fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r116-csrt-152666475700656
Last Updated
June 26, 2018

About the Execution of ITS-Tools for PhaseVariation-PT-D30CS010

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15740.140 3600000.00 10424904.00 1270.30 ???F???????????? normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
..................
/home/mcc/execution
total 30M
-rw-r--r-- 1 mcc users 4.4K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 20K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 4.8K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 22K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.6K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.9K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 11K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.3K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 117 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 355 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 4.5K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.9K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.0K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 9 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 30M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstools
Input is PhaseVariation-PT-D30CS010, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r116-csrt-152666475700656
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-00
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-01
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-02
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-03
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-04
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-05
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-06
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-07
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-08
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-09
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-10
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-11
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-12
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-13
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-14
FORMULA_NAME PhaseVariation-PT-D30CS010-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1527192507106

Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805151631/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]

its-reach command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805151631/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution]
Loading property file ReachabilityCardinality.prop.
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-00 with value :(cell___29_16__A_<=pool__25_1_)
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-01 with value :((!((pool__25_1_<=cell___30_27__B_)||(cell___17_7__B_>=3)))||(cell___30_17__B_<=cell___27_14__A_))
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-02 with value :(cell___9_29__A_<=cell___4_5__A_)
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-03 with value :((cell___12_26__A_>=2)&&(pool__12_12_>=3))
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-04 with value :((cell___13_7__A_<=cell___30_14__A_)||(cell___30_22__A_<=cell___13_14__A_))
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-05 with value :(!((!(pool__19_14_>=2))&&(!(cell___27_1__B_>=3))))
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-06 with value :(((cell___5_6__A_<=cell___20_21__B_)||((cell___4_27__B_>=2)||(cell___28_26__B_>=2)))||(cell___8_15__A_>=3))
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-07 with value :(cell___27_15__A_<=pool__26_5_)
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-08 with value :((((cell___29_20__A_<=cell___18_1__A_)&&(cell___20_2__B_>=3))&&(pool__7_3_>=2))||(pool__30_15_>=3))
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-09 with value :((cell___14_17__A_>=3)&&(pool__8_24_<=cell___15_18__A_))
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-10 with value :((((cell___6_21__A_<=cell___4_11__B_)||(cell___22_11__A_<=cell___23_27__A_))||((cell___21_15__A_<=cell___3_14__A_)&&(cell___22_28__A_>=1)))&&(((cell___26_19__A_<=pool__26_26_)||(cell___11_12__A_>=3))&&((cell___27_19__B_<=pool__6_17_)&&(cell___2_17__B_>=3))))
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-11 with value :((!((cell___29_23__A_>=3)&&(cell___21_26__A_>=2)))&&((!(cell___8_29__B_<=cell___26_15__B_))&&((cell___24_8__B_<=cell___3_7__A_)||(cell___8_24__B_>=1))))
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-12 with value :(pool__7_2_<=pool__19_13_)
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-13 with value :((pool__8_12_<=cell___15_19__A_)||(pool__18_26_>=2))
Read [invariant] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-14 with value :((!(cell___14_30__A_>=1))||(((cell___5_22__A_<=cell___27_21__A_)&&(cell___25_16__A_<=pool__28_20_))&&((cell___13_9__B_>=2)&&(cell___15_29__B_>=1))))
Read [reachable] property : PhaseVariation-PT-D30CS010-ReachabilityCardinality-15 with value :(!((pool__23_21_>=1)&&((cell___20_2__B_<=cell___26_21__A_)&&(cell___9_5__B_<=cell___15_15__B_))))
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
Normalized transition count is 1801
// Phase 1: matrix 1801 rows 2702 cols
invariant :cell___21_7__A_ + cell___21_7__B_ + pool__21_7_ = 1
invariant :cell___25_7__A_ + cell___25_7__B_ + pool__25_7_ = 1
invariant :cell___8_4__A_ + cell___8_4__B_ + pool__8_4_ = 1
invariant :cell___25_4__A_ + cell___25_4__B_ + pool__25_4_ = 1
invariant :cell___9_9__A_ + cell___9_9__B_ + pool__9_9_ = 1
invariant :cell___19_30__A_ + cell___19_30__B_ + pool__19_30_ = 1
invariant :cell___1_5__A_ + cell___1_5__B_ + pool__1_5_ = 1
invariant :cell___10_12__A_ + cell___10_12__B_ + pool__10_12_ = 1
invariant :cell___16_1__A_ + cell___16_1__B_ + pool__16_1_ = 1
invariant :cell___30_24__A_ + cell___30_24__B_ + pool__30_24_ = 1
invariant :cell___24_13__A_ + cell___24_13__B_ + pool__24_13_ = 1
invariant :cell___6_12__A_ + cell___6_12__B_ + pool__6_12_ = 1
invariant :cell___13_23__A_ + cell___13_23__B_ + pool__13_23_ = 1
invariant :cell___29_12__A_ + cell___29_12__B_ + pool__29_12_ = 1
invariant :cell___16_30__A_ + cell___16_30__B_ + pool__16_30_ = 1
invariant :cell___28_3__A_ + cell___28_3__B_ + pool__28_3_ = 1
invariant :cell___1_26__A_ + cell___1_26__B_ + pool__1_26_ = 1
invariant :cell___20_29__A_ + cell___20_29__B_ + pool__20_29_ = 1
invariant :cell___22_6__A_ + cell___22_6__B_ + pool__22_6_ = 1
invariant :cell___11_25__A_ + cell___11_25__B_ + pool__11_25_ = 1
invariant :cell___3_2__A_ + cell___3_2__B_ + pool__3_2_ = 1
invariant :cell___21_9__A_ + cell___21_9__B_ + pool__21_9_ = 1
invariant :cell___24_3__A_ + cell___24_3__B_ + pool__24_3_ = 1
invariant :cell___7_6__A_ + cell___7_6__B_ + pool__7_6_ = 1
invariant :cell___11_2__A_ + cell___11_2__B_ + pool__11_2_ = 1
invariant :cell___17_21__A_ + cell___17_21__B_ + pool__17_21_ = 1
invariant :cell___29_9__A_ + cell___29_9__B_ + pool__29_9_ = 1
invariant :cell___19_27__A_ + cell___19_27__B_ + pool__19_27_ = 1
invariant :cell___27_11__A_ + cell___27_11__B_ + pool__27_11_ = 1
invariant :cell___1_23__A_ + cell___1_23__B_ + pool__1_23_ = 1
invariant :cell___23_13__A_ + cell___23_13__B_ + pool__23_13_ = 1
invariant :cell___8_10__A_ + cell___8_10__B_ + pool__8_10_ = 1
invariant :cell___2_9__A_ + cell___2_9__B_ + pool__2_9_ = 1
invariant :cell___9_21__A_ + cell___9_21__B_ + pool__9_21_ = 1
invariant :cell___11_24__A_ + cell___11_24__B_ + pool__11_24_ = 1
invariant :cell___28_17__A_ + cell___28_17__B_ + pool__28_17_ = 1
invariant :cell___30_10__A_ + cell___30_10__B_ + pool__30_10_ = 1
invariant :cell___19_10__A_ + cell___19_10__B_ + pool__19_10_ = 1
invariant :cell___20_30__A_ + cell___20_30__B_ + pool__20_30_ = 1
invariant :cell___7_11__A_ + cell___7_11__B_ + pool__7_11_ = 1
invariant :cell___24_25__A_ + cell___24_25__B_ + pool__24_25_ = 1
invariant :cell___3_23__A_ + cell___3_23__B_ + pool__3_23_ = 1
invariant :cell___24_1__A_ + cell___24_1__B_ + pool__24_1_ = 1
invariant :cell___3_3__A_ + cell___3_3__B_ + pool__3_3_ = 1
invariant :cell___28_5__A_ + cell___28_5__B_ + pool__28_5_ = 1
invariant :cell___15_30__A_ + cell___15_30__B_ + pool__15_30_ = 1
invariant :cell___6_14__A_ + cell___6_14__B_ + pool__6_14_ = 1
invariant :cell___8_6__A_ + cell___8_6__B_ + pool__8_6_ = 1
invariant :cell___15_3__A_ + cell___15_3__B_ + pool__15_3_ = 1
invariant :cell___2_16__A_ + cell___2_16__B_ + pool__2_16_ = 1
invariant :cell___20_1__A_ + cell___20_1__B_ + pool__20_1_ = 1
invariant :cell___18_20__A_ + cell___18_20__B_ + pool__18_20_ = 1
invariant :cell___19_23__A_ + cell___19_23__B_ + pool__19_23_ = 1
invariant :cell___10_18__A_ + cell___10_18__B_ + pool__10_18_ = 1
invariant :cell___25_1__A_ + cell___25_1__B_ + pool__25_1_ = 1
invariant :cell___3_26__A_ + cell___3_26__B_ + pool__3_26_ = 1
invariant :cell___30_19__A_ + cell___30_19__B_ + pool__30_19_ = 1
invariant :cell___18_29__A_ + cell___18_29__B_ + pool__18_29_ = 1
invariant :cell___1_9__A_ + cell___1_9__B_ + pool__1_9_ = 1
invariant :cell___8_13__A_ + cell___8_13__B_ + pool__8_13_ = 1
invariant :cell___8_21__A_ + cell___8_21__B_ + pool__8_21_ = 1
invariant :cell___27_19__A_ + cell___27_19__B_ + pool__27_19_ = 1
invariant :cell___15_11__A_ + cell___15_11__B_ + pool__15_11_ = 1
invariant :cell___20_27__A_ + cell___20_27__B_ + pool__20_27_ = 1
invariant :cell___18_18__A_ + cell___18_18__B_ + pool__18_18_ = 1
invariant :cell___16_7__A_ + cell___16_7__B_ + pool__16_7_ = 1
invariant :cell___27_7__A_ + cell___27_7__B_ + pool__27_7_ = 1
invariant :cell___3_19__A_ + cell___3_19__B_ + pool__3_19_ = 1
invariant :cell___14_2__A_ + cell___14_2__B_ + pool__14_2_ = 1
invariant :cell___9_11__A_ + cell___9_11__B_ + pool__9_11_ = 1
invariant :cell___1_4__A_ + cell___1_4__B_ + pool__1_4_ = 1
invariant :cell___6_26__A_ + cell___6_26__B_ + pool__6_26_ = 1
invariant :cell___13_7__A_ + cell___13_7__B_ + pool__13_7_ = 1
invariant :cell___18_2__A_ + cell___18_2__B_ + pool__18_2_ = 1
invariant :cell___15_24__A_ + cell___15_24__B_ + pool__15_24_ = 1
invariant :cell___13_30__A_ + cell___13_30__B_ + pool__13_30_ = 1
invariant :cell___17_19__A_ + cell___17_19__B_ + pool__17_19_ = 1
invariant :cell___26_17__A_ + cell___26_17__B_ + pool__26_17_ = 1
invariant :cell___8_26__A_ + cell___8_26__B_ + pool__8_26_ = 1
invariant :cell___22_7__A_ + cell___22_7__B_ + pool__22_7_ = 1
invariant :cell___4_13__A_ + cell___4_13__B_ + pool__4_13_ = 1
invariant :cell___12_30__A_ + cell___12_30__B_ + pool__12_30_ = 1
invariant :cell___1_11__A_ + cell___1_11__B_ + pool__1_11_ = 1
invariant :cell___26_5__A_ + cell___26_5__B_ + pool__26_5_ = 1
invariant :cell___29_28__A_ + cell___29_28__B_ + pool__29_28_ = 1
invariant :cell___10_2__A_ + cell___10_2__B_ + pool__10_2_ = 1
invariant :cell___1_27__A_ + cell___1_27__B_ + pool__1_27_ = 1
invariant :cell___3_22__A_ + cell___3_22__B_ + pool__3_22_ = 1
invariant :cell___19_8__A_ + cell___19_8__B_ + pool__19_8_ = 1
invariant :cell___27_20__A_ + cell___27_20__B_ + pool__27_20_ = 1
invariant :cell___21_25__A_ + cell___21_25__B_ + pool__21_25_ = 1
invariant :cell___24_18__A_ + cell___24_18__B_ + pool__24_18_ = 1
invariant :cell___1_7__A_ + cell___1_7__B_ + pool__1_7_ = 1
invariant :cell___24_29__A_ + cell___24_29__B_ + pool__24_29_ = 1
invariant :cell___10_6__A_ + cell___10_6__B_ + pool__10_6_ = 1
invariant :cell___1_19__A_ + cell___1_19__B_ + pool__1_19_ = 1
invariant :cell___2_23__A_ + cell___2_23__B_ + pool__2_23_ = 1
invariant :cell___1_6__A_ + cell___1_6__B_ + pool__1_6_ = 1
invariant :cell___2_18__A_ + cell___2_18__B_ + pool__2_18_ = 1
invariant :cell___27_29__A_ + cell___27_29__B_ + pool__27_29_ = 1
invariant :cell___25_23__A_ + cell___25_23__B_ + pool__25_23_ = 1
invariant :cell___4_24__A_ + cell___4_24__B_ + pool__4_24_ = 1
invariant :cell___18_17__A_ + cell___18_17__B_ + pool__18_17_ = 1
invariant :cell___1_1__A_ + cell___1_1__B_ + pool__1_1_ = 1
invariant :cell___29_29__A_ + cell___29_29__B_ + pool__29_29_ = 1
invariant :cell___17_6__A_ + cell___17_6__B_ + pool__17_6_ = 1
invariant :cell___26_11__A_ + cell___26_11__B_ + pool__26_11_ = 1
invariant :cell___26_2__A_ + cell___26_2__B_ + pool__26_2_ = 1
invariant :cell___8_15__A_ + cell___8_15__B_ + pool__8_15_ = 1
invariant :cell___15_5__A_ + cell___15_5__B_ + pool__15_5_ = 1
invariant :cell___2_28__A_ + cell___2_28__B_ + pool__2_28_ = 1
invariant :cell___21_5__A_ + cell___21_5__B_ + pool__21_5_ = 1
invariant :cell___22_24__A_ + cell___22_24__B_ + pool__22_24_ = 1
invariant :cell___1_17__A_ + cell___1_17__B_ + pool__1_17_ = 1
