About the Execution of LoLA for NeoElection-PT-7
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
540.700 | 2984879.00 | 3107298.00 | 413.40 | 0 7 7 42 0 7 42 0 1 0 0 0 0 0 0 0 | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
...............
/home/mcc/execution
total 19M
-rw-r--r-- 1 mcc users 185K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 476K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 766K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 2.1M May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 74K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 170K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 41K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 112K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 337K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 786K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 441K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 1.2M May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 24K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 48K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 13M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-PT-7, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r112-csrt-152666469300324
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of positive values
NUM_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-7-UpperBounds-00
FORMULA_NAME NeoElection-PT-7-UpperBounds-01
FORMULA_NAME NeoElection-PT-7-UpperBounds-02
FORMULA_NAME NeoElection-PT-7-UpperBounds-03
FORMULA_NAME NeoElection-PT-7-UpperBounds-04
FORMULA_NAME NeoElection-PT-7-UpperBounds-05
FORMULA_NAME NeoElection-PT-7-UpperBounds-06
FORMULA_NAME NeoElection-PT-7-UpperBounds-07
FORMULA_NAME NeoElection-PT-7-UpperBounds-08
FORMULA_NAME NeoElection-PT-7-UpperBounds-09
FORMULA_NAME NeoElection-PT-7-UpperBounds-10
FORMULA_NAME NeoElection-PT-7-UpperBounds-11
FORMULA_NAME NeoElection-PT-7-UpperBounds-12
FORMULA_NAME NeoElection-PT-7-UpperBounds-13
FORMULA_NAME NeoElection-PT-7-UpperBounds-14
FORMULA_NAME NeoElection-PT-7-UpperBounds-15
=== Now, execution of the tool begins
BK_START 1527028842113
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-PT-7 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-PT-7 formula UpperBounds into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking UpperBounds @ NeoElection-PT-7 @ 3570 seconds
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 21240/65536 symbol table entries, 3557 collisions
lola: preprocessing...
lola: Size of bit vector: 7128
lola: finding significant places
lola: 7128 places, 14112 transitions, 1688 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 3568 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-PT-7-UpperBounds.task
lola: place invariant simplifies atomic proposition
lola: before: (P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_4_7 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_2_7_7 + P-masterList_2_7_6 + P-masterList_2_7_5 + P-masterList_2_7_4 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 <= 0)
lola: after: (42 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_0_4_6 + P-masterList_0_4_7 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_2_7_7 + P-masterList_2_7_6 + P-masterList_2_7_5 + P-masterList_2_7_4 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 <= 0)
lola: after: (42 <= 0)
lola: always false
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-network_6_1_AskP_4 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_4_0_AI_3 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_0_1_2 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_7_2_AskP_6 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_5_2_RP_3 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_7_2_RP_7 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_6_2_RI_3 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: MAX(0) : MAX(P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_2_5 + P-startNeg__broadcasting_2_6 + P-startNeg__broadcasting_2_7 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_3_5 + P-startNeg__broadcasting_3_6 + P-startNeg__broadcasting_3_7 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_4_5 + P-startNeg__broadcasting_4_6 + P-startNeg__broadcasting_4_7 + P-startNeg__broadcasting_7_7 + P-startNeg__broadcasting_7_6 + P-startNeg__broadcasting_7_5 + P-startNeg__broadcasting_7_4 + P-startNeg__broadcasting_7_3 + P-startNeg__broadcasting_7_2 + P-startNeg__broadcasting_7_1 + P-startNeg__broadcasting_5_1 + P-startNeg__broadcasting_5_2 + P-startNeg__broadcasting_5_3 + P-startNeg__broadcasting_5_4 + P-startNeg__broadcasting_5_5 + P-startNeg__broadcasting_5_6 + P-startNeg__broadcasting_5_7 + P-startNeg__broadcasting_6_7 + P-startNeg__broadcasting_6_6 + P-startNeg__broadcasting_6_5 + P-startNeg__broadcasting_6_4 + P-startNeg__broadcasting_6_3 + P-startNeg__broadcasting_6_2 + P-startNeg__broadcasting_6_1 + P-startNeg__broadcasting_0_6 + P-startNeg__broadcasting_0_7 + P-startNeg__broadcasting_1_6 + P-startNeg__broadcasting_1_7) : MAX(P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7) : MAX(0) : MAX(0) : MAX(P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7) : MAX(0) : MAX(P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1) : MAX(P-negotiation_2_4_NONE) : MAX(0) : MAX(0) : MAX(0) : MAX(0) : MAX(0) : MAX(0) : MAX(0)
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-0 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 42
lola: SUBRESULT
lola: result: 42
lola: produced by: state space
lola: The maximum value of the given expression is 42
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-3 42 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-4 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 42
lola: SUBRESULT
lola: result: 42
lola: produced by: state space
lola: The maximum value of the given expression is 42
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-7-UpperBounds-6 42 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs_... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs_... (shortened)
lola: processed formula length: 1794
