsP_1+P_poll__networl_2_0_AnsP_2+P_poll__networl_2_0_AnsP_3+P_poll__networl_2_1_AnsP_1+P_poll__networl_2_1_AnsP_2+P_poll__networl_2_1_AnsP_3+P_poll__networl_2_2_AnsP_1+P_poll__networl_2_2_AnsP_2+P_poll__networl_2_2_AnsP_3+P_poll__networl_2_3_AnsP_1+P_poll__networl_2_3_AnsP_2+P_poll__networl_2_3_AnsP_3+P_poll__networl_3_0_AnsP_1+P_poll__networl_3_0_AnsP_2+P_poll__networl_3_0_AnsP_3+P_poll__networl_3_1_AnsP_1+P_poll__networl_3_1_AnsP_2+P_poll__networl_3_1_AnsP_3+P_poll__networl_3_2_AnsP_1+P_poll__networl_3_2_AnsP_2+P_poll__networl_3_2_AnsP_3+P_poll__networl_3_3_AnsP_1+P_poll__networl_3_3_AnsP_2+P_poll__networl_3_3_AnsP_3 <= 0
FORMULA NeoElection-PT-3-UpperBounds-03 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-03,0,1.24023,39024,1,0,8,77328,12,1,4369,56367,6
Min sum of variable value : 0
Maximum sum along a path : 6
Bounds property NeoElection-PT-3-UpperBounds-04 :0 <= P_network_0_0_AskP_0+P_network_0_0_AnsP_0+P_network_0_0_AnsP_1+P_network_0_0_AnsP_2+P_network_0_0_AnsP_3+P_network_0_0_RI_0+P_network_0_0_AI_0+P_network_0_0_AnnP_0+P_network_0_0_RP_0+P_network_0_1_AskP_0+P_network_0_1_AnsP_0+P_network_0_1_AnsP_1+P_network_0_1_AnsP_2+P_network_0_1_AnsP_3+P_network_0_1_RI_0+P_network_0_1_AI_0+P_network_0_1_AnnP_0+P_network_0_1_RP_0+P_network_0_2_AskP_0+P_network_0_2_AnsP_0+P_network_0_2_AnsP_1+P_network_0_2_AnsP_2+P_network_0_2_AnsP_3+P_network_0_2_RI_0+P_network_0_2_AI_0+P_network_0_2_AnnP_0+P_network_0_2_RP_0+P_network_0_3_AskP_0+P_network_0_3_AnsP_0+P_network_0_3_AnsP_1+P_network_0_3_AnsP_2+P_network_0_3_AnsP_3+P_network_0_3_RI_0+P_network_0_3_AI_0+P_network_0_3_AnnP_0+P_network_0_3_RP_0+P_network_1_0_AskP_0+P_network_1_0_AnsP_0+P_network_1_0_AnsP_1+P_network_1_0_AnsP_2+P_network_1_0_AnsP_3+P_network_1_0_RI_0+P_network_1_0_AI_0+P_network_1_0_AnnP_0+P_network_1_0_RP_0+P_network_1_1_AskP_0+P_network_1_1_AnsP_0+P_network_1_1_AnsP_1+P_network_1_1_AnsP_2+P_network_1_1_AnsP_3+P_network_1_1_RI_0+P_network_1_1_AI_0+P_network_1_1_AnnP_0+P_network_1_1_RP_0+P_network_1_2_AskP_0+P_network_1_2_AnsP_0+P_network_1_2_AnsP_1+P_network_1_2_AnsP_2+P_network_1_2_AnsP_3+P_network_1_2_RI_0+P_network_1_2_AI_0+P_network_1_2_AnnP_0+P_network_1_2_RP_0+P_network_1_3_AskP_0+P_network_1_3_AnsP_0+P_network_1_3_AnsP_1+P_network_1_3_AnsP_2+P_network_1_3_AnsP_3+P_network_1_3_RI_0+P_network_1_3_AI_0+P_network_1_3_AnnP_0+P_network_1_3_RP_0+P_network_2_0_AskP_0+P_network_2_0_AnsP_0+P_network_2_0_AnsP_1+P_network_2_0_AnsP_2+P_network_2_0_AnsP_3+P_network_2_0_RI_0+P_network_2_0_AI_0+P_network_2_0_AnnP_0+P_network_2_0_RP_0+P_network_2_1_AskP_0+P_network_2_1_AnsP_0+P_network_2_1_AnsP_1+P_network_2_1_AnsP_2+P_network_2_1_AnsP_3+P_network_2_1_RI_0+P_network_2_1_AI_0+P_network_2_1_AnnP_0+P_network_2_1_RP_0+P_network_2_2_AskP_0+P_network_2_2_AnsP_0+P_network_2_2_AnsP_1+P_network_2_2_AnsP_2+P_network_2_2_AnsP_3+P_network_2_2_RI_0+P_network_2_2_AI_0+P_network_2_2_AnnP_0+P_network_2_2_RP_0+P_network_2_3_AskP_0+P_network_2_3_AnsP_0+P_network_2_3_AnsP_1+P_network_2_3_AnsP_2+P_network_2_3_AnsP_3+P_network_2_3_RI_0+P_network_2_3_AI_0+P_network_2_3_AnnP_0+P_network_2_3_RP_0+P_network_3_0_AskP_0+P_network_3_0_AnsP_0+P_network_3_0_AnsP_1+P_network_3_0_AnsP_2+P_network_3_0_AnsP_3+P_network_3_0_RI_0+P_network_3_0_AI_0+P_network_3_0_AnnP_0+P_network_3_0_RP_0+P_network_3_1_AskP_0+P_network_3_1_AnsP_0+P_network_3_1_AnsP_1+P_network_3_1_AnsP_2+P_network_3_1_AnsP_3+P_network_3_1_RI_0+P_network_3_1_AI_0+P_network_3_1_AnnP_0+P_network_3_1_RP_0+P_network_3_2_AskP_0+P_network_3_2_AnsP_0+P_network_3_2_AnsP_1+P_network_3_2_AnsP_2+P_network_3_2_AnsP_3+P_network_3_2_RI_0+P_network_3_2_AI_0+P_network_3_2_AnnP_0+P_network_3_2_RP_0+P_network_3_3_AskP_0+P_network_3_3_AnsP_0+P_network_3_3_AnsP_1+P_network_3_3_AnsP_2+P_network_3_3_AnsP_3+P_network_3_3_RI_0+P_network_3_3_AI_0+P_network_3_3_AnnP_0+P_network_3_3_RP_0 <= 6
FORMULA NeoElection-PT-3-UpperBounds-04 6 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-04,0,1.26451,39024,1,0,9,77328,13,1,5049,56367,7
Min sum of variable value : 0
Maximum sum along a path : 3
Bounds property NeoElection-PT-3-UpperBounds-05 :0 <= P_masterState_0_F_0+P_masterState_0_F_1+P_masterState_0_F_2+P_masterState_0_F_3+P_masterState_0_T_0+P_masterState_0_T_1+P_masterState_0_T_2+P_masterState_0_T_3+P_masterState_1_F_0+P_masterState_1_F_1+P_masterState_1_F_2+P_masterState_1_F_3+P_masterState_1_T_0+P_masterState_1_T_1+P_masterState_1_T_2+P_masterState_1_T_3+P_masterState_2_F_0+P_masterState_2_F_1+P_masterState_2_F_2+P_masterState_2_F_3+P_masterState_2_T_0+P_masterState_2_T_1+P_masterState_2_T_2+P_masterState_2_T_3+P_masterState_3_F_0+P_masterState_3_F_1+P_masterState_3_F_2+P_masterState_3_F_3+P_masterState_3_T_0+P_masterState_3_T_1+P_masterState_3_T_2+P_masterState_3_T_3 <= 3
FORMULA NeoElection-PT-3-UpperBounds-05 3 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-05,0,1.26535,39024,1,0,9,77328,13,1,5049,56367,7
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-06 :0 <= P_poll__networl_0_0_AnsP_1+P_poll__networl_0_0_AnsP_2+P_poll__networl_0_0_AnsP_3+P_poll__networl_0_1_AnsP_1+P_poll__networl_0_1_AnsP_2+P_poll__networl_0_1_AnsP_3+P_poll__networl_0_2_AnsP_1+P_poll__networl_0_2_AnsP_2+P_poll__networl_0_2_AnsP_3+P_poll__networl_0_3_AnsP_1+P_poll__networl_0_3_AnsP_2+P_poll__networl_0_3_AnsP_3+P_poll__networl_1_0_AnsP_1+P_poll__networl_1_0_AnsP_2+P_poll__networl_1_0_AnsP_3+P_poll__networl_1_1_AnsP_1+P_poll__networl_1_1_AnsP_2+P_poll__networl_1_1_AnsP_3+P_poll__networl_1_2_AnsP_1+P_poll__networl_1_2_AnsP_2+P_poll__networl_1_2_AnsP_3+P_poll__networl_1_3_AnsP_1+P_poll__networl_1_3_AnsP_2+P_poll__networl_1_3_AnsP_3+P_poll__networl_2_0_AnsP_1+P_poll__networl_2_0_AnsP_2+P_poll__networl_2_0_AnsP_3+P_poll__networl_2_1_AnsP_1+P_poll__networl_2_1_AnsP_2+P_poll__networl_2_1_AnsP_3+P_poll__networl_2_2_AnsP_1+P_poll__networl_2_2_AnsP_2+P_poll__networl_2_2_AnsP_3+P_poll__networl_2_3_AnsP_1+P_poll__networl_2_3_AnsP_2+P_poll__networl_2_3_AnsP_3+P_poll__networl_3_0_AnsP_1+P_poll__networl_3_0_AnsP_2+P_poll__networl_3_0_AnsP_3+P_poll__networl_3_1_AnsP_1+P_poll__networl_3_1_AnsP_2+P_poll__networl_3_1_AnsP_3+P_poll__networl_3_2_AnsP_1+P_poll__networl_3_2_AnsP_2+P_poll__networl_3_2_AnsP_3+P_poll__networl_3_3_AnsP_1+P_poll__networl_3_3_AnsP_2+P_poll__networl_3_3_AnsP_3 <= 0
FORMULA NeoElection-PT-3-UpperBounds-06 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-06,0,1.26606,39024,1,0,9,77328,13,1,5049,56367,7
Min sum of variable value : 0
Maximum sum along a path : 3
Bounds property NeoElection-PT-3-UpperBounds-07 :0 <= P_poll__handlingMessage_0+P_poll__handlingMessage_1+P_poll__handlingMessage_2+P_poll__handlingMessage_3 <= 3
FORMULA NeoElection-PT-3-UpperBounds-07 3 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-07,0,1.27642,39024,1,0,10,77328,14,1,5636,56367,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-08 :0 <= <= 0
FORMULA NeoElection-PT-3-UpperBounds-08 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-08,0,1.27665,39024,1,0,10,77328,14,1,5636,56367,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-09 :0 <= <= 0
FORMULA NeoElection-PT-3-UpperBounds-09 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-09,0,1.27684,39024,1,0,10,77328,14,1,5636,56367,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-10 :0 <= <= 0
FORMULA NeoElection-PT-3-UpperBounds-10 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-10,0,1.27703,39024,1,0,10,77328,14,1,5636,56367,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-11 :0 <= P_sendAnnPs__broadcasting_1_2 <= 0
FORMULA NeoElection-PT-3-UpperBounds-11 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-11,0,1.28022,39024,1,0,10,77328,15,1,5836,56367,9
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-12 :0 <= P_network_0_0_AskP_0 <= 0
FORMULA NeoElection-PT-3-UpperBounds-12 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-12,0,1.30599,39024,1,0,10,77328,16,1,6460,56367,10
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-13 :0 <= <= 0
FORMULA NeoElection-PT-3-UpperBounds-13 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-13,0,1.30628,39024,1,0,10,77328,16,1,6460,56367,10
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-14 :0 <= P_network_1_0_RP_0 <= 0
FORMULA NeoElection-PT-3-UpperBounds-14 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-14,0,1.31724,39024,1,0,10,77328,17,1,6944,56367,11
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-3-UpperBounds-15 :0 <= P_negotiation_3_3_CO <= 0
FORMULA NeoElection-PT-3-UpperBounds-15 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL USE_NUPN

Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-3-UpperBounds-15,0,1.31803,39024,1,0,10,77328,18,1,6986,56367,12

BK_STOP 1527251334256

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution UpperBounds -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination UpperBounds -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 25, 2018 12:28:50 PM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, UpperBounds, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -louvain, -smt]
May 25, 2018 12:28:50 PM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 25, 2018 12:28:51 PM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 252 ms
May 25, 2018 12:28:51 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 972 places.
