About the Execution of ITS-Tools for NeoElection-PT-4
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15753.930 | 77609.00 | 83482.00 | 113.70 | 0 12 12 0 12 4 4 4 0 0 0 0 0 0 0 0 | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..................................................
/home/mcc/execution
total 3.8M
-rw-r--r-- 1 mcc users 65K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 162K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 73K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 213K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 50K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 108K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 58K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 164K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 88K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 215K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 114K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 319K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 36K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 74K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 2.1M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstools
Input is NeoElection-PT-4, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r116-csrt-152666475200303
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of positive values
NUM_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-4-UpperBounds-00
FORMULA_NAME NeoElection-PT-4-UpperBounds-01
FORMULA_NAME NeoElection-PT-4-UpperBounds-02
FORMULA_NAME NeoElection-PT-4-UpperBounds-03
FORMULA_NAME NeoElection-PT-4-UpperBounds-04
FORMULA_NAME NeoElection-PT-4-UpperBounds-05
FORMULA_NAME NeoElection-PT-4-UpperBounds-06
FORMULA_NAME NeoElection-PT-4-UpperBounds-07
FORMULA_NAME NeoElection-PT-4-UpperBounds-08
FORMULA_NAME NeoElection-PT-4-UpperBounds-09
FORMULA_NAME NeoElection-PT-4-UpperBounds-10
FORMULA_NAME NeoElection-PT-4-UpperBounds-11
FORMULA_NAME NeoElection-PT-4-UpperBounds-12
FORMULA_NAME NeoElection-PT-4-UpperBounds-13
FORMULA_NAME NeoElection-PT-4-UpperBounds-14
FORMULA_NAME NeoElection-PT-4-UpperBounds-15
=== Now, execution of the tool begins
BK_START 1527174088685
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805151631/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/UpperBounds.pnml.gal, -t, CGAL, -reachable-file, UpperBounds.prop, --nowitness], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805151631/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/UpperBounds.pnml.gal -t CGAL -reachable-file UpperBounds.prop --nowitness
Loading property file UpperBounds.prop.
Read [bounds] property : NeoElection-PT-4-UpperBounds-00 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-01 with value :P_network_0_0_AskP_0+P_network_0_0_AnsP_0+P_network_0_0_AnsP_1+P_network_0_0_AnsP_2+P_network_0_0_AnsP_3+P_network_0_0_AnsP_4+P_network_0_0_RI_0+P_network_0_0_AI_0+P_network_0_0_AnnP_0+P_network_0_0_RP_0+P_network_0_1_AskP_0+P_network_0_1_AnsP_0+P_network_0_1_AnsP_1+P_network_0_1_AnsP_2+P_network_0_1_AnsP_3+P_network_0_1_AnsP_4+P_network_0_1_RI_0+P_network_0_1_AI_0+P_network_0_1_AnnP_0+P_network_0_1_RP_0+P_network_0_2_AskP_0+P_network_0_2_AnsP_0+P_network_0_2_AnsP_1+P_network_0_2_AnsP_2+P_network_0_2_AnsP_3+P_network_0_2_AnsP_4+P_network_0_2_RI_0+P_network_0_2_AI_0+P_network_0_2_AnnP_0+P_network_0_2_RP_0+P_network_0_3_AskP_0+P_network_0_3_AnsP_0+P_network_0_3_AnsP_1+P_network_0_3_AnsP_2+P_network_0_3_AnsP_3+P_network_0_3_AnsP_4+P_network_0_3_RI_0+P_network_0_3_AI_0+P_network_0_3_AnnP_0+P_network_0_3_RP_0+P_network_0_4_AskP_0+P_network_0_4_AnsP_0+P_network_0_4_AnsP_1+P_network_0_4_AnsP_2+P_network_0_4_AnsP_3+P_network_0_4_AnsP_4+P_network_0_4_RI_0+P_network_0_4_AI_0+P_network_0_4_AnnP_0+P_network_0_4_RP_0+P_network_1_0_AskP_0+P_network_1_0_AnsP_0+P_network_1_0_AnsP_1+P_network_1_0_AnsP_2+P_network_1_0_AnsP_3+P_network_1_0_AnsP_4+P_network_1_0_RI_0+P_network_1_0_AI_0+P_network_1_0_AnnP_0+P_network_1_0_RP_0+P_network_1_1_AskP_0+P_network_1_1_AnsP_0+P_network_1_1_AnsP_1+P_network_1_1_AnsP_2+P_network_1_1_AnsP_3+P_network_1_1_AnsP_4+P_network_1_1_RI_0+P_network_1_1_AI_0+P_network_1_1_AnnP_0+P_network_1_1_RP_0+P_network_1_2_AskP_0+P_network_1_2_AnsP_0+P_network_1_2_AnsP_1+P_network_1_2_AnsP_2+P_network_1_2_AnsP_3+P_network_1_2_AnsP_4+P_network_1_2_RI_0+P_network_1_2_AI_0+P_network_1_2_AnnP_0+P_network_1_2_RP_0+P_network_1_3_AskP_0+P_network_1_3_AnsP_0+P_network_1_3_AnsP_1+P_network_1_3_AnsP_2+P_network_1_3_AnsP_3+P_network_1_3_AnsP_4+P_network_1_3_RI_0+P_network_1_3_AI_0+P_network_1_3_AnnP_0+P_network_1_3_RP_0+P_network_1_4_AskP_0+P_network_1_4_AnsP_0+P_network_1_4_AnsP_1+P_network_1_4_AnsP_2+P_network_1_4_AnsP_3+P_network_1_4_AnsP_4+P_network_1_4_RI_0+P_network_1_4_AI_0+P_network_1_4_AnnP_0+P_network_1_4_RP_0+P_network_2_0_AskP_0+P_network_2_0_AnsP_0+P_network_2_0_AnsP_1+P_network_2_0_AnsP_2+P_network_2_0_AnsP_3+P_network_2_0_AnsP_4+P_network_2_0_RI_0+P_network_2_0_AI_0+P_network_2_0_AnnP_0+P_network_2_0_RP_0+P_network_2_1_AskP_0+P_network_2_1_AnsP_0+P_network_2_1_AnsP_1+P_network_2_1_AnsP_2+P_network_2_1_AnsP_3+P_network_2_1_AnsP_4+P_network_2_1_RI_0+P_network_2_1_AI_0+P_network_2_1_AnnP_0+P_network_2_1_RP_0+P_network_2_2_AskP_0+P_network_2_2_AnsP_0+P_network_2_2_AnsP_1+P_network_2_2_AnsP_2+P_network_2_2_AnsP_3+P_network_2_2_AnsP_4+P_network_2_2_RI_0+P_network_2_2_AI_0+P_network_2_2_AnnP_0+P_network_2_2_RP_0+P_network_2_3_AskP_0+P_network_2_3_AnsP_0+P_network_2_3_AnsP_1+P_network_2_3_AnsP_2+P_network_2_3_AnsP_3+P_network_2_3_AnsP_4+P_network_2_3_RI_0+P_network_2_3_AI_0+P_network_2_3_AnnP_0+P_network_2_3_RP_0+P_network_2_4_AskP_0+P_network_2_4_AnsP_0+P_network_2_4_AnsP_1+P_network_2_4_AnsP_2+P_network_2_4_AnsP_3+P_network_2_4_AnsP_4+P_network_2_4_RI_0+P_network_2_4_AI_0+P_network_2_4_AnnP_0+P_network_2_4_RP_0+P_network_3_0_AskP_0+P_network_3_0_AnsP_0+P_network_3_0_AnsP_1+P_network_3_0_AnsP_2+P_network_3_0_AnsP_3+P_network_3_0_AnsP_4+P_network_3_0_RI_0+P_network_3_0_AI_0+P_network_3_0_AnnP_0+P_network_3_0_RP_0+P_network_3_1_AskP_0+P_network_3_1_AnsP_0+P_network_3_1_AnsP_1+P_network_3_1_AnsP_2+P_network_3_1_AnsP_3+P_network_3_1_AnsP_4+P_network_3_1_RI_0+P_network_3_1_AI_0+P_network_3_1_AnnP_0+P_network_3_1_RP_0+P_network_3_2_AskP_0+P_network_3_2_AnsP_0+P_network_3_2_AnsP_1+P_network_3_2_AnsP_2+P_network_3_2_AnsP_3+P_network_3_2_AnsP_4+P_network_3_2_RI_0+P_network_3_2_AI_0+P_network_3_2_AnnP_0+P_network_3_2_RP_0+P_network_3_3_AskP_0+P_network_3_3_AnsP_0+P_network_3_3_AnsP_1+P_network_3_3_AnsP_2+P_network_3_3_AnsP_3+P_network_3_3_AnsP_4+P_network_3_3_RI_0+P_network_3_3_AI_0+P_network_3_3_AnnP_0+P_network_3_3_RP_0+P_network_3_4_AskP_0+P_network_3_4_AnsP_0+P_network_3_4_AnsP_1+P_network_3_4_AnsP_2+P_network_3_4_AnsP_3+P_network_3_4_AnsP_4+P_network_3_4_RI_0+P_network_3_4_AI_0+P_network_3_4_AnnP_0+P_network_3_4_RP_0+P_network_4_0_AskP_0+P_network_4_0_AnsP_0+P_network_4_0_AnsP_1+P_network_4_0_AnsP_2+P_network_4_0_AnsP_3+P_network_4_0_AnsP_4+P_network_4_0_RI_0+P_network_4_0_AI_0+P_network_4_0_AnnP_0+P_network_4_0_RP_0+P_network_4_1_AskP_0+P_network_4_1_AnsP_0+P_network_4_1_AnsP_1+P_network_4_1_AnsP_2+P_network_4_1_AnsP_3+P_network_4_1_AnsP_4+P_network_4_1_RI_0+P_network_4_1_AI_0+P_network_4_1_AnnP_0+P_network_4_1_RP_0+P_network_4_2_AskP_0+P_network_4_2_AnsP_0+P_network_4_2_AnsP_1+P_network_4_2_AnsP_2+P_network_4_2_AnsP_3+P_network_4_2_AnsP_4+P_network_4_2_RI_0+P_network_4_2_AI_0+P_network_4_2_AnnP_0+P_network_4_2_RP_0+P_network_4_3_AskP_0+P_network_4_3_AnsP_0+P_network_4_3_AnsP_1+P_network_4_3_AnsP_2+P_network_4_3_AnsP_3+P_network_4_3_AnsP_4+P_network_4_3_RI_0+P_network_4_3_AI_0+P_network_4_3_AnnP_0+P_network_4_3_RP_0+P_network_4_4_AskP_0+P_network_4_4_AnsP_0+P_network_4_4_AnsP_1+P_network_4_4_AnsP_2+P_network_4_4_AnsP_3+P_network_4_4_AnsP_4+P_network_4_4_RI_0+P_network_4_4_AI_0+P_network_4_4_AnnP_0+P_network_4_4_RP_0
Read [bounds] property : NeoElection-PT-4-UpperBounds-02 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-03 with value :P_poll__waitingMessage_0+P_poll__waitingMessage_1+P_poll__waitingMessage_2+P_poll__waitingMessage_3+P_poll__waitingMessage_4
Read [bounds] property : NeoElection-PT-4-UpperBounds-04 with value :P_network_0_0_AskP_0+P_network_0_0_AnsP_0+P_network_0_0_AnsP_1+P_network_0_0_AnsP_2+P_network_0_0_AnsP_3+P_network_0_0_AnsP_4+P_network_0_0_RI_0+P_network_0_0_AI_0+P_network_0_0_AnnP_0+P_network_0_0_RP_0+P_network_0_1_AskP_0+P_network_0_1_AnsP_0+P_network_0_1_AnsP_1+P_network_0_1_AnsP_2+P_network_0_1_AnsP_3+P_network_0_1_AnsP_4+P_network_0_1_RI_0+P_network_0_1_AI_0+P_network_0_1_AnnP_0+P_network_0_1_RP_0+P_network_0_2_AskP_0+P_network_0_2_AnsP_0+P_network_0_2_AnsP_1+P_network_0_2_AnsP_2+P_network_0_2_AnsP_3+P_network_0_2_AnsP_4+P_network_0_2_RI_0+P_network_0_2_AI_0+P_network_0_2_AnnP_0+P_network_0_2_RP_0+P_network_0_3_AskP_0+P_network_0_3_AnsP_0+P_network_0_3_AnsP_1+P_network_0_3_AnsP_2+P_network_0_3_AnsP_3+P_network_0_3_AnsP_4+P_network_0_3_RI_0+P_network_0_3_AI_0+P_network_0_3_AnnP_0+P_network_0_3_RP_0+P_network_0_4_AskP_0+P_network_0_4_AnsP_0+P_network_0_4_AnsP_1+P_network_0_4_AnsP_2+P_network_0_4_AnsP_3+P_network_0_4_AnsP_4+P_network_0_4_RI_0+P_network_0_4_AI_0+P_network_0_4_AnnP_0+P_network_0_4_RP_0+P_network_1_0_AskP_0+P_network_1_0_AnsP_0+P_network_1_0_AnsP_1+P_network_1_0_AnsP_2+P_network_1_0_AnsP_3+P_network_1_0_AnsP_4+P_network_1_0_RI_0+P_network_1_0_AI_0+P_network_1_0_AnnP_0+P_network_1_0_RP_0+P_network_1_1_AskP_0+P_network_1_1_AnsP_0+P_network_1_1_AnsP_1+P_network_1_1_AnsP_2+P_network_1_1_AnsP_3+P_network_1_1_AnsP_4+P_network_1_1_RI_0+P_network_1_1_AI_0+P_network_1_1_AnnP_0+P_network_1_1_RP_0+P_network_1_2_AskP_0+P_network_1_2_AnsP_0+P_network_1_2_AnsP_1+P_network_1_2_AnsP_2+P_network_1_2_AnsP_3+P_network_1_2_AnsP_4+P_network_1_2_RI_0+P_network_1_2_AI_0+P_network_1_2_AnnP_0+P_network_1_2_RP_0+P_network_1_3_AskP_0+P_network_1_3_AnsP_0+P_network_1_3_AnsP_1+P_network_1_3_AnsP_2+P_network_1_3_AnsP_3+P_network_1_3_AnsP_4+P_network_1_3_RI_0+P_network_1_3_AI_0+P_network_1_3_AnnP_0+P_network_1_3_RP_0+P_network_1_4_AskP_0+P_network_1_4_AnsP_0+P_network_1_4_AnsP_1+P_network_1_4_AnsP_2+P_network_1_4_AnsP_3+P_network_1_4_AnsP_4+P_network_1_4_RI_0+P_network_1_4_AI_0+P_network_1_4_AnnP_0+P_network_1_4_RP_0+P_network_2_0_AskP_0+P_network_2_0_AnsP_0+P_network_2_0_AnsP_1+P_network_2_0_AnsP_2+P_network_2_0_AnsP_3+P_network_2_0_AnsP_4+P_network_2_0_RI_0+P_network_2_0_AI_0+P_network_2_0_AnnP_0+P_network_2_0_RP_0+P_network_2_1_AskP_0+P_network_2_1_AnsP_0+P_network_2_1_AnsP_1+P_network_2_1_AnsP_2+P_network_2_1_AnsP_3+P_network_2_1_AnsP_4+P_network_2_1_RI_0+P_network_2_1_AI_0+P_network_2_1_AnnP_0+P_network_2_1_RP_0+P_network_2_2_AskP_0+P_network_2_2_AnsP_0+P_network_2_2_AnsP_1+P_network_2_2_AnsP_2+P_network_2_2_AnsP_3+P_network_2_2_AnsP_4+P_network_2_2_RI_0+P_network_2_2_AI_0+P_network_2_2_AnnP_0+P_network_2_2_RP_0+P_network_2_3_AskP_0+P_network_2_3_AnsP_0+P_network_2_3_AnsP_1+P_network_2_3_AnsP_2+P_network_2_3_AnsP_3+P_network_2_3_AnsP_4+P_network_2_3_RI_0+P_network_2_3_AI_0+P_network_2_3_AnnP_0+P_network_2_3_RP_0+P_network_2_4_AskP_0+P_network_2_4_AnsP_0+P_network_2_4_AnsP_1+P_network_2_4_AnsP_2+P_network_2_4_AnsP_3+P_network_2_4_AnsP_4+P_network_2_4_RI_0+P_network_2_4_AI_0+P_network_2_4_AnnP_0+P_network_2_4_RP_0+P_network_3_0_AskP_0+P_network_3_0_AnsP_0+P_network_3_0_AnsP_1+P_network_3_0_AnsP_2+P_network_3_0_AnsP_3+P_network_3_0_AnsP_4+P_network_3_0_RI_0+P_network_3_0_AI_0+P_network_3_0_AnnP_0+P_network_3_0_RP_0+P_network_3_1_AskP_0+P_network_3_1_AnsP_0+P_network_3_1_AnsP_1+P_network_3_1_AnsP_2+P_network_3_1_AnsP_3+P_network_3_1_AnsP_4+P_network_3_1_RI_0+P_network_3_1_AI_0+P_network_3_1_AnnP_0+P_network_3_1_RP_0+P_network_3_2_AskP_0+P_network_3_2_AnsP_0+P_network_3_2_AnsP_1+P_network_3_2_AnsP_2+P_network_3_2_AnsP_3+P_network_3_2_AnsP_4+P_network_3_2_RI_0+P_network_3_2_AI_0+P_network_3_2_AnnP_0+P_network_3_2_RP_0+P_network_3_3_AskP_0+P_network_3_3_AnsP_0+P_network_3_3_AnsP_1+P_network_3_3_AnsP_2+P_network_3_3_AnsP_3+P_network_3_3_AnsP_4+P_network_3_3_RI_0+P_network_3_3_AI_0+P_network_3_3_AnnP_0+P_network_3_3_RP_0+P_network_3_4_AskP_0+P_network_3_4_AnsP_0+P_network_3_4_AnsP_1+P_network_3_4_AnsP_2+P_network_3_4_AnsP_3+P_network_3_4_AnsP_4+P_network_3_4_RI_0+P_network_3_4_AI_0+P_network_3_4_AnnP_0+P_network_3_4_RP_0+P_network_4_0_AskP_0+P_network_4_0_AnsP_0+P_network_4_0_AnsP_1+P_network_4_0_AnsP_2+P_network_4_0_AnsP_3+P_network_4_0_AnsP_4+P_network_4_0_RI_0+P_network_4_0_AI_0+P_network_4_0_AnnP_0+P_network_4_0_RP_0+P_network_4_1_AskP_0+P_network_4_1_AnsP_0+P_network_4_1_AnsP_1+P_network_4_1_AnsP_2+P_network_4_1_AnsP_3+P_network_4_1_AnsP_4+P_network_4_1_RI_0+P_network_4_1_AI_0+P_network_4_1_AnnP_0+P_network_4_1_RP_0+P_network_4_2_AskP_0+P_network_4_2_AnsP_0+P_network_4_2_AnsP_1+P_network_4_2_AnsP_2+P_network_4_2_AnsP_3+P_network_4_2_AnsP_4+P_network_4_2_RI_0+P_network_4_2_AI_0+P_network_4_2_AnnP_0+P_network_4_2_RP_0+P_network_4_3_AskP_0+P_network_4_3_AnsP_0+P_network_4_3_AnsP_1+P_network_4_3_AnsP_2+P_network_4_3_AnsP_3+P_network_4_3_AnsP_4+P_network_4_3_RI_0+P_network_4_3_AI_0+P_network_4_3_AnnP_0+P_network_4_3_RP_0+P_network_4_4_AskP_0+P_network_4_4_AnsP_0+P_network_4_4_AnsP_1+P_network_4_4_AnsP_2+P_network_4_4_AnsP_3+P_network_4_4_AnsP_4+P_network_4_4_RI_0+P_network_4_4_AI_0+P_network_4_4_AnnP_0+P_network_4_4_RP_0
Read [bounds] property : NeoElection-PT-4-UpperBounds-05 with value :P_masterState_0_F_0+P_masterState_0_F_1+P_masterState_0_F_2+P_masterState_0_F_3+P_masterState_0_F_4+P_masterState_0_T_0+P_masterState_0_T_1+P_masterState_0_T_2+P_masterState_0_T_3+P_masterState_0_T_4+P_masterState_1_F_0+P_masterState_1_F_1+P_masterState_1_F_2+P_masterState_1_F_3+P_masterState_1_F_4+P_masterState_1_T_0+P_masterState_1_T_1+P_masterState_1_T_2+P_masterState_1_T_3+P_masterState_1_T_4+P_masterState_2_F_0+P_masterState_2_F_1+P_masterState_2_F_2+P_masterState_2_F_3+P_masterState_2_F_4+P_masterState_2_T_0+P_masterState_2_T_1+P_masterState_2_T_2+P_masterState_2_T_3+P_masterState_2_T_4+P_masterState_3_F_0+P_masterState_3_F_1+P_masterState_3_F_2+P_masterState_3_F_3+P_masterState_3_F_4+P_masterState_3_T_0+P_masterState_3_T_1+P_masterState_3_T_2+P_masterState_3_T_3+P_masterState_3_T_4+P_masterState_4_F_0+P_masterState_4_F_1+P_masterState_4_F_2+P_masterState_4_F_3+P_masterState_4_F_4+P_masterState_4_T_0+P_masterState_4_T_1+P_masterState_4_T_2+P_masterState_4_T_3+P_masterState_4_T_4
Read [bounds] property : NeoElection-PT-4-UpperBounds-06 with value :P_stage_0_NEG+P_stage_0_PRIM+P_stage_0_SEC+P_stage_1_NEG+P_stage_1_PRIM+P_stage_1_SEC+P_stage_2_NEG+P_stage_2_PRIM+P_stage_2_SEC+P_stage_3_NEG+P_stage_3_PRIM+P_stage_3_SEC+P_stage_4_NEG+P_stage_4_PRIM+P_stage_4_SEC
Read [bounds] property : NeoElection-PT-4-UpperBounds-07 with value :P_poll__pollEnd_0+P_poll__pollEnd_1+P_poll__pollEnd_2+P_poll__pollEnd_3+P_poll__pollEnd_4
Read [bounds] property : NeoElection-PT-4-UpperBounds-08 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-09 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-10 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-11 with value :P_poll__networl_3_2_AnsP_1
Read [bounds] property : NeoElection-PT-4-UpperBounds-12 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-13 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-14 with value :
Read [bounds] property : NeoElection-PT-4-UpperBounds-15 with value :
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection\_PT\_4\_flat,2.91912e+11,72.4369,1244936,2,128910,5,3.17418e+06,6,0,4109,1.79507e+06,0
Total reachable state count : 291911853682
Verifying 16 reachability properties.