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-7 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 323 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-7-UpperBounds-9 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-10 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 395 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-7-UpperBounds-11 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-12 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 507 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-7-UpperBounds-13 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 10 will run for 592 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-14 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 710 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-15 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 888 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(P-negotiation_2_4_NONE)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(P-negotiation_2_4_NONE)
lola: processed formula length: 27
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 1
lola: SUBRESULT
lola: result: 1
lola: produced by: state space
lola: The maximum value of the given expression is 1
lola: 0 markings, 0 edges
FORMULA NeoElection-PT-7-UpperBounds-8 1 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 13 will run for 1183 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7)
lola: processed formula length: 114
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: 846 markings, 1225 edges, 169 markings/sec, 0 secs
lola: 7814 markings, 26180 edges, 1394 markings/sec, 5 secs
lola: 14798 markings, 56252 edges, 1397 markings/sec, 10 secs
lola: 22564 markings, 92605 edges, 1553 markings/sec, 15 secs
lola: 30717 markings, 133234 edges, 1631 markings/sec, 20 secs
lola: 38990 markings, 176271 edges, 1655 markings/sec, 25 secs
lola: 46634 markings, 209738 edges, 1529 markings/sec, 30 secs
lola: 54107 markings, 238919 edges, 1495 markings/sec, 35 secs
lola: 61777 markings, 273892 edges, 1534 markings/sec, 40 secs
lola: 69796 markings, 315108 edges, 1604 markings/sec, 45 secs
lola: 77789 markings, 355079 edges, 1599 markings/sec, 50 secs
lola: 85109 markings, 387734 edges, 1464 markings/sec, 55 secs
lola: 92892 markings, 430762 edges, 1557 markings/sec, 60 secs
lola: 100397 markings, 470292 edges, 1501 markings/sec, 65 secs
lola: 108118 markings, 508651 edges, 1544 markings/sec, 70 secs
lola: 115727 markings, 544318 edges, 1522 markings/sec, 75 secs
lola: 123275 markings, 588467 edges, 1510 markings/sec, 80 secs
lola: 131479 markings, 634412 edges, 1641 markings/sec, 85 secs
lola: 139852 markings, 683858 edges, 1675 markings/sec, 90 secs
lola: 148201 markings, 740994 edges, 1670 markings/sec, 95 secs
lola: 157201 markings, 791408 edges, 1800 markings/sec, 100 secs
lola: 165921 markings, 849349 edges, 1744 markings/sec, 105 secs
lola: 174159 markings, 900981 edges, 1648 markings/sec, 110 secs
lola: 181931 markings, 943283 edges, 1554 markings/sec, 115 secs
lola: 190629 markings, 985161 edges, 1740 markings/sec, 120 secs
lola: 199790 markings, 1032511 edges, 1832 markings/sec, 125 secs
lola: 210260 markings, 1094026 edges, 2094 markings/sec, 130 secs
lola: 221028 markings, 1156072 edges, 2154 markings/sec, 135 secs
lola: 230928 markings, 1215652 edges, 1980 markings/sec, 140 secs
lola: 240091 markings, 1259612 edges, 1833 markings/sec, 145 secs
lola: 249712 markings, 1315561 edges, 1924 markings/sec, 150 secs
lola: 260105 markings, 1379459 edges, 2079 markings/sec, 155 secs
lola: 269150 markings, 1428638 edges, 1809 markings/sec, 160 secs
lola: 278995 markings, 1491039 edges, 1969 markings/sec, 165 secs
lola: 287516 markings, 1544477 edges, 1704 markings/sec, 170 secs
lola: 295707 markings, 1591807 edges, 1638 markings/sec, 175 secs
lola: 304038 markings, 1641716 edges, 1666 markings/sec, 180 secs
lola: 312326 markings, 1699565 edges, 1658 markings/sec, 185 secs
lola: 321430 markings, 1759951 edges, 1821 markings/sec, 190 secs
lola: 330431 markings, 1829287 edges, 1800 markings/sec, 195 secs
lola: 340510 markings, 1898269 edges, 2016 markings/sec, 200 secs
lola: 350770 markings, 1974469 edges, 2052 markings/sec, 205 secs
lola: 360037 markings, 2041927 edges, 1853 markings/sec, 210 secs
lola: 368759 markings, 2097620 edges, 1744 markings/sec, 215 secs
lola: 377979 markings, 2144273 edges, 1844 markings/sec, 220 secs
lola: 387681 markings, 2196358 edges, 1940 markings/sec, 225 secs
lola: 397972 markings, 2258379 edges, 2058 markings/sec, 230 secs
lola: 409280 markings, 2324736 edges, 2262 markings/sec, 235 secs
lola: 418773 markings, 2376452 edges, 1899 markings/sec, 240 secs
lola: 427949 markings, 2422778 edges, 1835 markings/sec, 245 secs
lola: 438321 markings, 2485092 edges, 2074 markings/sec, 250 secs
lola: 448643 markings, 2546560 edges, 2064 markings/sec, 255 secs
lola: 458409 markings, 2603156 edges, 1953 markings/sec, 260 secs
lola: 468285 markings, 2663121 edges, 1975 markings/sec, 265 secs
lola: 477888 markings, 2724352 edges, 1921 markings/sec, 270 secs
lola: 487253 markings, 2778198 edges, 1873 markings/sec, 275 secs
lola: 496100 markings, 2839748 edges, 1769 markings/sec, 280 secs
lola: 506590 markings, 2907707 edges, 2098 markings/sec, 285 secs
lola: 516670 markings, 2986414 edges, 2016 markings/sec, 290 secs
lola: 527612 markings, 3059418 edges, 2188 markings/sec, 295 secs
lola: 538441 markings, 3142984 edges, 2166 markings/sec, 300 secs
lola: 547548 markings, 3207206 edges, 1821 markings/sec, 305 secs
lola: 556079 markings, 3260346 edges, 1706 markings/sec, 310 secs
lola: 563234 markings, 3293617 edges, 1431 markings/sec, 315 secs
lola: 570499 markings, 3329672 edges, 1453 markings/sec, 320 secs
lola: 578151 markings, 3375063 edges, 1530 markings/sec, 325 secs
lola: 586735 markings, 3422818 edges, 1717 markings/sec, 330 secs
lola: 595134 markings, 3474559 edges, 1680 markings/sec, 335 secs
lola: 603836 markings, 3530999 edges, 1740 markings/sec, 340 secs
lola: 612509 markings, 3581068 edges, 1735 markings/sec, 345 secs
lola: 621283 markings, 3641326 edges, 1755 markings/sec, 350 secs
