fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r112-csrt-152666469300275
Last Updated
June 26, 2018

About the Execution of LoLA for NeoElection-COL-7

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
678.680 3570656.00 3672503.00 584.70 0 7 ? 42 0 7 42 0 0 7 0 7 0 7 0 42 normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
...........................
/home/mcc/execution
total 272K
-rw-r--r-- 1 mcc users 4.0K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 20K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.2K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.5K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 9.4K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.0K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 8.4K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 108 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 346 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 108K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-COL-7, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r112-csrt-152666469300275
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of positive values
NUM_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-7-UpperBounds-00
FORMULA_NAME NeoElection-COL-7-UpperBounds-01
FORMULA_NAME NeoElection-COL-7-UpperBounds-02
FORMULA_NAME NeoElection-COL-7-UpperBounds-03
FORMULA_NAME NeoElection-COL-7-UpperBounds-04
FORMULA_NAME NeoElection-COL-7-UpperBounds-05
FORMULA_NAME NeoElection-COL-7-UpperBounds-06
FORMULA_NAME NeoElection-COL-7-UpperBounds-07
FORMULA_NAME NeoElection-COL-7-UpperBounds-08
FORMULA_NAME NeoElection-COL-7-UpperBounds-09
FORMULA_NAME NeoElection-COL-7-UpperBounds-10
FORMULA_NAME NeoElection-COL-7-UpperBounds-11
FORMULA_NAME NeoElection-COL-7-UpperBounds-12
FORMULA_NAME NeoElection-COL-7-UpperBounds-13
FORMULA_NAME NeoElection-COL-7-UpperBounds-14
FORMULA_NAME NeoElection-COL-7-UpperBounds-15

=== Now, execution of the tool begins

BK_START 1527025272245

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-7 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-7 formula UpperBounds into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking UpperBounds @ NeoElection-COL-7 @ 3557 seconds
lola: LoLA will run for 3557 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 21368/65536 symbol table entries, 7545 collisions
lola: preprocessing...
lola: Size of bit vector: 7128
lola: finding significant places
lola: 7128 places, 14240 transitions, 1696 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 3824 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-7-UpperBounds.task
lola: place invariant simplifies atomic proposition
lola: before: (p3279 + p3278 + p3277 + p3276 + p3275 + p3274 + p3273 + p3272 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p7000 + p7001 + p7002 + p7003 + p7004 + p7005 + p7006 + p7007 + p7008 + p7009 + p7010 + p7011 + p7012 + p7013 + p7014 + p7015 + p7016 + p7017 + p7018 + p7019 + p7020 + p7021 + p7022 + p7023 + p7024 + p7025 + p7026 + p7027 + p7028 + p7029 + p7030 + p7031 + p7032 + p7033 + p7034 + p7035 + p7036 + p7037 + p7038 + p7039 + p7040 + p7041 + p7042 + p7043 + p7044 + p7045 + p7046 + p7047 + p7048 + p7049 + p7050 + p7051 + p7052 + p7053 + p7054 + p7055 + p7056 + p7057 + p7058 + p7059 + p7060 + p7061 + p7062 + p7063 + p7064 + p7065 + p7066 + p7067 + p7068 + p7069 + p7070 + p7071 + p7072 + p7073 + p7074 + p7075 + p7076 + p7077 + p7078 + p7079 + p7080 + p7081 + p7082 + p7083 + p7084 + p7085 + p7086 + p7087 + p7088 + p7089 + p7090 + p7091 + p7092 + p7093 + p7094 + p7095 + p7096 + p7097 + p7098 + p7099 + p7100 + p7101 + p7102 + p7103 + p7104 + p7105 + p7106 + p7107 + p7108 + p7109 + p7110 + p7111 + p6999 + p6998 + p6997 + p6996 + p6995 + p6994 + p6993 + p6992 + p6991 + p6990 + p6989 + p6988 + p6987 + p6986 + p6985 + p6984 + p6983 + p6982 + p6981 + p6980 + p6979 + p6978 + p6977 + p6976 + p6975 + p6974 + p6973 + p6972 + p6971 + p6970 + p6969 + p6968 + p6967 + p6966 + p6965 + p6964 + p6963 + p6962 + p6961 + p6960 + p6959 + p6958 + p6957 + p6956 + p6955 + p6954 + p6953 + p6952 + p6951 + p6950 + p6949 + p6948 + p6947 + p6946 + p6945 + p6944 + p6943 + p6942 + p6941 + p6940 + p6939 + p6938 + p6937 + p6936 + p6935 + p6934 + p6933 + p6932 + p6931 + p6930 + p6929 + p6928 + p6927 + p6926 + p6925 + p6924 + p6923 + p6922 + p6921 + p6920 + p6919 + p6918 + p6917 + p6916 + p6915 + p6914 + p6913 + p6912 + p6911 + p6910 + p6909 + p6908 + p6907 + p6906 + p6905 + p6904 + p6903 + p6902 + p6901 + p6900 + p6899 + p6898 + p6897 + p6896 + p6895 + p6894 + p6893 + p6892 + p6891 + p6890 + p6889 + p6888 + p6887 + p6886 + p6885 + p6884 + p6883 + p6882 + p6881 + p6880 + p6879 + p6878 + p6877 + p6876 + p6875 + p6874 + p6873 + p6872 + p6871 + p6870 + p6869 + p6868 + p6867 + p6866 + p6865 + p6864 + p6863 + p6862 + p6861 + p6860 + p6859 + p6858 + p6857 + p6856 + p6855 + p6854 + p6853 + p6852 + p6851 + p6850 + p6849 + p6848 + p6847 + p6846 + p6845 + p6844 + p6843 + p6842 + p6841 + p6840 + p6839 + p6838 + p6837 + p6836 + p6835 + p6834 + p6833 + p6832 + p6831 + p6830 + p6829 + p6828 + p6827 + p6826 + p6825 + p6824 + p6823 + p6822 + p6664 + p6665 + p6666 + p6667 + p6821 + p6668 + p6669 + p6820 + p6670 + p6671 + p6672 + p6673 + p6674 + p6675 + p6819 + p6676 + p6677 + p6678 + p6818 + p6679 + p6680 + p6681 + p6682 + p6683 + p6817 + p6684 + p6685 + p6686 + p6816 + p6687 + p6815 + p6688 + p6814 + p6689 + p6813 + p6812 + p6811 + p6690 + p6691 + p6810 + p6692 + p6809 + p6693 + p6808 + p6694 + p6807 + p6695 + p6696 + p6697 + p6698 + p6699 + p6806 + p6805 + p6804 + p6803 + p6802 + p6801 + p6800 + p6700 + p6701 + p6702 + p6703 + p6704 + p6705 + p6706 + p6707 + p6708 + p6709 + p6710 + p6711 + p6712 + p6713 + p6714 + p6715 + p6716 + p6717 + p6718 + p6719 + p6720 + p6721 + p6722 + p6723 + p6724 + p6725 + p6726 + p6727 + p6728 + p6729 + p6730 + p6731 + p6732 + p6733 + p6734 + p6735 + p6736 + p6737 + p6738 + p6739 + p6740 + p6741 + p6742 + p6743 + p6744 + p6745 + p6746 + p6747 + p6748 + p6749 + p6750 + p6751 + p6752 + p6753 + p6754 + p6755 + p6756 + p6757 + p6758 + p6759 + p6760 + p6761 + p6762 + p6763 + p6764 + p6765 + p6766 + p6767 + p6768 + p6769 + p6770 + p6771 + p6772 + p6773 + p6774 + p6775 + p6776 + p6777 + p6778 + p6779 + p6780 + p6781 + p6782 + p6783 + p6784 + p6785 + p6786 + p6787 + p6788 + p6789 + p6790 + p6791 + p6792 + p6793 + p6794 + p6795 + p6796 + p6797 + p6798 + p6799 <= 0)
lola: after: (42 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p3295 + p3294 + p3293 + p3292 + p3291 + p3290 + p3289 + p3288 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p7000 + p7001 + p7002 + p7003 + p7004 + p7005 + p7006 + p7007 + p7008 + p7009 + p7010 + p7011 + p7012 + p7013 + p7014 + p7015 + p7016 + p7017 + p7018 + p7019 + p7020 + p7021 + p7022 + p7023 + p7024 + p7025 + p7026 + p7027 + p7028 + p7029 + p7030 + p7031 + p7032 + p7033 + p7034 + p7035 + p7036 + p7037 + p7038 + p7039 + p7040 + p7041 + p7042 + p7043 + p7044 + p7045 + p7046 + p7047 + p7048 + p7049 + p7050 + p7051 + p7052 + p7053 + p7054 + p7055 + p7056 + p7057 + p7058 + p7059 + p7060 + p7061 + p7062 + p7063 + p7064 + p7065 + p7066 + p7067 + p7068 + p7069 + p7070 + p7071 + p7072 + p7073 + p7074 + p7075 + p7076 + p7077 + p7078 + p7079 + p7080 + p7081 + p7082 + p7083 + p7084 + p7085 + p7086 + p7087 + p7088 + p7089 + p7090 + p7091 + p7092 + p7093 + p7094 + p7095 + p7096 + p7097 + p7098 + p7099 + p7100 + p7101 + p7102 + p7103 + p7104 + p7105 + p7106 + p7107 + p7108 + p7109 + p7110 + p7111 + p6999 + p6998 + p6997 + p6996 + p6995 + p6994 + p6993 + p6992 + p6991 + p6990 + p6989 + p6988 + p6987 + p6986 + p6985 + p6984 + p6983 + p6982 + p6981 + p6980 + p6979 + p6978 + p6977 + p6976 + p6975 + p6974 + p6973 + p6972 + p6971 + p6970 + p6969 + p6968 + p6967 + p6966 + p6965 + p6964 + p6963 + p6962 + p6961 + p6960 + p6959 + p6958 + p6957 + p6956 + p6955 + p6954 + p6953 + p6952 + p6951 + p6950 + p6949 + p6948 + p6947 + p6946 + p6945 + p6944 + p6943 + p6942 + p6941 + p6940 + p6939 + p6938 + p6937 + p6936 + p6935 + p6934 + p6933 + p6932 + p6931 + p6930 + p6929 + p6928 + p6927 + p6926 + p6925 + p6924 + p6923 + p6922 + p6921 + p6920 + p6919 + p6918 + p6917 + p6916 + p6915 + p6914 + p6913 + p6912 + p6911 + p6910 + p6909 + p6908 + p6907 + p6906 + p6905 + p6904 + p6903 + p6902 + p6901 + p6900 + p6899 + p6898 + p6897 + p6896 + p6895 + p6894 + p6893 + p6892 + p6891 + p6890 + p6889 + p6888 + p6887 + p6886 + p6885 + p6884 + p6883 + p6882 + p6881 + p6880 + p6879 + p6878 + p6877 + p6876 + p6875 + p6874 + p6873 + p6872 + p6871 + p6870 + p6869 + p6868 + p6867 + p6866 + p6865 + p6864 + p6863 + p6862 + p6861 + p6860 + p6859 + p6858 + p6857 + p6856 + p6855 + p6854 + p6853 + p6852 + p6851 + p6850 + p6849 + p6848 + p6847 + p6846 + p6845 + p6844 + p6843 + p6842 + p6841 + p6840 + p6839 + p6838 + p6837 + p6836 + p6835 + p6834 + p6833 + p6832 + p6831 + p6830 + p6829 + p6828 + p6827 + p6826 + p6825 + p6824 + p6823 + p6822 + p6664 + p6665 + p6666 + p6667 + p6821 + p6668 + p6669 + p6820 + p6670 + p6671 + p6672 + p6673 + p6674 + p6675 + p6819 + p6676 + p6677 + p6678 + p6818 + p6679 + p6680 + p6681 + p6682 + p6683 + p6817 + p6684 + p6685 + p6686 + p6816 + p6687 + p6815 + p6688 + p6814 + p6689 + p6813 + p6812 + p6811 + p6690 + p6691 + p6810 + p6692 + p6809 + p6693 + p6808 + p6694 + p6807 + p6695 + p6696 + p6697 + p6698 + p6699 + p6806 + p6805 + p6804 + p6803 + p6802 + p6801 + p6800 + p6700 + p6701 + p6702 + p6703 + p6704 + p6705 + p6706 + p6707 + p6708 + p6709 + p6710 + p6711 + p6712 + p6713 + p6714 + p6715 + p6716 + p6717 + p6718 + p6719 + p6720 + p6721 + p6722 + p6723 + p6724 + p6725 + p6726 + p6727 + p6728 + p6729 + p6730 + p6731 + p6732 + p6733 + p6734 + p6735 + p6736 + p6737 + p6738 + p6739 + p6740 + p6741 + p6742 + p6743 + p6744 + p6745 + p6746 + p6747 + p6748 + p6749 + p6750 + p6751 + p6752 + p6753 + p6754 + p6755 + p6756 + p6757 + p6758 + p6759 + p6760 + p6761 + p6762 + p6763 + p6764 + p6765 + p6766 + p6767 + p6768 + p6769 + p6770 + p6771 + p6772 + p6773 + p6774 + p6775 + p6776 + p6777 + p6778 + p6779 + p6780 + p6781 + p6782 + p6783 + p6784 + p6785 + p6786 + p6787 + p6788 + p6789 + p6790 + p6791 + p6792 + p6793 + p6794 + p6795 + p6796 + p6797 + p6798 + p6799 <= 0)