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-00 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-00 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-00,0,72.4542,1245024,1,0,6,3.17418e+06,9,1,4675,1.79507e+06,3
Min sum of variable value : 0
Maximum sum along a path : 12
Bounds property NeoElection-PT-4-UpperBounds-01 :0 <= P_network_0_0_AskP_0+P_network_0_0_AnsP_0+P_network_0_0_AnsP_1+P_network_0_0_AnsP_2+P_network_0_0_AnsP_3+P_network_0_0_AnsP_4+P_network_0_0_RI_0+P_network_0_0_AI_0+P_network_0_0_AnnP_0+P_network_0_0_RP_0+P_network_0_1_AskP_0+P_network_0_1_AnsP_0+P_network_0_1_AnsP_1+P_network_0_1_AnsP_2+P_network_0_1_AnsP_3+P_network_0_1_AnsP_4+P_network_0_1_RI_0+P_network_0_1_AI_0+P_network_0_1_AnnP_0+P_network_0_1_RP_0+P_network_0_2_AskP_0+P_network_0_2_AnsP_0+P_network_0_2_AnsP_1+P_network_0_2_AnsP_2+P_network_0_2_AnsP_3+P_network_0_2_AnsP_4+P_network_0_2_RI_0+P_network_0_2_AI_0+P_network_0_2_AnnP_0+P_network_0_2_RP_0+P_network_0_3_AskP_0+P_network_0_3_AnsP_0+P_network_0_3_AnsP_1+P_network_0_3_AnsP_2+P_network_0_3_AnsP_3+P_network_0_3_AnsP_4+P_network_0_3_RI_0+P_network_0_3_AI_0+P_network_0_3_AnnP_0+P_network_0_3_RP_0+P_network_0_4_AskP_0+P_network_0_4_AnsP_0+P_network_0_4_AnsP_1+P_network_0_4_AnsP_2+P_network_0_4_AnsP_3+P_network_0_4_AnsP_4+P_network_0_4_RI_0+P_network_0_4_AI_0+P_network_0_4_AnnP_0+P_network_0_4_RP_0+P_network_1_0_AskP_0+P_network_1_0_AnsP_0+P_network_1_0_AnsP_1+P_network_1_0_AnsP_2+P_network_1_0_AnsP_3+P_network_1_0_AnsP_4+P_network_1_0_RI_0+P_network_1_0_AI_0+P_network_1_0_AnnP_0+P_network_1_0_RP_0+P_network_1_1_AskP_0+P_network_1_1_AnsP_0+P_network_1_1_AnsP_1+P_network_1_1_AnsP_2+P_network_1_1_AnsP_3+P_network_1_1_AnsP_4+P_network_1_1_RI_0+P_network_1_1_AI_0+P_network_1_1_AnnP_0+P_network_1_1_RP_0+P_network_1_2_AskP_0+P_network_1_2_AnsP_0+P_network_1_2_AnsP_1+P_network_1_2_AnsP_2+P_network_1_2_AnsP_3+P_network_1_2_AnsP_4+P_network_1_2_RI_0+P_network_1_2_AI_0+P_network_1_2_AnnP_0+P_network_1_2_RP_0+P_network_1_3_AskP_0+P_network_1_3_AnsP_0+P_network_1_3_AnsP_1+P_network_1_3_AnsP_2+P_network_1_3_AnsP_3+P_network_1_3_AnsP_4+P_network_1_3_RI_0+P_network_1_3_AI_0+P_network_1_3_AnnP_0+P_network_1_3_RP_0+P_network_1_4_AskP_0+P_network_1_4_AnsP_0+P_network_1_4_AnsP_1+P_network_1_4_AnsP_2+P_network_1_4_AnsP_3+P_network_1_4_AnsP_4+P_network_1_4_RI_0+P_network_1_4_AI_0+P_network_1_4_AnnP_0+P_network_1_4_RP_0+P_network_2_0_AskP_0+P_network_2_0_AnsP_0+P_network_2_0_AnsP_1+P_network_2_0_AnsP_2+P_network_2_0_AnsP_3+P_network_2_0_AnsP_4+P_network_2_0_RI_0+P_network_2_0_AI_0+P_network_2_0_AnnP_0+P_network_2_0_RP_0+P_network_2_1_AskP_0+P_network_2_1_AnsP_0+P_network_2_1_AnsP_1+P_network_2_1_AnsP_2+P_network_2_1_AnsP_3+P_network_2_1_AnsP_4+P_network_2_1_RI_0+P_network_2_1_AI_0+P_network_2_1_AnnP_0+P_network_2_1_RP_0+P_network_2_2_AskP_0+P_network_2_2_AnsP_0+P_network_2_2_AnsP_1+P_network_2_2_AnsP_2+P_network_2_2_AnsP_3+P_network_2_2_AnsP_4+P_network_2_2_RI_0+P_network_2_2_AI_0+P_network_2_2_AnnP_0+P_network_2_2_RP_0+P_network_2_3_AskP_0+P_network_2_3_AnsP_0+P_network_2_3_AnsP_1+P_network_2_3_AnsP_2+P_network_2_3_AnsP_3+P_network_2_3_AnsP_4+P_network_2_3_RI_0+P_network_2_3_AI_0+P_network_2_3_AnnP_0+P_network_2_3_RP_0+P_network_2_4_AskP_0+P_network_2_4_AnsP_0+P_network_2_4_AnsP_1+P_network_2_4_AnsP_2+P_network_2_4_AnsP_3+P_network_2_4_AnsP_4+P_network_2_4_RI_0+P_network_2_4_AI_0+P_network_2_4_AnnP_0+P_network_2_4_RP_0+P_network_3_0_AskP_0+P_network_3_0_AnsP_0+P_network_3_0_AnsP_1+P_network_3_0_AnsP_2+P_network_3_0_AnsP_3+P_network_3_0_AnsP_4+P_network_3_0_RI_0+P_network_3_0_AI_0+P_network_3_0_AnnP_0+P_network_3_0_RP_0+P_network_3_1_AskP_0+P_network_3_1_AnsP_0+P_network_3_1_AnsP_1+P_network_3_1_AnsP_2+P_network_3_1_AnsP_3+P_network_3_1_AnsP_4+P_network_3_1_RI_0+P_network_3_1_AI_0+P_network_3_1_AnnP_0+P_network_3_1_RP_0+P_network_3_2_AskP_0+P_network_3_2_AnsP_0+P_network_3_2_AnsP_1+P_network_3_2_AnsP_2+P_network_3_2_AnsP_3+P_network_3_2_AnsP_4+P_network_3_2_RI_0+P_network_3_2_AI_0+P_network_3_2_AnnP_0+P_network_3_2_RP_0+P_network_3_3_AskP_0+P_network_3_3_AnsP_0+P_network_3_3_AnsP_1+P_network_3_3_AnsP_2+P_network_3_3_AnsP_3+P_network_3_3_AnsP_4+P_network_3_3_RI_0+P_network_3_3_AI_0+P_network_3_3_AnnP_0+P_network_3_3_RP_0+P_network_3_4_AskP_0+P_network_3_4_AnsP_0+P_network_3_4_AnsP_1+P_network_3_4_AnsP_2+P_network_3_4_AnsP_3+P_network_3_4_AnsP_4+P_network_3_4_RI_0+P_network_3_4_AI_0+P_network_3_4_AnnP_0+P_network_3_4_RP_0+P_network_4_0_AskP_0+P_network_4_0_AnsP_0+P_network_4_0_AnsP_1+P_network_4_0_AnsP_2+P_network_4_0_AnsP_3+P_network_4_0_AnsP_4+P_network_4_0_RI_0+P_network_4_0_AI_0+P_network_4_0_AnnP_0+P_network_4_0_RP_0+P_network_4_1_AskP_0+P_network_4_1_AnsP_0+P_network_4_1_AnsP_1+P_network_4_1_AnsP_2+P_network_4_1_AnsP_3+P_network_4_1_AnsP_4+P_network_4_1_RI_0+P_network_4_1_AI_0+P_network_4_1_AnnP_0+P_network_4_1_RP_0+P_network_4_2_AskP_0+P_network_4_2_AnsP_0+P_network_4_2_AnsP_1+P_network_4_2_AnsP_2+P_network_4_2_AnsP_3+P_network_4_2_AnsP_4+P_network_4_2_RI_0+P_network_4_2_AI_0+P_network_4_2_AnnP_0+P_network_4_2_RP_0+P_network_4_3_AskP_0+P_network_4_3_AnsP_0+P_network_4_3_AnsP_1+P_network_4_3_AnsP_2+P_network_4_3_AnsP_3+P_network_4_3_AnsP_4+P_network_4_3_RI_0+P_network_4_3_AI_0+P_network_4_3_AnnP_0+P_network_4_3_RP_0+P_network_4_4_AskP_0+P_network_4_4_AnsP_0+P_network_4_4_AnsP_1+P_network_4_4_AnsP_2+P_network_4_4_AnsP_3+P_network_4_4_AnsP_4+P_network_4_4_RI_0+P_network_4_4_AI_0+P_network_4_4_AnnP_0+P_network_4_4_RP_0 <= 12
FORMULA NeoElection-PT-4-UpperBounds-01 12 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-01,0,73.0216,1245096,1,0,7,3.17418e+06,10,1,5832,1.79507e+06,4
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-02 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-02 12 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-02,0,73.0223,1245096,1,0,7,3.17418e+06,10,1,5832,1.79507e+06,4
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-03 :0 <= P_poll__waitingMessage_0+P_poll__waitingMessage_1+P_poll__waitingMessage_2+P_poll__waitingMessage_3+P_poll__waitingMessage_4 <= 0
FORMULA NeoElection-PT-4-UpperBounds-03 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-03,0,73.1856,1245096,1,0,7,3.17418e+06,11,1,6928,1.79507e+06,5
Min sum of variable value : 0
Maximum sum along a path : 12
Bounds property NeoElection-PT-4-UpperBounds-04 :0 <= P_network_0_0_AskP_0+P_network_0_0_AnsP_0+P_network_0_0_AnsP_1+P_network_0_0_AnsP_2+P_network_0_0_AnsP_3+P_network_0_0_AnsP_4+P_network_0_0_RI_0+P_network_0_0_AI_0+P_network_0_0_AnnP_0+P_network_0_0_RP_0+P_network_0_1_AskP_0+P_network_0_1_AnsP_0+P_network_0_1_AnsP_1+P_network_0_1_AnsP_2+P_network_0_1_AnsP_3+P_network_0_1_AnsP_4+P_network_0_1_RI_0+P_network_0_1_AI_0+P_network_0_1_AnnP_0+P_network_0_1_RP_0+P_network_0_2_AskP_0+P_network_0_2_AnsP_0+P_network_0_2_AnsP_1+P_network_0_2_AnsP_2+P_network_0_2_AnsP_3+P_network_0_2_AnsP_4+P_network_0_2_RI_0+P_network_0_2_AI_0+P_network_0_2_AnnP_0+P_network_0_2_RP_0+P_network_0_3_AskP_0+P_network_0_3_AnsP_0+P_network_0_3_AnsP_1+P_network_0_3_AnsP_2+P_network_0_3_AnsP_3+P_network_0_3_AnsP_4+P_network_0_3_RI_0+P_network_0_3_AI_0+P_network_0_3_AnnP_0+P_network_0_3_RP_0+P_network_0_4_AskP_0+P_network_0_4_AnsP_0+P_network_0_4_AnsP_1+P_network_0_4_AnsP_2+P_network_0_4_AnsP_3+P_network_0_4_AnsP_4+P_network_0_4_RI_0+P_network_0_4_AI_0+P_network_0_4_AnnP_0+P_network_0_4_RP_0+P_network_1_0_AskP_0+P_network_1_0_AnsP_0+P_network_1_0_AnsP_1+P_network_1_0_AnsP_2+P_network_1_0_AnsP_3+P_network_1_0_AnsP_4+P_network_1_0_RI_0+P_network_1_0_AI_0+P_network_1_0_AnnP_0+P_network_1_0_RP_0+P_network_1_1_AskP_0+P_network_1_1_AnsP_0+P_network_1_1_AnsP_1+P_network_1_1_AnsP_2+P_network_1_1_AnsP_3+P_network_1_1_AnsP_4+P_network_1_1_RI_0+P_network_1_1_AI_0+P_network_1_1_AnnP_0+P_network_1_1_RP_0+P_network_1_2_AskP_0+P_network_1_2_AnsP_0+P_network_1_2_AnsP_1+P_network_1_2_AnsP_2+P_network_1_2_AnsP_3+P_network_1_2_AnsP_4+P_network_1_2_RI_0+P_network_1_2_AI_0+P_network_1_2_AnnP_0+P_network_1_2_RP_0+P_network_1_3_AskP_0+P_network_1_3_AnsP_0+P_network_1_3_AnsP_1+P_network_1_3_AnsP_2+P_network_1_3_AnsP_3+P_network_1_3_AnsP_4+P_network_1_3_RI_0+P_network_1_3_AI_0+P_network_1_3_AnnP_0+P_network_1_3_RP_0+P_network_1_4_AskP_0+P_network_1_4_AnsP_0+P_network_1_4_AnsP_1+P_network_1_4_AnsP_2+P_network_1_4_AnsP_3+P_network_1_4_AnsP_4+P_network_1_4_RI_0+P_network_1_4_AI_0+P_network_1_4_AnnP_0+P_network_1_4_RP_0+P_network_2_0_AskP_0+P_network_2_0_AnsP_0+P_network_2_0_AnsP_1+P_network_2_0_AnsP_2+P_network_2_0_AnsP_3+P_network_2_0_AnsP_4+P_network_2_0_RI_0+P_network_2_0_AI_0+P_network_2_0_AnnP_0+P_network_2_0_RP_0+P_network_2_1_AskP_0+P_network_2_1_AnsP_0+P_network_2_1_AnsP_1+P_network_2_1_AnsP_2+P_network_2_1_AnsP_3+P_network_2_1_AnsP_4+P_network_2_1_RI_0+P_network_2_1_AI_0+P_network_2_1_AnnP_0+P_network_2_1_RP_0+P_network_2_2_AskP_0+P_network_2_2_AnsP_0+P_network_2_2_AnsP_1+P_network_2_2_AnsP_2+P_network_2_2_AnsP_3+P_network_2_2_AnsP_4+P_network_2_2_RI_0+P_network_2_2_AI_0+P_network_2_2_AnnP_0+P_network_2_2_RP_0+P_network_2_3_AskP_0+P_network_2_3_AnsP_0+P_network_2_3_AnsP_1+P_network_2_3_AnsP_2+P_network_2_3_AnsP_3+P_network_2_3_AnsP_4+P_network_2_3_RI_0+P_network_2_3_AI_0+P_network_2_3_AnnP_0+P_network_2_3_RP_0+P_network_2_4_AskP_0+P_network_2_4_AnsP_0+P_network_2_4_AnsP_1+P_network_2_4_AnsP_2+P_network_2_4_AnsP_3+P_network_2_4_AnsP_4+P_network_2_4_RI_0+P_network_2_4_AI_0+P_network_2_4_AnnP_0+P_network_2_4_RP_0+P_network_3_0_AskP_0+P_network_3_0_AnsP_0+P_network_3_0_AnsP_1+P_network_3_0_AnsP_2+P_network_3_0_AnsP_3+P_network_3_0_AnsP_4+P_network_3_0_RI_0+P_network_3_0_AI_0+P_network_3_0_AnnP_0+P_network_3_0_RP_0+P_network_3_1_AskP_0+P_network_3_1_AnsP_0+P_network_3_1_AnsP_1+P_network_3_1_AnsP_2+P_network_3_1_AnsP_3+P_network_3_1_AnsP_4+P_network_3_1_RI_0+P_network_3_1_AI_0+P_network_3_1_AnnP_0+P_network_3_1_RP_0+P_network_3_2_AskP_0+P_network_3_2_AnsP_0+P_network_3_2_AnsP_1+P_network_3_2_AnsP_2+P_network_3_2_AnsP_3+P_network_3_2_AnsP_4+P_network_3_2_RI_0+P_network_3_2_AI_0+P_network_3_2_AnnP_0+P_network_3_2_RP_0+P_network_3_3_AskP_0+P_network_3_3_AnsP_0+P_network_3_3_AnsP_1+P_network_3_3_AnsP_2+P_network_3_3_AnsP_3+P_network_3_3_AnsP_4+P_network_3_3_RI_0+P_network_3_3_AI_0+P_network_3_3_AnnP_0+P_network_3_3_RP_0+P_network_3_4_AskP_0+P_network_3_4_AnsP_0+P_network_3_4_AnsP_1+P_network_3_4_AnsP_2+P_network_3_4_AnsP_3+P_network_3_4_AnsP_4+P_network_3_4_RI_0+P_network_3_4_AI_0+P_network_3_4_AnnP_0+P_network_3_4_RP_0+P_network_4_0_AskP_0+P_network_4_0_AnsP_0+P_network_4_0_AnsP_1+P_network_4_0_AnsP_2+P_network_4_0_AnsP_3+P_network_4_0_AnsP_4+P_network_4_0_RI_0+P_network_4_0_AI_0+P_network_4_0_AnnP_0+P_network_4_0_RP_0+P_network_4_1_AskP_0+P_network_4_1_AnsP_0+P_network_4_1_AnsP_1+P_network_4_1_AnsP_2+P_network_4_1_AnsP_3+P_network_4_1_AnsP_4+P_network_4_1_RI_0+P_network_4_1_AI_0+P_network_4_1_AnnP_0+P_network_4_1_RP_0+P_network_4_2_AskP_0+P_network_4_2_AnsP_0+P_network_4_2_AnsP_1+P_network_4_2_AnsP_2+P_network_4_2_AnsP_3+P_network_4_2_AnsP_4+P_network_4_2_RI_0+P_network_4_2_AI_0+P_network_4_2_AnnP_0+P_network_4_2_RP_0+P_network_4_3_AskP_0+P_network_4_3_AnsP_0+P_network_4_3_AnsP_1+P_network_4_3_AnsP_2+P_network_4_3_AnsP_3+P_network_4_3_AnsP_4+P_network_4_3_RI_0+P_network_4_3_AI_0+P_network_4_3_AnnP_0+P_network_4_3_RP_0+P_network_4_4_AskP_0+P_network_4_4_AnsP_0+P_network_4_4_AnsP_1+P_network_4_4_AnsP_2+P_network_4_4_AnsP_3+P_network_4_4_AnsP_4+P_network_4_4_RI_0+P_network_4_4_AI_0+P_network_4_4_AnnP_0+P_network_4_4_RP_0 <= 12
FORMULA NeoElection-PT-4-UpperBounds-04 12 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-04,0,73.2014,1245096,1,0,7,3.17418e+06,11,1,6928,1.79507e+06,5
Min sum of variable value : 0
Maximum sum along a path : 4
Bounds property NeoElection-PT-4-UpperBounds-05 :0 <= P_masterState_0_F_0+P_masterState_0_F_1+P_masterState_0_F_2+P_masterState_0_F_3+P_masterState_0_F_4+P_masterState_0_T_0+P_masterState_0_T_1+P_masterState_0_T_2+P_masterState_0_T_3+P_masterState_0_T_4+P_masterState_1_F_0+P_masterState_1_F_1+P_masterState_1_F_2+P_masterState_1_F_3+P_masterState_1_F_4+P_masterState_1_T_0+P_masterState_1_T_1+P_masterState_1_T_2+P_masterState_1_T_3+P_masterState_1_T_4+P_masterState_2_F_0+P_masterState_2_F_1+P_masterState_2_F_2+P_masterState_2_F_3+P_masterState_2_F_4+P_masterState_2_T_0+P_masterState_2_T_1+P_masterState_2_T_2+P_masterState_2_T_3+P_masterState_2_T_4+P_masterState_3_F_0+P_masterState_3_F_1+P_masterState_3_F_2+P_masterState_3_F_3+P_masterState_3_F_4+P_masterState_3_T_0+P_masterState_3_T_1+P_masterState_3_T_2+P_masterState_3_T_3+P_masterState_3_T_4+P_masterState_4_F_0+P_masterState_4_F_1+P_masterState_4_F_2+P_masterState_4_F_3+P_masterState_4_F_4+P_masterState_4_T_0+P_masterState_4_T_1+P_masterState_4_T_2+P_masterState_4_T_3+P_masterState_4_T_4 <= 4
FORMULA NeoElection-PT-4-UpperBounds-05 4 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-05,0,73.3853,1245096,1,0,8,3.17418e+06,12,1,8004,1.79507e+06,6
Min sum of variable value : 0
Maximum sum along a path : 4
Bounds property NeoElection-PT-4-UpperBounds-06 :0 <= P_stage_0_NEG+P_stage_0_PRIM+P_stage_0_SEC+P_stage_1_NEG+P_stage_1_PRIM+P_stage_1_SEC+P_stage_2_NEG+P_stage_2_PRIM+P_stage_2_SEC+P_stage_3_NEG+P_stage_3_PRIM+P_stage_3_SEC+P_stage_4_NEG+P_stage_4_PRIM+P_stage_4_SEC <= 4
FORMULA NeoElection-PT-4-UpperBounds-06 4 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-06,0,73.5542,1245096,1,0,9,3.17418e+06,13,1,9114,1.79507e+06,7
Min sum of variable value : 0
Maximum sum along a path : 4
Bounds property NeoElection-PT-4-UpperBounds-07 :0 <= P_poll__pollEnd_0+P_poll__pollEnd_1+P_poll__pollEnd_2+P_poll__pollEnd_3+P_poll__pollEnd_4 <= 4
FORMULA NeoElection-PT-4-UpperBounds-07 4 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-07,0,73.737,1245096,1,0,10,3.17418e+06,14,1,10120,1.79507e+06,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-08 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-08 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-08,0,73.7376,1245096,1,0,10,3.17418e+06,14,1,10120,1.79507e+06,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-09 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-09 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-09,0,73.738,1245096,1,0,10,3.17418e+06,14,1,10120,1.79507e+06,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-10 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-10 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-10,0,73.7384,1245096,1,0,10,3.17418e+06,14,1,10120,1.79507e+06,8
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-11 :0 <= P_poll__networl_3_2_AnsP_1 <= 0
FORMULA NeoElection-PT-4-UpperBounds-11 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-11,0,73.8102,1245096,1,0,10,3.17418e+06,15,1,10518,1.79507e+06,9
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-12 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-12 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-12,0,73.8106,1245096,1,0,10,3.17418e+06,15,1,10518,1.79507e+06,9
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-13 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-13 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-13,0,73.8111,1245096,1,0,10,3.17418e+06,15,1,10518,1.79507e+06,9
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-14 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-14 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-14,0,73.8115,1245096,1,0,10,3.17418e+06,15,1,10518,1.79507e+06,9
Min sum of variable value : 0
Maximum sum along a path : 0
Bounds property NeoElection-PT-4-UpperBounds-15 :0 <= <= 0
FORMULA NeoElection-PT-4-UpperBounds-15 0 TECHNIQUES DECISION_DIAGRAMS TOPOLOGICAL
Model ,|S| ,Time ,Mem(kb) ,fin. SDD ,fin. DDD ,peak SDD ,peak DDD ,SDD Hom ,SDD cache peak ,DDD Hom ,DDD cachepeak ,SHom cache
NeoElection-PT-4-UpperBounds-15,0,73.8119,1245096,1,0,10,3.17418e+06,15,1,10518,1.79507e+06,9
BK_STOP 1527174166294
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution UpperBounds -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination UpperBounds -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 24, 2018 3:01:30 PM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, UpperBounds, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -smt]
May 24, 2018 3:01:30 PM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 24, 2018 3:01:30 PM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 197 ms
May 24, 2018 3:01:30 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 1830 places.
May 24, 2018 3:01:30 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2340 transitions.
