About the Execution of LoLA for NeoElection-PT-6
| Execution Summary | |||||
| Max Memory Used (MB)  | 
      Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status  | 
   
| 900.790 | 3570597.00 | 3707193.00 | 595.50 | 6 0 0 30 6 6 36 ? 0 0 0 0 0 0 0 0 | normal | 
Execution Chart
We display below the execution chart for this examination (boot time has been removed).

Trace from the execution
Waiting for the VM to be ready (probing ssh)
.........................................................
/home/mcc/execution
total 13M
-rw-r--r-- 1 mcc users 164K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 400K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 321K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 880K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 129K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 300K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users  18K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users  56K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 296K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 667K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users  107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users  345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 451K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 1.3M May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 106K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 202K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users    5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users    2 May 15 18:50 instance
-rw-r--r-- 1 mcc users    6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 7.3M May 15 18:50 model.pnml
=====================================================================
 Generated by BenchKit 2-3637
    Executing tool lola
    Input is NeoElection-PT-6, examination is UpperBounds
    Time confinement is 3600 seconds
    Memory confinement is 16384 MBytes
    Number of cores is 4
    Run identifier is r112-csrt-152666469300317
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of positive values
NUM_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-6-UpperBounds-00
FORMULA_NAME NeoElection-PT-6-UpperBounds-01
FORMULA_NAME NeoElection-PT-6-UpperBounds-02
FORMULA_NAME NeoElection-PT-6-UpperBounds-03
FORMULA_NAME NeoElection-PT-6-UpperBounds-04
FORMULA_NAME NeoElection-PT-6-UpperBounds-05
FORMULA_NAME NeoElection-PT-6-UpperBounds-06
FORMULA_NAME NeoElection-PT-6-UpperBounds-07
FORMULA_NAME NeoElection-PT-6-UpperBounds-08
FORMULA_NAME NeoElection-PT-6-UpperBounds-09
FORMULA_NAME NeoElection-PT-6-UpperBounds-10
FORMULA_NAME NeoElection-PT-6-UpperBounds-11
FORMULA_NAME NeoElection-PT-6-UpperBounds-12
FORMULA_NAME NeoElection-PT-6-UpperBounds-13
FORMULA_NAME NeoElection-PT-6-UpperBounds-14
FORMULA_NAME NeoElection-PT-6-UpperBounds-15
=== Now, execution of the tool begins
BK_START 1527028471065
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-PT-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-PT-6 formula UpperBounds into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking UpperBounds @ NeoElection-PT-6 @ 3570 seconds
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola:   reading net from model.pnml.lola
lola:   finished parsing
lola:   closed net file model.pnml.lola
lola:   13265/65536 symbol table entries, 1397 collisions
lola:   preprocessing... 
lola:   Size  of bit vector: 4830
lola:   finding significant places
lola:   4830 places, 8435 transitions, 1197 significant places
lola:   computing forward-conflicting sets
lola:   computing back-conflicting sets
lola:   2401 transition conflict sets
lola: TASK
lola:   reading formula from NeoElection-PT-6-UpperBounds.task
lola:   LP says that atomic proposition is always true: (P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0 <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_0 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_3 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_2 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_0 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_2_5_AskP_6 + P-poll__networl_0_3_AI_4 + P-poll__networl_2_5_AskP_5 + P-poll__networl_0_3_AI_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_0_3_AI_6 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_2_5_AskP_0 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_6_5_AI_6 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_6_5_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_6_AI_0 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_2_1_RP_4 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_0_2_RP_2 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_5_6_AskP_2 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_6_0_RI_6 + P-poll__networl_2_5_AI_0 + P-poll__networl_6_0_RI_5 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_6_0_RI_4 + P-poll__networl_6_0_RI_3 + P-poll__networl_6_0_RI_2 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_2_AskP_1 + P-poll__networl_6_2_AskP_0 + P-poll__networl_4_1_RI_6 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_RI_5 + P-poll__networl_3_1_RI_6 + P-poll__networl_2_2_RI_0 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_6_AskP_5 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_5_0_RI_3 + P-poll__networl_5_0_RI_4 + P-poll__networl_5_0_RI_5 + P-poll__networl_5_0_RI_6 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_0_3_RI_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_0_3_RI_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_0_3_RI_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_4_AI_2 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_5_4_AI_1 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_5_4_AI_0 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_6_1_RI_3 + P-poll__networl_6_1_RI_4 + P-poll__networl_6_1_RI_5 + P-poll__networl_6_1_RI_6 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AI_3 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_1_0_RP_6 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_6_AI_0 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_6_4_RP_1 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_6_4_RP_0 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_4_5_RP_0 + P-poll__networl_5_3_AskP_6 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_3_AskP_0 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_RI_6 + P-poll__networl_3_0_RI_5 + P-poll__networl_3_0_RI_4 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_0_RI_1 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_3_0_RI_0 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_0_5_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_6_5_RI_0 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_6 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_5_3_AI_3 + P-poll__networl_5_3_AI_4 + P-poll__networl_5_3_AI_5 + P-poll__networl_5_3_AI_6 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_4_0_RI_5 + P-poll__networl_4_0_RI_6 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_0_5_AI_2 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_0_5_AI_1 + P-poll__networl_0_5_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_5_3_RP_6 + P-poll__networl_5_3_RP_5 + P-poll__networl_5_3_RP_4 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_4_RP_4 + P-poll__networl_3_4_RP_3 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_5_1_RI_3 + P-poll__networl_5_1_RI_4 + P-poll__networl_5_1_RI_5 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_5_4_RI_6 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_5_4_RI_0 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 <= 0)
lola:   after: (P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 <= 0)
lola:   LP says that atomic proposition is always true: (P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_0 + P-network_5_0_AnsP_6 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_4_5_AskP_0 + P-network_4_5_RP_0 + P-network_2_4_AI_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_0_5_AI_0 + P-network_5_3_RP_0 + P-network_3_6_AskP_0 + P-network_1_6_AnnP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_6 + P-network_6_4_RP_0 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_1_5_RP_0 + P-network_2_0_AskP_0 + P-network_4_2_AskP_0 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_1_6_AI_0 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_1_0_RP_0 + P-network_5_4_RI_0 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_5_1_AI_0 + P-network_3_5_RI_0 + P-network_3_5_AI_0 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_0 + P-network_6_2_AnnP_0 + P-network_5_0_AnnP_0 + P-network_1_6_RI_0 + P-network_1_3_AI_0 + P-network_6_1_RP_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_1_4_AskP_0 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_5_4_AI_0 + P-network_0_1_AnsP_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_5_3_AnsP_0 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_6 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_0_0_AI_0 + P-network_3_5_AnnP_0 + P-network_0_3_RI_0 + P-network_6_2_RI_0 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_6_4_AskP_0 + P-network_5_6_AnnP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_2_1_AI_0 + P-network_6_0_AskP_0 + P-network_6_6_AnnP_0 + P-network_0_5_RI_0 + P-network_0_2_AI_0 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_2_2_RI_0 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_0_RP_0 + P-network_5_6_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_AnnP_0 + P-network_3_1_RP_0 + P-network_4_1_RI_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_RP_0 + P-network_3_0_AskP_0 + P-network_2_6_AnnP_0 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_5_5_AskP_0 + P-network_5_1_RI_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_6_1_AskP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_5_4_AskP_0 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_6_0_RI_0 + P-network_5_4_AnsP_0 + P-network_6_4_AI_0 + P-network_1_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_4_5_AI_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_0 + P-network_2_0_RP_0 + P-network_2_6_AI_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_2_5_AnnP_0 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_5_6_RP_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_5_RP_0 + P-network_4_6_AskP_0 + P-network_3_6_RP_0 + P-network_2_3_AnnP_0 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_0_0_AnnP_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_0_2_RP_0 + P-network_1_6_AnsP_0 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_6 + P-network_5_2_AskP_0 + P-network_2_1_RI_0 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_0_2_RI_0 + P-network_0_6_AskP_0 + P-network_5_4_AnnP_0 + P-network_2_1_RP_0 + P-network_5_6_RI_0 + P-network_2_3_AskP_0 + P-network_5_3_AI_0 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_1 + P-network_4_6_AI_0 + P-network_5_1_AnsP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_0_RP_0 + P-network_6_0_AnnP_0 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_6_2_AnsP_0 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_6 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_1_5_AI_0 + P-network_6_3_RP_0 + P-network_6_5_AI_0 + P-network_4_4_RP_0 + P-network_6_5_AnnP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_2_5_RP_0 + P-network_1_1_AI_0 + P-network_4_3_AskP_0 + P-network_0_6_RP_0 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_1_4_RI_0 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_4_5_AnnP_0 + P-network_4_0_AnnP_0 + P-network_6_4_RI_0 + P-network_4_2_AnsP_6 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_3_0_AI_0 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_6_1_AI_0 + P-network_4_5_RI_0 + P-network_3_3_RI_0 + P-network_0_3_AskP_0 + P-network_4_2_AI_0 + P-network_5_1_AnnP_0 + P-network_2_6_RI_0 + P-network_2_3_AI_0 + P-network_6_3_AskP_0 + P-network_0_4_AI_0 + P-network_5_2_RP_0 + P-network_0_5_AnnP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_6 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_5_2_RI_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_1_1_AnnP_0 + P-network_3_4_AnnP_0 + P-network_4_0_AskP_0 + P-network_3_6_AnnP_0 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_6_5_AskP_0 + P-network_5_3_RI_0 + P-network_5_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_1_5_RI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_2_5_AnsP_0 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_6 + P-network_6_0_RP_0 + P-network_6_6_AI_0 + P-network_2_5_AskP_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_1_3_RP_0 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_6 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_0_3_AnnP_0 + P-network_5_6_AskP_0 + P-network_6_1_RI_0 + P-network_3_2_RP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_6_2_AskP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_0_4_RI_0 + P-network_5_1_RP_0 + P-network_0_1_AI_0 + P-network_2_6_AskP_0 + P-network_1_6_AskP_0 + P-network_6_4_AnnP_0 + P-network_0_3_AI_0 + P-network_5_5_AI_0 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_3_6_AI_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_6_5_AnsP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_6 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_2_2_AI_0 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_5_RP_0 + P-network_0_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_5_RI_0 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_5_0_RI_0 + P-network_5_3_AskP_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_6 + P-network_3_1_RI_0 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_5_5_AnnP_0 + P-network_4_4_RI_0 + P-network_6_6_RI_0 + P-network_6_3_AI_0 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_3_AnnP_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_6_0_AI_0 + P-network_6_1_AnnP_0 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_2_5_AI_0 + P-network_0_0_RP_0 + P-network_0_6_AI_0 + P-network_6_3_RI_0 + P-network_5_4_RP_0 + P-network_1_5_AnnP_0 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_3_5_RP_0 + P-network_4_4_AskP_0 + P-network_1_6_RP_0 + P-network_6_6_AskP_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_5_0_AskP_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_6 + P-network_4_6_AnnP_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_5_5_RI_0 + P-network_0_4_AskP_0 + P-network_5_2_AI_0 + P-network_5_2_AnnP_0 + P-network_3_6_RI_0 + P-network_4_1_AskP_0 + P-network_3_3_AI_0 + P-network_0_5_RP_0 + P-network_1_4_AI_0 + P-network_1_0_AskP_0 + P-network_6_2_RP_0 + P-network_0_6_AnnP_0 + P-network_0_3_AnsP_6 + P-network_1_2_AnnP_0 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_0 + P-network_2_4_RP_0 + P-network_4_3_RP_0 + P-network_3_5_AskP_0 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_4 + P-network_2_4_RP_3 + P-network_2_4_RP_2 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_2_4_RP_1 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_1 + P-network_0_6_AnnP_1 + P-network_0_6_AnnP_2 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_6 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_4_AI_1 + P-network_1_4_AI_2 + P-network_1_4_AI_3 + P-network_1_4_AI_4 + P-network_1_4_AI_5 + P-network_1_4_AI_6 + P-network_0_5_RP_6 + P-network_0_5_RP_5 + P-network_0_5_RP_4 + P-network_0_5_RP_3 + P-network_0_5_RP_2 + P-network_0_5_RP_1 + P-network_4_1_AskP_6 + P-network_4_1_AskP_5 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_4_1_AskP_1 + P-network_3_3_AI_1 + P-network_3_3_AI_2 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_5 + P-network_3_3_AI_6 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AI_1 + P-network_5_2_AI_2 + P-network_5_2_AI_3 + P-network_5_2_AI_4 + P-network_5_2_AI_5 + P-network_5_2_AI_6 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_0_1_RI_5 + P-network_0_1_RI_6 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_6_6_AskP_6 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_6_6_AskP_5 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_2_0_RI_5 + P-network_2_0_RI_6 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_6_3_RI_6 + P-network_6_3_RI_5 + P-network_6_3_RI_4 + P-network_6_3_RI_3 + P-network_6_3_RI_2 + P-network_1_5_AnnP_1 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_3 + P-network_1_5_AnnP_4 + P-network_1_5_AnnP_5 + P-network_1_5_AnnP_6 + P-network_6_3_RI_1 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_0_0_RP_5 + P-network_0_0_RP_6 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_2_5_AI_3 + P-network_2_5_AI_4 + P-network_2_5_AI_5 + P-network_2_5_AI_6 + P-network_6_0_AI_6 + P-network_6_0_AI_5 + P-network_6_0_AI_4 + P-network_6_0_AI_3 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_0_AI_2 + P-network_6_0_AI_1 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_1_3_AskP_5 + P-network_1_3_AskP_6 + P-network_4_3_AnnP_1 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_3_1_RI_5 + P-network_3_1_RI_6 + P-network_4_1_AI_6 + P-network_4_1_AI_5 + P-network_4_1_AI_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_1_AI_1 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_2_5_RI_3 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_5_0_RI_4 + P-network_5_0_RI_5 + P-network_5_0_RI_6 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_0_1_AskP_6 + P-network_4_6_RP_1 + P-network_4_6_RP_2 + P-network_4_6_RP_3 + P-network_4_6_RP_4 + P-network_4_6_RP_5 + P-network_4_6_RP_6 + P-network_0_1_AskP_5 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_6 + P-network_2_2_AI_5 + P-network_2_2_AI_4 + P-network_6_5_RP_1 + P-network_6_5_RP_2 + P-network_6_5_RP_3 + P-network_6_5_RP_4 + P-network_6_5_RP_5 + P-network_6_5_RP_6 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_2_2_AI_1 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_2_2_AskP_5 + P-network_2_2_AskP_6 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_0_6_RI_1 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_0_3_AI_6 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_0_3_AI_5 + P-network_0_3_AI_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_2_6_AskP_6 + P-network_2_6_AskP_5 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_2_6_AskP_4 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_2_6_AskP_3 + P-network_2_6_AskP_2 + P-network_2_6_AskP_1 + P-network_5_1_RP_6 + P-network_5_1_RP_5 + P-network_5_1_RP_4 + P-network_5_1_RP_3 + P-network_5_1_RP_2 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_5_1_RP_1 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_3_2_RP_6 + P-network_3_2_RP_5 + P-network_3_2_RP_4 + P-network_3_2_RP_3 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_3_2_RP_2 + P-network_3_2_RP_1 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_4 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_6_1_RI_4 + P-network_6_1_RI_5 + P-network_6_1_RI_6 + P-network_0_3_AnnP_3 + P-network_5_6_AskP_1 + P-network_5_6_AskP_2 + P-network_5_6_AskP_3 + P-network_5_6_AskP_4 + P-network_5_6_AskP_5 + P-network_5_6_AskP_6 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_1_3_RP_6 + P-network_1_3_RP_5 + P-network_1_3_RP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_3_2_AskP_6 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_2_AskP_2 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_3_RP_5 + P-network_3_2_AskP_1 + P-network_0_3_RP_6 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_2_2_RP_5 + P-network_2_2_RP_6 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_4_1_RP_5 + P-network_4_1_RP_6 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_0_RP_1 + P-network_6_0_RP_2 + P-network_6_0_RP_3 + P-network_6_0_RP_4 + P-network_6_0_RP_5 + P-network_6_0_RP_6 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_3_4_AnnP_6 + P-network_3_4_AnnP_5 + P-network_3_4_AnnP_4 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_4_AnnP_3 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_5_2_RI_6 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_5_2_RI_5 + P-network_5_2_RI_4 + P-network_5_2_RI_3 + P-network_5_2_RI_2 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_5_2_RI_1 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_3_RP_6 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_6_3_AskP_6 + P-network_0_4_AI_5 + P-network_6_3_AskP_5 + P-network_0_4_AI_6 + P-network_6_3_AskP_4 + P-network_6_3_AskP_3 + P-network_6_3_AskP_2 + P-network_6_3_AskP_1 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_3_3_RI_6 + P-network_3_3_RI_5 + P-network_3_3_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_0_3_AskP_5 + P-network_0_3_AskP_6 + P-network_3_3_RI_1 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_3_0_AI_6 + P-network_6_1_AI_3 + P-network_3_0_AI_5 + P-network_6_1_AI_4 + P-network_3_0_AI_4 + P-network_6_1_AI_5 + P-network_3_0_AI_3 + P-network_6_1_AI_6 + P-network_3_0_AI_2 + P-network_3_0_AI_1 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_5 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_4_RI_6 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_2_0_AnnP_5 + P-network_2_0_AnnP_6 + P-network_1_4_RI_5 + P-network_1_4_RI_4 + P-network_1_4_RI_3 + P-network_1_4_RI_2 + P-network_1_4_RI_1 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_1_1_AI_6 + P-network_1_1_AI_5 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_2 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_6_5_AnnP_1 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_6_5_AI_6 + P-network_6_5_AI_5 + P-network_6_5_AI_4 + P-network_6_5_AI_3 + P-network_6_5_AI_2 + P-network_6_5_AI_1 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_4_0_RP_6 + P-network_4_0_RP_5 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_4_0_RP_2 + P-network_6_0_AnnP_3 + P-network_4_0_RP_1 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_6_0_AnnP_6 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_3_4_AI_1 + P-network_4_6_AI_6 + P-network_3_4_AI_2 + P-network_4_6_AI_5 + P-network_3_4_AI_3 + P-network_4_6_AI_4 + P-network_3_4_AI_4 + P-network_4_6_AI_3 + P-network_3_4_AI_5 + P-network_4_6_AI_2 + P-network_3_4_AI_6 + P-network_4_6_AI_1 + P-network_2_3_AskP_6 + P-network_2_3_AskP_5 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_2_1_RP_6 + P-network_5_6_RI_1 + P-network_5_6_RI_2 + P-network_5_6_RI_3 + P-network_5_6_RI_4 + P-network_5_6_RI_5 + P-network_5_6_RI_6 + P-network_2_1_RP_5 + P-network_2_1_RP_4 + P-network_2_1_RP_3 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_5_4_AnnP_1 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_6 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_0_2_RP_6 + P-network_0_2_RP_5 + P-network_0_2_RP_4 + P-network_0_2_RP_3 + P-network_0_2_RP_2 + P-network_0_2_RP_1 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_5 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_4_0_RI_5 + P-network_4_0_RI_6 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_5_6_RP_6 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_5_6_RP_5 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_6_RP_4 + P-network_5_6_RP_3 + P-network_5_6_RP_2 + P-network_5_6_RP_1 + P-network_2_5_AnnP_6 + P-network_2_5_AnnP_5 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_6_AI_1 + P-network_2_6_AI_2 + P-network_2_6_AI_3 + P-network_2_6_AI_4 + P-network_2_6_AI_5 + P-network_2_6_AI_6 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_6_0_RI_6 + P-network_4_5_AI_1 + P-network_4_5_AI_2 + P-network_4_5_AI_3 + P-network_4_5_AI_4 + P-network_4_5_AI_5 + P-network_4_5_AI_6 + P-network_6_0_RI_5 + P-network_6_0_RI_4 + P-network_6_3_AnnP_1 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_3 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_6 + P-network_6_0_RI_3 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_6_0_RI_2 + P-network_6_4_AI_1 + P-network_6_4_AI_2 + P-network_6_4_AI_3 + P-network_6_4_AI_4 + P-network_6_4_AI_5 + P-network_6_4_AI_6 + P-network_6_0_RI_1 + P-network_5_4_AskP_6 + P-network_5_4_AskP_5 + P-network_5_4_AskP_4 + P-network_5_4_AskP_3 + P-network_5_4_AskP_2 + P-network_5_4_AskP_1 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_1_3_RI_5 + P-network_1_3_RI_6 + P-network_6_1_AskP_1 + P-network_6_1_AskP_2 + P-network_6_1_AskP_3 + P-network_6_1_AskP_4 + P-network_6_1_AskP_5 + P-network_6_1_AskP_6 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_RI_5 + P-network_3_2_RI_6 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_5_1_RI_1 + P-network_5_1_RI_2 + P-network_5_1_RI_3 + P-network_5_1_RI_4 + P-network_5_1_RI_5 + P-network_5_1_RI_6 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_4_1_RI_6 + P-network_4_1_RI_5 + P-network_4_1_RI_4 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_6 + P-network_4_1_RI_1 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_5 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_2_RI_6 + P-network_2_2_RI_5 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_2_2_RI_4 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_2_2_RI_1 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_AI_5 + P-network_0_2_AI_6 + P-network_6_0_AskP_6 + P-network_6_0_AskP_5 + P-network_6_0_AskP_4 + P-network_6_0_AskP_3 + P-network_6_0_AskP_2 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_6_0_AskP_1 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_5_6_AnnP_6 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_1_AI_5 + P-network_2_1_AI_6 + P-network_5_6_AnnP_5 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_5_6_AnnP_4 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_5_6_AnnP_3 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_0_AI_5 + P-network_4_0_AI_6 + P-network_5_6_AnnP_2 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_5_6_AnnP_1 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_0_3_RI_6 + P-network_0_3_RI_5 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_3_5_AnnP_1 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_4 + P-network_3_5_AnnP_5 + P-network_3_5_AnnP_6 + P-network_0_0_AI_6 + P-network_0_0_AI_5 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_6 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_2_3_RP_6 + P-network_5_4_AI_6 + P-network_5_4_AI_5 + P-network_5_4_AI_4 + P-network_5_4_AI_3 + P-network_5_4_AI_2 + P-network_5_4_AI_1 + P-network_1_4_AskP_6 + P-network_1_4_AskP_5 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_4_AskP_1 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_6_2_AnnP_6 + P-network_6_2_AnnP_5 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_2_AnnP_4 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_6_2_AnnP_3 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_1 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_3_5_AI_6 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_5_AI_5 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_3_5_AI_4 + P-network_3_5_AI_3 + P-network_3_5_AI_2 + P-network_3_5_AI_1 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_1_0_RP_6 + P-network_5_1_AI_6 + P-network_1_0_RP_5 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_1_0_RP_1 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_6 + P-network_1_6_AI_6 + P-network_1_6_AI_5 + P-network_1_6_AI_4 + P-network_1_6_AI_3 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_1_6_AI_2 + P-network_1_6_AI_1 + P-network_2_0_AskP_6 + P-network_2_0_AskP_5 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_4_2_AskP_5 + P-network_4_2_AskP_6 + P-network_6_4_RP_6 + P-network_1_5_RP_1 + P-network_1_5_RP_2 + P-network_1_5_RP_3 + P-network_1_5_RP_4 + P-network_1_5_RP_5 + P-network_1_5_RP_6 + P-network_6_4_RP_5 + P-network_6_4_RP_4 + P-network_6_4_RP_3 + P-network_6_4_RP_2 + P-network_6_4_RP_1 + P-network_1_6_AnnP_6 + P-network_1_6_AnnP_5 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_6_AnnP_4 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_3_4_RP_5 + P-network_3_4_RP_6 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_2 + P-network_1_6_AnnP_1 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_5_3_RP_1 + P-network_5_3_RP_2 + P-network_5_3_RP_3 + P-network_5_3_RP_4 + P-network_5_3_RP_5 + P-network_5_3_RP_6 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_4_5_RP_6 + P-network_4_5_RP_5 + P-network_4_5_RP_4 + P-network_4_5_RP_3 + P-network_4_5_RP_2 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_4_5_RP_1 + P-network_4_5_AskP_6 + P-network_2_4_AI_1 + P-network_4_5_AskP_5 + P-network_2_4_AI_2 + P-network_4_5_AskP_4 + P-network_2_4_AI_3 + P-network_4_5_AskP_3 + P-network_2_4_AI_4 + P-network_4_5_AskP_2 + P-network_2_4_AI_5 + P-network_4_5_AskP_1 + P-network_2_4_AI_6 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_2_6_RP_6 + P-network_2_6_RP_5 + P-network_2_6_RP_4 + P-network_2_6_RP_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_2_6_RP_2 + P-network_2_6_RP_1 + P-network_2_2_AnnP_6 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_5_1_AskP_1 + P-network_5_1_AskP_2 + P-network_5_1_AskP_3 + P-network_5_1_AskP_4 + P-network_5_1_AskP_5 + P-network_5_1_AskP_6 + P-network_2_2_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4 + P-network_3_0_RI_5 + P-network_3_0_RI_6 <= 0)