invariant :cell___2_27__A_ + cell___2_27__B_ + pool__2_27_ = 1
invariant :cell___14_19__A_ + cell___14_19__B_ + pool__14_19_ = 1
invariant :cell___1_25__A_ + cell___1_25__B_ + pool__1_25_ = 1
invariant :cell___15_20__A_ + cell___15_20__B_ + pool__15_20_ = 1
invariant :cell___3_16__A_ + cell___3_16__B_ + pool__3_16_ = 1
invariant :cell___16_26__A_ + cell___16_26__B_ + pool__16_26_ = 1
invariant :cell___7_29__A_ + cell___7_29__B_ + pool__7_29_ = 1
invariant :cell___8_24__A_ + cell___8_24__B_ + pool__8_24_ = 1
invariant :cell___6_16__A_ + cell___6_16__B_ + pool__6_16_ = 1
invariant :cell___15_25__A_ + cell___15_25__B_ + pool__15_25_ = 1
invariant :cell___28_20__A_ + cell___28_20__B_ + pool__28_20_ = 1
invariant :cell___27_14__A_ + cell___27_14__B_ + pool__27_14_ = 1
invariant :cell___24_8__A_ + cell___24_8__B_ + pool__24_8_ = 1
invariant :cell___8_19__A_ + cell___8_19__B_ + pool__8_19_ = 1
invariant :cell___30_9__A_ + cell___30_9__B_ + pool__30_9_ = 1
invariant :cell___25_29__A_ + cell___25_29__B_ + pool__25_29_ = 1
invariant :cell___7_25__A_ + cell___7_25__B_ + pool__7_25_ = 1
invariant :cell___10_14__A_ + cell___10_14__B_ + pool__10_14_ = 1
invariant :cell___13_22__A_ + cell___13_22__B_ + pool__13_22_ = 1
invariant :cell___25_12__A_ + cell___25_12__B_ + pool__25_12_ = 1
invariant :cell___5_21__A_ + cell___5_21__B_ + pool__5_21_ = 1
invariant :cell___15_23__A_ + cell___15_23__B_ + pool__15_23_ = 1
invariant :cell___6_17__A_ + cell___6_17__B_ + pool__6_17_ = 1
invariant :cell___17_18__A_ + cell___17_18__B_ + pool__17_18_ = 1
invariant :cell___25_18__A_ + cell___25_18__B_ + pool__25_18_ = 1
invariant :cell___1_10__A_ + cell___1_10__B_ + pool__1_10_ = 1
invariant :cell___12_5__A_ + cell___12_5__B_ + pool__12_5_ = 1
invariant :cell___12_11__A_ + cell___12_11__B_ + pool__12_11_ = 1
invariant :cell___26_8__A_ + cell___26_8__B_ + pool__26_8_ = 1
invariant :cell___28_28__A_ + cell___28_28__B_ + pool__28_28_ = 1
invariant :cell___14_30__A_ + cell___14_30__B_ + pool__14_30_ = 1
invariant :cell___19_16__A_ + cell___19_16__B_ + pool__19_16_ = 1
invariant :cell___17_10__A_ + cell___17_10__B_ + pool__17_10_ = 1
invariant :cell___9_12__A_ + cell___9_12__B_ + pool__9_12_ = 1
invariant :cell___11_16__A_ + cell___11_16__B_ + pool__11_16_ = 1
invariant :cell___30_18__A_ + cell___30_18__B_ + pool__30_18_ = 1
invariant :cell___14_21__A_ + cell___14_21__B_ + pool__14_21_ = 1
invariant :cell___24_21__A_ + cell___24_21__B_ + pool__24_21_ = 1
invariant :cell___29_7__A_ + cell___29_7__B_ + pool__29_7_ = 1
invariant :cell___3_24__A_ + cell___3_24__B_ + pool__3_24_ = 1
invariant :cell___7_3__A_ + cell___7_3__B_ + pool__7_3_ = 1
invariant :cell___11_8__A_ + cell___11_8__B_ + pool__11_8_ = 1
invariant :cell___20_18__A_ + cell___20_18__B_ + pool__20_18_ = 1
invariant :cell___15_1__A_ + cell___15_1__B_ + pool__15_1_ = 1
invariant :cell___23_12__A_ + cell___23_12__B_ + pool__23_12_ = 1
invariant :cell___3_25__A_ + cell___3_25__B_ + pool__3_25_ = 1
invariant :cell___12_18__A_ + cell___12_18__B_ + pool__12_18_ = 1
invariant :cell___8_29__A_ + cell___8_29__B_ + pool__8_29_ = 1
invariant :cell___13_1__A_ + cell___13_1__B_ + pool__13_1_ = 1
invariant :cell___9_18__A_ + cell___9_18__B_ + pool__9_18_ = 1
invariant :cell___15_17__A_ + cell___15_17__B_ + pool__15_17_ = 1
invariant :cell___9_29__A_ + cell___9_29__B_ + pool__9_29_ = 1
invariant :cell___12_12__A_ + cell___12_12__B_ + pool__12_12_ = 1
invariant :cell___24_11__A_ + cell___24_11__B_ + pool__24_11_ = 1
invariant :cell___19_14__A_ + cell___19_14__B_ + pool__19_14_ = 1
invariant :cell___3_18__A_ + cell___3_18__B_ + pool__3_18_ = 1
invariant :cell___25_20__A_ + cell___25_20__B_ + pool__25_20_ = 1
invariant :cell___25_30__A_ + cell___25_30__B_ + pool__25_30_ = 1
invariant :cell___25_24__A_ + cell___25_24__B_ + pool__25_24_ = 1
invariant :cell___19_19__A_ + cell___19_19__B_ + pool__19_19_ = 1
invariant :cell___19_5__A_ + cell___19_5__B_ + pool__19_5_ = 1
invariant :cell___17_30__A_ + cell___17_30__B_ + pool__17_30_ = 1
invariant :cell___5_7__A_ + cell___5_7__B_ + pool__5_7_ = 1
invariant :cell___24_26__A_ + cell___24_26__B_ + pool__24_26_ = 1
invariant :cell___21_2__A_ + cell___21_2__B_ + pool__21_2_ = 1
invariant :cell___30_26__A_ + cell___30_26__B_ + pool__30_26_ = 1
invariant :cell___7_26__A_ + cell___7_26__B_ + pool__7_26_ = 1
invariant :cell___18_5__A_ + cell___18_5__B_ + pool__18_5_ = 1
invariant :cell___17_5__A_ + cell___17_5__B_ + pool__17_5_ = 1
invariant :cell___22_9__A_ + cell___22_9__B_ + pool__22_9_ = 1
invariant :cell___30_28__A_ + cell___30_28__B_ + pool__30_28_ = 1
invariant :cell___25_22__A_ + cell___25_22__B_ + pool__25_22_ = 1
invariant :cell___8_20__A_ + cell___8_20__B_ + pool__8_20_ = 1
invariant :cell___30_1__A_ + cell___30_1__B_ + pool__30_1_ = 1
invariant :cell___16_6__A_ + cell___16_6__B_ + pool__16_6_ = 1
invariant :cell___7_10__A_ + cell___7_10__B_ + pool__7_10_ = 1
invariant :cell___5_16__A_ + cell___5_16__B_ + pool__5_16_ = 1
invariant :cell___5_8__A_ + cell___5_8__B_ + pool__5_8_ = 1
invariant :cell___11_27__A_ + cell___11_27__B_ + pool__11_27_ = 1
invariant :cell___26_6__A_ + cell___26_6__B_ + pool__26_6_ = 1
invariant :cell___21_26__A_ + cell___21_26__B_ + pool__21_26_ = 1
invariant :cell___26_14__A_ + cell___26_14__B_ + pool__26_14_ = 1
invariant :cell___15_12__A_ + cell___15_12__B_ + pool__15_12_ = 1
invariant :cell___20_14__A_ + cell___20_14__B_ + pool__20_14_ = 1
invariant :cell___17_27__A_ + cell___17_27__B_ + pool__17_27_ = 1
invariant :cell___25_10__A_ + cell___25_10__B_ + pool__25_10_ = 1
invariant :cell___4_9__A_ + cell___4_9__B_ + pool__4_9_ = 1
invariant :cell___11_7__A_ + cell___11_7__B_ + pool__11_7_ = 1
invariant :cell___18_1__A_ + cell___18_1__B_ + pool__18_1_ = 1
invariant :cell___26_23__A_ + cell___26_23__B_ + pool__26_23_ = 1
invariant :cell___13_5__A_ + cell___13_5__B_ + pool__13_5_ = 1
invariant :cell___6_9__A_ + cell___6_9__B_ + pool__6_9_ = 1
invariant :cell___13_14__A_ + cell___13_14__B_ + pool__13_14_ = 1
invariant :cell___18_6__A_ + cell___18_6__B_ + pool__18_6_ = 1
invariant :cell___2_13__A_ + cell___2_13__B_ + pool__2_13_ = 1
invariant :cell___17_14__A_ + cell___17_14__B_ + pool__17_14_ = 1
invariant :cell___30_30__A_ + cell___30_30__B_ + pool__30_30_ = 1
invariant :cell___5_5__A_ + cell___5_5__B_ + pool__5_5_ = 1
invariant :cell___21_10__A_ + cell___21_10__B_ + pool__21_10_ = 1
invariant :cell___24_5__A_ + cell___24_5__B_ + pool__24_5_ = 1
invariant :cell___12_3__A_ + cell___12_3__B_ + pool__12_3_ = 1
invariant :cell___28_2__A_ + cell___28_2__B_ + pool__28_2_ = 1
invariant :cell___14_6__A_ + cell___14_6__B_ + pool__14_6_ = 1
invariant :cell___22_18__A_ + cell___22_18__B_ + pool__22_18_ = 1
invariant :cell___6_19__A_ + cell___6_19__B_ + pool__6_19_ = 1
invariant :cell___17_23__A_ + cell___17_23__B_ + pool__17_23_ = 1
invariant :cell___29_4__A_ + cell___29_4__B_ + pool__29_4_ = 1
invariant :cell___5_15__A_ + cell___5_15__B_ + pool__5_15_ = 1
invariant :cell___27_5__A_ + cell___27_5__B_ + pool__27_5_ = 1
invariant :cell___29_21__A_ + cell___29_21__B_ + pool__29_21_ = 1
invariant :cell___18_3__A_ + cell___18_3__B_ + pool__18_3_ = 1
invariant :cell___2_14__A_ + cell___2_14__B_ + pool__2_14_ = 1
invariant :cell___27_27__A_ + cell___27_27__B_ + pool__27_27_ = 1
invariant :cell___22_21__A_ + cell___22_21__B_ + pool__22_21_ = 1
invariant :cell___27_30__A_ + cell___27_30__B_ + pool__27_30_ = 1
invariant :cell___23_6__A_ + cell___23_6__B_ + pool__23_6_ = 1
invariant :cell___21_29__A_ + cell___21_29__B_ + pool__21_29_ = 1
invariant :cell___16_25__A_ + cell___16_25__B_ + pool__16_25_ = 1
invariant :cell___25_11__A_ + cell___25_11__B_ + pool__25_11_ = 1
invariant :cell___1_20__A_ + cell___1_20__B_ + pool__1_20_ = 1
invariant :cell___18_10__A_ + cell___18_10__B_ + pool__18_10_ = 1
invariant :cell___7_18__A_ + cell___7_18__B_ + pool__7_18_ = 1
invariant :cell___14_20__A_ + cell___14_20__B_ + pool__14_20_ = 1
invariant :cell___8_17__A_ + cell___8_17__B_ + pool__8_17_ = 1
invariant :cell___22_22__A_ + cell___22_22__B_ + pool__22_22_ = 1
invariant :cell___28_23__A_ + cell___28_23__B_ + pool__28_23_ = 1
invariant :cell___2_22__A_ + cell___2_22__B_ + pool__2_22_ = 1
invariant :cell___6_30__A_ + cell___6_30__B_ + pool__6_30_ = 1
invariant :cell___21_24__A_ + cell___21_24__B_ + pool__21_24_ = 1
invariant :cell___22_19__A_ + cell___22_19__B_ + pool__22_19_ = 1
invariant :cell___23_21__A_ + cell___23_21__B_ + pool__23_21_ = 1
invariant :cell___13_4__A_ + cell___13_4__B_ + pool__13_4_ = 1
invariant :cell___9_5__A_ + cell___9_5__B_ + pool__9_5_ = 1
invariant :cell___5_6__A_ + cell___5_6__B_ + pool__5_6_ = 1
invariant :cell___3_1__A_ + cell___3_1__B_ + pool__3_1_ = 1
invariant :cell___9_15__A_ + cell___9_15__B_ + pool__9_15_ = 1
invariant :cell___24_4__A_ + cell___24_4__B_ + pool__24_4_ = 1
invariant :cell___14_3__A_ + cell___14_3__B_ + pool__14_3_ = 1
invariant :cell___14_9__A_ + cell___14_9__B_ + pool__14_9_ = 1
invariant :cell___26_7__A_ + cell___26_7__B_ + pool__26_7_ = 1
invariant :cell___2_11__A_ + cell___2_11__B_ + pool__2_11_ = 1
invariant :cell___23_23__A_ + cell___23_23__B_ + pool__23_23_ = 1
invariant :cell___25_28__A_ + cell___25_28__B_ + pool__25_28_ = 1
invariant :cell___29_18__A_ + cell___29_18__B_ + pool__29_18_ = 1
invariant :cell___16_23__A_ + cell___16_23__B_ + pool__16_23_ = 1
invariant :cell___3_9__A_ + cell___3_9__B_ + pool__3_9_ = 1
invariant :cell___27_9__A_ + cell___27_9__B_ + pool__27_9_ = 1
invariant :cell___10_29__A_ + cell___10_29__B_ + pool__10_29_ = 1
invariant :cell___14_8__A_ + cell___14_8__B_ + pool__14_8_ = 1
invariant :cell___24_24__A_ + cell___24_24__B_ + pool__24_24_ = 1
invariant :cell___17_8__A_ + cell___17_8__B_ + pool__17_8_ = 1
invariant :cell___29_27__A_ + cell___29_27__B_ + pool__29_27_ = 1
invariant :cell___1_14__A_ + cell___1_14__B_ + pool__1_14_ = 1
invariant :cell___4_18__A_ + cell___4_18__B_ + pool__4_18_ = 1
invariant :cell___1_12__A_ + cell___1_12__B_ + pool__1_12_ = 1
invariant :cell___21_18__A_ + cell___21_18__B_ + pool__21_18_ = 1
invariant :cell___7_13__A_ + cell___7_13__B_ + pool__7_13_ = 1
invariant :cell___11_11__A_ + cell___11_11__B_ + pool__11_11_ = 1
invariant :cell___22_8__A_ + cell___22_8__B_ + pool__22_8_ = 1
invariant :cell___11_6__A_ + cell___11_6__B_ + pool__11_6_ = 1
invariant :cell___23_9__A_ + cell___23_9__B_ + pool__23_9_ = 1
invariant :cell___4_28__A_ + cell___4_28__B_ + pool__4_28_ = 1
invariant :cell___12_4__A_ + cell___12_4__B_ + pool__12_4_ = 1
invariant :cell___22_30__A_ + cell___22_30__B_ + pool__22_30_ = 1
invariant :cell___23_15__A_ + cell___23_15__B_ + pool__23_15_ = 1
invariant :cell___15_13__A_ + cell___15_13__B_ + pool__15_13_ = 1
invariant :cell___22_14__A_ + cell___22_14__B_ + pool__22_14_ = 1
invariant :cell___10_20__A_ + cell___10_20__B_ + pool__10_20_ = 1
invariant :cell___12_17__A_ + cell___12_17__B_ + pool__12_17_ = 1
invariant :cell___16_24__A_ + cell___16_24__B_ + pool__16_24_ = 1
invariant :cell___2_19__A_ + cell___2_19__B_ + pool__2_19_ = 1
invariant :cell___27_22__A_ + cell___27_22__B_ + pool__27_22_ = 1
invariant :cell___3_8__A_ + cell___3_8__B_ + pool__3_8_ = 1
invariant :cell___8_30__A_ + cell___8_30__B_ + pool__8_30_ = 1
invariant :cell___28_6__A_ + cell___28_6__B_ + pool__28_6_ = 1
invariant :cell___17_2__A_ + cell___17_2__B_ + pool__17_2_ = 1
invariant :cell___13_16__A_ + cell___13_16__B_ + pool__13_16_ = 1
invariant :cell___24_9__A_ + cell___24_9__B_ + pool__24_9_ = 1
invariant :cell___27_28__A_ + cell___27_28__B_ + pool__27_28_ = 1
invariant :cell___15_21__A_ + cell___15_21__B_ + pool__15_21_ = 1
invariant :cell___10_13__A_ + cell___10_13__B_ + pool__10_13_ = 1
invariant :cell___24_10__A_ + cell___24_10__B_ + pool__24_10_ = 1
invariant :cell___13_17__A_ + cell___13_17__B_ + pool__13_17_ = 1
invariant :cell___29_3__A_ + cell___29_3__B_ + pool__29_3_ = 1
invariant :cell___18_28__A_ + cell___18_28__B_ + pool__18_28_ = 1
invariant :cell___24_2__A_ + cell___24_2__B_ + pool__24_2_ = 1
invariant :cell___5_9__A_ + cell___5_9__B_ + pool__5_9_ = 1
invariant :cell___13_15__A_ + cell___13_15__B_ + pool__13_15_ = 1
invariant :cell___29_5__A_ + cell___29_5__B_ + pool__29_5_ = 1
invariant :cell___3_27__A_ + cell___3_27__B_ + pool__3_27_ = 1
invariant :cell___9_13__A_ + cell___9_13__B_ + pool__9_13_ = 1
invariant :cell___25_2__A_ + cell___25_2__B_ + pool__25_2_ = 1
invariant :cell___12_9__A_ + cell___12_9__B_ + pool__12_9_ = 1
invariant :cell___8_28__A_ + cell___8_28__B_ + pool__8_28_ = 1
invariant :cell___24_28__A_ + cell___24_28__B_ + pool__24_28_ = 1