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 1190 fixed domain variables (out of 1830 variables) in GAL type NeoElection_PT_4
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 1190 constant array cells/variables (out of 1830 variables) in type NeoElection_PT_4
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_poll__networl_0_0_AskP_2,P_network_2_4_AnnP_4,P_poll__networl_2_3_RP_4,P_network_1_0_AI_4,P_poll__networl_1_0_RI_4,P_network_4_1_AI_3,P_network_1_0_AskP_3,P_poll__networl_4_0_AI_1,P_poll__networl_0_0_AnnP_2,P_poll__networl_4_1_AnnP_0,P_poll__networl_3_3_AnnP_0,P_poll__networl_1_4_RI_2,P_network_4_1_RP_4,P_network_0_1_AI_4,P_network_3_2_RP_3,P_network_1_3_RP_3,P_network_2_4_RP_3,P_network_1_1_RP_2,P_network_1_0_AnnP_2,P_network_1_3_RI_4,P_poll__networl_4_2_AI_0,P_poll__networl_4_2_AI_2,P_poll__networl_2_1_AI_2,P_poll__networl_0_2_AnsP_0,P_network_3_2_AnnP_1,P_poll__networl_0_3_AnnP_0,P_network_4_1_AnnP_3,P_poll__networl_3_1_RI_4,P_network_3_0_AskP_3,P_poll__networl_4_0_RP_4,P_poll__networl_4_4_AnsP_0,P_network_0_4_AskP_3,P_poll__networl_1_2_RI_3,P_network_0_0_AnnP_3,P_network_1_1_AskP_1,P_network_3_3_AskP_1,P_network_4_1_RP_1,P_network_1_4_RI_2,P_network_0_0_RI_2,P_poll__networl_4_1_RP_2,P_poll__networl_2_3_AskP_4,P_poll__networl_1_4_AnnP_4,P_network_0_4_RI_3,P_poll__networl_1_1_AI_0,P_network_2_0_AI_4,P_network_1_2_AskP_3,P_network_1_2_AI_3,P_poll__networl_1_0_RI_1,P_poll__networl_3_1_AI_1,P_poll__networl_4_3_RI_2,P_network_4_3_AskP_3,P_poll__networl_0_2_RP_0,P_network_2_0_AnnP_2,P_poll__networl_0_1_AnnP_1,P_network_1_4_AI_4,P_network_2_1_RP_3,P_network_3_0_AI_2,P_poll__networl_2_2_AI_4,P_poll__networl_1_2_AskP_3,P_poll__networl_4_1_RI_4,P_poll__networl_2_0_AI_3,P_poll__networl_4_0_AI_0,P_network_0_4_AnnP_1,P_masterList_1_4_1,P_network_1_0_AnnP_4,P_poll__networl_2_4_AnnP_2,P_poll__networl_2_3_AnsP_0,P_network_0_2_AnnP_4,P_poll__networl_0_1_AskP_0,P_poll__networl_4_0_AskP_2,P_poll__networl_0_4_AI_2,P_poll__networl_0_3_AI_1,P_poll__networl_3_0_RI_3,P_poll__networl_0_2_AI_4,P_poll__networl_2_0_AskP_2,P_poll__networl_2_4_RI_1,P_network_3_3_RP_3,P_poll__networl_3_1_AI_2,P_poll__networl_3_1_RI_2,P_poll__networl_0_2_AnnP_1,P_poll__networl_3_1_RI_0,P_network_1_0_AI_3,P_poll__networl_1_3_AskP_2,P_network_0_1_AI_2,P_poll__networl_3_1_AskP_3,P_poll__networl_3_3_RI_3,P_poll__networl_1_4_AskP_3,P_poll__networl_1_3_AI_2,P_poll__networl_2_2_RI_4,P_poll__networl_4_0_RI_0,P_network_1_1_RP_1,P_poll__networl_2_1_AnnP_2,P_network_3_4_AskP_3,P_poll__networl_3_0_AnnP_3,P_network_3_4_AskP_2,P_network_1_3_AI_1,P_network_2_1_AnnP_2,P_network_0_3_RI_3,P_poll__networl_4_4_AskP_0,P_poll__networl_3_4_AI_2,P_poll__networl_0_2_AskP_3,P_poll__networl_4_2_AnnP_0,P_network_4_2_RI_4,P_network_3_1_AskP_4,P_poll__networl_4_3_RP_0,P_network_1_1_AnnP_3,P_poll__networl_1_0_RI_3,P_poll__networl_2_1_AskP_4,P_poll__networl_1_0_AnnP_2,P_poll__networl_4_4_RP_4,P_poll__networl_2_0_RI_0,P_network_4_2_RP_2,P_poll__networl_1_4_AskP_1,P_poll__networl_3_4_AskP_1,P_masterList_3_4_2,P_network_3_2_RI_3,P_poll__networl_1_4_AnnP_1,P_network_3_3_AnnP_3,P_poll__networl_0_3_AI_2,P_network_0_1_AskP_1,P_poll__networl_4_1_AnnP_4,P_poll__networl_3_2_RP_3,P_poll__networl_2_0_RI_2,P_network_2_3_AskP_3,P_poll__networl_1_1_AI_2,P_masterList_2_4_2,P_poll__networl_2_0_RI_3,P_poll__networl_1_4_AskP_0,P_masterList_2_4_4,P_network_3_2_RI_1,P_poll__networl_0_4_AskP_0,P_poll__networl_4_4_RI_1,P_poll__networl_3_4_RP_1,P_network_2_0_AskP_3,P_network_3_1_AnnP_4,P_poll__networl_3_0_AI_0,P_poll__networl_3_1_RP_4,P_masterList_4_4_4,P_network_0_0_AI_4,P_masterList_4_4_0,P_poll__networl_1_3_RI_3,P_network_0_2_RI_2,P_poll__networl_3_0_AskP_1,P_poll__networl_3_3_RI_2,P_network_2_2_AskP_1,P_poll__networl_2_2_AnsP_0,P_poll__networl_1_1_RI_0,P_poll__networl_1_1_RI_4,P_poll__networl_4_1_RI_0,P_poll__networl_3_2_AnnP_3,P_network_4_0_AI_2,P_poll__networl_2_2_AnnP_4,P_poll__networl_3_4_AI_4,P_poll__networl_1_3_RP_2,P_poll__networl_1_1_RP_2,P_network_3_2_AnnP_2,P_poll__networl_2_3_AskP_3,P_network_2_1_AskP_2,P_poll__networl_3_2_RP_2,P_poll__networl_4_1_AI_2,P_poll__networl_2_1_RP_1,P_poll__networl_0_4_RI_4,P_network_0_4_RI_1,P_network_2_3_AnnP_1,P_poll__networl_3_0_AnsP_0,P_network_0_2_RP_2,P_network_3_0_RP_2,P_network_4_0_AskP_3,P_poll__networl_0_4_RI_0,P_network_4_0_AnnP_3,P_poll__networl_4_0_RI_4,P_poll__networl_1_0_RP_3,P_poll__networl_4_2_RP_3,P_network_3_3_AI_2,P_network_0_1_RI_4,P_poll__networl_3_1_AnnP_0,P_network_2_1_AskP_1,P_network_3_1_RP_1,P_network_2_0_RI_3,P_poll__networl_0_2_AnnP_0,P_poll__networl_1_2_RP_0,P_network_0_1_AskP_4,P_network_2_3_RI_2,P_network_0_4_AskP_2,P_network_4_2_RP_3,P_network_4_4_AskP_1,P_network_4_4_AskP_4,P_poll__networl_1_0_AI_1,P_network_1_2_AI_4,P_poll__networl_1_0_AskP_0,P_network_2_4_RP_1,P_poll__networl_3_3_AnnP_2,P_network_3_3_RI_4,P_poll__networl_0_2_AI_1,P_network_3_4_AnnP_2,P_poll__networl_4_1_RI_2,P_poll__networl_3_0_RP_3,P_network_1_2_AnnP_3,P_poll__networl_2_1_AnsP_0,P_poll__networl_3_1_AskP_1,P_poll__networl_3_2_AnnP_2,P_network_3_3_RI_3,P_poll__networl_2_0_AskP_4,P_poll__networl_1_4_RP_3,P_poll__networl_0_1_AnnP_0,P_network_4_2_AI_4,P_poll__networl_4_3_AskP_3,P_network_2_2_RI_4,P_network_3_3_AnnP_4,P_poll__networl_4_4_RP_0,P_poll__networl_0_2_RI_0,P_poll__networl_0_3_RP_0,P_network_0_2_AskP_1,P_network_2_4_RI_4,P_network_4_4_RP_1,P_poll__networl_4_4_RI_0,P_poll__networl_0_3_AskP_2,P_network_0_4_RI_2,P_poll__networl_2_3_AskP_0,P_poll__networl_3_0_AnnP_4,P_network_0_1_AnnP_2,P_poll__networl_2_2_AnnP_0,P_poll__networl_0_0_RI_0,P_poll__networl_4_2_RP_1,P_network_2_2_AnnP_3,P_poll__networl_2_0_RP_1,P_network_1_3_AskP_2,P_poll__networl_3_2_RI_1,P_poll__networl_3_2_RI_2,P_network_0_1_AskP_2,P_poll__networl_2_2_RI_2,P_network_3_3_AskP_2,P_network_1_2_AskP_4,P_network_1_4_AI_1,P_network_3_2_AI_4,P_poll__networl_3_0_AnnP_2,P_masterList_1_4_3,P_poll__networl_4_4_AnnP_1,P_network_4_2_AI_3,P_poll__networl_4_2_AskP_4,P_poll__networl_4_1_AskP_1,P_poll__networl_3_1_RI_1,P_network_0_2_RP_3,P_poll__networl_3_3_RP_2,P_network_2_4_RI_3,P_network_3_4_RP_1,P_network_3_3_AnnP_1,P_network_3_3_RP_4,P_network_3_0_AnnP_1,P_network_0_0_RP_4,P_network_3_1_AI_2,P_poll__networl_4_0_AI_2,P_poll__networl_0_1_AskP_1,P_poll__networl_2_4_AskP_3,P_network_4_3_RP_2,P_network_3_2_RI_2,P_network_4_4_AnnP_1,P_poll__networl_2_4_AnnP_1,P_network_4_2_AskP_2,P_poll__networl_2_1_AnnP_4,P_network_2_2_AI_1,P_network_4_0_AI_4,P_network_2_2_RP_2,P_poll__networl_1_4_RI_4,P_crashed_0,P_network_2_2_RP_4,P_poll__networl_4_3_AI_2,P_network_3_0_RP_1,P_network_4_4_RI_4,P_network_2_1_AI_3,P_poll__networl_2_4_RP_0,P_poll__networl_4_3_RI_4,P_poll__networl_0_3_RP_4,P_poll__networl_2_2_AskP_0,P_poll__networl_2_0_AI_1,P_network_2_3_RI_1,P_poll__networl_0_4_AI_1,P_poll__networl_1_1_RP_3,P_network_2_4_AI_4,P_network_1_3_AnnP_1,P_poll__networl_2_4_AI_3,P_network_3_4_RP_3,P_poll__networl_2_1_AI_3,P_poll__networl_0_4_AskP_2,P_network_3_2_AskP_4,P_poll__networl_4_4_RI_4,P_network_2_2_AskP_3,P_poll__networl_2_0_AnnP_1,P_poll__networl_0_0_AI_0,P_poll__networl_4_2_RI_2,P_network_4_0_AskP_4,P_network_2_0_RI_4,P_poll__networl_3_2_AnnP_0,P_network_3_2_AI_3,P_network_4_1_RI_1,P_poll__networl_0_4_AI_0,P_network_1_1_AI_1,P_poll__networl_0_3_AnnP_2,P_network_4_2_RP_1,P_network_1_0_RP_3,P_network_2_0_RI_1,P_poll__networl_0_2_AskP_0,P_poll__networl_2_1_AnnP_0,P_poll__networl_1_4_AnsP_0,P_poll__networl_3_1_AskP_2,P_network_4_2_RI_1,P_poll__networl_0_1_AnnP_2,P_network_3_3_AI_3,P_network_4_3_AI_4,P_network_1_3_AnnP_4,P_poll__networl_0_0_RP_0,P_poll__networl_4_1_RP_3,P_poll__networl_2_3_AskP_1,P_poll__networl_0_2_RI_1,P_poll__networl_4_2_AskP_0,P_poll__networl_3_0_RI_0,P_poll__networl_2_2_AI_3,P_poll__networl_4_2_RI_4,P_poll__networl_0_0_AnnP_0,P_poll__networl_3_4_AI_3,P_network_3_4_AnnP_4,P_poll__networl_2_3_RP_1,P_poll__networl_4_2_AskP_3,P_poll__networl_0_1_AI_3,P_network_3_3_RP_2,P_poll__networl_1_4_AI_2,P_poll__networl_3_4_AskP_2,P_poll__networl_2_4_RI_3,P_poll__networl_4_4_AI_3,P_poll__networl_0_3_AI_4,P_network_4_4_AnnP_3,P_poll__networl_4_3_RP_1,P_network_4_2_RI_3,P_poll__networl_1_1_RI_2,P_poll__networl_0_3_AI_3,P_poll__networl_1_2_AnsP_0,P_network_4_4_AI_2,P_poll__networl_1_2_AI_1,P_network_1_4_RP_3,P_poll__networl_0_0_RI_1,P_network_0_4_AnnP_2,P_poll__networl_0_1_RI_4,P_poll__networl_1_1_AskP_4,P_poll__networl_2_1_AskP_3,P_poll__networl_3_3_RI_1,P_poll__networl_2_0_RP_2,P_network_4_2_AI_1,P_poll__networl_2_3_AnnP_0,P_network_4_0_RI_1,P_network_1_1_AI_2,P_network_0_1_AskP_3,P_network_0_4_RP_1,P_poll__networl_3_2_AI_4,P_poll__networl_1_0_AskP_3,P_poll__networl_2_4_AI_1,P_poll__networl_1_3_AI_4,P_poll__networl_1_3_AI_0,P_network_4_0_AskP_1,P_poll__networl_1_4_RP_4,P_poll__networl_3_3_AI_4,P_poll__networl_4_0_AnnP_4,P_poll__networl_1_2_RI_2,P_network_1_4_AnnP_4,P_poll__networl_0_1_AI_4,P_poll__networl_3_3_AskP_2,P_network_1_3_AnnP_2,P_network_4_0_AskP_2,P_dead_3,P_network_1_1_AnnP_4,P_network_2_4_AskP_2,P_poll__networl_4_2_AskP_2,P_poll__networl_0_3_AnnP_4,P_poll__networl_3_4_RI_4,P_poll__networl_2_2_AskP_1,P_poll__networl_2_0_AnnP_2,P_network_1_4_AskP_3,P_network_0_3_RI_4,P_poll__networl_4_3_RP_4,P_network_3_1_RI_1,P_network_3_4_AnnP_3,P_network_0_1_AI_3,P_network_1_1_RI_4,P_poll__networl_1_4_AnnP_3,P_poll__networl_2_4_AnnP_0,P_poll__networl_4_1_AnnP_3,P_poll__networl_1_4_RI_3,P_network_1_4_AskP_1,P_network_4_1_RI_4,P_poll__networl_0_3_AskP_4,P_poll__networl_1_2_RP_2,P_network_2_2_AskP_2,P_poll__networl_2_0_AskP_0,P_masterList_1_4_2,P_network_0_3_AI_1,P_poll__networl_0_2_RI_3,P_network_2_1_RI_4,P_poll__networl_4_0_AI_3,P_poll__networl_2_2_AskP_2,P_poll__networl_1_0_RI_0,P_poll__networl_0_0_AI_4,P_poll__networl_2_0_AI_4,P_network_3_3_RI_2,P_poll__networl_1_2_AnnP_1,P_poll__networl_1_4_AnnP_2,P_network_1_4_AskP_2,P_network_3_2_AskP_1,P_network_0_1_RP_1,P_poll__networl_3_4_RP_3,P_network_0_3_AskP_2,P_poll__networl_0_1_AnsP_0,P_network_1_2_AnnP_1,P_poll__networl_2_1_AnnP_1,P_network_3_1_RI_3,P_network_3_1_AI_1,P_network_1_3_AI_2,P_network_0_3_RP_2,P_network_4_3_AnnP_3,P_poll__networl_1_3_AskP_4,P_network_0_4_AskP_1,P_network_0_2_AI_1,P_network_0_4_RP_2,P_poll__networl_0_4_AskP_3,P_network_1_2_RP_1,P_network_1_3_RP_1,P_network_4_0_RI_2,P_poll__networl_0_4_AI_4,P_network_2_4_AskP_1,P_network_1_2_RI_1,P_network_2_0_AnnP_1,P_poll__networl_0_3_AskP_1,P_network_4_3_RP_1,P_poll__networl_2_4_AskP_1,P_network_1_3_RI_3,P_poll__networl_4_3_RI_1,P_poll__networl_0_2_AI_0,P_network_2_1_AI_2,P_poll__networl_4_3_RI_0,P_poll__networl_0_2_RP_2,P_poll__networl_2_4_RP_4,P_poll__networl_2_0_RI_1,P_poll__networl_3_3_RP_4,P_poll__networl_4_0_AnnP_3,P_network_0_0_AnnP_1,P_network_2_2_RP_1,P_network_3_2_RP_1,P_poll__networl_2_3_AnnP_4,P_network_1_2_AnnP_4,P_network_0_4_AI_4,P_network_4_0_RP_4,P_poll__networl_3_3_AnnP_3,P_network_1_4_RI_3,P_poll__networl_3_0_AI_2,P_poll__networl_3_4_RP_4,P_network_1_0_AI_1,P_network_1_0_RP_2,P_poll__networl_4_3_AnnP_2,P_poll__networl_4_0_AnnP_0,P_poll__networl_3_0_AskP_3,P_poll__networl_2_1_RP_3,P_network_2_3_AI_4,P_poll__networl_3_4_RI_1,P_network_0_3_AskP_3,P_network_2_0_RI_2,P_network_4_2_AskP_3,P_network_3_1_RP_2,P_poll__networl_0_1_AI_0,P_poll__networl_3_3_AI_3,P_network_4_4_AI_3,P_poll__networl_0_3_RP_1,P_poll__networl_0_0_AnnP_3,P_network_2_0_AnnP_4,P_network_2_2_RI_3,P_poll__networl_3_4_AnnP_0,P_network_0_2_AI_3,P_network_2_2_RP_3,P_poll__networl_0_3_AskP_0,P_network_1_0_AnnP_1,P_network_3_0_AI_3,P_poll__networl_2_3_RI_1,P_network_4_1_AskP_3,P_network_1_4_AI_3,P_poll__networl_0_3_RI_0,P_network_3_2_AskP_3,P_poll__networl_4_3_AI_3,P_poll__networl_3_0_RP_4,P_masterList_3_4_0,P_poll__networl_2_4_AI_2,P_poll__networl_4_4_AnnP_3,P_poll__networl_3_4_AskP_3,P_network_1_2_RI_4,P_network_4_1_AskP_4,P_poll__networl_4_1_AnnP_2,P_network_2_4_AskP_4,P_poll__networl_1_3_AnnP_2,P_network_2_3_AskP_2,P_network_2_4_AnnP_3,P_poll__networl_1_1_AI_1,P_electionFailed_4,P_network_1_2_RP_2,P_poll__networl_0_3_RP_2,P_poll__networl_0_2_AnnP_3,P_network_0_1_AnnP_3,P_poll__networl_3_4_RI_2,P_poll__networl_3_1_RP_2,P_network_1_0_RI_3,P_poll__networl_1_4_AskP_4,P_network_4_4_AI_4,P_poll__networl_2_0_RP_3,P_network_4_2_AnnP_2,P_poll__networl_0_3_AI_0,P_network_4_3_RP_4,P_poll__networl_0_0_RP_1,P_poll__networl_4_2_AI_3,P_poll__networl_2_4_RP_1,P_poll__networl_0_0_RP_2,P_network_3_4_RI_3,P_poll__networl_0_2_AnnP_2,P_poll__networl_1_1_AskP_2,P_poll__networl_4_1_RI_3,P_network_3_0_RI_1,P_network_2_3_RI_4,P_network_0_1_RP_4,P_poll__networl_3_4_RP_2,P_network_3_0_AnnP_4,P_network_3_0_AskP_4,P_poll__networl_1_1_RI_1,P_poll__networl_2_1_AskP_1,P_network_0_0_AI_3,P_masterList_1_4_0,P_network_4_2_RP_4,P_network_0_3_AI_2,P_network_3_1_AskP_2,P_network_3_0_AnnP_3,P_network_2_0_AnnP_3,P_network_4_2_AskP_1,P_network_3_0_RP_4,P_masterList_1_4_4,P_network_2_3_RP_3,P_poll__networl_1_4_RI_0,P_poll__networl_4_4_AI_4,P_network_4_3_RI_1,P_poll__networl_2_1_AI_1,P_network_0_2_RI_4,P_network_2_3_AnnP_3,P_poll__networl_1_1_AnnP_0,P_poll__networl_3_1_RP_0,P_poll__networl_4_2_AnnP_1,P_poll__networl_4_1_RP_4,P_network_2_3_AI_3,P_network_4_3_AnnP_1,P_poll__networl_3_0_RP_1,P_network_3_3_AI_1,P_network_3_1_RI_4,P_poll__networl_1_2_RP_3,P_poll__networl_0_2_RI_4,P_poll__networl_0_0_AI_1,P_poll__networl_3_2_AskP_1,P_network_2_4_RP_4,P_poll__networl_4_0_AnnP_1,P_network_0_3_AnnP_1,P_network_4_4_RI_1,P_poll__networl_3_4_AI_1,P_poll__networl_1_0_AnnP_1,P_poll__networl_2_2_RP_4,P_poll__networl_0_4_AnsP_0,P_network_2_3_AI_2,P_network_3_3_AskP_4,P_poll__networl_2_3_AI_2,P_poll__networl_4_2_AI_4,P_poll__networl_3_0_RI_2,P_network_0_2_AI_4,P_poll__networl_1_0_AskP_1,P_poll__networl_4_0_RP_1,P_poll__networl_3_2_RP_1,P_network_4_3_RP_3,P_network_0_2_AI_2,P_poll__networl_2_1_AI_4,P_network_4_4_RI_3,P_poll__networl_3_3_RP_1,P_network_0_2_AskP_4,P_network_3_3_AI_4,P_poll__networl_2_4_AskP_0,P_network_0_3_AskP_1,P_network_3_0_RI_4,P_poll__networl_0_4_RI_2,P_poll__networl_2_2_AI_0,P_poll__networl_4_2_RI_0,P_poll__networl_0_4_AskP_1,P_poll__networl_1_3_AnsP_0,P_poll__networl_2_1_RP_4,P_poll__networl_1_3_AskP_0,P_network_3_4_AI_3,P_network_2_1_AnnP_1,P_poll__networl_1_3_AskP_1,P_poll__networl_1_3_RI_1,P_poll__networl_0_2_AnnP_4,P_network_0_3_AskP_4,P_poll__networl_0_1_AskP_2,P_poll__networl_1_0_AI_4,P_poll__networl_3_1_AnnP_3,P_poll__networl_3_2_AskP_3,P_poll__networl_4_0_AnsP_0,P_network_1_2_RI_2,P_poll__networl_3_3_AnsP_0,P_poll__networl_0_1_RI_3,P_poll__networl_3_2_AskP_4,P_network_1_1_AI_3,P_network_1_0_AskP_2,P_electionFailed_1,P_poll__networl_4_1_AI_0,P_network_3_0_AI_4,P_poll__networl_3_1_AI_3,P_poll__networl_4_0_RI_3,P_poll__networl_2_3_AnnP_1,P_network_3_3_RI_1,P_poll__networl_3_2_AnsP_0,P_dead_1,P_network_1_1_AI_4,P_poll__networl_2_0_AnnP_0,P_poll__networl_3_4_AskP_4,P_network_0_2_AnnP_2,P_network_1_4_AskP_4,P_network_2_2_AskP_4,P_network_3_4_AskP_1,P_poll__networl_4_0_AI_4,P_network_3_1_AnnP_2,P_network_2_4_AI_1,P_poll__networl_1_0_AnnP_0,P_poll__networl_0_0_AskP_0,P_poll__networl_2_3_RP_2,P_network_2_1_AI_4,P_poll__networl_3_3_RI_4,P_network_2_4_AnnP_1,P_poll__networl_4_0_RP_0,P_network_2_1_AskP_4,P_poll__networl_1_1_AI_3,P_poll__networl_2_2_AnnP_1,P_poll__networl_2_3_AI_3,P_poll__networl_2_4_AI_4,P_poll__networl_1_4_AskP_2,P_poll__networl_2_2_AI_2,P_poll__networl_0_4_RP_3,P_poll__networl_4_4_AskP_4,P_poll__networl_0_4_AskP_4,P_network_0_2_AskP_3,P_network_4_1_RI_3,P_network_0_2_RI_1,P_network_0_4_AI_1,P_network_3_0_AskP_2,P_poll__networl_4_3_AI_4,P_poll__networl_4_1_AskP_4,P_network_4_1_RI_2,P_network_1_2_RI_3,P_network_1_3_RI_2,P_network_2_1_AskP_3,P_network_1_4_RI_1,P_network_0_4_AskP_4,P_poll__networl_1_0_RP_1,P_network_4_1_AI_4,P_poll__networl_1_1_AskP_0,P_masterList_3_4_1,P_poll__networl_1_1_AskP_3,P_poll__networl_1_4_AI_1,P_network_0_3_AI_3,P_network_0_3_AnnP_4,P_network_4_3_AskP_4,P_network_4_4_AnnP_2,P_poll__networl_4_2_AnnP_3,P_network_1_1_AskP_4,P_poll__networl_0_0_AI_3,P_poll__networl_0_0_RP_3,P_network_2_4_AI_3,P_poll__networl_4_2_RI_1,P_poll__networl_1_1_RP_1,P_network_3_1_RP_4,P_poll__networl_0_4_RI_3,P_network_4_1_AnnP_1,P_poll__networl_3_0_AskP_0,P_poll__networl_4_0_AskP_4,P_poll__networl_0_4_AnnP_3,P_network_0_3_AnnP_2,P_poll__networl_3_2_RP_4,P_poll__networl_4_3_AnsP_0,P_network_4_3_AI_2,P_network_3_0_AnnP_2,P_masterList_2_4_3,P_poll__networl_2_1_AnnP_3,P_poll__networl_4_4_AnnP_2,P_poll__networl_4_4_AskP_3,P_poll__networl_0_1_AnnP_4,P_network_3_1_AI_3,P_network_1_3_AnnP_3,P_poll__networl_1_3_AnnP_1,P_poll__networl_2_1_RP_2,P_network_3_0_RI_2,P_poll__networl_2_3_RI_0,P_network_4_1_AskP_2,P_poll__networl_0_0_RI_2,P_poll__networl_0_0_RI_3,P_poll__networl_2_3_AI_4,P_network_4_2_AskP_4,P_crashed_3,P_network_4_1_AnnP_4,P_poll__networl_0_1_AI_1,P_poll__networl_0_4_RP_0,P_electionFailed_2,P_masterList_2_4_0,P_network_0_1_AnnP_4,P_network_3_3_RP_1,P_poll__networl_2_2_AnnP_3,P_network_2_0_AI_2,P_poll__networl_1_3_RP_1,P_poll__networl_3_2_AskP_2,P_poll__networl_1_2_RI_0,P_network_4_3_AskP_2,P_poll__networl_3_1_RI_3,P_poll__networl_2_1_RP_0,P_network_1_0_RI_2,P_poll__networl_1_1_AskP_1,P_network_1_4_RP_2,P_network_0_2_RI_3,P_poll__networl_3_2_RP_0,P_poll__networl_4_4_AI_2,P_network_3_1_RI_2,P_network_0_0_RP_1,P_poll__networl_0_3_RI_1,P_poll__networl_1_2_AI_2,P_network_1_4_RP_1,P_network_2_1_RI_1,P_network_3_1_AI_4,P_network_2_0_AskP_2,P_poll__networl_4_0_AnnP_2,P_network_4_0_RP_3,P_poll__networl_2_2_RI_3,P_electionFailed_0,P_network_1_1_RI_2,P_network_0_1_RP_2,P_poll__networl_4_3_RI_3,P_poll__networl_3_3_AnnP_4,P_network_4_0_RP_1,P_poll__networl_0_1_AI_2,P_poll__networl_1_1_AI_4,P_poll__networl_4_4_AskP_1,P_poll__networl_1_1_AnnP_2,P_poll__networl_2_3_RP_3,P_poll__networl_4_1_RP_1,P_network_4_2_AI_2,P_poll__networl_3_0_AI_3,P_poll__networl_0_0_RP_4,P_poll__networl_2_0_AnnP_3,P_network_0_0_RP_3,P_network_0_4_RP_3,P_poll__networl_4_0_AskP_0,P_network_4_3_AI_3,P_network_0_2_RP_1,P_network_1_1_AnnP_2,P_network_0_1_RI_2,P_poll__networl_0_3_AnnP_3,P_network_1_1_RI_3,P_poll__networl_2_2_RP_1,P_network_0_0_AI_1,P_network_2_1_AI_1,P_network_1_0_RP_1,P_poll__networl_4_3_AnnP_0,P_poll__networl_1_3_AI_1,P_poll__networl_3_2_AI_3,P_network_1_4_AI_2,P_poll__networl_3_1_AskP_0,P_poll__networl_0_0_AnsP_0,P_poll__networl_1_3_RI_0,P_network_4_3_RI_3,P_network_2_0_RP_1,P_poll__networl_0_4_RP_1,P_poll__networl_1_3_RP_3,P_poll__networl_0_1_AskP_4,P_poll__networl_0_0_AskP_1,P_poll__networl_0_1_RI_0,P_poll__networl_1_1_AnsP_0,P_network_0_1_RI_3,P_poll__networl_3_2_AnnP_1,P_network_3_4_RI_4,P_network_0_2_AskP_2,P_poll__networl_2_4_RI_0,P_poll__networl_3_3_AskP_1,P_poll__networl_4_3_AskP_0,P_poll__networl_3_3_AI_1,P_poll__networl_2_3_RI_3,P_poll__networl_2_2_RP_0,P_poll__networl_1_4_RP_2,P_poll__networl_2_0_AI_0,P_poll__networl_4_0_RP_2,P_network_1_3_AskP_3,P_masterList_4_4_1,P_poll__networl_0_2_RP_1,P_poll__networl_4_4_AskP_2,P_network_0_2_AnnP_1,P_network_0_0_AskP_4,P_poll__networl_3_2_AnnP_4,P_poll__networl_3_2_AskP_0,P_network_2_2_RI_1,P_poll__networl_2_0_RI_4,P_network_2_2_AnnP_2,P_poll__networl_3_0_AI_1,P_masterList_2_4_1,P_network_3_0_RI_3,P_poll__networl_1_0_AnnP_3,P_network_0_2_AnnP_3,P_poll__networl_4_2_RP_0,P_poll__networl_4_4_AnnP_4,P_network_2_0_RP_2,P_poll__networl_0_1_RP_1,P_poll__networl_0_2_AI_3,P_poll__networl_3_4_RI_0,P_poll__networl_4_0_RI_2,P_dead_4,P_poll__networl_1_2_RI_4,P_masterList_0_4_2,P_network_2_1_RP_4,P_poll__networl_1_0_AnsP_0,P_network_3_1_AskP_1,P_poll__networl_0_1_AskP_3,P_poll__networl_0_3_RI_4,P_network_2_0_AI_3,P_network_2_3_RP_1,P_masterList_3_4_3,P_poll__networl_3_3_RI_0,P_poll__networl_3_0_RP_0,P_network_1_0_AskP_4,P_poll__networl_1_0_AI_0,P_poll__networl_1_0_AskP_2,P_poll__networl_4_4_RP_2,P_network_2_1_RI_2,P_poll__networl_3_1_AI_4,P_poll__networl_2_3_RP_0,P_poll__networl_0_4_AnnP_4,P_network_2_3_AnnP_4,P_poll__networl_0_1_RP_2,P_network_2_0_AI_1,P_network_3_2_AI_1,P_poll__networl_2_2_AskP_4,P_network_1_3_AI_3,P_poll__networl_0_4_AnnP_0,P_network_1_0_RI_4,P_poll__networl_3_2_RI_4,P_poll__networl_2_0_RP_0,P_poll__networl_1_1_RI_3,P_network_1_2_RP_3,P_poll__networl_2_3_AI_0,P_network_1_2_RP_4,P_poll__networl_0_1_RP_0,P_poll__networl_1_2_AnnP_3,P_poll__networl_1_4_RP_1,P_network_1_0_RP_4,P_network_4_1_AnnP_2,P_poll__networl_0_4_RI_1,P_poll__networl_4_3_RP_3,P_poll__networl_2_2_RI_0,P_network_0_0_AI_2,P_poll__networl_2_2_RP_3,P_network_0_0_AskP_2,P_poll__networl_3_1_RP_3,P_network_0_4_RP_4,P_network_0_3_RI_1,P_network_3_0_RP_3,P_poll__networl_2_1_AskP_2,P_poll__networl_3_4_AskP_0,P_network_2_1_RP_2,P_network_3_2_RP_2,P_dead_2,P_poll__networl_2_1_RI_3,P_network_1_0_AnnP_3,P_poll__networl_0_2_AskP_2,P_poll__networl_1_0_AnnP_4,P_network_1_2_AI_1,P_poll__networl_1_3_RP_4,P_poll__networl_1_3_AskP_3,P_poll__networl_0_0_AnnP_1,P_network_2_2_AnnP_4,P_poll__networl_2_4_RI_2,P_network_2_0_AskP_4,P_network_4_4_AI_1,P_poll__networl_1_2_AskP_0,P_poll__networl_3_0_AskP_2,P_network_0_2_RP_4,P_poll__networl_2_2_AskP_3,P_network_2_2_AI_4,P_network_1_0_AskP_1,P_network_1_3_RP_2,P_network_1_2_AnnP_2,P_poll__networl_4_0_RI_1,P_network_4_4_AnnP_4,P_network_0_3_AI_4,P_poll__networl_4_3_RP_2,P_poll__networl_0_1_RI_2,P_poll__networl_0_0_AskP_4,P_poll__networl_2_4_RP_3,P_network_1_1_AskP_3,P_poll__networl_2_0_AnnP_4,P_poll__networl_1_1_RP_0,P_network_3_4_RP_2,P_poll__networl_4_4_RP_1,P_network_3_3_AnnP_2,P_poll__networl_4_1_AnsP_0,P_network_0_3_AnnP_3,P_network_0_4_AI_3,P_network_2_4_AskP_3,P_network_2_2_RI_2,P_poll__networl_4_4_AI_1,P_poll__networl_3_4_AnnP_2,P_network_2_4_RI_2,P_network_4_4_RP_3,P_poll__networl_3_2_RI_3,P_poll__networl_2_1_RI_4,P_network_0_0_AnnP_4,P_electionFailed_3,P_poll__networl_2_4_AnnP_4,P_poll__networl_2_1_RI_1,P_poll__networl_3_0_AskP_4,P_network_3_0_AI_1,P_network_4_1_AskP_1,P_poll__networl_1_4_AnnP_0,P_network_1_3_AskP_1,P_poll__networl_3_0_AI_4,P_network_3_1_AskP_3,P_poll__networl_1_0_RP_4,P_network_2_3_AI_1,P_network_0_4_AnnP_3,P_network_4_2_RI_2,P_poll__networl_2_3_AnnP_2,P_poll__networl_3_1_AnsP_0,P_poll__networl_1_4_RP_0,P_poll__networl_0_4_AnnP_2,P_poll__networl_3_2_RI_0,P_poll__networl_0_0_AskP_3,P_network_4_0_AnnP_2,P_poll__networl_4_3_AnnP_1,P_network_4_4_RP_4,P_poll__networl_0_3_RP_3,P_network_4_3_AskP_1,P_poll__networl_2_3_RI_4,P_poll__networl_2_2_RI_1,P_network_3_2_RI_4,P_network_2_2_AI_2,P_poll__networl_2_2_RP_2,P_poll__networl_1_2_AnnP_2,P_poll__networl_3_0_AnnP_1,P_poll__networl_3_3_RP_3,P_network_4_3_AnnP_2,P_poll__networl_2_1_AskP_0,P_poll__networl_4_4_AnnP_0,P_poll__networl_1_0_AI_3,P_poll__networl_1_1_RP_4,P_poll__networl_4_1_RI_1,P_poll__networl_1_2_RP_1,P_network_1_3_AI_4,P_poll__networl_0_2_RI_2,P_poll__networl_2_4_AskP_2,P_poll__networl_4_2_AI_1,P_poll__networl_4_1_AI_3,P_network_1_2_AskP_2,P_network_2_2_AnnP_1,P_masterList_0_4_1,P_network_2_4_AnnP_2,P_network_4_3_AI_1,P_poll__networl_1_3_AnnP_4,P_network_1_4_RP_4,P_network_4_3_AnnP_4,P_crashed_2,P_network_4_4_RP_2,P_poll__networl_2_1_AI_0,P_network_1_0_AI_2,P_network_2_3_AskP_1,P_poll__networl_3_1_RP_1,P_network_4_0_AnnP_4,P_dead_0,P_network_2_0_AskP_1,P_network_3_0_AskP_1,P_network_3_2_AnnP_4,P_poll__networl_3_0_AnnP_0,P_network_0_0_RI_1,P_network_4_3_RI_2,P_poll__networl_4_3_AnnP_4,P_poll__networl_3_4_AnsP_0,P_network_1_1_RP_3,P_masterList_4_4_2,P_poll__networl_0_2_AI_2,P_network_2_1_RP_1,P_masterList_0_4_0,P_poll__networl_1_2_AI_4,P_poll__networl_1_4_AI_0,P_network_1_1_AnnP_1,P_poll__networl_1_2_RP_4,P_poll__networl_1_0_RI_2,P_network_3_2_AskP_2,P_network_3_4_AI_2,P_network_0_3_RP_1,P_network_4_3_RI_4,P_poll__networl_3_4_AnnP_4,P_poll__networl_1_3_RP_0,P_network_0_4_RI_4,P_poll__networl_1_1_AnnP_1,P_poll__networl_1_4_RI_1,P_poll__networl_0_4_RP_2,P_network_0_1_RP_3,P_masterList_3_4_4,P_poll__networl_4_2_RP_4,P_network_3_1_AnnP_3,P_poll__networl_1_2_AnnP_4,P_poll__networl_1_1_AnnP_3,P_poll__networl_4_3_AI_0,P_poll__networl_0_2_RP_3,P_poll__networl_4_0_AskP_3,P_network_0_0_RI_3,P_network_3_4_RI_1,P_poll__networl_3_1_AskP_4,P_poll__networl_4_4_RI_2,P_network_0_3_RP_4,P_network_2_1_AnnP_4,P_network_3_1_AnnP_1,P_network_3_4_AskP_4,P_network_0_0_AskP_3,P_network_2_2_AI_3,P_network_4_4_RI_2,P_masterList_0_4_3,P_poll__networl_0_3_AnsP_0,P_network_3_4_AI_4,P_poll__networl_2_0_AI_2,P_network_1_3_RI_1,P_poll__networl_1_0_AskP_4,P_network_3_4_RI_2,P_poll__networl_1_0_RP_0,P_poll__networl_3_0_RP_2,P_network_0_1_AnnP_1,P_poll__networl_1_2_AskP_2,P_poll__networl_2_4_AnnP_3,P_poll__networl_4_1_AnnP_1,P_network_1_3_RP_4,P_poll__networl_2_4_RP_2,P_poll__networl_4_0_RP_3,P_poll__networl_0_2_AskP_4,P_network_2_4_RI_1,P_network_1_3_AskP_4,P_poll__networl_2_0_RP_4,P_poll__networl_2_4_AnsP_0,P_network_3_4_RP_4,P_poll__networl_0_4_AnnP_1,P_network_2_3_AnnP_2,P_poll__networl_3_1_AnnP_2,P_poll__networl_1_2_AI_0,P_poll__networl_4_4_RP_3,P_network_0_3_RI_2,P_network_3_2_AI_2,P_network_4_1_AI_2,P_network_0_0_RP_2,P_poll__networl_4_1_RP_0,P_network_4_2_AnnP_1,P_network_4_2_AnnP_4,P_poll__networl_2_4_AI_0,P_crashed_4,P_poll__networl_1_3_RI_4,P_poll__networl_3_4_RP_0,P_network_4_1_AI_1,P_poll__networl_3_2_AI_0,P_masterList_4_4_3,P_poll__networl_1_2_AskP_4,P_network_2_1_AnnP_3,P_poll__networl_3_1_AnnP_4,P_network_0_0_AskP_1,P_poll__networl_3_3_RP_0,P_poll__networl_2_0_AskP_3,P_network_4_1_RP_3,P_poll__networl_3_3_AskP_0,P_network_4_0_RP_2,P_network_4_0_AnnP_1,P_network_1_4_RI_4,P_poll__networl_3_4_AnnP_3,P_network_4_0_RI_3,P_poll__networl_1_0_AI_2,P_poll__networl_2_3_AI_1,P_poll__networl_4_3_AnnP_3,P_poll__networl_1_2_AnnP_0,P_poll__networl_3_2_AI_2,P_poll__networl_4_3_AskP_1,P_poll__networl_0_1_AnnP_3,P_poll__networl_0_3_AskP_3,P_network_2_4_RP_2,P_network_1_4_AnnP_3,P_poll__networl_1_2_RI_1,P_poll__networl_4_4_AI_0,P_poll__networl_2_2_AI_1,P_poll__networl_1_0_RP_2,P_network_0_0_AnnP_2,P_poll__networl_0_1_RP_4,P_poll__networl_0_1_RP_3,P_network_0_4_AnnP_4,P_poll__networl_2_3_AskP_2,P_poll__networl_4_2_AnnP_2,P_poll__networl_0_2_AskP_1,P_poll__networl_4_2_RP_2,P_poll__networl_3_3_AnnP_1,P_poll__networl_0_3_AnnP_1,P_poll__networl_0_4_AI_3,P_network_1_4_AnnP_1,P_poll__networl_2_0_AnsP_0,P_poll__networl_4_1_AskP_3,P_poll__networl_2_3_RI_2,P_network_1_0_RI_1,P_network_2_0_RP_3,P_network_4_0_AI_1,P_poll__networl_1_1_AnnP_4,P_poll__networl_1_3_AnnP_3,P_poll__networl_1_4_AI_3,P_poll__networl_0_0_AnnP_4,P_network_1_1_RP_4,P_poll__networl_4_1_AskP_2,P_poll__networl_2_0_AskP_1,P_poll__networl_3_3_AI_0,P_poll__networl_4_4_RI_3,P_poll__networl_3_2_AI_1,P_network_3_2_RP_4,P_poll__networl_4_2_AnsP_0,P_poll__networl_3_3_AskP_4,P_poll__networl_1_3_RI_2,P_poll__networl_0_0_AI_2,P_network_1_4_AnnP_2,P_network_4_0_AI_3,P_network_4_4_AskP_2,P_poll__networl_3_0_RI_4,P_poll__networl_3_3_AI_2,P_poll__networl_2_4_RI_4,P_network_0_1_AI_1,P_network_1_1_RI_1,P_poll__networl_4_2_AnnP_4,P_network_4_1_RP_2,P_network_2_1_RI_3,P_poll__networl_2_4_AskP_4,P_poll__networl_3_4_AI_0,P_poll__networl_0_4_RP_4,P_network_2_3_RI_3,P_network_4_2_AnnP_3,P_poll__networl_1_2_AskP_1,P_network_0_3_RP_3,P_network_2_3_RP_4,P_network_3_3_AskP_3,P_poll__networl_4_1_AI_4,P_poll__networl_1_3_AnnP_0,P_poll__networl_1_2_AI_3,P_poll__networl_3_4_RI_3,P_poll__networl_4_0_AskP_1,P_network_3_4_AnnP_1,P_poll__networl_3_0_RI_1,P_network_0_1_RI_1,P_poll__networl_0_0_RI_4,P_masterList_0_4_4,P_poll__networl_0_3_RI_3,P_poll__networl_3_3_AskP_3,P_network_0_4_AI_2,P_network_3_4_AI_1,P_poll__networl_3_4_AnnP_1,P_network_1_1_AskP_2,P_poll__networl_1_4_AI_4,P_poll__networl_2_2_AnnP_2,P_network_1_2_AskP_1,P_network_4_4_AskP_3,P_network_2_0_RP_4,P_network_3_1_RP_3,P_network_3_2_AnnP_3,P_poll__networl_4_1_AI_1,P_crashed_1,P_poll__networl_1_3_AI_3,P_poll__networl_4_1_AskP_0,P_network_1_2_AI_2,P_poll__networl_2_1_RI_2,P_poll__networl_2_3_AnnP_3,P_network_2_4_AI_2,P_poll__networl_3_1_AnnP_1,P_poll__networl_2_1_RI_0,P_poll__networl_0_1_RI_1,P_poll__networl_4_3_AskP_4,P_network_0_0_RI_4,P_network_2_3_RP_2,P_poll__networl_4_3_AskP_2,P_network_4_0_RI_4,P_poll__networl_4_2_AskP_1,P_network_2_3_AskP_4,P_poll__networl_4_3_AI_1,P_poll__networl_0_2_RP_4,P_poll__networl_4_2_RI_3,P_poll__networl_3_1_AI_0,P_poll__networl_0_3_RI_2,
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 1265 fixed domain variables (out of 1830 variables) in GAL type NeoElection_PT_4
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: Found a total of 1265 constant array cells/variables (out of 1830 variables) in type NeoElection_PT_4
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.Simplifier printConstantVars