lola:   after: (P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_0 + P-network_5_0_AnsP_6 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_4_5_AskP_0 + P-network_4_5_RP_0 + P-network_2_4_AI_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_0_5_AI_0 + P-network_5_3_RP_0 + P-network_3_6_AskP_0 + P-network_1_6_AnnP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_6 + P-network_6_4_RP_0 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_1_5_RP_0 + P-network_2_0_AskP_0 + P-network_4_2_AskP_0 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_1_6_AI_0 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_1_0_RP_0 + P-network_5_4_RI_0 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_5_1_AI_0 + P-network_3_5_RI_0 + P-network_3_5_AI_0 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_0 + P-network_6_2_AnnP_0 + P-network_5_0_AnnP_0 + P-network_1_6_RI_0 + P-network_1_3_AI_0 + P-network_6_1_RP_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_1_4_AskP_0 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_5_4_AI_0 + P-network_0_1_AnsP_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_5_3_AnsP_0 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_6 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_0_0_AI_0 + P-network_3_5_AnnP_0 + P-network_0_3_RI_0 + P-network_6_2_RI_0 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_6_4_AskP_0 + P-network_5_6_AnnP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_2_1_AI_0 + P-network_6_0_AskP_0 + P-network_6_6_AnnP_0 + P-network_0_5_RI_0 + P-network_0_2_AI_0 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_2_2_RI_0 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_0_RP_0 + P-network_5_6_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_AnnP_0 + P-network_3_1_RP_0 + P-network_4_1_RI_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_RP_0 + P-network_3_0_AskP_0 + P-network_2_6_AnnP_0 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_5_5_AskP_0 + P-network_5_1_RI_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_6_1_AskP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_5_4_AskP_0 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_6_0_RI_0 + P-network_5_4_AnsP_0 + P-network_6_4_AI_0 + P-network_1_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_4_5_AI_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_0 + P-network_2_0_RP_0 + P-network_2_6_AI_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_2_5_AnnP_0 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_5_6_RP_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_5_RP_0 + P-network_4_6_AskP_0 + P-network_3_6_RP_0 + P-network_2_3_AnnP_0 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_0_0_AnnP_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_0_2_RP_0 + P-network_1_6_AnsP_0 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_6 + P-network_5_2_AskP_0 + P-network_2_1_RI_0 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_0_2_RI_0 + P-network_0_6_AskP_0 + P-network_5_4_AnnP_0 + P-network_2_1_RP_0 + P-network_5_6_RI_0 + P-network_2_3_AskP_0 + P-network_5_3_AI_0 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_1 + P-network_4_6_AI_0 + P-network_5_1_AnsP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_0_RP_0 + P-network_6_0_AnnP_0 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_6_2_AnsP_0 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_6 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_1_5_AI_0 + P-network_6_3_RP_0 + P-network_6_5_AI_0 + P-network_4_4_RP_0 + P-network_6_5_AnnP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_2_5_RP_0 + P-network_1_1_AI_0 + P-network_4_3_AskP_0 + P-network_0_6_RP_0 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_1_4_RI_0 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_4_5_AnnP_0 + P-network_4_0_AnnP_0 + P-network_6_4_RI_0 + P-network_4_2_AnsP_6 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_3_0_AI_0 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_6_1_AI_0 + P-network_4_5_RI_0 + P-network_3_3_RI_0 + P-network_0_3_AskP_0 + P-network_4_2_AI_0 + P-network_5_1_AnnP_0 + P-network_2_6_RI_0 + P-network_2_3_AI_0 + P-network_6_3_AskP_0 + P-network_0_4_AI_0 + P-network_5_2_RP_0 + P-network_0_5_AnnP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_6 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_5_2_RI_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_1_1_AnnP_0 + P-network_3_4_AnnP_0 + P-network_4_0_AskP_0 + P-network_3_6_AnnP_0 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_6_5_AskP_0 + P-network_5_3_RI_0 + P-network_5_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_1_5_RI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_2_5_AnsP_0 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_6 + P-network_6_0_RP_0 + P-network_6_6_AI_0 + P-network_2_5_AskP_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_1_3_RP_0 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_6 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_0_3_AnnP_0 + P-network_5_6_AskP_0 + P-network_6_1_RI_0 + P-network_3_2_RP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_6_2_AskP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_0_4_RI_0 + P-network_5_1_RP_0 + P-network_0_1_AI_0 + P-network_2_6_AskP_0 + P-network_1_6_AskP_0 + P-network_6_4_AnnP_0 + P-network_0_3_AI_0 + P-network_5_5_AI_0 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_3_6_AI_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_6_5_AnsP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_6 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_2_2_AI_0 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_5_RP_0 + P-network_0_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_5_RI_0 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_5_0_RI_0 + P-network_5_3_AskP_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_6 + P-network_3_1_RI_0 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_5_5_AnnP_0 + P-network_4_4_RI_0 + P-network_6_6_RI_0 + P-network_6_3_AI_0 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_3_AnnP_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_6_0_AI_0 + P-network_6_1_AnnP_0 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_2_5_AI_0 + P-network_0_0_RP_0 + P-network_0_6_AI_0 + P-network_6_3_RI_0 + P-network_5_4_RP_0 + P-network_1_5_AnnP_0 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_3_5_RP_0 + P-network_4_4_AskP_0 + P-network_1_6_RP_0 + P-network_6_6_AskP_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_5_0_AskP_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_6 + P-network_4_6_AnnP_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_5_5_RI_0 + P-network_0_4_AskP_0 + P-network_5_2_AI_0 + P-network_5_2_AnnP_0 + P-network_3_6_RI_0 + P-network_4_1_AskP_0 + P-network_3_3_AI_0 + P-network_0_5_RP_0 + P-network_1_4_AI_0 + P-network_1_0_AskP_0 + P-network_6_2_RP_0 + P-network_0_6_AnnP_0 + P-network_0_3_AnsP_6 + P-network_1_2_AnnP_0 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_0 + P-network_2_4_RP_0 + P-network_4_3_RP_0 + P-network_3_5_AskP_0 <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_4_T_5 + P-masterState_4_T_6 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_6 + P-masterState_3_T_5 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_5_F_5 + P-masterState_5_F_4 + P-masterState_5_F_3 + P-masterState_5_F_2 + P-masterState_5_F_1 + P-masterState_5_F_0 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_4_F_4 + P-masterState_4_F_5 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_6 + P-masterState_2_F_6 + P-masterState_5_F_6 + P-masterState_0_F_6 + P-masterState_3_F_6 + P-masterState_1_T_6 + P-masterState_6_F_6 <= 0)
lola:   after: (6 <= 0)
lola:   always false
lola:   place invariant simplifies atomic proposition
lola:   before: (P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_1_3_CO + P-negotiation_5_6_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_0_5_DONE + P-negotiation_5_0_NONE + P-negotiation_5_6_NONE + P-negotiation_5_3_DONE + P-negotiation_3_4_DONE + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_1_5_DONE + P-negotiation_2_6_CO + P-negotiation_0_2_CO + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_2_1_NONE + P-negotiation_0_1_NONE + P-negotiation_6_2_DONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_2_CO + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_2_4_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_3_6_CO + P-negotiation_0_6_NONE + P-negotiation_1_6_DONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_3_5_DONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_1_3_NONE + P-negotiation_3_6_DONE + P-negotiation_5_4_DONE + P-negotiation_3_4_CO + P-negotiation_3_2_NONE + P-negotiation_1_0_CO + P-negotiation_0_0_DONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_2_5_DONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_4_1_CO + P-negotiation_6_1_CO + P-negotiation_5_2_DONE + P-negotiation_3_3_DONE + P-negotiation_6_5_NONE + P-negotiation_1_4_DONE + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_0_4_CO + P-negotiation_6_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_4_6_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_6_5_DONE + P-negotiation_3_0_CO + P-negotiation_6_6_CO + P-negotiation_5_4_CO + P-negotiation_1_1_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_6_2_NONE + P-negotiation_4_3_NONE + P-negotiation_2_4_NONE + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_0_0_NONE + P-negotiation_0_5_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_5_2_CO + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_1_4_CO + P-negotiation_6_6_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_2_6_DONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_1_3_DONE <= 0)
lola:   after: (36 <= 0)
lola:   always false
lola:   place invariant simplifies atomic proposition
lola:   before: (P-network_4_5_RI_2 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-masterList_2_6_0 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_1_2_RI_1 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_1_6_RP_6 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   LP says that atomic proposition is always true: (P-stage_4_PRIM <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-network_4_2_RP_1 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-network_0_6_AskP_1 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-network_3_1_AskP_6 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   MAX(P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting_2_5 + P-startNeg__broadcasting_2_6 + P-startNeg__broadcasting_3_1 + P-startNeg__broadcasting_3_2 + P-startNeg__broadcasting_3_3 + P-startNeg__broadcasting_3_4 + P-startNeg__broadcasting_3_5 + P-startNeg__broadcasting_3_6 + P-startNeg__broadcasting_4_1 + P-startNeg__broadcasting_4_2 + P-startNeg__broadcasting_4_3 + P-startNeg__broadcasting_4_4 + P-startNeg__broadcasting_4_5 + P-startNeg__broadcasting_4_6 + P-startNeg__broadcasting_5_1 + P-startNeg__broadcasting_5_2 + P-startNeg__broadcasting_5_3 + P-startNeg__broadcasting_5_4 + P-startNeg__broadcasting_5_5 + P-startNeg__broadcasting_5_6 + P-startNeg__broadcasting_6_6 + P-startNeg__broadcasting_6_5 + P-startNeg__broadcasting_6_4 + P-startNeg__broadcasting_6_3 + P-startNeg__broadcasting_6_2 + P-startNeg__broadcasting_6_1 + P-startNeg__broadcasting_0_5 + P-startNeg__broadcasting_0_6 + P-startNeg__broadcasting_1_5 + P-startNeg__broadcasting_1_6) : MAX(P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0) : MAX(P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1) : MAX(P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_0 + P-network_5_0_AnsP_6 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_4_5_AskP_0 + P-network_4_5_RP_0 + P-network_2_4_AI_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_0_5_AI_0 + P-network_5_3_RP_0 + P-network_3_6_AskP_0 + P-network_1_6_AnnP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_6 + P-network_6_4_RP_0 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_1_5_RP_0 + P-network_2_0_AskP_0 + P-network_4_2_AskP_0 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_1_6_AI_0 + P-network_3_5_AnsP_1 + P-network_3_5_AnsP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_1_0_RP_0 + P-network_5_4_RI_0 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_5_1_AI_0 + P-network_3_5_RI_0 + P-network_3_5_AI_0 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_0 + P-network_6_2_AnnP_0 + P-network_5_0_AnnP_0 + P-network_1_6_RI_0 + P-network_1_3_AI_0 + P-network_6_1_RP_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_1_4_AskP_0 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_5_4_AI_0 + P-network_0_1_AnsP_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_5_3_AnsP_0 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_6 + P-network_2_6_AnsP_4 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_0_0_AI_0 + P-network_3_5_AnnP_0 + P-network_0_3_RI_0 + P-network_6_2_RI_0 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_6_4_AskP_0 + P-network_5_6_AnnP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_2_1_AI_0 + P-network_6_0_AskP_0 + P-network_6_6_AnnP_0 + P-network_0_5_RI_0 + P-network_0_2_AI_0 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_2_2_RI_0 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_5_0_RP_0 + P-network_5_6_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_AnnP_0 + P-network_3_1_RP_0 + P-network_4_1_RI_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_6_6_RP_0 + P-network_3_0_AskP_0 + P-network_2_6_AnnP_0 