About the Execution of LoLA for NeoElection-PT-3
| Execution Summary | |||||
| Max Memory Used (MB)  | 
      Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status  | 
   
| 171.230 | 1268.00 | 1530.00 | 19.50 | 0 3 9 0 6 3 0 3 0 0 0 0 0 0 0 0 | normal | 
Execution Chart
We display below the execution chart for this examination (boot time has been removed).

Trace from the execution
Waiting for the VM to be ready (probing ssh)
..................
/home/mcc/execution
total 1.9M
-rw-r--r-- 1 mcc users  37K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 101K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users  25K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users  75K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users  46K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 113K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users  19K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users  56K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users  64K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 157K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users  107 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users  345 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users  35K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 101K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users  33K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users  62K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users    5 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users    2 May 15 18:50 instance
-rw-r--r-- 1 mcc users    6 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 911K May 15 18:50 model.pnml
=====================================================================
 Generated by BenchKit 2-3637
    Executing tool lola
    Input is NeoElection-PT-3, examination is UpperBounds
    Time confinement is 3600 seconds
    Memory confinement is 16384 MBytes
    Number of cores is 4
    Run identifier is r112-csrt-152666469300296
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of positive values
NUM_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-PT-3-UpperBounds-00
FORMULA_NAME NeoElection-PT-3-UpperBounds-01
FORMULA_NAME NeoElection-PT-3-UpperBounds-02
FORMULA_NAME NeoElection-PT-3-UpperBounds-03
FORMULA_NAME NeoElection-PT-3-UpperBounds-04
FORMULA_NAME NeoElection-PT-3-UpperBounds-05
FORMULA_NAME NeoElection-PT-3-UpperBounds-06
FORMULA_NAME NeoElection-PT-3-UpperBounds-07
FORMULA_NAME NeoElection-PT-3-UpperBounds-08
FORMULA_NAME NeoElection-PT-3-UpperBounds-09
FORMULA_NAME NeoElection-PT-3-UpperBounds-10
FORMULA_NAME NeoElection-PT-3-UpperBounds-11
FORMULA_NAME NeoElection-PT-3-UpperBounds-12
FORMULA_NAME NeoElection-PT-3-UpperBounds-13
FORMULA_NAME NeoElection-PT-3-UpperBounds-14
FORMULA_NAME NeoElection-PT-3-UpperBounds-15
=== Now, execution of the tool begins
BK_START 1527027004660
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-PT-3 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-PT-3 formula UpperBounds into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking UpperBounds @ NeoElection-PT-3 @ 3570 seconds
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola:   reading net from model.pnml.lola
lola:   finished parsing
lola:   closed net file model.pnml.lola
lola:   1988/65536 symbol table entries, 6 collisions
lola:   preprocessing... 
lola:   Size  of bit vector: 972
lola:   finding significant places
lola:   972 places, 1016 transitions, 300 significant places
lola:   computing forward-conflicting sets
lola:   computing back-conflicting sets
lola:   472 transition conflict sets
lola: TASK
lola:   reading formula from NeoElection-PT-3-UpperBounds.task
lola:   place invariant simplifies atomic proposition
lola:   before: (P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_2_F_3 + P-masterState_0_F_3 + P-masterState_3_F_3 + P-masterState_1_T_3 <= 0)
lola:   after: (3 <= 0)
lola:   always false
lola:   place invariant simplifies atomic proposition
lola:   before: (P-negotiation_3_2_DONE + P-negotiation_1_0_NONE + P-negotiation_1_3_CO + P-negotiation_3_1_CO + P-negotiation_0_2_NONE + P-negotiation_2_1_NONE + P-negotiation_0_0_CO + P-negotiation_1_2_CO + P-negotiation_0_2_CO + P-negotiation_2_0_NONE + P-negotiation_0_1_NONE + P-negotiation_2_3_DONE + P-negotiation_1_3_NONE + P-negotiation_2_1_CO + P-negotiation_3_2_NONE + P-negotiation_3_1_DONE + P-negotiation_0_0_DONE + P-negotiation_1_2_DONE + P-negotiation_2_0_DONE + P-negotiation_0_1_DONE + P-negotiation_3_3_NONE + P-negotiation_1_0_CO + P-negotiation_2_2_NONE + P-negotiation_0_3_NONE + P-negotiation_3_0_CO + P-negotiation_3_3_DONE + P-negotiation_1_1_DONE + P-negotiation_3_0_DONE + P-negotiation_2_2_DONE + P-negotiation_0_3_DONE + P-negotiation_2_3_CO + P-negotiation_1_1_CO + P-negotiation_0_0_NONE + P-negotiation_1_1_NONE + P-negotiation_3_0_NONE + P-negotiation_2_2_CO + P-negotiation_0_3_CO + P-negotiation_3_3_CO + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_2_3_NONE + P-negotiation_2_0_CO + P-negotiation_1_0_DONE + P-negotiation_3_2_CO + P-negotiation_0_1_CO + P-negotiation_0_2_DONE + P-negotiation_2_1_DONE + P-negotiation_1_3_DONE <= 0)
lola:   after: (9 <= 0)
lola:   always false
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_0 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_3_3_RI_1 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_0 + P-poll__networl_3_0_AI_3 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_2 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_RI_0 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_0_RI_3 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_RI_1 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_0_RI_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 <= 0)
lola:   after: (P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 <= 0)