INFO: P_poll__networl_0_0_AskP_2,P_network_2_4_AnnP_4,P_poll__networl_2_3_RP_4,P_network_1_0_AI_4,P_poll__networl_1_0_RI_4,P_network_4_1_AI_3,P_masterList_4_1_4,P_masterList_4_2_2,P_network_1_0_AskP_3,P_poll__networl_4_0_AI_1,P_poll__networl_0_0_AnnP_2,P_poll__networl_4_1_AnnP_0,P_poll__networl_3_3_AnnP_0,P_poll__networl_1_4_RI_2,P_network_4_1_RP_4,P_network_0_1_AI_4,P_network_3_2_RP_3,P_network_1_3_RP_3,P_network_2_4_RP_3,P_network_1_1_RP_2,P_network_1_0_AnnP_2,P_network_1_3_RI_4,P_poll__networl_4_2_AI_0,P_poll__networl_4_2_AI_2,P_poll__networl_2_1_AI_2,P_poll__networl_0_2_AnsP_0,P_network_3_2_AnnP_1,P_poll__networl_0_3_AnnP_0,P_network_4_1_AnnP_3,P_poll__networl_3_1_RI_4,P_masterList_1_3_2,P_network_3_0_AskP_3,P_poll__networl_4_0_RP_4,P_poll__networl_4_4_AnsP_0,P_network_0_4_AskP_3,P_poll__networl_1_2_RI_3,P_network_0_0_AnnP_3,P_network_1_1_AskP_1,P_network_3_3_AskP_1,P_network_4_1_RP_1,P_network_1_4_RI_2,P_network_0_0_RI_2,P_poll__networl_4_1_RP_2,P_poll__networl_2_3_AskP_4,P_poll__networl_1_4_AnnP_4,P_network_0_4_RI_3,P_poll__networl_1_1_AI_0,P_network_2_0_AI_4,P_network_1_2_AskP_3,P_network_1_2_AI_3,P_poll__networl_1_0_RI_1,P_poll__networl_3_1_AI_1,P_poll__networl_4_3_RI_2,P_network_4_3_AskP_3,P_poll__networl_0_2_RP_0,P_network_2_0_AnnP_2,P_poll__networl_0_1_AnnP_1,P_masterList_2_3_2,P_network_1_4_AI_4,P_network_2_1_RP_3,P_network_3_0_AI_2,P_poll__networl_2_2_AI_4,P_poll__networl_1_2_AskP_3,P_poll__networl_4_1_RI_4,P_masterList_4_1_2,P_masterList_3_1_3,P_masterList_4_3_2,P_poll__networl_2_0_AI_3,P_poll__networl_4_0_AI_0,P_network_0_4_AnnP_1,P_masterList_1_4_1,P_network_1_0_AnnP_4,P_poll__networl_2_4_AnnP_2,P_poll__networl_2_3_AnsP_0,P_network_0_2_AnnP_4,P_poll__networl_0_1_AskP_0,P_poll__networl_4_0_AskP_2,P_poll__networl_0_4_AI_2,P_poll__networl_0_3_AI_1,P_poll__networl_3_0_RI_3,P_poll__networl_0_2_AI_4,P_poll__networl_2_0_AskP_2,P_masterList_3_1_0,P_poll__networl_2_4_RI_1,P_network_3_3_RP_3,P_poll__networl_3_1_AI_2,P_poll__networl_3_1_RI_2,P_poll__networl_0_2_AnnP_1,P_poll__networl_3_1_RI_0,P_network_1_0_AI_3,P_poll__networl_1_3_AskP_2,P_masterList_3_2_0,P_network_0_1_AI_2,P_poll__networl_3_1_AskP_3,P_poll__networl_3_3_RI_3,P_poll__networl_1_4_AskP_3,P_poll__networl_1_3_AI_2,P_poll__networl_2_2_RI_4,P_poll__networl_4_0_RI_0,P_network_1_1_RP_1,P_poll__networl_2_1_AnnP_2,P_network_3_4_AskP_3,P_poll__networl_3_0_AnnP_3,P_network_3_4_AskP_2,P_masterList_0_1_3,P_network_1_3_AI_1,P_network_2_1_AnnP_2,P_network_0_3_RI_3,P_poll__networl_4_4_AskP_0,P_poll__networl_3_4_AI_2,P_poll__networl_0_2_AskP_3,P_poll__networl_4_2_AnnP_0,P_network_4_2_RI_4,P_masterList_0_2_1,P_network_3_1_AskP_4,P_poll__networl_4_3_RP_0,P_network_1_1_AnnP_3,P_poll__networl_1_0_RI_3,P_poll__networl_2_1_AskP_4,P_poll__networl_1_0_AnnP_2,P_poll__networl_4_4_RP_4,P_poll__networl_2_0_RI_0,P_network_4_2_RP_2,P_poll__networl_1_4_AskP_1,P_poll__networl_3_4_AskP_1,P_masterList_3_4_2,P_network_3_2_RI_3,P_poll__networl_1_4_AnnP_1,P_network_3_3_AnnP_3,P_poll__networl_0_3_AI_2,P_network_0_1_AskP_1,P_poll__networl_4_1_AnnP_4,P_poll__networl_3_2_RP_3,P_poll__networl_2_0_RI_2,P_network_2_3_AskP_3,P_poll__networl_1_1_AI_2,P_masterList_2_4_2,P_poll__networl_2_0_RI_3,P_poll__networl_1_4_AskP_0,P_masterList_2_4_4,P_network_3_2_RI_1,P_poll__networl_0_4_AskP_0,P_poll__networl_4_4_RI_1,P_poll__networl_3_4_RP_1,P_network_2_0_AskP_3,P_network_3_1_AnnP_4,P_poll__networl_3_0_AI_0,P_poll__networl_3_1_RP_4,P_masterList_4_4_4,P_network_0_0_AI_4,P_masterList_4_4_0,P_poll__networl_1_3_RI_3,P_network_0_2_RI_2,P_poll__networl_3_0_AskP_1,P_poll__networl_3_3_RI_2,P_masterList_0_3_3,P_network_2_2_AskP_1,P_poll__networl_2_2_AnsP_0,P_poll__networl_1_1_RI_0,P_poll__networl_1_1_RI_4,P_poll__networl_4_1_RI_0,P_masterList_0_1_1,P_poll__networl_3_2_AnnP_3,P_network_4_0_AI_2,P_poll__networl_2_2_AnnP_4,P_poll__networl_3_4_AI_4,P_poll__networl_1_3_RP_2,P_masterList_4_1_0,P_poll__networl_1_1_RP_2,P_network_3_2_AnnP_2,P_poll__networl_2_3_AskP_3,P_network_2_1_AskP_2,P_poll__networl_3_2_RP_2,P_poll__networl_4_1_AI_2,P_poll__networl_2_1_RP_1,P_poll__networl_0_4_RI_4,P_network_0_4_RI_1,P_masterList_0_3_1,P_masterList_2_2_3,P_network_2_3_AnnP_1,P_poll__networl_3_0_AnsP_0,P_network_0_2_RP_2,P_network_3_0_RP_2,P_network_4_0_AskP_3,P_poll__networl_0_4_RI_0,P_network_4_0_AnnP_3,P_poll__networl_4_0_RI_4,P_poll__networl_1_0_RP_3,P_poll__networl_4_2_RP_3,P_masterList_4_2_3,P_network_3_3_AI_2,P_network_0_1_RI_4,P_poll__networl_3_1_AnnP_0,P_network_2_1_AskP_1,P_network_3_1_RP_1,P_network_2_0_RI_3,P_poll__networl_0_2_AnnP_0,P_poll__networl_1_2_RP_0,P_network_0_1_AskP_4,P_network_2_3_RI_2,P_masterList_3_3_2,P_network_0_4_AskP_2,P_network_4_2_RP_3,P_network_4_4_AskP_1,P_network_4_4_AskP_4,P_poll__networl_1_0_AI_1,P_network_1_2_AI_4,P_poll__networl_1_0_AskP_0,P_network_2_4_RP_1,P_poll__networl_3_3_AnnP_2,P_network_3_3_RI_4,P_poll__networl_0_2_AI_1,P_network_3_4_AnnP_2,P_poll__networl_4_1_RI_2,P_masterList_2_2_2,P_poll__networl_3_0_RP_3,P_network_1_2_AnnP_3,P_poll__networl_2_1_AnsP_0,P_poll__networl_3_1_AskP_1,P_poll__networl_3_2_AnnP_2,P_network_3_3_RI_3,P_poll__networl_2_0_AskP_4,P_poll__networl_1_4_RP_3,P_poll__networl_0_1_AnnP_0,P_network_4_2_AI_4,P_poll__networl_4_3_AskP_3,P_network_2_2_RI_4,P_network_3_3_AnnP_4,P_poll__networl_4_4_RP_0,P_poll__networl_0_2_RI_0,P_poll__networl_0_3_RP_0,P_masterList_0_2_2,P_network_0_2_AskP_1,P_network_2_4_RI_4,P_network_4_4_RP_1,P_poll__networl_4_4_RI_0,P_masterList_3_3_4,P_poll__networl_0_3_AskP_2,P_network_0_4_RI_2,P_poll__networl_2_3_AskP_0,P_poll__networl_3_0_AnnP_4,P_network_0_1_AnnP_2,P_poll__networl_2_2_AnnP_0,P_poll__networl_0_0_RI_0,P_poll__networl_4_2_RP_1,P_network_2_2_AnnP_3,P_poll__networl_2_0_RP_1,P_network_1_3_AskP_2,P_poll__networl_3_2_RI_1,P_poll__networl_3_2_RI_2,P_network_0_1_AskP_2,P_poll__networl_2_2_RI_2,P_network_3_3_AskP_2,P_network_1_2_AskP_4,P_network_1_4_AI_1,P_network_3_2_AI_4,P_poll__networl_3_0_AnnP_2,P_masterList_1_4_3,P_poll__networl_4_4_AnnP_1,P_network_4_2_AI_3,P_poll__networl_4_2_AskP_4,P_poll__networl_4_1_AskP_1,P_poll__networl_3_1_RI_1,P_network_0_2_RP_3,P_poll__networl_3_3_RP_2,P_network_2_4_RI_3,P_network_3_4_RP_1,P_network_3_3_AnnP_1,P_network_3_3_RP_4,P_network_3_0_AnnP_1,P_network_0_0_RP_4,P_network_3_1_AI_2,P_poll__networl_4_0_AI_2,P_poll__networl_0_1_AskP_1,P_masterList_4_3_0,P_poll__networl_2_4_AskP_3,P_network_4_3_RP_2,P_network_3_2_RI_2,P_network_4_4_AnnP_1,P_poll__networl_2_4_AnnP_1,P_network_4_2_AskP_2,P_poll__networl_2_1_AnnP_4,P_network_2_2_AI_1,P_network_4_0_AI_4,P_network_2_2_RP_2,P_poll__networl_1_4_RI_4,P_crashed_0,P_network_2_2_RP_4,P_poll__networl_4_3_AI_2,P_network_3_0_RP_1,P_network_4_4_RI_4,P_network_2_1_AI_3,P_poll__networl_2_4_RP_0,P_poll__networl_4_3_RI_4,P_poll__networl_0_3_RP_4,P_poll__networl_2_2_AskP_0,P_poll__networl_2_0_AI_1,P_network_2_3_RI_1,P_poll__networl_0_4_AI_1,P_poll__networl_1_1_RP_3,P_network_2_4_AI_4,P_network_1_3_AnnP_1,P_poll__networl_2_4_AI_3,P_network_3_4_RP_3,P_poll__networl_2_1_AI_3,P_poll__networl_0_4_AskP_2,P_masterList_2_3_4,P_network_3_2_AskP_4,P_poll__networl_4_4_RI_4,P_masterList_0_3_0,P_network_2_2_AskP_3,P_poll__networl_2_0_AnnP_1,P_masterList_0_1_4,P_poll__networl_0_0_AI_0,P_poll__networl_4_2_RI_2,P_network_4_0_AskP_4,P_network_2_0_RI_4,P_poll__networl_3_2_AnnP_0,P_masterList_2_3_1,P_network_3_2_AI_3,P_network_4_1_RI_1,P_poll__networl_0_4_AI_0,P_network_1_1_AI_1,P_poll__networl_0_3_AnnP_2,P_network_4_2_RP_1,P_network_1_0_RP_3,P_network_2_0_RI_1,P_poll__networl_0_2_AskP_0,P_poll__networl_2_1_AnnP_0,P_poll__networl_1_4_AnsP_0,P_poll__networl_3_1_AskP_2,P_network_4_2_RI_1,P_poll__networl_0_1_AnnP_2,P_network_3_3_AI_3,P_network_4_3_AI_4,P_network_1_3_AnnP_4,P_poll__networl_0_0_RP_0,P_poll__networl_4_1_RP_3,P_poll__networl_2_3_AskP_1,P_poll__networl_0_2_RI_1,P_poll__networl_4_2_AskP_0,P_poll__networl_3_0_RI_0,P_poll__networl_2_2_AI_3,P_poll__networl_4_2_RI_4,P_poll__networl_0_0_AnnP_0,P_poll__networl_3_4_AI_3,P_network_3_4_AnnP_4,P_poll__networl_2_3_RP_1,P_poll__networl_4_2_AskP_3,P_poll__networl_0_1_AI_3,P_network_3_3_RP_2,P_poll__networl_1_4_AI_2,P_poll__networl_3_4_AskP_2,P_poll__networl_2_4_RI_3,P_poll__networl_4_4_AI_3,P_poll__networl_0_3_AI_4,P_network_4_4_AnnP_3,P_poll__networl_4_3_RP_1,P_network_4_2_RI_3,P_poll__networl_1_1_RI_2,P_poll__networl_0_3_AI_3,P_poll__networl_1_2_AnsP_0,P_network_4_4_AI_2,P_poll__networl_1_2_AI_1,P_network_1_4_RP_3,P_poll__networl_0_0_RI_1,P_network_0_4_AnnP_2,P_poll__networl_0_1_RI_4,P_poll__networl_1_1_AskP_4,P_poll__networl_2_1_AskP_3,P_poll__networl_3_3_RI_1,P_poll__networl_2_0_RP_2,P_network_4_2_AI_1,P_poll__networl_2_3_AnnP_0,P_network_4_0_RI_1,P_masterList_4_2_1,P_network_1_1_AI_2,P_network_0_1_AskP_3,P_network_0_4_RP_1,P_poll__networl_3_2_AI_4,P_poll__networl_1_0_AskP_3,P_poll__networl_2_4_AI_1,P_poll__networl_1_3_AI_4,P_poll__networl_1_3_AI_0,P_network_4_0_AskP_1,P_poll__networl_1_4_RP_4,P_poll__networl_3_3_AI_4,P_poll__networl_4_0_AnnP_4,P_poll__networl_1_2_RI_2,P_network_1_4_AnnP_4,P_poll__networl_0_1_AI_4,P_poll__networl_3_3_AskP_2,P_network_1_3_AnnP_2,P_network_4_0_AskP_2,P_dead_3,P_network_1_1_AnnP_4,P_network_2_4_AskP_2,P_poll__networl_4_2_AskP_2,P_poll__networl_0_3_AnnP_4,P_poll__networl_3_4_RI_4,P_poll__networl_2_2_AskP_1,P_poll__networl_2_0_AnnP_2,P_network_1_4_AskP_3,P_masterList_3_2_3,P_network_0_3_RI_4,P_poll__networl_4_3_RP_4,P_network_3_1_RI_1,P_network_3_4_AnnP_3,P_network_0_1_AI_3,P_network_1_1_RI_4,P_masterList_3_3_0,P_poll__networl_1_4_AnnP_3,P_poll__networl_2_4_AnnP_0,P_poll__networl_4_1_AnnP_3,P_poll__networl_1_4_RI_3,P_network_1_4_AskP_1,P_masterList_1_2_4,P_network_4_1_RI_4,P_poll__networl_0_3_AskP_4,P_poll__networl_1_2_RP_2,P_network_2_2_AskP_2,P_poll__networl_2_0_AskP_0,P_masterList_1_4_2,P_network_0_3_AI_1,P_poll__networl_0_2_RI_3,P_network_2_1_RI_4,P_poll__networl_4_0_AI_3,P_poll__networl_2_2_AskP_2,P_poll__networl_1_0_RI_0,P_poll__networl_0_0_AI_4,P_poll__networl_2_0_AI_4,P_network_3_3_RI_2,P_poll__networl_1_2_AnnP_1,P_poll__networl_1_4_AnnP_2,P_network_1_4_AskP_2,P_network_3_2_AskP_1,P_network_0_1_RP_1,P_poll__networl_3_4_RP_3,P_network_0_3_AskP_2,P_poll__networl_0_1_AnsP_0,P_network_1_2_AnnP_1,P_poll__networl_2_1_AnnP_1,P_network_3_1_RI_3,P_masterList_1_3_0,P_network_3_1_AI_1,P_network_1_3_AI_2,P_network_0_3_RP_2,P_network_4_3_AnnP_3,P_poll__networl_1_3_AskP_4,P_network_0_4_AskP_1,P_network_0_2_AI_1,P_network_0_4_RP_2,P_poll__networl_0_4_AskP_3,P_network_1_2_RP_1,P_network_1_3_RP_1,P_network_4_0_RI_2,P_poll__networl_0_4_AI_4,P_network_2_4_AskP_1,P_network_1_2_RI_1,P_network_2_0_AnnP_1,P_poll__networl_0_3_AskP_1,P_masterList_4_2_4,P_network_4_3_RP_1,P_poll__networl_2_4_AskP_1,P_network_1_3_RI_3,P_poll__networl_4_3_RI_1,P_poll__networl_0_2_AI_0,P_network_2_1_AI_2,P_poll__networl_4_3_RI_0,P_poll__networl_0_2_RP_2,P_poll__networl_2_4_RP_4,P_poll__networl_2_0_RI_1,P_poll__networl_3_3_RP_4,P_poll__networl_4_0_AnnP_3,P_masterList_2_1_4,P_network_0_0_AnnP_1,P_network_2_2_RP_1,P_network_3_2_RP_1,P_poll__networl_2_3_AnnP_4,P_network_1_2_AnnP_4,P_network_0_4_AI_4,P_network_4_0_RP_4,P_poll__networl_3_3_AnnP_3,P_masterList_1_2_0,P_network_1_4_RI_3,P_poll__networl_3_0_AI_2,P_poll__networl_3_4_RP_4,P_network_1_0_AI_1,P_network_1_0_RP_2,P_poll__networl_4_3_AnnP_2,P_poll__networl_4_0_AnnP_0,P_masterList_0_3_4,P_poll__networl_3_0_AskP_3,P_poll__networl_2_1_RP_3,P_network_2_3_AI_4,P_poll__networl_3_4_RI_1,P_network_0_3_AskP_3,P_network_2_0_RI_2,P_network_4_2_AskP_3,P_network_3_1_RP_2,P_masterList_3_1_4,P_poll__networl_0_1_AI_0,P_poll__networl_3_3_AI_3,P_network_4_4_AI_3,P_poll__networl_0_3_RP_1,P_poll__networl_0_0_AnnP_3,P_network_2_0_AnnP_4,P_network_2_2_RI_3,P_poll__networl_3_4_AnnP_0,P_network_0_2_AI_3,P_network_2_2_RP_3,P_poll__networl_0_3_AskP_0,P_network_1_0_AnnP_1,P_network_3_0_AI_3,P_poll__networl_2_3_RI_1,P_network_4_1_AskP_3,P_network_1_4_AI_3,P_poll__networl_0_3_RI_0,P_network_3_2_AskP_3,P_poll__networl_4_3_AI_3,P_poll__networl_3_0_RP_4,P_masterList_3_4_0,P_poll__networl_2_4_AI_2,P_poll__networl_4_4_AnnP_3,P_poll__networl_3_4_AskP_3,P_network_1_2_RI_4,P_network_4_1_AskP_4,P_poll__networl_4_1_AnnP_2,P_network_2_4_AskP_4,P_poll__networl_1_3_AnnP_2,P_network_2_3_AskP_2,P_network_2_4_AnnP_3,P_poll__networl_1_1_AI_1,P_electionFailed_4,P_network_1_2_RP_2,P_poll__networl_0_3_RP_2,P_poll__networl_0_2_AnnP_3,P_network_0_1_AnnP_3,P_poll__networl_3_4_RI_2,P_poll__networl_3_1_RP_2,P_network_1_0_RI_3,P_poll__networl_1_4_AskP_4,P_network_4_4_AI_4,P_masterList_0_1_2,P_poll__networl_2_0_RP_3,P_network_4_2_AnnP_2,P_poll__networl_0_3_AI_0,P_masterList_2_1_3,P_network_4_3_RP_4,P_poll__networl_0_0_RP_1,P_poll__networl_4_2_AI_3,P_poll__networl_2_4_RP_1,P_poll__networl_0_0_RP_2,P_network_3_4_RI_3,P_poll__networl_0_2_AnnP_2,P_poll__networl_1_1_AskP_2,P_poll__networl_4_1_RI_3,P_network_3_0_RI_1,P_network_2_3_RI_4,P_network_0_1_RP_4,P_poll__networl_3_4_RP_2,P_network_3_0_AnnP_4,P_masterList_0_2_0,P_network_3_0_AskP_4,P_poll__networl_1_1_RI_1,P_poll__networl_2_1_AskP_1,P_network_0_0_AI_3,P_masterList_1_4_0,P_network_4_2_RP_4,P_network_0_3_AI_2,P_network_3_1_AskP_2,P_network_3_0_AnnP_3,P_network_2_0_AnnP_3,P_network_4_2_AskP_1,P_network_3_0_RP_4,P_masterList_1_4_4,P_network_2_3_RP_3,P_poll__networl_1_4_RI_0,P_poll__networl_4_4_AI_4,P_network_4_3_RI_1,P_poll__networl_2_1_AI_1,P_network_0_2_RI_4,P_network_2_3_AnnP_3,P_poll__networl_1_1_AnnP_0,P_poll__networl_3_1_RP_0,P_poll__networl_4_2_AnnP_1,P_poll__networl_4_1_RP_4,P_network_2_3_AI_3,P_network_4_3_AnnP_1,P_poll__networl_3_0_RP_1,P_network_3_3_AI_1,P_network_3_1_RI_4,P_poll__networl_1_2_RP_3,P_poll__networl_0_2_RI_4,P_poll__networl_0_0_AI_1,P_poll__networl_3_2_AskP_1,P_network_2_4_RP_4,P_poll__networl_4_0_AnnP_1,P_network_0_3_AnnP_1,P_network_4_4_RI_1,P_poll__networl_3_4_AI_1,P_poll__networl_1_0_AnnP_1,P_poll__networl_2_2_RP_4,P_poll__networl_0_4_AnsP_0,P_network_2_3_AI_2,P_network_3_3_AskP_4,P_poll__networl_2_3_AI_2,P_poll__networl_4_2_AI_4,P_masterList_1_1_0,P_poll__networl_3_0_RI_2,P_network_0_2_AI_4,P_poll__networl_1_0_AskP_1,P_poll__networl_4_0_RP_1,P_poll__networl_3_2_RP_1,P_network_4_3_RP_3,P_network_0_2_AI_2,P_poll__networl_2_1_AI_4,P_network_4_4_RI_3,P_poll__networl_3_3_RP_1,P_network_0_2_AskP_4,P_network_3_3_AI_4,P_poll__networl_2_4_AskP_0,P_network_0_3_AskP_1,P_network_3_0_RI_4,P_poll__networl_0_4_RI_2,P_poll__networl_2_2_AI_0,P_poll__networl_4_2_RI_0,P_poll__networl_0_4_AskP_1,P_poll__networl_1_3_AnsP_0,P_poll__networl_2_1_RP_4,P_poll__networl_1_3_AskP_0,P_network_3_4_AI_3,P_network_2_1_AnnP_1,P_poll__networl_1_3_AskP_1,P_poll__networl_1_3_RI_1,P_poll__networl_0_2_AnnP_4,P_network_0_3_AskP_4,P_poll__networl_0_1_AskP_2,P_poll__networl_1_0_AI_4,P_poll__networl_3_1_AnnP_3,P_poll__networl_3_2_AskP_3,P_poll__networl_4_0_AnsP_0,P_network_1_2_RI_2,P_poll__networl_3_3_AnsP_0,P_poll__networl_0_1_RI_3,P_poll__networl_3_2_AskP_4,P_network_1_1_AI_3,P_network_1_0_AskP_2,P_electionFailed_1,P_poll__networl_4_1_AI_0,P_network_3_0_AI_4,P_poll__networl_3_1_AI_3,P_poll__networl_4_0_RI_3,P_poll__networl_2_3_AnnP_1,P_network_3_3_RI_1,P_poll__networl_3_2_AnsP_0,P_dead_1,P_network_1_1_AI_4,P_masterList_1_2_1,P_poll__networl_2_0_AnnP_0,P_poll__networl_3_4_AskP_4,P_network_0_2_AnnP_2,P_network_1_4_AskP_4,P_network_2_2_AskP_4,P_network_3_4_AskP_1,P_poll__networl_4_0_AI_4,P_network_3_1_AnnP_2,P_network_2_4_AI_1,P_poll__networl_1_0_AnnP_0,P_poll__networl_0_0_AskP_0,P_poll__networl_2_3_RP_2,P_network_2_1_AI_4,P_poll__networl_3_3_RI_4,P_network_2_4_AnnP_1,P_poll__networl_4_0_RP_0,P_network_2_1_AskP_4,P_poll__networl_1_1_AI_3,P_poll__networl_2_2_AnnP_1,P_poll__networl_2_3_AI_3,P_poll__networl_2_4_AI_4,P_poll__networl_1_4_AskP_2,P_poll__networl_2_2_AI_2,P_poll__networl_0_4_RP_3,P_poll__networl_4_4_AskP_4,P_poll__networl_0_4_AskP_4,P_network_0_2_AskP_3,P_network_4_1_RI_3,P_network_0_2_RI_1,P_network_0_4_AI_1,P_network_3_0_AskP_2,P_poll__networl_4_3_AI_4,P_poll__networl_4_1_AskP_4,P_network_4_1_RI_2,P_network_1_2_RI_3,P_masterList_4_3_1,P_network_1_3_RI_2,P_network_2_1_AskP_3,P_network_1_4_RI_1,P_network_0_4_AskP_4,P_poll__networl_1_0_RP_1,P_network_4_1_AI_4,P_poll__networl_1_1_AskP_0,P_masterList_3_4_1,P_poll__networl_1_1_AskP_3,P_masterList_0_1_0,P_poll__networl_1_4_AI_1,P_network_0_3_AI_3,P_network_0_3_AnnP_4,P_network_4_3_AskP_4,P_masterList_1_3_4,P_network_4_4_AnnP_2,P_poll__networl_4_2_AnnP_3,P_masterList_3_2_1,P_network_1_1_AskP_4,P_poll__networl_0_0_AI_3,P_poll__networl_0_0_RP_3,P_network_2_4_AI_3,P_poll__networl_4_2_RI_1,P_poll__networl_1_1_RP_1,P_network_3_1_RP_4,P_masterList_1_1_3,P_poll__networl_0_4_RI_3,P_network_4_1_AnnP_1,P_poll__networl_3_0_AskP_0,P_poll__networl_4_0_AskP_4,P_masterList_2_3_0,P_poll__networl_0_4_AnnP_3,P_network_0_3_AnnP_2,P_poll__networl_3_2_RP_4,P_poll__networl_4_3_AnsP_0,P_network_4_3_AI_2,P_network_3_0_AnnP_2,P_masterList_2_4_3,P_poll__networl_2_1_AnnP_3,P_poll__networl_4_4_AnnP_2,P_poll__networl_4_4_AskP_3,P_poll__networl_0_1_AnnP_4,P_network_3_1_AI_3,P_network_1_3_AnnP_3,P_poll__networl_1_3_AnnP_1,P_poll__networl_2_1_RP_2,P_network_3_0_RI_2,P_poll__networl_2_3_RI_0,P_network_4_1_AskP_2,P_poll__networl_0_0_RI_2,P_poll__networl_0_0_RI_3,P_poll__networl_2_3_AI_4,P_network_4_2_AskP_4,P_crashed_3,P_network_4_1_AnnP_4,P_poll__networl_0_1_AI_1,P_poll__networl_0_4_RP_0,P_electionFailed_2,P_masterList_2_4_0,P_network_0_1_AnnP_4,P_network_3_3_RP_1,P_poll__networl_2_2_AnnP_3,P_network_2_0_AI_2,P_poll__networl_1_3_RP_1,P_poll__networl_3_2_AskP_2,