fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r112-csrt-152666469300306
Last Updated
June 26, 2018

About the Execution of LoLA for NeoElection-PT-4

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
174.870 3511.00 3850.00 9.90 FTFTTTTFFTFFTTFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.................
/home/mcc/execution
total 3.8M
-rw-r--r-- 1 mcc users 65K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 162K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 73K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 213K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 50K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 108K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 58K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 164K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 88K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 215K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 114K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 319K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 36K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 74K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 2.1M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-PT-4, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r112-csrt-152666469300306
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-00
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-01
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-02
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-03
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-04
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-05
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-06
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-07
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-08
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-09
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-10
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-11
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-12
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-13
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-14
FORMULA_NAME NeoElection-PT-4-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1527027304799

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-PT-4 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-PT-4 formula ReachabilityCardinality into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking ReachabilityCardinality @ NeoElection-PT-4 @ 3569 seconds
lola: LoLA will run for 3569 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 4170/65536 symbol table entries, 89 collisions
lola: preprocessing...
lola: Size of bit vector: 1830
lola: finding significant places
lola: 1830 places, 2340 transitions, 515 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 895 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-PT-4-ReachabilityCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_1 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_4_0_AskP_0 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_4 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_3_3_RI_2 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_3 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_0_0_AskP_2 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_0 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_0 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_1_AI_4 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_3_1_RI_4 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_3_1_AskP_0 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_4_1_RI_4 + P-poll__networl_4_1_RI_3 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_2_2_RI_2 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_2_2_AskP_4 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_RI_4 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_4_0_RI_3 + P-poll__networl_4_0_RI_4 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_1_3_AskP_0 + P-poll__networl_4_3_AI_4 + P-poll__networl_4_3_AI_3 + P-poll__networl_4_3_AI_2 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_4_4_AskP_2 + P-poll__networl_4_4_AskP_1 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_4_4_AskP_0 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_2_1_AI_0 + P-poll__networl_3_4_RP_4 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_3_4_RP_3 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_3_4_RP_0 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_0_0_RI_4 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_4_AskP_0 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4)
lola: after: (3 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1)
lola: LP says that atomic proposition is always false: (3 <= P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1)
lola: place invariant simplifies atomic proposition
lola: before: (P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 <= P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_3_2_4 + P-masterList_3_2_3 + P-masterList_3_2_2 + P-masterList_3_2_1 + P-masterList_3_2_0 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4)