lola: 629125 markings, 3687151 edges, 1568 markings/sec, 355 secs
lola: 636538 markings, 3724454 edges, 1483 markings/sec, 360 secs
lola: 644458 markings, 3759286 edges, 1584 markings/sec, 365 secs
lola: 652229 markings, 3791540 edges, 1554 markings/sec, 370 secs
lola: 659878 markings, 3831441 edges, 1530 markings/sec, 375 secs
lola: 668260 markings, 3871938 edges, 1676 markings/sec, 380 secs
lola: 676475 markings, 3916669 edges, 1643 markings/sec, 385 secs
lola: 684905 markings, 3966393 edges, 1686 markings/sec, 390 secs
lola: 693791 markings, 4012079 edges, 1777 markings/sec, 395 secs
lola: 702445 markings, 4064012 edges, 1731 markings/sec, 400 secs
lola: 710390 markings, 4106050 edges, 1589 markings/sec, 405 secs
lola: 718176 markings, 4141851 edges, 1557 markings/sec, 410 secs
lola: 725844 markings, 4172938 edges, 1534 markings/sec, 415 secs
lola: 734000 markings, 4212485 edges, 1631 markings/sec, 420 secs
lola: 742634 markings, 4258533 edges, 1727 markings/sec, 425 secs
lola: 749743 markings, 4290806 edges, 1422 markings/sec, 430 secs
lola: 756917 markings, 4324918 edges, 1435 markings/sec, 435 secs
lola: 764962 markings, 4366939 edges, 1609 markings/sec, 440 secs
lola: 772685 markings, 4409630 edges, 1545 markings/sec, 445 secs
lola: 780298 markings, 4447982 edges, 1523 markings/sec, 450 secs
lola: 787945 markings, 4494014 edges, 1529 markings/sec, 455 secs
lola: 796228 markings, 4545151 edges, 1657 markings/sec, 460 secs
lola: 804891 markings, 4601388 edges, 1733 markings/sec, 465 secs
lola: 813306 markings, 4659634 edges, 1683 markings/sec, 470 secs
lola: 820952 markings, 4703684 edges, 1529 markings/sec, 475 secs
lola: 829315 markings, 4746891 edges, 1673 markings/sec, 480 secs
lola: 838828 markings, 4804584 edges, 1903 markings/sec, 485 secs
lola: 848808 markings, 4864956 edges, 1996 markings/sec, 490 secs
lola: 857667 markings, 4912465 edges, 1772 markings/sec, 495 secs
lola: 867370 markings, 4973866 edges, 1941 markings/sec, 500 secs
lola: 876259 markings, 5031920 edges, 1778 markings/sec, 505 secs
lola: 884808 markings, 5083245 edges, 1710 markings/sec, 510 secs
lola: 893786 markings, 5146502 edges, 1796 markings/sec, 515 secs
lola: 903306 markings, 5220834 edges, 1904 markings/sec, 520 secs
lola: 913127 markings, 5290854 edges, 1964 markings/sec, 525 secs
lola: 922235 markings, 5359954 edges, 1822 markings/sec, 530 secs
lola: 931117 markings, 5411186 edges, 1776 markings/sec, 535 secs
lola: 940639 markings, 5466146 edges, 1904 markings/sec, 540 secs
lola: 950695 markings, 5528490 edges, 2011 markings/sec, 545 secs
lola: 959175 markings, 5573676 edges, 1696 markings/sec, 550 secs
lola: 968695 markings, 5634518 edges, 1904 markings/sec, 555 secs
lola: 977352 markings, 5688999 edges, 1731 markings/sec, 560 secs
lola: 985758 markings, 5740456 edges, 1681 markings/sec, 565 secs
lola: 993875 markings, 5796707 edges, 1623 markings/sec, 570 secs
lola: 1003332 markings, 5864891 edges, 1891 markings/sec, 575 secs
lola: 1013318 markings, 5938722 edges, 1997 markings/sec, 580 secs
lola: 1022525 markings, 6010238 edges, 1841 markings/sec, 585 secs
lola: 1031309 markings, 6068540 edges, 1757 markings/sec, 590 secs
lola: 1038859 markings, 6105647 edges, 1510 markings/sec, 595 secs
lola: 1046614 markings, 6151951 edges, 1551 markings/sec, 600 secs
lola: 1054966 markings, 6205442 edges, 1670 markings/sec, 605 secs
lola: 1063530 markings, 6258426 edges, 1713 markings/sec, 610 secs
lola: 1071857 markings, 6314022 edges, 1665 markings/sec, 615 secs
lola: 1079350 markings, 6356568 edges, 1499 markings/sec, 620 secs
lola: 1087075 markings, 6391469 edges, 1545 markings/sec, 625 secs
lola: 1094618 markings, 6430606 edges, 1509 markings/sec, 630 secs
lola: 1102900 markings, 6473666 edges, 1656 markings/sec, 635 secs
lola: 1111496 markings, 6524981 edges, 1719 markings/sec, 640 secs
lola: 1120305 markings, 6577243 edges, 1762 markings/sec, 645 secs
lola: 1128082 markings, 6617121 edges, 1555 markings/sec, 650 secs
lola: 1135737 markings, 6652187 edges, 1531 markings/sec, 655 secs
lola: 1144118 markings, 6697687 edges, 1676 markings/sec, 660 secs
lola: 1151744 markings, 6737238 edges, 1525 markings/sec, 665 secs
lola: 1158993 markings, 6777151 edges, 1450 markings/sec, 670 secs
lola: 1166374 markings, 6823539 edges, 1476 markings/sec, 675 secs
lola: 1174184 markings, 6877270 edges, 1562 markings/sec, 680 secs
lola: 1181765 markings, 6929398 edges, 1516 markings/sec, 685 secs
lola: 1189485 markings, 6972752 edges, 1544 markings/sec, 690 secs
lola: 1198536 markings, 7030349 edges, 1810 markings/sec, 695 secs
lola: 1207027 markings, 7084261 edges, 1698 markings/sec, 700 secs
lola: 1215298 markings, 7142160 edges, 1654 markings/sec, 705 secs
lola: 1224457 markings, 7212604 edges, 1832 markings/sec, 710 secs
lola: 1233579 markings, 7284353 edges, 1824 markings/sec, 715 secs
lola: 1241589 markings, 7333146 edges, 1602 markings/sec, 720 secs
lola: 1250589 markings, 7390916 edges, 1800 markings/sec, 725 secs
lola: 1258878 markings, 7442888 edges, 1658 markings/sec, 730 secs
lola: 1266810 markings, 7497256 edges, 1586 markings/sec, 735 secs
lola: 1275495 markings, 7565407 edges, 1737 markings/sec, 740 secs
lola: 1284437 markings, 7634866 edges, 1788 markings/sec, 745 secs
lola: 1292248 markings, 7684288 edges, 1562 markings/sec, 750 secs
lola: 1299287 markings, 7726961 edges, 1408 markings/sec, 755 secs
lola: 1306887 markings, 7777763 edges, 1520 markings/sec, 760 secs
lola: 1314347 markings, 7828146 edges, 1492 markings/sec, 765 secs
lola: 1321168 markings, 7863423 edges, 1364 markings/sec, 770 secs
lola: 1328121 markings, 7900688 edges, 1391 markings/sec, 775 secs
lola: 1335914 markings, 7947240 edges, 1559 markings/sec, 780 secs
lola: 1343777 markings, 7995340 edges, 1573 markings/sec, 785 secs
lola: 1350965 markings, 8031772 edges, 1438 markings/sec, 790 secs
lola: 1358262 markings, 8073995 edges, 1459 markings/sec, 795 secs
lola: 1365952 markings, 8129803 edges, 1538 markings/sec, 800 secs
lola: 1373276 markings, 8178395 edges, 1465 markings/sec, 805 secs
lola: 1381454 markings, 8234495 edges, 1636 markings/sec, 810 secs
lola: 1390140 markings, 8307588 edges, 1737 markings/sec, 815 secs