lola: after: (42 <= 0)
lola: always false
lola: LP says that atomic proposition is always true: (p3216 + p3217 + p3218 + p3219 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p3261 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271 <= 0)
lola: LP says that atomic proposition is always true: (p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p3207 <= 0)
lola: LP says that atomic proposition is always true: (p6656 + p6657 + p6658 + p6659 + p6660 + p6661 + p6662 + p6663 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p98 + p97 + p96 + p94 + p93 + p92 + p91 + p90 + p89 + p88 + p87 + p86 + p85 + p84 + p83 + p82 + p81 + p80 + p78 + p77 + p76 + p75 + p74 + p73 + p72 + p71 + p70 + p69 + p68 + p67 + p66 + p65 + p64 + p62 + p61 + p60 + p59 + p58 + p57 + p56 + p55 + p54 + p53 + p52 + p51 + p50 + p49 + p48 + p46 + p45 + p44 + p43 + p42 + p41 + p40 + p39 + p38 + p37 + p36 + p35 + p34 + p33 + p32 + p30 + p29 + p28 + p27 + p26 + p25 + p24 + p23 + p22 + p21 + p20 + p19 + p18 + p17 + p16 + p14 + p13 + p12 + p11 + p10 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p116 + p115 + p114 + p113 + p112 + p111 + p110 + p109 + p108 + p107 + p106 + p105 + p104 + p103 + p102 + p101 + p100 + p127 + p15 + p31 + p47 + p63 + p79 + p95 + p99 <= 0)
lola: after: (7 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p3295 + p3294 + p3293 + p3292 + p3291 + p3290 + p3289 + p3288 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p3287 + p3286 + p3285 + p3284 + p3283 + p3282 + p3281 + p3280 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p7000 + p7001 + p7002 + p7003 + p7004 + p7005 + p7006 + p7007 + p7008 + p7009 + p7010 + p7011 + p7012 + p7013 + p7014 + p7015 + p7016 + p7017 + p7018 + p7019 + p7020 + p7021 + p7022 + p7023 + p7024 + p7025 + p7026 + p7027 + p7028 + p7029 + p7030 + p7031 + p7032 + p7033 + p7034 + p7035 + p7036 + p7037 + p7038 + p7039 + p7040 + p7041 + p7042 + p7043 + p7044 + p7045 + p7046 + p7047 + p7048 + p7049 + p7050 + p7051 + p7052 + p7053 + p7054 + p7055 + p7056 + p7057 + p7058 + p7059 + p7060 + p7061 + p7062 + p7063 + p7064 + p7065 + p7066 + p7067 + p7068 + p7069 + p7070 + p7071 + p7072 + p7073 + p7074 + p7075 + p7076 + p7077 + p7078 + p7079 + p7080 + p7081 + p7082 + p7083 + p7084 + p7085 + p7086 + p7087 + p7088 + p7089 + p7090 + p7091 + p7092 + p7093 + p7094 + p7095 + p7096 + p7097 + p7098 + p7099 + p7100 + p7101 + p7102 + p7103 + p7104 + p7105 + p7106 + p7107 + p7108 + p7109 + p7110 + p7111 + p6999 + p6998 + p6997 + p6996 + p6995 + p6994 + p6993 + p6992 + p6991 + p6990 + p6989 + p6988 + p6987 + p6986 + p6985 + p6984 + p6983 + p6982 + p6981 + p6980 + p6979 + p6978 + p6977 + p6976 + p6975 + p6974 + p6973 + p6972 + p6971 + p6970 + p6969 + p6968 + p6967 + p6966 + p6965 + p6964 + p6963 + p6962 + p6961 + p6960 + p6959 + p6958 + p6957 + p6956 + p6955 + p6954 + p6953 + p6952 + p6951 + p6950 + p6949 + p6948 + p6947 + p6946 + p6945 + p6944 + p6943 + p6942 + p6941 + p6940 + p6939 + p6938 + p6937 + p6936 + p6935 + p6934 + p6933 + p6932 + p6931 + p6930 + p6929 + p6928 + p6927 + p6926 + p6925 + p6924 + p6923 + p6922 + p6921 + p6920 + p6919 + p6918 + p6917 + p6916 + p6915 + p6914 + p6913 + p6912 + p6911 + p6910 + p6909 + p6908 + p6907 + p6906 + p6905 + p6904 + p6903 + p6902 + p6901 + p6900 + p6899 + p6898 + p6897 + p6896 + p6895 + p6894 + p6893 + p6892 + p6891 + p6890 + p6889 + p6888 + p6887 + p6886 + p6885 + p6884 + p6883 + p6882 + p6881 + p6880 + p6879 + p6878 + p6877 + p6876 + p6875 + p6874 + p6873 + p6872 + p6871 + p6870 + p6869 + p6868 + p6867 + p6866 + p6865 + p6864 + p6863 + p6862 + p6861 + p6860 + p6859 + p6858 + p6857 + p6856 + p6855 + p6854 + p6853 + p6852 + p6851 + p6850 + p6849 + p6848 + p6847 + p6846 + p6845 + p6844 + p6843 + p6842 + p6841 + p6840 + p6839 + p6838 + p6837 + p6836 + p6835 + p6834 + p6833 + p6832 + p6831 + p6830 + p6829 + p6828 + p6827 + p6826 + p6825 + p6824 + p6823 + p6822 + p6664 + p6665 + p6666 + p6667 + p6821 + p6668 + p6669 + p6820 + p6670 + p6671 + p6672 + p6673 + p6674 + p6675 + p6819 + p6676 + p6677 + p6678 + p6818 + p6679 + p6680 + p6681 + p6682 + p6683 + p6817 + p6684 + p6685 + p6686 + p6816 + p6687 + p6815 + p6688 + p6814 + p6689 + p6813 + p6812 + p6811 + p6690 + p6691 + p6810 + p6692 + p6809 + p6693 + p6808 + p6694 + p6807 + p6695 + p6696 + p6697 + p6698 + p6699 + p6806 + p6805 + p6804 + p6803 + p6802 + p6801 + p6800 + p6700 + p6701 + p6702 + p6703 + p6704 + p6705 + p6706 + p6707 + p6708 + p6709 + p6710 + p6711 + p6712 + p6713 + p6714 + p6715 + p6716 + p6717 + p6718 + p6719 + p6720 + p6721 + p6722 + p6723 + p6724 + p6725 + p6726 + p6727 + p6728 + p6729 + p6730 + p6731 + p6732 + p6733 + p6734 + p6735 + p6736 + p6737 + p6738 + p6739 + p6740 + p6741 + p6742 + p6743 + p6744 + p6745 + p6746 + p6747 + p6748 + p6749 + p6750 + p6751 + p6752 + p6753 + p6754 + p6755 + p6756 + p6757 + p6758 + p6759 + p6760 + p6761 + p6762 + p6763 + p6764 + p6765 + p6766 + p6767 + p6768 + p6769 + p6770 + p6771 + p6772 + p6773 + p6774 + p6775 + p6776 + p6777 + p6778 + p6779 + p6780 + p6781 + p6782 + p6783 + p6784 + p6785 + p6786 + p6787 + p6788 + p6789 + p6790 + p6791 + p6792 + p6793 + p6794 + p6795 + p6796 + p6797 + p6798 + p6799 <= 0)
lola: after: (42 <= 0)
lola: always false
lola: MAX(0) : MAX(p6647 + p6646 + p6645 + p6644 + p6643 + p6642 + p6641 + p6640 + p6639 + p6638 + p6637 + p6636 + p6635 + p6634 + p6633 + p6632 + p6631 + p6630 + p6629 + p6628 + p6627 + p6626 + p6625 + p6624 + p6623 + p6622 + p6621 + p6620 + p6619 + p6618 + p6617 + p6616 + p6615 + p6614 + p6613 + p6612 + p6611 + p6610 + p6609 + p6608 + p6607 + p6606 + p6605 + p6604 + p6603 + p6602 + p6601 + p6600 + p6599 + p6598 + p6597 + p6596 + p6595 + p6594 + p6593 + p6592) : MAX(p3208 + p3209 + p3210 + p3211 + p3212 + p3213 + p3214 + p3215) : MAX(0) : MAX(0) : MAX(p7119 + p7118 + p7117 + p7116 + p7115 + p7114 + p7113 + p7112) : MAX(0) : MAX(p3216 + p3217 + p3218 + p3219 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p3261 + p3262 + p3263 + p3264 + p3265 + p3266 + p3267 + p3268 + p3269 + p3270 + p3271) : MAX(p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p3207) : MAX(p6647 + p6646 + p6645 + p6644 + p6643 + p6642 + p6641 + p6640 + p6639 + p6638 + p6637 + p6636 + p6635 + p6634 + p6633 + p6632 + p6631 + p6630 + p6629 + p6628 + p6627 + p6626 + p6625 + p6624 + p6623 + p6622 + p6621 + p6620 + p6619 + p6618 + p6617 + p6616 + p6615 + p6614 + p6613 + p6612 + p6611 + p6610 + p6609 + p6608 + p6607 + p6606 + p6605 + p6604 + p6603 + p6602 + p6601 + p6600 + p6599 + p6598 + p6597 + p6596 + p6595 + p6594 + p6593 + p6592) : MAX(p6656 + p6657 + p6658 + p6659 + p6660 + p6661 + p6662 + p6663) : MAX(0) : MAX(0) : MAX(p6567 + p6566 + p6565 + p6564 + p6563 + p6562 + p6561 + p6560) : MAX(0) : MAX(0)
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-7-UpperBounds-0 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 1 will run for 235 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 42
lola: SUBRESULT
lola: result: 42
lola: produced by: state space
lola: The maximum value of the given expression is 42
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-7-UpperBounds-3 42 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 252 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-7-UpperBounds-4 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 42
lola: SUBRESULT
lola: result: 42
lola: produced by: state space
lola: The maximum value of the given expression is 42