P_poll__networl_1_2_RI_0,P_network_4_3_AskP_2,P_poll__networl_3_1_RI_3,P_poll__networl_2_1_RP_0,P_network_1_0_RI_2,P_poll__networl_1_1_AskP_1,P_network_1_4_RP_2,P_network_0_2_RI_3,P_poll__networl_3_2_RP_0,P_poll__networl_4_4_AI_2,P_network_3_1_RI_2,P_masterList_3_1_2,P_network_0_0_RP_1,P_poll__networl_0_3_RI_1,P_poll__networl_1_2_AI_2,P_network_1_4_RP_1,P_network_2_1_RI_1,P_network_3_1_AI_4,P_network_2_0_AskP_2,P_poll__networl_4_0_AnnP_2,P_network_4_0_RP_3,P_poll__networl_2_2_RI_3,P_electionFailed_0,P_network_1_1_RI_2,P_network_0_1_RP_2,P_poll__networl_4_3_RI_3,P_poll__networl_3_3_AnnP_4,P_masterList_3_2_4,P_masterList_1_2_3,P_network_4_0_RP_1,P_poll__networl_0_1_AI_2,P_poll__networl_1_1_AI_4,P_poll__networl_4_4_AskP_1,P_poll__networl_1_1_AnnP_2,P_poll__networl_2_3_RP_3,P_poll__networl_4_1_RP_1,P_network_4_2_AI_2,P_poll__networl_3_0_AI_3,P_poll__networl_0_0_RP_4,P_poll__networl_2_0_AnnP_3,P_masterList_4_3_4,P_network_0_0_RP_3,P_network_0_4_RP_3,P_poll__networl_4_0_AskP_0,P_network_4_3_AI_3,P_network_0_2_RP_1,P_network_1_1_AnnP_2,P_network_0_1_RI_2,P_poll__networl_0_3_AnnP_3,P_network_1_1_RI_3,P_poll__networl_2_2_RP_1,P_network_0_0_AI_1,P_network_2_1_AI_1,P_network_1_0_RP_1,P_poll__networl_4_3_AnnP_0,P_poll__networl_1_3_AI_1,P_masterList_2_2_0,P_poll__networl_3_2_AI_3,P_network_1_4_AI_2,P_poll__networl_3_1_AskP_0,P_poll__networl_0_0_AnsP_0,P_poll__networl_1_3_RI_0,P_network_4_3_RI_3,P_network_2_0_RP_1,P_poll__networl_0_4_RP_1,P_poll__networl_1_3_RP_3,P_poll__networl_0_1_AskP_4,P_poll__networl_0_0_AskP_1,P_masterList_1_1_1,P_poll__networl_0_1_RI_0,P_poll__networl_1_1_AnsP_0,P_network_0_1_RI_3,P_poll__networl_3_2_AnnP_1,P_network_3_4_RI_4,P_network_0_2_AskP_2,P_poll__networl_2_4_RI_0,P_poll__networl_3_3_AskP_1,P_poll__networl_4_3_AskP_0,P_masterList_4_1_3,P_poll__networl_3_3_AI_1,P_poll__networl_2_3_RI_3,P_poll__networl_2_2_RP_0,P_poll__networl_1_4_RP_2,P_poll__networl_2_0_AI_0,P_poll__networl_4_0_RP_2,P_network_1_3_AskP_3,P_masterList_4_4_1,P_poll__networl_0_2_RP_1,P_poll__networl_4_4_AskP_2,P_network_0_2_AnnP_1,P_network_0_0_AskP_4,P_poll__networl_3_2_AnnP_4,P_poll__networl_3_2_AskP_0,P_network_2_2_RI_1,P_poll__networl_2_0_RI_4,P_network_2_2_AnnP_2,P_poll__networl_3_0_AI_1,P_masterList_2_4_1,P_network_3_0_RI_3,P_poll__networl_1_0_AnnP_3,P_network_0_2_AnnP_3,P_poll__networl_4_2_RP_0,P_poll__networl_4_4_AnnP_4,P_network_2_0_RP_2,P_poll__networl_0_1_RP_1,P_poll__networl_0_2_AI_3,P_poll__networl_3_4_RI_0,P_poll__networl_4_0_RI_2,P_dead_4,P_poll__networl_1_2_RI_4,P_masterList_0_4_2,P_network_2_1_RP_4,P_masterList_1_3_1,P_poll__networl_1_0_AnsP_0,P_network_3_1_AskP_1,P_poll__networl_0_1_AskP_3,P_poll__networl_0_3_RI_4,P_network_2_0_AI_3,P_network_2_3_RP_1,P_masterList_3_4_3,P_poll__networl_3_3_RI_0,P_poll__networl_3_0_RP_0,P_network_1_0_AskP_4,P_poll__networl_1_0_AI_0,P_poll__networl_1_0_AskP_2,P_poll__networl_4_4_RP_2,P_network_2_1_RI_2,P_poll__networl_3_1_AI_4,P_poll__networl_2_3_RP_0,P_poll__networl_0_4_AnnP_4,P_network_2_3_AnnP_4,P_poll__networl_0_1_RP_2,P_network_2_0_AI_1,P_network_3_2_AI_1,P_poll__networl_2_2_AskP_4,P_network_1_3_AI_3,P_poll__networl_0_4_AnnP_0,P_network_1_0_RI_4,P_masterList_3_2_2,P_poll__networl_3_2_RI_4,P_poll__networl_2_0_RP_0,P_poll__networl_1_1_RI_3,P_network_1_2_RP_3,P_poll__networl_2_3_AI_0,P_network_1_2_RP_4,P_poll__networl_0_1_RP_0,P_poll__networl_1_2_AnnP_3,P_poll__networl_1_4_RP_1,P_network_1_0_RP_4,P_network_4_1_AnnP_2,P_poll__networl_0_4_RI_1,P_poll__networl_4_3_RP_3,P_poll__networl_2_2_RI_0,P_network_0_0_AI_2,P_poll__networl_2_2_RP_3,P_network_0_0_AskP_2,P_poll__networl_3_1_RP_3,P_network_0_4_RP_4,P_network_0_3_RI_1,P_network_3_0_RP_3,P_poll__networl_2_1_AskP_2,P_poll__networl_3_4_AskP_0,P_network_2_1_RP_2,P_masterList_0_3_2,P_network_3_2_RP_2,P_dead_2,P_poll__networl_2_1_RI_3,P_network_1_0_AnnP_3,P_poll__networl_0_2_AskP_2,P_poll__networl_1_0_AnnP_4,P_masterList_2_2_4,P_network_1_2_AI_1,P_poll__networl_1_3_RP_4,P_poll__networl_1_3_AskP_3,P_poll__networl_0_0_AnnP_1,P_network_2_2_AnnP_4,P_poll__networl_2_4_RI_2,P_network_2_0_AskP_4,P_network_4_4_AI_1,P_poll__networl_1_2_AskP_0,P_poll__networl_3_0_AskP_2,P_masterList_1_3_3,P_network_0_2_RP_4,P_poll__networl_2_2_AskP_3,P_network_2_2_AI_4,P_network_1_0_AskP_1,P_network_1_3_RP_2,P_network_1_2_AnnP_2,P_poll__networl_4_0_RI_1,P_network_4_4_AnnP_4,P_network_0_3_AI_4,P_poll__networl_4_3_RP_2,P_poll__networl_0_1_RI_2,P_poll__networl_0_0_AskP_4,P_poll__networl_2_4_RP_3,P_network_1_1_AskP_3,P_poll__networl_2_0_AnnP_4,P_poll__networl_1_1_RP_0,P_network_3_4_RP_2,P_poll__networl_4_4_RP_1,P_network_3_3_AnnP_2,P_poll__networl_4_1_AnsP_0,P_network_0_3_AnnP_3,P_network_0_4_AI_3,P_network_2_4_AskP_3,P_network_2_2_RI_2,P_masterList_3_1_1,P_poll__networl_4_4_AI_1,P_poll__networl_3_4_AnnP_2,P_network_2_4_RI_2,P_network_4_4_RP_3,P_poll__networl_3_2_RI_3,P_poll__networl_2_1_RI_4,P_masterList_1_1_2,P_network_0_0_AnnP_4,P_electionFailed_3,P_poll__networl_2_4_AnnP_4,P_poll__networl_2_1_RI_1,P_poll__networl_3_0_AskP_4,P_network_3_0_AI_1,P_network_4_1_AskP_1,P_poll__networl_1_4_AnnP_0,P_network_1_3_AskP_1,P_poll__networl_3_0_AI_4,P_network_3_1_AskP_3,P_poll__networl_1_0_RP_4,P_network_2_3_AI_1,P_network_0_4_AnnP_3,P_network_4_2_RI_2,P_poll__networl_2_3_AnnP_2,P_poll__networl_3_1_AnsP_0,P_poll__networl_1_4_RP_0,P_poll__networl_0_4_AnnP_2,P_poll__networl_3_2_RI_0,P_poll__networl_0_0_AskP_3,P_network_4_0_AnnP_2,P_poll__networl_4_3_AnnP_1,P_network_4_4_RP_4,P_poll__networl_0_3_RP_3,P_network_4_3_AskP_1,P_poll__networl_2_3_RI_4,P_poll__networl_2_2_RI_1,P_network_3_2_RI_4,P_network_2_2_AI_2,P_poll__networl_2_2_RP_2,P_poll__networl_1_2_AnnP_2,P_poll__networl_3_0_AnnP_1,P_masterList_2_1_1,P_poll__networl_3_3_RP_3,P_network_4_3_AnnP_2,P_poll__networl_2_1_AskP_0,P_poll__networl_4_4_AnnP_0,P_poll__networl_1_0_AI_3,P_poll__networl_1_1_RP_4,P_poll__networl_4_1_RI_1,P_poll__networl_1_2_RP_1,P_network_1_3_AI_4,P_poll__networl_0_2_RI_2,P_poll__networl_2_4_AskP_2,P_poll__networl_4_2_AI_1,P_poll__networl_4_1_AI_3,P_network_1_2_AskP_2,P_network_2_2_AnnP_1,P_masterList_0_4_1,P_network_2_4_AnnP_2,P_network_4_3_AI_1,P_poll__networl_1_3_AnnP_4,P_masterList_2_3_3,P_network_1_4_RP_4,P_network_4_3_AnnP_4,P_crashed_2,P_network_4_4_RP_2,P_poll__networl_2_1_AI_0,P_network_1_0_AI_2,P_network_2_3_AskP_1,P_poll__networl_3_1_RP_1,P_network_4_0_AnnP_4,P_dead_0,P_network_2_0_AskP_1,P_network_3_0_AskP_1,P_network_3_2_AnnP_4,P_poll__networl_3_0_AnnP_0,P_network_0_0_RI_1,P_network_4_3_RI_2,P_poll__networl_4_3_AnnP_4,P_poll__networl_3_4_AnsP_0,P_network_1_1_RP_3,P_masterList_4_4_2,P_poll__networl_0_2_AI_2,P_network_2_1_RP_1,P_masterList_0_4_0,P_poll__networl_1_2_AI_4,P_poll__networl_1_4_AI_0,P_network_1_1_AnnP_1,P_poll__networl_1_2_RP_4,P_poll__networl_1_0_RI_2,P_network_3_2_AskP_2,P_network_3_4_AI_2,P_network_0_3_RP_1,P_network_4_3_RI_4,P_poll__networl_3_4_AnnP_4,P_poll__networl_1_3_RP_0,P_network_0_4_RI_4,P_poll__networl_1_1_AnnP_1,P_poll__networl_1_4_RI_1,P_masterList_1_2_2,P_masterList_4_2_0,P_poll__networl_0_4_RP_2,P_network_0_1_RP_3,P_masterList_3_4_4,P_poll__networl_4_2_RP_4,P_network_3_1_AnnP_3,P_poll__networl_1_2_AnnP_4,P_poll__networl_1_1_AnnP_3,P_poll__networl_4_3_AI_0,P_masterList_0_2_3,P_poll__networl_0_2_RP_3,P_poll__networl_4_0_AskP_3,P_network_0_0_RI_3,P_network_3_4_RI_1,P_poll__networl_3_1_AskP_4,P_poll__networl_4_4_RI_2,P_network_0_3_RP_4,P_network_2_1_AnnP_4,P_network_3_1_AnnP_1,P_network_3_4_AskP_4,P_network_0_0_AskP_3,P_network_2_2_AI_3,P_network_4_4_RI_2,P_masterList_0_4_3,P_poll__networl_0_3_AnsP_0,P_network_3_4_AI_4,P_poll__networl_2_0_AI_2,P_network_1_3_RI_1,P_poll__networl_1_0_AskP_4,P_network_3_4_RI_2,P_poll__networl_1_0_RP_0,P_poll__networl_3_0_RP_2,P_network_0_1_AnnP_1,P_poll__networl_1_2_AskP_2,P_poll__networl_2_4_AnnP_3,P_poll__networl_4_1_AnnP_1,P_network_1_3_RP_4,P_poll__networl_2_4_RP_2,P_poll__networl_4_0_RP_3,P_poll__networl_0_2_AskP_4,P_network_2_4_RI_1,P_network_1_3_AskP_4,P_poll__networl_2_0_RP_4,P_poll__networl_2_4_AnsP_0,P_network_3_4_RP_4,P_poll__networl_0_4_AnnP_1,P_masterList_3_3_1,P_network_2_3_AnnP_2,P_poll__networl_3_1_AnnP_2,P_poll__networl_1_2_AI_0,P_poll__networl_4_4_RP_3,P_masterList_2_1_0,P_network_0_3_RI_2,P_network_3_2_AI_2,P_network_4_1_AI_2,P_network_0_0_RP_2,P_poll__networl_4_1_RP_0,P_network_4_2_AnnP_1,P_network_4_2_AnnP_4,P_poll__networl_2_4_AI_0,P_crashed_4,P_poll__networl_1_3_RI_4,P_poll__networl_3_4_RP_0,P_network_4_1_AI_1,P_poll__networl_3_2_AI_0,P_masterList_4_4_3,P_poll__networl_1_2_AskP_4,P_network_2_1_AnnP_3,P_poll__networl_3_1_AnnP_4,P_network_0_0_AskP_1,P_poll__networl_3_3_RP_0,P_poll__networl_2_0_AskP_3,P_network_4_1_RP_3,P_poll__networl_3_3_AskP_0,P_network_4_0_RP_2,P_network_4_0_AnnP_1,P_network_1_4_RI_4,P_poll__networl_3_4_AnnP_3,P_network_4_0_RI_3,P_poll__networl_1_0_AI_2,P_poll__networl_2_3_AI_1,P_poll__networl_4_3_AnnP_3,P_poll__networl_1_2_AnnP_0,P_poll__networl_3_2_AI_2,P_poll__networl_4_3_AskP_1,P_poll__networl_0_1_AnnP_3,P_poll__networl_0_3_AskP_3,P_network_2_4_RP_2,P_network_1_4_AnnP_3,P_poll__networl_1_2_RI_1,P_poll__networl_4_4_AI_0,P_poll__networl_2_2_AI_1,P_poll__networl_1_0_RP_2,P_network_0_0_AnnP_2,P_poll__networl_0_1_RP_4,P_poll__networl_0_1_RP_3,P_network_0_4_AnnP_4,P_poll__networl_2_3_AskP_2,P_poll__networl_4_2_AnnP_2,P_masterList_4_3_3,P_poll__networl_0_2_AskP_1,P_masterList_2_2_1,P_poll__networl_4_2_RP_2,P_poll__networl_3_3_AnnP_1,P_poll__networl_0_3_AnnP_1,P_poll__networl_0_4_AI_3,P_network_1_4_AnnP_1,P_poll__networl_2_0_AnsP_0,P_poll__networl_4_1_AskP_3,P_poll__networl_2_3_RI_2,P_network_1_0_RI_1,P_network_2_0_RP_3,P_network_4_0_AI_1,P_poll__networl_1_1_AnnP_4,P_poll__networl_1_3_AnnP_3,P_poll__networl_1_4_AI_3,P_poll__networl_0_0_AnnP_4,P_network_1_1_RP_4,P_poll__networl_4_1_AskP_2,P_poll__networl_2_0_AskP_1,P_poll__networl_3_3_AI_0,P_poll__networl_4_4_RI_3,P_poll__networl_3_2_AI_1,P_network_3_2_RP_4,P_poll__networl_4_2_AnsP_0,P_poll__networl_3_3_AskP_4,P_poll__networl_1_3_RI_2,P_poll__networl_0_0_AI_2,P_network_1_4_AnnP_2,P_network_4_0_AI_3,P_masterList_0_2_4,P_network_4_4_AskP_2,P_poll__networl_3_0_RI_4,P_poll__networl_3_3_AI_2,P_poll__networl_2_4_RI_4,P_network_0_1_AI_1,P_network_1_1_RI_1,P_poll__networl_4_2_AnnP_4,P_network_4_1_RP_2,P_network_2_1_RI_3,P_poll__networl_2_4_AskP_4,P_poll__networl_3_4_AI_0,P_masterList_3_3_3,P_poll__networl_0_4_RP_4,P_network_2_3_RI_3,P_network_4_2_AnnP_3,P_poll__networl_1_2_AskP_1,P_network_0_3_RP_3,P_network_2_3_RP_4,P_network_3_3_AskP_3,P_poll__networl_4_1_AI_4,P_poll__networl_1_3_AnnP_0,P_poll__networl_1_2_AI_3,P_poll__networl_3_4_RI_3,P_poll__networl_4_0_AskP_1,P_network_3_4_AnnP_1,P_masterList_2_1_2,P_poll__networl_3_0_RI_1,P_network_0_1_RI_1,P_poll__networl_0_0_RI_4,P_masterList_0_4_4,P_poll__networl_0_3_RI_3,P_poll__networl_3_3_AskP_3,P_network_0_4_AI_2,P_network_3_4_AI_1,P_poll__networl_3_4_AnnP_1,P_network_1_1_AskP_2,P_poll__networl_1_4_AI_4,P_poll__networl_2_2_AnnP_2,P_network_1_2_AskP_1,P_network_4_4_AskP_3,P_network_2_0_RP_4,P_network_3_1_RP_3,P_network_3_2_AnnP_3,P_poll__networl_4_1_AI_1,P_crashed_1,P_masterList_4_1_1,P_poll__networl_1_3_AI_3,P_poll__networl_4_1_AskP_0,P_network_1_2_AI_2,P_poll__networl_2_1_RI_2,P_poll__networl_2_3_AnnP_3,P_network_2_4_AI_2,P_poll__networl_3_1_AnnP_1,P_masterList_1_1_4,P_poll__networl_2_1_RI_0,P_poll__networl_0_1_RI_1,P_poll__networl_4_3_AskP_4,P_network_0_0_RI_4,P_network_2_3_RP_2,P_poll__networl_4_3_AskP_2,P_network_4_0_RI_4,P_poll__networl_4_2_AskP_1,P_network_2_3_AskP_4,P_poll__networl_4_3_AI_1,P_poll__networl_0_2_RP_4,P_poll__networl_4_2_RI_3,P_poll__networl_3_1_AI_0,P_poll__networl_0_3_RI_2,
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Removed 1265 constant variables :P_poll__networl_0_0_AskP_2=0, P_network_2_4_AnnP_4=0, P_poll__networl_2_3_RP_4=0, P_network_1_0_AI_4=0, P_poll__networl_1_0_RI_4=0, P_network_4_1_AI_3=0, P_masterList_4_1_4=0, P_masterList_4_2_2=1, P_network_1_0_AskP_3=0, P_poll__networl_4_0_AI_1=0, P_poll__networl_0_0_AnnP_2=0, P_poll__networl_4_1_AnnP_0=0, P_poll__networl_3_3_AnnP_0=0, P_poll__networl_1_4_RI_2=0, P_network_4_1_RP_4=0, P_network_0_1_AI_4=0, P_network_3_2_RP_3=0, P_network_1_3_RP_3=0, P_network_2_4_RP_3=0, P_network_1_1_RP_2=0, P_network_1_0_AnnP_2=0, P_network_1_3_RI_4=0, P_poll__networl_4_2_AI_0=0, P_poll__networl_4_2_AI_2=0, P_poll__networl_2_1_AI_2=0, P_poll__networl_0_2_AnsP_0=0, P_network_3_2_AnnP_1=0, P_poll__networl_0_3_AnnP_0=0, P_network_4_1_AnnP_3=0, P_poll__networl_3_1_RI_4=0, P_masterList_1_3_2=0, P_network_3_0_AskP_3=0, P_poll__networl_4_0_RP_4=0, P_poll__networl_4_4_AnsP_0=0, P_network_0_4_AskP_3=0, P_poll__networl_1_2_RI_3=0, P_network_0_0_AnnP_3=0, P_network_1_1_AskP_1=0, P_network_3_3_AskP_1=0, P_network_4_1_RP_1=0, P_network_1_4_RI_2=0, P_network_0_0_RI_2=0, P_poll__networl_4_1_RP_2=0, P_poll__networl_2_3_AskP_4=0, P_poll__networl_1_4_AnnP_4=0, P_network_0_4_RI_3=0, P_poll__networl_1_1_AI_0=0, P_network_2_0_AI_4=0, P_network_1_2_AskP_3=0, P_network_1_2_AI_3=0, P_poll__networl_1_0_RI_1=0, P_poll__networl_3_1_AI_1=0, P_poll__networl_4_3_RI_2=0, P_network_4_3_AskP_3=0, P_poll__networl_0_2_RP_0=0, P_network_2_0_AnnP_2=0, P_poll__networl_0_1_AnnP_1=0, P_masterList_2_3_2=0, P_network_1_4_AI_4=0, P_network_2_1_RP_3=0, P_network_3_0_AI_2=0, P_poll__networl_2_2_AI_4=0, P_poll__networl_1_2_AskP_3=0, P_poll__networl_4_1_RI_4=0, P_masterList_4_1_2=0, P_masterList_3_1_3=0, P_masterList_4_3_2=0, P_poll__networl_2_0_AI_3=0, P_poll__networl_4_0_AI_0=0, P_network_0_4_AnnP_1=0, P_masterList_1_4_1=0, P_network_1_0_AnnP_4=0, P_poll__networl_2_4_AnnP_2=0, P_poll__networl_2_3_AnsP_0=0, P_network_0_2_AnnP_4=0, P_poll__networl_0_1_AskP_0=0, P_poll__networl_4_0_AskP_2=0, P_poll__networl_0_4_AI_2=0, P_poll__networl_0_3_AI_1=0, P_poll__networl_3_0_RI_3=0, P_poll__networl_0_2_AI_4=0, P_poll__networl_2_0_AskP_2=0, P_masterList_3_1_0=0, P_poll__networl_2_4_RI_1=0, P_network_3_3_RP_3=0, P_poll__networl_3_1_AI_2=0, P_poll__networl_3_1_RI_2=0, P_poll__networl_0_2_AnnP_1=0, P_poll__networl_3_1_RI_0=0, P_network_1_0_AI_3=0, P_poll__networl_1_3_AskP_2=0, P_masterList_3_2_0=0, P_network_0_1_AI_2=0, P_poll__networl_3_1_AskP_3=0, P_poll__networl_3_3_RI_3=0, P_poll__networl_1_4_AskP_3=0, P_poll__networl_1_3_AI_2=0, P_poll__networl_2_2_RI_4=0, P_poll__networl_4_0_RI_0=0, P_network_1_1_RP_1=0, P_poll__networl_2_1_AnnP_2=0, P_network_3_4_AskP_3=0, P_poll__networl_3_0_AnnP_3=0, P_network_3_4_AskP_2=0, P_masterList_0_1_3=0, P_network_1_3_AI_1=0, P_network_2_1_AnnP_2=0, P_network_0_3_RI_3=0, P_poll__networl_4_4_AskP_0=0, P_poll__networl_3_4_AI_2=0, P_poll__networl_0_2_AskP_3=0, P_poll__networl_4_2_AnnP_0=0, P_network_4_2_RI_4=0, P_masterList_0_2_1=0, P_network_3_1_AskP_4=0, P_poll__networl_4_3_RP_0=0, P_network_1_1_AnnP_3=0, P_poll__networl_1_0_RI_3=0, P_poll__networl_2_1_AskP_4=0, P_poll__networl_1_0_AnnP_2=0, P_poll__networl_4_4_RP_4=0, P_poll__networl_2_0_RI_0=0, P_network_4_2_RP_2=0, P_poll__networl_1_4_AskP_1=0, P_poll__networl_3_4_AskP_1=0, P_masterList_3_4_2=0, P_network_3_2_RI_3=0, P_poll__networl_1_4_AnnP_1=0, P_network_3_3_AnnP_3=0, P_poll__networl_0_3_AI_2=0, P_network_0_1_AskP_1=0, P_poll__networl_4_1_AnnP_4=0, P_poll__networl_3_2_RP_3=0, P_poll__networl_2_0_RI_2=0, P_network_2_3_AskP_3=0, P_poll__networl_1_1_AI_2=0, P