lola: 1398677 markings, 8368317 edges, 1707 markings/sec, 820 secs
lola: 1407133 markings, 8428289 edges, 1691 markings/sec, 825 secs
lola: 1416378 markings, 8504093 edges, 1849 markings/sec, 830 secs
lola: 1423923 markings, 8554258 edges, 1509 markings/sec, 835 secs
lola: 1431500 markings, 8605866 edges, 1515 markings/sec, 840 secs
lola: 1438742 markings, 8648126 edges, 1448 markings/sec, 845 secs
lola: 1446465 markings, 8695676 edges, 1545 markings/sec, 850 secs
lola: 1453942 markings, 8748982 edges, 1495 markings/sec, 855 secs
lola: 1461933 markings, 8814077 edges, 1598 markings/sec, 860 secs
lola: 1470563 markings, 8886390 edges, 1726 markings/sec, 865 secs
lola: 1478094 markings, 8942657 edges, 1506 markings/sec, 870 secs
lola: 1485513 markings, 8991732 edges, 1484 markings/sec, 875 secs
lola: 1492987 markings, 9061210 edges, 1495 markings/sec, 880 secs
lola: 1500423 markings, 9098906 edges, 1487 markings/sec, 885 secs
lola: 1507548 markings, 9133800 edges, 1425 markings/sec, 890 secs
lola: 1514829 markings, 9177272 edges, 1456 markings/sec, 895 secs
lola: 1522732 markings, 9220060 edges, 1581 markings/sec, 900 secs
lola: 1530809 markings, 9268383 edges, 1615 markings/sec, 905 secs
lola: 1538981 markings, 9324433 edges, 1634 markings/sec, 910 secs
lola: 1547470 markings, 9372104 edges, 1698 markings/sec, 915 secs
lola: 1555735 markings, 9426344 edges, 1653 markings/sec, 920 secs
lola: 1563425 markings, 9474653 edges, 1538 markings/sec, 925 secs
lola: 1570672 markings, 9515409 edges, 1449 markings/sec, 930 secs
lola: 1578044 markings, 9553749 edges, 1474 markings/sec, 935 secs
lola: 1585132 markings, 9589604 edges, 1418 markings/sec, 940 secs
lola: 1592710 markings, 9636368 edges, 1516 markings/sec, 945 secs
lola: 1600590 markings, 9687499 edges, 1576 markings/sec, 950 secs
lola: 1608977 markings, 9739603 edges, 1677 markings/sec, 955 secs
lola: 1617150 markings, 9795621 edges, 1635 markings/sec, 960 secs
lola: 1624529 markings, 9838511 edges, 1476 markings/sec, 965 secs
lola: 1631621 markings, 9876942 edges, 1418 markings/sec, 970 secs
lola: 1639186 markings, 9925563 edges, 1513 markings/sec, 975 secs
lola: 1647071 markings, 9980349 edges, 1577 markings/sec, 980 secs
lola: 1654540 markings, 10029567 edges, 1494 markings/sec, 985 secs
lola: 1661838 markings, 10075622 edges, 1460 markings/sec, 990 secs
lola: 1669504 markings, 10132481 edges, 1533 markings/sec, 995 secs
lola: 1676697 markings, 10184908 edges, 1439 markings/sec, 1000 secs
lola: 1683768 markings, 10231975 edges, 1414 markings/sec, 1005 secs
lola: 1690960 markings, 10276108 edges, 1438 markings/sec, 1010 secs
lola: 1698126 markings, 10323069 edges, 1433 markings/sec, 1015 secs
lola: 1704854 markings, 10372229 edges, 1346 markings/sec, 1020 secs
lola: 1712066 markings, 10433277 edges, 1442 markings/sec, 1025 secs
lola: 1719682 markings, 10487410 edges, 1523 markings/sec, 1030 secs
lola: 1727631 markings, 10545460 edges, 1590 markings/sec, 1035 secs
lola: 1735468 markings, 10606796 edges, 1567 markings/sec, 1040 secs
lola: 1743382 markings, 10677001 edges, 1583 markings/sec, 1045 secs
lola: 1751533 markings, 10743094 edges, 1630 markings/sec, 1050 secs
lola: 1760192 markings, 10805538 edges, 1732 markings/sec, 1055 secs
lola: 1768588 markings, 10870516 edges, 1679 markings/sec, 1060 secs
lola: 1776731 markings, 10943207 edges, 1629 markings/sec, 1065 secs
lola: 1784552 markings, 11009234 edges, 1564 markings/sec, 1070 secs
lola: 1792073 markings, 11069799 edges, 1504 markings/sec, 1075 secs
lola: 1799014 markings, 11116481 edges, 1388 markings/sec, 1080 secs
lola: 1806154 markings, 11168321 edges, 1428 markings/sec, 1085 secs
lola: 1814623 markings, 11215266 edges, 1694 markings/sec, 1090 secs
lola: 1822640 markings, 11265551 edges, 1603 markings/sec, 1095 secs
lola: 1831340 markings, 11325273 edges, 1740 markings/sec, 1100 secs
lola: 1840563 markings, 11388393 edges, 1845 markings/sec, 1105 secs
lola: 1849856 markings, 11460549 edges, 1859 markings/sec, 1110 secs
lola: 1859911 markings, 11527034 edges, 2011 markings/sec, 1115 secs
lola: 1869702 markings, 11604008 edges, 1958 markings/sec, 1120 secs
lola: 1878185 markings, 11663288 edges, 1697 markings/sec, 1125 secs
lola: 1886624 markings, 11716163 edges, 1688 markings/sec, 1130 secs
lola: 1894826 markings, 11764180 edges, 1640 markings/sec, 1135 secs
lola: 1903191 markings, 11822928 edges, 1673 markings/sec, 1140 secs
lola: 1912474 markings, 11892700 edges, 1857 markings/sec, 1145 secs
lola: 1921919 markings, 11960619 edges, 1889 markings/sec, 1150 secs
lola: 1930981 markings, 12030982 edges, 1812 markings/sec, 1155 secs
lola: 1939253 markings, 12084961 edges, 1654 markings/sec, 1160 secs
lola: 1947531 markings, 12142602 edges, 1656 markings/sec, 1165 secs
lola: 1956760 markings, 12214354 edges, 1846 markings/sec, 1170 secs
lola: 1965288 markings, 12280225 edges, 1706 markings/sec, 1175 secs
lola: local time limit reached - aborting
lola:
preliminary result: 0 unknown unknown 42 0 unknown 42 0 1 0 0 0 0 0 0 0
lola: memory consumption: 251832 KB
lola: time consumption: 1204 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 14 will run for 1183 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7)
lola: processed formula length: 226
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 439 markings, 438 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-5 7 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 2362 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting... (shortened)
lola: processed formula length: 1738
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 8 markings, 7 edges
lola: ========================================
FORMULA NeoElection-PT-7-UpperBounds-1 7 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: MAX(P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7)
lola: processed formula length: 114
lola: 0 rewrites
lola: closed formula file NeoElection-PT-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: 1265 markings, 2359 edges, 253 markings/sec, 0 secs
lola: 9061 markings, 30651 edges, 1559 markings/sec, 5 secs