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-7-UpperBounds-6 42 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 4 will run for 294 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p3216 + p3217 + p3218 + p3219 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p3261 + p3262 + p3263 + p3264 + p326... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p3216 + p3217 + p3218 + p3219 + p3220 + p3221 + p3222 + p3223 + p3224 + p3225 + p3226 + p3227 + p3228 + p3229 + p3230 + p3231 + p3232 + p3233 + p3234 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3241 + p3242 + p3243 + p3244 + p3245 + p3246 + p3247 + p3248 + p3249 + p3250 + p3251 + p3252 + p3253 + p3254 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p3261 + p3262 + p3263 + p3264 + p326... (shortened)
lola: processed formula length: 450
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-7-UpperBounds-7 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 321 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p3207)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p3200 + p3201 + p3202 + p3203 + p3204 + p3205 + p3206 + p3207)
lola: processed formula length: 66
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-7-UpperBounds-8 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 6 will run for 352 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p6656 + p6657 + p6658 + p6659 + p6660 + p6661 + p6662 + p6663)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p6656 + p6657 + p6658 + p6659 + p6660 + p6661 + p6662 + p6663)
lola: processed formula length: 66
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-7-UpperBounds-10 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 391 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-7-UpperBounds-11 7 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 440 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-7-UpperBounds-12 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 503 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-7-UpperBounds-14 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 10 will run for 587 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 42
lola: SUBRESULT
lola: result: 42
lola: produced by: state space
lola: The maximum value of the given expression is 42
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-7-UpperBounds-15 42 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 11 will run for 704 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p6567 + p6566 + p6565 + p6564 + p6563 + p6562 + p6561 + p6560)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p6567 + p6566 + p6565 + p6564 + p6563 + p6562 + p6561 + p6560)
lola: processed formula length: 66
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-7-UpperBounds-13 7 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 880 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p3208 + p3209 + p3210 + p3211 + p3212 + p3213 + p3214 + p3215)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p3208 + p3209 + p3210 + p3211 + p3212 + p3213 + p3214 + p3215)
lola: processed formula length: 66
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: ========================================
lola: Structural Bound: 7
lola: 1006 markings, 1630 edges, 201 markings/sec, 0 secs
lola: 8541 markings, 28513 edges, 1507 markings/sec, 5 secs
lola: 16535 markings, 64525 edges, 1599 markings/sec, 10 secs
lola: 24351 markings, 102890 edges, 1563 markings/sec, 15 secs
lola: 32550 markings, 141801 edges, 1640 markings/sec, 20 secs
lola: 40648 markings, 183347 edges, 1620 markings/sec, 25 secs
lola: 48285 markings, 216323 edges, 1527 markings/sec, 30 secs
lola: 56093 markings, 246987 edges, 1562 markings/sec, 35 secs
lola: 63859 markings, 284841 edges, 1553 markings/sec, 40 secs
lola: 71973 markings, 327534 edges, 1623 markings/sec, 45 secs
lola: 79615 markings, 363130 edges, 1528 markings/sec, 50 secs
lola: 87092 markings, 399401 edges, 1495 markings/sec, 55 secs
lola: 94737 markings, 438770 edges, 1529 markings/sec, 60 secs
lola: 102057 markings, 478539 edges, 1464 markings/sec, 65 secs
lola: 109388 markings, 514392 edges, 1466 markings/sec, 70 secs
lola: 116636 markings, 549581 edges, 1450 markings/sec, 75 secs
lola: 123930 markings, 593263 edges, 1459 markings/sec, 80 secs
lola: 131187 markings, 633154 edges, 1451 markings/sec, 85 secs
lola: 138632 markings, 676862 edges, 1489 markings/sec, 90 secs
lola: 146144 markings, 729757 edges, 1502 markings/sec, 95 secs
lola: 153730 markings, 771480 edges, 1517 markings/sec, 100 secs
lola: 161270 markings, 816468 edges, 1508 markings/sec, 105 secs
lola: 168913 markings, 870888 edges, 1529 markings/sec, 110 secs
lola: 176186 markings, 913865 edges, 1455 markings/sec, 115 secs
lola: 183365 markings, 950772 edges, 1436 markings/sec, 120 secs
lola: 191560 markings, 989839 edges, 1639 markings/sec, 125 secs
lola: 200140 markings, 1034348 edges, 1716 markings/sec, 130 secs
lola: 208952 markings, 1085129 edges, 1762 markings/sec, 135 secs
lola: 218038 markings, 1138524 edges, 1817 markings/sec, 140 secs
lola: 226196 markings, 1188447 edges, 1632 markings/sec, 145 secs
lola: 234064 markings, 1230536 edges, 1574 markings/sec, 150 secs
lola: 241893 markings, 1268956 edges, 1566 markings/sec, 155 secs
lola: 250629 markings, 1322052 edges, 1747 markings/sec, 160 secs
lola: 259581 markings, 1376527 edges, 1790 markings/sec, 165 secs
lola: 267878 markings, 1420573 edges, 1659 markings/sec, 170 secs
lola: 276474 markings, 1476228 edges, 1719 markings/sec, 175 secs
lola: 284795 markings, 1527362 edges, 1664 markings/sec, 180 secs
lola: 293085 markings, 1577709 edges, 1658 markings/sec, 185 secs
lola: 301405 markings, 1625540 edges, 1664 markings/sec, 190 secs
lola: 309778 markings, 1683836 edges, 1675 markings/sec, 195 secs
lola: 318174 markings, 1737636 edges, 1679 markings/sec, 200 secs
lola: 326347 markings, 1796144 edges, 1635 markings/sec, 205 secs
lola: 335103 markings, 1862470 edges, 1751 markings/sec, 210 secs
lola: 344266 markings, 1924011 edges, 1833 markings/sec, 215 secs
lola: 353172 markings, 1994681 edges, 1781 markings/sec, 220 secs
lola: 361569 markings, 2053485 edges, 1679 markings/sec, 225 secs
lola: 369933 markings, 2106090 edges, 1673 markings/sec, 230 secs
lola: 378650 markings, 2147739 edges, 1743 markings/sec, 235 secs
lola: 387735 markings, 2196698 edges, 1817 markings/sec, 240 secs
lola: 396857 markings, 2252019 edges, 1824 markings/sec, 245 secs
lola: 406232 markings, 2304408 edges, 1875 markings/sec, 250 secs
lola: 415674 markings, 2361930 edges, 1888 markings/sec, 255 secs
lola: 424544 markings, 2404858 edges, 1774 markings/sec, 260 secs
lola: 433323 markings, 2453420 edges, 1756 markings/sec, 265 secs
lola: 442603 markings, 2511520 edges, 1856 markings/sec, 270 secs
lola: 451567 markings, 2561873 edges, 1793 markings/sec, 275 secs
lola: 460276 markings, 2614355 edges, 1742 markings/sec, 280 secs
lola: 469049 markings, 2668857 edges, 1755 markings/sec, 285 secs
lola: 477805 markings, 2723906 edges, 1751 markings/sec, 290 secs
lola: 486742 markings, 2774613 edges, 1787 markings/sec, 295 secs
lola: 495574 markings, 2836396 edges, 1766 markings/sec, 300 secs
lola: 504675 markings, 2894979 edges, 1820 markings/sec, 305 secs
lola: 513479 markings, 2959125 edges, 1761 markings/sec, 310 secs
lola: 523102 markings, 3029958 edges, 1925 markings/sec, 315 secs
lola: 532434 markings, 3093366 edges, 1866 markings/sec, 320 secs
lola: 541506 markings, 3163607 edges, 1814 markings/sec, 325 secs
lola: 549629 markings, 3218648 edges, 1625 markings/sec, 330 secs
lola: 557693 markings, 3268132 edges, 1613 markings/sec, 335 secs
lola: 564726 markings, 3300889 edges, 1407 markings/sec, 340 secs
lola: 571891 markings, 3336546 edges, 1433 markings/sec, 345 secs
lola: 578752 markings, 3378355 edges, 1372 markings/sec, 350 secs
lola: 585549 markings, 3415603 edges, 1359 markings/sec, 355 secs
lola: 592272 markings, 3456007 edges, 1345 markings/sec, 360 secs
lola: 599502 markings, 3506553 edges, 1446 markings/sec, 365 secs
lola: 607149 markings, 3549290 edges, 1529 markings/sec, 370 secs
lola: 614819 markings, 3595075 edges, 1534 markings/sec, 375 secs
lola: 622541 markings, 3648414 edges, 1544 markings/sec, 380 secs
lola: 629447 markings, 3688822 edges, 1381 markings/sec, 385 secs
lola: 636820 markings, 3725979 edges, 1475 markings/sec, 390 secs
lola: 644115 markings, 3757825 edges, 1459 markings/sec, 395 secs
lola: 651262 markings, 3786734 edges, 1429 markings/sec, 400 secs
lola: 658439 markings, 3822852 edges, 1435 markings/sec, 405 secs
lola: 665664 markings, 3859987 edges, 1445 markings/sec, 410 secs
lola: 672815 markings, 3895850 edges, 1430 markings/sec, 415 secs
lola: 680189 markings, 3940334 edges, 1475 markings/sec, 420 secs
lola: 687387 markings, 3979771 edges, 1440 markings/sec, 425 secs
lola: 694507 markings, 4015519 edges, 1424 markings/sec, 430 secs
lola: 701610 markings, 4058261 edges, 1421 markings/sec, 435 secs
lola: 708647 markings, 4096622 edges, 1407 markings/sec, 440 secs
lola: 716020 markings, 4131331 edges, 1475 markings/sec, 445 secs
lola: 723241 markings, 4163318 edges, 1444 markings/sec, 450 secs
lola: 730626 markings, 4200131 edges, 1477 markings/sec, 455 secs
lola: 738219 markings, 4236038 edges, 1519 markings/sec, 460 secs
lola: 745575 markings, 4273194 edges, 1471 markings/sec, 465 secs
lola: 752390 markings, 4310828 edges, 1363 markings/sec, 470 secs
lola: 759385 markings, 4354061 edges, 1399 markings/sec, 475 secs
lola: 766576 markings, 4396745 edges, 1438 markings/sec, 480 secs
lola: 774819 markings, 4446004 edges, 1649 markings/sec, 485 secs
lola: 782960 markings, 4493497 edges, 1628 markings/sec, 490 secs
lola: 790982 markings, 4543188 edges, 1604 markings/sec, 495 secs
lola: 799256 markings, 4597876 edges, 1655 markings/sec, 500 secs
lola: 808013 markings, 4662333 edges, 1751 markings/sec, 505 secs
lola: 817539 markings, 4717823 edges, 1905 markings/sec, 510 secs
lola: 826896 markings, 4771872 edges, 1871 markings/sec, 515 secs
lola: 836072 markings, 4828278 edges, 1835 markings/sec, 520 secs
lola: 845273 markings, 4893289 edges, 1840 markings/sec, 525 secs
lola: 854124 markings, 4951604 edges, 1770 markings/sec, 530 secs
lola: 861656 markings, 4997424 edges, 1506 markings/sec, 535 secs
lola: 869352 markings, 5042718 edges, 1539 markings/sec, 540 secs
lola: 877005 markings, 5080616 edges, 1531 markings/sec, 545 secs
lola: 884847 markings, 5124813 edges, 1568 markings/sec, 550 secs
lola: 892784 markings, 5161419 edges, 1587 markings/sec, 555 secs
lola: 900826 markings, 5199407 edges, 1608 markings/sec, 560 secs
lola: 908883 markings, 5240993 edges, 1611 markings/sec, 565 secs
lola: 916640 markings, 5282325 edges, 1551 markings/sec, 570 secs
lola: 924609 markings, 5331991 edges, 1594 markings/sec, 575 secs
lola: 932940 markings, 5380318 edges, 1666 markings/sec, 580 secs
lola: 942429 markings, 5435518 edges, 1898 markings/sec, 585 secs
lola: 951700 markings, 5492298 edges, 1854 markings/sec, 590 secs
lola: 960691 markings, 5549502 edges, 1798 markings/sec, 595 secs
lola: 970037 markings, 5618756 edges, 1869 markings/sec, 600 secs
lola: 979584 markings, 5675802 edges, 1909 markings/sec, 605 secs
lola: 989494 markings, 5733587 edges, 1982 markings/sec, 610 secs
lola: 999088 markings, 5793372 edges, 1919 markings/sec, 615 secs
lola: 1008733 markings, 5859504 edges, 1929 markings/sec, 620 secs
lola: 1018162 markings, 5922735 edges, 1886 markings/sec, 625 secs
lola: 1025915 markings, 5969379 edges, 1551 markings/sec, 630 secs
lola: 1033828 markings, 6016083 edges, 1583 markings/sec, 635 secs
lola: 1041748 markings, 6055415 edges, 1584 markings/sec, 640 secs
lola: 1049541 markings, 6099024 edges, 1559 markings/sec, 645 secs
lola: 1056473 markings, 6127187 edges, 1386 markings/sec, 650 secs
lola: 1063206 markings, 6159643 edges, 1347 markings/sec, 655 secs
lola: 1070234 markings, 6194028 edges, 1406 markings/sec, 660 secs
lola: 1077446 markings, 6235149 edges, 1442 markings/sec, 665 secs
lola: 1084930 markings, 6273131 edges, 1497 markings/sec, 670 secs
lola: 1092454 markings, 6315171 edges, 1505 markings/sec, 675 secs
lola: 1099653 markings, 6349351 edges, 1440 markings/sec, 680 secs
lola: 1106791 markings, 6380809 edges, 1428 markings/sec, 685 secs
lola: 1114052 markings, 6419898 edges, 1452 markings/sec, 690 secs
lola: 1121652 markings, 6463661 edges, 1520 markings/sec, 695 secs
lola: 1128989 markings, 6502153 edges, 1467 markings/sec, 700 secs
lola: 1136256 markings, 6539076 edges, 1453 markings/sec, 705 secs
lola: 1143692 markings, 6583641 edges, 1487 markings/sec, 710 secs
lola: 1150991 markings, 6626590 edges, 1460 markings/sec, 715 secs
lola: 1158301 markings, 6666473 edges, 1462 markings/sec, 720 secs
lola: 1165625 markings, 6704424 edges, 1465 markings/sec, 725 secs
lola: 1173042 markings, 6750678 edges, 1483 markings/sec, 730 secs
lola: 1180671 markings, 6798126 edges, 1526 markings/sec, 735 secs
lola: 1188199 markings, 6845162 edges, 1506 markings/sec, 740 secs
lola: 1195814 markings, 6901860 edges, 1523 markings/sec, 745 secs
lola: 1203455 markings, 6948606 edges, 1528 markings/sec, 750 secs
lola: 1211082 markings, 6997602 edges, 1525 markings/sec, 755 secs
lola: 1218766 markings, 7055645 edges, 1537 markings/sec, 760 secs
lola: 1226154 markings, 7102810 edges, 1478 markings/sec, 765 secs
lola: 1233281 markings, 7142773 edges, 1425 markings/sec, 770 secs
lola: 1241442 markings, 7185687 edges, 1632 markings/sec, 775 secs
lola: 1249967 markings, 7234010 edges, 1705 markings/sec, 780 secs
lola: 1258587 markings, 7287284 edges, 1724 markings/sec, 785 secs
lola: 1267762 markings, 7346331 edges, 1835 markings/sec, 790 secs
lola: 1276618 markings, 7404151 edges, 1771 markings/sec, 795 secs
lola: 1285350 markings, 7454810 edges, 1746 markings/sec, 800 secs
lola: 1293841 markings, 7502594 edges, 1698 markings/sec, 805 secs
lola: 1302317 markings, 7557893 edges, 1695 markings/sec, 810 secs
lola: 1311163 markings, 7616448 edges, 1769 markings/sec, 815 secs
lola: 1319614 markings, 7666188 edges, 1690 markings/sec, 820 secs
lola: 1328120 markings, 7725237 edges, 1701 markings/sec, 825 secs
lola: 1336428 markings, 7781924 edges, 1662 markings/sec, 830 secs
lola: 1344763 markings, 7835661 edges, 1667 markings/sec, 835 secs
lola: 1352968 markings, 7887412 edges, 1641 markings/sec, 840 secs
lola: 1361091 markings, 7948410 edges, 1625 markings/sec, 845 secs
lola: 1369775 markings, 8008718 edges, 1737 markings/sec, 850 secs
lola: 1378027 markings, 8072553 edges, 1650 markings/sec, 855 secs
lola: 1386955 markings, 8142913 edges, 1786 markings/sec, 860 secs
lola: 1395791 markings, 8207633 edges, 1767 markings/sec, 865 secs
lola: 1404464 markings, 8280797 edges, 1735 markings/sec, 870 secs
lola: local time limit reached - aborting
lola:
preliminary result: 0 unknown unknown 42 0 unknown 42 0 0 unknown 0 7 0 7 0 42
lola: memory consumption: 201504 KB
lola: time consumption: 917 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 880 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p7119 + p7118 + p7117 + p7116 + p7115 + p7114 + p7113 + p7112)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p7119 + p7118 + p7117 + p7116 + p7115 + p7114 + p7113 + p7112)
lola: processed formula length: 66
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 439 markings, 438 edges

FORMULA NeoElection-COL-7-UpperBounds-5 7 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 14 will run for 1317 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p6647 + p6646 + p6645 + p6644 + p6643 + p6642 + p6641 + p6640 + p6639 + p6638 + p6637 + p6636 + p6635 + p6634 + p6633 + p6632 + p6631 + p6630 + p6629 + p6628 + p6627 + p6626 + p6625 + p6624 + p6623 + p6622 + p6621 + p6620 + p6619 + p6618 + p6617 + p6616 + p6615 + p6614 + p6613 + p6612 + p6611 + p6610 + p6609 + p6608 + p6607 + p6606 + p6605 + p6604 + p6603 + p6602 + p6601 + p6600 + p6599 + p659... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p6647 + p6646 + p6645 + p6644 + p6643 + p6642 + p6641 + p6640 + p6639 + p6638 + p6637 + p6636 + p6635 + p6634 + p6633 + p6632 + p6631 + p6630 + p6629 + p6628 + p6627 + p6626 + p6625 + p6624 + p6623 + p6622 + p6621 + p6620 + p6619 + p6618 + p6617 + p6616 + p6615 + p6614 + p6613 + p6612 + p6611 + p6610 + p6609 + p6608 + p6607 + p6606 + p6605 + p6604 + p6603 + p6602 + p6601 + p6600 + p6599 + p659... (shortened)
lola: processed formula length: 450
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 8 markings, 7 edges

FORMULA NeoElection-COL-7-UpperBounds-1 7 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 15 will run for 2631 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p6647 + p6646 + p6645 + p6644 + p6643 + p6642 + p6641 + p6640 + p6639 + p6638 + p6637 + p6636 + p6635 + p6634 + p6633 + p6632 + p6631 + p6630 + p6629 + p6628 + p6627 + p6626 + p6625 + p6624 + p6623 + p6622 + p6621 + p6620 + p6619 + p6618 + p6617 + p6616 + p6615 + p6614 + p6613 + p6612 + p6611 + p6610 + p6609 + p6608 + p6607 + p6606 + p6605 + p6604 + p6603 + p6602 + p6601 + p6600 + p6599 + p659... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p6647 + p6646 + p6645 + p6644 + p6643 + p6642 + p6641 + p6640 + p6639 + p6638 + p6637 + p6636 + p6635 + p6634 + p6633 + p6632 + p6631 + p6630 + p6629 + p6628 + p6627 + p6626 + p6625 + p6624 + p6623 + p6622 + p6621 + p6620 + p6619 + p6618 + p6617 + p6616 + p6615 + p6614 + p6613 + p6612 + p6611 + p6610 + p6609 + p6608 + p6607 + p6606 + p6605 + p6604 + p6603 + p6602 + p6601 + p6600 + p6599 + p659... (shortened)
lola: processed formula length: 450
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: SUBRESULT
lola: result: 7
lola: produced by: state space
lola: The maximum value of the given expression is 7
lola: 8 markings, 7 edges
lola: ========================================

FORMULA NeoElection-COL-7-UpperBounds-9 7 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: MAX(p3208 + p3209 + p3210 + p3211 + p3212 + p3213 + p3214 + p3215)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p3208 + p3209 + p3210 + p3211 + p3212 + p3213 + p3214 + p3215)
lola: processed formula length: 66
lola: 0 rewrites