May 25, 2018 12:28:51 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 1016 transitions.
May 25, 2018 12:28:51 PM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/model.pnml.img.gal : 90 ms
May 25, 2018 12:28:51 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 604 fixed domain variables (out of 972 variables) in GAL type NeoElection_PT_3
May 25, 2018 12:28:51 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 604 constant array cells/variables (out of 972 variables) in type NeoElection_PT_3
May 25, 2018 12:28:51 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_network_3_0_AnnP_1,P_poll__networl_0_0_RP_1,P_poll__networl_1_2_RI_2,P_poll__networl_2_2_RP_1,P_poll__networl_3_1_RI_2,P_network_3_2_AskP_3,P_poll__networl_0_0_AnsP_0,P_poll__networl_0_3_RP_1,P_poll__networl_0_2_AnnP_3,P_poll__networl_3_3_RI_3,P_poll__networl_2_1_RI_2,P_poll__networl_3_3_AI_1,P_network_1_2_AnnP_1,P_network_2_3_AI_1,P_network_2_0_AnnP_3,P_poll__networl_2_1_AskP_2,P_network_0_1_AI_1,P_poll__networl_3_3_AI_3,P_poll__networl_3_2_RP_2,P_poll__networl_2_0_RP_1,P_poll__networl_2_1_RP_0,P_network_2_0_AskP_2,P_poll__networl_0_1_RP_2,P_network_3_3_AnnP_3,P_poll__networl_2_3_RP_1,P_poll__networl_2_0_AI_0,P_poll__networl_1_3_AnnP_3,P_network_0_2_RI_3,P_network_0_2_AskP_3,P_crashed_0,P_network_1_0_AI_2,P_poll__networl_2_0_RI_3,P_poll__networl_2_2_AskP_3,P_poll__networl_1_3_AskP_1,P_poll__networl_2_2_AI_1,P_poll__networl_1_1_AnnP_1,P_network_2_0_AI_3,P_poll__networl_3_0_RI_1,P_poll__networl_1_3_AI_2,P_network_1_3_RI_2,P_network_3_3_AskP_3,P_masterList_1_3_0,P_poll__networl_0_0_AnnP_2,P_poll__networl_0_2_AnsP_0,P_network_0_0_RP_2,P_poll__networl_2_3_AI_1,P_network_2_0_RI_3,P_poll__networl_1_1_AI_1,P_poll__networl_3_2_RI_1,P_poll__networl_1_2_RP_2,P_poll__networl_0_3_RI_1,P_poll__networl_0_3_AnnP_3,P_poll__networl_0_2_RP_3,P_network_3_3_RP_2,P_poll__networl_2_1_RI_3,P_network_2_3_RP_2,P_poll__networl_2_1_AI_2,P_poll__networl_2_0_AnsP_0,P_poll__networl_2_0_AI_2,P_poll__networl_3_2_AnnP_1,P_masterList_0_3_1,P_network_0_2_RP_1,P_network_3_0_AskP_3,P_network_0_1_AskP_1,P_network_1_2_RP_1,P_network_2_2_RP_3,P_poll__networl_0_3_RI_2,P_network_3_1_RP_1,P_crashed_1,P_masterList_3_3_0,P_masterList_3_3_2,P_network_2_2_RI_2,P_poll__networl_3_1_RI_1,P_poll__networl_3_2_AI_0,P_poll__networl_0_1_AnnP_3,P_network_3_1_RI_1,P_poll__networl_1_3_RI_0,P_network_1_3_AnnP_3,P_poll__networl_3_0_AskP_1,P_network_3_0_AskP_2,P_network_1_1_AI_1,P_poll__networl_0_2_RP_1,P_network_1_1_AI_2,P_poll__networl_0_3_RP_2,P_poll__networl_0_2_AnnP_1,P_network_2_0_AskP_1,P_poll__networl_3_2_RI_2,P_network_2_2_RP_1,P_poll__networl_3_2_AskP_1,P_network_0_0_AnnP_1,P_poll__networl_1_2_RP_0,P_poll__networl_3_2_AskP_2,P_poll__networl_3_1_AnnP_2,P_network_2_2_AskP_2,P_network_3_2_AskP_2,P_network_1_2_RP_2,P_poll__networl_0_0_AI_3,P_network_1_1_RI_2,P_poll__networl_2_2_AI_3,P_poll__networl_1_2_AskP_3,P_poll__networl_2_2_AnnP_1,P_poll__networl_2_1_AnnP_3,P_network_2_3_RP_3,P_poll__networl_1_0_AnnP_2,P_network_3_1_AnnP_3,P_poll__networl_0_2_AnnP_2,P_poll__networl_2_2_RI_1,P_network_2_0_AI_2,P_poll__networl_1_2_AskP_2,P_poll__networl_0_2_AskP_0,P_poll__networl_2_3_AnnP_3,P_network_0_1_RI_2,P_poll__networl_2_2_RP_2,P_poll__networl_2_0_AnnP_0,P_network_0_2_AnnP_3,P_poll__networl_3_0_AI_0,P_poll__networl_3_3_RP_1,P_network_2_2_RP_2,P_network_1_1_AI_3,P_network_1_3_AskP_1,P_network_2_2_AskP_1,P_poll__networl_1_1_RP_3,P_network_2_1_RP_2,P_network_3_0_RI_2,P_poll__networl_2_3_AnnP_1,P_network_0_1_AnnP_1,P_dead_2,P_network_2_3_RI_1,P_poll__networl_2_2_RI_0,P_network_2_0_RI_1,P_poll__networl_2_0_AnnP_2,P_network_1_2_AI_1,P_poll__networl_0_0_AnnP_3,P_poll__networl_2_1_RP_1,P_poll__networl_3_1_AI_2,P_masterList_2_3_3,P_crashed_3,P_poll__networl_1_2_AnsP_0,P_poll__networl_2_3_AI_3,P_network_3_1_AI_3,P_poll__networl_0_0_RP_0,P_network_3_1_AskP_2,P_network_3_0_AI_2,P_poll__networl_3_3_RI_2,P_poll__networl_3_3_AI_2,P_network_0_3_RP_3,P_network_1_1_AnnP_1,P_masterList_0_3_3,P_poll__networl_0_3_AnsP_0,P_poll__networl_3_2_AI_1,P_poll__networl_1_0_AI_0,P_poll__networl_2_1_RI_0,P_poll__networl_3_3_AnnP_3,P_network_1_0_AskP_3,P_masterList_2_3_1,P_poll__networl_3_1_RP_3,P_network_0_3_AnnP_2,P_poll__networl_1_1_AI_2,P_poll__networl_2_2_AnsP_0,P_network_3_2_RP_3,P_poll__networl_1_3_AI_1,P_poll__networl_3_3_AI_0,P_poll__networl_1_3_RI_3,P_poll__networl_3_0_AI_2,P_network_2_0_AskP_3,P_poll__networl_3_3_RP_3,P_electionFailed_1,P_network_0_2_AskP_2,P_poll__networl_1_3_RI_2,P_poll__networl_2_3_RP_3,P_network_0_3_AI_2,P_poll__networl_0_2_AskP_1,P_masterList_1_3_3,P_network_0_3_AI_3,P_poll__networl_1_0_AI_1,P_masterList_1_3_2,P_masterList_2_3_0,P_poll__networl_3_1_AnnP_3,P_network_3_2_RP_1,P_network_3_1_AnnP_1,P_poll__networl_1_3_AskP_2,P_poll__networl_1_3_AnnP_1,P_network_2_0_RP_1,P_network_2_3_AskP_3,P_poll__networl_0_2_AI_2,P_poll__networl_3_1_RI_0,P_poll__networl_1_2_AI_2,P_network_2_1_RI_3,P_poll__networl_1_3_AnnP_0,P_poll__networl_2_0_AnnP_1,P_poll__networl_3_2_RP_0,P_poll__networl_2_2_AnnP_2,P_poll__networl_2_3_AnnP_2,P_poll__networl_1_1_RI_3,P_electionFailed_0,P_network_3_0_RP_1,P_poll__networl_1_2_AnnP_0,P_network_2_2_AskP_3,P_poll__networl_1_0_AI_2,P_network_0_1_AskP_2,P_network_3_0_RP_2,P_network_3_3_RI_1,P_network_1_2_AnnP_2,P_poll__networl_2_1_AI_1,P_poll__networl_1_2_AI_0,P_network_0_2_AnnP_1,P_poll__networl_0_2_RP_2,P_network_2_0_AnnP_2,P_network_0_0_AskP_1,P_network_2_1_AnnP_2,P_poll__networl_3_2_AnnP_2,P_network_1_1_AnnP_3,P_network_2_1_AskP_1,P_poll__networl_1_1_RP_1,P_poll__networl_2_2_RI_3,P_network_2_1_AskP_3,P_poll__networl_1_0_AskP_2,P_network_0_2_RI_2,P_poll__networl_3_0_AnnP_2,P_network_2_3_AskP_2,P_poll__networl_1_3_AI_0,P_poll__networl_3_0_AnnP_1,P_poll__networl_2_3_AI_0,P_poll__networl_2_0_RI_2,P_poll__networl_1_2_RI_0,P_network_3_3_RP_3,P_poll__networl_0_3_AskP_0,P_poll__networl_0_3_AskP_3,P_network_0_0_AI_2,P_network_3_1_AI_1,P_network_1_1_AskP_2,P_network_0_0_AnnP_2,P_poll__networl_2_3_RP_0,P_poll__networl_3_2_AskP_3,P_network_1_1_RP_2,P_poll__networl_3_0_RP_0,P_poll__networl_3_3_AnnP_1,P_poll__networl_0_1_AI_2,P_masterList_3_3_1,P_network_1_3_RP_3,P_poll__networl_1_3_RP_1,P_poll__networl_1_1_AskP_0,P_poll__networl_3_2_RP_1,P_network_3_3_RI_2,P_poll__networl_2_3_RP_2,P_network_0_2_RP_3,P_poll__networl_0_1_AnsP_0,P_network_0_3_AskP_2,P_poll__networl_2_0_AI_3,P_poll__networl_2_1_AI_0,P_poll__networl_1_3_AskP_0,P_poll__networl_1_1_RP_0,P_network_1_1_RP_1,P_network_0_3_RI_3,P_poll__networl_3_2_AI_2,P_network_1_0_RI_3,P_poll__networl_3_1_AskP_0,P_poll__networl_2_1_AskP_1,P_network_0_0_RP_3,P_network_2_1_RP_1,P_network_3_0_AI_3,P_poll__networl_3_2_AnnP_0,P_poll__networl_2_3_AskP_2,P_poll__networl_3_0_AskP_3,P_poll__networl_1_0_RI_0,P_poll__networl_2_0_AnnP_3,P_network