lola: 17307 markings, 67782 edges, 1649 markings/sec, 10 secs
lola: 25830 markings, 111547 edges, 1705 markings/sec, 15 secs
lola: 34789 markings, 152422 edges, 1792 markings/sec, 20 secs
lola: 43135 markings, 195195 edges, 1669 markings/sec, 25 secs
lola: 50994 markings, 227806 edges, 1572 markings/sec, 30 secs
lola: 58599 markings, 259243 edges, 1521 markings/sec, 35 secs
lola: 67218 markings, 302807 edges, 1724 markings/sec, 40 secs
lola: 75528 markings, 345431 edges, 1662 markings/sec, 45 secs
lola: 83050 markings, 377625 edges, 1504 markings/sec, 50 secs
lola: 91390 markings, 423011 edges, 1668 markings/sec, 55 secs
lola: 99225 markings, 463410 edges, 1567 markings/sec, 60 secs
lola: 106951 markings, 503178 edges, 1545 markings/sec, 65 secs
lola: 114739 markings, 539509 edges, 1558 markings/sec, 70 secs
lola: 122305 markings, 582373 edges, 1513 markings/sec, 75 secs
lola: 130554 markings, 629978 edges, 1650 markings/sec, 80 secs
lola: 138896 markings, 678375 edges, 1668 markings/sec, 85 secs
lola: 147275 markings, 736863 edges, 1676 markings/sec, 90 secs
lola: 155800 markings, 783954 edges, 1705 markings/sec, 95 secs
lola: 164053 markings, 835570 edges, 1651 markings/sec, 100 secs
lola: 172062 markings, 887806 edges, 1602 markings/sec, 105 secs
lola: 179480 markings, 929829 edges, 1484 markings/sec, 110 secs
lola: 187102 markings, 969265 edges, 1524 markings/sec, 115 secs
lola: 195730 markings, 1010202 edges, 1726 markings/sec, 120 secs
lola: 205147 markings, 1062177 edges, 1883 markings/sec, 125 secs
lola: 215136 markings, 1122739 edges, 1998 markings/sec, 130 secs
lola: 225078 markings, 1183022 edges, 1988 markings/sec, 135 secs
lola: 233481 markings, 1227248 edges, 1681 markings/sec, 140 secs
lola: 241918 markings, 1269084 edges, 1687 markings/sec, 145 secs
lola: 251406 markings, 1327043 edges, 1898 markings/sec, 150 secs
lola: 261148 markings, 1385876 edges, 1948 markings/sec, 155 secs
lola: 269833 markings, 1432366 edges, 1737 markings/sec, 160 secs
lola: 279190 markings, 1491885 edges, 1871 markings/sec, 165 secs
lola: 287744 markings, 1546192 edges, 1711 markings/sec, 170 secs
lola: 296019 markings, 1593679 edges, 1655 markings/sec, 175 secs
lola: 303959 markings, 1641230 edges, 1588 markings/sec, 180 secs
lola: 311983 markings, 1697332 edges, 1605 markings/sec, 185 secs
lola: 321110 markings, 1757559 edges, 1825 markings/sec, 190 secs
lola: 330578 markings, 1830714 edges, 1894 markings/sec, 195 secs
lola: 339896 markings, 1893800 edges, 1864 markings/sec, 200 secs
lola: 349178 markings, 1960666 edges, 1856 markings/sec, 205 secs
lola: 358419 markings, 2030167 edges, 1848 markings/sec, 210 secs
lola: 367076 markings, 2086643 edges, 1731 markings/sec, 215 secs
lola: 376067 markings, 2135115 edges, 1798 markings/sec, 220 secs
lola: 385392 markings, 2183392 edges, 1865 markings/sec, 225 secs
lola: 396192 markings, 2247300 edges, 2160 markings/sec, 230 secs
lola: 407265 markings, 2310953 edges, 2215 markings/sec, 235 secs
lola: 417228 markings, 2369209 edges, 1993 markings/sec, 240 secs
lola: 426498 markings, 2414289 edges, 1854 markings/sec, 245 secs
lola: 436492 markings, 2474802 edges, 1999 markings/sec, 250 secs
lola: 446967 markings, 2538338 edges, 2095 markings/sec, 255 secs
lola: 456008 markings, 2586836 edges, 1808 markings/sec, 260 secs
lola: 465915 markings, 2649176 edges, 1981 markings/sec, 265 secs
lola: 474578 markings, 2706845 edges, 1733 markings/sec, 270 secs
lola: 483231 markings, 2754071 edges, 1731 markings/sec, 275 secs
lola: 491426 markings, 2805213 edges, 1639 markings/sec, 280 secs
lola: 500452 markings, 2867241 edges, 1805 markings/sec, 285 secs
lola: 509631 markings, 2929974 edges, 1836 markings/sec, 290 secs
lola: 518372 markings, 2999167 edges, 1748 markings/sec, 295 secs
lola: 528357 markings, 3064157 edges, 1997 markings/sec, 300 secs
lola: 538385 markings, 3142520 edges, 2006 markings/sec, 305 secs
lola: 546880 markings, 3202524 edges, 1699 markings/sec, 310 secs
lola: 555309 markings, 3255362 edges, 1686 markings/sec, 315 secs
lola: 562949 markings, 3292564 edges, 1528 markings/sec, 320 secs
lola: 570076 markings, 3327798 edges, 1425 markings/sec, 325 secs
lola: 577236 markings, 3369870 edges, 1432 markings/sec, 330 secs
lola: 585142 markings, 3413304 edges, 1581 markings/sec, 335 secs
lola: 593449 markings, 3462932 edges, 1661 markings/sec, 340 secs
lola: 601822 markings, 3519183 edges, 1675 markings/sec, 345 secs
lola: 610362 markings, 3567930 edges, 1708 markings/sec, 350 secs
lola: 618725 markings, 3622709 edges, 1673 markings/sec, 355 secs
lola: 626488 markings, 3670658 edges, 1553 markings/sec, 360 secs
lola: 633804 markings, 3709621 edges, 1463 markings/sec, 365 secs
lola: 641239 markings, 3745492 edges, 1487 markings/sec, 370 secs
lola: 648713 markings, 3776042 edges, 1495 markings/sec, 375 secs
lola: 656057 markings, 3809638 edges, 1469 markings/sec, 380 secs
lola: 663879 markings, 3850327 edges, 1564 markings/sec, 385 secs
lola: 672426 markings, 3894058 edges, 1709 markings/sec, 390 secs
lola: 680825 markings, 3944936 edges, 1680 markings/sec, 395 secs
lola: 689608 markings, 3989834 edges, 1757 markings/sec, 400 secs
lola: 698049 markings, 4035655 edges, 1688 markings/sec, 405 secs
lola: 706366 markings, 4084614 edges, 1663 markings/sec, 410 secs
lola: 713368 markings, 4120803 edges, 1400 markings/sec, 415 secs
lola: 720267 markings, 4151916 edges, 1380 markings/sec, 420 secs
lola: 727355 markings, 4180324 edges, 1418 markings/sec, 425 secs
lola: 734810 markings, 4217406 edges, 1491 markings/sec, 430 secs
lola: 742722 markings, 4259030 edges, 1582 markings/sec, 435 secs
lola: 749680 markings, 4290439 edges, 1392 markings/sec, 440 secs
lola: 756980 markings, 4325285 edges, 1460 markings/sec, 445 secs
lola: 764488 markings, 4364740 edges, 1502 markings/sec, 450 secs
lola: 771488 markings, 4402730 edges, 1400 markings/sec, 455 secs
lola: 778502 markings, 4438592 edges, 1403 markings/sec, 460 secs
lola: 785728 markings, 4481453 edges, 1445 markings/sec, 465 secs
lola: 793450 markings, 4526558 edges, 1544 markings/sec, 470 secs
lola: 801264 markings, 4580133 edges, 1563 markings/sec, 475 secs