lola: closed formula file NeoElection-COL-7-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 7
lola: 1246 markings, 2297 edges, 249 markings/sec, 0 secs
lola: 8697 markings, 29102 edges, 1490 markings/sec, 5 secs
lola: 16291 markings, 63349 edges, 1519 markings/sec, 10 secs
lola: 23522 markings, 97900 edges, 1446 markings/sec, 15 secs
lola: 30631 markings, 132921 edges, 1422 markings/sec, 20 secs
lola: 37747 markings, 168832 edges, 1423 markings/sec, 25 secs
lola: 44836 markings, 203598 edges, 1418 markings/sec, 30 secs
lola: 52035 markings, 231087 edges, 1440 markings/sec, 35 secs
lola: 59207 markings, 261620 edges, 1434 markings/sec, 40 secs
lola: 66628 markings, 299880 edges, 1484 markings/sec, 45 secs
lola: 73881 markings, 337202 edges, 1451 markings/sec, 50 secs
lola: 80898 markings, 367899 edges, 1403 markings/sec, 55 secs
lola: 88136 markings, 404860 edges, 1448 markings/sec, 60 secs
lola: 95619 markings, 442501 edges, 1497 markings/sec, 65 secs
lola: 102869 markings, 484437 edges, 1450 markings/sec, 70 secs
lola: 110249 markings, 517585 edges, 1476 markings/sec, 75 secs
lola: 117305 markings, 552835 edges, 1411 markings/sec, 80 secs
lola: 124582 markings, 597433 edges, 1455 markings/sec, 85 secs
lola: 131972 markings, 636806 edges, 1478 markings/sec, 90 secs
lola: 139357 markings, 680970 edges, 1477 markings/sec, 95 secs
lola: 146421 markings, 731620 edges, 1413 markings/sec, 100 secs
lola: 153256 markings, 769037 edges, 1367 markings/sec, 105 secs
lola: 160737 markings, 813498 edges, 1496 markings/sec, 110 secs
lola: 168408 markings, 867737 edges, 1534 markings/sec, 115 secs
lola: 175718 markings, 911141 edges, 1462 markings/sec, 120 secs
lola: 182951 markings, 948598 edges, 1447 markings/sec, 125 secs
lola: 191144 markings, 987733 edges, 1639 markings/sec, 130 secs
lola: 198472 markings, 1026422 edges, 1466 markings/sec, 135 secs
lola: 206404 markings, 1069768 edges, 1586 markings/sec, 140 secs
lola: 214513 markings, 1119110 edges, 1622 markings/sec, 145 secs
lola: 222996 markings, 1169165 edges, 1697 markings/sec, 150 secs
lola: 231116 markings, 1216600 edges, 1624 markings/sec, 155 secs
lola: 239217 markings, 1255210 edges, 1620 markings/sec, 160 secs
lola: 247124 markings, 1299063 edges, 1581 markings/sec, 165 secs
lola: 255359 markings, 1349475 edges, 1647 markings/sec, 170 secs
lola: 263432 markings, 1397676 edges, 1615 markings/sec, 175 secs
lola: 271248 markings, 1440897 edges, 1563 markings/sec, 180 secs
lola: 279385 markings, 1492963 edges, 1627 markings/sec, 185 secs
lola: 287315 markings, 1543177 edges, 1586 markings/sec, 190 secs
lola: 295246 markings, 1589675 edges, 1586 markings/sec, 195 secs
lola: 303075 markings, 1635804 edges, 1566 markings/sec, 200 secs
lola: 311013 markings, 1692057 edges, 1588 markings/sec, 205 secs
lola: 319120 markings, 1744300 edges, 1621 markings/sec, 210 secs
lola: 326932 markings, 1800514 edges, 1562 markings/sec, 215 secs
lola: 335160 markings, 1862822 edges, 1646 markings/sec, 220 secs
lola: 343766 markings, 1920677 edges, 1721 markings/sec, 225 secs
lola: 351951 markings, 1983832 edges, 1637 markings/sec, 230 secs
lola: 359834 markings, 2040560 edges, 1577 markings/sec, 235 secs
lola: 367712 markings, 2091328 edges, 1576 markings/sec, 240 secs
lola: 376081 markings, 2135194 edges, 1674 markings/sec, 245 secs
lola: 384817 markings, 2180660 edges, 1747 markings/sec, 250 secs
lola: 393610 markings, 2229940 edges, 1759 markings/sec, 255 secs
lola: 403038 markings, 2286165 edges, 1886 markings/sec, 260 secs
lola: 412069 markings, 2340728 edges, 1806 markings/sec, 265 secs
lola: 421046 markings, 2388612 edges, 1795 markings/sec, 270 secs
lola: 429874 markings, 2433582 edges, 1766 markings/sec, 275 secs
lola: 439160 markings, 2489716 edges, 1857 markings/sec, 280 secs
lola: 448419 markings, 2545485 edges, 1852 markings/sec, 285 secs
lola: 457376 markings, 2595426 edges, 1791 markings/sec, 290 secs
lola: 466539 markings, 2652135 edges, 1833 markings/sec, 295 secs
lola: 475207 markings, 2709728 edges, 1734 markings/sec, 300 secs
lola: 484388 markings, 2760495 edges, 1836 markings/sec, 305 secs
lola: 493177 markings, 2818304 edges, 1758 markings/sec, 310 secs
lola: 502302 markings, 2879448 edges, 1825 markings/sec, 315 secs
lola: 511156 markings, 2940447 edges, 1771 markings/sec, 320 secs
lola: 520443 markings, 3011625 edges, 1857 markings/sec, 325 secs
lola: 530362 markings, 3078655 edges, 1984 markings/sec, 330 secs
lola: 540021 markings, 3154857 edges, 1932 markings/sec, 335 secs
lola: 548847 markings, 3214703 edges, 1765 markings/sec, 340 secs
lola: 557613 markings, 3267799 edges, 1753 markings/sec, 345 secs
lola: 565147 markings, 3302880 edges, 1507 markings/sec, 350 secs
lola: 572283 markings, 3339060 edges, 1427 markings/sec, 355 secs
lola: 578840 markings, 3378650 edges, 1311 markings/sec, 360 secs
lola: 585668 markings, 3416278 edges, 1366 markings/sec, 365 secs
lola: 592316 markings, 3456291 edges, 1330 markings/sec, 370 secs
lola: 599132 markings, 3503820 edges, 1363 markings/sec, 375 secs
lola: 606003 markings, 3543456 edges, 1374 markings/sec, 380 secs
lola: 613163 markings, 3585206 edges, 1432 markings/sec, 385 secs
lola: 620531 markings, 3636134 edges, 1474 markings/sec, 390 secs
lola: 627076 markings, 3674320 edges, 1309 markings/sec, 395 secs
lola: 633909 markings, 3710215 edges, 1367 markings/sec, 400 secs
lola: 641393 markings, 3746016 edges, 1497 markings/sec, 405 secs
lola: 648995 markings, 3776979 edges, 1520 markings/sec, 410 secs
lola: 656255 markings, 3810728 edges, 1452 markings/sec, 415 secs
lola: 663179 markings, 3846526 edges, 1385 markings/sec, 420 secs
lola: 670273 markings, 3882735 edges, 1419 markings/sec, 425 secs
lola: 676805 markings, 3918567 edges, 1306 markings/sec, 430 secs
lola: 683848 markings, 3961164 edges, 1409 markings/sec, 435 secs
lola: 691571 markings, 4000560 edges, 1545 markings/sec, 440 secs
lola: 698788 markings, 4039965 edges, 1443 markings/sec, 445 secs
lola: 705970 markings, 4082671 edges, 1436 markings/sec, 450 secs
lola: 712902 markings, 4119276 edges, 1386 markings/sec, 455 secs
lola: 719843 markings, 4149915 edges, 1388 markings/sec, 460 secs
lola: 726700 markings, 4179503 edges, 1371 markings/sec, 465 secs
lola: 733850 markings, 4214383 edges, 1430 markings/sec, 470 secs
lola: 740865 markings, 4248950 edges, 1403 markings/sec, 475 secs
lola: 747725 markings, 4285814 edges, 1372 markings/sec, 480 secs
lola: 754595 markings, 4323459 edges, 1374 markings/sec, 485 secs
lola: 761700 markings, 4370325 edges, 1421 markings/sec, 490 secs
lola: 769180 markings, 4411251 edges, 1496 markings/sec, 495 secs
lola: 777469 markings, 4459860 edges, 1658 markings/sec, 500 secs
lola: 785615 markings, 4508247 edges, 1629 markings/sec, 505 secs
lola: 794158 markings, 4561857 edges, 1709 markings/sec, 510 secs
lola: 803092 markings, 4626320 edges, 1787 markings/sec, 515 secs
lola: 812123 markings, 4684300 edges, 1806 markings/sec, 520 secs
lola: 821745 markings, 4740338 edges, 1924 markings/sec, 525 secs
lola: 831004 markings, 4797071 edges, 1852 markings/sec, 530 secs
lola: 840028 markings, 4854928 edges, 1805 markings/sec, 535 secs
lola: 849364 markings, 4924141 edges, 1867 markings/sec, 540 secs
lola: 857152 markings, 4969057 edges, 1558 markings/sec, 545 secs
lola: 864631 markings, 5015440 edges, 1496 markings/sec, 550 secs
lola: 872110 markings, 5054675 edges, 1496 markings/sec, 555 secs
lola: 879677 markings, 5096104 edges, 1513 markings/sec, 560 secs
lola: 887460 markings, 5135711 edges, 1557 markings/sec, 565 secs
lola: 895510 markings, 5175662 edges, 1610 markings/sec, 570 secs
lola: 903461 markings, 5213869 edges, 1590 markings/sec, 575 secs
lola: 911166 markings, 5253061 edges, 1541 markings/sec, 580 secs
lola: 918808 markings, 5295122 edges, 1528 markings/sec, 585 secs
lola: 926685 markings, 5346358 edges, 1575 markings/sec, 590 secs
lola: 935200 markings, 5393983 edges, 1703 markings/sec, 595 secs
lola: 944573 markings, 5448459 edges, 1875 markings/sec, 600 secs
lola: 953844 markings, 5505293 edges, 1854 markings/sec, 605 secs
lola: 962670 markings, 5563088 edges, 1765 markings/sec, 610 secs
lola: 971733 markings, 5630407 edges, 1813 markings/sec, 615 secs
lola: 981473 markings, 5687008 edges, 1948 markings/sec, 620 secs
lola: 991391 markings, 5745243 edges, 1984 markings/sec, 625 secs
lola: 1000774 markings, 5802893 edges, 1877 markings/sec, 630 secs
lola: 1009963 markings, 5867854 edges, 1838 markings/sec, 635 secs
lola: 1018382 markings, 5923836 edges, 1684 markings/sec, 640 secs
lola: 1025461 markings, 5966707 edges, 1416 markings/sec, 645 secs
lola: 1032737 markings, 6010729 edges, 1455 markings/sec, 650 secs
lola: 1040591 markings, 6048938 edges, 1571 markings/sec, 655 secs
lola: 1048749 markings, 6095430 edges, 1632 markings/sec, 660 secs
lola: 1056423 markings, 6127009 edges, 1535 markings/sec, 665 secs
lola: 1063885 markings, 6162565 edges, 1492 markings/sec, 670 secs