_3_0_AnnP_3,P_network_2_0_RI_2,P_network_3_1_RP_3,P_electionFailed_3,P_poll__networl_0_3_RI_3,P_poll__networl_0_3_AnnP_0,P_network_3_3_AI_1,P_network_0_2_RI_1,P_poll__networl_1_1_AnnP_2,P_network_0_1_AI_2,P_poll__networl_0_1_AI_0,P_network_3_3_AI_3,P_network_0_0_AskP_3,P_poll__networl_1_0_AskP_1,P_poll__networl_1_2_AnnP_3,P_poll__networl_1_0_AskP_3,P_poll__networl_0_2_RI_2,P_network_0_0_AI_3,P_network_2_1_AnnP_1,P_network_1_0_AI_3,P_poll__networl_0_1_AskP_0,P_network_2_3_RI_2,P_poll__networl_2_2_AskP_1,P_network_2_3_AI_3,P_poll__networl_1_2_AnnP_1,P_poll__networl_2_0_RP_3,P_network_1_2_AnnP_3,P_poll__networl_1_0_RP_0,P_poll__networl_2_3_RI_2,P_network_0_3_AnnP_1,P_poll__networl_3_1_AskP_2,P_poll__networl_1_0_AnnP_3,P_poll__networl_2_3_RI_1,P_poll__networl_3_0_RI_3,P_network_1_0_AI_1,P_poll__networl_0_1_RP_0,P_network_2_2_AI_3,P_network_1_3_AI_3,P_masterList_0_3_2,P_masterList_0_3_0,P_poll__networl_3_3_AskP_1,P_network_1_0_AnnP_3,P_poll__networl_0_3_AI_1,P_poll__networl_1_0_RI_2,P_poll__networl_2_1_RI_1,P_network_3_1_RI_2,P_network_0_0_RI_2,P_poll__networl_0_0_AskP_3,P_poll__networl_0_0_RI_1,P_network_3_2_AskP_1,P_poll__networl_2_3_RI_3,P_poll__networl_0_3_AI_0,P_poll__networl_1_2_RP_1,P_network_2_1_RP_3,P_network_2_3_AnnP_1,P_poll__networl_3_0_RP_2,P_network_1_2_RI_1,P_poll__networl_0_0_AnnP_1,P_poll__networl_2_2_AskP_0,P_poll__networl_1_3_AI_3,P_poll__networl_3_0_RP_1,P_poll__networl_1_2_AI_1,P_poll__networl_3_2_AnnP_3,P_poll__networl_3_3_RI_1,P_poll__networl_2_3_AskP_0,P_network_0_2_RP_2,P_poll__networl_1_0_RI_3,P_poll__networl_1_0_AI_3,P_poll__networl_3_2_AskP_0,P_poll__networl_0_0_AskP_1,P_network_0_0_RI_3,P_poll__networl_1_1_AskP_3,P_network_1_3_RI_3,P_poll__networl_3_3_AnnP_2,P_poll__networl_1_2_AnnP_2,P_poll__networl_3_0_RI_2,P_poll__networl_0_3_AskP_2,P_network_1_2_RI_3,P_dead_1,P_poll__networl_1_2_AskP_1,P_poll__networl_3_2_RI_0,P_poll__networl_0_1_AskP_1,P_poll__networl_3_1_RP_2,P_poll__networl_0_1_AI_3,P_poll__networl_1_2_RI_3,P_poll__networl_0_1_AskP_2,P_poll__networl_0_3_AI_2,P_poll__networl_1_1_AskP_1,P_poll__networl_1_3_RP_3,P_poll__networl_2_0_RP_0,P_poll__networl_0_2_AnnP_0,P_poll__networl_0_1_AnnP_1,P_poll__networl_3_3_RI_0,P_poll__networl_2_1_AnsP_0,P_dead_0,P_network_0_0_RP_1,P_network_2_2_RI_1,P_poll__networl_2_0_RP_2,P_poll__networl_0_3_AnnP_2,P_poll__networl_2_1_AI_3,P_crashed_2,P_network_3_3_AnnP_1,P_network_1_1_AnnP_2,P_network_3_0_RP_3,P_poll__networl_1_1_AI_0,P_poll__networl_2_1_RP_3,P_poll__networl_3_2_RP_3,P_network_3_0_RI_1,P_network_3_2_AnnP_1,P_network_3_1_AI_2,P_network_2_3_RP_1,P_network_3_1_AskP_1,P_network_3_2_AnnP_3,P_poll__networl_1_0_RI_1,P_network_0_3_AskP_1,P_network_2_2_AnnP_3,P_network_2_1_AI_2,P_network_0_1_RP_1,P_poll__networl_0_0_RI_0,P_network_3_3_AskP_2,P_poll__networl_0_3_AskP_1,P_poll__networl_3_3_RP_0,P_network_1_1_RI_3,P_poll__networl_0_2_RP_0,P_poll__networl_2_3_RI_0,P_poll__networl_0_0_AI_0,P_poll__networl_3_1_AI_1,P_poll__networl_2_2_AI_2,P_poll__networl_2_2_AI_0,P_poll__networl_2_0_RI_0,P_network_2_1_RI_1,P_poll__networl_0_1_RI_0,P_network_0_1_RP_3,P_poll__networl_3_3_AnnP_0,P_poll__networl_2_3_AskP_3,P_network_1_0_AnnP_1,P_network_1_2_AskP_1,P_poll__networl_0_1_RI_2,P_network_1_1_RI_1,P_network_3_1_AnnP_2,P_poll__networl_2_1_RP_2,P_poll__networl_3_2_RI_3,P_electionFailed_2,P_network_1_3_AskP_3,P_poll__networl_0_1_RI_3,P_network_1_3_AnnP_1,P_network_0_0_AnnP_3,P_poll__networl_1_1_RP_2,P_poll__networl_3_2_AI_3,P_poll__networl_1_0_AskP_0,P_poll__networl_3_3_AskP_2,P_dead_3,P_poll__networl_3_3_AskP_0,P_network_0_3_RI_2,P_network_0_1_AI_3,P_network_1_3_AnnP_2,P_network_3_2_AI_1,P_poll__networl_3_0_AnnP_0,P_network_2_2_AnnP_2,P_network_2_2_RI_3,P_poll__networl_2_0_AI_1,P_poll__networl_0_2_AskP_2,P_poll__networl_3_0_AnsP_0,P_poll__networl_3_1_AnsP_0,P_poll__networl_3_3_RP_2,P_network_1_0_AskP_1,P_poll__networl_0_1_RP_3,P_poll__networl_2_1_AnnP_2,P_poll__networl_0_0_AskP_0,P_poll__networl_1_0_RP_2,P_network_0_3_RP_1,P_network_1_3_AI_2,P_poll__networl_3_1_AI_0,P_network_0_2_AI_3,P_poll__networl_3_1_AskP_1,P_network_3_3_AskP_1,P_network_0_1_RI_1,P_poll__networl_0_0_RI_3,P_poll__networl_0_3_AnnP_1,P_poll__networl_3_0_AnnP_3,P_poll__networl_1_1_AskP_2,P_network_3_3_AnnP_2,P_network_0_2_AI_2,P_poll__networl_0_1_RI_1,P_network_1_0_RI_2,P_poll__networl_1_2_AskP_0,P_network_0_1_AskP_3,P_network_1_3_AI_1,P_poll__networl_0_0_AI_2,P_network_0_3_RI_1,P_network_2_0_AnnP_1,P_poll__networl_1_1_AnnP_0,P_network_3_0_AI_1,P_network_3_1_RI_3,P_poll__networl_2_2_RI_2,P_network_0_3_AnnP_3,P_network_1_3_RP_1,P_poll__networl_1_0_AnnP_1,P_poll__networl_0_3_RP_0,P_network_0_1_AnnP_2,P_poll__networl_0_0_RP_2,P_poll__networl_0_2_AI_0,P_network_2_3_AI_2,P_poll__networl_3_1_RP_1,P_network_1_2_AI_2,P_poll__networl_0_0_AI_1,P_poll__networl_2_0_AskP_1,P_network_0_1_AnnP_3,P_network_2_1_AI_3,P_poll__networl_0_1_AnnP_0,P_poll__networl_1_1_RI_0,P_poll__networl_3_1_RI_3,P_network_1_0_AskP_2,P_network_2_0_RP_2,P_network_3_2_RI_3,P_poll__networl_2_2_RP_0,P_network_3_3_AI_2,P_poll__networl_0_0_RI_2,P_poll__networl_2_3_AskP_1,P_network_1_0_RP_3,P_network_3_1_RP_2,P_network_3_2_RP_2,P_poll__networl_1_1_RI_2,P_poll__networl_3_3_AskP_3,P_poll__networl_1_2_AI_3,P_poll__networl_3_0_AskP_0,P_poll__networl_3_1_RP_0,P_network_3_3_RI_3,P_poll__networl_2_0_RI_1,P_network_1_0_RI_1,P_network_0_0_AI_1,P_network_1_3_AskP_2,P_poll__networl_2_1_AskP_0,P_poll__networl_2_0_AskP_2,P_network_0_2_AI_1,P_poll__networl_1_1_AI_3,P_network_1_1_AskP_3,P_network_0_1_RI_3,P_poll__networl_1_3_AnnP_2,P_network_2_2_AI_2,P_poll__networl_3_1_AskP_3,P_poll__networl_1_1_AnnP_3,P_network_2_3_AnnP_3,P_network_3_2_AI_2,P_poll__networl_0_1_RP_1,P_poll__networl_1_0_RP_3,P_poll__networl_0_1_AskP_3,P_network_1_3_RI_1,P_network_2_3_AskP_1,P_network_3_0_AskP_1,P_network_1_0_AnnP_2,P_network_0_3_AI_1,P_poll__networl_0_2_AI_1,P_poll__networl_0_3_RP_3,P_network_2_0_RP_3,P_network_2_1_AnnP_3,P_poll__networl_3_2_AnsP_0,P_network_3_3_RP_1,P_poll__networl_3_0_AskP_2,P_poll__networl_3_0_AI_3,P_network_2_1_RI_2,P_poll__networl_2_1_AskP_3,P_network_0_2_AnnP_2,P_masterList_1_3_1,P_network_3_0_AnnP_2,P_masterList_2_3_2,P_network_2_3_RI_3,P_poll__networl_0_2_AI_3,P_network_1_2_AI_3,P_poll__networl_0_3_RI_0,P_poll__networl_1_3_AnsP_0,P_poll__networl_2_0_AskP_3,P_network_3_1_AskP_3,P_poll__networl_1_3_RP_0,P_poll__networl_0_2_RI_1,P_network_3_0_RI_3,P_poll__networl_1_1_AnsP_0,P_network_2_2_AnnP_1,P_network_1_2_RI_2,P_poll__networl_0_2_AskP_3,P_network_2_2_AI_1,P_poll__networl_1_0_AnnP_0,P_poll__networl_2_1_AnnP_1,P_network_1_3_RP_2,P_poll__networl_1_0_AnsP_0,P_network_0_0_RI_1,P_network_1_1_AskP_1,P_poll__networl_0_0_RP_3,P_network_0_0_AskP_2,P_network_2_0_AI_1,P_poll__networl_3_1_AI_3,P_poll__networl_0_2_RI_0,P_network_2_1_AI_1,