lola: after: (0 <= 12)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_1_3_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_2_1_NONE + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_3_4_DONE + P-negotiation_0_2_CO + P-negotiation_1_2_CO + P-negotiation_2_4_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_3_NONE + P-negotiation_3_1_DONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_3_2_NONE + P-negotiation_4_0_CO + P-negotiation_0_0_DONE + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_1_4_NONE + P-negotiation_3_4_CO + P-negotiation_1_0_CO + P-negotiation_2_2_NONE + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_4_1_CO + P-negotiation_3_3_DONE + P-negotiation_3_0_CO + P-negotiation_1_4_DONE + P-negotiation_0_4_CO + P-negotiation_1_1_DONE + P-negotiation_4_2_CO + P-negotiation_3_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_1_1_CO + P-negotiation_0_0_NONE + P-negotiation_4_3_NONE + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_2_4_NONE + P-negotiation_4_1_NONE + P-negotiation_2_2_CO + P-negotiation_0_3_CO + P-negotiation_3_3_CO + P-negotiation_1_4_CO + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_0_4_NONE + P-negotiation_2_3_NONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_3_DONE <= P-electionInit_1 + P-electionInit_0 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4)
lola: after: (16 <= P-electionInit_1 + P-electionInit_0 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4)
lola: LP says that atomic proposition is always false: (16 <= P-electionInit_1 + P-electionInit_0 + P-electionInit_2 + P-electionInit_3 + P-electionInit_4)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_3_2_4 + P-masterList_3_2_3 + P-masterList_3_2_2 + P-masterList_3_2_1 + P-masterList_3_2_0 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4)
lola: after: (0 <= 11)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_2 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_3_3_AI_1 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_1_4_AI_4 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_1_4_AI_1 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_1_0_AskP_4 + P-network_1_0_AskP_3 + P-network_1_0_AskP_2 + P-network_1_0_AskP_1 + P-network_4_3_RP_4 + P-network_4_3_RP_3 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_3_RP_2 + P-network_4_3_RP_1 + P-network_2_4_RP_4 + P-network_2_4_RP_3 + P-network_2_4_RP_2 + P-network_2_4_RP_1 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_1 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_4_1_AskP_1 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_4_1_AI_4 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_1_AI_1 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_4 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_2_2_AI_1 + P-network_0_3_AI_4 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_0_4_AI_1 + P-network_3_2_RP_4 + P-network_0_4_AI_2 + P-network_3_2_RP_3 + P-network_0_4_AI_3 + P-network_3_2_RP_2 + P-network_0_4_AI_4 + P-network_3_2_RP_1 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_1_3_RP_4 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_3_4_AnnP_2 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AnnP_1 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_3_3_RI_4 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_3_0_AI_4 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_3_0_AI_1 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_1_4_RI_4 + P-network_1_4_RI_3 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_1_4_RI_2 + P-network_1_4_RI_1 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_4_0_RP_1 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_4 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_2_1_RP_3 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_0_2_RP_4 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_0_2_RP_3 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_0_2_RP_2 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_RP_1 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_4_1_RI_4 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_4_1_RI_1 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_2_2_RI_4 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_2_2_RI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_4_AskP_1 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4)
lola: after: (1 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0)
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_3)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedPrimary_0 + P-electedPrimary_1 + P-electedPrimary_2 + P-electedPrimary_3 + P-electedPrimary_4 <= P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_3_2_4 + P-masterList_3_2_3 + P-masterList_3_2_2 + P-masterList_3_2_1 + P-masterList_3_2_0 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_3_1_2 + P-masterList_3_1_1 + P-masterList_3_1_0 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4)
lola: after: (P-electedPrimary_0 + P-electedPrimary_1 + P-electedPrimary_2 + P-electedPrimary_3 + P-electedPrimary_4 <= 12)
lola: LP says that atomic proposition is always true: (P-electedPrimary_0 + P-electedPrimary_1 + P-electedPrimary_2 + P-electedPrimary_3 + P-electedPrimary_4 <= 12)
lola: place invariant simplifies atomic proposition
lola: before: (P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_4 + P-masterState_2_F_4 + P-masterState_0_F_4 + P-masterState_3_F_4 + P-masterState_1_T_4)
lola: after: (P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= 4)