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_5_5_AskP_0 + P-network_5_1_RI_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_6_1_AskP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_5_4_AskP_0 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_6_0_RI_0 + P-network_5_4_AnsP_0 + P-network_6_4_AI_0 + P-network_1_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_4_5_AI_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_0 + P-network_2_0_RP_0 + P-network_2_6_AI_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_2_5_AnnP_0 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_5_6_RP_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_5_RP_0 + P-network_4_6_AskP_0 + P-network_3_6_RP_0 + P-network_2_3_AnnP_0 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_0_0_AnnP_0 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_0_2_RP_0 + P-network_1_6_AnsP_0 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_6 + P-network_5_2_AskP_0 + P-network_2_1_RI_0 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_0_2_RI_0 + P-network_0_6_AskP_0 + P-network_5_4_AnnP_0 + P-network_2_1_RP_0 + P-network_5_6_RI_0 + P-network_2_3_AskP_0 + P-network_5_3_AI_0 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_5 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_1 + P-network_4_6_AI_0 + P-network_5_1_AnsP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_0_RP_0 + P-network_6_0_AnnP_0 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_6_2_AnsP_0 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_6 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_1_5_AI_0 + P-network_6_3_RP_0 + P-network_6_5_AI_0 + P-network_4_4_RP_0 + P-network_6_5_AnnP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_2_5_RP_0 + P-network_1_1_AI_0 + P-network_4_3_AskP_0 + P-network_0_6_RP_0 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_1_4_RI_0 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_4_5_AnnP_0 + P-network_4_0_AnnP_0 + P-network_6_4_RI_0 + P-network_4_2_AnsP_6 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_3_0_AI_0 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_6_1_AI_0 + P-network_4_5_RI_0 + P-network_3_3_RI_0 + P-network_0_3_AskP_0 + P-network_4_2_AI_0 + P-network_5_1_AnnP_0 + P-network_2_6_RI_0 + P-network_2_3_AI_0 + P-network_6_3_AskP_0 + P-network_0_4_AI_0 + P-network_5_2_RP_0 + P-network_0_5_AnnP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_6 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_5_2_RI_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_1_1_AnnP_0 + P-network_3_4_AnnP_0 + P-network_4_0_AskP_0 + P-network_3_6_AnnP_0 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_6_5_AskP_0 + P-network_5_3_RI_0 + P-network_5_0_AI_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_1_5_RI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_2_5_AnsP_0 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_6 + P-network_6_0_RP_0 + P-network_6_6_AI_0 + P-network_2_5_AskP_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_3_2_AskP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_1_3_RP_0 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_6 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_0_3_AnnP_0 + P-network_5_6_AskP_0 + P-network_6_1_RI_0 + P-network_3_2_RP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_6 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_6_2_AskP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_0_4_RI_0 + P-network_5_1_RP_0 + P-network_0_1_AI_0 + P-network_2_6_AskP_0 + P-network_1_6_AskP_0 + P-network_6_4_AnnP_0 + P-network_0_3_AI_0 + P-network_5_5_AI_0 + P-network_6_1_AnsP_6 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_0 + P-network_0_6_RI_0 + P-network_3_0_RP_0 + P-network_3_6_AI_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_6_5_AnsP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_6 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_2_2_AI_0 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_5_RP_0 + P-network_0_1_AskP_0 + P-network_4_6_RP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_5_RI_0 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_5_0_RI_0 + P-network_5_3_AskP_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_6 + P-network_3_1_RI_0 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_3 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_5_5_AnnP_0 + P-network_4_4_RI_0 + P-network_6_6_RI_0 + P-network_6_3_AI_0 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_4_3_AnnP_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_6_0_AI_0 + P-network_6_1_AnnP_0 + P-network_0_6_AnsP_6 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_2_5_AI_0 + P-network_0_0_RP_0 + P-network_0_6_AI_0 + P-network_6_3_RI_0 + P-network_5_4_RP_0 + P-network_1_5_AnnP_0 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_3_5_RP_0 + P-network_4_4_AskP_0 + P-network_1_6_RP_0 + P-network_6_6_AskP_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_5_0_AskP_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_6 + P-network_4_6_AnnP_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_5_5_RI_0 + P-network_0_4_AskP_0 + P-network_5_2_AI_0 + P-network_5_2_AnnP_0 + P-network_3_6_RI_0 + P-network_4_1_AskP_0 + P-network_3_3_AI_0 + P-network_0_5_RP_0 + P-network_1_4_AI_0 + P-network_1_0_AskP_0 + P-network_6_2_RP_0 + P-network_0_6_AnnP_0 + P-network_0_3_AnsP_6 + P-network_1_2_AnnP_0 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_0 + P-network_2_4_RP_0 + P-network_4_3_RP_0 + P-network_3_5_AskP_0) : MAX(P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6) : MAX(0) : MAX(0) : MAX(P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0) : MAX(0) : MAX(0) : MAX(0) : MAX(0) : MAX(P-stage_4_PRIM) : MAX(0) : MAX(0) : MAX(0)
lola:   computing a collection of formulas
lola: RUNNING
lola:   subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)
lola:     processed formula length: 149
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-1 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0... (shortened)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0... (shortened)
lola:     processed formula length: 8528
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-2 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 6
lola:   SUBRESULT
lola:     result: 6
lola:     produced by: state space
lola:     The maximum value of the given expression is 6
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-5 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 36
lola:   SUBRESULT
lola:     result: 36
lola:     produced by: state space
lola:     The maximum value of the given expression is 36
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-6 36 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-8 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 5 will run for 323 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-9 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-10 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 7 will run for 395 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-11 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-stage_4_PRIM)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-stage_4_PRIM)
lola:     processed formula length: 19
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-12 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 9 will run for 508 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-13 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 10 will run for 592 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-14 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 11 will run for 711 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-15 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 12 will run for 889 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6)
lola:     processed formula length: 135
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 6
lola:   SUBRESULT
lola:     result: 6
lola:     produced by: state space
lola:     The maximum value of the given expression is 6
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-4 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 13 will run for 1185 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola:     processed formula length: 142
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 6
lola:           6458 markings,      21411 edges,     1292 markings/sec,     0 secs
lola:          21180 markings,      78500 edges,     2944 markings/sec,     5 secs
lola:          35461 markings,     136075 edges,     2856 markings/sec,    10 secs
lola:          49951 markings,     203333 edges,     2898 markings/sec,    15 secs
lola:          64698 markings,     267106 edges,     2949 markings/sec,    20 secs
lola:          79399 markings,     330254 edges,     2940 markings/sec,    25 secs
lola:          94492 markings,     389704 edges,     3019 markings/sec,    30 secs
lola:         108565 markings,     449737 edges,     2815 markings/sec,    35 secs
lola:         123197 markings,     511952 edges,     2926 markings/sec,    40 secs
lola:         138447 markings,     575888 edges,     3050 markings/sec,    45 secs
lola:         153453 markings,     636926 edges,     3001 markings/sec,    50 secs
lola:         167283 markings,     703074 edges,     2766 markings/sec,    55 secs
lola:         180359 markings,     761323 edges,     2615 markings/sec,    60 secs
lola:         194499 markings,     818480 edges,     2828 markings/sec,    65 secs
lola:         209533 markings,     883718 edges,     3007 markings/sec,    70 secs
lola:         224594 markings,     950120 edges,     3012 markings/sec,    75 secs
lola:         239063 markings,    1018991 edges,     2894 markings/sec,    80 secs
lola:         253704 markings,    1087986 edges,     2928 markings/sec,    85 secs
lola:         268453 markings,    1155756 edges,     2950 markings/sec,    90 secs
lola:         283423 markings,    1226594 edges,     2994 markings/sec,    95 secs
lola:         297652 markings,    1292921 edges,     2846 markings/sec,   100 secs
lola:         311557 markings,    1362354 edges,     2781 markings/sec,   105 secs
lola:         325242 markings,    1433307 edges,     2737 markings/sec,   110 secs
lola:         338796 markings,    1515934 edges,     2711 markings/sec,   115 secs
lola:         352600 markings,    1599512 edges,     2761 markings/sec,   120 secs
lola:         366990 markings,    1673994 edges,     2878 markings/sec,   125 secs
lola:         381409 markings,    1752244 edges,     2884 markings/sec,   130 secs
lola:         396440 markings,    1820321 edges,     3006 markings/sec,   135 secs
lola:         411197 markings,    1890220 edges,     2951 markings/sec,   140 secs
lola:         425491 markings,    1967952 edges,     2859 markings/sec,   145 secs
lola:         439790 markings,    2041469 edges,     2860 markings/sec,   150 secs
lola:         454307 markings,    2107811 edges,     2903 markings/sec,   155 secs
lola:         468693 markings,    2184467 edges,     2877 markings/sec,   160 secs
lola:         482879 markings,    2262757 edges,     2837 markings/sec,   165 secs
lola:         496802 markings,    2329180 edges,     2785 markings/sec,   170 secs
lola:         512578 markings,    2404601 edges,     3155 markings/sec,   175 secs
lola:         528218 markings,    2482185 edges,     3128 markings/sec,   180 secs
lola:         543624 markings,    2564820 edges,     3081 markings/sec,   185 secs
lola:         559002 markings,    2650069 edges,     3076 markings/sec,   190 secs
lola:         575076 markings,    2734290 edges,     3215 markings/sec,   195 secs
lola:         591119 markings,    2814030 edges,     3209 markings/sec,   200 secs
lola:         606751 markings,    2896433 edges,     3126 markings/sec,   205 secs
lola:         622524 markings,    2978416 edges,     3155 markings/sec,   210 secs
lola:         638629 markings,    3061136 edges,     3221 markings/sec,   215 secs
lola:         654445 markings,    3141979 edges,     3163 markings/sec,   220 secs
lola:         669818 markings,    3231621 edges,     3075 markings/sec,   225 secs
lola:         685964 markings,    3316762 edges,     3229 markings/sec,   230 secs
lola:         701647 markings,    3400399 edges,     3137 markings/sec,   235 secs
lola:         717340 markings,    3483789 edges,     3139 markings/sec,   240 secs
lola:         732831 markings,    3566339 edges,     3098 markings/sec,   245 secs
lola:         748528 markings,    3657740 edges,     3139 markings/sec,   250 secs
lola:         762717 markings,    3740572 edges,     2838 markings/sec,   255 secs
lola:         776373 markings,    3817689 edges,     2731 markings/sec,   260 secs
lola:         790697 markings,    3897071 edges,     2865 markings/sec,   265 secs
lola:         805479 markings,    3983260 edges,     2956 markings/sec,   270 secs
lola:         820485 markings,    4075364 edges,     3001 markings/sec,   275 secs
lola:         835573 markings,    4180576 edges,     3018 markings/sec,   280 secs
lola:         850641 markings,    4288414 edges,     3014 markings/sec,   285 secs
lola:         866438 markings,    4385419 edges,     3159 markings/sec,   290 secs
lola:         881592 markings,    4483246 edges,     3031 markings/sec,   295 secs
lola:         897295 markings,    4570434 edges,     3141 markings/sec,   300 secs
lola:         913836 markings,    4664156 edges,     3308 markings/sec,   305 secs
lola:         927942 markings,    4759017 edges,     2821 markings/sec,   310 secs
lola:         942090 markings,    4841929 edges,     2830 markings/sec,   315 secs
lola:         956871 markings,    4924862 edges,     2956 markings/sec,   320 secs
lola:         970806 markings,    5015588 edges,     2787 markings/sec,   325 secs
lola:         986836 markings,    5113989 edges,     3206 markings/sec,   330 secs
lola:        1002308 markings,    5199866 edges,     3094 markings/sec,   335 secs
lola:        1016754 markings,    5269756 edges,     2889 markings/sec,   340 secs
lola:        1032591 markings,    5349476 edges,     3167 markings/sec,   345 secs
lola:        1047497 markings,    5433279 edges,     2981 markings/sec,   350 secs