lola: 1071376 markings, 6200159 edges, 1498 markings/sec, 675 secs
lola: 1079010 markings, 6242969 edges, 1527 markings/sec, 680 secs
lola: 1086706 markings, 6283442 edges, 1539 markings/sec, 685 secs
lola: 1094440 markings, 6326136 edges, 1547 markings/sec, 690 secs
lola: 1101947 markings, 6359252 edges, 1501 markings/sec, 695 secs
lola: 1109429 markings, 6394551 edges, 1496 markings/sec, 700 secs
lola: 1117058 markings, 6437651 edges, 1526 markings/sec, 705 secs
lola: 1124769 markings, 6481039 edges, 1542 markings/sec, 710 secs
lola: 1132170 markings, 6516701 edges, 1480 markings/sec, 715 secs
lola: 1139550 markings, 6559082 edges, 1476 markings/sec, 720 secs
lola: 1146943 markings, 6600480 edges, 1479 markings/sec, 725 secs
lola: 1153880 markings, 6645185 edges, 1387 markings/sec, 730 secs
lola: 1160873 markings, 6678808 edges, 1399 markings/sec, 735 secs
lola: 1168051 markings, 6718256 edges, 1436 markings/sec, 740 secs
lola: 1174586 markings, 6761861 edges, 1307 markings/sec, 745 secs
lola: 1181583 markings, 6803086 edges, 1399 markings/sec, 750 secs
lola: 1188269 markings, 6845552 edges, 1337 markings/sec, 755 secs
lola: 1194949 markings, 6894276 edges, 1336 markings/sec, 760 secs
lola: 1201995 markings, 6940548 edges, 1409 markings/sec, 765 secs
lola: 1209343 markings, 6985655 edges, 1470 markings/sec, 770 secs
lola: 1216540 markings, 7038069 edges, 1439 markings/sec, 775 secs
lola: 1223095 markings, 7081658 edges, 1311 markings/sec, 780 secs
lola: 1230451 markings, 7125972 edges, 1471 markings/sec, 785 secs
lola: 1237494 markings, 7165659 edges, 1409 markings/sec, 790 secs
lola: 1245182 markings, 7205491 edges, 1538 markings/sec, 795 secs
lola: 1253176 markings, 7253193 edges, 1599 markings/sec, 800 secs
lola: 1261095 markings, 7305569 edges, 1584 markings/sec, 805 secs
lola: 1269653 markings, 7358346 edges, 1712 markings/sec, 810 secs
lola: 1277647 markings, 7410369 edges, 1599 markings/sec, 815 secs
lola: 1285562 markings, 7456032 edges, 1583 markings/sec, 820 secs
lola: 1293218 markings, 7498375 edges, 1531 markings/sec, 825 secs
lola: 1301004 markings, 7549732 edges, 1557 markings/sec, 830 secs
lola: 1309048 markings, 7603338 edges, 1609 markings/sec, 835 secs
lola: 1316871 markings, 7649011 edges, 1565 markings/sec, 840 secs
lola: 1325074 markings, 7703477 edges, 1641 markings/sec, 845 secs
lola: 1333599 markings, 7760618 edges, 1705 markings/sec, 850 secs
lola: 1341759 markings, 7816661 edges, 1632 markings/sec, 855 secs
lola: 1350121 markings, 7868156 edges, 1672 markings/sec, 860 secs
lola: 1358312 markings, 7926673 edges, 1638 markings/sec, 865 secs
lola: 1366325 markings, 7984612 edges, 1603 markings/sec, 870 secs
lola: 1373804 markings, 8038791 edges, 1496 markings/sec, 875 secs
lola: 1381414 markings, 8103103 edges, 1522 markings/sec, 880 secs
lola: 1389211 markings, 8158319 edges, 1559 markings/sec, 885 secs
lola: 1397020 markings, 8216485 edges, 1562 markings/sec, 890 secs
lola: 1405090 markings, 8284726 edges, 1614 markings/sec, 895 secs
lola: 1412565 markings, 8340138 edges, 1495 markings/sec, 900 secs
lola: 1420205 markings, 8391410 edges, 1528 markings/sec, 905 secs
lola: 1427954 markings, 8431754 edges, 1550 markings/sec, 910 secs
lola: 1435975 markings, 8477928 edges, 1604 markings/sec, 915 secs
lola: 1444038 markings, 8527987 edges, 1613 markings/sec, 920 secs
lola: 1452556 markings, 8582741 edges, 1704 markings/sec, 925 secs
lola: 1461764 markings, 8643315 edges, 1842 markings/sec, 930 secs
lola: 1470744 markings, 8695221 edges, 1796 markings/sec, 935 secs
lola: 1479430 markings, 8744206 edges, 1737 markings/sec, 940 secs
lola: 1488466 markings, 8803131 edges, 1807 markings/sec, 945 secs
lola: 1497605 markings, 8863774 edges, 1828 markings/sec, 950 secs
lola: 1506289 markings, 8914608 edges, 1737 markings/sec, 955 secs
lola: 1515125 markings, 8975436 edges, 1767 markings/sec, 960 secs
lola: 1523747 markings, 9035566 edges, 1724 markings/sec, 965 secs
lola: 1532306 markings, 9088091 edges, 1712 markings/sec, 970 secs
lola: 1540748 markings, 9144222 edges, 1688 markings/sec, 975 secs
lola: 1549700 markings, 9210267 edges, 1790 markings/sec, 980 secs
lola: 1558668 markings, 9274548 edges, 1794 markings/sec, 985 secs
lola: 1567386 markings, 9348232 edges, 1744 markings/sec, 990 secs
lola: 1576752 markings, 9414224 edges, 1873 markings/sec, 995 secs
lola: 1585666 markings, 9483999 edges, 1783 markings/sec, 1000 secs
lola: 1594648 markings, 9555401 edges, 1796 markings/sec, 1005 secs
lola: 1603342 markings, 9615784 edges, 1739 markings/sec, 1010 secs
lola: 1611385 markings, 9662806 edges, 1609 markings/sec, 1015 secs
lola: 1618493 markings, 9700158 edges, 1422 markings/sec, 1020 secs
lola: 1625503 markings, 9742676 edges, 1402 markings/sec, 1025 secs
lola: 1632811 markings, 9787966 edges, 1462 markings/sec, 1030 secs
lola: 1640120 markings, 9833737 edges, 1462 markings/sec, 1035 secs
lola: 1647282 markings, 9884326 edges, 1432 markings/sec, 1040 secs
lola: 1654207 markings, 9930672 edges, 1385 markings/sec, 1045 secs
lola: 1661040 markings, 9972760 edges, 1367 markings/sec, 1050 secs
lola: 1667963 markings, 10020762 edges, 1385 markings/sec, 1055 secs
lola: 1674914 markings, 10068381 edges, 1390 markings/sec, 1060 secs
lola: 1682035 markings, 10111889 edges, 1424 markings/sec, 1065 secs
lola: 1688945 markings, 10151409 edges, 1382 markings/sec, 1070 secs
lola: 1696157 markings, 10182673 edges, 1442 markings/sec, 1075 secs
lola: 1702726 markings, 10214667 edges, 1314 markings/sec, 1080 secs
lola: 1709346 markings, 10251932 edges, 1324 markings/sec, 1085 secs
lola: 1716414 markings, 10290770 edges, 1414 markings/sec, 1090 secs
lola: 1723057 markings, 10327355 edges, 1329 markings/sec, 1095 secs
lola: 1729606 markings, 10369976 edges, 1310 markings/sec, 1100 secs
lola: 1736575 markings, 10411862 edges, 1394 markings/sec, 1105 secs
lola: 1743488 markings, 10450178 edges, 1383 markings/sec, 1110 secs
lola: 1750202 markings, 10492020 edges, 1343 markings/sec, 1115 secs
lola: 1757179 markings, 10535284 edges, 1395 markings/sec, 1120 secs
lola: 1764480 markings, 10574796 edges, 1460 markings/sec, 1125 secs
lola: 1771247 markings, 10609117 edges, 1353 markings/sec, 1130 secs
lola: 1777965 markings, 10634605 edges, 1344 markings/sec, 1135 secs
lola: 1784740 markings, 10666369 edges, 1355 markings/sec, 1140 secs
lola: 1791737 markings, 10699968 edges, 1399 markings/sec, 1145 secs
lola: 1798856 markings, 10739211 edges, 1424 markings/sec, 1150 secs
lola: 1806183 markings, 10775350 edges, 1465 markings/sec, 1155 secs
lola: 1813506 markings, 10815334 edges, 1465 markings/sec, 1160 secs
lola: 1820172 markings, 10846257 edges, 1333 markings/sec, 1165 secs
lola: 1826750 markings, 10873506 edges, 1316 markings/sec, 1170 secs
lola: 1833345 markings, 10906733 edges, 1319 markings/sec, 1175 secs
lola: 1840108 markings, 10944189 edges, 1353 markings/sec, 1180 secs
lola: 1846775 markings, 10981162 edges, 1333 markings/sec, 1185 secs
lola: 1853368 markings, 11011036 edges, 1319 markings/sec, 1190 secs
lola: 1860502 markings, 11050820 edges, 1427 markings/sec, 1195 secs
lola: 1867213 markings, 11086732 edges, 1342 markings/sec, 1200 secs
lola: 1873694 markings, 11125605 edges, 1296 markings/sec, 1205 secs
lola: 1880263 markings, 11160002 edges, 1314 markings/sec, 1210 secs
lola: 1886889 markings, 11192898 edges, 1325 markings/sec, 1215 secs
lola: 1893813 markings, 11235280 edges, 1385 markings/sec, 1220 secs
lola: 1900683 markings, 11276822 edges, 1374 markings/sec, 1225 secs
lola: 1907765 markings, 11319499 edges, 1416 markings/sec, 1230 secs
lola: 1914411 markings, 11365839 edges, 1329 markings/sec, 1235 secs
lola: 1921644 markings, 11414175 edges, 1447 markings/sec, 1240 secs
lola: 1929154 markings, 11458942 edges, 1502 markings/sec, 1245 secs
lola: 1936302 markings, 11509021 edges, 1430 markings/sec, 1250 secs
lola: 1942927 markings, 11553353 edges, 1325 markings/sec, 1255 secs
lola: 1949491 markings, 11593968 edges, 1313 markings/sec, 1260 secs
lola: 1956144 markings, 11631879 edges, 1331 markings/sec, 1265 secs
lola: 1964337 markings, 11671904 edges, 1639 markings/sec, 1270 secs
lola: 1973202 markings, 11722606 edges, 1773 markings/sec, 1275 secs
lola: 1982031 markings, 11778235 edges, 1766 markings/sec, 1280 secs
lola: 1991110 markings, 11832924 edges, 1816 markings/sec, 1285 secs
lola: 1999964 markings, 11889736 edges, 1771 markings/sec, 1290 secs
lola: 2008573 markings, 11936182 edges, 1722 markings/sec, 1295 secs
lola: 2017217 markings, 11984911 edges, 1729 markings/sec, 1300 secs
lola: 2025981 markings, 12041186 edges, 1753 markings/sec, 1305 secs
lola: 2034581 markings, 12095590 edges, 1720 markings/sec, 1310 secs
lola: 2043001 markings, 12145259 edges, 1684 markings/sec, 1315 secs
lola: 2051575 markings, 12202133 edges, 1715 markings/sec, 1320 secs
lola: 2059804 markings, 12259388 edges, 1646 markings/sec, 1325 secs