lola: LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_2 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_3_3_AI_1 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_1_4_AI_4 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_1_4_AI_1 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_1_0_AskP_4 + P-network_1_0_AskP_3 + P-network_1_0_AskP_2 + P-network_1_0_AskP_1 + P-network_4_3_RP_4 + P-network_4_3_RP_3 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_3_RP_2 + P-network_4_3_RP_1 + P-network_2_4_RP_4 + P-network_2_4_RP_3 + P-network_2_4_RP_2 + P-network_2_4_RP_1 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_1 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_4_1_AskP_1 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_4_1_AI_4 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_1_AI_1 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_4 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_2_2_AI_1 + P-network_0_3_AI_4 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_0_4_AI_1 + P-network_3_2_RP_4 + P-network_0_4_AI_2 + P-network_3_2_RP_3 + P-network_0_4_AI_3 + P-network_3_2_RP_2 + P-network_0_4_AI_4 + P-network_3_2_RP_1 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_1_3_RP_4 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_3_4_AnnP_2 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AnnP_1 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_3_3_RI_4 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_3_0_AI_4 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_3_0_AI_1 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_1_4_RI_4 + P-network_1_4_RI_3 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_1_4_RI_2 + P-network_1_4_RI_1 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_4_0_RP_1 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_4 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_2_1_RP_3 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_0_2_RP_4 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_0_2_RP_3 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_0_2_RP_2 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_RP_1 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_4_1_RI_4 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_4_1_RI_1 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_2_2_RI_4 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_2_2_RI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_4_AskP_1 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4)
lola: after: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_2 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_3_3_AI_1 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_1_4_AI_4 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_1_4_AI_3 + P-network_1_4_AI_2 + P-network_1_4_AI_1 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_1_0_AskP_4 + P-network_1_0_AskP_3 + P-network_1_0_AskP_2 + P-network_1_0_AskP_1 + P-network_4_3_RP_4 + P-network_4_3_RP_3 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_3_RP_2 + P-network_4_3_RP_1 + P-network_2_4_RP_4 + P-network_2_4_RP_3 + P-network_2_4_RP_2 + P-network_2_4_RP_1 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_1 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_4_4_AI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_3_1_RI_4 + P-network_4_1_AskP_4 + P-network_4_1_AskP_3 + P-network_4_1_AskP_2 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_4_1_AskP_1 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_4_4_RI_1 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_4_1_AI_4 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_1_AI_1 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_4 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_2_2_AI_1 + P-network_0_3_AI_4 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_0_4_AI_1 + P-network_3_2_RP_4 + P-network_0_4_AI_2 + P-network_3_2_RP_3 + P-network_0_4_AI_3 + P-network_3_2_RP_2 + P-network_0_4_AI_4 + P-network_3_2_RP_1 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_1_3_RP_4 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_3_4_AnnP_2 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AnnP_1 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_3_3_RI_4 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_3_0_AI_4 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_4_0_RI_4 + P-network_3_0_AI_1 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_1_4_RI_4 + P-network_1_4_RI_3 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_1_4_RI_2 + P-network_1_4_RI_1 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_4_0_RP_1 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_4 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_2_1_RP_3 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_0_2_RP_4 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_0_2_RP_3 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_0_2_RP_2 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_RP_1 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_4_1_RI_4 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_4_1_RI_1 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_2_2_RI_4 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_2_2_RI_1 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_4_AskP_1 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_2_4_AI_4 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 + P-network_3_0_RI_4)
lola: after: (0 <= P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_1_RI_0 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_4_3_AI_0 + P-network_2_4_AI_0 + P-network_2_0_AskP_0 + P-network_1_1_AskP_0 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_1_0_RP_0 + P-network_0_4_AnsP_0 + P-network_1_4_AskP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_4_2_AskP_0 + P-network_0_0_RI_0 + P-network_4_4_AnnP_0 + P-network_0_0_AI_0 + P-network_4_1_AnsP_4 + P-network_0_3_RI_0 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_0_2_AskP_0 + P-network_2_2_RI_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_0_1_AnsP_4 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_1_RI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_0_4_RP_0 + P-network_1_0_AnnP_0 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_3_2_AnsP_4 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_0_0_AnnP_0 + P-network_2_1_AI_0 + P-network_0_2_RP_0 + P-network_0_2_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_2_1_RP_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_2_3_AskP_0 + P-network_4_0_RP_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_1_AI_0 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_1_4_RI_0 + P-network_2_3_AnnP_0 + P-network_4_0_AnnP_0 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_3_0_AI_0 + P-network_2_0_AnsP_0 + P-network_4_0_RI_0 + P-network_3_3_RI_0 + P-network_2_1_RI_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_0_2_RI_0 + P-network_3_4_AnnP_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_4_4_RP_0 + P-network_1_4_AnnP_0 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_1_1_AnsP_0 + P-network_4_3_AskP_0 + P-network_2_0_AnnP_0 + P-network_1_0_RI_0 + P-network_3_2_AskP_0 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_1_3_RP_0 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_4_2_AnsP_0 + P-network_0_3_AskP_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_4_2_AI_0 + P-network_2_3_AI_0 + P-network_0_3_AnnP_0 + P-network_3_2_RP_0 + P-network_0_4_AI_0 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_1_4_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_4_0_AskP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_4_1_AI_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_0_0_AskP_0 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_1_2_AI_0 + P-network_4_1_RP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_4_4_RI_0 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_4_3_AnnP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_4_RI_0 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_4_1_AskP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_1_2_AnnP_0 + P-network_2_4_RP_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_4_3_RP_0 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_4_4_AskP_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_4 + P-network_1_0_AskP_0 + P-network_1_4_AI_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_0_1_RI_0 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_3_3_AI_0 + P-network_4_3_AnsP_0 + P-network_0_4_AskP_0)
lola: always true
lola: LP says that atomic proposition is always false: (2 <= P-electedPrimary_0 + P-electedPrimary_1 + P-electedPrimary_2 + P-electedPrimary_3 + P-electedPrimary_4)
lola: LP says that atomic proposition is always true: (P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4)
lola: place invariant simplifies atomic proposition
lola: before: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 <= P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_4 + P-masterState_2_F_4 + P-masterState_0_F_4 + P-masterState_3_F_4 + P-masterState_1_T_4)
lola: after: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 <= 4)
lola: LP says that atomic proposition is always true: (P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 <= 4)
lola: place invariant simplifies atomic proposition
lola: before: (P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_1_3_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_2_1_NONE + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_3_4_DONE + P-negotiation_0_2_CO + P-negotiation_1_2_CO + P-negotiation_2_4_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_3_NONE + P-negotiation_3_1_DONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_3_2_NONE + P-negotiation_4_0_CO + P-negotiation_0_0_DONE + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_1_4_NONE + P-negotiation_3_4_CO + P-negotiation_1_0_CO + P-negotiation_2_2_NONE + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_4_1_CO + P-negotiation_3_3_DONE + P-negotiation_3_0_CO + P-negotiation_1_4_DONE + P-negotiation_0_4_CO + P-negotiation_1_1_DONE + P-negotiation_4_2_CO + P-negotiation_3_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_1_1_CO + P-negotiation_0_0_NONE + P-negotiation_4_3_NONE + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_2_4_NONE + P-negotiation_4_1_NONE + P-negotiation_2_2_CO + P-negotiation_0_3_CO + P-negotiation_3_3_CO + P-negotiation_1_4_CO + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_0_4_NONE + P-negotiation_2_3_NONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_3_DONE <= P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4)
lola: after: (16 <= P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4)
lola: LP says that atomic proposition is always false: (16 <= P-electedSecondary_0 + P-electedSecondary_1 + P-electedSecondary_2 + P-electedSecondary_3 + P-electedSecondary_4)
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_4 + P-masterState_2_F_4 + P-masterState_0_F_4 + P-masterState_3_F_4 + P-masterState_1_T_4)
lola: after: (0 <= 1)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_1_3_CO + P-negotiation_3_1_CO + P-negotiation_4_3_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_NONE + P-negotiation_4_3_DONE + P-negotiation_2_1_NONE + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_3_4_DONE + P-negotiation_0_2_CO + P-negotiation_1_2_CO + P-negotiation_2_4_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_3_DONE + P-negotiation_0_4_DONE + P-negotiation_2_1_CO + P-negotiation_1_3_NONE + P-negotiation_3_1_DONE + P-negotiation_1_2_DONE + P-negotiation_4_4_NONE + P-negotiation_3_2_NONE + P-negotiation_4_0_CO + P-negotiation_0_0_DONE + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_1_4_NONE + P-negotiation_3_4_CO + P-negotiation_1_0_CO + P-negotiation_2_2_NONE + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_4_1_CO + P-negotiation_3_3_DONE + P-negotiation_3_0_CO + P-negotiation_1_4_DONE + P-negotiation_0_4_CO + P-negotiation_1_1_DONE + P-negotiation_4_2_CO + P-negotiation_3_0_DONE + P-negotiation_4_1_DONE + P-negotiation_2_2_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_1_1_CO + P-negotiation_0_0_NONE + P-negotiation_4_3_NONE + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_2_4_NONE + P-negotiation_4_1_NONE + P-negotiation_2_2_CO + P-negotiation_0_3_CO + P-negotiation_3_3_CO + P-negotiation_1_4_CO + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_0_4_NONE + P-negotiation_2_3_NONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_1_0_DONE + P-negotiation_3_2_CO + P-negotiation_4_4_CO + P-negotiation_0_1_CO + P-negotiation_3_4_NONE + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_4_0_DONE + P-negotiation_1_3_DONE)