lola: 809647 markings, 4632342 edges, 1677 markings/sec, 480 secs
lola: 817360 markings, 4683992 edges, 1543 markings/sec, 485 secs
lola: 824562 markings, 4724163 edges, 1440 markings/sec, 490 secs
lola: 832962 markings, 4767507 edges, 1680 markings/sec, 495 secs
lola: 842487 markings, 4825500 edges, 1905 markings/sec, 500 secs
lola: 851481 markings, 4879015 edges, 1799 markings/sec, 505 secs
lola: 860128 markings, 4928376 edges, 1729 markings/sec, 510 secs
lola: 869065 markings, 4983145 edges, 1787 markings/sec, 515 secs
lola: 877637 markings, 5040240 edges, 1714 markings/sec, 520 secs
lola: 885545 markings, 5087917 edges, 1582 markings/sec, 525 secs
lola: 894132 markings, 5148498 edges, 1717 markings/sec, 530 secs
lola: 903101 markings, 5219209 edges, 1794 markings/sec, 535 secs
lola: 912640 markings, 5286767 edges, 1908 markings/sec, 540 secs
lola: 921505 markings, 5355166 edges, 1773 markings/sec, 545 secs
lola: 929940 markings, 5405656 edges, 1687 markings/sec, 550 secs
lola: 938958 markings, 5455221 edges, 1804 markings/sec, 555 secs
lola: 949089 markings, 5519370 edges, 2026 markings/sec, 560 secs
lola: 957752 markings, 5566284 edges, 1733 markings/sec, 565 secs
lola: 967193 markings, 5625310 edges, 1888 markings/sec, 570 secs
lola: 976259 markings, 5681985 edges, 1813 markings/sec, 575 secs
lola: 984827 markings, 5734463 edges, 1714 markings/sec, 580 secs
lola: 993381 markings, 5793956 edges, 1711 markings/sec, 585 secs
lola: 1003006 markings, 5862077 edges, 1925 markings/sec, 590 secs
lola: 1013388 markings, 5939225 edges, 2076 markings/sec, 595 secs
lola: 1022843 markings, 6012675 edges, 1891 markings/sec, 600 secs
lola: 1031374 markings, 6068740 edges, 1706 markings/sec, 605 secs
lola: 1038386 markings, 6103377 edges, 1402 markings/sec, 610 secs
lola: 1045432 markings, 6144764 edges, 1409 markings/sec, 615 secs
lola: 1053455 markings, 6194140 edges, 1605 markings/sec, 620 secs
lola: 1061629 markings, 6246960 edges, 1635 markings/sec, 625 secs
lola: 1069792 markings, 6302406 edges, 1633 markings/sec, 630 secs
lola: 1076772 markings, 6342952 edges, 1396 markings/sec, 635 secs
lola: 1083934 markings, 6378240 edges, 1432 markings/sec, 640 secs
lola: 1090850 markings, 6408943 edges, 1383 markings/sec, 645 secs
lola: 1098317 markings, 6449219 edges, 1493 markings/sec, 650 secs
lola: 1106335 markings, 6495569 edges, 1604 markings/sec, 655 secs
lola: 1114820 markings, 6542423 edges, 1697 markings/sec, 660 secs
lola: 1122859 markings, 6590617 edges, 1608 markings/sec, 665 secs
lola: 1130089 markings, 6626564 edges, 1446 markings/sec, 670 secs
lola: 1137334 markings, 6660180 edges, 1449 markings/sec, 675 secs
lola: 1144903 markings, 6701851 edges, 1514 markings/sec, 680 secs
lola: 1151886 markings, 6738242 edges, 1397 markings/sec, 685 secs
lola: 1158721 markings, 6775492 edges, 1367 markings/sec, 690 secs
lola: 1165664 markings, 6818758 edges, 1389 markings/sec, 695 secs
lola: 1173151 markings, 6870165 edges, 1497 markings/sec, 700 secs
lola: 1180459 markings, 6921205 edges, 1462 markings/sec, 705 secs
lola: 1187587 markings, 6961272 edges, 1426 markings/sec, 710 secs
lola: 1196442 markings, 7018163 edges, 1771 markings/sec, 715 secs
lola: 1204795 markings, 7070429 edges, 1671 markings/sec, 720 secs
lola: 1212695 markings, 7121570 edges, 1580 markings/sec, 725 secs
lola: 1221337 markings, 7188009 edges, 1728 markings/sec, 730 secs
lola: 1230318 markings, 7260251 edges, 1796 markings/sec, 735 secs
lola: 1238084 markings, 7313330 edges, 1553 markings/sec, 740 secs
lola: 1247029 markings, 7368310 edges, 1789 markings/sec, 745 secs
lola: 1255926 markings, 7423622 edges, 1779 markings/sec, 750 secs
lola: 1264548 markings, 7480327 edges, 1724 markings/sec, 755 secs
lola: 1273581 markings, 7549196 edges, 1807 markings/sec, 760 secs
lola: 1283379 markings, 7626741 edges, 1960 markings/sec, 765 secs
lola: 1291536 markings, 7681027 edges, 1631 markings/sec, 770 secs
lola: 1298607 markings, 7722797 edges, 1414 markings/sec, 775 secs
lola: 1306229 markings, 7774053 edges, 1524 markings/sec, 780 secs
lola: 1313766 markings, 7824530 edges, 1507 markings/sec, 785 secs
lola: 1320836 markings, 7862124 edges, 1414 markings/sec, 790 secs
lola: 1327994 markings, 7900057 edges, 1432 markings/sec, 795 secs
lola: 1335910 markings, 7947232 edges, 1583 markings/sec, 800 secs
lola: 1343706 markings, 7994886 edges, 1559 markings/sec, 805 secs
lola: 1350820 markings, 8030834 edges, 1423 markings/sec, 810 secs
lola: 1357947 markings, 8072235 edges, 1425 markings/sec, 815 secs
lola: 1365168 markings, 8123753 edges, 1444 markings/sec, 820 secs
lola: 1372212 markings, 8171385 edges, 1409 markings/sec, 825 secs
lola: 1380368 markings, 8227163 edges, 1631 markings/sec, 830 secs
lola: 1388575 markings, 8292868 edges, 1641 markings/sec, 835 secs
lola: 1396632 markings, 8353198 edges, 1611 markings/sec, 840 secs
lola: 1404963 markings, 8410903 edges, 1666 markings/sec, 845 secs
lola: 1413880 markings, 8485343 edges, 1783 markings/sec, 850 secs
lola: 1421344 markings, 8536367 edges, 1493 markings/sec, 855 secs
lola: 1428957 markings, 8590323 edges, 1523 markings/sec, 860 secs
lola: 1435998 markings, 8631241 edges, 1408 markings/sec, 865 secs
lola: 1443712 markings, 8680559 edges, 1543 markings/sec, 870 secs
lola: 1450496 markings, 8720856 edges, 1357 markings/sec, 875 secs
lola: 1457547 markings, 8775198 edges, 1410 markings/sec, 880 secs
lola: 1465228 markings, 8840468 edges, 1536 markings/sec, 885 secs
lola: 1473009 markings, 8904754 edges, 1556 markings/sec, 890 secs
lola: 1479752 markings, 8952905 edges, 1349 markings/sec, 895 secs
lola: 1486591 markings, 9002089 edges, 1368 markings/sec, 900 secs
lola: 1493677 markings, 9067132 edges, 1417 markings/sec, 905 secs
lola: 1500574 markings, 9099373 edges, 1379 markings/sec, 910 secs
lola: 1507389 markings, 9132637 edges, 1363 markings/sec, 915 secs
lola: 1514246 markings, 9173111 edges, 1371 markings/sec, 920 secs
lola: 1521631 markings, 9214811 edges, 1477 markings/sec, 925 secs
lola: 1529161 markings, 9258672 edges, 1506 markings/sec, 930 secs
lola: 1536690 markings, 9311275 edges, 1506 markings/sec, 935 secs