invariant :cell___2_10__A_ + cell___2_10__B_ + pool__2_10_ = 1
invariant :cell___22_16__A_ + cell___22_16__B_ + pool__22_16_ = 1
invariant :cell___11_22__A_ + cell___11_22__B_ + pool__11_22_ = 1
invariant :cell___14_27__A_ + cell___14_27__B_ + pool__14_27_ = 1
invariant :cell___12_2__A_ + cell___12_2__B_ + pool__12_2_ = 1
invariant :cell___22_27__A_ + cell___22_27__B_ + pool__22_27_ = 1
invariant :cell___28_10__A_ + cell___28_10__B_ + pool__28_10_ = 1
invariant :cell___23_4__A_ + cell___23_4__B_ + pool__23_4_ = 1
invariant :cell___19_1__A_ + cell___19_1__B_ + pool__19_1_ = 1
invariant :cell___22_5__A_ + cell___22_5__B_ + pool__22_5_ = 1
invariant :cell___17_9__A_ + cell___17_9__B_ + pool__17_9_ = 1
invariant :cell___30_11__A_ + cell___30_11__B_ + pool__30_11_ = 1
invariant :cell___4_19__A_ + cell___4_19__B_ + pool__4_19_ = 1
invariant :cell___5_27__A_ + cell___5_27__B_ + pool__5_27_ = 1
invariant :cell___9_20__A_ + cell___9_20__B_ + pool__9_20_ = 1
invariant :cell___9_30__A_ + cell___9_30__B_ + pool__9_30_ = 1
invariant :cell___25_13__A_ + cell___25_13__B_ + pool__25_13_ = 1
invariant :cell___2_7__A_ + cell___2_7__B_ + pool__2_7_ = 1
invariant :cell___11_29__A_ + cell___11_29__B_ + pool__11_29_ = 1
invariant :cell___2_25__A_ + cell___2_25__B_ + pool__2_25_ = 1
invariant :cell___28_8__A_ + cell___28_8__B_ + pool__28_8_ = 1
invariant :cell___6_20__A_ + cell___6_20__B_ + pool__6_20_ = 1
invariant :cell___1_28__A_ + cell___1_28__B_ + pool__1_28_ = 1
invariant :cell___21_13__A_ + cell___21_13__B_ + pool__21_13_ = 1
invariant :cell___17_12__A_ + cell___17_12__B_ + pool__17_12_ = 1
invariant :cell___16_20__A_ + cell___16_20__B_ + pool__16_20_ = 1
invariant :cell___27_25__A_ + cell___27_25__B_ + pool__27_25_ = 1
invariant :cell___6_28__A_ + cell___6_28__B_ + pool__6_28_ = 1
invariant :cell___28_11__A_ + cell___28_11__B_ + pool__28_11_ = 1
invariant :cell___7_7__A_ + cell___7_7__B_ + pool__7_7_ = 1
invariant :cell___28_25__A_ + cell___28_25__B_ + pool__28_25_ = 1
invariant :cell___18_16__A_ + cell___18_16__B_ + pool__18_16_ = 1
invariant :cell___6_24__A_ + cell___6_24__B_ + pool__6_24_ = 1
invariant :cell___18_30__A_ + cell___18_30__B_ + pool__18_30_ = 1
invariant :cell___25_27__A_ + cell___25_27__B_ + pool__25_27_ = 1
invariant :cell___10_5__A_ + cell___10_5__B_ + pool__10_5_ = 1
invariant :cell___16_15__A_ + cell___16_15__B_ + pool__16_15_ = 1
invariant :cell___23_10__A_ + cell___23_10__B_ + pool__23_10_ = 1
invariant :cell___13_21__A_ + cell___13_21__B_ + pool__13_21_ = 1
invariant :cell___30_21__A_ + cell___30_21__B_ + pool__30_21_ = 1
invariant :cell___7_30__A_ + cell___7_30__B_ + pool__7_30_ = 1
invariant :cell___15_19__A_ + cell___15_19__B_ + pool__15_19_ = 1
invariant :cell___29_16__A_ + cell___29_16__B_ + pool__29_16_ = 1
invariant :cell___12_7__A_ + cell___12_7__B_ + pool__12_7_ = 1
invariant :cell___29_1__A_ + cell___29_1__B_ + pool__29_1_ = 1
invariant :cell___15_22__A_ + cell___15_22__B_ + pool__15_22_ = 1
invariant :cell___9_22__A_ + cell___9_22__B_ + pool__9_22_ = 1
invariant :cell___5_25__A_ + cell___5_25__B_ + pool__5_25_ = 1
invariant :cell___7_14__A_ + cell___7_14__B_ + pool__7_14_ = 1
invariant :cell___22_13__A_ + cell___22_13__B_ + pool__22_13_ = 1
invariant :cell___30_7__A_ + cell___30_7__B_ + pool__30_7_ = 1
invariant :cell___19_7__A_ + cell___19_7__B_ + pool__19_7_ = 1
invariant :cell___20_19__A_ + cell___20_19__B_ + pool__20_19_ = 1
invariant :cell___17_20__A_ + cell___17_20__B_ + pool__17_20_ = 1
invariant :cell___17_13__A_ + cell___17_13__B_ + pool__17_13_ = 1
invariant :cell___12_1__A_ + cell___12_1__B_ + pool__12_1_ = 1
invariant :cell___23_1__A_ + cell___23_1__B_ + pool__23_1_ = 1
invariant :cell___1_22__A_ + cell___1_22__B_ + pool__1_22_ = 1
invariant :cell___20_6__A_ + cell___20_6__B_ + pool__20_6_ = 1
invariant :cell___28_22__A_ + cell___28_22__B_ + pool__28_22_ = 1
invariant :cell___5_11__A_ + cell___5_11__B_ + pool__5_11_ = 1
invariant :cell___3_12__A_ + cell___3_12__B_ + pool__3_12_ = 1
invariant :cell___9_25__A_ + cell___9_25__B_ + pool__9_25_ = 1
invariant :cell___7_15__A_ + cell___7_15__B_ + pool__7_15_ = 1
invariant :cell___16_29__A_ + cell___16_29__B_ + pool__16_29_ = 1
invariant :cell___6_8__A_ + cell___6_8__B_ + pool__6_8_ = 1
invariant :cell___17_4__A_ + cell___17_4__B_ + pool__17_4_ = 1
invariant :cell___23_11__A_ + cell___23_11__B_ + pool__23_11_ = 1
invariant :cell___20_2__A_ + cell___20_2__B_ + pool__20_2_ = 1
invariant :cell___20_3__A_ + cell___20_3__B_ + pool__20_3_ = 1
invariant :cell___20_8__A_ + cell___20_8__B_ + pool__20_8_ = 1
invariant :cell___22_29__A_ + cell___22_29__B_ + pool__22_29_ = 1
invariant :cell___3_29__A_ + cell___3_29__B_ + pool__3_29_ = 1
invariant :cell___27_8__A_ + cell___27_8__B_ + pool__27_8_ = 1
invariant :cell___28_24__A_ + cell___28_24__B_ + pool__28_24_ = 1
invariant :cell___2_26__A_ + cell___2_26__B_ + pool__2_26_ = 1
invariant :cell___4_2__A_ + cell___4_2__B_ + pool__4_2_ = 1
invariant :cell___11_15__A_ + cell___11_15__B_ + pool__11_15_ = 1
invariant :cell___18_15__A_ + cell___18_15__B_ + pool__18_15_ = 1
invariant :cell___15_14__A_ + cell___15_14__B_ + pool__15_14_ = 1
invariant :cell___6_18__A_ + cell___6_18__B_ + pool__6_18_ = 1
invariant :cell___16_22__A_ + cell___16_22__B_ + pool__16_22_ = 1
invariant :cell___18_12__A_ + cell___18_12__B_ + pool__18_12_ = 1
invariant :cell___11_12__A_ + cell___11_12__B_ + pool__11_12_ = 1
invariant :cell___1_16__A_ + cell___1_16__B_ + pool__1_16_ = 1
invariant :cell___26_20__A_ + cell___26_20__B_ + pool__26_20_ = 1
invariant :cell___7_8__A_ + cell___7_8__B_ + pool__7_8_ = 1
invariant :cell___3_5__A_ + cell___3_5__B_ + pool__3_5_ = 1
invariant :cell___20_17__A_ + cell___20_17__B_ + pool__20_17_ = 1
invariant :cell___1_3__A_ + cell___1_3__B_ + pool__1_3_ = 1
invariant :cell___4_12__A_ + cell___4_12__B_ + pool__4_12_ = 1
invariant :cell___24_16__A_ + cell___24_16__B_ + pool__24_16_ = 1
invariant :cell___15_10__A_ + cell___15_10__B_ + pool__15_10_ = 1
invariant :cell___22_11__A_ + cell___22_11__B_ + pool__22_11_ = 1
invariant :cell___22_25__A_ + cell___22_25__B_ + pool__22_25_ = 1
invariant :cell___5_4__A_ + cell___5_4__B_ + pool__5_4_ = 1
invariant :cell___13_29__A_ + cell___13_29__B_ + pool__13_29_ = 1
invariant :cell___24_17__A_ + cell___24_17__B_ + pool__24_17_ = 1
invariant :cell___15_6__A_ + cell___15_6__B_ + pool__15_6_ = 1
invariant :cell___9_19__A_ + cell___9_19__B_ + pool__9_19_ = 1
invariant :cell___13_24__A_ + cell___13_24__B_ + pool__13_24_ = 1
invariant :cell___3_6__A_ + cell___3_6__B_ + pool__3_6_ = 1
invariant :cell___5_1__A_ + cell___5_1__B_ + pool__5_1_ = 1
invariant :cell___9_1__A_ + cell___9_1__B_ + pool__9_1_ = 1
invariant :cell___10_7__A_ + cell___10_7__B_ + pool__10_7_ = 1
invariant :cell___30_3__A_ + cell___30_3__B_ + pool__30_3_ = 1
invariant :cell___7_12__A_ + cell___7_12__B_ + pool__7_12_ = 1
invariant :cell___29_25__A_ + cell___29_25__B_ + pool__29_25_ = 1
invariant :cell___11_23__A_ + cell___11_23__B_ + pool__11_23_ = 1
invariant :cell___21_20__A_ + cell___21_20__B_ + pool__21_20_ = 1
invariant :cell___16_9__A_ + cell___16_9__B_ + pool__16_9_ = 1
invariant :cell___17_17__A_ + cell___17_17__B_ + pool__17_17_ = 1
invariant :cell___21_8__A_ + cell___21_8__B_ + pool__21_8_ = 1
invariant :cell___13_27__A_ + cell___13_27__B_ + pool__13_27_ = 1
invariant :cell___21_16__A_ + cell___21_16__B_ + pool__21_16_ = 1
invariant :cell___10_17__A_ + cell___10_17__B_ + pool__10_17_ = 1
invariant :cell___11_3__A_ + cell___11_3__B_ + pool__11_3_ = 1
invariant :cell___22_2__A_ + cell___22_2__B_ + pool__22_2_ = 1
invariant :cell___15_8__A_ + cell___15_8__B_ + pool__15_8_ = 1
invariant :cell___25_25__A_ + cell___25_25__B_ + pool__25_25_ = 1
invariant :cell___23_25__A_ + cell___23_25__B_ + pool__23_25_ = 1
invariant :cell___7_22__A_ + cell___7_22__B_ + pool__7_22_ = 1
invariant :cell___28_14__A_ + cell___28_14__B_ + pool__28_14_ = 1
invariant :cell___21_1__A_ + cell___21_1__B_ + pool__21_1_ = 1
invariant :cell___23_27__A_ + cell___23_27__B_ + pool__23_27_ = 1
invariant :cell___10_19__A_ + cell___10_19__B_ + pool__10_19_ = 1
invariant :cell___9_8__A_ + cell___9_8__B_ + pool__9_8_ = 1
invariant :cell___25_6__A_ + cell___25_6__B_ + pool__25_6_ = 1
invariant :cell___8_8__A_ + cell___8_8__B_ + pool__8_8_ = 1
invariant :cell___12_28__A_ + cell___12_28__B_ + pool__12_28_ = 1
invariant :cell___30_2__A_ + cell___30_2__B_ + pool__30_2_ = 1
invariant :cell___30_25__A_ + cell___30_25__B_ + pool__30_25_ = 1
invariant :cell___6_11__A_ + cell___6_11__B_ + pool__6_11_ = 1
invariant :cell___21_15__A_ + cell___21_15__B_ + pool__21_15_ = 1
invariant :cell___17_22__A_ + cell___17_22__B_ + pool__17_22_ = 1
invariant :cell___27_2__A_ + cell___27_2__B_ + pool__27_2_ = 1
invariant :cell___22_3__A_ + cell___22_3__B_ + pool__22_3_ = 1
invariant :cell___18_22__A_ + cell___18_22__B_ + pool__18_22_ = 1
invariant :cell___19_2__A_ + cell___19_2__B_ + pool__19_2_ = 1
invariant :cell___1_8__A_ + cell___1_8__B_ + pool__1_8_ = 1
invariant :cell___4_16__A_ + cell___4_16__B_ + pool__4_16_ = 1
invariant :cell___11_26__A_ + cell___11_26__B_ + pool__11_26_ = 1
invariant :cell___15_9__A_ + cell___15_9__B_ + pool__15_9_ = 1
invariant :cell___24_15__A_ + cell___24_15__B_ + pool__24_15_ = 1
invariant :cell___8_23__A_ + cell___8_23__B_ + pool__8_23_ = 1
invariant :cell___26_24__A_ + cell___26_24__B_ + pool__26_24_ = 1
invariant :cell___1_30__A_ + cell___1_30__B_ + pool__1_30_ = 1
invariant :cell___4_17__A_ + cell___4_17__B_ + pool__4_17_ = 1
invariant :cell___2_21__A_ + cell___2_21__B_ + pool__2_21_ = 1
invariant :cell___27_26__A_ + cell___27_26__B_ + pool__27_26_ = 1
invariant :cell___4_21__A_ + cell___4_21__B_ + pool__4_21_ = 1
invariant :cell___11_19__A_ + cell___11_19__B_ + pool__11_19_ = 1
invariant :cell___19_29__A_ + cell___19_29__B_ + pool__19_29_ = 1
invariant :cell___5_18__A_ + cell___5_18__B_ + pool__5_18_ = 1
invariant :cell___9_23__A_ + cell___9_23__B_ + pool__9_23_ = 1
invariant :cell___19_3__A_ + cell___19_3__B_ + pool__19_3_ = 1
invariant :cell___24_6__A_ + cell___24_6__B_ + pool__24_6_ = 1
invariant :cell___4_10__A_ + cell___4_10__B_ + pool__4_10_ = 1
invariant :cell___26_19__A_ + cell___26_19__B_ + pool__26_19_ = 1
invariant :cell___15_4__A_ + cell___15_4__B_ + pool__15_4_ = 1
invariant :cell___1_24__A_ + cell___1_24__B_ + pool__1_24_ = 1
invariant :cell___19_26__A_ + cell___19_26__B_ + pool__19_26_ = 1
invariant :cell___29_23__A_ + cell___29_23__B_ + pool__29_23_ = 1
invariant :cell___5_14__A_ + cell___5_14__B_ + pool__5_14_ = 1
invariant :cell___16_16__A_ + cell___16_16__B_ + pool__16_16_ = 1
invariant :cell___29_24__A_ + cell___29_24__B_ + pool__29_24_ = 1
invariant :cell___17_3__A_ + cell___17_3__B_ + pool__17_3_ = 1
invariant :cell___16_14__A_ + cell___16_14__B_ + pool__16_14_ = 1
invariant :cell___6_27__A_ + cell___6_27__B_ + pool__6_27_ = 1
invariant :cell___10_1__A_ + cell___10_1__B_ + pool__10_1_ = 1
invariant :cell___18_25__A_ + cell___18_25__B_ + pool__18_25_ = 1
invariant :cell___29_11__A_ + cell___29_11__B_ + pool__29_11_ = 1
invariant :cell___8_3__A_ + cell___8_3__B_ + pool__8_3_ = 1
invariant :cell___25_5__A_ + cell___25_5__B_ + pool__25_5_ = 1
invariant :cell___16_12__A_ + cell___16_12__B_ + pool__16_12_ = 1
invariant :cell___24_20__A_ + cell___24_20__B_ + pool__24_20_ = 1
invariant :cell___4_22__A_ + cell___4_22__B_ + pool__4_22_ = 1
invariant :cell___5_22__A_ + cell___5_22__B_ + pool__5_22_ = 1
invariant :cell___10_16__A_ + cell___10_16__B_ + pool__10_16_ = 1
invariant :cell___16_4__A_ + cell___16_4__B_ + pool__16_4_ = 1
invariant :cell___25_8__A_ + cell___25_8__B_ + pool__25_8_ = 1
invariant :cell___17_7__A_ + cell___17_7__B_ + pool__17_7_ = 1
invariant :cell___8_5__A_ + cell___8_5__B_ + pool__8_5_ = 1
invariant :cell___20_10__A_ + cell___20_10__B_ + pool__20_10_ = 1
invariant :cell___30_22__A_ + cell___30_22__B_ + pool__30_22_ = 1
invariant :cell___12_29__A_ + cell___12_29__B_ + pool__12_29_ = 1
invariant :cell___27_16__A_ + cell___27_16__B_ + pool__27_16_ = 1
invariant :cell___2_2__A_ + cell___2_2__B_ + pool__2_2_ = 1
invariant :cell___16_27__A_ + cell___16_27__B_ + pool__16_27_ = 1
invariant :cell___30_17__A_ + cell___30_17__B_ + pool__30_17_ = 1
invariant :cell___22_4__A_ + cell___22_4__B_ + pool__22_4_ = 1
invariant :cell___15_2__A_ + cell___15_2__B_ + pool__15_2_ = 1
invariant :cell___21_4__A_ + cell___21_4__B_ + pool__21_4_ = 1
invariant :cell___26_30__A_ + cell___26_30__B_ + pool__26_30_ = 1
invariant :cell___27_17__A_ + cell___27_17__B_ + pool__27_17_ = 1
invariant :cell___1_29__A_ + cell___1_29__B_ + pool__1_29_ = 1