_masterList_2_4_2=0, P_poll__networl_2_0_RI_3=0, P_poll__networl_1_4_AskP_0=0, P_masterList_2_4_4=0, P_network_3_2_RI_1=0, P_poll__networl_0_4_AskP_0=0, P_poll__networl_4_4_RI_1=0, P_poll__networl_3_4_RP_1=0, P_network_2_0_AskP_3=0, P_network_3_1_AnnP_4=0, P_poll__networl_3_0_AI_0=0, P_poll__networl_3_1_RP_4=0, P_masterList_4_4_4=0, P_network_0_0_AI_4=0, P_masterList_4_4_0=0, P_poll__networl_1_3_RI_3=0, P_network_0_2_RI_2=0, P_poll__networl_3_0_AskP_1=0, P_poll__networl_3_3_RI_2=0, P_masterList_0_3_3=0, P_network_2_2_AskP_1=0, P_poll__networl_2_2_AnsP_0=0, P_poll__networl_1_1_RI_0=0, P_poll__networl_1_1_RI_4=0, P_poll__networl_4_1_RI_0=0, P_masterList_0_1_1=0, P_poll__networl_3_2_AnnP_3=0, P_network_4_0_AI_2=0, P_poll__networl_2_2_AnnP_4=0, P_poll__networl_3_4_AI_4=0, P_poll__networl_1_3_RP_2=0, P_masterList_4_1_0=0, P_poll__networl_1_1_RP_2=0, P_network_3_2_AnnP_2=0, P_poll__networl_2_3_AskP_3=0, P_network_2_1_AskP_2=0, P_poll__networl_3_2_RP_2=0, P_poll__networl_4_1_AI_2=0, P_poll__networl_2_1_RP_1=0, P_poll__networl_0_4_RI_4=0, P_network_0_4_RI_1=0, P_masterList_0_3_1=0, P_masterList_2_2_3=1, P_network_2_3_AnnP_1=0, P_poll__networl_3_0_AnsP_0=0, P_network_0_2_RP_2=0, P_network_3_0_RP_2=0, P_network_4_0_AskP_3=0, P_poll__networl_0_4_RI_0=0, P_network_4_0_AnnP_3=0, P_poll__networl_4_0_RI_4=0, P_poll__networl_1_0_RP_3=0, P_poll__networl_4_2_RP_3=0, P_masterList_4_2_3=0, P_network_3_3_AI_2=0, P_network_0_1_RI_4=0, P_poll__networl_3_1_AnnP_0=0, P_network_2_1_AskP_1=0, P_network_3_1_RP_1=0, P_network_2_0_RI_3=0, P_poll__networl_0_2_AnnP_0=0, P_poll__networl_1_2_RP_0=0, P_network_0_1_AskP_4=0, P_network_2_3_RI_2=0, P_masterList_3_3_2=0, P_network_0_4_AskP_2=0, P_network_4_2_RP_3=0, P_network_4_4_AskP_1=0, P_network_4_4_AskP_4=0, P_poll__networl_1_0_AI_1=0, P_network_1_2_AI_4=0, P_poll__networl_1_0_AskP_0=0, P_network_2_4_RP_1=0, P_poll__networl_3_3_AnnP_2=0, P_network_3_3_RI_4=0, P_poll__networl_0_2_AI_1=0, P_network_3_4_AnnP_2=0, P_poll__networl_4_1_RI_2=0, P_masterList_2_2_2=0, P_poll__networl_3_0_RP_3=0, P_network_1_2_AnnP_3=0, P_poll__networl_2_1_AnsP_0=0, P_poll__networl_3_1_AskP_1=0, P_poll__networl_3_2_AnnP_2=0, P_network_3_3_RI_3=0, P_poll__networl_2_0_AskP_4=0, P_poll__networl_1_4_RP_3=0, P_poll__networl_0_1_AnnP_0=0, P_network_4_2_AI_4=0, P_poll__networl_4_3_AskP_3=0, P_network_2_2_RI_4=0, P_network_3_3_AnnP_4=0, P_poll__networl_4_4_RP_0=0, P_poll__networl_0_2_RI_0=0, P_poll__networl_0_3_RP_0=0, P_masterList_0_2_2=0, P_network_0_2_AskP_1=0, P_network_2_4_RI_4=0, P_network_4_4_RP_1=0, P_poll__networl_4_4_RI_0=0, P_masterList_3_3_4=1, P_poll__networl_0_3_AskP_2=0, P_network_0_4_RI_2=0, P_poll__networl_2_3_AskP_0=0, P_poll__networl_3_0_AnnP_4=0, P_network_0_1_AnnP_2=0, P_poll__networl_2_2_AnnP_0=0, P_poll__networl_0_0_RI_0=0, P_poll__networl_4_2_RP_1=0, P_network_2_2_AnnP_3=0, P_poll__networl_2_0_RP_1=0, P_network_1_3_AskP_2=0, P_poll__networl_3_2_RI_1=0, P_poll__networl_3_2_RI_2=0, P_network_0_1_AskP_2=0, P_poll__networl_2_2_RI_2=0, P_network_3_3_AskP_2=0, P_network_1_2_AskP_4=0, P_network_1_4_AI_1=0, P_network_3_2_AI_4=0, P_poll__networl_3_0_AnnP_2=0, P_masterList_1_4_3=0, P_poll__networl_4_4_AnnP_1=0, P_network_4_2_AI_3=0, P_poll__networl_4_2_AskP_4=0, P_poll__networl_4_1_AskP_1=0, P_poll__networl_3_1_RI_1=0, P_network_0_2_RP_3=0, P_poll__networl_3_3_RP_2=0, P_network_2_4_RI_3=0, P_network_3_4_RP_1=0, P_network_3_3_AnnP_1=0, P_network_3_3_RP_4=0, P_network_3_0_AnnP_1=0, P_network_0_0_RP_4=0, P_network_3_1_AI_2=0, P_poll__networl_4_0_AI_2=0, P_poll__networl_0_1_AskP_1=0, P_masterList_4_3_0=0, P_poll__networl_2_4_AskP_3=0, P_network_4_3_RP_2=0, P_network_3_2_RI_2=0, P_network_4_4_AnnP_1=0, P_poll__networl_2_4_AnnP_1=0, P_network_4_2_AskP_2=0, P_poll__networl_2_1_AnnP_4=0, P_network_2_2_AI_1=0, P_network_4_0_AI_4=0, P_network_2_2_RP_2=0, P_poll__networl_1_4_RI_4=0, P_crashed_0=0, P_network_2_2_RP_4=0, P_poll__networl_4_3_AI_2=0, P_network_3_0_RP_1=0, P_network_4_4_RI_4=0, P_network_2_1_AI_3=0, P_poll__networl_2_4_RP_0=0, P_poll__networl_4_3_RI_4=0, P_poll__networl_0_3_RP_4=0, P_poll__networl_2_2_AskP_0=0, P_poll__networl_2_0_AI_1=0, P_network_2_3_RI_1=0, P_poll__networl_0_4_AI_1=0, P_poll__networl_1_1_RP_3=0, P_network_2_4_AI_4=0, P_network_1_3_AnnP_1=0, P_poll__networl_2_4_AI_3=0, P_network_3_4_RP_3=0, P_poll__networl_2_1_AI_3=0, P_poll__networl_0_4_AskP_2=0, P_masterList_2_3_4=1, P_network_3_2_AskP_4=0, P_poll__networl_4_4_RI_4=0, P_masterList_0_3_0=0, P_network_2_2_AskP_3=0, P_poll__networl_2_0_AnnP_1=0, P_masterList_0_1_4=0, P_poll__networl_0_0_AI_0=0, P_poll__networl_4_2_RI_2=0, P_network_4_0_AskP_4=0, P_network_2_0_RI_4=0, P_poll__networl_3_2_AnnP_0=0, P_masterList_2_3_1=0, P_network_3_2_AI_3=0, P_network_4_1_RI_1=0, P_poll__networl_0_4_AI_0=0, P_network_1_1_AI_1=0, P_poll__networl_0_3_AnnP_2=0, P_network_4_2_RP_1=0, P_network_1_0_RP_3=0, P_network_2_0_RI_1=0, P_poll__networl_0_2_AskP_0=0, P_poll__networl_2_1_AnnP_0=0, P_poll__networl_1_4_AnsP_0=0, P_poll__networl_3_1_AskP_2=0, P_network_4_2_RI_1=0, P_poll__networl_0_1_AnnP_2=0, P_network_3_3_AI_3=0, P_network_4_3_AI_4=0, P_network_1_3_AnnP_4=0, P_poll__networl_0_0_RP_0=0, P_poll__networl_4_1_RP_3=0, P_poll__networl_2_3_AskP_1=0, P_poll__networl_0_2_RI_1=0, P_poll__networl_4_2_AskP_0=0, P_poll__networl_3_0_RI_0=0, P_poll__networl_2_2_AI_3=0, P_poll__networl_4_2_RI_4=0, P_poll__networl_0_0_AnnP_0=0, P_poll__networl_3_4_AI_3=0, P_network_3_4_AnnP_4=0, P_poll__networl_2_3_RP_1=0, P_poll__networl_4_2_AskP_3=0, P_poll__networl_0_1_AI_3=0, P_network_3_3_RP_2=0, P_poll__networl_1_4_AI_2=0, P_poll__networl_3_4_AskP_2=0, P_poll__networl_2_4_RI_3=0, P_poll__networl_4_4_AI_3=0, P_poll__networl_0_3_AI_4=0, P_network_4_4_AnnP_3=0, P_poll__networl_4_3_RP_1=0, P_network_4_2_RI_3=0, P_poll__networl_1_1_RI_2=0, P_poll__networl_0_3_AI_3=0, P_poll__networl_1_2_AnsP_0=0, P_network_4_4_AI_2=0, P_poll__networl_1_2_AI_1=0, P_network_1_4_RP_3=0, P_poll__networl_0_0_RI_1=0, P_network_0_4_AnnP_2=0, P_poll__networl_0_1_RI_4=0, P_poll__networl_1_1_AskP_4=0, P_poll__networl_2_1_AskP_3=0, P_poll__networl_3_3_RI_1=0, P_poll__networl_2_0_RP_2=0, P_network_4_2_AI_1=0, P_poll__networl_2_3_AnnP_0=0, P_network_4_0_RI_1=0, P_masterList_4_2_1=0, P_network_1_1_AI_2=0, P_network_0_1_AskP_3=0, P_network_0_4_RP_1=0, P_poll__networl_3_2_AI_4=0, P_poll__networl_1_0_AskP_3=0, P_poll__networl_2_4_AI_1=0, P_poll__networl_1_3_AI_4=0, P_poll__networl_1_3_AI_0=0, P_network_4_0_AskP_1=0, P_poll__networl_1_4_RP_4=0, P_poll__networl_3_3_AI_4=0, P_poll__networl_4_0_AnnP_4=0, P_poll__networl_1_2_RI_2=0, P_network_1_4_AnnP_4=0, P_poll__networl_0_1_AI_4=0, P_poll__networl_3_3_AskP_2=0, P_network_1_3_AnnP_2=0, P_network_4_0_AskP_2=0, P_dead_3=0, P_network_1_1_AnnP_4=0, P_network_2_4_AskP_2=0, P_poll__networl_4_2_AskP_2=0, P_poll__networl_0_3_AnnP_4=0, P_poll__networl_3_4_RI_4=0, P_poll__networl_2_2_AskP_1=0, P_poll__networl_2_0_AnnP_2=0, P_network_1_4_AskP_3=0, P_masterList_3_2_3=0, P_network_0_3_RI_4=0, P_poll__networl_4_3_RP_4=0, P_network_3_1_RI_1=0, P_network_3_4_AnnP_3=0, P_network_0_1_AI_3=0, P_network_1_1_RI_4=0, P_masterList_3_3_0=0, P_poll__networl_1_4_AnnP_3=0, P_poll__networl_2_4_AnnP_0=0, P_poll__networl_4_1_AnnP_3=0, P_poll__networl_1_4_RI_3=0, P_network_1_4_AskP_1=0, P_masterList_1_2_4=0, P_network_4_1_RI_4=0, P_poll__networl_0_3_AskP_4=0, P_poll__networl_1_2_RP_2=0, P_network_2_2_AskP_2=0, P_poll__networl_2_0_AskP_0=0, P_masterList_1_4_2=0, P_network_0_3_AI_1=0, P_poll__networl_0_2_RI_3=0, P_network_2_1_RI_4=0, P_poll__networl_4_0_AI_3=0, P_poll__networl_2_2_AskP_2=0, P_poll__networl_1_0_RI_0=0, P_poll__networl_0_0_AI_4=0, P_poll__networl_2_0_AI_4=0, P_network_3_3_RI_2=0, P_poll__networl_1_2_AnnP_1=0, P_poll__networl_1_4_AnnP_2=0, P_network_1_4_AskP_2=0, P_network_3_2_AskP_1=0, P_network_0_1_RP_1=0, P_poll__networl_3_4_RP_3=0, P_network_0_3_AskP_2=0, P_poll__networl_0_1_AnsP_0=0, P_network_1_2_AnnP_1=0, P_poll__networl_2_1_AnnP_1=0, P_network_3_1_RI_3=0, P_masterList_1_3_0=0, P_network_3_1_AI_1=0, P_network_1_3_AI_2=0, P_network_0_3_RP_2=0, P_network_4_3_AnnP_3=0, P_poll__networl_1_3_AskP_4=0, P_network_0_4_AskP_1=0, P_network_0_2_AI_1=0, P_network_0_4_RP_2=0, P_poll__networl_0_4_AskP_3=0, P_network_1_2_RP_1=0, P_network_1_3_RP_1=0, P_network_4_0_RI_2=0, P_poll__networl_0_4_AI_4=0, P_network_2_4_AskP_1=0, P_network_1_2_RI_1=0, P_network_2_0_AnnP_1=0, P_poll__networl_0_3_AskP_1=0, P_masterList_4_2_4=0, P_network_4_3_RP_1=0, P_poll__networl_2_4_AskP_1=0, P_network_1_3_RI_3=0, P_poll__networl_4_3_RI_1=0, P_poll__networl_0_2_AI_0=0, P_network_2_1_AI_2=0, P_poll__networl_4_3_RI_0=0, P_poll__networl_0_2_RP_2=0, P_poll__networl_2_4_RP_4=0, P_poll__networl_2_0_RI_1=0, P_poll__networl_3_3_RP_4=0, P_poll__networl_4_0_AnnP_3=0, P_masterList_2_1_4=0, P_network_0_0_AnnP_1=0, P_network_2_2_RP_1=0, P_network_3_2_RP_1=0, P_poll__networl_2_3_AnnP_4=0, P_network_1_2_AnnP_4=0, P_network_0_4_AI_4=0, P_network_4_0_RP_4=0, P_poll__networl_3_3_AnnP_3=0, P_masterList_1_2_0=0, P_network_1_4_RI_3=0, P_poll__networl_3_0_AI_2=0, P_poll__networl_3_4_RP_4=0, P_network_1_0_AI_1=0, P_network_1_0_RP_2=0, P_poll__networl_4_3_AnnP_2=0, P_poll__networl_4_0_AnnP_0=0, P_masterList_0_3_4=0, P_poll__networl_3_0_AskP_3=0, P_poll__networl_2_1_RP_3=0, P_network_2_3_AI_4=0, P_poll__networl_3_4_RI_1=0, P_network_0_3_AskP_3=0, P_network_2_0_RI_2=0, P_network_4_2_AskP_3=0, P_network_3_1_RP_2=0, P_masterList_3_1_4=0, P_poll__networl_0_1_AI_0=0, P_poll__networl_3_3_AI_3=0, P_network_4_4_AI_3=0, P_poll__networl_0_3_RP_1=0, P_poll__networl_0_0_AnnP_3=0, P_network_2_0_AnnP_4=0, P_network_2_2_RI_3=0, P_poll__networl_3_4_AnnP_0=0, P_network_0_2_AI_3=0, P_network_2_2_RP_3=0, P_poll__networl_0_3_AskP_0=0, P_network_1_0_AnnP_1=0, P_network_3_0_AI_3=0, P_poll__networl_2_3_RI_1=0, P_network_4_1_AskP_3=0, P_network_1_4_AI_3=0, P_poll__networl_0_3_RI_0=0, P_network_3_2_AskP_3=0, P_poll__networl_4_3_AI_3=0, P_poll__networl_3_0_RP_4=0, P_masterList_3_4_0=0, P_poll__networl_2_4_AI_2=0, P_poll__networl_4_4_AnnP_3=0, P_poll__networl_3_4_AskP_3=0, P_network_1_2_RI_4=0, P_network_4_1_AskP_4=0, P_poll__networl_4_1_AnnP_2=0, P_network_2_4_AskP_4=0, P_poll__networl_1_3_AnnP_2=0, P_network_2_3_AskP_2=0, P_network_2_4_AnnP_3=0, P_poll__networl_1_1_AI_1=0, P_electionFailed_4=0, P_network_1_2_RP_2=0, P_poll__networl_0_3_RP_2=0, P_poll__networl_0_2_AnnP_3=0, P_network_0_1_AnnP_3=0, P_poll__networl_3_4_RI_2=0, P_poll__networl_3_1_RP_2=0, P_network_1_0_RI_3=0, P_poll__networl_1_4_AskP_4=0, P_network_4_4_AI_4=0, P_masterList_0_1_2=0, P_poll__networl_2_0_RP_3=0, P_network_4_2_AnnP_2=0, P_poll__networl_0_3_AI_0=0, P_masterList_2_1_3=0, P_network_4_3_RP_4=0, P_poll__networl_0_0_RP_1=0, P_poll__networl_4_2_AI_3=0, P_poll__networl_2_4_RP_1=0, P_poll__networl_0_0_RP_2=0, P_network_3_4_RI_3=0, P_poll__networl_0_2_AnnP_2=0, P_poll__networl_1_1_AskP_2=0, P_poll__networl_4_1_RI_3=0, P_network_3_0_RI_1=0, P_network_2_3_RI_4=0, P_network_0_1_RP_4=0, P_poll__networl_3_4_RP_2=0, P_network_3_0_AnnP_4=0, P_masterList_0_2_0=0, P_network_3_0_AskP_4=0, P_poll__networl_1_1_RI_1=0, P_poll__networl_2_1_AskP_1=0, P_network_0_0_AI_3=0, P_masterList_1_4_0=0, P_network_4_2_RP_4=0, P_network_0_3_AI_2=0, P_network_3_1_AskP_2=0, P_network_3_0_AnnP_3=0, P_network_2_0_AnnP_3=0, P_network_4_2_AskP_1=0, P_network_3_0_RP_4=0, P_masterList_1_4_4=0, P_network_2_3_RP_3=0, P_poll__networl_1_4_RI_0=0, P_poll__networl_4_4_AI_4=0, P_network_4_3_RI_1=0, P_poll__networl_2_1_AI_1=0, P_network_0_2_RI_4=0, P_network_2_3_AnnP_3=0, P_poll__networl_1_1_AnnP_0=0, P_poll__networl_3_1_RP_0=0, P_poll__networl_4_2_AnnP_1=0, P_poll__networl_4_1_RP_4=0, P_network_2_3_AI_3=0, P_network_4_3_AnnP_1=0, P_poll__networl_3_0_RP_1=0, P_network_3_3_AI_1=0, P_network_3_1_RI_4=0, P_poll__networl_1_2_RP_3=0, P_poll__networl_0_2_RI_4=0, P_poll__networl_0_0_AI_1=0, P_poll__networl_3_2_AskP_1=0, P_network_2_4_RP_4=0, P_poll__networl_4_0_AnnP_1=0, P_network_0_3_AnnP_1=0, P_network_4_4_RI_1=0, P_poll__networl_3_4_AI_1=0, P_poll__networl_1_0_AnnP_1=0, P_poll__networl_2_2_RP_4=0, P_poll__networl_0_4_AnsP_0=0, P_network_2_3_AI_2=0, P_network_3_3_AskP_4=0, P_poll__networl_2_3_AI_2=0, P_poll__networl_4_2_AI_4=0, P_masterList_1_1_0=0, P_poll__networl_3_0_RI_2=0, P_network_0_2_AI_4=0, P_poll__networl_1_0_AskP_1=0, P_poll__networl_4_0_RP_1=0, P_poll__networl_3_2_RP_1=0, P_network_4_3_RP_3=0, P_network_0_2_AI_2=0, P_poll__networl_2_1_AI_4=0, P_network_4_4_RI_3=0, P_poll__networl_3_3_RP_1=0, P_network_0_2_AskP_4=0, P_network_3_3_AI_4=0, P_poll__networl_2_4_AskP_0=0, P_network_0_3_AskP_1=0, P_network_3_0_RI_4=0, P_poll__networl_0_4_RI_2=0, P_poll__networl_2_2_AI_0=0, P_poll__networl_4_2_RI_0=0, P_poll__networl_0_4_AskP_1=0, P_poll__networl_1_3_AnsP_0=0, P_poll__networl_2_1_RP_4=0, P_poll__networl_1_3_AskP_0=0, P_network_3_4_AI_3=0, P_network_2_1_AnnP_1=0, P_poll__networl_1_3_AskP_1=0, P_poll__networl_1_3_RI_1=0, P_poll__networl_0_2_AnnP_4=0, P_network_0_3_AskP_4=0, P_poll__networl_0_1_AskP_2=0, P_poll__networl_1_0_AI_4=0, P_poll__networl_3_1_AnnP_3=0, P_poll__networl_3_2_AskP_3=0, P_poll__networl_4_0_AnsP_0=0, P_network_1_2_RI_2=0, P_poll__networl_3_3_AnsP_0=0, P_poll__networl_0_1_RI_3=0, P_poll__networl_3_2_AskP_4=0, P_network_1_1_AI_3=0, P_network_1_0_AskP_2=0, P_electionFailed_1=0, P_poll__networl_4_1_AI_0=0, P_network_3_0_AI_4=0, P_poll__networl_3_1_AI_3=0, P_poll__networl_4_0_RI_3=0, P_poll__networl_2_3_AnnP_1=0, P_network_3_3_RI_1=0, P_poll__networl_3_2_AnsP_0=0, P_dead_1=0, P_network_1_1_AI_4=0, P_masterList_1_2_1=0, P_poll__networl_2_0_AnnP_0=0, P_poll__networl_3_4_AskP_4=0, P_network_0_2_AnnP_2=0, P_network_1_4_AskP_4=0, P_network_2_2_AskP_4=0, P_network_3_4_AskP_1=0, P_poll__networl_4_0_AI_4=0, P_network_3_1_AnnP_2=0, P_network_2_4_AI_1=0, P_poll__networl_1_0_AnnP_0=0, P_poll__networl_0_0_AskP_0=0, P_poll__networl_2_3_RP_2=0, P_network_2_1_AI_4=0, P_poll__networl_3_3_RI_4=0, P_network_2_4_AnnP_1=0, P_poll__networl_4_0_RP_0=0, P_network_2_1_AskP_4=0, P_poll__networl_1_1_AI_3=0, P_poll__networl_2_2_AnnP_1=0, P_poll__networl_2_3_AI_3=0, P_poll__networl_2_4_AI_4=0, P_poll__networl_1_4_AskP_2=0, P_poll__networl_2_2_AI_2=0, P_poll__networl_0_4_RP_3=0, P_poll__networl_4_4_AskP_4=0, P_poll__networl_0_4_AskP_4=0, P_network_0_2_AskP_3=0, P_network_4_1_RI_3=0, P_network_0_2_RI_1=0, P_network_0_4_AI_1=0, P_network_3_0_AskP_2=0, P_poll__networl_4_3_AI_4=0, P_poll__networl_4_1_AskP_4=0, P_network_4_1_RI_2=0, P_network_1_2_RI_3=0, P_masterList_4_3_1=0, P_network_1_3_RI_2=0, P_network_2_1_AskP_3=0, P_network_1_4_RI_1=0, P_network_0_4_AskP_4=0, P_poll__networl_1_0_RP_1=0, P_network_4_1_AI_4=0, P_poll__networl_1_1_AskP_0=0, P_masterList_3_4_1=0, P_poll__networl_1_1_AskP_3=0, P_masterList_0_1_0=0, P_poll__networl_1_4_AI_1=0, P_network_0_3_AI_3=0, P_network_0_3_AnnP_4=0, P_network_4_3_AskP_4=0, P_masterList_1_3_4=1, P_network_4_4_AnnP_2=0, P_poll__networl_4_2_AnnP_3=0, P_masterList_3_2_1=0, P_network_1_1_AskP_4=0, P_poll__networl_0_0_AI_3=0, P_poll__networl_0_0_RP_3=0, P_network_2_4_AI_3=0, P_poll__networl_4_2_RI_1=0, P_poll__networl_1_1_RP_1=0, P_network_3_1_RP_4=0, P_masterList_1_1_3=0, P_poll__networl_0_4_RI_3=0, P_network_4_1_AnnP_1=0, P_poll__networl_3_0_AskP_0=0, P_poll__networl_4_0