lola:        1062078 markings,    5511389 edges,     2916 markings/sec,   355 secs
lola:        1077265 markings,    5591498 edges,     3037 markings/sec,   360 secs
lola:        1092051 markings,    5664361 edges,     2957 markings/sec,   365 secs
lola:        1106384 markings,    5740033 edges,     2867 markings/sec,   370 secs
lola:        1120859 markings,    5815885 edges,     2895 markings/sec,   375 secs
lola:        1136059 markings,    5895137 edges,     3040 markings/sec,   380 secs
lola:        1150844 markings,    5970006 edges,     2957 markings/sec,   385 secs
lola:        1165124 markings,    6051983 edges,     2856 markings/sec,   390 secs
lola:        1179747 markings,    6131013 edges,     2925 markings/sec,   395 secs
lola:        1194525 markings,    6208037 edges,     2956 markings/sec,   400 secs
lola:        1210099 markings,    6289958 edges,     3115 markings/sec,   405 secs
lola:        1226034 markings,    6375336 edges,     3187 markings/sec,   410 secs
lola:        1240262 markings,    6458634 edges,     2846 markings/sec,   415 secs
lola:        1255050 markings,    6547244 edges,     2958 markings/sec,   420 secs
lola:        1270215 markings,    6628427 edges,     3033 markings/sec,   425 secs
lola:        1284983 markings,    6711906 edges,     2954 markings/sec,   430 secs
lola:        1299571 markings,    6797077 edges,     2918 markings/sec,   435 secs
lola:        1313816 markings,    6883114 edges,     2849 markings/sec,   440 secs
lola:        1329036 markings,    6982017 edges,     3044 markings/sec,   445 secs
lola:        1344357 markings,    7092132 edges,     3064 markings/sec,   450 secs
lola:        1359711 markings,    7191322 edges,     3071 markings/sec,   455 secs
lola:        1375290 markings,    7291850 edges,     3116 markings/sec,   460 secs
lola:        1391613 markings,    7384466 edges,     3265 markings/sec,   465 secs
lola:        1407692 markings,    7474804 edges,     3216 markings/sec,   470 secs
lola:        1423338 markings,    7575087 edges,     3129 markings/sec,   475 secs
lola:        1438989 markings,    7670854 edges,     3130 markings/sec,   480 secs
lola:        1455116 markings,    7761480 edges,     3225 markings/sec,   485 secs
lola:        1471229 markings,    7865633 edges,     3223 markings/sec,   490 secs
lola:        1487984 markings,    7966705 edges,     3351 markings/sec,   495 secs
lola:        1503850 markings,    8052762 edges,     3173 markings/sec,   500 secs
lola:        1519222 markings,    8129945 edges,     3074 markings/sec,   505 secs
lola:        1534601 markings,    8205793 edges,     3076 markings/sec,   510 secs
lola:        1549929 markings,    8284894 edges,     3066 markings/sec,   515 secs
lola:        1564773 markings,    8368009 edges,     2969 markings/sec,   520 secs
lola:        1579469 markings,    8457316 edges,     2939 markings/sec,   525 secs
lola:        1594510 markings,    8540496 edges,     3008 markings/sec,   530 secs
lola:        1609526 markings,    8622304 edges,     3003 markings/sec,   535 secs
lola:        1625144 markings,    8700992 edges,     3124 markings/sec,   540 secs
lola:        1640174 markings,    8776444 edges,     3006 markings/sec,   545 secs
lola:        1653263 markings,    8850995 edges,     2618 markings/sec,   550 secs
lola:        1666649 markings,    8917213 edges,     2677 markings/sec,   555 secs
lola:        1680535 markings,    8992785 edges,     2777 markings/sec,   560 secs
lola:        1693319 markings,    9060100 edges,     2557 markings/sec,   565 secs
lola:        1706179 markings,    9115266 edges,     2572 markings/sec,   570 secs
lola:        1720274 markings,    9177072 edges,     2819 markings/sec,   575 secs
lola:        1735819 markings,    9244042 edges,     3109 markings/sec,   580 secs
lola:        1750710 markings,    9311829 edges,     2978 markings/sec,   585 secs
lola:        1765250 markings,    9382778 edges,     2908 markings/sec,   590 secs
lola:        1779832 markings,    9462715 edges,     2916 markings/sec,   595 secs
lola:        1794786 markings,    9534988 edges,     2991 markings/sec,   600 secs
lola:        1809194 markings,    9603890 edges,     2882 markings/sec,   605 secs
lola:        1824397 markings,    9669677 edges,     3041 markings/sec,   610 secs
lola:        1839516 markings,    9735354 edges,     3024 markings/sec,   615 secs
lola:        1854384 markings,    9808988 edges,     2974 markings/sec,   620 secs
lola:        1869050 markings,    9872720 edges,     2933 markings/sec,   625 secs
lola:        1884019 markings,    9944330 edges,     2994 markings/sec,   630 secs
lola:        1899492 markings,   10011860 edges,     3095 markings/sec,   635 secs
lola:        1914940 markings,   10075446 edges,     3090 markings/sec,   640 secs
lola:        1930220 markings,   10148947 edges,     3056 markings/sec,   645 secs
lola:        1946113 markings,   10216725 edges,     3179 markings/sec,   650 secs
lola:        1960815 markings,   10281249 edges,     2940 markings/sec,   655 secs
lola:        1975980 markings,   10345839 edges,     3033 markings/sec,   660 secs
lola:        1990979 markings,   10409825 edges,     3000 markings/sec,   665 secs
lola:        2005749 markings,   10483348 edges,     2954 markings/sec,   670 secs
lola:        2020486 markings,   10555794 edges,     2947 markings/sec,   675 secs
lola:        2035400 markings,   10627154 edges,     2983 markings/sec,   680 secs
lola:        2049371 markings,   10696734 edges,     2794 markings/sec,   685 secs
lola:        2061473 markings,   10765835 edges,     2420 markings/sec,   690 secs
lola:        2074004 markings,   10845158 edges,     2506 markings/sec,   695 secs
lola:        2088288 markings,   10924648 edges,     2857 markings/sec,   700 secs
lola:        2103238 markings,   11001974 edges,     2990 markings/sec,   705 secs
lola:        2118395 markings,   11072312 edges,     3031 markings/sec,   710 secs
lola:        2133097 markings,   11149904 edges,     2940 markings/sec,   715 secs
lola:        2147614 markings,   11225492 edges,     2903 markings/sec,   720 secs
lola:        2162058 markings,   11293378 edges,     2889 markings/sec,   725 secs
lola:        2176653 markings,   11375863 edges,     2919 markings/sec,   730 secs
lola:        2191178 markings,   11446518 edges,     2905 markings/sec,   735 secs
lola:        2207285 markings,   11528179 edges,     3221 markings/sec,   740 secs
lola:        2223446 markings,   11619380 edges,     3232 markings/sec,   745 secs
lola:        2239612 markings,   11707522 edges,     3233 markings/sec,   750 secs
lola:        2256117 markings,   11794577 edges,     3301 markings/sec,   755 secs
lola:        2271967 markings,   11877670 edges,     3170 markings/sec,   760 secs
lola:        2287857 markings,   11962152 edges,     3178 markings/sec,   765 secs
lola:        2303219 markings,   12052841 edges,     3072 markings/sec,   770 secs
lola:        2319101 markings,   12146617 edges,     3176 markings/sec,   775 secs
lola:        2334724 markings,   12236488 edges,     3125 markings/sec,   780 secs
lola:        2350554 markings,   12334164 edges,     3166 markings/sec,   785 secs
lola:        2365919 markings,   12438218 edges,     3073 markings/sec,   790 secs
lola:        2381223 markings,   12545310 edges,     3061 markings/sec,   795 secs
lola:        2396977 markings,   12648628 edges,     3151 markings/sec,   800 secs
lola:        2411171 markings,   12727465 edges,     2839 markings/sec,   805 secs
lola:        2424860 markings,   12807009 edges,     2738 markings/sec,   810 secs
lola:        2438735 markings,   12901599 edges,     2775 markings/sec,   815 secs
lola:        2454622 markings,   12991429 edges,     3177 markings/sec,   820 secs
lola:        2470378 markings,   13088470 edges,     3151 markings/sec,   825 secs
lola:        2486446 markings,   13187567 edges,     3214 markings/sec,   830 secs
lola:        2502531 markings,   13277468 edges,     3217 markings/sec,   835 secs
lola:        2518463 markings,   13363276 edges,     3186 markings/sec,   840 secs
lola:        2534325 markings,   13451841 edges,     3172 markings/sec,   845 secs
lola:        2550871 markings,   13537385 edges,     3309 markings/sec,   850 secs
lola:        2567381 markings,   13625384 edges,     3302 markings/sec,   855 secs
lola:        2583699 markings,   13712945 edges,     3264 markings/sec,   860 secs
lola:        2599436 markings,   13804655 edges,     3147 markings/sec,   865 secs
lola:        2615625 markings,   13901955 edges,     3238 markings/sec,   870 secs
lola:        2631857 markings,   13993080 edges,     3246 markings/sec,   875 secs
lola:        2647966 markings,   14089056 edges,     3222 markings/sec,   880 secs
lola:        2663308 markings,   14194752 edges,     3068 markings/sec,   885 secs
lola:        2678176 markings,   14300889 edges,     2974 markings/sec,   890 secs
lola:        2693537 markings,   14401527 edges,     3072 markings/sec,   895 secs
lola:        2709541 markings,   14492414 edges,     3201 markings/sec,   900 secs
lola:        2725564 markings,   14584691 edges,     3205 markings/sec,   905 secs
lola:        2741264 markings,   14689524 edges,     3140 markings/sec,   910 secs
lola:        2756781 markings,   14777013 edges,     3103 markings/sec,   915 secs
lola:        2771765 markings,   14872529 edges,     2997 markings/sec,   920 secs
lola:        2785786 markings,   14957331 edges,     2804 markings/sec,   925 secs
lola:        2799675 markings,   15035266 edges,     2778 markings/sec,   930 secs
lola:        2813241 markings,   15103531 edges,     2713 markings/sec,   935 secs
lola:        2826112 markings,   15173644 edges,     2574 markings/sec,   940 secs
lola:        2838319 markings,   15245494 edges,     2441 markings/sec,   945 secs
lola:        2850976 markings,   15323447 edges,     2531 markings/sec,   950 secs
lola:        2863978 markings,   15394229 edges,     2600 markings/sec,   955 secs
lola:        2876961 markings,   15461476 edges,     2597 markings/sec,   960 secs
lola:        2890964 markings,   15535844 edges,     2801 markings/sec,   965 secs
lola:        2904965 markings,   15609202 edges,     2800 markings/sec,   970 secs
lola:        2919577 markings,   15690793 edges,     2922 markings/sec,   975 secs
lola:        2934422 markings,   15764867 edges,     2969 markings/sec,   980 secs
lola:        2949473 markings,   15831085 edges,     3010 markings/sec,   985 secs
lola:        2964024 markings,   15899489 edges,     2910 markings/sec,   990 secs
lola:        2978588 markings,   15977328 edges,     2913 markings/sec,   995 secs
lola:        2992849 markings,   16051408 edges,     2852 markings/sec,  1000 secs
lola:        3007748 markings,   16123198 edges,     2980 markings/sec,  1005 secs
lola:        3022691 markings,   16187639 edges,     2989 markings/sec,  1010 secs
lola:        3037408 markings,   16260791 edges,     2943 markings/sec,  1015 secs
lola:        3052133 markings,   16328299 edges,     2945 markings/sec,  1020 secs
lola:        3067111 markings,   16399205 edges,     2996 markings/sec,  1025 secs
lola:        3081947 markings,   16469784 edges,     2967 markings/sec,  1030 secs
lola:        3096823 markings,   16539647 edges,     2975 markings/sec,  1035 secs
lola:        3111346 markings,   16613642 edges,     2905 markings/sec,  1040 secs
lola:        3125309 markings,   16690121 edges,     2793 markings/sec,  1045 secs
lola:        3138549 markings,   16777576 edges,     2648 markings/sec,  1050 secs
lola:        3152214 markings,   16854805 edges,     2733 markings/sec,  1055 secs
lola:        3166402 markings,   16919268 edges,     2838 markings/sec,  1060 secs
lola:        3180224 markings,   16992806 edges,     2764 markings/sec,  1065 secs
lola:        3194087 markings,   17063130 edges,     2773 markings/sec,  1070 secs
lola:        3208091 markings,   17132672 edges,     2801 markings/sec,  1075 secs
lola:        3222269 markings,   17209754 edges,     2836 markings/sec,  1080 secs
lola:        3236807 markings,   17283987 edges,     2908 markings/sec,  1085 secs
lola:        3252140 markings,   17375670 edges,     3067 markings/sec,  1090 secs
lola:        3267560 markings,   17466338 edges,     3084 markings/sec,  1095 secs
lola:        3281668 markings,   17555578 edges,     2822 markings/sec,  1100 secs
lola:        3295330 markings,   17654945 edges,     2732 markings/sec,  1105 secs
lola:        3309045 markings,   17750806 edges,     2743 markings/sec,  1110 secs
lola:        3323778 markings,   17836318 edges,     2947 markings/sec,  1115 secs
lola:        3338264 markings,   17921233 edges,     2897 markings/sec,  1120 secs
lola:        3352427 markings,   18012705 edges,     2833 markings/sec,  1125 secs
lola:        3366396 markings,   18092784 edges,     2794 markings/sec,  1130 secs
lola:        3379792 markings,   18185268 edges,     2679 markings/sec,  1135 secs
lola:        3393660 markings,   18265085 edges,     2774 markings/sec,  1140 secs
lola:        3407223 markings,   18344888 edges,     2713 markings/sec,  1145 secs
lola:        3421055 markings,   18423293 edges,     2766 markings/sec,  1150 secs
lola:        3434696 markings,   18505777 edges,     2728 markings/sec,  1155 secs
lola:        3449587 markings,   18602964 edges,     2978 markings/sec,  1160 secs
lola:        3463879 markings,   18709170 edges,     2858 markings/sec,  1165 secs
lola:        3479088 markings,   18806473 edges,     3042 markings/sec,  1170 secs
lola:        3494762 markings,   18895068 edges,     3135 markings/sec,  1175 secs
lola:     local time limit reached - aborting
lola:     
preliminary result: unknown 0 0 unknown 6 6 36 unknown 0 0 0 0 0 0 0 0 
lola: memory consumption: 384424 KB
lola: time consumption: 1200 seconds
lola:   Child process aborted or communication problem between parent and child process