invariant :cell___4_29__A_ + cell___4_29__B_ + pool__4_29_ = 1
invariant :cell___15_18__A_ + cell___15_18__B_ + pool__15_18_ = 1
invariant :cell___28_19__A_ + cell___28_19__B_ + pool__28_19_ = 1
invariant :cell___30_13__A_ + cell___30_13__B_ + pool__30_13_ = 1
invariant :cell___10_28__A_ + cell___10_28__B_ + pool__10_28_ = 1
invariant :cell___28_30__A_ + cell___28_30__B_ + pool__28_30_ = 1
invariant :cell___10_21__A_ + cell___10_21__B_ + pool__10_21_ = 1
invariant :cell___4_26__A_ + cell___4_26__B_ + pool__4_26_ = 1
invariant :cell___17_28__A_ + cell___17_28__B_ + pool__17_28_ = 1
invariant :cell___6_2__A_ + cell___6_2__B_ + pool__6_2_ = 1
invariant :cell___17_15__A_ + cell___17_15__B_ + pool__17_15_ = 1
invariant :cell___29_15__A_ + cell___29_15__B_ + pool__29_15_ = 1
invariant :cell___4_27__A_ + cell___4_27__B_ + pool__4_27_ = 1
invariant :cell___27_21__A_ + cell___27_21__B_ + pool__27_21_ = 1
invariant :cell___21_30__A_ + cell___21_30__B_ + pool__21_30_ = 1
invariant :cell___29_22__A_ + cell___29_22__B_ + pool__29_22_ = 1
invariant :cell___19_20__A_ + cell___19_20__B_ + pool__19_20_ = 1
invariant :cell___23_29__A_ + cell___23_29__B_ + pool__23_29_ = 1
invariant :cell___1_13__A_ + cell___1_13__B_ + pool__1_13_ = 1
invariant :cell___20_5__A_ + cell___20_5__B_ + pool__20_5_ = 1
invariant :cell___19_17__A_ + cell___19_17__B_ + pool__19_17_ = 1
invariant :cell___30_27__A_ + cell___30_27__B_ + pool__30_27_ = 1
invariant :cell___25_21__A_ + cell___25_21__B_ + pool__25_21_ = 1
invariant :cell___9_17__A_ + cell___9_17__B_ + pool__9_17_ = 1
invariant :cell___5_23__A_ + cell___5_23__B_ + pool__5_23_ = 1
invariant :cell___18_8__A_ + cell___18_8__B_ + pool__18_8_ = 1
invariant :cell___10_15__A_ + cell___10_15__B_ + pool__10_15_ = 1
invariant :cell___19_15__A_ + cell___19_15__B_ + pool__19_15_ = 1
invariant :cell___6_21__A_ + cell___6_21__B_ + pool__6_21_ = 1
invariant :cell___15_26__A_ + cell___15_26__B_ + pool__15_26_ = 1
invariant :cell___28_18__A_ + cell___28_18__B_ + pool__28_18_ = 1
invariant :cell___26_18__A_ + cell___26_18__B_ + pool__26_18_ = 1
invariant :cell___26_16__A_ + cell___26_16__B_ + pool__26_16_ = 1
invariant :cell___5_3__A_ + cell___5_3__B_ + pool__5_3_ = 1
invariant :cell___24_7__A_ + cell___24_7__B_ + pool__24_7_ = 1
invariant :cell___30_6__A_ + cell___30_6__B_ + pool__30_6_ = 1
invariant :cell___23_26__A_ + cell___23_26__B_ + pool__23_26_ = 1
invariant :cell___25_17__A_ + cell___25_17__B_ + pool__25_17_ = 1
invariant :cell___6_5__A_ + cell___6_5__B_ + pool__6_5_ = 1
invariant :cell___18_23__A_ + cell___18_23__B_ + pool__18_23_ = 1
invariant :cell___1_21__A_ + cell___1_21__B_ + pool__1_21_ = 1
invariant :cell___29_10__A_ + cell___29_10__B_ + pool__29_10_ = 1
invariant :cell___12_24__A_ + cell___12_24__B_ + pool__12_24_ = 1
invariant :cell___12_6__A_ + cell___12_6__B_ + pool__12_6_ = 1
invariant :cell___19_25__A_ + cell___19_25__B_ + pool__19_25_ = 1
invariant :cell___6_3__A_ + cell___6_3__B_ + pool__6_3_ = 1
invariant :cell___22_26__A_ + cell___22_26__B_ + pool__22_26_ = 1
invariant :cell___12_8__A_ + cell___12_8__B_ + pool__12_8_ = 1
invariant :cell___21_21__A_ + cell___21_21__B_ + pool__21_21_ = 1
invariant :cell___11_9__A_ + cell___11_9__B_ + pool__11_9_ = 1
invariant :cell___15_27__A_ + cell___15_27__B_ + pool__15_27_ = 1
invariant :cell___20_15__A_ + cell___20_15__B_ + pool__20_15_ = 1
invariant :cell___23_28__A_ + cell___23_28__B_ + pool__23_28_ = 1
invariant :cell___9_7__A_ + cell___9_7__B_ + pool__9_7_ = 1
invariant :cell___4_4__A_ + cell___4_4__B_ + pool__4_4_ = 1
invariant :cell___26_26__A_ + cell___26_26__B_ + pool__26_26_ = 1
invariant :cell___2_20__A_ + cell___2_20__B_ + pool__2_20_ = 1
invariant :cell___25_26__A_ + cell___25_26__B_ + pool__25_26_ = 1
invariant :cell___23_30__A_ + cell___23_30__B_ + pool__23_30_ = 1
invariant :cell___7_2__A_ + cell___7_2__B_ + pool__7_2_ = 1
invariant :cell___4_5__A_ + cell___4_5__B_ + pool__4_5_ = 1
invariant :cell___12_23__A_ + cell___12_23__B_ + pool__12_23_ = 1
invariant :cell___5_10__A_ + cell___5_10__B_ + pool__5_10_ = 1
invariant :cell___12_16__A_ + cell___12_16__B_ + pool__12_16_ = 1
invariant :cell___19_9__A_ + cell___19_9__B_ + pool__19_9_ = 1
invariant :cell___10_25__A_ + cell___10_25__B_ + pool__10_25_ = 1
invariant :cell___28_26__A_ + cell___28_26__B_ + pool__28_26_ = 1
invariant :cell___8_14__A_ + cell___8_14__B_ + pool__8_14_ = 1
invariant :cell___3_7__A_ + cell___3_7__B_ + pool__3_7_ = 1
invariant :cell___12_13__A_ + cell___12_13__B_ + pool__12_13_ = 1
invariant :cell___23_17__A_ + cell___23_17__B_ + pool__23_17_ = 1
invariant :cell___20_25__A_ + cell___20_25__B_ + pool__20_25_ = 1
invariant :cell___16_19__A_ + cell___16_19__B_ + pool__16_19_ = 1
invariant :cell___29_2__A_ + cell___29_2__B_ + pool__29_2_ = 1
invariant :cell___7_17__A_ + cell___7_17__B_ + pool__7_17_ = 1
invariant :cell___4_8__A_ + cell___4_8__B_ + pool__4_8_ = 1
invariant :cell___4_11__A_ + cell___4_11__B_ + pool__4_11_ = 1
invariant :cell___20_24__A_ + cell___20_24__B_ + pool__20_24_ = 1
invariant :cell___22_17__A_ + cell___22_17__B_ + pool__22_17_ = 1
invariant :cell___9_10__A_ + cell___9_10__B_ + pool__9_10_ = 1
invariant :cell___24_12__A_ + cell___24_12__B_ + pool__24_12_ = 1
invariant :cell___10_24__A_ + cell___10_24__B_ + pool__10_24_ = 1
invariant :cell___11_28__A_ + cell___11_28__B_ + pool__11_28_ = 1
invariant :cell___27_10__A_ + cell___27_10__B_ + pool__27_10_ = 1
invariant :cell___4_3__A_ + cell___4_3__B_ + pool__4_3_ = 1
invariant :cell___8_22__A_ + cell___8_22__B_ + pool__8_22_ = 1
invariant :cell___2_6__A_ + cell___2_6__B_ + pool__2_6_ = 1
invariant :cell___7_24__A_ + cell___7_24__B_ + pool__7_24_ = 1
invariant :cell___26_3__A_ + cell___26_3__B_ + pool__26_3_ = 1
invariant :cell___3_21__A_ + cell___3_21__B_ + pool__3_21_ = 1
invariant :cell___3_11__A_ + cell___3_11__B_ + pool__3_11_ = 1
invariant :cell___9_2__A_ + cell___9_2__B_ + pool__9_2_ = 1
invariant :cell___4_30__A_ + cell___4_30__B_ + pool__4_30_ = 1
invariant :cell___29_8__A_ + cell___29_8__B_ + pool__29_8_ = 1
invariant :cell___5_28__A_ + cell___5_28__B_ + pool__5_28_ = 1
invariant :cell___7_5__A_ + cell___7_5__B_ + pool__7_5_ = 1
invariant :cell___15_29__A_ + cell___15_29__B_ + pool__15_29_ = 1
invariant :cell___26_12__A_ + cell___26_12__B_ + pool__26_12_ = 1
invariant :cell___6_6__A_ + cell___6_6__B_ + pool__6_6_ = 1
invariant :cell___26_28__A_ + cell___26_28__B_ + pool__26_28_ = 1
invariant :cell___27_13__A_ + cell___27_13__B_ + pool__27_13_ = 1
invariant :cell___18_26__A_ + cell___18_26__B_ + pool__18_26_ = 1
invariant :cell___4_20__A_ + cell___4_20__B_ + pool__4_20_ = 1
invariant :cell___15_15__A_ + cell___15_15__B_ + pool__15_15_ = 1
invariant :cell___7_16__A_ + cell___7_16__B_ + pool__7_16_ = 1
invariant :cell___7_4__A_ + cell___7_4__B_ + pool__7_4_ = 1
invariant :cell___19_28__A_ + cell___19_28__B_ + pool__19_28_ = 1
invariant :cell___2_4__A_ + cell___2_4__B_ + pool__2_4_ = 1
invariant :cell___2_8__A_ + cell___2_8__B_ + pool__2_8_ = 1
invariant :cell___25_14__A_ + cell___25_14__B_ + pool__25_14_ = 1
invariant :cell___19_24__A_ + cell___19_24__B_ + pool__19_24_ = 1
invariant :cell___12_22__A_ + cell___12_22__B_ + pool__12_22_ = 1
invariant :cell___21_28__A_ + cell___21_28__B_ + pool__21_28_ = 1
invariant :cell___11_14__A_ + cell___11_14__B_ + pool__11_14_ = 1
invariant :cell___12_21__A_ + cell___12_21__B_ + pool__12_21_ = 1
invariant :cell___8_12__A_ + cell___8_12__B_ + pool__8_12_ = 1
invariant :cell___4_25__A_ + cell___4_25__B_ + pool__4_25_ = 1
invariant :cell___13_28__A_ + cell___13_28__B_ + pool__13_28_ = 1
invariant :cell___14_16__A_ + cell___14_16__B_ + pool__14_16_ = 1
invariant :cell___14_11__A_ + cell___14_11__B_ + pool__14_11_ = 1
invariant :cell___4_6__A_ + cell___4_6__B_ + pool__4_6_ = 1
invariant :cell___23_16__A_ + cell___23_16__B_ + pool__23_16_ = 1
invariant :cell___23_14__A_ + cell___23_14__B_ + pool__23_14_ = 1
invariant :cell___28_21__A_ + cell___28_21__B_ + pool__28_21_ = 1
invariant :cell___16_21__A_ + cell___16_21__B_ + pool__16_21_ = 1
invariant :pool__10_10_ + pool__10_11_ + pool__10_12_ + pool__10_13_ + pool__10_14_ + pool__10_15_ + pool__10_16_ + pool__10_17_ + pool__10_18_ + pool__10_19_ + pool__10_1_ + pool__10_20_ + pool__10_21_ + pool__10_22_ + pool__10_23_ + pool__10_24_ + pool__10_25_ + pool__10_26_ + pool__10_27_ + pool__10_28_ + pool__10_29_ + pool__10_2_ + pool__10_30_ + pool__10_3_ + pool__10_4_ + pool__10_5_ + pool__10_6_ + pool__10_7_ + pool__10_8_ + pool__10_9_ + pool__11_10_ + pool__11_11_ + pool__11_12_ + pool__11_13_ + pool__11_14_ + pool__11_15_ + pool__11_16_ + pool__11_17_ + pool__11_18_ + pool__11_19_ + pool__11_1_ + pool__11_20_ + pool__11_21_ + pool__11_22_ + pool__11_23_ + pool__11_24_ + pool__11_25_ + pool__11_26_ + pool__11_27_ + pool__11_28_ + pool__11_29_ + pool__11_2_ + pool__11_30_ + pool__11_3_ + pool__11_4_ + pool__11_5_ + pool__11_6_ + pool__11_7_ + pool__11_8_ + pool__11_9_ + pool__12_10_ + pool__12_11_ + pool__12_12_ + pool__12_13_ + pool__12_14_ + pool__12_15_ + pool__12_16_ + pool__12_17_ + pool__12_18_ + pool__12_19_ + pool__12_1_ + pool__12_20_ + pool__12_21_ + pool__12_22_ + pool__12_23_ + pool__12_24_ + pool__12_25_ + pool__12_26_ + pool__12_27_ + pool__12_28_ + pool__12_29_ + pool__12_2_ + pool__12_30_ + pool__12_3_ + pool__12_4_ + pool__12_5_ + pool__12_6_ + pool__12_7_ + pool__12_8_ + pool__12_9_ + pool__13_10_ + pool__13_11_ + pool__13_12_ + pool__13_13_ + pool__13_14_ + pool__13_15_ + pool__13_16_ + pool__13_17_ + pool__13_18_ + pool__13_19_ + pool__13_1_ + pool__13_20_ + pool__13_21_ + pool__13_22_ + pool__13_23_ + pool__13_24_ + pool__13_25_ + pool__13_26_ + pool__13_27_ + pool__13_28_ + pool__13_29_ + pool__13_2_ + pool__13_30_ + pool__13_3_ + pool__13_4_ + pool__13_5_ + pool__13_6_ + pool__13_7_ + pool__13_8_ + pool__13_9_ + pool__14_10_ + pool__14_11_ + pool__14_12_ + pool__14_13_ + pool__14_14_ + pool__14_15_ + pool__14_16_ + pool__14_17_ + pool__14_18_ + pool__14_19_ + pool__14_1_ + pool__14_20_ + pool__14_21_ + pool__14_22_ + pool__14_23_ + pool__14_24_ + pool__14_25_ + pool__14_26_ + pool__14_27_ + pool__14_28_ + pool__14_29_ + pool__14_2_ + pool__14_30_ + pool__14_3_ + pool__14_4_ + pool__14_5_ + pool__14_6_ + pool__14_7_ + pool__14_8_ + pool__14_9_ + pool__15_10_ + pool__15_11_ + pool__15_12_ + pool__15_13_ + pool__15_14_ + pool__15_15_ + pool__15_16_ + pool__15_17_ + pool__15_18_ + pool__15_19_ + pool__15_1_ + pool__15_20_ + pool__15_21_ + pool__15_22_ + pool__15_23_ + pool__15_24_ + pool__15_25_ + pool__15_26_ + pool__15_27_ + pool__15_28_ + pool__15_29_ + pool__15_2_ + pool__15_30_ + pool__15_3_ + pool__15_4_ + pool__15_5_ + pool__15_6_ + pool__15_7_ + pool__15_8_ + pool__15_9_ + pool__16_10_ + pool__16_11_ + pool__16_12_ + pool__16_13_ + pool__16_14_ + pool__16_15_ + pool__16_16_ + pool__16_17_ + pool__16_18_ + pool__16_19_ + pool__16_1_ + pool__16_20_ + pool__16_21_ + pool__16_22_ + pool__16_23_ + pool__16_24_ + pool__16_25_ + pool__16_26_ + pool__16_27_ + pool__16_28_ + pool__16_29_ + pool__16_2_ + pool__16_30_ + pool__16_3_ + pool__16_4_ + pool__16_5_ + pool__16_6_ + pool__16_7_ + pool__16_8_ + pool__16_9_ + pool__17_10_ + pool__17_11_ + pool__17_12_ + pool__17_13_ + pool__17_14_ + pool__17_15_ + pool__17_16_ + pool__17_17_ + pool__17_18_ + pool__17_19_ + pool__17_1_ + pool__17_20_ + pool__17_21_ + pool__17_22_ + pool__17_23_ + pool__17_24_ + pool__17_25_ + pool__17_26_ + pool__17_27_ + pool__17_28_ + pool__17_29_ + pool__17_2_ + pool__17_30_ + pool__17_3_ + pool__17_4_ + pool__17_5_ + pool__17_6_ + pool__17_7_ + pool__17_8_ + pool__17_9_ + pool__18_10_ + pool__18_11_ + pool__18_12_ + pool__18_13_ + pool__18_14_ + pool__18_15_ + pool__18_16_ + pool__18_17_ + pool__18_18_ + pool__18_19_ + pool__18_1_ + pool__18_20_ + pool__18_21_ + pool__18_22_ + pool__18_23_ + pool__18_24_ + pool__18_25_ + pool__18_26_ + pool__18_27_ + pool__18_28_ + pool__18_29_ + pool__18_2_ + pool__18_30_ + pool__18_3_ + pool__18_4_ + pool__18_5_ + pool__18_6_ + pool__18_7_ + pool__18_8_ + pool__18_9_ + pool__19_10_ + pool__19_11_ + pool__19_12_ + pool__19_13_ + pool__19_14_ + pool__19_15_ + pool__19_16_ + pool__19_17_ + pool__19_18_ + pool__19_19_ + pool__19_1_ + pool__19_20_ + pool__19_21_ + pool__19_22_ + pool__19_23_ + pool__19_24_ + pool__19_25_ + pool__19_26_ + pool__19_27_ + pool__19_28_ + pool__19_29_ + pool__19_2_ + pool__19_30_ + pool__19_3_ + pool__19_4_ + pool__19_5_ + pool__19_6_ + pool__19_7_ + pool__19_8_ + pool__19_9_ + pool__1_10_ + pool__1_11_ + pool__1_12_ + pool__1_13_ + pool__1_14_ + pool__1_15_ + pool__1_16_ + pool__1_17_ + pool__1_18_ + pool__1_19_ + pool__1_1_ + pool__1_20_ + pool__1_21_ + pool__1_22_ + pool__1_23_ + pool__1_24_ + pool__1_25_ + pool__1_26_ + pool__1_27_ + pool__1_28_ + pool__1_29_ + pool__1_2_ + pool__1_30_ + pool__1_3_ + pool__1_4_ + pool__1_5_ + pool__1_6_ + pool__1_7_ + pool__1_8_ + pool__1_9_ + pool__20_10_ + pool__20_11_ + pool__20_12_ + pool__20_13_ + pool__20_14_ + pool__20_15_ + pool__20_16_ + pool__20_17_ + pool__20_18_ + pool__20_19_ + pool__20_1_ + pool__20_20_ + pool__20_21_ + pool__20_22_ + pool__20_23_ + pool__20_24_ + pool__20_25_ + pool__20_26_ + pool__20_27_ + pool__20_28_ + pool__20_29_ + pool__20_2_ + pool__20_30_ + pool__20_3_ + pool__20_4_ + pool__20_5_ + pool__20_6_ + pool__20_7_ + pool__20_8_ + pool__20_9_ + pool__21_10_ + pool__21_11_ + pool__21_12_ + pool__21_13_ + pool__21_14_ + pool__21_15_ + pool__21_16_ + pool__21_17_ + pool__21_18_ + pool__21_19_ + pool__21_1_ + pool__21_20_ + pool__21_21_ + pool__21_22_ + pool__21_23_ + pool__21_24_ + pool__21_25_ + pool__21_26_ + pool__21_27_ + pool__21_28_ + pool__21_29_ + pool__21_2_ + pool__21_30_ + pool__21_3_ + pool__21_4_ + pool__21_5_ + pool__21_6_ + pool__21_7_ + pool__21_8_ + pool__21_9_ + pool__22_10_ + pool__22_11_ + pool__22_12_ + pool__22_13_ + pool__22_14_ + pool__22_15_ + pool__22_16_ + pool__22_17_ + pool__22_18_ + pool__22_19_ + pool__22_1_ + pool__22_20_ + pool__22_21_ + pool__22_22_ + pool__22_23_ + pool__22_24_ + pool__22_25_ + pool__22_26_ + pool__22_27_ + pool__22_28_ + pool__22_29_ + pool__22_2_ + pool__22_30_ + pool__22_3_ + pool__22_4_ + pool__22_5_ + pool__22_6_ + pool__22_7_ + pool__22_8_ + pool__22_9_ + pool__23_10_ + pool__23_11_ + pool__23_12_ + pool__23_13_ + pool__23_14_ + pool__23_15_ + pool__23_16_ + pool__23_17_ + pool__23_18_ + pool__23_19_ + pool__23_1_ + pool__23_20_ + pool__23_21_ + pool__23_22_ + pool__23_23_ + pool__23_24_ + pool__23_25_ + pool__23_26_ + pool__23_27_ + pool__23_28_ + pool__23_29_ + pool__23_2_ + pool__23_30_ + pool__23_3_ + pool__23_4_ + pool__23_5_ + pool__23_6_ + pool__23_7_ + pool__23_8_ + pool__23_9_ + pool__24_10_ + pool__24_11_ + pool__24_12_ + pool__24_13_ + pool__24_14_ + pool__24_15_ + pool__24_16_ + pool__24_17_ + pool__24_18_ + pool__24_19_ + pool__24_1_ + pool__24_20_ + pool__24_21_ + pool__24_22_ + pool__24_23_ + pool__24_24_ + pool__24_25_ + pool__24_26_ + pool__24_27_ + pool__24_28_ + pool__24_29_ + pool__24_2_ + pool__24_30_ + pool__24_3_ + pool__24_4_ + pool__24_5_ + pool__24_6_ + pool__24_7_ + pool__24_8_ + pool__24_9_ + pool__25_10_ + pool__25_11_ + pool__25_12_ + pool__25_13_ + pool__25_14_ + pool__25_15_ + pool__25_16_ + pool__25_17_ + pool__25_18_ + pool__25_19_ + pool__25_1_ + pool__25_20_ + pool__25_21_ + pool__25_22_ + pool__25_23_ + pool__25_24_ + pool__25_25_ + pool__25_26_ + pool__25_27_ + pool__25_28_ + pool__25_29_ + pool__25_2_ + pool__25_30_ + pool__25_3_ + pool__25_4_ + pool__25_5_ + pool__25_6_ + pool__25_7_ + pool__25_8_ + pool__25_9_ + pool__26_10_ + pool__26_11_ + pool__26_12_ + pool__26_13_ + pool__26_14_ + pool__26_15_ + pool__26_16_ + pool__26_17_ + pool__26_18_ + pool__26_19_ + pool__26_1_ + pool__26_20_ + pool__26_21_ + pool__26_22_ + pool__26_23_ + pool__26_24_ + pool__26_25_ + pool__26_26_ + pool__26_27_ + pool__26_28_ + pool__26_29_ + pool__26_2_ + pool__26_30_ + pool__26_3_ + pool__26_4_ + pool__26_5_ + pool__26_6_ + pool__26_7_ + pool__26_8_ + pool__26_9_ + pool__27_10_ + pool__27_11_ + pool__27_12_ + pool__27_13_ + pool__27_14_ + pool__27_15_ + pool__27_16_ + pool__27_17_ + pool__27_18_ + pool__27_19_ + pool__27_1_ + pool__27_20_ + pool__27_21_ + pool__27_22_ + pool__27_23_ + pool__27_24_ + pool__27_25_ + pool__27_26_ + pool__27_27_ + pool__27_28_ + pool__27_29_ + pool__27_2_ + pool__27_30_ + pool__27_3_ + pool__27_4_ + pool__27_5_ + pool__27_6_ + pool__27_7_ + pool__27_8_ + pool__27_9_ + pool__28_10_ + pool__28_11_ + pool__28_12_ + pool__28_13_ + pool__28_14_ + pool__28_15_ + pool__28_16_ + pool__28_17_ + pool__28_18_ + pool__28_19_ + pool__28_1_ + pool__28_20_ + pool__28_21_ + pool__28_22_ + pool__28_23_ + pool__28_24_ + pool__28_25_ + pool__28_26_ + pool__28_27_ + pool__28_28_ + pool__28_29_ + pool__28_2_ + pool__28_30_ + pool__28_3_ + pool__28_4_ + pool__28_5_ + pool__28_6_ + pool__28_7_ + pool__28_8_ + pool__28_9_ + pool__29_10_ + pool__29_11_ + pool__29_12_ + pool__29_13_ + pool__29_14_ + pool__29_15_ + pool__29_16_ + pool__29_17_ + pool__29_18_ + pool__29_19_ + pool__29_1_ + pool__29_20_ + pool__29_21_ + pool__29_22_ + pool__29_23_ + pool__29_24_ + pool__29_25_ + pool__29_26_ + pool__29_27_ + pool__29_28_ + pool__29_29_ + pool__29_2_ + pool__29_30_ + pool__29_3_ + pool__29_4_ + pool__29_5_ + pool__29_6_ + pool__29_7_ + pool__29_8_ + pool__29_9_ + pool__2_10_ + pool__2_11_ + pool__2_12_ + pool__2_13_ + pool__2_14_ + pool__2_15_ + pool__2_16_ + pool__2_17_ + pool__2_18_ + pool__2_19_ + pool__2_1_ + pool__2_20_ + pool__2_21_ + pool__2_22_ + pool__2_23_ + pool__2_24_ + pool__2_25_ + pool__2_26_ + pool__2_27_ + pool__2_28_ + pool__2_29_ + pool__2_2_ + pool__2_30_ + pool__2_3_ + pool__2_4_ + pool__2_5_ + pool__2_6_ + pool__2_7_ + pool__2_8_ + pool__2_9_ + pool__30_10_ + pool__30_11_ + pool__30_12_ + pool__30_13_ + pool__30_14_ + pool__30_15_ + pool__30_16_ + pool__30_17_ + pool__30_18_ + pool__30_19_ + pool__30_1_ + pool__30_20_ + pool__30_21_ + pool__30_22_ + pool__30_23_ + pool__30_24_ + pool__30_25_ + pool__30_26_ + pool__30_27_ + pool__30_28_ + pool__30_29_ + pool__30_2_ + pool__30_30_ + pool__30_3_ + pool__30_4_ + pool__30_5_ + pool__30_6_ + pool__30_7_ + pool__30_8_ + pool__30_9_ + pool__3_10_ + pool__3_11_ + pool__3_12_ + pool__3_13_ + pool__3_14_ + pool__3_15_ + pool__3_16_ + pool__3_17_ + pool__3_18_ + pool__3_19_ + pool__3_1_ + pool__3_20_ + pool__3_21_ + pool__3_22_ + pool__3_23_ + pool__3_24_ + pool__3_25_ + pool__3_26_ + pool__3_27_ + pool__3_28_ + pool__3_29_ + pool__3_2_ + pool__3_30_ + pool__3_3_ + pool__3_4_ + pool__3_5_ + pool__3_6_ + pool__3_7_ + pool__3_8_ + pool__3_9_ + pool__4_10_ + pool__4_11_ + pool__4_12_ + pool__4_13_ + pool__4_14_ + pool__4_15_ + pool__4_16_ + pool__4_17_ + pool__4_18_ + pool__4_19_ + pool__4_1_ + pool__4_20_ + pool__4_21_ + pool__4_22_ + pool__4_23_ + pool__4_24_ + pool__4_25_ + pool__4_26_ + pool__4_27_ + pool__4_28_ + pool__4_29_ + pool__4_2_ + pool__4_30_ + pool__4_3_ + pool__4_4_ + pool__4_5_ + pool__4_6_ + pool__4_7_ + pool__4_8_ + pool__4_9_ + pool__5_10_ + pool__5_11_ + pool__5_12_ + pool__5_13_ + pool__5_14_ + pool__5_15_ + pool__5_16_ + pool__5_17_ + pool__5_18_ + pool__5_19_ + pool__5_1_ + pool__5_20_ + pool__5_21_ + pool__5_22_ + pool__5_23_ + pool__5_24_ + pool__5_25_ + pool__5_26_ + pool__5_27_ + pool__5_28_ + pool__5_29_ + pool__5_2_ + pool__5_30_ + pool__5_3_ + pool__5_4_ + pool__5_5_ + pool__5_6_ + pool__5_7_ + pool__5_8_ + pool__5_9_ + pool__6_10_ + pool__6_11_ + pool__6_12_ + pool__6_13_ + pool__6_14_ + pool__6_15_ + pool__6_16_ + pool__6_17_ + pool__6_18_ + pool__6_19_ + pool__6_1_ + pool__6_20_ + pool__6_21_ + pool__6_22_ + pool__6_23_ + pool__6_24_ + pool__6_25_ + pool__6_26_ + pool__6_27_ + pool__6_28_ + pool__6_29_ + pool__6_2_ + pool__6_30_ + pool__6_3_ + pool__6_4_ + pool__6_5_ + pool__6_6_ + pool__6_7_ + pool__6_8_ + pool__6_9_ + pool__7_10_ + pool__7_11_ + pool__7_12_ + pool__7_13_ + pool__7_14_ + pool__7_15_ + pool__7_16_ + pool__7_17_ + pool__7_18_ + pool__7_19_ + pool__7_1_ + pool__7_20_ + pool__7_21_ + pool__7_22_ + pool__7_23_ + pool__7_24_ + pool__7_25_ + pool__7_26_ + pool__7_27_ + pool__7_28_ + pool__7_29_ + pool__7_2_ + pool__7_30_ + pool__7_3_ + pool__7_4_ + pool__7_5_ + pool__7_6_ + pool__7_7_ + pool__7_8_ + pool__7_9_ + pool__8_10_ + pool__8_11_ + pool__8_12_ + pool__8_13_ + pool__8_14_ + pool__8_15_ + pool__8_16_ + pool__8_17_ + pool__8_18_ + pool__8_19_ + pool__8_1_ + pool__8_20_ + pool__8_21_ + pool__8_22_ + pool__8_23_ + pool__8_24_ + pool__8_25_ + pool__8_26_ + pool__8_27_ + pool__8_28_ + pool__8_29_ + pool__8_2_ + pool__8_30_ + pool__8_3_ + pool__8_4_ + pool__8_5_ + pool__8_6_ + pool__8_7_ + pool__8_8_ + pool__8_9_ + pool__9_10_ + pool__9_11_ + pool__9_12_ + pool__9_13_ + pool__9_14_ + pool__9_15_ + pool__9_16_ + pool__9_17_ + pool__9_18_ + pool__9_19_ + pool__9_1_ + pool__9_20_ + pool__9_21_ + pool__9_22_ + pool__9_23_ + pool__9_24_ + pool__9_25_ + pool__9_26_ + pool__9_27_ + pool__9_28_ + pool__9_29_ + pool__9_2_ + pool__9_30_ + pool__9_3_ + pool__9_4_ + pool__9_5_ + pool__9_6_ + pool__9_7_ + pool__9_8_ + pool__9_9_ + size_dot = 900
invariant :cell___13_8__A_ + cell___13_8__B_ + pool__13_8_ = 1
invariant :cell___23_22__A_ + cell___23_22__B_ + pool__23_22_ = 1
invariant :cell___13_20__A_ + cell___13_20__B_ + pool__13_20_ = 1
invariant :cell___11_20__A_ + cell___11_20__B_ + pool__11_20_ = 1
invariant :cell___20_9__A_ + cell___20_9__B_ + pool__20_9_ = 1
invariant :cell___16_11__A_ + cell___16_11__B_ + pool__16_11_ = 1
invariant :cell___27_3__A_ + cell___27_3__B_ + pool__27_3_ = 1
invariant :cell___3_15__A_ + cell___3_15__B_ + pool__3_15_ = 1
invariant :cell___7_23__A_ + cell___7_23__B_ + pool__7_23_ = 1
invariant :cell___19_6__A_ + cell___19_6__B_ + pool__19_6_ = 1
invariant :cell___20_12__A_ + cell___20_12__B_ + pool__20_12_ = 1
invariant :cell___23_7__A_ + cell___23_7__B_ + pool__23_7_ = 1
invariant :cell___20_21__A_ + cell___20_21__B_ + pool__20_21_ = 1
invariant :cell___2_30__A_ + cell___2_30__B_ + pool__2_30_ = 1
invariant :cell___1_18__A_ + cell___1_18__B_ + pool__1_18_ = 1
invariant :cell___20_26__A_ + cell___20_26__B_ + pool__20_26_ = 1
invariant :cell___10_9__A_ + cell___10_9__B_ + pool__10_9_ = 1
invariant :cell___9_28__A_ + cell___9_28__B_ + pool__9_28_ = 1
invariant :cell___10_30__A_ + cell___10_30__B_ + pool__10_30_ = 1
invariant :cell___19_4__A_ + cell___19_4__B_ + pool__19_4_ = 1
invariant :cell___26_4__A_ + cell___26_4__B_ + pool__26_4_ = 1
invariant :cell___9_14__A_ + cell___9_14__B_ + pool__9_14_ = 1
invariant :cell___14_28__A_ + cell___14_28__B_ + pool__14_28_ = 1
invariant :cell___27_24__A_ + cell___27_24__B_ + pool__27_24_ = 1
invariant :cell___12_20__A_ + cell___12_20__B_ + pool__12_20_ = 1
invariant :cell___23_8__A_ + cell___23_8__B_ + pool__23_8_ = 1
invariant :cell___6_22__A_ + cell___6_22__B_ + pool__6_22_ = 1
invariant :cell___3_4__A_ + cell___3_4__B_ + pool__3_4_ = 1
invariant :cell___10_26__A_ + cell___10_26__B_ + pool__10_26_ = 1
invariant :cell___18_19__A_ + cell___18_19__B_ + pool__18_19_ = 1
invariant :cell___23_2__A_ + cell___23_2__B_ + pool__23_2_ = 1
invariant :cell___8_9__A_ + cell___8_9__B_ + pool__8_9_ = 1
invariant :cell___21_6__A_ + cell___21_6__B_ + pool__21_6_ = 1
invariant :cell___22_10__A_ + cell___22_10__B_ + pool__22_10_ = 1
invariant :cell___2_29__A_ + cell___2_29__B_ + pool__2_29_ = 1
invariant :cell___29_20__A_ + cell___29_20__B_ + pool__29_20_ = 1
invariant :cell___16_10__A_ + cell___16_10__B_ + pool__16_10_ = 1
invariant :cell___13_3__A_ + cell___13_3__B_ + pool__13_3_ = 1
invariant :cell___25_16__A_ + cell___25_16__B_ + pool__25_16_ = 1
invariant :cell___8_11__A_ + cell___8_11__B_ + pool__8_11_ = 1
invariant :cell___14_22__A_ + cell___14_22__B_ + pool__14_22_ = 1
invariant :cell___21_23__A_ + cell___21_23__B_ + pool__21_23_ = 1
invariant :cell___30_20__A_ + cell___30_20__B_ + pool__30_20_ = 1
invariant :cell___19_12__A_ + cell___19_12__B_ + pool__19_12_ = 1
invariant :cell___19_22__A_ + cell___19_22__B_ + pool__19_22_ = 1
invariant :cell___20_11__A_ + cell___20_11__B_ + pool__20_11_ = 1
invariant :cell___11_5__A_ + cell___11_5__B_ + pool__11_5_ = 1
invariant :cell___29_26__A_ + cell___29_26__B_ + pool__29_26_ = 1
invariant :cell___7_20__A_ + cell___7_20__B_ + pool__7_20_ = 1
invariant :cell___7_9__A_ + cell___7_9__B_ + pool__7_9_ = 1
invariant :cell___27_12__A_ + cell___27_12__B_ + pool__27_12_ = 1
invariant :cell___13_10__A_ + cell___13_10__B_ + pool__13_10_ = 1
invariant :cell___17_11__A_ + cell___17_11__B_ + pool__17_11_ = 1
invariant :cell___29_30__A_ + cell___29_30__B_ + pool__29_30_ = 1
invariant :cell___22_1__A_ + cell___22_1__B_ + pool__22_1_ = 1
invariant :cell___20_4__A_ + cell___20_4__B_ + pool__20_4_ = 1
invariant :cell___2_24__A_ + cell___2_24__B_ + pool__2_24_ = 1
invariant :cell___6_25__A_ + cell___6_25__B_ + pool__6_25_ = 1
invariant :cell___24_19__A_ + cell___24_19__B_ + pool__24_19_ = 1
invariant :cell___21_14__A_ + cell___21_14__B_ + pool__21_14_ = 1
invariant :cell___13_11__A_ + cell___13_11__B_ + pool__13_11_ = 1
invariant :cell___14_17__A_ + cell___14_17__B_ + pool__14_17_ = 1
invariant :cell___13_9__A_ + cell___13_9__B_ + pool__13_9_ = 1
invariant :cell___2_12__A_ + cell___2_12__B_ + pool__2_12_ = 1