lola: 2068207 markings, 12308637 edges, 1681 markings/sec, 1330 secs
lola: 2076319 markings, 12361172 edges, 1622 markings/sec, 1335 secs
lola: 2084853 markings, 12422711 edges, 1707 markings/sec, 1340 secs
lola: 2093320 markings, 12482366 edges, 1693 markings/sec, 1345 secs
lola: 2101622 markings, 12549171 edges, 1660 markings/sec, 1350 secs
lola: 2110241 markings, 12611346 edges, 1724 markings/sec, 1355 secs
lola: 2118781 markings, 12673658 edges, 1708 markings/sec, 1360 secs
lola: 2127561 markings, 12744610 edges, 1756 markings/sec, 1365 secs
lola: 2136003 markings, 12803935 edges, 1688 markings/sec, 1370 secs
lola: 2144697 markings, 12858685 edges, 1739 markings/sec, 1375 secs
lola: 2153764 markings, 12906004 edges, 1813 markings/sec, 1380 secs
lola: 2162902 markings, 12959434 edges, 1828 markings/sec, 1385 secs
lola: 2172361 markings, 13019885 edges, 1892 markings/sec, 1390 secs
lola: 2181925 markings, 13081253 edges, 1913 markings/sec, 1395 secs
lola: 2190865 markings, 13131442 edges, 1788 markings/sec, 1400 secs
lola: 2199963 markings, 13180591 edges, 1820 markings/sec, 1405 secs
lola: 2208953 markings, 13237837 edges, 1798 markings/sec, 1410 secs
lola: 2218412 markings, 13299042 edges, 1892 markings/sec, 1415 secs
lola: 2227154 markings, 13348597 edges, 1748 markings/sec, 1420 secs
lola: 2235942 markings, 13407689 edges, 1758 markings/sec, 1425 secs
lola: 2244677 markings, 13465934 edges, 1747 markings/sec, 1430 secs
lola: 2253417 markings, 13518785 edges, 1748 markings/sec, 1435 secs
lola: 2261755 markings, 13572823 edges, 1668 markings/sec, 1440 secs
lola: 2270425 markings, 13635303 edges, 1734 markings/sec, 1445 secs
lola: 2279407 markings, 13698710 edges, 1796 markings/sec, 1450 secs
lola: 2288262 markings, 13771737 edges, 1771 markings/sec, 1455 secs
lola: 2297427 markings, 13835419 edges, 1833 markings/sec, 1460 secs
lola: 2306491 markings, 13904260 edges, 1813 markings/sec, 1465 secs
lola: 2315384 markings, 13973777 edges, 1779 markings/sec, 1470 secs
lola: 2324139 markings, 14033979 edges, 1751 markings/sec, 1475 secs
lola: 2331904 markings, 14079491 edges, 1553 markings/sec, 1480 secs
lola: 2338435 markings, 14112151 edges, 1306 markings/sec, 1485 secs
lola: 2344744 markings, 14147646 edges, 1262 markings/sec, 1490 secs
lola: 2351461 markings, 14189410 edges, 1343 markings/sec, 1495 secs
lola: 2358855 markings, 14234528 edges, 1479 markings/sec, 1500 secs
lola: 2365321 markings, 14275742 edges, 1293 markings/sec, 1505 secs
lola: 2372452 markings, 14326947 edges, 1426 markings/sec, 1510 secs
lola: 2380082 markings, 14372747 edges, 1526 markings/sec, 1515 secs
lola: 2387276 markings, 14419072 edges, 1439 markings/sec, 1520 secs
lola: 2394755 markings, 14471456 edges, 1496 markings/sec, 1525 secs
lola: 2401978 markings, 14516542 edges, 1445 markings/sec, 1530 secs
lola: 2409248 markings, 14556036 edges, 1454 markings/sec, 1535 secs
lola: 2416499 markings, 14587800 edges, 1450 markings/sec, 1540 secs
lola: 2423714 markings, 14620864 edges, 1443 markings/sec, 1545 secs
lola: 2431033 markings, 14661383 edges, 1464 markings/sec, 1550 secs
lola: 2438192 markings, 14698789 edges, 1432 markings/sec, 1555 secs
lola: 2445450 markings, 14739340 edges, 1452 markings/sec, 1560 secs
lola: 2452861 markings, 14787771 edges, 1482 markings/sec, 1565 secs
lola: 2460239 markings, 14827164 edges, 1476 markings/sec, 1570 secs
lola: 2467696 markings, 14869109 edges, 1491 markings/sec, 1575 secs
lola: 2475322 markings, 14919504 edges, 1525 markings/sec, 1580 secs
lola: 2482477 markings, 14958538 edges, 1431 markings/sec, 1585 secs
lola: 2489580 markings, 14992638 edges, 1421 markings/sec, 1590 secs
lola: 2496884 markings, 15025537 edges, 1461 markings/sec, 1595 secs
lola: 2504372 markings, 15062825 edges, 1498 markings/sec, 1600 secs
lola: 2511653 markings, 15098309 edges, 1456 markings/sec, 1605 secs
lola: 2518792 markings, 15135779 edges, 1428 markings/sec, 1610 secs
lola: 2526032 markings, 15175628 edges, 1448 markings/sec, 1615 secs
lola: 2533389 markings, 15223910 edges, 1471 markings/sec, 1620 secs
lola: 2541359 markings, 15267929 edges, 1594 markings/sec, 1625 secs
lola: 2549954 markings, 15317876 edges, 1719 markings/sec, 1630 secs
lola: 2558433 markings, 15369847 edges, 1696 markings/sec, 1635 secs
lola: 2566768 markings, 15422491 edges, 1667 markings/sec, 1640 secs
lola: 2575378 markings, 15484890 edges, 1722 markings/sec, 1645 secs
lola: 2584176 markings, 15540022 edges, 1760 markings/sec, 1650 secs
lola: 2593536 markings, 15594461 edges, 1872 markings/sec, 1655 secs
lola: 2602624 markings, 15650087 edges, 1818 markings/sec, 1660 secs
lola: 2611402 markings, 15706722 edges, 1756 markings/sec, 1665 secs
lola: 2620383 markings, 15773407 edges, 1796 markings/sec, 1670 secs
lola: 2628046 markings, 15817966 edges, 1533 markings/sec, 1675 secs
lola: 2635546 markings, 15864369 edges, 1500 markings/sec, 1680 secs
lola: 2642936 markings, 15903924 edges, 1478 markings/sec, 1685 secs
lola: 2650542 markings, 15945348 edges, 1521 markings/sec, 1690 secs
lola: 2658073 markings, 15984756 edges, 1506 markings/sec, 1695 secs
lola: 2665763 markings, 16023708 edges, 1538 markings/sec, 1700 secs
lola: 2673238 markings, 16062144 edges, 1495 markings/sec, 1705 secs
lola: 2680684 markings, 16102282 edges, 1489 markings/sec, 1710 secs
lola: 2687826 markings, 16143037 edges, 1428 markings/sec, 1715 secs
lola: 2695261 markings, 16191708 edges, 1487 markings/sec, 1720 secs
lola: 2702995 markings, 16239756 edges, 1547 markings/sec, 1725 secs
lola: 2711752 markings, 16295024 edges, 1751 markings/sec, 1730 secs
lola: 2720310 markings, 16347288 edges, 1712 markings/sec, 1735 secs
lola: 2728603 markings, 16401822 edges, 1659 markings/sec, 1740 secs
lola: 2736737 markings, 16462251 edges, 1627 markings/sec, 1745 secs
lola: 2745334 markings, 16524198 edges, 1719 markings/sec, 1750 secs
lola: 2754532 markings, 16581690 edges, 1840 markings/sec, 1755 secs
lola: 2763304 markings, 16635224 edges, 1754 markings/sec, 1760 secs
lola: 2772108 markings, 16692553 edges, 1761 markings/sec, 1765 secs
lola: 2780893 markings, 16757923 edges, 1757 markings/sec, 1770 secs
lola: 2789371 markings, 16817624 edges, 1696 markings/sec, 1775 secs
lola: 2796497 markings, 16862188 edges, 1425 markings/sec, 1780 secs
lola: 2803818 markings, 16909700 edges, 1464 markings/sec, 1785 secs
lola: 2811164 markings, 16947577 edges, 1469 markings/sec, 1790 secs
lola: 2818812 markings, 16994153 edges, 1530 markings/sec, 1795 secs
lola: 2826386 markings, 17029520 edges, 1515 markings/sec, 1800 secs
lola: 2834288 markings, 17068220 edges, 1580 markings/sec, 1805 secs
lola: 2841957 markings, 17105639 edges, 1534 markings/sec, 1810 secs
lola: 2849553 markings, 17145961 edges, 1519 markings/sec, 1815 secs
lola: 2857099 markings, 17191025 edges, 1509 markings/sec, 1820 secs
lola: 2864884 markings, 17239934 edges, 1557 markings/sec, 1825 secs
lola: 2873717 markings, 17289849 edges, 1767 markings/sec, 1830 secs
lola: 2882454 markings, 17341112 edges, 1747 markings/sec, 1835 secs
lola: 2891037 markings, 17393730 edges, 1717 markings/sec, 1840 secs
lola: 2899487 markings, 17449922 edges, 1690 markings/sec, 1845 secs
lola: 2908100 markings, 17513537 edges, 1723 markings/sec, 1850 secs
lola: 2917509 markings, 17567978 edges, 1882 markings/sec, 1855 secs
lola: 2926724 markings, 17622275 edges, 1843 markings/sec, 1860 secs
lola: 2935761 markings, 17677713 edges, 1807 markings/sec, 1865 secs
lola: 2944801 markings, 17740695 edges, 1808 markings/sec, 1870 secs
lola: 2953663 markings, 17800811 edges, 1772 markings/sec, 1875 secs
lola: 2960870 markings, 17842911 edges, 1441 markings/sec, 1880 secs
lola: 2968449 markings, 17889869 edges, 1516 markings/sec, 1885 secs
lola: 2975910 markings, 17925995 edges, 1492 markings/sec, 1890 secs
lola: 2983589 markings, 17970118 edges, 1536 markings/sec, 1895 secs
lola: 2990978 markings, 18004778 edges, 1478 markings/sec, 1900 secs
lola: 2998625 markings, 18044941 edges, 1529 markings/sec, 1905 secs
lola: 3006093 markings, 18083836 edges, 1494 markings/sec, 1910 secs
lola: 3013331 markings, 18124660 edges, 1448 markings/sec, 1915 secs
lola: 3020609 markings, 18168535 edges, 1456 markings/sec, 1920 secs
lola: 3028284 markings, 18221258 edges, 1535 markings/sec, 1925 secs
lola: 3036896 markings, 18272188 edges, 1722 markings/sec, 1930 secs
lola: 3045949 markings, 18327881 edges, 1811 markings/sec, 1935 secs
lola: 3054600 markings, 18383555 edges, 1730 markings/sec, 1940 secs
lola: 3063282 markings, 18443433 edges, 1736 markings/sec, 1945 secs
lola: 3072118 markings, 18512205 edges, 1767 markings/sec, 1950 secs
lola: 3081499 markings, 18569697 edges, 1876 markings/sec, 1955 secs
lola: 3090612 markings, 18626410 edges, 1823 markings/sec, 1960 secs
lola: 3099499 markings, 18684364 edges, 1777 markings/sec, 1965 secs
lola: 3108674 markings, 18749917 edges, 1835 markings/sec, 1970 secs
lola: 3117877 markings, 18816778 edges, 1841 markings/sec, 1975 secs