P_poll__networl_1_1_RI_1,P_masterList_3_3_3,P_poll__networl_2_3_AnnP_0,P_poll__networl_0_2_RI_3,P_network_1_0_RP_1,P_network_1_0_RP_2,P_poll__networl_1_2_RP_3,P_poll__networl_1_0_RP_1,P_poll__networl_3_0_RI_0,P_poll__networl_2_3_AnsP_0,P_poll__networl_1_3_RI_1,P_poll__networl_1_3_RP_2,P_poll__networl_3_1_AnnP_1,P_network_0_1_RP_2,P_poll__networl_2_3_AI_2,P_poll__networl_0_3_AI_3,P_poll__networl_0_0_AskP_2,P_poll__networl_2_1_AnnP_0,P_poll__networl_2_2_AnnP_3,P_network_3_2_AnnP_2,P_network_3_2_RI_1,P_poll__networl_2_2_AskP_2,P_poll__networl_1_3_AskP_3,P_poll__networl_0_1_AnnP_2,P_poll__networl_1_2_RI_1,P_poll__networl_2_2_RP_3,P_network_2_1_AskP_2,P_poll__networl_3_1_AnnP_0,P_poll__networl_3_0_AI_1,P_network_0_3_AskP_3,P_network_1_1_RP_3,P_poll__networl_2_0_AskP_0,P_network_1_2_RP_3,P_network_1_2_AskP_2,P_poll__networl_0_0_AnnP_0,P_network_3_2_RI_2,P_network_0_3_RP_2,P_network_3_2_AI_3,P_network_0_2_AskP_1,P_poll__networl_0_1_AI_1,P_network_2_3_AnnP_2,P_poll__networl_3_3_AnsP_0,P_network_1_2_AskP_3,P_poll__networl_2_2_AnnP_0,P_poll__networl_3_0_RP_3,
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 636 fixed domain variables (out of 972 variables) in GAL type NeoElection_PT_3
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 636 constant array cells/variables (out of 972 variables) in type NeoElection_PT_3
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_network_3_0_AnnP_1,P_poll__networl_0_0_RP_1,P_poll__networl_1_2_RI_2,P_poll__networl_2_2_RP_1,P_poll__networl_3_1_RI_2,P_network_3_2_AskP_3,P_poll__networl_0_0_AnsP_0,P_poll__networl_0_3_RP_1,P_poll__networl_0_2_AnnP_3,P_poll__networl_3_3_RI_3,P_poll__networl_2_1_RI_2,P_poll__networl_3_3_AI_1,P_network_1_2_AnnP_1,P_network_2_3_AI_1,P_network_2_0_AnnP_3,P_poll__networl_2_1_AskP_2,P_network_0_1_AI_1,P_poll__networl_3_3_AI_3,P_poll__networl_3_2_RP_2,P_poll__networl_2_0_RP_1,P_poll__networl_2_1_RP_0,P_network_2_0_AskP_2,P_poll__networl_0_1_RP_2,P_network_3_3_AnnP_3,P_masterList_2_1_3,P_poll__networl_2_3_RP_1,P_poll__networl_2_0_AI_0,P_poll__networl_1_3_AnnP_3,P_network_0_2_RI_3,P_network_0_2_AskP_3,P_crashed_0,P_network_1_0_AI_2,P_poll__networl_2_0_RI_3,P_poll__networl_2_2_AskP_3,P_poll__networl_1_3_AskP_1,P_poll__networl_2_2_AI_1,P_poll__networl_1_1_AnnP_1,P_network_2_0_AI_3,P_poll__networl_3_0_RI_1,P_poll__networl_1_3_AI_2,P_network_1_3_RI_2,P_network_3_3_AskP_3,P_masterList_1_3_0,P_poll__networl_0_0_AnnP_2,P_poll__networl_0_2_AnsP_0,P_network_0_0_RP_2,P_masterList_1_1_0,P_poll__networl_2_3_AI_1,P_masterList_0_1_3,P_network_2_0_RI_3,P_poll__networl_1_1_AI_1,P_poll__networl_3_2_RI_1,P_poll__networl_1_2_RP_2,P_poll__networl_0_3_RI_1,P_poll__networl_0_3_AnnP_3,P_poll__networl_0_2_RP_3,P_network_3_3_RP_2,P_poll__networl_2_1_RI_3,P_network_2_3_RP_2,P_poll__networl_2_1_AI_2,P_poll__networl_2_0_AnsP_0,P_poll__networl_2_0_AI_2,P_poll__networl_3_2_AnnP_1,P_masterList_0_3_1,P_network_0_2_RP_1,P_network_3_0_AskP_3,P_network_0_1_AskP_1,P_network_1_2_RP_1,P_network_2_2_RP_3,P_poll__networl_0_3_RI_2,P_network_3_1_RP_1,P_crashed_1,P_masterList_3_3_0,P_masterList_3_3_2,P_network_2_2_RI_2,P_poll__networl_3_1_RI_1,P_poll__networl_3_2_AI_0,P_poll__networl_0_1_AnnP_3,P_network_3_1_RI_1,P_poll__networl_1_3_RI_0,P_network_1_3_AnnP_3,P_poll__networl_3_0_AskP_1,P_network_3_0_AskP_2,P_masterList_0_1_0,P_network_1_1_AI_1,P_poll__networl_0_2_RP_1,P_network_1_1_AI_2,P_poll__networl_0_3_RP_2,P_poll__networl_0_2_AnnP_1,P_network_2_0_AskP_1,P_poll__networl_3_2_RI_2,P_network_2_2_RP_1,P_poll__networl_3_2_AskP_1,P_network_0_0_AnnP_1,P_poll__networl_1_2_RP_0,P_poll__networl_3_2_AskP_2,P_poll__networl_3_1_AnnP_2,P_network_2_2_AskP_2,P_network_3_2_AskP_2,P_network_1_2_RP_2,P_poll__networl_0_0_AI_3,P_network_1_1_RI_2,P_poll__networl_2_2_AI_3,P_poll__networl_1_2_AskP_3,P_poll__networl_2_2_AnnP_1,P_poll__networl_2_1_AnnP_3,P_network_2_3_RP_3,P_poll__networl_1_0_AnnP_2,P_network_3_1_AnnP_3,P_poll__networl_0_2_AnnP_2,P_poll__networl_2_2_RI_1,P_network_2_0_AI_2,P_poll__networl_1_2_AskP_2,P_poll__networl_0_2_AskP_0,P_masterList_3_1_3,P_poll__networl_2_3_AnnP_3,P_network_0_1_RI_2,P_poll__networl_2_2_RP_2,P_poll__networl_2_0_AnnP_0,P_network_0_2_AnnP_3,P_poll__networl_3_0_AI_0,P_poll__networl_3_3_RP_1,P_network_2_2_RP_2,P_network_1_1_AI_3,P_network_1_3_AskP_1,P_network_2_2_AskP_1,P_poll__networl_1_1_RP_3,P_masterList_0_2_2,P_network_2_1_RP_2,P_network_3_0_RI_2,P_poll__networl_2_3_AnnP_1,P_network_0_1_AnnP_1,P_dead_2,P_network_2_3_RI_1,P_poll__networl_2_2_RI_0,P_masterList_2_1_0,P_network_2_0_RI_1,P_poll__networl_2_0_AnnP_2,P_network_1_2_AI_1,P_poll__networl_0_0_AnnP_3,P_poll__networl_2_1_RP_1,P_poll__networl_3_1_AI_2,P_masterList_2_3_3,P_crashed_3,P_poll__networl_1_2_AnsP_0,P_poll__networl_2_3_AI_3,P_network_3_1_AI_3,P_poll__networl_0_0_RP_0,P_network_3_1_AskP_2,P_network_3_0_AI_2,P_poll__networl_3_3_RI_2,P_poll__networl_3_3_AI_2,P_network_0_3_RP_3,P_network_1_1_AnnP_1,P_masterList_0_3_3,P_poll__networl_0_3_AnsP_0,P_poll__networl_3_2_AI_1,P_poll__networl_1_0_AI_0,P_poll__networl_2_1_RI_0,P_masterList_3_2_3,P_poll__networl_3_3_AnnP_3,P_network_1_0_AskP_3,P_masterList_2_3_1,P_poll__networl_3_1_RP_3,P_network_0_3_AnnP_2,P_poll__networl_1_1_AI_2,P_poll__networl_2_2_AnsP_0,P_masterList_1_2_1,P_network_3_2_RP_3,P_poll__networl_1_3_AI_1,P_poll__networl_3_3_AI_0,P_poll__networl_1_3_RI_3,P_poll__networl_3_0_AI_2,P_network_2_0_AskP_3,P_poll__networl_3_3_RP_3,P_electionFailed_1,P_network_0_2_AskP_2,P_poll__networl_1_3_RI_2,P_poll__networl_2_3_RP_3,P_network_0_3_AI_2,P_poll__networl_0_2_AskP_1,P_masterList_1_3_3,P_network_0_3_AI_3,P_poll__networl_1_0_AI_1,P_masterList_1_3_2,P_masterList_2_3_0,P_poll__networl_3_1_AnnP_3,P_network_3_2_RP_1,P_network_3_1_AnnP_1,P_poll__networl_1_3_AskP_2,P_poll__networl_1_3_AnnP_1,P_network_2_0_RP_1,P_network_2_3_AskP_3,P_poll__networl_0_2_AI_2,P_poll__networl_3_1_RI_0,P_poll__networl_1_2_AI_2,P_network_2_1_RI_3,P_poll__networl_1_3_AnnP_0,P_poll__networl_2_0_AnnP_1,P_poll__networl_3_2_RP_0,P_poll__networl_2_2_AnnP_2,P_poll__networl_2_3_AnnP_2,P_poll__networl_1_1_RI_3,P_electionFailed_0,P_network_3_0_RP_1,P_poll__networl_1_2_AnnP_0,P_network_2_2_AskP_3,P_poll__networl_1_0_AI_2,P_network_0_1_AskP_2,P_network_3_0_RP_2,P_network_3_3_RI_1,P_network_1_2_AnnP_2,P_poll__networl_2_1_AI_1,P_poll__networl_1_2_AI_0,P_network_0_2_AnnP_1,P_masterList_0_1_2,P_poll__networl_0_2_RP_2,P_masterList_1_1_1,P_network_2_0_AnnP_2,P_network_0_0_AskP_1,P_network_2_1_AnnP_2,P_poll__networl_3_2_AnnP_2,P_network_1_1_AnnP_3,P_network_2_1_AskP_1,P_poll__networl_1_1_RP_1,P_poll__networl_2_2_RI_3,P_network_2_1_AskP_3,P_poll__networl_1_0_AskP_2,P_network_0_2_RI_2,P_poll__networl_3_0_AnnP_2,P_network_2_3_AskP_2,P_poll__networl_1_3_AI_0,P_poll__networl_3_0_AnnP_1,P_poll__networl_2_3_AI_