invariant :cell___9_24__A_ + cell___9_24__B_ + pool__9_24_ = 1
invariant :cell___18_7__A_ + cell___18_7__B_ + pool__18_7_ = 1
invariant :cell___2_5__A_ + cell___2_5__B_ + pool__2_5_ = 1
invariant :cell___14_23__A_ + cell___14_23__B_ + pool__14_23_ = 1
invariant :cell___26_9__A_ + cell___26_9__B_ + pool__26_9_ = 1
invariant :cell___11_30__A_ + cell___11_30__B_ + pool__11_30_ = 1
invariant :cell___24_30__A_ + cell___24_30__B_ + pool__24_30_ = 1
invariant :cell___13_6__A_ + cell___13_6__B_ + pool__13_6_ = 1
invariant :cell___20_16__A_ + cell___20_16__B_ + pool__20_16_ = 1
invariant :cell___17_16__A_ + cell___17_16__B_ + pool__17_16_ = 1
invariant :cell___6_7__A_ + cell___6_7__B_ + pool__6_7_ = 1
invariant :cell___20_13__A_ + cell___20_13__B_ + pool__20_13_ = 1
invariant :cell___21_19__A_ + cell___21_19__B_ + pool__21_19_ = 1
invariant :cell___12_15__A_ + cell___12_15__B_ + pool__12_15_ = 1
invariant :cell___23_5__A_ + cell___23_5__B_ + pool__23_5_ = 1
invariant :cell___30_29__A_ + cell___30_29__B_ + pool__30_29_ = 1
invariant :cell___28_4__A_ + cell___28_4__B_ + pool__28_4_ = 1
invariant :cell___13_2__A_ + cell___13_2__B_ + pool__13_2_ = 1
invariant :cell___16_2__A_ + cell___16_2__B_ + pool__16_2_ = 1
invariant :cell___18_13__A_ + cell___18_13__B_ + pool__18_13_ = 1
invariant :cell___28_12__A_ + cell___28_12__B_ + pool__28_12_ = 1
invariant :cell___25_19__A_ + cell___25_19__B_ + pool__25_19_ = 1
invariant :cell___15_7__A_ + cell___15_7__B_ + pool__15_7_ = 1
invariant :cell___27_6__A_ + cell___27_6__B_ + pool__27_6_ = 1
invariant :cell___4_15__A_ + cell___4_15__B_ + pool__4_15_ = 1
invariant :cell___21_3__A_ + cell___21_3__B_ + pool__21_3_ = 1
invariant :cell___26_25__A_ + cell___26_25__B_ + pool__26_25_ = 1
invariant :cell___5_20__A_ + cell___5_20__B_ + pool__5_20_ = 1
invariant :cell___7_19__A_ + cell___7_19__B_ + pool__7_19_ = 1
invariant :cell___21_27__A_ + cell___21_27__B_ + pool__21_27_ = 1
invariant :cell___4_23__A_ + cell___4_23__B_ + pool__4_23_ = 1
invariant :cell___7_28__A_ + cell___7_28__B_ + pool__7_28_ = 1
invariant :cell___8_16__A_ + cell___8_16__B_ + pool__8_16_ = 1
invariant :cell___14_25__A_ + cell___14_25__B_ + pool__14_25_ = 1
invariant :cell___1_15__A_ + cell___1_15__B_ + pool__1_15_ = 1
invariant :cell___26_15__A_ + cell___26_15__B_ + pool__26_15_ = 1
invariant :cell___8_18__A_ + cell___8_18__B_ + pool__8_18_ = 1
invariant :cell___14_12__A_ + cell___14_12__B_ + pool__14_12_ = 1
invariant :cell___5_2__A_ + cell___5_2__B_ + pool__5_2_ = 1
invariant :cell___14_14__A_ + cell___14_14__B_ + pool__14_14_ = 1
invariant :cell___9_3__A_ + cell___9_3__B_ + pool__9_3_ = 1
invariant :cell___9_16__A_ + cell___9_16__B_ + pool__9_16_ = 1
invariant :cell___11_21__A_ + cell___11_21__B_ + pool__11_21_ = 1
invariant :cell___12_10__A_ + cell___12_10__B_ + pool__12_10_ = 1
invariant :cell___12_27__A_ + cell___12_27__B_ + pool__12_27_ = 1
invariant :cell___18_14__A_ + cell___18_14__B_ + pool__18_14_ = 1
invariant :cell___13_12__A_ + cell___13_12__B_ + pool__13_12_ = 1
invariant :cell___23_24__A_ + cell___23_24__B_ + pool__23_24_ = 1
invariant :cell___5_26__A_ + cell___5_26__B_ + pool__5_26_ = 1
invariant :cell___30_23__A_ + cell___30_23__B_ + pool__30_23_ = 1
invariant :cell___6_4__A_ + cell___6_4__B_ + pool__6_4_ = 1
invariant :cell___26_22__A_ + cell___26_22__B_ + pool__26_22_ = 1
invariant :cell___28_16__A_ + cell___28_16__B_ + pool__28_16_ = 1
invariant :cell___26_10__A_ + cell___26_10__B_ + pool__26_10_ = 1
invariant :cell___30_8__A_ + cell___30_8__B_ + pool__30_8_ = 1
invariant :cell___30_4__A_ + cell___30_4__B_ + pool__30_4_ = 1
invariant :cell___19_11__A_ + cell___19_11__B_ + pool__19_11_ = 1
invariant :cell___18_11__A_ + cell___18_11__B_ + pool__18_11_ = 1
invariant :cell___14_1__A_ + cell___14_1__B_ + pool__14_1_ = 1
invariant :cell___3_10__A_ + cell___3_10__B_ + pool__3_10_ = 1
invariant :cell___25_3__A_ + cell___25_3__B_ + pool__25_3_ = 1
invariant :cell___15_28__A_ + cell___15_28__B_ + pool__15_28_ = 1
invariant :cell___16_28__A_ + cell___16_28__B_ + pool__16_28_ = 1
invariant :cell___8_25__A_ + cell___8_25__B_ + pool__8_25_ = 1
invariant :cell___19_21__A_ + cell___19_21__B_ + pool__19_21_ = 1
invariant :cell___20_28__A_ + cell___20_28__B_ + pool__20_28_ = 1
invariant :cell___16_17__A_ + cell___16_17__B_ + pool__16_17_ = 1
invariant :cell___23_19__A_ + cell___23_19__B_ + pool__23_19_ = 1
invariant :cell___4_7__A_ + cell___4_7__B_ + pool__4_7_ = 1
invariant :cell___10_10__A_ + cell___10_10__B_ + -1'pool__10_11_ + -1'pool__10_12_ + -1'pool__10_13_ + -1'pool__10_14_ + -1'pool__10_15_ + -1'pool__10_16_ + -1'pool__10_17_ + -1'pool__10_18_ + -1'pool__10_19_ + -1'pool__10_1_ + -1'pool__10_20_ + -1'pool__10_21_ + -1'pool__10_22_ + -1'pool__10_23_ + -1'pool__10_24_ + -1'pool__10_25_ + -1'pool__10_26_ + -1'pool__10_27_ + -1'pool__10_28_ + -1'pool__10_29_ + -1'pool__10_2_ + -1'pool__10_30_ + -1'pool__10_3_ + -1'pool__10_4_ + -1'pool__10_5_ + -1'pool__10_6_ + -1'pool__10_7_ + -1'pool__10_8_ + -1'pool__10_9_ + -1'pool__11_10_ + -1'pool__11_11_ + -1'pool__11_12_ + -1'pool__11_13_ + -1'pool__11_14_ + -1'pool__11_15_ + -1'pool__11_16_ + -1'pool__11_17_ + -1'pool__11_18_ + -1'pool__11_19_ + -1'pool__11_1_ + -1'pool__11_20_ + -1'pool__11_21_ + -1'pool__11_22_ + -1'pool__11_23_ + -1'pool__11_24_ + -1'pool__11_25_ + -1'pool__11_26_ + -1'pool__11_27_ + -1'pool__11_28_ + -1'pool__11_29_ + -1'pool__11_2_ + -1'pool__11_30_ + -1'pool__11_3_ + -1'pool__11_4_ + -1'pool__11_5_ + -1'pool__11_6_ + -1'pool__11_7_ + -1'pool__11_8_ + -1'pool__11_9_ + -1'pool__12_10_ + -1'pool__12_11_ + -1'pool__12_12_ + -1'pool__12_13_ + -1'pool__12_14_ + -1'pool__12_15_ + -1'pool__12_16_ + -1'pool__12_17_ + -1'pool__12_18_ + -1'pool__12_19_ + -1'pool__12_1_ + -1'pool__12_20_ + -1'pool__12_21_ + -1'pool__12_22_ + -1'pool__12_23_ + -1'pool__12_24_ + -1'pool__12_25_ + -1'pool__12_26_ + -1'pool__12_27_ + -1'pool__12_28_ + -1'pool__12_29_ + -1'pool__12_2_ + -1'pool__12_30_ + -1'pool__12_3_ + -1'pool__12_4_ + -1'pool__12_5_ + -1'pool__12_6_ + -1'pool__12_7_ + -1'pool__12_8_ + -1'pool__12_9_ + -1'pool__13_10_ + -1'pool__13_11_ + -1'pool__13_12_ + -1'pool__13_13_ + -1'pool__13_14_ + -1'pool__13_15_ + -1'pool__13_16_ + -1'pool__13_17_ + -1'pool__13_18_ + -1'pool__13_19_ + -1'pool__13_1_ + -1'pool__13_20_ + -1'pool__13_21_ + -1'pool__13_22_ + -1'pool__13_23_ + -1'pool__13_24_ + -1'pool__13_25_ + -1'pool__13_26_ + -1'pool__13_27_ + -1'pool__13_28_ + -1'pool__13_29_ + -1'pool__13_2_ + -1'pool__13_30_ + -1'pool__13_3_ + -1'pool__13_4_ + -1'pool__13_5_ + -1'pool__13_6_ + -1'pool__13_7_ + -1'pool__13_8_ + -1'pool__13_9_ + -1'pool__14_10_ + -1'pool__14_11_ + -1'pool__14_12_ + -1'pool__14_13_ + -1'pool__14_14_ + -1'pool__14_15_ + -1'pool__14_16_ + -1'pool__14_17_ + -1'pool__14_18_ + -1'pool__14_19_ + -1'pool__14_1_ + -1'pool__14_20_ + -1'pool__14_21_ + -1'pool__14_22_ + -1'pool__14_23_ + -1'pool__14_24_ + -1'pool__14_25_ + -1'pool__14_26_ + -1'pool__14_27_ + -1'pool__14_28_ + -1'pool__14_29_ + -1'pool__14_2_ + -1'pool__14_30_ + -1'pool__14_3_ + -1'pool__14_4_ + -1'pool__14_5_ + -1'pool__14_6_ + -1'pool__14_7_ + -1'pool__14_8_ + -1'pool__14_9_ + -1'pool__15_10_ + -1'pool__15_11_ + -1'pool__15_12_ + -1'pool__15_13_ + -1'pool__15_14_ + -1'pool__15_15_ + -1'pool__15_16_ + -1'pool__15_17_ + -1'pool__15_18_ + -1'pool__15_19_ + -1'pool__15_1_ + -1'pool__15_20_ + -1'pool__15_21_ + -1'pool__15_22_ + -1'pool__15_23_ + -1'pool__15_24_ + -1'pool__15_25_ + -1'pool__15_26_ + -1'pool__15_27_ + -1'pool__15_28_ + -1'pool__15_29_ + -1'pool__15_2_ + -1'pool__15_30_ + -1'pool__15_3_ + -1'pool__15_4_ + -1'pool__15_5_ + -1'pool__15_6_ + -1'pool__15_7_ + -1'pool__15_8_ + -1'pool__15_9_ + -1'pool__16_10_ + -1'pool__16_11_ + -1'pool__16_12_ + -1'pool__16_13_ + -1'pool__16_14_ + -1'pool__16_15_ + -1'pool__16_16_ + -1'pool__16_17_ + -1'pool__16_18_ + -1'pool__16_19_ + -1'pool__16_1_ + -1'pool__16_20_ + -1'pool__16_21_ + -1'pool__16_22_ + -1'pool__16_23_ + -1'pool__16_24_ + -1'pool__16_25_ + -1'pool__16_26_ + -1'pool__16_27_ + -1'pool__16_28_ + -1'pool__16_29_ + -1'pool__16_2_ + -1'pool__16_30_ + -1'pool__16_3_ + -1'pool__16_4_ + -1'pool__16_5_ + -1'pool__16_6_ + -1'pool__16_7_ + -1'pool__16_8_ + -1'pool__16_9_ + -1'pool__17_10_ + -1'pool__17_11_ + -1'pool__17_12_ + -1'pool__17_13_ + -1'pool__17_14_ + -1'pool__17_15_ + -1'pool__17_16_ + -1'pool__17_17_ + -1'pool__17_18_ + -1'pool__17_19_ + -1'pool__17_1_ + -1'pool__17_20_ + -1'pool__17_21_ + -1'pool__17_22_ + -1'pool__17_23_ + -1'pool__17_24_ + -1'pool__17_25_ + -1'pool__17_26_ + -1'pool__17_27_ + -1'pool__17_28_ + -1'pool__17_29_ + -1'pool__17_2_ + -1'pool__17_30_ + -1'pool__17_3_ + -1'pool__17_4_ + -1'pool__17_5_ + -1'pool__17_6_ + -1'pool__17_7_ + -1'pool__17_8_ + -1'pool__17_9_ + -1'pool__18_10_ + -1'pool__18_11_ + -1'pool__18_12_ + -1'pool__18_13_ + -1'pool__18_14_ + -1'pool__18_15_ + -1'pool__18_16_ + -1'pool__18_17_ + -1'pool__18_18_ + -1'pool__18_19_ + -1'pool__18_1_ + -1'pool__18_20_ + -1'pool__18_21_ + -1'pool__18_22_ + -1'pool__18_23_ + -1'pool__18_24_ + -1'pool__18_25_ + -1'pool__18_26_ + -1'pool__18_27_ + -1'pool__18_28_ + -1'pool__18_29_ + -1'pool__18_2_ + -1'pool__18_30_ + -1'pool__18_3_ + -1'pool__18_4_ + -1'pool__18_5_ + -1'pool__18_6_ + -1'pool__18_7_ + -1'pool__18_8_ + -1'pool__18_9_ + -1'pool__19_10_ + -1'pool__19_11_ + -1'pool__19_12_ + -1'pool__19_13_ + -1'pool__19_14_ + -1'pool__19_15_ + -1'pool__19_16_ + -1'pool__19_17_ + -1'pool__19_18_ + -1'pool__19_19_ + -1'pool__19_1_ + -1'pool__19_20_ + -1'pool__19_21_ + -1'pool__19_22_ + -1'pool__19_23_ + -1'pool__19_24_ + -1'pool__19_25_ + -1'pool__19_26_ + -1'pool__19_27_ + -1'pool__19_28_ + -1'pool__19_29_ + -1'pool__19_2_ + -1'pool__19_30_ + -1'pool__19_3_ + -1'pool__19_4_ + -1'pool__19_5_ + -1'pool__19_6_ + -1'pool__19_7_ + -1'pool__19_8_ + -1'pool__19_9_ + -1'pool__1_10_ + -1'pool__1_11_ + -1'pool__1_12_ + -1'pool__1_13_ + -1'pool__1_14_ + -1'pool__1_15_ + -1'pool__1_16_ + -1'pool__1_17_ + -1'pool__1_18_ + -1'pool__1_19_ + -1'pool__1_1_ + -1'pool__1_20_ + -1'pool__1_21_ + -1'pool__1_22_ + -1'pool__1_23_ + -1'pool__1_24_ + -1'pool__1_25_ + -1'pool__1_26_ + -1'pool__1_27_ + -1'pool__1_28_ + -1'pool__1_29_ + -1'pool__1_2_ + -1'pool__1_30_ + -1'pool__1_3_ + -1'pool__1_4_ + -1'pool__1_5_ + -1'pool__1_6_ + -1'pool__1_7_ + -1'pool__1_8_ + -1'pool__1_9_ + -1'pool__20_10_ + -1'pool__20_11_ + -1'pool__20_12_ + -1'pool__20_13_ + -1'pool__20_14_ + -1'pool__20_15_ + -1'pool__20_16_ + -1'pool__20_17_ + -1'pool__20_18_ + -1'pool__20_19_ + -1'pool__20_1_ + -1'pool__20_20_ + -1'pool__20_21_ + -1'pool__20_22_ + -1'pool__20_23_ + -1'pool__20_24_ + -1'pool__20_25_ + -1'pool__20_26_ + -1'pool__20_27_ + -1'pool__20_28_ + -1'pool__20_29_ + -1'pool__20_2_ + -1'pool__20_30_ + -1'pool__20_3_ + -1'pool__20_4_ + -1'pool__20_5_ + -1'pool__20_6_ + -1'pool__20_7_ + -1'pool__20_8_ + -1'pool__20_9_ + -1'pool__21_10_ + -1'pool__21_11_ + -1'pool__21_12_ + -1'pool__21_13_ + -1'pool__21_14_ + -1'pool__21_15_ + -1'pool__21_16_ + -1'pool__21_17_ + -1'pool__21_18_ + -1'pool__21_19_ + -1'pool__21_1_ + -1'pool__21_20_ + -1'pool__21_21_ + -1'pool__21_22_ + -1'pool__21_23_ + -1'pool__21_24_ + -1'pool__21_25_ + -1'pool__21_26_ + -1'pool__21_27_ + -1'pool__21_28_ + -1'pool__21_29_ + -1'pool__21_2_ + -1'pool__21_30_ + -1'pool__21_3_ + -1'pool__21_4_ + -1'pool__21_5_ + -1'pool__21_6_ + -1'pool__21_7_ + -1'pool__21_8_ + -1'pool__21_9_ + -1'pool__22_10_ + -1'pool__22_11_ + -1'pool__22_12_ + -1'pool__22_13_ + -1'pool__22_14_ + -1'pool__22_15_ + -1'pool__22_16_ + -1'pool__22_17_ + -1'pool__22_18_ + -1'pool__22_19_ + -1'pool__22_1_ + -1'pool__22_20_ + -1'pool__22_21_ + -1'pool__22_22_ + -1'pool__22_23_ + -1'pool__22_24_ + -1'pool__22_25_ + -1'pool__22_26_ + -1'pool__22_27_ + -1'pool__22_28_ + -1'pool__22_29_ + -1'pool__22_2_ + -1'pool__22_30_ + -1'pool__22_3_ + -1'pool__22_4_ + -1'pool__22_5_ + -1'pool__22_6_ + -1'pool__22_7_ + -1'pool__22_8_ + -1'pool__22_9_ + -1'pool__23_10_ + -1'pool__23_11_ + -1'pool__23_12_ + -1'pool__23_13_ + -1'pool__23_14_ + -1'pool__23_15_ + -1'pool__23_16_ + -1'pool__23_17_ + -1'pool__23_18_ + -1'pool__23_19_ + -1'pool__23_1_ + -1'pool__23_20_ + -1'pool__23_21_ + -1'pool__23_22_ + -1'pool__23_23_ + -1'pool__23_24_ + -1'pool__23_25_ + -1'pool__23_26_ + -1'pool__23_27_ + -1'pool__23_28_ + -1'pool__23_29_ + -1'pool__23_2_ + -1'pool__23_30_ + -1'pool__23_3_ + -1'pool__23_4_ + -1'pool__23_5_ + -1'pool__23_6_ + -1'pool__23_7_ + -1'pool__23_8_ + -1'pool__23_9_ + -1'pool__24_10_ + -1'pool__24_11_ + -1'pool__24_12_ + -1'pool__24_13_ + -1'pool__24_14_ + -1'pool__24_15_ + -1'pool__24_16_ + -1'pool__24_17_ + -1'pool__24_18_ + -1'pool__24_19_ + -1'pool__24_1_ + -1'pool__24_20_ + -1'pool__24_21_ + -1'pool__24_22_ + -1'pool__24_23_ + -1'pool__24_24_ + -1'pool__24_25_ + -1'pool__24_26_ + -1'pool__24_27_ + -1'pool__24_28_ + -1'pool__24_29_ + -1'pool__24_2_ + -1'pool__24_30_ + -1'pool__24_3_ + -1'pool__24_4_ + -1'pool__24_5_ + -1'pool__24_6_ + -1'pool__24_7_ + -1'pool__24_8_ + -1'pool__24_9_ + -1'pool__25_10_ + -1'pool__25_11_ + -1'pool__25_12_ + -1'pool__25_13_ + -1'pool__25_14_ + -1'pool__25_15_ + -1'pool__25_16_ + -1'pool__25_17_ + -1'pool__25_18_ + -1'pool__25_19_ + -1'pool__25_1_ + -1'pool__25_20_ + -1'pool__25_21_ + -1'pool__25_22_ + -1'pool__25_23_ + -1'pool__25_24_ + -1'pool__25_25_ + -1'pool__25_26_ + -1'pool__25_27_ + -1'pool__25_28_ + -1'pool__25_29_ + -1'pool__25_2_ + -1'pool__25_30_ + -1'pool__25_3_ + -1'pool__25_4_ + -1'pool__25_5_ + -1'pool__25_6_ + -1'pool__25_7_ + -1'pool__25_8_ + -1'pool__25_9_ + -1'pool__26_10_ + -1'pool__26_11_ + -1'pool__26_12_ + -1'pool__26_13_ + -1'pool__26_14_ + -1'pool__26_15_ + -1'pool__26_16_ + -1'pool__26_17_ + -1'pool__26_18_ + -1'pool__26_19_ + -1'pool__26_1_ + -1'pool__26_20_ + -1'pool__26_21_ + -1'pool__26_22_ + -1'pool__26_23_ + -1'pool__26_24_ + -1'pool__26_25_ + -1'pool__26_26_ + -1'pool__26_27_ + -1'pool__26_28_ + -1'pool__26_29_ + -1'pool__26_2_ + -1'pool__26_30_ + -1'pool__26_3_ + -1'pool__26_4_ + -1'pool__26_5_ + -1'pool__26_6_ + -1'pool__26_7_ + -1'pool__26_8_ + -1'pool__26_9_ + -1'pool__27_10_ + -1'pool__27_11_ + -1'pool__27_12_ + -1'pool__27_13_ + -1'pool__27_14_ + -1'pool__27_15_ + -1'pool__27_16_ + -1'pool__27_17_ + -1'pool__27_18_ + -1'pool__27_19_ + -1'pool__27_1_ + -1'pool__27_20_ + -1'pool__27_21_ + -1'pool__27_22_ + -1'pool__27_23_ + -1'pool__27_24_ + -1'pool__27_25_ + -1'pool__27_26_ + -1'pool__27_27_ + -1'pool__27_28_ + -1'pool__27_29_ + -1'pool__27_2_ + -1'pool__27_30_ + -1'pool__27_3_ + -1'pool__27_4_ + -1'pool__27_5_ + -1'pool__27_6_ + -1'pool__27_7_ + -1'pool__27_8_ + -1'pool__27_9_ + -1'pool__28_10_ + -1'pool__28_11_ + -1'pool__28_12_ + -1'pool__28_13_ + -1'pool__28_14_ + -1'pool__28_15_ + -1'pool__28_16_ + -1'pool__28_17_ + -1'pool__28_18_ + -1'pool__28_19_ + -1'pool__28_1_ + -1'pool__28_20_ + -1'pool__28_21_ + -1'pool__28_22_ + -1'pool__28_23_ + -1'pool__28_24_ + -1'pool__28_25_ + -1'pool__28_26_ + -1'pool__28_27_ + -1'pool__28_28_ + -1'pool__28_29_ + -1'pool__28_2_ + -1'pool__28_30_ + -1'pool__28_3_ + -1'pool__28_4_ + -1'pool__28_5_ + -1'pool__28_6_ + -1'pool__28_7_ + -1'pool__28_8_ + -1'pool__28_9_ + -1'pool__29_10_ + -1'pool__29_11_ + -1'pool__29_12_ + -1'pool__29_13_ + -1'pool__29_14_ + -1'pool__29_15_ + -1'pool__29_16_ + -1'pool__29_17_ + -1'pool__29_18_ + -1'pool__29_19_ + -1'pool__29_1_ + -1'pool__29_20_ + -1'pool__29_21_ + -1'pool__29_22_ + -1'pool__29_23_ + -1'pool__29_24_ + -1'pool__29_25_ + -1'pool__29_26_ + -1'pool__29_27_ + -1'pool__29_28_ + -1'pool__29_29_ + -1'pool__29_2_ + -1'pool__29_30_ + -1'pool__29_3_ + -1'pool__29_4_ + -1'pool__29_5_ + -1'pool__29_6_ + -1'pool__29_7_ + -1'pool__29_8_ + -1'pool__29_9_ + -1'pool__2_10_ + -1'pool__2_11_ + -1'pool__2_12_ + -1'pool__2_13_ + -1'pool__2_14_ + -1'pool__2_15_ + -1'pool__2_16_ + -1'pool__2_17_ + -1'pool__2_18_ + -1'pool__2_19_ + -1'pool__2_1_ + -1'pool__2_20_ + -1'pool__2_21_ + -1'pool__2_22_ + -1'pool__2_23_ + -1'pool__2_24_ + -1'pool__2_25_ + -1'pool__2_26_ + -1'pool__2_27_ + -1'pool__2_28_ + -1'pool__2_29_ + -1'pool__2_2_ + -1'pool__2_30_ + -1'pool__2_3_ + -1'pool__2_4_ + -1'pool__2_5_ + -1'pool__2_6_ + -1'pool__2_7_ + -1'pool__2_8_ + -1'pool__2_9_ + -1'pool__30_10_ + -1'pool__30_11_ + -1'pool__30_12_ + -1'pool__30_13_ + -1'pool__30_14_ + -1'pool__30_15_ + -1'pool__30_16_ + -1'pool__30_17_ + -1'pool__30_18_ + -1'pool__30_19_ + -1'pool__30_1_ + -1'pool__30_20_ + -1'pool__30_21_ + -1'pool__30_22_ + -1'pool__30_23_ + -1'pool__30_24_ + -1'pool__30_25_ + -1'pool__30_26_ + -1'pool__30_27_ + -1'pool__30_28_ + -1'pool__30_29_ + -1'pool__30_2_ + -1'pool__30_30_ + -1'pool__30_3_ + -1'pool__30_4_ + -1'pool__30_5_ + -1'pool__30_6_ + -1'pool__30_7_ + -1'pool__30_8_ + -1'pool__30_9_ + -1'pool__3_10_ + -1'pool__3_11_ + -1'pool__3_12_ + -1'pool__3_13_ + -1'pool__3_14_ + -1'pool__3_15_ + -1'pool__3_16_ + -1'pool__3_17_ + -1'pool__3_18_ + -1'pool__3_19_ + -1'pool__3_1_ + -1'pool__3_20_ + -1'pool__3_21_ + -1'pool__3_22_ + -1'pool__3_23_ + -1'pool__3_24_ + -1'pool__3_25_ + -1'pool__3_26_ + -1'pool__3_27_ + -1'pool__3_28_ + -1'pool__3_29_ + -1'pool__3_2_ + -1'pool__3_30_ + -1'pool__3_3_ + -1'pool__3_4_ + -1'pool__3_5_ + -1'pool__3_6_ + -1'pool__3_7_ + -1'pool__3_8_ + -1'pool__3_9_ + -1'pool__4_10_ + -1'pool__4_11_ + -1'pool__4_12_ + -1'pool__4_13_ + -1'pool__4_14_ + -1'pool__4_15_ + -1'pool__4_16_ + -1'pool__4_17_ + -1'pool__4_18_ + -1'pool__4_19_ + -1'pool__4_1_ + -1'pool__4_20_ + -1'pool__4_21_ + -1'pool__4_22_ + -1'pool__4_23_ + -1'pool__4_24_ + -1'pool__4_25_ + -1'pool__4_26_ + -1'pool__4_27_ + -1'pool__4_28_ + -1'pool__4_29_ + -1'pool__4_2_ + -1'pool__4_30_ + -1'pool__4_3_ + -1'pool__4_4_ + -1'pool__4_5_ + -1'pool__4_6_ + -1'pool__4_7_ + -1'pool__4_8_ + -1'pool__4_9_ + -1'pool__5_10_ + -1'pool__5_11_ + -1'pool__5_12_ + -1'pool__5_13_ + -1'pool__5_14_ + -1'pool__5_15_ + -1'pool__5_16_ + -1'pool__5_17_ + -1'pool__5_18_ + -1'pool__5_19_ + -1'pool__5_1_ + -1'pool__5_20_ + -1'pool__5_21_ + -1'pool__5_22_ + -1'pool__5_23_ + -1'pool__5_24_ + -1'pool__5_25_ + -1'pool__5_26_ + -1'pool__5_27_ + -1'pool__5_28_ + -1'pool__5_29_ + -1'pool__5_2_ + -1'pool__5_30_ + -1'pool__5_3_ + -1'pool__5_4_ + -1'pool__5_5_ + -1'pool__5_6_ + -1'pool__5_7_ + -1'pool__5_8_ + -1'pool__5_9_ + -1'pool__6_10_ + -1'pool__6_11_ + -1'pool__6_12_ + -1'pool__6_13_ + -1'pool__6_14_ + -1'pool__6_15_ + -1'pool__6_16_ + -1'pool__6_17_ + -1'pool__6_18_ + -1'pool__6_19_ + -1'pool__6_1_ + -1'pool__6_20_ + -1'pool__6_21_ + -1'pool__6_22_ + -1'pool__6_23_ + -1'pool__6_24_ + -1'pool__6_25_ + -1'pool__6_26_ + -1'pool__6_27_ + -1'pool__6_28_ + -1'pool__6_29_ + -1'pool__6_2_ + -1'pool__6_30_ + -1'pool__6_3_ + -1'pool__6_4_ + -1'pool__6_5_ + -1'pool__6_6_ + -1'pool__6_7_ + -1'pool__6_8_ + -1'pool__6_9_ + -1'pool__7_10_ + -1'pool__7_11_ + -1'pool__7_12_ + -1'pool__7_13_ + -1'pool__7_14_ + -1'pool__7_15_ + -1'pool__7_16_ + -1'pool__7_17_ + -1'pool__7_18_ + -1'pool__7_19_ + -1'pool__7_1_ + -1'pool__7_20_ + -1'pool__7_21_ + -1'pool__7_22_ + -1'pool__7_23_ + -1'pool__7_24_ + -1'pool__7_25_ + -1'pool__7_26_ + -1'pool__7_27_ + -1'pool__7_28_ + -1'pool__7_29_ + -1'pool__7_2_ + -1'pool__7_30_ + -1'pool__7_3_ + -1'pool__7_4_ + -1'pool__7_5_ + -1'pool__7_6_ + -1'pool__7_7_ + -1'pool__7_8_ + -1'pool__7_9_ + -1'pool__8_10_ + -1'pool__8_11_ + -1'pool__8_12_ + -1'pool__8_13_ + -1'pool__8_14_ + -1'pool__8_15_ + -1'pool__8_16_ + -1'pool__8_17_ + -1'pool__8_18_ + -1'pool__8_19_ + -1'pool__8_1_ + -1'pool__8_20_ + -1'pool__8_21_ + -1'pool__8_22_ + -1'pool__8_23_ + -1'pool__8_24_ + -1'pool__8_25_ + -1'pool__8_26_ + -1'pool__8_27_ + -1'pool__8_28_ + -1'pool__8_29_ + -1'pool__8_2_ + -1'pool__8_30_ + -1'pool__8_3_ + -1'pool__8_4_ + -1'pool__8_5_ + -1'pool__8_6_ + -1'pool__8_7_ + -1'pool__8_8_ + -1'pool__8_9_ + -1'pool__9_10_ + -1'pool__9_11_ + -1'pool__9_12_ + -1'pool__9_13_ + -1'pool__9_14_ + -1'pool__9_15_ + -1'pool__9_16_ + -1'pool__9_17_ + -1'pool__9_18_ + -1'pool__9_19_ + -1'pool__9_1_ + -1'pool__9_20_ + -1'pool__9_21_ + -1'pool__9_22_ + -1'pool__9_23_ + -1'pool__9_24_ + -1'pool__9_25_ + -1'pool__9_26_ + -1'pool__9_27_ + -1'pool__9_28_ + -1'pool__9_29_ + -1'pool__9_2_ + -1'pool__9_30_ + -1'pool__9_3_ + -1'pool__9_4_ + -1'pool__9_5_ + -1'pool__9_6_ + -1'pool__9_7_ + -1'pool__9_8_ + -1'pool__9_9_ + -1'size_dot = -899
invariant :cell___20_23__A_ + cell___20_23__B_ + pool__20_23_ = 1
invariant :cell___21_17__A_ + cell___21_17__B_ + pool__21_17_ = 1
invariant :cell___26_1__A_ + cell___26_1__B_ + pool__26_1_ = 1
invariant :cell___6_13__A_ + cell___6_13__B_ + pool__6_13_ = 1
invariant :cell___5_17__A_ + cell___5_17__B_ + pool__5_17_ = 1
invariant :cell___16_3__A_ + cell___16_3__B_ + pool__16_3_ = 1
invariant :cell___24_27__A_ + cell___24_27__B_ + pool__24_27_ = 1
invariant :cell___13_18__A_ + cell___13_18__B_ + pool__13_18_ = 1
invariant :cell___28_1__A_ + cell___28_1__B_ + pool__28_1_ = 1
invariant :cell___6_10__A_ + cell___6_10__B_ + pool__6_10_ = 1
invariant :cell___14_18__A_ + cell___14_18__B_ + pool__14_18_ = 1
invariant :cell___7_1__A_ + cell___7_1__B_ + pool__7_1_ = 1
invariant :cell___11_10__A_ + cell___11_10__B_ + pool__11_10_ = 1
invariant :cell___28_9__A_ + cell___28_9__B_ + pool__28_9_ = 1
invariant :cell___4_14__A_ + cell___4_14__B_ + pool__4_14_ = 1
invariant :cell___21_22__A_ + cell___21_22__B_ + pool__21_22_ = 1
invariant :cell___27_15__A_ + cell___27_15__B_ + pool__27_15_ = 1
invariant :cell___9_26__A_ + cell___9_26__B_ + pool__9_26_ = 1
invariant :cell___9_6__A_ + cell___9_6__B_ + pool__9_6_ = 1
invariant :cell___18_24__A_ + cell___18_24__B_ + pool__18_24_ = 1
invariant :cell___20_20__A_ + cell___20_20__B_ + pool__20_20_ = 1
invariant :cell___12_19__A_ + cell___12_19__B_ + pool__12_19_ = 1
invariant :cell___5_30__A_ + cell___5_30__B_ + pool__5_30_ = 1
invariant :cell___10_22__A_ + cell___10_22__B_ + pool__10_22_ = 1
invariant :cell___29_13__A_ + cell___29_13__B_ + pool__29_13_ = 1
invariant :cell___11_1__A_ + cell___11_1__B_ + pool__11_1_ = 1
invariant :cell___5_29__A_ + cell___5_29__B_ + pool__5_29_ = 1
invariant :cell___8_27__A_ + cell___8_27__B_ + pool__8_27_ = 1
invariant :cell___13_19__A_ + cell___13_19__B_ + pool__13_19_ = 1
invariant :cell___23_18__A_ + cell___23_18__B_ + pool__23_18_ = 1
invariant :cell___17_1__A_ + cell___17_1__B_ + pool__17_1_ = 1
invariant :cell___3_13__A_ + cell___3_13__B_ + pool__3_13_ = 1
invariant :cell___4_1__A_ + cell___4_1__B_ + pool__4_1_ = 1
invariant :cell___21_12__A_ + cell___21_12__B_ + pool__21_12_ = 1
invariant :cell___22_20__A_ + cell___22_20__B_ + pool__22_20_ = 1
invariant :cell___3_28__A_ + cell___3_28__B_ + pool__3_28_ = 1
invariant :cell___5_24__A_ + cell___5_24__B_ + pool__5_24_ = 1
invariant :cell___8_2__A_ + cell___8_2__B_ + pool__8_2_ = 1
invariant :cell___14_4__A_ + cell___14_4__B_ + pool__14_4_ = 1
invariant :cell___13_13__A_ + cell___13_13__B_ + pool__13_13_ = 1
invariant :cell___3_17__A_ + cell___3_17__B_ + pool__3_17_ = 1
invariant :cell___2_3__A_ + cell___2_3__B_ + pool__2_3_ = 1
invariant :cell___3_14__A_ + cell___3_14__B_ + pool__3_14_ = 1
invariant :cell___6_23__A_ + cell___6_23__B_ + pool__6_23_ = 1
invariant :cell___5_13__A_ + cell___5_13__B_ + pool__5_13_ = 1
invariant :cell___6_15__A_ + cell___6_15__B_ + pool__6_15_ = 1
invariant :cell___27_1__A_ + cell___27_1__B_ + pool__27_1_ = 1
invariant :cell___20_7__A_ + cell___20_7__B_ + pool__20_7_ = 1
invariant :cell___5_12__A_ + cell___5_12__B_ + pool__5_12_ = 1
invariant :cell___30_5__A_ + cell___30_5__B_ + pool__30_5_ = 1
invariant :cell___29_6__A_ + cell___29_6__B_ + pool__29_6_ = 1
invariant :cell___14_26__A_ + cell___14_26__B_ + pool__14_26_ = 1
invariant :cell___9_4__A_ + cell___9_4__B_ + pool__9_4_ = 1
invariant :cell___16_5__A_ + cell___16_5__B_ + pool__16_5_ = 1
invariant :cell___22_23__A_ + cell___22_23__B_ + pool__22_23_ = 1
invariant :cell___26_27__A_ + cell___26_27__B_ + pool__26_27_ = 1
invariant :cell___3_20__A_ + cell___3_20__B_ + pool__3_20_ = 1
invariant :cell___16_18__A_ + cell___16_18__B_ + pool__16_18_ = 1
invariant :cell___5_19__A_ + cell___5_19__B_ + pool__5_19_ = 1
invariant :cell___28_13__A_ + cell___28_13__B_ + pool__28_13_ = 1
invariant :cell___17_26__A_ + cell___17_26__B_ + pool__17_26_ = 1
invariant :cell___14_10__A_ + cell___14_10__B_ + pool__14_10_ = 1
invariant :cell___10_27__A_ + cell___10_27__B_ + pool__10_27_ = 1
invariant :cell___1_2__A_ + cell___1_2__B_ + pool__1_2_ = 1
invariant :cell___14_15__A_ + cell___14_15__B_ + pool__14_15_ = 1
invariant :cell___14_5__A_ + cell___14_5__B_ + pool__14_5_ = 1
invariant :cell___28_29__A_ + cell___28_29__B_ + pool__28_29_ = 1
invariant :cell___14_24__A_ + cell___14_24__B_ + pool__14_24_ = 1
invariant :cell___27_4__A_ + cell___27_4__B_ + pool__27_4_ = 1
invariant :cell___11_4__A_ + cell___11_4__B_ + pool__11_4_ = 1
invariant :cell___12_26__A_ + cell___12_26__B_ + pool__12_26_ = 1
invariant :cell___11_17__A_ + cell___11_17__B_ + pool__11_17_ = 1
invariant :cell___2_17__A_ + cell___2_17__B_ + pool__2_17_ = 1
invariant :cell___29_14__A_ + cell___29_14__B_ + pool__29_14_ = 1
invariant :cell___8_1__A_ + cell___8_1__B_ + pool__8_1_ = 1
invariant :cell___15_16__A_ + cell___15_16__B_ + pool__15_16_ = 1
invariant :cell___26_13__A_ + cell___26_13__B_ + pool__26_13_ = 1
invariant :cell___30_12__A_ + cell___30_12__B_ + pool__30_12_ = 1