lola:   LP says that atomic proposition is always true: (P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_1_RI_0 + P-network_1_1_AskP_0 + P-network_2_0_AskP_0 + P-network_1_0_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_0_RI_0 + P-network_0_0_AI_0 + P-network_0_3_RI_0 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_2_2_RI_0 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_0_1_AnsP_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_1_0_AnnP_0 + P-network_0_0_AnnP_0 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_0_2_RP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_2_1_AI_0 + P-network_0_2_AI_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_1_RP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_2_3_AskP_0 + P-network_3_2_RI_0 + P-network_1_1_AI_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_3_0_AI_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_3_3_RI_0 + P-network_2_3_AnnP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_2_1_RI_0 + P-network_0_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_3_2_AskP_0 + P-network_1_1_AnsP_0 + P-network_2_0_AnnP_0 + P-network_1_3_RP_0 + P-network_1_0_RI_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_3_AI_0 + P-network_3_2_RP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_0 + P-network_3_1_AI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_1_2_AnnP_0 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_0_AskP_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_1_3_AskP_0 + P-network_3_3_AI_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_1_RI_0 + P-network_2_0_RI_0 + P-network_0_1_RI_3 + P-network_0_1_RI_2 + P-network_0_1_RI_1 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_3_3_AI_3 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_3_3_AI_2 + P-network_3_3_AI_1 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_0_AskP_3 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_0_AskP_2 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_1_0_AskP_1 + P-network_1_2_AnnP_3 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_1 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_2_2_AI_1 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_2_RP_3 + P-network_3_2_RP_2 + P-network_3_2_RP_1 + P-network_0_3_AnnP_3 + P-network_0_3_AnnP_2 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_0_3_AnnP_1 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_3_2_AskP_3 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_3_3_RI_1 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_3_0_AI_1 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_1_AI_1 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_2_1_RP_3 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_RP_3 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_0_2_RP_2 + P-network_0_2_RP_1 + P-network_0_0_AnnP_3 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_2_2_RI_1 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_0_3_RI_3 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_0_3_RI_2 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_3_RI_1 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_3_0_RI_3 <= 0)
lola:   after: (P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_1_RI_0 + P-network_1_1_AskP_0 + P-network_2_0_AskP_0 + P-network_1_0_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_0_RI_0 + P-network_0_0_AI_0 + P-network_0_3_RI_0 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_2_2_RI_0 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_0_1_AnsP_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_1_0_AnnP_0 + P-network_0_0_AnnP_0 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_0_2_RP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_2_1_AI_0 + P-network_0_2_AI_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_1_RP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_2_3_AskP_0 + P-network_3_2_RI_0 + P-network_1_1_AI_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_3_0_AI_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_3_3_RI_0 + P-network_2_3_AnnP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_2_1_RI_0 + P-network_0_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_3_2_AskP_0 + P-network_1_1_AnsP_0 + P-network_2_0_AnnP_0 + P-network_1_3_RP_0 + P-network_1_0_RI_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_3_AI_0 + P-network_3_2_RP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_0 + P-network_3_1_AI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_1_2_AnnP_0 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_0_AskP_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_1_3_AskP_0 + P-network_3_3_AI_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_1_RI_0 + P-network_2_0_RI_0 <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_2_F_3 + P-masterState_0_F_3 + P-masterState_3_F_3 + P-masterState_1_T_3 <= 0)
lola:   after: (3 <= 0)
lola:   always false
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_0_3_AI_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_3_2_RP_3 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_0 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_0 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_2 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_3_3_RI_1 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_3_3_RI_0 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_0 + P-poll__networl_3_0_AI_3 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_2 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_3_1_RI_3 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_3 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_3_1_AskP_1 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_0_2_RP_0 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_2_2_RI_0 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_0_0_AI_3 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_0_0_AI_0 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_2_AskP_3 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_3_0_RI_3 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_0_RI_0 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_1_RI_1 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_1_1_RI_0 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_2_1_AI_0 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_0_RI_3 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_0_0_RI_1 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_0_0_RI_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 <= 0)