0,P_poll__networl_2_0_RI_2,P_poll__networl_1_2_RI_0,P_network_3_3_RP_3,P_poll__networl_0_3_AskP_0,P_poll__networl_0_3_AskP_3,P_network_0_0_AI_2,P_network_3_1_AI_1,P_network_1_1_AskP_2,P_network_0_0_AnnP_2,P_poll__networl_2_3_RP_0,P_poll__networl_3_2_AskP_3,P_network_1_1_RP_2,P_masterList_0_2_0,P_poll__networl_3_0_RP_0,P_poll__networl_3_3_AnnP_1,P_poll__networl_0_1_AI_2,P_masterList_3_3_1,P_network_1_3_RP_3,P_poll__networl_1_3_RP_1,P_poll__networl_1_1_AskP_0,P_poll__networl_3_2_RP_1,P_network_3_3_RI_2,P_poll__networl_2_3_RP_2,P_network_0_2_RP_3,P_poll__networl_0_1_AnsP_0,P_network_0_3_AskP_2,P_poll__networl_2_0_AI_3,P_poll__networl_2_1_AI_0,P_poll__networl_1_3_AskP_0,P_poll__networl_1_1_RP_0,P_network_1_1_RP_1,P_network_0_3_RI_3,P_poll__networl_3_2_AI_2,P_network_1_0_RI_3,P_poll__networl_3_1_AskP_0,P_poll__networl_2_1_AskP_1,P_masterList_2_1_1,P_masterList_1_2_0,P_network_0_0_RP_3,P_network_2_1_RP_1,P_network_3_0_AI_3,P_poll__networl_3_2_AnnP_0,P_poll__networl_2_3_AskP_2,P_poll__networl_3_0_AskP_3,P_poll__networl_1_0_RI_0,P_poll__networl_2_0_AnnP_3,P_network_3_0_AnnP_3,P_network_2_0_RI_2,P_network_3_1_RP_3,P_electionFailed_3,P_poll__networl_0_3_RI_3,P_poll__networl_0_3_AnnP_0,P_masterList_3_2_1,P_masterList_1_1_2,P_network_3_3_AI_1,P_network_0_2_RI_1,P_poll__networl_1_1_AnnP_2,P_network_0_1_AI_2,P_poll__networl_0_1_AI_0,P_network_3_3_AI_3,P_network_0_0_AskP_3,P_poll__networl_1_0_AskP_1,P_poll__networl_1_2_AnnP_3,P_poll__networl_1_0_AskP_3,P_poll__networl_0_2_RI_2,P_network_0_0_AI_3,P_network_2_1_AnnP_1,P_network_1_0_AI_3,P_poll__networl_0_1_AskP_0,P_network_2_3_RI_2,P_poll__networl_2_2_AskP_1,P_network_2_3_AI_3,P_poll__networl_1_2_AnnP_1,P_poll__networl_2_0_RP_3,P_network_1_2_AnnP_3,P_poll__networl_1_0_RP_0,P_poll__networl_2_3_RI_2,P_network_0_3_AnnP_1,P_poll__networl_3_1_AskP_2,P_poll__networl_1_0_AnnP_3,P_poll__networl_2_3_RI_1,P_poll__networl_3_0_RI_3,P_network_1_0_AI_1,P_poll__networl_0_1_RP_0,P_network_2_2_AI_3,P_network_1_3_AI_3,P_masterList_0_3_2,P_masterList_0_3_0,P_poll__networl_3_3_AskP_1,P_network_1_0_AnnP_3,P_poll__networl_0_3_AI_1,P_poll__networl_1_0_RI_2,P_poll__networl_2_1_RI_1,P_network_3_1_RI_2,P_network_0_0_RI_2,P_poll__networl_0_0_AskP_3,P_poll__networl_0_0_RI_1,P_network_3_2_AskP_1,P_poll__networl_2_3_RI_3,P_poll__networl_0_3_AI_0,P_poll__networl_1_2_RP_1,P_network_2_1_RP_3,P_network_2_3_AnnP_1,P_poll__networl_3_0_RP_2,P_network_1_2_RI_1,P_poll__networl_0_0_AnnP_1,P_poll__networl_2_2_AskP_0,P_poll__networl_1_3_AI_3,P_poll__networl_3_0_RP_1,P_poll__networl_1_2_AI_1,P_poll__networl_3_2_AnnP_3,P_poll__networl_3_3_RI_1,P_poll__networl_2_3_AskP_0,P_network_0_2_RP_2,P_poll__networl_1_0_RI_3,P_poll__networl_1_0_AI_3,P_poll__networl_3_2_AskP_0,P_poll__networl_0_0_AskP_1,P_network_0_0_RI_3,P_poll__networl_1_1_AskP_3,P_network_1_3_RI_3,P_poll__networl_3_3_AnnP_2,P_masterList_2_2_2,P_poll__networl_1_2_AnnP_2,P_poll__networl_3_0_RI_2,P_masterList_1_2_3,P_poll__networl_0_3_AskP_2,P_network_1_2_RI_3,P_dead_1,P_poll__networl_1_2_AskP_1,P_poll__networl_3_2_RI_0,P_poll__networl_0_1_AskP_1,P_poll__networl_3_1_RP_2,P_poll__networl_0_1_AI_3,P_poll__networl_1_2_RI_3,P_poll__networl_0_1_AskP_2,P_poll__networl_0_3_AI_2,P_poll__networl_1_1_AskP_1,P_poll__networl_1_3_RP_3,P_poll__networl_2_0_RP_0,P_poll__networl_0_2_AnnP_0,P_poll__networl_0_1_AnnP_1,P_poll__networl_3_3_RI_0,P_poll__networl_2_1_AnsP_0,P_dead_0,P_network_0_0_RP_1,P_network_2_2_RI_1,P_poll__networl_2_0_RP_2,P_masterList_1_2_2,P_poll__networl_0_3_AnnP_2,P_poll__networl_2_1_AI_3,P_crashed_2,P_network_3_3_AnnP_1,P_network_1_1_AnnP_2,P_masterList_3_1_0,P_network_3_0_RP_3,P_poll__networl_1_1_AI_0,P_poll__networl_2_1_RP_3,P_poll__networl_3_2_RP_3,P_network_3_0_RI_1,P_network_3_2_AnnP_1,P_network_3_1_AI_2,P_network_2_3_RP_1,P_network_3_1_AskP_1,P_network_3_2_AnnP_3,P_poll__networl_1_0_RI_1,P_network_0_3_AskP_1,P_network_2_2_AnnP_3,P_network_2_1_AI_2,P_network_0_1_RP_1,P_poll__networl_0_0_RI_0,P_network_3_3_AskP_2,P_poll__networl_0_3_AskP_1,P_poll__networl_3_3_RP_0,P_network_1_1_RI_3,P_masterList_2_1_2,P_poll__networl_0_2_RP_0,P_poll__networl_2_3_RI_0,P_poll__networl_0_0_AI_0,P_poll__networl_3_1_AI_1,P_poll__networl_2_2_AI_2,P_poll__networl_2_2_AI_0,P_poll__networl_2_0_RI_0,P_network_2_1_RI_1,P_poll__networl_0_1_RI_0,P_network_0_1_RP_3,P_poll__networl_3_3_AnnP_0,P_poll__networl_2_3_AskP_3,P_network_1_0_AnnP_1,P_network_1_2_AskP_1,P_poll__networl_0_1_RI_2,P_network_1_1_RI_1,P_network_3_1_AnnP_2,P_poll__networl_2_1_RP_2,P_poll__networl_3_2_RI_3,P_electionFailed_2,P_network_1_3_AskP_3,P_poll__networl_0_1_RI_3,P_network_1_3_AnnP_1,P_network_0_0_AnnP_3,P_poll__networl_1_1_RP_2,P_poll__networl_3_2_AI_3,P_poll__networl_1_0_AskP_0,P_poll__networl_3_3_AskP_2,P_dead_3,P_poll__networl_3_3_AskP_0,P_network_0_3_RI_2,P_network_0_1_AI_3,P_network_1_3_AnnP_2,P_network_3_2_AI_1,P_poll__networl_3_0_AnnP_0,P_network_2_2_AnnP_2,P_network_2_2_RI_3,P_poll__networl_2_0_AI_1,P_poll__networl_0_2_AskP_2,P_poll__networl_3_0_AnsP_0,P_poll__networl_3_1_AnsP_0,P_poll__networl_3_3_RP_2,P_network_1_0_AskP_1,P_masterList_2_2_0,P_poll__networl_0_1_RP_3,P_poll__networl_2_1_AnnP_2,P_poll__networl_0_0_AskP_0,P_poll__networl_1_0_RP_2,P_network_0_3_RP_1,P_network_1_3_AI_2,P_poll__networl_3_1_AI_0,P_masterList_1_1_3,P_network_0_2_AI_3,P_poll__networl_3_1_AskP_1,P_network_3_3_AskP_1,P_network_0_1_RI_1,P_poll__networl_0_0_RI_3,P_poll__networl_0_3_AnnP_1,P_poll__networl_3_0_AnnP_3,P_masterList_3_1_1,P_poll__networl_1_1_AskP_2,P_network_3_3_AnnP_2,P_network_0_2_AI_2,P_poll__networl_0_1_RI_1,P_network_1_0_RI_2,P_masterList_2_2_3,P_poll__networl_1_2_AskP_0,P_network_0_1_AskP_3,P_network_1_3_AI_1,P_poll__networl_0_0_AI_2,P_network_0_3_RI_1,P_network_2_0_AnnP_1,P_poll__networl_1_1_AnnP_0,P_network_3_0_AI_1,P_network_3_1_RI_3,P_poll__networl_2_2_RI_2,P_network_0_3_AnnP_3,P_network_1_3_RP_1,P_poll__networl_1_0_AnnP_1,P_poll__networl_0_3_RP_0,P_network_0_1_AnnP_2,P_poll__networl_0_0_RP_2,P_poll__networl_0_2_AI_0,P_network_2_3_AI_2,P_poll__networl_3_1_RP_1,P_network_1_2_AI_2,P_poll__networl_0_0_AI_1,P_poll__networl_2_0_AskP_1,P_network_0_1_AnnP_3,P_network_2_1_AI_3,P_poll__networl_0_1_AnnP_0,P_poll__networl_1_1_RI_0,P_poll__networl_3_1_RI_3,P_network_1_0_AskP_2,P_network_2_0_RP_2,P_network_3_2_RI_3,P_poll__networl_2_2_RP_0,P_network_3_3_AI_2,P_poll__networl_0_0_RI_2,P_poll__networl_2_3_AskP_1,P_network_1_0_RP_3,P_network_3_1_RP_2,P_network_3_2_RP_2,P_poll__networl_1_1_RI_2,P_poll__networl_3_3_AskP_3,P_poll__networl_1_2_AI_3,P_poll__networl_3_0_AskP_0,P_poll__networl_3_1_RP_0,P_network_3_3_RI_3,P_poll__networl_2_0_RI_1,P_network_1_0_RI_1,P_network_0_0_AI_1,P_network_1_3_AskP_2,P_poll__networl_2_1_AskP_0,P_poll__networl_2_0_AskP_2,P_masterList_0_2_1,P_network_0_2_AI_1,P_masterList_2_2_1,P