lola:   subprocess 14 will run for 1185 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting... (shortened)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-startNeg__broadcasting_1_4 + P-startNeg__broadcasting_1_3 + P-startNeg__broadcasting_1_2 + P-startNeg__broadcasting_1_1 + P-startNeg__broadcasting_0_4 + P-startNeg__broadcasting_0_3 + P-startNeg__broadcasting_0_2 + P-startNeg__broadcasting_0_1 + P-startNeg__broadcasting_2_1 + P-startNeg__broadcasting_2_2 + P-startNeg__broadcasting_2_3 + P-startNeg__broadcasting_2_4 + P-startNeg__broadcasting... (shortened)
lola:     processed formula length: 1304
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 6
lola:   SUBRESULT
lola:     result: 6
lola:     produced by: state space
lola:     The maximum value of the given expression is 6
lola:     7 markings, 6 edges
lola:   ========================================
FORMULA NeoElection-PT-6-UpperBounds-0 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 15 will run for 2368 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_... (shortened)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_... (shortened)
lola:     processed formula length: 13232
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 30
lola:   SUBRESULT
lola:     result: 30
lola:     produced by: state space
lola:     The maximum value of the given expression is 30
lola:     37 markings, 36 edges
FORMULA NeoElection-PT-6-UpperBounds-3 30 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   ========================================
lola:   ========================================
lola:   ...considering subproblem: MAX(P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0)
lola:     processed formula length: 142
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-6-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 6
lola:           6359 markings,      21044 edges,     1272 markings/sec,     0 secs
lola:          20929 markings,      77440 edges,     2914 markings/sec,     5 secs
lola:          35574 markings,     136633 edges,     2929 markings/sec,    10 secs
lola:          49730 markings,     202351 edges,     2831 markings/sec,    15 secs
lola:          64456 markings,     266162 edges,     2945 markings/sec,    20 secs
lola:          78905 markings,     328262 edges,     2890 markings/sec,    25 secs
lola:          93452 markings,     385673 edges,     2909 markings/sec,    30 secs
lola:         107585 markings,     446584 edges,     2827 markings/sec,    35 secs
lola:         122244 markings,     508007 edges,     2932 markings/sec,    40 secs
lola:         137477 markings,     572817 edges,     3047 markings/sec,    45 secs
lola:         152558 markings,     633522 edges,     3016 markings/sec,    50 secs
lola:         167165 markings,     702383 edges,     2921 markings/sec,    55 secs
lola:         181757 markings,     766776 edges,     2918 markings/sec,    60 secs
lola:         196633 markings,     829436 edges,     2975 markings/sec,    65 secs
lola:         211058 markings,     890860 edges,     2885 markings/sec,    70 secs
lola:         225856 markings,     955259 edges,     2960 markings/sec,    75 secs
lola:         239789 markings,    1022852 edges,     2787 markings/sec,    80 secs
lola:         254228 markings,    1091389 edges,     2888 markings/sec,    85 secs
lola:         268535 markings,    1156214 edges,     2861 markings/sec,    90 secs
lola:         283142 markings,    1225259 edges,     2921 markings/sec,    95 secs
lola:         297492 markings,    1292191 edges,     2870 markings/sec,   100 secs
lola:         311742 markings,    1363511 edges,     2850 markings/sec,   105 secs
lola:         325149 markings,    1432849 edges,     2681 markings/sec,   110 secs
lola:         339061 markings,    1517864 edges,     2782 markings/sec,   115 secs
lola:         353008 markings,    1601472 edges,     2789 markings/sec,   120 secs
lola:         366922 markings,    1673628 edges,     2783 markings/sec,   125 secs
lola:         380886 markings,    1749025 edges,     2793 markings/sec,   130 secs
lola:         395402 markings,    1816334 edges,     2903 markings/sec,   135 secs
lola:         409989 markings,    1884274 edges,     2917 markings/sec,   140 secs
lola:         424333 markings,    1960388 edges,     2869 markings/sec,   145 secs
lola:         438864 markings,    2036907 edges,     2906 markings/sec,   150 secs
lola:         453260 markings,    2103350 edges,     2879 markings/sec,   155 secs
lola:         467283 markings,    2177574 edges,     2805 markings/sec,   160 secs
lola:         481136 markings,    2251916 edges,     2771 markings/sec,   165 secs
lola:         495502 markings,    2321902 edges,     2873 markings/sec,   170 secs
lola:         510897 markings,    2396315 edges,     3079 markings/sec,   175 secs
lola:         527165 markings,    2476207 edges,     3254 markings/sec,   180 secs
lola:         542843 markings,    2560574 edges,     3136 markings/sec,   185 secs
lola:         558084 markings,    2645720 edges,     3048 markings/sec,   190 secs
lola:         574091 markings,    2729579 edges,     3201 markings/sec,   195 secs
lola:         590335 markings,    2809741 edges,     3249 markings/sec,   200 secs
lola:         606017 markings,    2893451 edges,     3136 markings/sec,   205 secs
lola:         621249 markings,    2971899 edges,     3046 markings/sec,   210 secs
lola:         637505 markings,    3056167 edges,     3251 markings/sec,   215 secs
lola:         653245 markings,    3135591 edges,     3148 markings/sec,   220 secs
lola:         668861 markings,    3226484 edges,     3123 markings/sec,   225 secs
lola:         685229 markings,    3312955 edges,     3274 markings/sec,   230 secs
lola:         701497 markings,    3399674 edges,     3254 markings/sec,   235 secs
lola:         717842 markings,    3486575 edges,     3269 markings/sec,   240 secs
lola:         734145 markings,    3574748 edges,     3261 markings/sec,   245 secs
lola:         750200 markings,    3666092 edges,     3211 markings/sec,   250 secs
lola:         766244 markings,    3758776 edges,     3209 markings/sec,   255 secs
lola:         782706 markings,    3853552 edges,     3292 markings/sec,   260 secs
lola:         798592 markings,    3944091 edges,     3177 markings/sec,   265 secs
lola:         813969 markings,    4035600 edges,     3075 markings/sec,   270 secs
lola:         828659 markings,    4132284 edges,     2938 markings/sec,   275 secs
lola:         843431 markings,    4237102 edges,     2954 markings/sec,   280 secs
lola:         858152 markings,    4333358 edges,     2944 markings/sec,   285 secs
lola:         873002 markings,    4429925 edges,     2970 markings/sec,   290 secs
lola:         888933 markings,    4521380 edges,     3186 markings/sec,   295 secs
lola:         904616 markings,    4611219 edges,     3137 markings/sec,   300 secs
lola:         920089 markings,    4701962 edges,     3095 markings/sec,   305 secs
lola:         935364 markings,    4803639 edges,     3055 markings/sec,   310 secs
lola:         951118 markings,    4892634 edges,     3151 markings/sec,   315 secs
lola:         966641 markings,    4988629 edges,     3105 markings/sec,   320 secs
lola:         981464 markings,    5084484 edges,     2965 markings/sec,   325 secs
lola:         997074 markings,    5176114 edges,     3122 markings/sec,   330 secs
lola:        1013070 markings,    5252963 edges,     3199 markings/sec,   335 secs
lola:        1028748 markings,    5331756 edges,     3136 markings/sec,   340 secs
lola:        1044449 markings,    5415862 edges,     3140 markings/sec,   345 secs
lola:        1060086 markings,    5501525 edges,     3127 markings/sec,   350 secs
lola:        1075804 markings,    5584276 edges,     3144 markings/sec,   355 secs
lola:        1091804 markings,    5663277 edges,     3200 markings/sec,   360 secs
lola:        1107450 markings,    5745196 edges,     3129 markings/sec,   365 secs
lola:        1123305 markings,    5829496 edges,     3171 markings/sec,   370 secs
lola:        1139608 markings,    5912318 edges,     3261 markings/sec,   375 secs
lola:        1155392 markings,    5994070 edges,     3157 markings/sec,   380 secs
lola:        1171367 markings,    6085665 edges,     3195 markings/sec,   385 secs
lola:        1187846 markings,    6172051 edges,     3296 markings/sec,   390 secs
lola:        1203840 markings,    6256125 edges,     3199 markings/sec,   395 secs
lola:        1220273 markings,    6344467 edges,     3287 markings/sec,   400 secs
lola:        1235971 markings,    6433803 edges,     3140 markings/sec,   405 secs
lola:        1252057 markings,    6527027 edges,     3217 markings/sec,   410 secs
lola:        1267801 markings,    6614951 edges,     3149 markings/sec,   415 secs
lola:        1284000 markings,    6707184 edges,     3240 markings/sec,   420 secs
lola:        1299504 markings,    6796614 edges,     3101 markings/sec,   425 secs
lola:        1314761 markings,    6890284 edges,     3051 markings/sec,   430 secs
lola:        1330243 markings,    6990175 edges,     3096 markings/sec,   435 secs
lola:        1345603 markings,    7100151 edges,     3072 markings/sec,   440 secs
lola:        1361308 markings,    7200158 edges,     3141 markings/sec,   445 secs
lola:        1377038 markings,    7301748 edges,     3146 markings/sec,   450 secs
lola:        1393434 markings,    7394402 edges,     3279 markings/sec,   455 secs
lola:        1409522 markings,    7486261 edges,     3218 markings/sec,   460 secs
lola:        1425116 markings,    7588824 edges,     3119 markings/sec,   465 secs
lola:        1440900 markings,    7681873 edges,     3157 markings/sec,   470 secs
lola:        1455774 markings,    7765240 edges,     2975 markings/sec,   475 secs
lola:        1470615 markings,    7862036 edges,     2968 markings/sec,   480 secs
lola:        1486420 markings,    7957936 edges,     3161 markings/sec,   485 secs
lola:        1501450 markings,    8040587 edges,     3006 markings/sec,   490 secs
lola:        1515615 markings,    8111798 edges,     2833 markings/sec,   495 secs
lola:        1530017 markings,    8182097 edges,     2880 markings/sec,   500 secs
lola:        1544277 markings,    8255197 edges,     2852 markings/sec,   505 secs
lola:        1558361 markings,    8329714 edges,     2817 markings/sec,   510 secs
lola:        1571938 markings,    8410888 edges,     2715 markings/sec,   515 secs
lola:        1585487 markings,    8494487 edges,     2710 markings/sec,   520 secs
lola:        1599400 markings,    8565380 edges,     2783 markings/sec,   525 secs
lola:        1613658 markings,    8643741 edges,     2852 markings/sec,   530 secs
lola:        1628354 markings,    8716756 edges,     2939 markings/sec,   535 secs
lola:        1642839 markings,    8792200 edges,     2897 markings/sec,   540 secs
lola:        1657165 markings,    8868787 edges,     2865 markings/sec,   545 secs
lola:        1671416 markings,    8943355 edges,     2850 markings/sec,   550 secs
lola:        1685143 markings,    9017163 edges,     2745 markings/sec,   555 secs
lola:        1698954 markings,    9085300 edges,     2762 markings/sec,   560 secs
lola:        1712858 markings,    9144713 edges,     2781 markings/sec,   565 secs
lola:        1726995 markings,    9203979 edges,     2827 markings/sec,   570 secs
lola:        1741764 markings,    9269064 edges,     2954 markings/sec,   575 secs
lola:        1754428 markings,    9328452 edges,     2533 markings/sec,   580 secs
lola:        1767033 markings,    9391677 edges,     2521 markings/sec,   585 secs
lola:        1781236 markings,    9470166 edges,     2841 markings/sec,   590 secs
lola:        1796009 markings,    9540907 edges,     2955 markings/sec,   595 secs
lola:        1810591 markings,    9610280 edges,     2916 markings/sec,   600 secs
lola:        1825907 markings,    9676462 edges,     3063 markings/sec,   605 secs
lola:        1841114 markings,    9743131 edges,     3041 markings/sec,   610 secs
lola:        1856067 markings,    9814927 edges,     2991 markings/sec,   615 secs
lola:        1871116 markings,    9883153 edges,     3010 markings/sec,   620 secs
lola:        1885807 markings,    9953742 edges,     2938 markings/sec,   625 secs
lola:        1900951 markings,   10017854 edges,     3029 markings/sec,   630 secs
lola:        1915994 markings,   10080600 edges,     3009 markings/sec,   635 secs
lola:        1930439 markings,   10149801 edges,     2889 markings/sec,   640 secs
lola:        1945510 markings,   10214715 edges,     3014 markings/sec,   645 secs
lola:        1959524 markings,   10275895 edges,     2803 markings/sec,   650 secs
lola:        1973712 markings,   10335502 edges,     2838 markings/sec,   655 secs
lola:        1987917 markings,   10397341 edges,     2841 markings/sec,   660 secs
lola:        2001723 markings,   10464056 edges,     2761 markings/sec,   665 secs
lola:        2015134 markings,   10531332 edges,     2682 markings/sec,   670 secs
lola:        2028677 markings,   10593578 edges,     2709 markings/sec,   675 secs
lola:        2042310 markings,   10660031 edges,     2727 markings/sec,   680 secs
lola:        2055721 markings,   10729990 edges,     2682 markings/sec,   685 secs
lola:        2067937 markings,   10807338 edges,     2443 markings/sec,   690 secs
lola:        2080904 markings,   10884526 edges,     2593 markings/sec,   695 secs
lola:        2095027 markings,   10963859 edges,     2825 markings/sec,   700 secs
lola:        2108933 markings,   11028981 edges,     2781 markings/sec,   705 secs
lola:        2123228 markings,   11095699 edges,     2859 markings/sec,   710 secs
lola:        2137229 markings,   11175651 edges,     2800 markings/sec,   715 secs
lola:        2152229 markings,   11246850 edges,     3000 markings/sec,   720 secs
lola:        2166927 markings,   11320187 edges,     2940 markings/sec,   725 secs
lola:        2180711 markings,   11398833 edges,     2757 markings/sec,   730 secs
lola:        2195291 markings,   11469636 edges,     2916 markings/sec,   735 secs
lola:        2211388 markings,   11549812 edges,     3219 markings/sec,   740 secs
lola:        2226861 markings,   11639359 edges,     3095 markings/sec,   745 secs
lola:        2242714 markings,   11723428 edges,     3171 markings/sec,   750 secs
lola:        2258386 markings,   11806591 edges,     3134 markings/sec,   755 secs