_AskP_4=0, P_masterList_2_3_0=0, P_poll__networl_0_4_AnnP_3=0, P_network_0_3_AnnP_2=0, P_poll__networl_3_2_RP_4=0, P_poll__networl_4_3_AnsP_0=0, P_network_4_3_AI_2=0, P_network_3_0_AnnP_2=0, P_masterList_2_4_3=0, P_poll__networl_2_1_AnnP_3=0, P_poll__networl_4_4_AnnP_2=0, P_poll__networl_4_4_AskP_3=0, P_poll__networl_0_1_AnnP_4=0, P_network_3_1_AI_3=0, P_network_1_3_AnnP_3=0, P_poll__networl_1_3_AnnP_1=0, P_poll__networl_2_1_RP_2=0, P_network_3_0_RI_2=0, P_poll__networl_2_3_RI_0=0, P_network_4_1_AskP_2=0, P_poll__networl_0_0_RI_2=0, P_poll__networl_0_0_RI_3=0, P_poll__networl_2_3_AI_4=0, P_network_4_2_AskP_4=0, P_crashed_3=0, P_network_4_1_AnnP_4=0, P_poll__networl_0_1_AI_1=0, P_poll__networl_0_4_RP_0=0, P_electionFailed_2=0, P_masterList_2_4_0=0, P_network_0_1_AnnP_4=0, P_network_3_3_RP_1=0, P_poll__networl_2_2_AnnP_3=0, P_network_2_0_AI_2=0, P_poll__networl_1_3_RP_1=0, P_poll__networl_3_2_AskP_2=0, P_poll__networl_1_2_RI_0=0, P_network_4_3_AskP_2=0, P_poll__networl_3_1_RI_3=0, P_poll__networl_2_1_RP_0=0, P_network_1_0_RI_2=0, P_poll__networl_1_1_AskP_1=0, P_network_1_4_RP_2=0, P_network_0_2_RI_3=0, P_poll__networl_3_2_RP_0=0, P_poll__networl_4_4_AI_2=0, P_network_3_1_RI_2=0, P_masterList_3_1_2=0, P_network_0_0_RP_1=0, P_poll__networl_0_3_RI_1=0, P_poll__networl_1_2_AI_2=0, P_network_1_4_RP_1=0, P_network_2_1_RI_1=0, P_network_3_1_AI_4=0, P_network_2_0_AskP_2=0, P_poll__networl_4_0_AnnP_2=0, P_network_4_0_RP_3=0, P_poll__networl_2_2_RI_3=0, P_electionFailed_0=0, P_network_1_1_RI_2=0, P_network_0_1_RP_2=0, P_poll__networl_4_3_RI_3=0, P_poll__networl_3_3_AnnP_4=0, P_masterList_3_2_4=0, P_masterList_1_2_3=1, P_network_4_0_RP_1=0, P_poll__networl_0_1_AI_2=0, P_poll__networl_1_1_AI_4=0, P_poll__networl_4_4_AskP_1=0, P_poll__networl_1_1_AnnP_2=0, P_poll__networl_2_3_RP_3=0, P_poll__networl_4_1_RP_1=0, P_network_4_2_AI_2=0, P_poll__networl_3_0_AI_3=0, P_poll__networl_0_0_RP_4=0, P_poll__networl_2_0_AnnP_3=0, P_masterList_4_3_4=0, P_network_0_0_RP_3=0, P_network_0_4_RP_3=0, P_poll__networl_4_0_AskP_0=0, P_network_4_3_AI_3=0, P_network_0_2_RP_1=0, P_network_1_1_AnnP_2=0, P_network_0_1_RI_2=0, P_poll__networl_0_3_AnnP_3=0, P_network_1_1_RI_3=0, P_poll__networl_2_2_RP_1=0, P_network_0_0_AI_1=0, P_network_2_1_AI_1=0, P_network_1_0_RP_1=0, P_poll__networl_4_3_AnnP_0=0, P_poll__networl_1_3_AI_1=0, P_masterList_2_2_0=0, P_poll__networl_3_2_AI_3=0, P_network_1_4_AI_2=0, P_poll__networl_3_1_AskP_0=0, P_poll__networl_0_0_AnsP_0=0, P_poll__networl_1_3_RI_0=0, P_network_4_3_RI_3=0, P_network_2_0_RP_1=0, P_poll__networl_0_4_RP_1=0, P_poll__networl_1_3_RP_3=0, P_poll__networl_0_1_AskP_4=0, P_poll__networl_0_0_AskP_1=0, P_masterList_1_1_1=0, P_poll__networl_0_1_RI_0=0, P_poll__networl_1_1_AnsP_0=0, P_network_0_1_RI_3=0, P_poll__networl_3_2_AnnP_1=0, P_network_3_4_RI_4=0, P_network_0_2_AskP_2=0, P_poll__networl_2_4_RI_0=0, P_poll__networl_3_3_AskP_1=0, P_poll__networl_4_3_AskP_0=0, P_masterList_4_1_3=0, P_poll__networl_3_3_AI_1=0, P_poll__networl_2_3_RI_3=0, P_poll__networl_2_2_RP_0=0, P_poll__networl_1_4_RP_2=0, P_poll__networl_2_0_AI_0=0, P_poll__networl_4_0_RP_2=0, P_network_1_3_AskP_3=0, P_masterList_4_4_1=0, P_poll__networl_0_2_RP_1=0, P_poll__networl_4_4_AskP_2=0, P_network_0_2_AnnP_1=0, P_network_0_0_AskP_4=0, P_poll__networl_3_2_AnnP_4=0, P_poll__networl_3_2_AskP_0=0, P_network_2_2_RI_1=0, P_poll__networl_2_0_RI_4=0, P_network_2_2_AnnP_2=0, P_poll__networl_3_0_AI_1=0, P_masterList_2_4_1=0, P_network_3_0_RI_3=0, P_poll__networl_1_0_AnnP_3=0, P_network_0_2_AnnP_3=0, P_poll__networl_4_2_RP_0=0, P_poll__networl_4_4_AnnP_4=0, P_network_2_0_RP_2=0, P_poll__networl_0_1_RP_1=0, P_poll__networl_0_2_AI_3=0, P_poll__networl_3_4_RI_0=0, P_poll__networl_4_0_RI_2=0, P_dead_4=0, P_poll__networl_1_2_RI_4=0, P_masterList_0_4_2=0, P_network_2_1_RP_4=0, P_masterList_1_3_1=0, P_poll__networl_1_0_AnsP_0=0, P_network_3_1_AskP_1=0, P_poll__networl_0_1_AskP_3=0, P_poll__networl_0_3_RI_4=0, P_network_2_0_AI_3=0, P_network_2_3_RP_1=0, P_masterList_3_4_3=0, P_poll__networl_3_3_RI_0=0, P_poll__networl_3_0_RP_0=0, P_network_1_0_AskP_4=0, P_poll__networl_1_0_AI_0=0, P_poll__networl_1_0_AskP_2=0, P_poll__networl_4_4_RP_2=0, P_network_2_1_RI_2=0, P_poll__networl_3_1_AI_4=0, P_poll__networl_2_3_RP_0=0, P_poll__networl_0_4_AnnP_4=0, P_network_2_3_AnnP_4=0, P_poll__networl_0_1_RP_2=0, P_network_2_0_AI_1=0, P_network_3_2_AI_1=0, P_poll__networl_2_2_AskP_4=0, P_network_1_3_AI_3=0, P_poll__networl_0_4_AnnP_0=0, P_network_1_0_RI_4=0, P_masterList_3_2_2=1, P_poll__networl_3_2_RI_4=0, P_poll__networl_2_0_RP_0=0, P_poll__networl_1_1_RI_3=0, P_network_1_2_RP_3=0, P_poll__networl_2_3_AI_0=0, P_network_1_2_RP_4=0, P_poll__networl_0_1_RP_0=0, P_poll__networl_1_2_AnnP_3=0, P_poll__networl_1_4_RP_1=0, P_network_1_0_RP_4=0, P_network_4_1_AnnP_2=0, P_poll__networl_0_4_RI_1=0, P_poll__networl_4_3_RP_3=0, P_poll__networl_2_2_RI_0=0, P_network_0_0_AI_2=0, P_poll__networl_2_2_RP_3=0, P_network_0_0_AskP_2=0, P_poll__networl_3_1_RP_3=0, P_network_0_4_RP_4=0, P_network_0_3_RI_1=0, P_network_3_0_RP_3=0, P_poll__networl_2_1_AskP_2=0, P_poll__networl_3_4_AskP_0=0, P_network_2_1_RP_2=0, P_masterList_0_3_2=0, P_network_3_2_RP_2=0, P_dead_2=0, P_poll__networl_2_1_RI_3=0, P_network_1_0_AnnP_3=0, P_poll__networl_0_2_AskP_2=0, P_poll__networl_1_0_AnnP_4=0, P_masterList_2_2_4=0, P_network_1_2_AI_1=0, P_poll__networl_1_3_RP_4=0, P_poll__networl_1_3_AskP_3=0, P_poll__networl_0_0_AnnP_1=0, P_network_2_2_AnnP_4=0, P_poll__networl_2_4_RI_2=0, P_network_2_0_AskP_4=0, P_network_4_4_AI_1=0, P_poll__networl_1_2_AskP_0=0, P_poll__networl_3_0_AskP_2=0, P_masterList_1_3_3=0, P_network_0_2_RP_4=0, P_poll__networl_2_2_AskP_3=0, P_network_2_2_AI_4=0, P_network_1_0_AskP_1=0, P_network_1_3_RP_2=0, P_network_1_2_AnnP_2=0, P_poll__networl_4_0_RI_1=0, P_network_4_4_AnnP_4=0, P_network_0_3_AI_4=0, P_poll__networl_4_3_RP_2=0, P_poll__networl_0_1_RI_2=0, P_poll__networl_0_0_AskP_4=0, P_poll__networl_2_4_RP_3=0, P_network_1_1_AskP_3=0, P_poll__networl_2_0_AnnP_4=0, P_poll__networl_1_1_RP_0=0, P_network_3_4_RP_2=0, P_poll__networl_4_4_RP_1=0, P_network_3_3_AnnP_2=0, P_poll__networl_4_1_AnsP_0=0, P_network_0_3_AnnP_3=0, P_network_0_4_AI_3=0, P_network_2_4_AskP_3=0, P_network_2_2_RI_2=0, P_masterList_3_1_1=1, P_poll__networl_4_4_AI_1=0, P_poll__networl_3_4_AnnP_2=0, P_network_2_4_RI_2=0, P_network_4_4_RP_3=0, P_poll__networl_3_2_RI_3=0, P_poll__networl_2_1_RI_4=0, P_masterList_1_1_2=1, P_network_0_0_AnnP_4=0, P_electionFailed_3=0, P_poll__networl_2_4_AnnP_4=0, P_poll__networl_2_1_RI_1=0, P_poll__networl_3_0_AskP_4=0, P_network_3_0_AI_1=0, P_network_4_1_AskP_1=0, P_poll__networl_1_4_AnnP_0=0, P_network_1_3_AskP_1=0, P_poll__networl_3_0_AI_4=0, P_network_3_1_AskP_3=0, P_poll__networl_1_0_RP_4=0, P_network_2_3_AI_1=0, P_network_0_4_AnnP_3=0, P_network_4_2_RI_2=0, P_poll__networl_2_3_AnnP_2=0, P_poll__networl_3_1_AnsP_0=0, P_poll__networl_1_4_RP_0=0, P_poll__networl_0_4_AnnP_2=0, P_poll__networl_3_2_RI_0=0, P_poll__networl_0_0_AskP_3=0, P_network_4_0_AnnP_2=0, P_poll__networl_4_3_AnnP_1=0, P_network_4_4_RP_4=0, P_poll__networl_0_3_RP_3=0, P_network_4_3_AskP_1=0, P_poll__networl_2_3_RI_4=0, P_poll__networl_2_2_RI_1=0, P_network_3_2_RI_4=0, P_network_2_2_AI_2=0, P_poll__networl_2_2_RP_2=0, P_poll__networl_1_2_AnnP_2=0, P_poll__networl_3_0_AnnP_1=0, P_masterList_2_1_1=1, P_poll__networl_3_3_RP_3=0, P_network_4_3_AnnP_2=0, P_poll__networl_2_1_AskP_0=0, P_poll__networl_4_4_AnnP_0=0, P_poll__networl_1_0_AI_3=0, P_poll__networl_1_1_RP_4=0, P_poll__networl_4_1_RI_1=0, P_poll__networl_1_2_RP_1=0, P_network_1_3_AI_4=0, P_poll__networl_0_2_RI_2=0, P_poll__networl_2_4_AskP_2=0, P_poll__networl_4_2_AI_1=0, P_poll__networl_4_1_AI_3=0, P_network_1_2_AskP_2=0, P_network_2_2_AnnP_1=0, P_masterList_0_4_1=0, P_network_2_4_AnnP_2=0, P_network_4_3_AI_1=0, P_poll__networl_1_3_AnnP_4=0, P_masterList_2_3_3=0, P_network_1_4_RP_4=0, P_network_4_3_AnnP_4=0, P_crashed_2=0, P_network_4_4_RP_2=0, P_poll__networl_2_1_AI_0=0, P_network_1_0_AI_2=0, P_network_2_3_AskP_1=0, P_poll__networl_3_1_RP_1=0, P_network_4_0_AnnP_4=0, P_dead_0=0, P_network_2_0_AskP_1=0, P_network_3_0_AskP_1=0, P_network_3_2_AnnP_4=0, P_poll__networl_3_0_AnnP_0=0, P_network_0_0_RI_1=0, P_network_4_3_RI_2=0, P_poll__networl_4_3_AnnP_4=0, P_poll__networl_3_4_AnsP_0=0, P_network_1_1_RP_3=0, P_masterList_4_4_2=0, P_poll__networl_0_2_AI_2=0, P_network_2_1_RP_1=0, P_masterList_0_4_0=0, P_poll__networl_1_2_AI_4=0, P_poll__networl_1_4_AI_0=0, P_network_1_1_AnnP_1=0, P_poll__networl_1_2_RP_4=0, P_poll__networl_1_0_RI_2=0, P_network_3_2_AskP_2=0, P_network_3_4_AI_2=0, P_network_0_3_RP_1=0, P_network_4_3_RI_4=0, P_poll__networl_3_4_AnnP_4=0, P_poll__networl_1_3_RP_0=0, P_network_0_4_RI_4=0, P_poll__networl_1_1_AnnP_1=0, P_poll__networl_1_4_RI_1=0, P_masterList_1_2_2=0, P_masterList_4_2_0=0, P_poll__networl_0_4_RP_2=0, P_network_0_1_RP_3=0, P_masterList_3_4_4=0, P_poll__networl_4_2_RP_4=0, P_network_3_1_AnnP_3=0, P_poll__networl_1_2_AnnP_4=0, P_poll__networl_1_1_AnnP_3=0, P_poll__networl_4_3_AI_0=0, P_masterList_0_2_3=0, P_poll__networl_0_2_RP_3=0, P_poll__networl_4_0_AskP_3=0, P_network_0_0_RI_3=0, P_network_3_4_RI_1=0, P_poll__networl_3_1_AskP_4=0, P_poll__networl_4_4_RI_2=0, P_network_0_3_RP_4=0, P_network_2_1_AnnP_4=0, P_network_3_1_AnnP_1=0, P_network_3_4_AskP_4=0, P_network_0_0_AskP_3=0, P_network_2_2_AI_3=0, P_network_4_4_RI_2=0, P_masterList_0_4_3=0, P_poll__networl_0_3_AnsP_0=0, P_network_3_4_AI_4=0, P_poll__networl_2_0_AI_2=0, P_network_1_3_RI_1=0, P_poll__networl_1_0_AskP_4=0, P_network_3_4_RI_2=0, P_poll__networl_1_0_RP_0=0, P_poll__networl_3_0_RP_2=0, P_network_0_1_AnnP_1=0, P_poll__networl_1_2_AskP_2=0, P_poll__networl_2_4_AnnP_3=0, P_poll__networl_4_1_AnnP_1=0, P_network_1_3_RP_4=0, P_poll__networl_2_4_RP_2=0, P_poll__networl_4_0_RP_3=0, P_poll__networl_0_2_AskP_4=0, P_network_2_4_RI_1=0, P_network_1_3_AskP_4=0, P_poll__networl_2_0_RP_4=0, P_poll__networl_2_4_AnsP_0=0, P_network_3_4_RP_4=0, P_poll__networl_0_4_AnnP_1=0, P_masterList_3_3_1=0, P_network_2_3_AnnP_2=0, P_poll__networl_3_1_AnnP_2=0, P_poll__networl_1_2_AI_0=0, P_poll__networl_4_4_RP_3=0, P_masterList_2_1_0=0, P_network_0_3_RI_2=0, P_network_3_2_AI_2=0, P_network_4_1_AI_2=0, P_network_0_0_RP_2=0, P_poll__networl_4_1_RP_0=0, P_network_4_2_AnnP_1=0, P_network_4_2_AnnP_4=0, P_poll__networl_2_4_AI_0=0, P_crashed_4=0, P_poll__networl_1_3_RI_4=0, P_poll__networl_3_4_RP_0=0, P_network_4_1_AI_1=0, P_poll__networl_3_2_AI_0=0, P_masterList_4_4_3=0, P_poll__networl_1_2_AskP_4=0, P_network_2_1_AnnP_3=0, P_poll__networl_3_1_AnnP_4=0, P_network_0_0_AskP_1=0, P_poll__networl_3_3_RP_0=0, P_poll__networl_2_0_AskP_3=0, P_network_4_1_RP_3=0, P_poll__networl_3_3_AskP_0=0, P_network_4_0_RP_2=0, P_network_4_0_AnnP_1=0, P_network_1_4_RI_4=0, P_poll__networl_3_4_AnnP_3=0, P_network_4_0_RI_3=0, P_poll__networl_1_0_AI_2=0, P_poll__networl_2_3_AI_1=0, P_poll__networl_4_3_AnnP_3=0, P_poll__networl_1_2_AnnP_0=0, P_poll__networl_3_2_AI_2=0, P_poll__networl_4_3_AskP_1=0, P_poll__networl_0_1_AnnP_3=0, P_poll__networl_0_3_AskP_3=0, P_network_2_4_RP_2=0, P_network_1_4_AnnP_3=0, P_poll__networl_1_2_RI_1=0, P_poll__networl_4_4_AI_0=0, P_poll__networl_2_2_AI_1=0, P_poll__networl_1_0_RP_2=0, P_network_0_0_AnnP_2=0, P_poll__networl_0_1_RP_4=0, P_poll__networl_0_1_RP_3=0, P_network_0_4_AnnP_4=0, P_poll__networl_2_3_AskP_2=0, P_poll__networl_4_2_AnnP_2=0, P_masterList_4_3_3=1, P_poll__networl_0_2_AskP_1=0, P_masterList_2_2_1=0, P_poll__networl_4_2_RP_2=0, P_poll__networl_3_3_AnnP_1=0, P_poll__networl_0_3_AnnP_1=0, P_poll__networl_0_4_AI_3=0, P_network_1_4_AnnP_1=0, P_poll__networl_2_0_AnsP_0=0, P_poll__networl_4_1_AskP_3=0, P_poll__networl_2_3_RI_2=0, P_network_1_0_RI_1=0, P_network_2_0_RP_3=0, P_network_4_0_AI_1=0, P_poll__networl_1_1_AnnP_4=0, P_poll__networl_1_3_AnnP_3=0, P_poll__networl_1_4_AI_3=0, P_poll__networl_0_0_AnnP_4=0, P_network_1_1_RP_4=0, P_poll__networl_4_1_AskP_2=0, P_poll__networl_2_0_AskP_1=0, P_poll__networl_3_3_AI_0=0, P_poll__networl_4_4_RI_3=0, P_poll__networl_3_2_AI_1=0, P_network_3_2_RP_4=0, P_poll__networl_4_2_AnsP_0=0, P_poll__networl_3_3_AskP_4=0, P_poll__networl_1_3_RI_2=0, P_poll__networl_0_0_AI_2=0, P_network_1_4_AnnP_2=0, P_network_4_0_AI_3=0, P_masterList_0_2_4=0, P_network_4_4_AskP_2=0, P_poll__networl_3_0_RI_4=0, P_poll__networl_3_3_AI_2=0, P_poll__networl_2_4_RI_4=0, P_network_0_1_AI_1=0, P_network_1_1_RI_1=0, P_poll__networl_4_2_AnnP_4=0, P_network_4_1_RP_2=0, P_network_2_1_RI_3=0, P_poll__networl_2_4_AskP_4=0, P_poll__networl_3_4_AI_0=0, P_masterList_3_3_3=0, P_poll__networl_0_4_RP_4=0, P_network_2_3_RI_3=0, P_network_4_2_AnnP_3=0, P_poll__networl_1_2_AskP_1=0, P_network_0_3_RP_3=0, P_network_2_3_RP_4=0, P_network_3_3_AskP_3=0, P_poll__networl_4_1_AI_4=0, P_poll__networl_1_3_AnnP_0=0, P_poll__networl_1_2_AI_3=0, P_poll__networl_3_4_RI_3=0, P_poll__networl_4_0_AskP_1=0, P_network_3_4_AnnP_1=0, P_masterList_2_1_2=0, P_poll__networl_3_0_RI_1=0, P_network_0_1_RI_1=0, P_poll__networl_0_0_RI_4=0, P_masterList_0_4_4=0, P_poll__networl_0_3_RI_3=0, P_poll__networl_3_3_AskP_3=0, P_network_0_4_AI_2=0, P_network_3_4_AI_1=0, P_poll__networl_3_4_AnnP_1=0, P_network_1_1_AskP_2=0, P_poll__networl_1_4_AI_4=0, P_poll__networl_2_2_AnnP_2=0, P_network_1_2_AskP_1=0, P_network_4_4_AskP_3=0, P_network_2_0_RP_4=0, P_network_3_1_RP_3=0, P_network_3_2_AnnP_3=0, P_poll__networl_4_1_AI_1=0, P_crashed_1=0, P_masterList_4_1_1=1, P_poll__networl_1_3_AI_3=0, P_poll__networl_4_1_AskP_0=0, P_network_1_2_AI_2=0, P_poll__networl_2_1_RI_2=0, P_poll__networl_2_3_AnnP_3=0, P_network_2_4_AI_2=0, P_poll__networl_3_1_AnnP_1=0, P_masterList_1_1_4=0, P_poll__networl_2_1_RI_0=0, P_poll__networl_0_1_RI_1=0, P_poll__networl_4_3_AskP_4=0, P_network_0_0_RI_4=0, P_network_2_3_RP_2=0, P_poll__networl_4_3_AskP_2=0, P_network_4_0_RI_4=0, P_poll__networl_4_2_AskP_1=0, P_network_2_3_AskP_4=0, P_poll__networl_4_3_AI_1=0, P_poll__networl_0_2_RP_4=0, P_poll__networl_4_2_RI_3=0, P_poll__networl_3_1_AI_0=0, P_poll__networl_0_3_RI_2=0
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.Simplifier simplifyConstantVariables
INFO: Simplified 1262 expressions due to constant valuations.
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.Simplifier simplifyFalseTransitions
INFO: Removed 126 false transitions.
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.DomainAnalyzer computeVariableDomains
INFO: Found a total of 17 fixed domain variables (out of 565 variables) in GAL type NeoElection_PT_4_flat
May 24, 2018 3:01:31 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 864 ms
May 24, 2018 3:01:31 PM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/UpperBounds.pnml.gal : 66 ms
May 24, 2018 3:01:31 PM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/UpperBounds.prop : 2 ms
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-4"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="itstools"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-4.tgz
mv NeoElection-PT-4 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstools"
echo " Input is NeoElection-PT-4, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r116-csrt-152666475200303"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;