lola: 1544545 markings, 9355048 edges, 1571 markings/sec, 940 secs
lola: 1552468 markings, 9402415 edges, 1585 markings/sec, 945 secs
lola: 1560303 markings, 9457135 edges, 1567 markings/sec, 950 secs
lola: 1567188 markings, 9498621 edges, 1377 markings/sec, 955 secs
lola: 1574112 markings, 9533954 edges, 1385 markings/sec, 960 secs
lola: 1580973 markings, 9567700 edges, 1372 markings/sec, 965 secs
lola: 1587698 markings, 9606133 edges, 1345 markings/sec, 970 secs
lola: 1595023 markings, 9649594 edges, 1465 markings/sec, 975 secs
lola: 1602412 markings, 9701518 edges, 1478 markings/sec, 980 secs
lola: 1610181 markings, 9747878 edges, 1554 markings/sec, 985 secs
lola: 1617620 markings, 9798716 edges, 1488 markings/sec, 990 secs
lola: 1624443 markings, 9838079 edges, 1365 markings/sec, 995 secs
lola: 1631261 markings, 9875147 edges, 1364 markings/sec, 1000 secs
lola: 1638234 markings, 9919153 edges, 1395 markings/sec, 1005 secs
lola: 1645709 markings, 9970923 edges, 1495 markings/sec, 1010 secs
lola: 1652856 markings, 10020716 edges, 1429 markings/sec, 1015 secs
lola: 1659557 markings, 10060044 edges, 1340 markings/sec, 1020 secs
lola: 1666812 markings, 10113388 edges, 1451 markings/sec, 1025 secs
lola: 1673518 markings, 10158854 edges, 1341 markings/sec, 1030 secs
lola: 1680223 markings, 10212458 edges, 1341 markings/sec, 1035 secs
lola: 1687082 markings, 10253881 edges, 1372 markings/sec, 1040 secs
lola: 1693780 markings, 10295134 edges, 1340 markings/sec, 1045 secs
lola: 1700376 markings, 10338626 edges, 1319 markings/sec, 1050 secs
lola: 1706819 markings, 10387595 edges, 1289 markings/sec, 1055 secs
lola: 1713449 markings, 10444581 edges, 1326 markings/sec, 1060 secs
lola: 1720942 markings, 10497497 edges, 1499 markings/sec, 1065 secs
lola: 1728304 markings, 10550007 edges, 1472 markings/sec, 1070 secs
lola: 1735507 markings, 10607212 edges, 1441 markings/sec, 1075 secs
lola: 1742655 markings, 10670772 edges, 1430 markings/sec, 1080 secs
lola: 1750018 markings, 10732893 edges, 1473 markings/sec, 1085 secs
lola: 1757869 markings, 10788533 edges, 1570 markings/sec, 1090 secs
lola: 1765693 markings, 10847064 edges, 1565 markings/sec, 1095 secs
lola: 1772985 markings, 10908121 edges, 1458 markings/sec, 1100 secs
lola: 1780699 markings, 10980970 edges, 1543 markings/sec, 1105 secs
lola: 1787291 markings, 11030208 edges, 1318 markings/sec, 1110 secs
lola: 1793954 markings, 11083114 edges, 1333 markings/sec, 1115 secs
lola: 1800596 markings, 11129324 edges, 1328 markings/sec, 1120 secs
lola: 1807818 markings, 11176636 edges, 1444 markings/sec, 1125 secs
lola: 1816052 markings, 11223034 edges, 1647 markings/sec, 1130 secs
lola: 1823920 markings, 11275425 edges, 1574 markings/sec, 1135 secs
lola: 1832585 markings, 11334038 edges, 1733 markings/sec, 1140 secs
lola: 1841341 markings, 11393411 edges, 1751 markings/sec, 1145 secs
lola: 1850239 markings, 11462701 edges, 1780 markings/sec, 1150 secs
lola: 1859889 markings, 11526861 edges, 1930 markings/sec, 1155 secs
lola: 1869330 markings, 11600931 edges, 1888 markings/sec, 1160 secs
lola: 1877562 markings, 11658734 edges, 1646 markings/sec, 1165 secs
lola: 1885440 markings, 11707836 edges, 1576 markings/sec, 1170 secs
lola: 1893369 markings, 11755174 edges, 1586 markings/sec, 1175 secs
lola: 1901067 markings, 11809170 edges, 1540 markings/sec, 1180 secs
lola: 1909841 markings, 11870647 edges, 1755 markings/sec, 1185 secs
lola: 1919095 markings, 11940115 edges, 1851 markings/sec, 1190 secs
lola: 1928060 markings, 12009870 edges, 1793 markings/sec, 1195 secs
lola: 1935777 markings, 12062437 edges, 1543 markings/sec, 1200 secs
lola: 1943508 markings, 12112561 edges, 1546 markings/sec, 1205 secs
lola: 1951891 markings, 12177132 edges, 1677 markings/sec, 1210 secs
lola: 1961058 markings, 12249971 edges, 1833 markings/sec, 1215 secs
lola: 1968883 markings, 12304490 edges, 1565 markings/sec, 1220 secs
lola: 1977165 markings, 12371350 edges, 1656 markings/sec, 1225 secs
lola: 1985175 markings, 12435442 edges, 1602 markings/sec, 1230 secs
lola: 1993155 markings, 12502132 edges, 1596 markings/sec, 1235 secs
lola: 2001108 markings, 12558511 edges, 1591 markings/sec, 1240 secs
lola: 2008812 markings, 12616539 edges, 1541 markings/sec, 1245 secs
lola: 2016300 markings, 12678781 edges, 1498 markings/sec, 1250 secs
lola: 2023944 markings, 12751037 edges, 1529 markings/sec, 1255 secs
lola: 2032574 markings, 12820915 edges, 1726 markings/sec, 1260 secs
lola: 2041081 markings, 12890017 edges, 1701 markings/sec, 1265 secs
lola: 2049316 markings, 12964875 edges, 1647 markings/sec, 1270 secs
lola: 2057988 markings, 13055960 edges, 1734 markings/sec, 1275 secs
lola: 2066958 markings, 13129244 edges, 1794 markings/sec, 1280 secs
lola: 2075897 markings, 13203076 edges, 1788 markings/sec, 1285 secs
lola: 2084345 markings, 13281618 edges, 1690 markings/sec, 1290 secs
lola: 2093404 markings, 13373819 edges, 1812 markings/sec, 1295 secs
lola: 2101189 markings, 13441028 edges, 1557 markings/sec, 1300 secs
lola: 2108808 markings, 13503541 edges, 1524 markings/sec, 1305 secs
lola: 2116732 markings, 13569661 edges, 1585 markings/sec, 1310 secs
lola: 2125211 markings, 13616199 edges, 1696 markings/sec, 1315 secs
lola: 2133383 markings, 13667082 edges, 1634 markings/sec, 1320 secs
lola: 2142206 markings, 13727842 edges, 1765 markings/sec, 1325 secs
lola: 2151831 markings, 13793501 edges, 1925 markings/sec, 1330 secs
lola: 2161113 markings, 13865587 edges, 1856 markings/sec, 1335 secs
lola: 2171411 markings, 13934189 edges, 2060 markings/sec, 1340 secs
lola: 2181421 markings, 14012791 edges, 2002 markings/sec, 1345 secs
lola: 2189774 markings, 14070943 edges, 1671 markings/sec, 1350 secs
lola: 2198342 markings, 14124364 edges, 1714 markings/sec, 1355 secs
lola: 2206642 markings, 14172979 edges, 1660 markings/sec, 1360 secs
lola: 2215391 markings, 14234771 edges, 1750 markings/sec, 1365 secs
lola: 2224834 markings, 14307830 edges, 1889 markings/sec, 1370 secs
lola: 2234796 markings, 14378680 edges, 1992 markings/sec, 1375 secs
lola: 2243760 markings, 14447562 edges, 1793 markings/sec, 1380 secs