lola: after: (0 <= 15)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_4 + P-masterState_2_F_4 + P-masterState_0_F_4 + P-masterState_3_F_4 + P-masterState_1_T_4)
lola: after: (0 <= 2)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_1_1_AnnP_4 <= P-masterState_3_F_0)
lola: after: (0 <= P-masterState_3_F_0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__handlingMessage_3 <= P-masterList_1_3_3)
lola: after: (P-poll__handlingMessage_3 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_2_3_RI_4 <= P-network_2_2_RI_3)
lola: after: (0 <= 0)
lola: always true
lola: LP says that atomic proposition is always false: (3 <= P-negotiation_2_2_DONE)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-network_2_3_RI_4)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-masterList_3_4_3)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-poll__networl_1_4_RI_2)
lola: after: (2 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_3_0_RI_1 <= P-poll__networl_1_1_AnnP_4)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_3_1_AnnP_4 <= P-poll__networl_2_0_AnsP_0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_2_3_AI_3 <= P-poll__networl_1_3_RI_2)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_2_3_RP_0)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_0_AnsP_0 <= P-poll__networl_0_2_RI_0)
lola: after: (P-network_1_0_AnsP_0 <= 0)
lola: LP says that atomic proposition is always true: (P-network_1_0_AnsP_0 <= 0)
lola: LP says that atomic proposition is always false: (3 <= P-network_1_0_AnsP_0)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= P-network_2_0_RP_1)
lola: after: (2 <= 0)
lola: always false
lola: LP says that atomic proposition is always false: (1 <= P-network_1_1_AnsP_1)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_1_2_AI_2)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-network_0_4_RI_0 <= P-network_1_0_RP_1)
lola: after: (P-network_0_4_RI_0 <= 0)
lola: LP says that atomic proposition is always true: (P-network_0_4_RI_0 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_3_0_AnnP_4)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_4_RI_1 <= P-network_3_1_AnnP_4)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_0_3_4 <= P-masterState_1_T_4)
lola: after: (0 <= P-masterState_1_T_4)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-poll__networl_3_3_AI_4 <= P-network_0_0_AnsP_0)
lola: after: (0 <= P-network_0_0_AnsP_0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-network_1_1_AskP_2 <= P-poll__networl_4_1_AskP_4)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= P-poll__networl_2_3_AnnP_3)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= P-poll__networl_1_1_RP_2)
lola: after: (3 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (P-network_3_1_RP_3 <= P-startNeg__broadcasting_0_2)
lola: after: (0 <= P-startNeg__broadcasting_0_2)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (P-masterList_4_4_1 <= P-poll__networl_3_4_AI_0)
lola: after: (0 <= 0)
lola: always true
lola: E (F (FALSE)) : A (G (TRUE)) : E (F (())) : A (G (())) : A (G (TRUE)) : A (G (())) : A (G (())) : E (F (())) : E (F (())) : A (G (())) : E (F (FALSE)) : E (F (())) : A (G (())) : A (G (())) : E (F (FALSE)) : A (G (TRUE))
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-0 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-4 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-4-ReachabilityCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 8 will run for 445 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-4-ReachabilityCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-4-ReachabilityCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: lola: ========================================
subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 891 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1188 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-4-ReachabilityCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 14 will run for 1783 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-PT-4-ReachabilityCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 15 will run for 3566 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 48 rewrites
lola: closed formula file NeoElection-PT-4-ReachabilityCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-PT-4-ReachabilityCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: RESULT
lola:
SUMMARY: no yes no yes yes yes yes no no yes no no yes yes no yes
lola:
preliminary result: no yes no yes yes yes yes no no yes no no yes yes no yes
lola: memory consumption: 22232 KB
lola: time consumption: 3 seconds

BK_STOP 1527027308310

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-4"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-4.tgz
mv NeoElection-PT-4 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-PT-4, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r112-csrt-152666469300306"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;