invariant :cell___27_23__A_ + cell___27_23__B_ + pool__27_23_ = 1
invariant :cell___26_29__A_ + cell___26_29__B_ + pool__26_29_ = 1
invariant :cell___13_26__A_ + cell___13_26__B_ + pool__13_26_ = 1
invariant :cell___17_24__A_ + cell___17_24__B_ + pool__17_24_ = 1
invariant :cell___10_8__A_ + cell___10_8__B_ + pool__10_8_ = 1
invariant :cell___10_11__A_ + cell___10_11__B_ + pool__10_11_ = 1
invariant :cell___14_29__A_ + cell___14_29__B_ + pool__14_29_ = 1
invariant :cell___28_7__A_ + cell___28_7__B_ + pool__28_7_ = 1
invariant :cell___8_7__A_ + cell___8_7__B_ + pool__8_7_ = 1
invariant :cell___30_15__A_ + cell___30_15__B_ + pool__30_15_ = 1
invariant :cell___12_25__A_ + cell___12_25__B_ + pool__12_25_ = 1
invariant :cell___2_1__A_ + cell___2_1__B_ + pool__2_1_ = 1
invariant :cell___18_4__A_ + cell___18_4__B_ + pool__18_4_ = 1
invariant :cell___20_22__A_ + cell___20_22__B_ + pool__20_22_ = 1
invariant :cell___23_20__A_ + cell___23_20__B_ + pool__23_20_ = 1
invariant :cell___3_30__A_ + cell___3_30__B_ + pool__3_30_ = 1
invariant :cell___30_14__A_ + cell___30_14__B_ + pool__30_14_ = 1
invariant :cell___11_18__A_ + cell___11_18__B_ + pool__11_18_ = 1
invariant :cell___29_17__A_ + cell___29_17__B_ + pool__29_17_ = 1
invariant :cell___10_23__A_ + cell___10_23__B_ + pool__10_23_ = 1
invariant :cell___30_16__A_ + cell___30_16__B_ + pool__30_16_ = 1
invariant :cell___29_19__A_ + cell___29_19__B_ + pool__29_19_ = 1
invariant :cell___19_13__A_ + cell___19_13__B_ + pool__19_13_ = 1
invariant :cell___10_4__A_ + cell___10_4__B_ + pool__10_4_ = 1
invariant :cell___2_15__A_ + cell___2_15__B_ + pool__2_15_ = 1
invariant :cell___9_27__A_ + cell___9_27__B_ + pool__9_27_ = 1
invariant :cell___22_12__A_ + cell___22_12__B_ + pool__22_12_ = 1
invariant :cell___11_13__A_ + cell___11_13__B_ + pool__11_13_ = 1
invariant :cell___18_21__A_ + cell___18_21__B_ + pool__18_21_ = 1
invariant :cell___24_22__A_ + cell___24_22__B_ + pool__24_22_ = 1
invariant :cell___14_7__A_ + cell___14_7__B_ + pool__14_7_ = 1
invariant :cell___16_8__A_ + cell___16_8__B_ + pool__16_8_ = 1
invariant :cell___28_15__A_ + cell___28_15__B_ + pool__28_15_ = 1
invariant :cell___7_27__A_ + cell___7_27__B_ + pool__7_27_ = 1
invariant :cell___17_25__A_ + cell___17_25__B_ + pool__17_25_ = 1
invariant :cell___22_15__A_ + cell___22_15__B_ + pool__22_15_ = 1
invariant :cell___16_13__A_ + cell___16_13__B_ + pool__16_13_ = 1
invariant :cell___10_3__A_ + cell___10_3__B_ + pool__10_3_ = 1
invariant :cell___27_18__A_ + cell___27_18__B_ + pool__27_18_ = 1
invariant :cell___21_11__A_ + cell___21_11__B_ + pool__21_11_ = 1
invariant :cell___17_29__A_ + cell___17_29__B_ + pool__17_29_ = 1
invariant :cell___13_25__A_ + cell___13_25__B_ + pool__13_25_ = 1
invariant :cell___24_23__A_ + cell___24_23__B_ + pool__24_23_ = 1
invariant :cell___18_27__A_ + cell___18_27__B_ + pool__18_27_ = 1
invariant :cell___18_9__A_ + cell___18_9__B_ + pool__18_9_ = 1
invariant :cell___28_27__A_ + cell___28_27__B_ + pool__28_27_ = 1
invariant :cell___7_21__A_ + cell___7_21__B_ + pool__7_21_ = 1
invariant :cell___23_3__A_ + cell___23_3__B_ + pool__23_3_ = 1
invariant :cell___6_29__A_ + cell___6_29__B_ + pool__6_29_ = 1
invariant :cell___19_18__A_ + cell___19_18__B_ + pool__19_18_ = 1
invariant :cell___6_1__A_ + cell___6_1__B_ + pool__6_1_ = 1
invariant :cell___12_14__A_ + cell___12_14__B_ + pool__12_14_ = 1
invariant :cell___22_28__A_ + cell___22_28__B_ + pool__22_28_ = 1
invariant :cell___14_13__A_ + cell___14_13__B_ + pool__14_13_ = 1
invariant :cell___25_9__A_ + cell___25_9__B_ + pool__25_9_ = 1
invariant :cell___26_21__A_ + cell___26_21__B_ + pool__26_21_ = 1
invariant :cell___25_15__A_ + cell___25_15__B_ + pool__25_15_ = 1
invariant :cell___24_14__A_ + cell___24_14__B_ + pool__24_14_ = 1
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution] killed by timeout after 400 SECONDS
FORMULA PhaseVariation-PT-D30CS010-ReachabilityCardinality-03 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityCardinality -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityCardinality -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 24, 2018 8:08:29 PM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -smt]
May 24, 2018 8:08:29 PM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 24, 2018 8:08:30 PM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 1241 ms
May 24, 2018 8:08:30 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2702 places.
May 24, 2018 8:08:31 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 30977 transitions.
May 24, 2018 8:08:36 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 4990 ms
May 24, 2018 8:08:44 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 30977 transitions.
May 24, 2018 8:08:44 PM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Too many transitions (30977) to apply POR reductions. Disabling POR matrices.
May 24, 2018 8:08:44 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 7300 ms
May 24, 2018 8:08:45 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 5895 ms
May 24, 2018 8:08:45 PM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 387 ms
May 24, 2018 8:08:45 PM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 25 ms
May 24, 2018 8:08:46 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 30977 transitions.
May 24, 2018 8:08:48 PM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 7954ms conformant to PINS in folder :/home/mcc/execution
May 24, 2018 8:09:03 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 16 in 18521 ms.
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-00(UNSAT) depth K=0 took 451 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-01(UNSAT) depth K=0 took 79 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-02(UNSAT) depth K=0 took 7 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-03(UNSAT) depth K=0 took 56 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-04(UNSAT) depth K=0 took 7 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-05(UNSAT) depth K=0 took 33 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-06(UNSAT) depth K=0 took 7 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-07(UNSAT) depth K=0 took 37 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-08(UNSAT) depth K=0 took 9 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-09(UNSAT) depth K=0 took 391 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-10(UNSAT) depth K=0 took 39 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-11(UNSAT) depth K=0 took 57 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-12(UNSAT) depth K=0 took 32 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-13(UNSAT) depth K=0 took 7 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-14(UNSAT) depth K=0 took 45 ms
May 24, 2018 8:09:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-15(UNSAT) depth K=0 took 20 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-00(UNSAT) depth K=1 took 9 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-01(UNSAT) depth K=1 took 51 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-02(UNSAT) depth K=1 took 19 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-03(UNSAT) depth K=1 took 64 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-04(UNSAT) depth K=1 took 17 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-05(UNSAT) depth K=1 took 41 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-06(UNSAT) depth K=1 took 8 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-07(UNSAT) depth K=1 took 39 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-08(UNSAT) depth K=1 took 7 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-09(UNSAT) depth K=1 took 56 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-10(UNSAT) depth K=1 took 27 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-11(UNSAT) depth K=1 took 53 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-12(UNSAT) depth K=1 took 265 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-13(UNSAT) depth K=1 took 35 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-14(UNSAT) depth K=1 took 7 ms
May 24, 2018 8:09:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-15(UNSAT) depth K=1 took 51 ms
May 24, 2018 8:09:07 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 30977 transitions.
May 24, 2018 8:09:28 PM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 901 place invariants in 3362 ms
May 24, 2018 8:11:21 PM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 2702 variables to be positive in 117120 ms
May 24, 2018 8:12:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-00(UNSAT) depth K=2 took 192216 ms
May 24, 2018 8:13:26 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-01(UNSAT) depth K=2 took 68201 ms
May 24, 2018 8:15:04 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-02(UNSAT) depth K=2 took 97882 ms
java.lang.RuntimeException: Compilation or link of executable timed out.java.util.concurrent.TimeoutException: Subprocess running CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution] killed by timeout after 400 SECONDS
at fr.lip6.move.gal.application.LTSminRunner$1.run(LTSminRunner.java:78)
at java.lang.Thread.run(Thread.java:748)
May 24, 2018 8:20:00 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-03(UNSAT) depth K=2 took 296166 ms
May 24, 2018 8:22:11 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-04(UNSAT) depth K=2 took 130348 ms
May 24, 2018 8:27:12 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesPhaseVariation-PT-D30CS010-ReachabilityCardinality-00
May 24, 2018 8:27:12 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-00(SAT) depth K=0 took 950192 ms
May 24, 2018 8:27:20 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-05(UNSAT) depth K=2 took 309565 ms
ITS-tools command line returned an error code 137
May 24, 2018 8:31:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-06(UNSAT) depth K=2 took 224326 ms
May 24, 2018 8:33:59 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-07(UNSAT) depth K=2 took 174261 ms
May 24, 2018 8:37:27 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesPhaseVariation-PT-D30CS010-ReachabilityCardinality-01
May 24, 2018 8:37:27 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-01(SAT) depth K=0 took 614903 ms
May 24, 2018 8:37:32 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-08(UNSAT) depth K=2 took 213595 ms
May 24, 2018 8:38:59 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-09(UNSAT) depth K=2 took 86715 ms
May 24, 2018 8:42:01 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-10(UNSAT) depth K=2 took 181430 ms
May 24, 2018 8:43:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-11(UNSAT) depth K=2 took 64331 ms
May 24, 2018 8:43:43 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-12(UNSAT) depth K=2 took 37874 ms
May 24, 2018 8:44:05 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-13(UNSAT) depth K=2 took 22541 ms
May 24, 2018 8:44:52 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-14(UNSAT) depth K=2 took 47150 ms
May 24, 2018 8:45:39 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-15(UNSAT) depth K=2 took 46760 ms
May 24, 2018 8:46:21 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesPhaseVariation-PT-D30CS010-ReachabilityCardinality-02
May 24, 2018 8:46:21 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-02(SAT) depth K=0 took 534505 ms
May 24, 2018 8:46:49 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate PhaseVariation-PT-D30CS010-ReachabilityCardinality-03
May 24, 2018 8:46:49 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for PhaseVariation-PT-D30CS010-ReachabilityCardinality-03
May 24, 2018 8:46:49 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-03(FALSE) depth K=0 took 27976 ms
May 24, 2018 9:00:10 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-00(UNSAT) depth K=3 took 870897 ms
May 24, 2018 9:08:23 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesPhaseVariation-PT-D30CS010-ReachabilityCardinality-04
May 24, 2018 9:08:23 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property PhaseVariation-PT-D30CS010-ReachabilityCardinality-04(SAT) depth K=0 took 1293611 ms

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="PhaseVariation-PT-D30CS010"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/PhaseVariation-PT-D30CS010.tgz
mv PhaseVariation-PT-D30CS010 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstools"
echo " Input is PhaseVariation-PT-D30CS010, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r116-csrt-152666475700656"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;