lola: 2252159 markings, 14500224 edges, 1680 markings/sec, 1385 secs
lola: 2260723 markings, 14562030 edges, 1713 markings/sec, 1390 secs
lola: 2270269 markings, 14638547 edges, 1909 markings/sec, 1395 secs
lola: 2278887 markings, 14701621 edges, 1724 markings/sec, 1400 secs
lola: 2287324 markings, 14767567 edges, 1687 markings/sec, 1405 secs
lola: 2295755 markings, 14834756 edges, 1686 markings/sec, 1410 secs
lola: 2304109 markings, 14905156 edges, 1671 markings/sec, 1415 secs
lola: 2312505 markings, 14964967 edges, 1679 markings/sec, 1420 secs
lola: 2320820 markings, 15026926 edges, 1663 markings/sec, 1425 secs
lola: 2328650 markings, 15093290 edges, 1566 markings/sec, 1430 secs
lola: 2336891 markings, 15169654 edges, 1648 markings/sec, 1435 secs
lola: 2346211 markings, 15244088 edges, 1864 markings/sec, 1440 secs
lola: 2355581 markings, 15324190 edges, 1874 markings/sec, 1445 secs
lola: 2364371 markings, 15410116 edges, 1758 markings/sec, 1450 secs
lola: 2373584 markings, 15495595 edges, 1843 markings/sec, 1455 secs
lola: 2383587 markings, 15578550 edges, 2001 markings/sec, 1460 secs
lola: 2392987 markings, 15661196 edges, 1880 markings/sec, 1465 secs
lola: 2402440 markings, 15759073 edges, 1891 markings/sec, 1470 secs
lola: 2410600 markings, 15830966 edges, 1632 markings/sec, 1475 secs
lola: 2418695 markings, 15897543 edges, 1619 markings/sec, 1480 secs
lola: 2427124 markings, 15968426 edges, 1686 markings/sec, 1485 secs
lola: 2434301 markings, 16011346 edges, 1435 markings/sec, 1490 secs
lola: 2441259 markings, 16053782 edges, 1392 markings/sec, 1495 secs
lola: 2448026 markings, 16096632 edges, 1353 markings/sec, 1500 secs
lola: 2454568 markings, 16143228 edges, 1308 markings/sec, 1505 secs
lola: 2461382 markings, 16198463 edges, 1363 markings/sec, 1510 secs
lola: 2469105 markings, 16251933 edges, 1545 markings/sec, 1515 secs
lola: 2476571 markings, 16303604 edges, 1493 markings/sec, 1520 secs
lola: 2483923 markings, 16359772 edges, 1470 markings/sec, 1525 secs
lola: 2491231 markings, 16422510 edges, 1462 markings/sec, 1530 secs
lola: 2498914 markings, 16483133 edges, 1537 markings/sec, 1535 secs
lola: 2507157 markings, 16541030 edges, 1649 markings/sec, 1540 secs
lola: 2515313 markings, 16601059 edges, 1631 markings/sec, 1545 secs
lola: 2523092 markings, 16664955 edges, 1556 markings/sec, 1550 secs
lola: 2530815 markings, 16731121 edges, 1545 markings/sec, 1555 secs
lola: 2537792 markings, 16782337 edges, 1395 markings/sec, 1560 secs
lola: 2544562 markings, 16828365 edges, 1354 markings/sec, 1565 secs
lola: 2551619 markings, 16877921 edges, 1411 markings/sec, 1570 secs
lola: 2558429 markings, 16915119 edges, 1362 markings/sec, 1575 secs
lola: 2565625 markings, 16953115 edges, 1439 markings/sec, 1580 secs
lola: 2572660 markings, 16992348 edges, 1407 markings/sec, 1585 secs
lola: 2579451 markings, 17036082 edges, 1358 markings/sec, 1590 secs
lola: 2586554 markings, 17089089 edges, 1421 markings/sec, 1595 secs
lola: 2594322 markings, 17137296 edges, 1554 markings/sec, 1600 secs
lola: 2602088 markings, 17186240 edges, 1553 markings/sec, 1605 secs
lola: 2609811 markings, 17239852 edges, 1545 markings/sec, 1610 secs
lola: 2617662 markings, 17302196 edges, 1570 markings/sec, 1615 secs
lola: 2625681 markings, 17358957 edges, 1604 markings/sec, 1620 secs
lola: 2634079 markings, 17412415 edges, 1680 markings/sec, 1625 secs
lola: 2642087 markings, 17466495 edges, 1602 markings/sec, 1630 secs
lola: 2649923 markings, 17528264 edges, 1567 markings/sec, 1635 secs
lola: 2657603 markings, 17584901 edges, 1536 markings/sec, 1640 secs
lola: 2664733 markings, 17634167 edges, 1426 markings/sec, 1645 secs
lola: 2671615 markings, 17674680 edges, 1376 markings/sec, 1650 secs
lola: 2678643 markings, 17719201 edges, 1406 markings/sec, 1655 secs
lola: 2686739 markings, 17756601 edges, 1619 markings/sec, 1660 secs
lola: 2695462 markings, 17803679 edges, 1745 markings/sec, 1665 secs
lola: 2704762 markings, 17860047 edges, 1860 markings/sec, 1670 secs
lola: 2714454 markings, 17914483 edges, 1938 markings/sec, 1675 secs
lola: 2723465 markings, 17969302 edges, 1802 markings/sec, 1680 secs
lola: 2731772 markings, 18009746 edges, 1661 markings/sec, 1685 secs
lola: 2740321 markings, 18055994 edges, 1710 markings/sec, 1690 secs
lola: 2749974 markings, 18115600 edges, 1931 markings/sec, 1695 secs
lola: 2758767 markings, 18166566 edges, 1759 markings/sec, 1700 secs
lola: 2767612 markings, 18218892 edges, 1769 markings/sec, 1705 secs
lola: 2776211 markings, 18271251 edges, 1720 markings/sec, 1710 secs
lola: 2784589 markings, 18325219 edges, 1676 markings/sec, 1715 secs
lola: 2793022 markings, 18372620 edges, 1687 markings/sec, 1720 secs
lola: 2801259 markings, 18427512 edges, 1647 markings/sec, 1725 secs
lola: 2810364 markings, 18488281 edges, 1821 markings/sec, 1730 secs
lola: 2819554 markings, 18552580 edges, 1838 markings/sec, 1735 secs
lola: 2829138 markings, 18625434 edges, 1917 markings/sec, 1740 secs
lola: 2839019 markings, 18692587 edges, 1976 markings/sec, 1745 secs
lola: 2848512 markings, 18766159 edges, 1899 markings/sec, 1750 secs
lola: 2856750 markings, 18822711 edges, 1648 markings/sec, 1755 secs
lola: 2864991 markings, 18874035 edges, 1648 markings/sec, 1760 secs
lola: 2874625 markings, 18928384 edges, 1927 markings/sec, 1765 secs
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 2879089 markings, 18957240 edges
FORMULA NeoElection-PT-7-UpperBounds-2 7 TECHNIQUES SEQUENTIAL_PROCESSING TOPOLOGICAL EXPLICIT STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: RESULT
lola:
SUMMARY: 0 7 7 42 0 7 42 0 1 0 0 0 0 0 0 0
lola:
preliminary result: 0 7 7 42 0 7 42 0 1 0 0 0 0 0 0 0
lola: ========================================
lola: memory consumption: 42704 KB
lola: time consumption: 2984 seconds
BK_STOP 1527031826992
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-7"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-7.tgz
mv NeoElection-PT-7 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-PT-7, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r112-csrt-152666469300324"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;