_poll__networl_1_1_AI_3,P_network_1_1_AskP_3,P_network_0_1_RI_3,P_poll__networl_1_3_AnnP_2,P_network_2_2_AI_2,P_poll__networl_3_1_AskP_3,P_poll__networl_1_1_AnnP_3,P_network_2_3_AnnP_3,P_network_3_2_AI_2,P_poll__networl_0_1_RP_1,P_poll__networl_1_0_RP_3,P_poll__networl_0_1_AskP_3,P_masterList_0_2_3,P_network_1_3_RI_1,P_network_2_3_AskP_1,P_network_3_0_AskP_1,P_network_1_0_AnnP_2,P_network_0_3_AI_1,P_poll__networl_0_2_AI_1,P_poll__networl_0_3_RP_3,P_network_2_0_RP_3,P_network_2_1_AnnP_3,P_poll__networl_3_2_AnsP_0,P_network_3_3_RP_1,P_poll__networl_3_0_AskP_2,P_poll__networl_3_0_AI_3,P_network_2_1_RI_2,P_poll__networl_2_1_AskP_3,P_network_0_2_AnnP_2,P_masterList_1_3_1,P_network_3_0_AnnP_2,P_masterList_2_3_2,P_network_2_3_RI_3,P_poll__networl_0_2_AI_3,P_network_1_2_AI_3,P_poll__networl_0_3_RI_0,P_poll__networl_1_3_AnsP_0,P_poll__networl_2_0_AskP_3,P_network_3_1_AskP_3,P_poll__networl_1_3_RP_0,P_poll__networl_0_2_RI_1,P_network_3_0_RI_3,P_poll__networl_1_1_AnsP_0,P_network_2_2_AnnP_1,P_network_1_2_RI_2,P_poll__networl_0_2_AskP_3,P_network_2_2_AI_1,P_poll__networl_1_0_AnnP_0,P_poll__networl_2_1_AnnP_1,P_network_1_3_RP_2,P_poll__networl_1_0_AnsP_0,P_network_0_0_RI_1,P_network_1_1_AskP_1,P_poll__networl_0_0_RP_3,P_masterList_3_1_2,P_network_0_0_AskP_2,P_network_2_0_AI_1,P_poll__networl_3_1_AI_3,P_poll__networl_0_2_RI_0,P_network_2_1_AI_1,P_poll__networl_1_1_RI_1,P_masterList_3_3_3,P_poll__networl_2_3_AnnP_0,P_poll__networl_0_2_RI_3,P_network_1_0_RP_1,P_network_1_0_RP_2,P_poll__networl_1_2_RP_3,P_poll__networl_1_0_RP_1,P_poll__networl_3_0_RI_0,P_masterList_3_2_0,P_poll__networl_2_3_AnsP_0,P_poll__networl_1_3_RI_1,P_poll__networl_1_3_RP_2,P_poll__networl_3_1_AnnP_1,P_network_0_1_RP_2,P_masterList_0_1_1,P_poll__networl_2_3_AI_2,P_poll__networl_0_3_AI_3,P_poll__networl_0_0_AskP_2,P_poll__networl_2_1_AnnP_0,P_poll__networl_2_2_AnnP_3,P_network_3_2_AnnP_2,P_network_3_2_RI_1,P_poll__networl_2_2_AskP_2,P_poll__networl_1_3_AskP_3,P_poll__networl_0_1_AnnP_2,P_poll__networl_1_2_RI_1,P_poll__networl_2_2_RP_3,P_network_2_1_AskP_2,P_poll__networl_3_1_AnnP_0,P_poll__networl_3_0_AI_1,P_network_0_3_AskP_3,P_network_1_1_RP_3,P_poll__networl_2_0_AskP_0,P_network_1_2_RP_3,P_masterList_3_2_2,P_network_1_2_AskP_2,P_poll__networl_0_0_AnnP_0,P_network_3_2_RI_2,P_network_0_3_RP_2,P_network_3_2_AI_3,P_network_0_2_AskP_1,P_poll__networl_0_1_AI_1,P_network_2_3_AnnP_2,P_poll__networl_3_3_AnsP_0,P_network_1_2_AskP_3,P_poll__networl_2_2_AnnP_0,P_poll__networl_3_0_RP_3,
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Removed 636 constant variables :P_network_3_0_AnnP_1=0, P_poll__networl_0_0_RP_1=0, P_poll__networl_1_2_RI_2=0, P_poll__networl_2_2_RP_1=0, P_poll__networl_3_1_RI_2=0, P_network_3_2_AskP_3=0, P_poll__networl_0_0_AnsP_0=0, P_poll__networl_0_3_RP_1=0, P_poll__networl_0_2_AnnP_3=0, P_poll__networl_3_3_RI_3=0, P_poll__networl_2_1_RI_2=0, P_poll__networl_3_3_AI_1=0, P_network_1_2_AnnP_1=0, P_network_2_3_AI_1=0, P_network_2_0_AnnP_3=0, P_poll__networl_2_1_AskP_2=0, P_network_0_1_AI_1=0, P_poll__networl_3_3_AI_3=0, P_poll__networl_3_2_RP_2=0, P_poll__networl_2_0_RP_1=0, P_poll__networl_2_1_RP_0=0, P_network_2_0_AskP_2=0, P_poll__networl_0_1_RP_2=0, P_network_3_3_AnnP_3=0, P_masterList_2_1_3=0, P_poll__networl_2_3_RP_1=0, P_poll__networl_2_0_AI_0=0, P_poll__networl_1_3_AnnP_3=0, P_network_0_2_RI_3=0, P_network_0_2_AskP_3=0, P_crashed_0=0, P_network_1_0_AI_2=0, P_poll__networl_2_0_RI_3=0, P_poll__networl_2_2_AskP_3=0, P_poll__networl_1_3_AskP_1=0, P_poll__networl_2_2_AI_1=0, P_poll__networl_1_1_AnnP_1=0, P_network_2_0_AI_3=0, P_poll__networl_3_0_RI_1=0, P_poll__networl_1_3_AI_2=0, P_network_1_3_RI_2=0, P_network_3_3_AskP_3=0, P_masterList_1_3_0=0, P_poll__networl_0_0_AnnP_2=0, P_poll__networl_0_2_AnsP_0=0, P_network_0_0_RP_2=0, P_masterList_1_1_0=0, P_poll__networl_2_3_AI_1=0, P_masterList_0_1_3=0, P_network_2_0_RI_3=0, P_poll__networl_1_1_AI_1=0, P_poll__networl_3_2_RI_1=0, P_poll__networl_1_2_RP_2=0, P_poll__networl_0_3_RI_1=0, P_poll__networl_0_3_AnnP_3=0, P_poll__networl_0_2_RP_3=0, P_network_3_3_RP_2=0, P_poll__networl_2_1_RI_3=0, P_network_2_3_RP_2=0, P_poll__networl_2_1_AI_2=0, P_poll__networl_2_0_AnsP_0=0, P_poll__networl_2_0_AI_2=0, P_poll__networl_3_2_AnnP_1=0, P_masterList_0_3_1=0, P_network_0_2_RP_1=0, P_network_3_0_AskP_3=0, P_network_0_1_AskP_1=0, P_network_1_2_RP_1=0, P_network_2_2_RP_3=0, P_poll__networl_0_3_RI_2=0, P_network_3_1_RP_1=0, P_crashed_1=0, P_masterList_3_3_0=0, P_masterList_3_3_2=0, P_network_2_2_RI_2=0, P_poll__networl_3_1_RI_1=0, P_poll__networl_3_2_AI_0=0, P_poll__networl_0_1_AnnP_3=0, P_network_3_1_RI_1=0, P_poll__networl_1_3_RI_0=0, P_network_1_3_AnnP_3=0, P_poll__networl_3_0_AskP_1=0, P_network_3_0_AskP_2=0, P_masterList_0_1_0=0, P_network_1_1_AI_1=0, P_poll__networl_0_2_RP_1=0, P_network_1_1_AI_2=0, P_poll__networl_0_3_RP_2=0, P_poll__networl_0_2_AnnP_1=0, P_network_2_0_AskP_1=0, P_poll__networl_3_2_RI_2=0, P_network_2_2_RP_1=0, P_poll__networl_3_2_AskP_1=0, P_network_0_0_AnnP_1=0, P_poll__networl_1_2_RP_0=0, P_poll__networl_3_2_AskP_2=0, P_poll__networl_3_1_AnnP_2=0, P_network_2_2_AskP_2=0, P_network_3_2_AskP_2=0, P_network_1_2_RP_2=0, P_poll__networl_0_0_AI_3=0, P_network_1_1_RI_2=0, P_poll__networl_2_2_AI_3=0, P_poll__networl_1_2_AskP_3=0, P_poll__networl_2_2_AnnP_1=0, P_poll__networl_2_1_AnnP_3=0, P_network_2_3_RP_3=0, P_poll__networl_1_0_AnnP_2=0, P_network_3_1_AnnP_3=0, P_poll__networl_0_2_AnnP_2=0, P_poll__networl_2_2_RI_1=0, P_network_2_0_AI_2=0, P_poll__networl_1_2_AskP_2=0, P_poll__networl_0_2_AskP_0=0, P_masterList_3_1_3=0, P_poll__networl_2_3_AnnP_3=0, P_network_0_1_RI_2=0, P_poll__networl_2_2_RP_2=0, P_poll__networl_2_0_AnnP_0=0, P_network_0_2_AnnP_3=0, P_poll__networl_3_0_AI_0=0, P_poll__networl_3_3_RP_1=0, P_network_2_2_RP_2=0, P_network_1_1_AI_3=0, P_network_1_3_AskP_1=0, P_network_2_2_AskP_1=0, P_poll__networl_1_1_RP_3=0, P_masterList_0_2_2=0, P_network_2_1_RP_2=0, P_network_3_0_RI_2=0, P_poll__networl_2_3_AnnP_1=0, P_network_0_1_AnnP_1=0, P_dead_2=0, P_network_2_3_RI_1=0, P_poll__networl_2_2_RI_0=0, P_masterList_2_1_0=0, P_network_2_0_RI_1=0, P_poll__networl_2_0_AnnP_2=0, P_network_1_2_AI_1=0, P_poll__networl_0_0_AnnP_3=0, P_poll__networl_2_1_RP_1=0, P_poll__networl_3_1_AI_2=0, P_masterList_2_3_3=0, P_crashed_3=0, P_poll__networl_1_2_AnsP_0=0, P_poll__networl_2_3_AI_3=0, P_network_3_1_AI_3=0, P_poll__networl_0_0_RP_0=0, P_network_3_1_AskP_2=0, P_network_3_0_AI_2=0, P_poll__networl_3_3_RI_2=0, P_poll__networl_3_3_AI_2=0, P_network_0_3_RP_3=0, P_network_1_1_AnnP_1=0, P_masterList_0_3_3=0, P_poll__networl_0_3_AnsP_0=0, P_poll__networl_3_2_AI_1=0, P_poll__networl_1_0_AI_0=0, P_poll__networl_2_1_RI_0=0, P_masterList_3_2_3=0, P_poll__networl_3_3_AnnP_3=0, P_network_1_0