lola:        2274334 markings,   11890749 edges,     3190 markings/sec,   760 secs
lola:        2290469 markings,   11975658 edges,     3227 markings/sec,   765 secs
lola:        2306463 markings,   12070523 edges,     3199 markings/sec,   770 secs
lola:        2322489 markings,   12163678 edges,     3205 markings/sec,   775 secs
lola:        2338646 markings,   12257160 edges,     3231 markings/sec,   780 secs
lola:        2353941 markings,   12352413 edges,     3059 markings/sec,   785 secs
lola:        2368782 markings,   12459710 edges,     2968 markings/sec,   790 secs
lola:        2383009 markings,   12557546 edges,     2845 markings/sec,   795 secs
lola:        2397344 markings,   12651421 edges,     2867 markings/sec,   800 secs
lola:        2412956 markings,   12737662 edges,     3122 markings/sec,   805 secs
lola:        2427600 markings,   12823918 edges,     2929 markings/sec,   810 secs
lola:        2442078 markings,   12920356 edges,     2896 markings/sec,   815 secs
lola:        2456881 markings,   13004359 edges,     2961 markings/sec,   820 secs
lola:        2471400 markings,   13095240 edges,     2904 markings/sec,   825 secs
lola:        2485781 markings,   13184144 edges,     2876 markings/sec,   830 secs
lola:        2499580 markings,   13262427 edges,     2760 markings/sec,   835 secs
lola:        2514455 markings,   13338867 edges,     2975 markings/sec,   840 secs
lola:        2529918 markings,   13428409 edges,     3093 markings/sec,   845 secs
lola:        2545609 markings,   13510776 edges,     3138 markings/sec,   850 secs
lola:        2561127 markings,   13593876 edges,     3104 markings/sec,   855 secs
lola:        2576910 markings,   13677982 edges,     3157 markings/sec,   860 secs
lola:        2592669 markings,   13763654 edges,     3152 markings/sec,   865 secs
lola:        2608066 markings,   13851622 edges,     3079 markings/sec,   870 secs
lola:        2623331 markings,   13941584 edges,     3053 markings/sec,   875 secs
lola:        2638546 markings,   14030380 edges,     3043 markings/sec,   880 secs
lola:        2653747 markings,   14125040 edges,     3040 markings/sec,   885 secs
lola:        2668463 markings,   14231928 edges,     2943 markings/sec,   890 secs
lola:        2683486 markings,   14333744 edges,     3005 markings/sec,   895 secs
lola:        2698807 markings,   14433297 edges,     3064 markings/sec,   900 secs
lola:        2713607 markings,   14516371 edges,     2960 markings/sec,   905 secs
lola:        2728916 markings,   14605032 edges,     3062 markings/sec,   910 secs
lola:        2743628 markings,   14701588 edges,     2942 markings/sec,   915 secs
lola:        2759055 markings,   14788726 edges,     3085 markings/sec,   920 secs
lola:        2774177 markings,   14887618 edges,     3024 markings/sec,   925 secs
lola:        2789954 markings,   14982097 edges,     3155 markings/sec,   930 secs
lola:        2804133 markings,   15058362 edges,     2836 markings/sec,   935 secs
lola:        2817780 markings,   15128085 edges,     2729 markings/sec,   940 secs
lola:        2831251 markings,   15200709 edges,     2694 markings/sec,   945 secs
lola:        2844679 markings,   15285003 edges,     2686 markings/sec,   950 secs
lola:        2858829 markings,   15364274 edges,     2830 markings/sec,   955 secs
lola:        2872900 markings,   15441682 edges,     2814 markings/sec,   960 secs
lola:        2887249 markings,   15514092 edges,     2870 markings/sec,   965 secs
lola:        2901291 markings,   15592090 edges,     2808 markings/sec,   970 secs
lola:        2915640 markings,   15668803 edges,     2870 markings/sec,   975 secs
lola:        2929622 markings,   15743964 edges,     2796 markings/sec,   980 secs
lola:        2943807 markings,   15807318 edges,     2837 markings/sec,   985 secs
lola:        2957244 markings,   15867827 edges,     2687 markings/sec,   990 secs
lola:        2971006 markings,   15934553 edges,     2752 markings/sec,   995 secs
lola:        2985184 markings,   16013995 edges,     2836 markings/sec,  1000 secs
lola:        2999305 markings,   16081831 edges,     2824 markings/sec,  1005 secs
lola:        3013423 markings,   16147851 edges,     2824 markings/sec,  1010 secs
lola:        3027088 markings,   16209165 edges,     2733 markings/sec,  1015 secs
lola:        3041014 markings,   16274911 edges,     2785 markings/sec,  1020 secs
lola:        3054622 markings,   16340376 edges,     2722 markings/sec,  1025 secs
lola:        3068825 markings,   16407319 edges,     2841 markings/sec,  1030 secs
lola:        3083102 markings,   16476152 edges,     2855 markings/sec,  1035 secs
lola:        3097655 markings,   16545165 edges,     2911 markings/sec,  1040 secs
lola:        3111703 markings,   16615350 edges,     2810 markings/sec,  1045 secs
lola:        3125292 markings,   16689999 edges,     2718 markings/sec,  1050 secs
lola:        3138360 markings,   16776390 edges,     2614 markings/sec,  1055 secs
lola:        3150621 markings,   16847303 edges,     2452 markings/sec,  1060 secs
lola:        3163453 markings,   16905388 edges,     2566 markings/sec,  1065 secs
lola:        3176476 markings,   16968846 edges,     2605 markings/sec,  1070 secs
lola:        3189371 markings,   17040350 edges,     2579 markings/sec,  1075 secs
lola:        3202060 markings,   17100894 edges,     2538 markings/sec,  1080 secs
lola:        3214170 markings,   17168398 edges,     2422 markings/sec,  1085 secs
lola:        3227756 markings,   17235735 edges,     2717 markings/sec,  1090 secs
lola:        3242105 markings,   17316971 edges,     2870 markings/sec,  1095 secs
lola:        3257424 markings,   17403107 edges,     3064 markings/sec,  1100 secs
lola:        3271771 markings,   17491811 edges,     2869 markings/sec,  1105 secs
lola:        3285279 markings,   17577161 edges,     2702 markings/sec,  1110 secs
lola:        3298978 markings,   17682058 edges,     2740 markings/sec,  1115 secs
lola:        3312702 markings,   17775419 edges,     2745 markings/sec,  1120 secs
lola:        3327233 markings,   17854377 edges,     2906 markings/sec,  1125 secs
lola:        3342164 markings,   17949366 edges,     2986 markings/sec,  1130 secs
lola:        3357445 markings,   18042014 edges,     3056 markings/sec,  1135 secs
lola:        3372703 markings,   18135774 edges,     3052 markings/sec,  1140 secs
lola:        3387963 markings,   18229000 edges,     3052 markings/sec,  1145 secs
lola:        3402977 markings,   18317816 edges,     3003 markings/sec,  1150 secs
lola:        3417949 markings,   18403316 edges,     2994 markings/sec,  1155 secs
lola:        3432364 markings,   18490978 edges,     2883 markings/sec,  1160 secs
lola:        3446764 markings,   18581589 edges,     2880 markings/sec,  1165 secs
lola:        3460582 markings,   18687986 edges,     2764 markings/sec,  1170 secs
lola:        3474934 markings,   18785081 edges,     2870 markings/sec,  1175 secs
lola:        3490335 markings,   18870261 edges,     3080 markings/sec,  1180 secs
lola:        3505219 markings,   18966434 edges,     2977 markings/sec,  1185 secs
lola:        3519999 markings,   19053127 edges,     2956 markings/sec,  1190 secs
lola:        3534676 markings,   19143780 edges,     2935 markings/sec,  1195 secs
lola:        3548947 markings,   19231992 edges,     2854 markings/sec,  1200 secs
lola:        3562535 markings,   19309153 edges,     2718 markings/sec,  1205 secs
lola:        3575818 markings,   19384231 edges,     2657 markings/sec,  1210 secs
lola:        3588716 markings,   19465618 edges,     2580 markings/sec,  1215 secs
lola:        3602175 markings,   19540163 edges,     2692 markings/sec,  1220 secs
lola:        3615117 markings,   19611524 edges,     2588 markings/sec,  1225 secs
lola:        3628653 markings,   19684182 edges,     2707 markings/sec,  1230 secs
lola:        3641955 markings,   19757881 edges,     2660 markings/sec,  1235 secs
lola:        3655818 markings,   19822972 edges,     2773 markings/sec,  1240 secs
lola:        3669447 markings,   19897051 edges,     2726 markings/sec,  1245 secs
lola:        3683017 markings,   19968335 edges,     2714 markings/sec,  1250 secs
lola:        3696584 markings,   20030168 edges,     2713 markings/sec,  1255 secs
lola:        3709795 markings,   20095616 edges,     2642 markings/sec,  1260 secs
lola:        3722227 markings,   20157073 edges,     2486 markings/sec,  1265 secs
lola:        3734927 markings,   20212866 edges,     2540 markings/sec,  1270 secs
lola:        3747422 markings,   20271574 edges,     2499 markings/sec,  1275 secs
lola:        3760186 markings,   20328982 edges,     2553 markings/sec,  1280 secs
lola:        3772874 markings,   20390713 edges,     2538 markings/sec,  1285 secs
lola:        3785208 markings,   20454599 edges,     2467 markings/sec,  1290 secs
lola:        3797246 markings,   20518300 edges,     2408 markings/sec,  1295 secs
lola:        3809412 markings,   20594505 edges,     2433 markings/sec,  1300 secs
lola:        3821671 markings,   20668132 edges,     2452 markings/sec,  1305 secs
lola:        3834060 markings,   20731003 edges,     2478 markings/sec,  1310 secs
lola:        3846148 markings,   20799185 edges,     2418 markings/sec,  1315 secs
lola:        3859182 markings,   20860610 edges,     2607 markings/sec,  1320 secs
lola:        3872379 markings,   20924691 edges,     2639 markings/sec,  1325 secs
lola:        3885219 markings,   21000018 edges,     2568 markings/sec,  1330 secs
lola:        3897819 markings,   21059814 edges,     2520 markings/sec,  1335 secs
lola:        3910615 markings,   21131016 edges,     2559 markings/sec,  1340 secs
lola:        3923402 markings,   21198055 edges,     2557 markings/sec,  1345 secs
lola:        3935722 markings,   21259306 edges,     2464 markings/sec,  1350 secs
lola:        3948395 markings,   21319981 edges,     2535 markings/sec,  1355 secs
lola:        3960697 markings,   21385289 edges,     2460 markings/sec,  1360 secs
lola:        3972870 markings,   21453914 edges,     2435 markings/sec,  1365 secs
lola:        3984789 markings,   21529973 edges,     2384 markings/sec,  1370 secs
lola:        3997295 markings,   21599218 edges,     2501 markings/sec,  1375 secs
lola:        4009545 markings,   21667597 edges,     2450 markings/sec,  1380 secs
lola:        4022290 markings,   21726949 edges,     2549 markings/sec,  1385 secs
lola:        4034288 markings,   21798531 edges,     2400 markings/sec,  1390 secs
lola:        4046942 markings,   21862098 edges,     2531 markings/sec,  1395 secs
lola:        4059390 markings,   21933438 edges,     2490 markings/sec,  1400 secs
lola:        4071888 markings,   21996607 edges,     2500 markings/sec,  1405 secs
lola:        4084435 markings,   22062885 edges,     2509 markings/sec,  1410 secs
lola:        4096287 markings,   22141162 edges,     2370 markings/sec,  1415 secs
lola:        4108296 markings,   22213053 edges,     2402 markings/sec,  1420 secs
lola:        4120899 markings,   22277969 edges,     2521 markings/sec,  1425 secs
lola:        4133039 markings,   22349626 edges,     2428 markings/sec,  1430 secs
lola:        4145382 markings,   22416740 edges,     2469 markings/sec,  1435 secs
lola:        4157819 markings,   22485520 edges,     2487 markings/sec,  1440 secs
lola:        4170168 markings,   22553248 edges,     2470 markings/sec,  1445 secs
lola:        4182019 markings,   22632289 edges,     2370 markings/sec,  1450 secs
lola:        4194391 markings,   22702265 edges,     2474 markings/sec,  1455 secs
lola:        4206222 markings,   22781292 edges,     2366 markings/sec,  1460 secs
lola:        4218607 markings,   22852311 edges,     2477 markings/sec,  1465 secs
lola:        4230292 markings,   22936596 edges,     2337 markings/sec,  1470 secs
lola:        4242343 markings,   23012640 edges,     2410 markings/sec,  1475 secs
lola:        4254496 markings,   23086010 edges,     2431 markings/sec,  1480 secs
lola:        4266366 markings,   23159093 edges,     2374 markings/sec,  1485 secs
lola:        4278777 markings,   23227924 edges,     2482 markings/sec,  1490 secs
lola:        4290735 markings,   23304254 edges,     2392 markings/sec,  1495 secs
lola:        4303270 markings,   23380565 edges,     2507 markings/sec,  1500 secs
lola:        4316121 markings,   23462493 edges,     2570 markings/sec,  1505 secs
lola:        4329058 markings,   23558016 edges,     2587 markings/sec,  1510 secs
lola:        4341423 markings,   23643110 edges,     2473 markings/sec,  1515 secs
lola:        4353689 markings,   23744010 edges,     2453 markings/sec,  1520 secs
lola:        4365606 markings,   23842721 edges,     2383 markings/sec,  1525 secs
lola:        4377956 markings,   23934844 edges,     2470 markings/sec,  1530 secs
lola:        4390815 markings,   24020982 edges,     2572 markings/sec,  1535 secs
lola:        4403289 markings,   24113343 edges,     2495 markings/sec,  1540 secs
lola:        4416481 markings,   24200874 edges,     2638 markings/sec,  1545 secs
lola:        4429609 markings,   24272486 edges,     2626 markings/sec,  1550 secs
lola:        4442533 markings,   24349683 edges,     2585 markings/sec,  1555 secs
lola:        4455234 markings,   24427650 edges,     2540 markings/sec,  1560 secs
lola:        4467706 markings,   24506169 edges,     2494 markings/sec,  1565 secs
lola:        4480593 markings,   24589122 edges,     2577 markings/sec,  1570 secs
lola:        4492332 markings,   24684807 edges,     2348 markings/sec,  1575 secs
lola:        4504770 markings,   24757120 edges,     2488 markings/sec,  1580 secs
lola:        4517559 markings,   24833429 edges,     2558 markings/sec,  1585 secs
lola:        4530340 markings,   24912964 edges,     2556 markings/sec,  1590 secs
lola:        4543337 markings,   24994928 edges,     2599 markings/sec,  1595 secs
lola:        4555994 markings,   25086185 edges,     2531 markings/sec,  1600 secs
lola:        4568311 markings,   25172579 edges,     2463 markings/sec,  1605 secs
lola:        4581918 markings,   25258638 edges,     2721 markings/sec,  1610 secs
lola:        4595551 markings,   25338655 edges,     2727 markings/sec,  1615 secs