lola:   after: (P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 <= 0)
lola:   LP says that atomic proposition is always true: (P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_2_1_AI_3 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_2_1_AI_1 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_3_3_AnnP_2 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   LP says that atomic proposition is always true: (P-sendAnnPs__broadcasting_1_2 <= 0)
lola:   LP says that atomic proposition is always true: (P-network_0_0_AskP_0 <= 0)
lola:   place invariant simplifies atomic proposition
lola:   before: (P-poll__networl_3_1_RI_1 <= 0)
lola:   after: (0 <= 0)
lola:   always true
lola:   LP says that atomic proposition is always true: (P-network_1_0_RP_0 <= 0)
lola:   LP says that atomic proposition is always true: (P-negotiation_3_3_CO <= 0)
lola:   MAX(0) : MAX(0) : MAX(0) : MAX(P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1) : MAX(P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_1_RI_0 + P-network_1_1_AskP_0 + P-network_2_0_AskP_0 + P-network_1_0_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_0_RI_0 + P-network_0_0_AI_0 + P-network_0_3_RI_0 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_1_3_AI_0 + P-network_2_2_RI_0 + P-network_3_1_AnnP_0 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_0_1_AnsP_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_1_0_AnnP_0 + P-network_0_0_AnnP_0 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_0_2_RP_0 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_2_1_AI_0 + P-network_0_2_AI_0 + P-network_3_1_RP_0 + P-network_1_2_RP_0 + P-network_0_1_AnnP_0 + P-network_3_0_AskP_0 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_1_RP_0 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_3_2_AnnP_0 + P-network_2_3_AskP_0 + P-network_3_2_RI_0 + P-network_1_1_AI_0 + P-network_1_3_RI_0 + P-network_1_0_AI_0 + P-network_3_0_AI_0 + P-network_2_0_RP_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_3_3_RI_0 + P-network_2_3_AnnP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_2_1_RI_0 + P-network_0_2_RI_0 + P-network_1_2_AskP_0 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_3_2_AskP_0 + P-network_1_1_AnsP_0 + P-network_2_0_AnnP_0 + P-network_1_3_RP_0 + P-network_1_0_RI_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_3_AnnP_0 + P-network_0_3_AskP_0 + P-network_2_3_AI_0 + P-network_3_2_RP_0 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_3_3_RP_0 + P-network_0_3_AI_0 + P-network_1_1_AnnP_0 + P-network_2_2_AI_0 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_0_1_AskP_0 + P-network_3_3_AnsP_0 + P-network_3_1_AI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_0_3_RP_0 + P-network_3_1_AskP_0 + P-network_3_3_AnnP_0 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_0_1_AI_0 + P-network_3_0_RP_0 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_1_2_AnnP_0 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_3_1_RI_0 + P-network_0_3_AnsP_0 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_3 + P-network_1_0_AskP_0 + P-network_3_0_AnnP_0 + P-network_1_2_RI_0 + P-network_1_3_AskP_0 + P-network_3_3_AI_0 + P-network_0_0_RP_0 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_2_1_AnnP_0 + P-network_0_1_RI_0 + P-network_2_0_RI_0) : MAX(0) : MAX(P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1) : MAX(P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3) : MAX(0) : MAX(0) : MAX(0) : MAX(P-sendAnnPs__broadcasting_1_2) : MAX(P-network_0_0_AskP_0) : MAX(0) : MAX(P-network_1_0_RP_0) : MAX(P-negotiation_3_3_CO)
lola:   computing a collection of formulas
lola: RUNNING
lola:   subprocess 0 will run for 223 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
FORMULA NeoElection-PT-3-UpperBounds-0 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 3
lola:   SUBRESULT
lola:     result: 3
lola:     produced by: state space
lola:     The maximum value of the given expression is 3
lola:     0 markings, 0 edges
FORMULA NeoElection-PT-3-UpperBounds-1 3 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   ========================================
lola:   subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:   ========================================
lola:     Structural Bound: 9
lola:   SUBRESULT
lola:     result: 9
lola:     produced by: state space
lola:     The maximum value of the given expression is 9
lola:     0 markings, 0 edges
FORMULA NeoElection-PT-3-UpperBounds-2 9 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   ========================================
lola:   subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2... (shortened)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2... (shortened)
lola:     processed formula length: 1394
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola: 
FORMULA NeoElection-PT-3-UpperBounds-3 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
  ========================================
lola:   subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 3
lola:   SUBRESULT
lola:     result: 3
lola:     produced by: state space
lola:     The maximum value of the given expression is 3