_AskP_3=0, P_masterList_2_3_1=0, P_poll__networl_3_1_RP_3=0, P_network_0_3_AnnP_2=0, P_poll__networl_1_1_AI_2=0, P_poll__networl_2_2_AnsP_0=0, P_masterList_1_2_1=0, P_network_3_2_RP_3=0, P_poll__networl_1_3_AI_1=0, P_poll__networl_3_3_AI_0=0, P_poll__networl_1_3_RI_3=0, P_poll__networl_3_0_AI_2=0, P_network_2_0_AskP_3=0, P_poll__networl_3_3_RP_3=0, P_electionFailed_1=0, P_network_0_2_AskP_2=0, P_poll__networl_1_3_RI_2=0, P_poll__networl_2_3_RP_3=0, P_network_0_3_AI_2=0, P_poll__networl_0_2_AskP_1=0, P_masterList_1_3_3=0, P_network_0_3_AI_3=0, P_poll__networl_1_0_AI_1=0, P_masterList_1_3_2=0, P_masterList_2_3_0=0, P_poll__networl_3_1_AnnP_3=0, P_network_3_2_RP_1=0, P_network_3_1_AnnP_1=0, P_poll__networl_1_3_AskP_2=0, P_poll__networl_1_3_AnnP_1=0, P_network_2_0_RP_1=0, P_network_2_3_AskP_3=0, P_poll__networl_0_2_AI_2=0, P_poll__networl_3_1_RI_0=0, P_poll__networl_1_2_AI_2=0, P_network_2_1_RI_3=0, P_poll__networl_1_3_AnnP_0=0, P_poll__networl_2_0_AnnP_1=0, P_poll__networl_3_2_RP_0=0, P_poll__networl_2_2_AnnP_2=0, P_poll__networl_2_3_AnnP_2=0, P_poll__networl_1_1_RI_3=0, P_electionFailed_0=0, P_network_3_0_RP_1=0, P_poll__networl_1_2_AnnP_0=0, P_network_2_2_AskP_3=0, P_poll__networl_1_0_AI_2=0, P_network_0_1_AskP_2=0, P_network_3_0_RP_2=0, P_network_3_3_RI_1=0, P_network_1_2_AnnP_2=0, P_poll__networl_2_1_AI_1=0, P_poll__networl_1_2_AI_0=0, P_network_0_2_AnnP_1=0, P_masterList_0_1_2=0, P_poll__networl_0_2_RP_2=0, P_masterList_1_1_1=0, P_network_2_0_AnnP_2=0, P_network_0_0_AskP_1=0, P_network_2_1_AnnP_2=0, P_poll__networl_3_2_AnnP_2=0, P_network_1_1_AnnP_3=0, P_network_2_1_AskP_1=0, P_poll__networl_1_1_RP_1=0, P_poll__networl_2_2_RI_3=0, P_network_2_1_AskP_3=0, P_poll__networl_1_0_AskP_2=0, P_network_0_2_RI_2=0, P_poll__networl_3_0_AnnP_2=0, P_network_2_3_AskP_2=0, P_poll__networl_1_3_AI_0=0, P_poll__networl_3_0_AnnP_1=0, P_poll__networl_2_3_AI_0=0, P_poll__networl_2_0_RI_2=0, P_poll__networl_1_2_RI_0=0, P_network_3_3_RP_3=0, P_poll__networl_0_3_AskP_0=0, P_poll__networl_0_3_AskP_3=0, P_network_0_0_AI_2=0, P_network_3_1_AI_1=0, P_network_1_1_AskP_2=0, P_network_0_0_AnnP_2=0, P_poll__networl_2_3_RP_0=0, P_poll__networl_3_2_AskP_3=0, P_network_1_1_RP_2=0, P_masterList_0_2_0=0, P_poll__networl_3_0_RP_0=0, P_poll__networl_3_3_AnnP_1=0, P_poll__networl_0_1_AI_2=0, P_masterList_3_3_1=0, P_network_1_3_RP_3=0, P_poll__networl_1_3_RP_1=0, P_poll__networl_1_1_AskP_0=0, P_poll__networl_3_2_RP_1=0, P_network_3_3_RI_2=0, P_poll__networl_2_3_RP_2=0, P_network_0_2_RP_3=0, P_poll__networl_0_1_AnsP_0=0, P_network_0_3_AskP_2=0, P_poll__networl_2_0_AI_3=0, P_poll__networl_2_1_AI_0=0, P_poll__networl_1_3_AskP_0=0, P_poll__networl_1_1_RP_0=0, P_network_1_1_RP_1=0, P_network_0_3_RI_3=0, P_poll__networl_3_2_AI_2=0, P_network_1_0_RI_3=0, P_poll__networl_3_1_AskP_0=0, P_poll__networl_2_1_AskP_1=0, P_masterList_2_1_1=1, P_masterList_1_2_0=0, P_network_0_0_RP_3=0, P_network_2_1_RP_1=0, P_network_3_0_AI_3=0, P_poll__networl_3_2_AnnP_0=0, P_poll__networl_2_3_AskP_2=0, P_poll__networl_3_0_AskP_3=0, P_poll__networl_1_0_RI_0=0, P_poll__networl_2_0_AnnP_3=0, P_network_3_0_AnnP_3=0, P_network_2_0_RI_2=0, P_network_3_1_RP_3=0, P_electionFailed_3=0, P_poll__networl_0_3_RI_3=0, P_poll__networl_0_3_AnnP_0=0, P_masterList_3_2_1=0, P_masterList_1_1_2=1, P_network_3_3_AI_1=0, P_network_0_2_RI_1=0, P_poll__networl_1_1_AnnP_2=0, P_network_0_1_AI_2=0, P_poll__networl_0_1_AI_0=0, P_network_3_3_AI_3=0, P_network_0_0_AskP_3=0, P_poll__networl_1_0_AskP_1=0, P_poll__networl_1_2_AnnP_3=0, P_poll__networl_1_0_AskP_3=0, P_poll__networl_0_2_RI_2=0, P_network_0_0_AI_3=0, P_network_2_1_AnnP_1=0, P_network_1_0_AI_3=0, P_poll__networl_0_1_AskP_0=0, P_network_2_3_RI_2=0, P_poll__networl_2_2_AskP_1=0, P_network_2_3_AI_3=0, P_poll__networl_1_2_AnnP_1=0, P_poll__networl_2_0_RP_3=0, P_network_1_2_AnnP_3=0, P_poll__networl_1_0_RP_0=0, P_poll__networl_2_3_RI_2=0, P_network_0_3_AnnP_1=0, P_poll__networl_3_1_AskP_2=0, P_poll__networl_1_0_AnnP_3=0, P_poll__networl_2_3_RI_1=0, P_poll__networl_3_0_RI_3=0, P_network_1_0_AI_1=0, P_poll__networl_0_1_RP_0=0, P_network_2_2_AI_3=0, P_network_1_3_AI_3=0, P_masterList_0_3_2=0, P_masterList_0_3_0=0, P_poll__networl_3_3_AskP_1=0, P_network_1_0_AnnP_3=0, P_poll__networl_0_3_AI_1=0, P_poll__networl_1_0_RI_2=0, P_poll__networl_2_1_RI_1=0, P_network_3_1_RI_2=0, P_network_0_0_RI_2=0, P_poll__networl_0_0_AskP_3=0, P_poll__networl_0_0_RI_1=0, P_network_3_2_AskP_1=0, P_poll__networl_2_3_RI_3=0, P_poll__networl_0_3_AI_0=0, P_poll__networl_1_2_RP_1=0, P_network_2_1_RP_3=0, P_network_2_3_AnnP_1=0, P_poll__networl_3_0_RP_2=0, P_network_1_2_RI_1=0, P_poll__networl_0_0_AnnP_1=0, P_poll__networl_2_2_AskP_0=0, P_poll__networl_1_3_AI_3=0, P_poll__networl_3_0_RP_1=0, P_poll__networl_1_2_AI_1=0, P_poll__networl_3_2_AnnP_3=0, P_poll__networl_3_3_RI_1=0, P_poll__networl_2_3_AskP_0=0, P_network_0_2_RP_2=0, P_poll__networl_1_0_RI_3=0, P_poll__networl_1_0_AI_3=0, P_poll__networl_3_2_AskP_0=0, P_poll__networl_0_0_AskP_1=0, P_network_0_0_RI_3=0, P_poll__networl_1_1_AskP_3=0, P_network_1_3_RI_3=0, P_poll__networl_3_3_AnnP_2=0, P_masterList_2_2_2=0, P_poll__networl_1_2_AnnP_2=0, P_poll__networl_3_0_RI_2=0, P_masterList_1_2_3=1, P_poll__networl_0_3_AskP_2=0, P_network_1_2_RI_3=0, P_dead_1=0, P_poll__networl_1_2_AskP_1=0, P_poll__networl_3_2_RI_0=0, P_poll__networl_0_1_AskP_1=0, P_poll__networl_3_1_RP_2=0, P_poll__networl_0_1_AI_3=0, P_poll__networl_1_2_RI_3=0, P_poll__networl_0_1_AskP_2=0, P_poll__networl_0_3_AI_2=0, P_poll__networl_1_1_AskP_1=0, P_poll__networl_1_3_RP_3=0, P_poll__networl_2_0_RP_0=0, P_poll__networl_0_2_AnnP_0=0, P_poll__networl_0_1_AnnP_1=0, P_poll__networl_3_3_RI_0=0, P_poll__networl_2_1_AnsP_0=0, P_dead_0=0, P_network_0_0_RP_1=0, P_network_2_2_RI_1=0, P_poll__networl_2_0_RP_2=0, P_masterList_1_2_2=0, P_poll__networl_0_3_AnnP_2=0, P_poll__networl_2_1_AI_3=0, P_crashed_2=0, P_network_3_3_AnnP_1=0, P_network_1_1_AnnP_2=0, P_masterList_3_1_0=0, P_network_3_0_RP_3=0, P_poll__networl_1_1_AI_0=0, P_poll__networl_2_1_RP_3=0, P_poll__networl_3_2_RP_3=0, P_network_3_0_RI_1=0, P_network_3_2_AnnP_1=0, P_network_3_1_AI_2=0, P_network_2_3_RP_1=0, P_network_3_1_AskP_1=0, P_network_3_2_AnnP_3=0, P_poll__networl_1_0_RI_1=0, P_network_0_3_AskP_1=0, P_network_2_2_AnnP_3=0, P_network_2_1_AI_2=0, P_network_0_1_RP_1=0, P_poll__networl_0_0_RI_0=0, P_network_3_3_AskP_2=0, P_poll__networl_0_3_AskP_1=0, P_poll__networl_3_3_RP_0=0, P_network_1_1_RI_3=0, P_masterList_2_1_2=0, P_poll__networl_0_2_RP_0=0, P_poll__networl_2_3_RI_0=0, P_poll__networl_0_0_AI_0=0, P_poll__networl_3_1_AI_1=0, P_poll__networl_2_2_AI_2=0, P_poll__networl_2_2_AI_0=0, P_poll__networl_2_0_RI_0=0, P_network_2_1_RI_1=0, P_poll__networl_0_1_RI_0=0, P_network_0_1_RP_3=0, P_poll__networl