lola:        4609252 markings,   25424610 edges,     2740 markings/sec,  1620 secs
lola:        4623996 markings,   25509522 edges,     2949 markings/sec,  1625 secs
lola:        4639135 markings,   25595128 edges,     3028 markings/sec,  1630 secs
lola:        4653869 markings,   25683901 edges,     2947 markings/sec,  1635 secs
lola:        4667599 markings,   25768588 edges,     2746 markings/sec,  1640 secs
lola:        4680894 markings,   25864108 edges,     2659 markings/sec,  1645 secs
lola:        4694718 markings,   25960256 edges,     2765 markings/sec,  1650 secs
lola:        4709084 markings,   26049287 edges,     2873 markings/sec,  1655 secs
lola:        4722274 markings,   26134029 edges,     2638 markings/sec,  1660 secs
lola:        4736100 markings,   26212229 edges,     2765 markings/sec,  1665 secs
lola:        4749546 markings,   26295824 edges,     2689 markings/sec,  1670 secs
lola:        4764200 markings,   26388722 edges,     2931 markings/sec,  1675 secs
lola:        4778752 markings,   26480550 edges,     2910 markings/sec,  1680 secs
lola:        4793207 markings,   26574277 edges,     2891 markings/sec,  1685 secs
lola:        4807882 markings,   26660476 edges,     2935 markings/sec,  1690 secs
lola:        4822432 markings,   26744974 edges,     2910 markings/sec,  1695 secs
lola:        4836878 markings,   26834879 edges,     2889 markings/sec,  1700 secs
lola:        4850652 markings,   26934779 edges,     2755 markings/sec,  1705 secs
lola:        4865068 markings,   27034028 edges,     2883 markings/sec,  1710 secs
lola:        4879172 markings,   27126188 edges,     2821 markings/sec,  1715 secs
lola:        4894342 markings,   27213804 edges,     3034 markings/sec,  1720 secs
lola:        4908778 markings,   27312086 edges,     2887 markings/sec,  1725 secs
lola:        4922984 markings,   27400280 edges,     2841 markings/sec,  1730 secs
lola:        4937768 markings,   27495962 edges,     2957 markings/sec,  1735 secs
lola:        4952422 markings,   27586327 edges,     2931 markings/sec,  1740 secs
lola:        4966524 markings,   27687852 edges,     2820 markings/sec,  1745 secs
lola:        4980878 markings,   27790224 edges,     2871 markings/sec,  1750 secs
lola:        4995955 markings,   27882052 edges,     3015 markings/sec,  1755 secs
lola:        5010311 markings,   27977278 edges,     2871 markings/sec,  1760 secs
lola:        5024894 markings,   28074728 edges,     2917 markings/sec,  1765 secs
lola:        5039363 markings,   28166521 edges,     2894 markings/sec,  1770 secs
lola:        5053266 markings,   28273113 edges,     2781 markings/sec,  1775 secs
lola:        5067670 markings,   28370549 edges,     2881 markings/sec,  1780 secs
lola:        5080822 markings,   28470621 edges,     2630 markings/sec,  1785 secs
lola:        5094627 markings,   28575078 edges,     2761 markings/sec,  1790 secs
lola:        5108645 markings,   28689588 edges,     2804 markings/sec,  1795 secs
lola:        5123350 markings,   28782065 edges,     2941 markings/sec,  1800 secs
lola:        5137564 markings,   28883822 edges,     2843 markings/sec,  1805 secs
lola:        5151869 markings,   28979479 edges,     2861 markings/sec,  1810 secs
lola:        5166019 markings,   29083617 edges,     2830 markings/sec,  1815 secs
lola:        5179833 markings,   29183579 edges,     2763 markings/sec,  1820 secs
lola:        5194042 markings,   29292813 edges,     2842 markings/sec,  1825 secs
lola:        5207568 markings,   29397911 edges,     2705 markings/sec,  1830 secs
lola:        5220863 markings,   29516318 edges,     2659 markings/sec,  1835 secs
lola:        5233907 markings,   29635591 edges,     2609 markings/sec,  1840 secs
lola:        5247327 markings,   29755526 edges,     2684 markings/sec,  1845 secs
lola:        5260716 markings,   29860608 edges,     2678 markings/sec,  1850 secs
lola:        5274354 markings,   29974421 edges,     2728 markings/sec,  1855 secs
lola:        5288805 markings,   30083686 edges,     2890 markings/sec,  1860 secs
lola:        5303416 markings,   30179533 edges,     2922 markings/sec,  1865 secs
lola:        5317848 markings,   30279652 edges,     2886 markings/sec,  1870 secs
lola:        5331559 markings,   30379426 edges,     2742 markings/sec,  1875 secs
lola:        5345506 markings,   30481229 edges,     2789 markings/sec,  1880 secs
lola:        5358633 markings,   30590851 edges,     2625 markings/sec,  1885 secs
lola:        5372002 markings,   30697988 edges,     2674 markings/sec,  1890 secs
lola:        5386543 markings,   30794233 edges,     2908 markings/sec,  1895 secs
lola:        5399830 markings,   30892043 edges,     2657 markings/sec,  1900 secs
lola:        5413054 markings,   30985317 edges,     2645 markings/sec,  1905 secs
lola:        5426414 markings,   31091756 edges,     2672 markings/sec,  1910 secs
lola:        5440022 markings,   31201672 edges,     2722 markings/sec,  1915 secs
lola:        5454761 markings,   31310841 edges,     2948 markings/sec,  1920 secs
lola:        5469355 markings,   31413063 edges,     2919 markings/sec,  1925 secs
lola:        5483983 markings,   31509119 edges,     2926 markings/sec,  1930 secs
lola:        5498704 markings,   31594039 edges,     2944 markings/sec,  1935 secs
lola:        5513655 markings,   31678602 edges,     2990 markings/sec,  1940 secs
lola:        5528347 markings,   31765367 edges,     2938 markings/sec,  1945 secs
lola:        5542375 markings,   31856939 edges,     2806 markings/sec,  1950 secs
lola:        5556035 markings,   31953895 edges,     2732 markings/sec,  1955 secs
lola:        5570396 markings,   32051923 edges,     2872 markings/sec,  1960 secs
lola:        5585131 markings,   32146255 edges,     2947 markings/sec,  1965 secs
lola:        5600084 markings,   32235472 edges,     2991 markings/sec,  1970 secs
lola:        5615083 markings,   32322407 edges,     3000 markings/sec,  1975 secs
lola:        5629598 markings,   32420195 edges,     2903 markings/sec,  1980 secs
lola:        5644241 markings,   32506956 edges,     2929 markings/sec,  1985 secs
lola:        5658978 markings,   32601445 edges,     2947 markings/sec,  1990 secs
lola:        5674263 markings,   32698241 edges,     3057 markings/sec,  1995 secs
lola:        5689230 markings,   32784125 edges,     2993 markings/sec,  2000 secs
lola:        5704194 markings,   32874333 edges,     2993 markings/sec,  2005 secs
lola:        5718510 markings,   32971984 edges,     2863 markings/sec,  2010 secs
lola:        5732685 markings,   33074118 edges,     2835 markings/sec,  2015 secs
lola:        5747239 markings,   33169760 edges,     2911 markings/sec,  2020 secs
lola:        5762496 markings,   33259082 edges,     3051 markings/sec,  2025 secs
lola:        5776823 markings,   33355009 edges,     2865 markings/sec,  2030 secs
lola:        5791033 markings,   33442116 edges,     2842 markings/sec,  2035 secs
lola:        5804962 markings,   33535298 edges,     2786 markings/sec,  2040 secs
lola:        5819332 markings,   33623203 edges,     2874 markings/sec,  2045 secs
lola:        5833434 markings,   33716302 edges,     2820 markings/sec,  2050 secs
lola:        5846901 markings,   33816547 edges,     2693 markings/sec,  2055 secs
lola:        5861003 markings,   33908642 edges,     2820 markings/sec,  2060 secs
lola:        5875239 markings,   34002925 edges,     2847 markings/sec,  2065 secs
lola:        5889081 markings,   34092960 edges,     2768 markings/sec,  2070 secs
lola:        5903859 markings,   34191021 edges,     2956 markings/sec,  2075 secs
lola:        5918626 markings,   34284340 edges,     2953 markings/sec,  2080 secs
lola:        5932638 markings,   34394924 edges,     2802 markings/sec,  2085 secs
lola:        5947145 markings,   34493021 edges,     2901 markings/sec,  2090 secs
lola:        5961155 markings,   34596727 edges,     2802 markings/sec,  2095 secs
lola:        5975245 markings,   34707818 edges,     2818 markings/sec,  2100 secs
lola:        5989289 markings,   34807401 edges,     2809 markings/sec,  2105 secs
lola:        6003845 markings,   34910477 edges,     2911 markings/sec,  2110 secs
lola:        6018643 markings,   35011472 edges,     2960 markings/sec,  2115 secs
lola:        6032794 markings,   35114090 edges,     2830 markings/sec,  2120 secs
lola:        6047231 markings,   35215777 edges,     2887 markings/sec,  2125 secs
lola:        6061393 markings,   35320834 edges,     2832 markings/sec,  2130 secs
lola:        6075269 markings,   35432338 edges,     2775 markings/sec,  2135 secs
lola:        6088467 markings,   35546647 edges,     2640 markings/sec,  2140 secs
lola:        6101241 markings,   35661829 edges,     2555 markings/sec,  2145 secs
lola:        6114342 markings,   35779692 edges,     2620 markings/sec,  2150 secs
lola:        6127936 markings,   35890069 edges,     2719 markings/sec,  2155 secs
lola:        6141801 markings,   36001943 edges,     2773 markings/sec,  2160 secs
lola:        6155341 markings,   36111344 edges,     2708 markings/sec,  2165 secs
lola:        6169448 markings,   36202975 edges,     2821 markings/sec,  2170 secs
lola:        6183074 markings,   36298266 edges,     2725 markings/sec,  2175 secs
lola:        6196712 markings,   36401206 edges,     2728 markings/sec,  2180 secs
lola:        6210406 markings,   36495765 edges,     2739 markings/sec,  2185 secs
lola:        6224127 markings,   36600574 edges,     2744 markings/sec,  2190 secs
lola:        6236573 markings,   36711118 edges,     2489 markings/sec,  2195 secs
lola:        6249702 markings,   36800586 edges,     2626 markings/sec,  2200 secs
lola:        6263257 markings,   36896002 edges,     2711 markings/sec,  2205 secs
lola:        6276293 markings,   36992549 edges,     2607 markings/sec,  2210 secs
lola:        6288888 markings,   37081702 edges,     2519 markings/sec,  2215 secs
lola:        6301731 markings,   37187536 edges,     2569 markings/sec,  2220 secs
lola:        6314107 markings,   37288768 edges,     2475 markings/sec,  2225 secs
lola:        6327389 markings,   37383288 edges,     2656 markings/sec,  2230 secs
lola:        6340476 markings,   37474030 edges,     2617 markings/sec,  2235 secs
lola:        6353062 markings,   37564105 edges,     2517 markings/sec,  2240 secs
lola:        6365944 markings,   37648070 edges,     2576 markings/sec,  2245 secs
lola:        6379218 markings,   37733802 edges,     2655 markings/sec,  2250 secs
lola:        6392945 markings,   37808579 edges,     2745 markings/sec,  2255 secs
lola:        6405422 markings,   37886289 edges,     2495 markings/sec,  2260 secs
lola:        6418166 markings,   37962011 edges,     2549 markings/sec,  2265 secs
lola:        6430617 markings,   38035851 edges,     2490 markings/sec,  2270 secs
lola:        6443945 markings,   38116400 edges,     2666 markings/sec,  2275 secs
lola:        6457419 markings,   38204401 edges,     2695 markings/sec,  2280 secs
lola:        6470733 markings,   38290101 edges,     2663 markings/sec,  2285 secs
lola:        6483589 markings,   38379138 edges,     2571 markings/sec,  2290 secs
lola:        6496520 markings,   38480974 edges,     2586 markings/sec,  2295 secs
lola:        6509306 markings,   38580495 edges,     2557 markings/sec,  2300 secs
lola:        6522051 markings,   38672422 edges,     2549 markings/sec,  2305 secs
lola:        6535053 markings,   38756585 edges,     2600 markings/sec,  2310 secs
lola:        6547918 markings,   38847585 edges,     2573 markings/sec,  2315 secs
lola:        6561206 markings,   38932847 edges,     2658 markings/sec,  2320 secs
lola:        6574660 markings,   39010701 edges,     2691 markings/sec,  2325 secs
lola:        6587963 markings,   39089301 edges,     2661 markings/sec,  2330 secs
lola:        6600122 markings,   39165262 edges,     2432 markings/sec,  2335 secs
lola:        6611729 markings,   39251091 edges,     2321 markings/sec,  2340 secs
lola:        6623649 markings,   39329157 edges,     2384 markings/sec,  2345 secs
lola:        6635789 markings,   39402531 edges,     2428 markings/sec,  2350 secs
lola:        6647674 markings,   39471996 edges,     2377 markings/sec,  2355 secs
lola:        6659819 markings,   39555870 edges,     2429 markings/sec,  2360 secs
lola:   time limit reached - aborting
lola:   
preliminary result: 6 0 0 30 6 6 36 unknown 0 0 0 0 0 0 0 0 
lola:   
preliminary result: 6 0 0 30 6 6 36 unknown 0 0 0 0 0 0 0 0 lola: 
caught signal User defined signal 1 - aborting LoLA
lola:     
preliminary result: 6 0 0 30 6 6 36 unknown 0 0 0 0 0 0 0 0 
lola: memory consumption: 695276 KB
lola: time consumption: 3570 seconds
lola: memory consumption: 695276 KB
lola: time consumption: 3570 seconds
BK_STOP 1527032041662
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-6"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
	rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-6.tgz
mv NeoElection-PT-6 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo "    Executing tool lola"
echo "    Input is NeoElection-PT-6, examination is UpperBounds"
echo "    Time confinement is $BK_TIME_CONFINEMENT seconds"
echo "    Memory confinement is 16384 MBytes"
echo "    Number of cores is 4"
echo "    Run identifier is r112-csrt-152666469300317"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
	echo "The expected result is a vector of positive values"
	echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ]  ; then 
	echo "The expected result is a vector of booleans"
	echo BOOL_VECTOR
else
	echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
	echo "here is the order used to build the result vector(from text file)"
	for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
		echo "FORMULA_NAME $x"
	done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
	echo echo "here is the order used to build the result vector(from xml file)"
	for x in $(grep '
		echo "FORMULA_NAME $x"
	done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT  bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
	echo
	echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;