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-5 3 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2... (shortened)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2... (shortened)
lola:     processed formula length: 1394
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-6 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-8 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
FORMULA NeoElection-PT-3-UpperBounds-9 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   lola: ======================================== 
 subprocess 8 will run for 446 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-10 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-sendAnnPs__broadcasting_1_2)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-sendAnnPs__broadcasting_1_2)
lola:     processed formula length: 34
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-11 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-network_0_0_AskP_0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-network_0_0_AskP_0)
lola:     processed formula length: 25
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
FORMULA NeoElection-PT-3-UpperBounds-12 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   ========================================
lola:   subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(0)
lola:     processed formula length: 6
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-13 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 12 will run for 892 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-network_1_0_RP_0)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-network_1_0_RP_0)
lola:     processed formula length: 23
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-14 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 13 will run for 1189 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-negotiation_3_3_CO)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-negotiation_3_3_CO)
lola:     processed formula length: 25
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 0
lola:   SUBRESULT
lola:     result: 0
lola:     produced by: state space
lola:     The maximum value of the given expression is 0
lola:     0 markings, 0 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-15 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 14 will run for 1784 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3)
lola:     processed formula length: 114
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 3
lola:   SUBRESULT
lola:     result: 3
lola:     produced by: state space
lola:     The maximum value of the given expression is 3
lola:     43 markings, 42 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-7 3 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola:   subprocess 15 will run for 3569 seconds at most (--localtimelimit=0)
lola:   ========================================
lola:   ...considering subproblem: MAX(P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_1_RI_0 + P-network_1_1_AskP_0 + P-network_2_0_AskP_0 + P-network_1_0_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_0_RI_0 + P-network_0_0_AI_0 + P-network_0_3_R... (shortened)
lola:   ========================================
lola:   SUBTASK
lola:     computing bound of an expression
lola:     processed formula: MAX(P-network_2_2_AnnP_0 + P-network_3_0_RI_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_1_RI_0 + P-network_1_1_AskP_0 + P-network_2_0_AskP_0 + P-network_1_0_RP_0 + P-network_1_3_AnnP_0 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_0_0_RI_0 + P-network_0_0_AI_0 + P-network_0_3_R... (shortened)
lola:     processed formula length: 3218
lola:     0 rewrites
lola:     closed formula file NeoElection-PT-3-UpperBounds.task
lola:   STORE
lola:     using a simple compression encoder (--encoder=simplecompressed)
lola:     using a prefix tree store (--store=prefix)
lola:   SEARCH
lola:     using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola:   RUNNING
lola:     Structural Bound: 6
lola:   SUBRESULT
lola:     result: 6
lola:     produced by: state space
lola:     The maximum value of the given expression is 6
lola:     10 markings, 9 edges
lola:   ========================================
FORMULA NeoElection-PT-3-UpperBounds-4 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: RESULT
lola:   
SUMMARY: 0 3 9 0 6 3 0 3 0 0 0 0 0 0 0 0 
lola:   
preliminary result: 0 3 9 0 6 3 0 3 0 0 0 0 0 0 0 0 
lola: memory consumption: 18404 KB
lola: time consumption: 1 seconds
BK_STOP 1527027005928
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-3"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
	rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-3.tgz
mv NeoElection-PT-3 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo "    Executing tool lola"
echo "    Input is NeoElection-PT-3, examination is UpperBounds"
echo "    Time confinement is $BK_TIME_CONFINEMENT seconds"
echo "    Memory confinement is 16384 MBytes"
echo "    Number of cores is 4"
echo "    Run identifier is r112-csrt-152666469300296"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
	echo "The expected result is a vector of positive values"
	echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ]  ; then 
	echo "The expected result is a vector of booleans"
	echo BOOL_VECTOR
else
	echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
	echo "here is the order used to build the result vector(from text file)"
	for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
		echo "FORMULA_NAME $x"
	done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
	echo echo "here is the order used to build the result vector(from xml file)"
	for x in $(grep '
		echo "FORMULA_NAME $x"
	done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT  bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
	echo
	echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;