_3_3_AnnP_0=0, P_poll__networl_2_3_AskP_3=0, P_network_1_0_AnnP_1=0, P_network_1_2_AskP_1=0, P_poll__networl_0_1_RI_2=0, P_network_1_1_RI_1=0, P_network_3_1_AnnP_2=0, P_poll__networl_2_1_RP_2=0, P_poll__networl_3_2_RI_3=0, P_electionFailed_2=0, P_network_1_3_AskP_3=0, P_poll__networl_0_1_RI_3=0, P_network_1_3_AnnP_1=0, P_network_0_0_AnnP_3=0, P_poll__networl_1_1_RP_2=0, P_poll__networl_3_2_AI_3=0, P_poll__networl_1_0_AskP_0=0, P_poll__networl_3_3_AskP_2=0, P_dead_3=0, P_poll__networl_3_3_AskP_0=0, P_network_0_3_RI_2=0, P_network_0_1_AI_3=0, P_network_1_3_AnnP_2=0, P_network_3_2_AI_1=0, P_poll__networl_3_0_AnnP_0=0, P_network_2_2_AnnP_2=0, P_network_2_2_RI_3=0, P_poll__networl_2_0_AI_1=0, P_poll__networl_0_2_AskP_2=0, P_poll__networl_3_0_AnsP_0=0, P_poll__networl_3_1_AnsP_0=0, P_poll__networl_3_3_RP_2=0, P_network_1_0_AskP_1=0, P_masterList_2_2_0=0, P_poll__networl_0_1_RP_3=0, P_poll__networl_2_1_AnnP_2=0, P_poll__networl_0_0_AskP_0=0, P_poll__networl_1_0_RP_2=0, P_network_0_3_RP_1=0, P_network_1_3_AI_2=0, P_poll__networl_3_1_AI_0=0, P_masterList_1_1_3=0, P_network_0_2_AI_3=0, P_poll__networl_3_1_AskP_1=0, P_network_3_3_AskP_1=0, P_network_0_1_RI_1=0, P_poll__networl_0_0_RI_3=0, P_poll__networl_0_3_AnnP_1=0, P_poll__networl_3_0_AnnP_3=0, P_masterList_3_1_1=1, P_poll__networl_1_1_AskP_2=0, P_network_3_3_AnnP_2=0, P_network_0_2_AI_2=0, P_poll__networl_0_1_RI_1=0, P_network_1_0_RI_2=0, P_masterList_2_2_3=1, P_poll__networl_1_2_AskP_0=0, P_network_0_1_AskP_3=0, P_network_1_3_AI_1=0, P_poll__networl_0_0_AI_2=0, P_network_0_3_RI_1=0, P_network_2_0_AnnP_1=0, P_poll__networl_1_1_AnnP_0=0, P_network_3_0_AI_1=0, P_network_3_1_RI_3=0, P_poll__networl_2_2_RI_2=0, P_network_0_3_AnnP_3=0, P_network_1_3_RP_1=0, P_poll__networl_1_0_AnnP_1=0, P_poll__networl_0_3_RP_0=0, P_network_0_1_AnnP_2=0, P_poll__networl_0_0_RP_2=0, P_poll__networl_0_2_AI_0=0, P_network_2_3_AI_2=0, P_poll__networl_3_1_RP_1=0, P_network_1_2_AI_2=0, P_poll__networl_0_0_AI_1=0, P_poll__networl_2_0_AskP_1=0, P_network_0_1_AnnP_3=0, P_network_2_1_AI_3=0, P_poll__networl_0_1_AnnP_0=0, P_poll__networl_1_1_RI_0=0, P_poll__networl_3_1_RI_3=0, P_network_1_0_AskP_2=0, P_network_2_0_RP_2=0, P_network_3_2_RI_3=0, P_poll__networl_2_2_RP_0=0, P_network_3_3_AI_2=0, P_poll__networl_0_0_RI_2=0, P_poll__networl_2_3_AskP_1=0, P_network_1_0_RP_3=0, P_network_3_1_RP_2=0, P_network_3_2_RP_2=0, P_poll__networl_1_1_RI_2=0, P_poll__networl_3_3_AskP_3=0, P_poll__networl_1_2_AI_3=0, P_poll__networl_3_0_AskP_0=0, P_poll__networl_3_1_RP_0=0, P_network_3_3_RI_3=0, P_poll__networl_2_0_RI_1=0, P_network_1_0_RI_1=0, P_network_0_0_AI_1=0, P_network_1_3_AskP_2=0, P_poll__networl_2_1_AskP_0=0, P_poll__networl_2_0_AskP_2=0, P_masterList_0_2_1=0, P_network_0_2_AI_1=0, P_masterList_2_2_1=0, P_poll__networl_1_1_AI_3=0, P_network_1_1_AskP_3=0, P_network_0_1_RI_3=0, P_poll__networl_1_3_AnnP_2=0, P_network_2_2_AI_2=0, P_poll__networl_3_1_AskP_3=0, P_poll__networl_1_1_AnnP_3=0, P_network_2_3_AnnP_3=0, P_network_3_2_AI_2=0, P_poll__networl_0_1_RP_1=0, P_poll__networl_1_0_RP_3=0, P_poll__networl_0_1_AskP_3=0, P_masterList_0_2_3=0, P_network_1_3_RI_1=0, P_network_2_3_AskP_1=0, P_network_3_0_AskP_1=0, P_network_1_0_AnnP_2=0, P_network_0_3_AI_1=0, P_poll__networl_0_2_AI_1=0, P_poll__networl_0_3_RP_3=0, P_network_2_0_RP_3=0, P_network_2_1_AnnP_3=0, P_poll__networl_3_2_AnsP_0=0, P_network_3_3_RP_1=0, P_poll__networl_3_0_AskP_2=0, P_poll__networl_3_0_AI_3=0, P_network_2_1_RI_2=0, P_poll__networl_2_1_AskP_3=0, P_network_0_2_AnnP_2=0, P_masterList_1_3_1=0, P_network_3_0_AnnP_2=0, P_masterList_2_3_2=0, P_network_2_3_RI_3=0, P_poll__networl_0_2_AI_3=0, P_network_1_2_AI_3=0, P_poll__networl_0_3_RI_0=0, P_poll__networl_1_3_AnsP_0=0, P_poll__networl_2_0_AskP_3=0, P_network_3_1_AskP_3=0, P_poll__networl_1_3_RP_0=0, P_poll__networl_0_2_RI_1=0, P_network_3_0_RI_3=0, P_poll__networl_1_1_AnsP_0=0, P_network_2_2_AnnP_1=0, P_network_1_2_RI_2=0, P_poll__networl_0_2_AskP_3=0, P_network_2_2_AI_1=0, P_poll__networl_1_0_AnnP_0=0, P_poll__networl_2_1_AnnP_1=0, P_network_1_3_RP_2=0, P_poll__networl_1_0_AnsP_0=0, P_network_0_0_RI_1=0, P_network_1_1_AskP_1=0, P_poll__networl_0_0_RP_3=0, P_masterList_3_1_2=0, P_network_0_0_AskP_2=0, P_network_2_0_AI_1=0, P_poll__networl_3_1_AI_3=0, P_poll__networl_0_2_RI_0=0, P_network_2_1_AI_1=0, P_poll__networl_1_1_RI_1=0, P_masterList_3_3_3=0, P_poll__networl_2_3_AnnP_0=0, P_poll__networl_0_2_RI_3=0, P_network_1_0_RP_1=0, P_network_1_0_RP_2=0, P_poll__networl_1_2_RP_3=0, P_poll__networl_1_0_RP_1=0, P_poll__networl_3_0_RI_0=0, P_masterList_3_2_0=0, P_poll__networl_2_3_AnsP_0=0, P_poll__networl_1_3_RI_1=0, P_poll__networl_1_3_RP_2=0, P_poll__networl_3_1_AnnP_1=0, P_network_0_1_RP_2=0, P_masterList_0_1_1=0, P_poll__networl_2_3_AI_2=0, P_poll__networl_0_3_AI_3=0, P_poll__networl_0_0_AskP_2=0, P_poll__networl_2_1_AnnP_0=0, P_poll__networl_2_2_AnnP_3=0, P_network_3_2_AnnP_2=0, P_network_3_2_RI_1=0, P_poll__networl_2_2_AskP_2=0, P_poll__networl_1_3_AskP_3=0, P_poll__networl_0_1_AnnP_2=0, P_poll__networl_1_2_RI_1=0, P_poll__networl_2_2_RP_3=0, P_network_2_1_AskP_2=0, P_poll__networl_3_1_AnnP_0=0, P_poll__networl_3_0_AI_1=0, P_network_0_3_AskP_3=0, P_network_1_1_RP_3=0, P_poll__networl_2_0_AskP_0=0, P_network_1_2_RP_3=0, P_masterList_3_2_2=1, P_network_1_2_AskP_2=0, P_poll__networl_0_0_AnnP_0=0, P_network_3_2_RI_2=0, P_network_0_3_RP_2=0, P_network_3_2_AI_3=0, P_network_0_2_AskP_1=0, P_poll__networl_0_1_AI_1=0, P_network_2_3_AnnP_2=0, P_poll__networl_3_3_AnsP_0=0, P_network_1_2_AskP_3=0, P_poll__networl_2_2_AnnP_0=0, P_poll__networl_3_0_RP_3=0
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Simplified 984 expressions due to constant valuations.
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.Simplifier simplifyFalseTransitions
INFO: Removed 52 false transitions.
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 12 fixed domain variables (out of 336 variables) in GAL type NeoElection_PT_3_flat
May 25, 2018 12:28:52 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 717 ms
May 25, 2018 12:28:52 PM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/UpperBounds.pnml.gal : 8 ms
May 25, 2018 12:28:52 PM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/UpperBounds.prop : 2 ms

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-3"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="itstoolsl"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-3.tgz
mv NeoElection-PT-3 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstoolsl"
echo " Input is NeoElection-PT-3, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r117-csrt-152666476800296"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' UpperBounds.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;