lola: 3125285 markings, 18861690 edges, 1482 markings/sec, 1980 secs
lola: 3132791 markings, 18911114 edges, 1501 markings/sec, 1985 secs
lola: 3140029 markings, 18948462 edges, 1448 markings/sec, 1990 secs
lola: 3147612 markings, 18993951 edges, 1517 markings/sec, 1995 secs
lola: 3154882 markings, 19027665 edges, 1454 markings/sec, 2000 secs
lola: 3161860 markings, 19058725 edges, 1396 markings/sec, 2005 secs
lola: 3169018 markings, 19093864 edges, 1432 markings/sec, 2010 secs
lola: 3176200 markings, 19134912 edges, 1436 markings/sec, 2015 secs
lola: 3183485 markings, 19171689 edges, 1457 markings/sec, 2020 secs
lola: 3190914 markings, 19214305 edges, 1486 markings/sec, 2025 secs
lola: 3198037 markings, 19248305 edges, 1425 markings/sec, 2030 secs
lola: 3205321 markings, 19280363 edges, 1457 markings/sec, 2035 secs
lola: 3212393 markings, 19316491 edges, 1414 markings/sec, 2040 secs
lola: 3219672 markings, 19357838 edges, 1456 markings/sec, 2045 secs
lola: 3227007 markings, 19399749 edges, 1467 markings/sec, 2050 secs
lola: 3234002 markings, 19432606 edges, 1399 markings/sec, 2055 secs
lola: 3240932 markings, 19473814 edges, 1386 markings/sec, 2060 secs
lola: 3247921 markings, 19512112 edges, 1398 markings/sec, 2065 secs
lola: 3254811 markings, 19555797 edges, 1378 markings/sec, 2070 secs
lola: 3261864 markings, 19590199 edges, 1411 markings/sec, 2075 secs
lola: 3268632 markings, 19627535 edges, 1354 markings/sec, 2080 secs
lola: 3275590 markings, 19673788 edges, 1392 markings/sec, 2085 secs
lola: 3282645 markings, 19714839 edges, 1411 markings/sec, 2090 secs
lola: 3289752 markings, 19760986 edges, 1421 markings/sec, 2095 secs
lola: 3296842 markings, 19814612 edges, 1418 markings/sec, 2100 secs
lola: 3304082 markings, 19858057 edges, 1448 markings/sec, 2105 secs
lola: 3311344 markings, 19904994 edges, 1452 markings/sec, 2110 secs
lola: 3318720 markings, 19960757 edges, 1475 markings/sec, 2115 secs
lola: 3325683 markings, 20004474 edges, 1393 markings/sec, 2120 secs
lola: 3332518 markings, 20044161 edges, 1367 markings/sec, 2125 secs
lola: 3340178 markings, 20085818 edges, 1532 markings/sec, 2130 secs
lola: 3348358 markings, 20130849 edges, 1636 markings/sec, 2135 secs
lola: 3356206 markings, 20177612 edges, 1570 markings/sec, 2140 secs
lola: 3364425 markings, 20231794 edges, 1644 markings/sec, 2145 secs
lola: 3372995 markings, 20285808 edges, 1714 markings/sec, 2150 secs
lola: 3381435 markings, 20340173 edges, 1688 markings/sec, 2155 secs
lola: 3389169 markings, 20381225 edges, 1547 markings/sec, 2160 secs
lola: 3396759 markings, 20426037 edges, 1518 markings/sec, 2165 secs
lola: 3405058 markings, 20480966 edges, 1660 markings/sec, 2170 secs
lola: 3412840 markings, 20532905 edges, 1556 markings/sec, 2175 secs
lola: 3420329 markings, 20576246 edges, 1498 markings/sec, 2180 secs
lola: 3427992 markings, 20629840 edges, 1533 markings/sec, 2185 secs
lola: 3436070 markings, 20684723 edges, 1616 markings/sec, 2190 secs
lola: 3443815 markings, 20735265 edges, 1549 markings/sec, 2195 secs
lola: 3451325 markings, 20781808 edges, 1502 markings/sec, 2200 secs
lola: 3458961 markings, 20836551 edges, 1527 markings/sec, 2205 secs
lola: 3466652 markings, 20892120 edges, 1538 markings/sec, 2210 secs
lola: 3474107 markings, 20946148 edges, 1491 markings/sec, 2215 secs
lola: 3481865 markings, 21011566 edges, 1552 markings/sec, 2220 secs
lola: 3489838 markings, 21067963 edges, 1595 markings/sec, 2225 secs
lola: 3498034 markings, 21129360 edges, 1639 markings/sec, 2230 secs
lola: 3506119 markings, 21196794 edges, 1617 markings/sec, 2235 secs
lola: 3513800 markings, 21253803 edges, 1536 markings/sec, 2240 secs
lola: 3521485 markings, 21305465 edges, 1537 markings/sec, 2245 secs
lola: 3529437 markings, 21346258 edges, 1590 markings/sec, 2250 secs
lola: 3537563 markings, 21393604 edges, 1625 markings/sec, 2255 secs
lola: 3545912 markings, 21446814 edges, 1670 markings/sec, 2260 secs
lola: 3554617 markings, 21501225 edges, 1741 markings/sec, 2265 secs
lola: 3563709 markings, 21560656 edges, 1818 markings/sec, 2270 secs
lola: 3572698 markings, 21612411 edges, 1798 markings/sec, 2275 secs
lola: 3581317 markings, 21660890 edges, 1724 markings/sec, 2280 secs
lola: 3590151 markings, 21719157 edges, 1767 markings/sec, 2285 secs
lola: 3598446 markings, 21774524 edges, 1659 markings/sec, 2290 secs
lola: 3606373 markings, 21820643 edges, 1585 markings/sec, 2295 secs
lola: 3614937 markings, 21880538 edges, 1713 markings/sec, 2300 secs
lola: 3623176 markings, 21936420 edges, 1648 markings/sec, 2305 secs
lola: 3631564 markings, 21989692 edges, 1678 markings/sec, 2310 secs
lola: 3639765 markings, 22042150 edges, 1640 markings/sec, 2315 secs
lola: 3648113 markings, 22104278 edges, 1670 markings/sec, 2320 secs
lola: 3656521 markings, 22163810 edges, 1682 markings/sec, 2325 secs
lola: 3664471 markings, 22226438 edges, 1590 markings/sec, 2330 secs
lola: 3673175 markings, 22294388 edges, 1741 markings/sec, 2335 secs
lola: 3682263 markings, 22360896 edges, 1818 markings/sec, 2340 secs
lola: 3691470 markings, 22436863 edges, 1841 markings/sec, 2345 secs
lola: 3700052 markings, 22498926 edges, 1716 markings/sec, 2350 secs
lola: 3708680 markings, 22554970 edges, 1726 markings/sec, 2355 secs
lola: 3716078 markings, 22593234 edges, 1480 markings/sec, 2360 secs
lola: 3723047 markings, 22632009 edges, 1394 markings/sec, 2365 secs
lola: 3730374 markings, 22678601 edges, 1465 markings/sec, 2370 secs
lola: 3737863 markings, 22724835 edges, 1498 markings/sec, 2375 secs
lola: 3744885 markings, 22771261 edges, 1404 markings/sec, 2380 secs
lola: 3752306 markings, 22824357 edges, 1484 markings/sec, 2385 secs
lola: 3760129 markings, 22873237 edges, 1565 markings/sec, 2390 secs
lola: 3767488 markings, 22922085 edges, 1472 markings/sec, 2395 secs
lola: 3774933 markings, 22974300 edges, 1489 markings/sec, 2400 secs
lola: 3782216 markings, 23019296 edges, 1457 markings/sec, 2405 secs
lola: 3789539 markings, 23060738 edges, 1465 markings/sec, 2410 secs
lola: 3796797 markings, 23092240 edges, 1452 markings/sec, 2415 secs
lola: 3804012 markings, 23126945 edges, 1443 markings/sec, 2420 secs
lola: 3811233 markings, 23168892 edges, 1444 markings/sec, 2425 secs
lola: 3818607 markings, 23207877 edges, 1475 markings/sec, 2430 secs
lola: 3825927 markings, 23250437 edges, 1464 markings/sec, 2435 secs
lola: 3833074 markings, 23299208 edges, 1429 markings/sec, 2440 secs
lola: 3840727 markings, 23340280 edges, 1531 markings/sec, 2445 secs
lola: 3848073 markings, 23383130 edges, 1469 markings/sec, 2450 secs
lola: 3855624 markings, 23433793 edges, 1510 markings/sec, 2455 secs
lola: 3862916 markings, 23475063 edges, 1458 markings/sec, 2460 secs
lola: 3870259 markings, 23510335 edges, 1469 markings/sec, 2465 secs
lola: 3877508 markings, 23539829 edges, 1450 markings/sec, 2470 secs
lola: 3884744 markings, 23573093 edges, 1447 markings/sec, 2475 secs
lola: 3892127 markings, 23608323 edges, 1477 markings/sec, 2480 secs
lola: 3899454 markings, 23648583 edges, 1465 markings/sec, 2485 secs
lola: 3907129 markings, 23686690 edges, 1535 markings/sec, 2490 secs
lola: 3914666 markings, 23727977 edges, 1507 markings/sec, 2495 secs
lola: 3922127 markings, 23761993 edges, 1492 markings/sec, 2500 secs
lola: 3929255 markings, 23792567 edges, 1426 markings/sec, 2505 secs
lola: 3936474 markings, 23830944 edges, 1444 markings/sec, 2510 secs
lola: 3943852 markings, 23871649 edges, 1476 markings/sec, 2515 secs
lola: 3950734 markings, 23906133 edges, 1376 markings/sec, 2520 secs
lola: 3957480 markings, 23938908 edges, 1349 markings/sec, 2525 secs
lola: 3964249 markings, 23978897 edges, 1354 markings/sec, 2530 secs
lola: 3970761 markings, 24014148 edges, 1302 markings/sec, 2535 secs
lola: 3977563 markings, 24052392 edges, 1360 markings/sec, 2540 secs
lola: 3985009 markings, 24089449 edges, 1489 markings/sec, 2545 secs
lola: 3992027 markings, 24128846 edges, 1404 markings/sec, 2550 secs
lola: 3999335 markings, 24174474 edges, 1462 markings/sec, 2555 secs
lola: 4006941 markings, 24219845 edges, 1521 markings/sec, 2560 secs
lola: 4013850 markings, 24265897 edges, 1382 markings/sec, 2565 secs
lola: 4021088 markings, 24316281 edges, 1448 markings/sec, 2570 secs
lola: 4029161 markings, 24364438 edges, 1615 markings/sec, 2575 secs
lola: 4036018 markings, 24411020 edges, 1371 markings/sec, 2580 secs
lola: 4042728 markings, 24457879 edges, 1342 markings/sec, 2585 secs
lola: 4049745 markings, 24501864 edges, 1403 markings/sec, 2590 secs
lola: 4056753 markings, 24541388 edges, 1402 markings/sec, 2595 secs
lola: 4065040 markings, 24582016 edges, 1657 markings/sec, 2600 secs
lola: 4073568 markings, 24630522 edges, 1706 markings/sec, 2605 secs
lola: 4081473 markings, 24679767 edges, 1581 markings/sec, 2610 secs
lola: 4090311 markings, 24733709 edges, 1768 markings/sec, 2615 secs
lola: 4098662 markings, 24787440 edges, 1670 markings/sec, 2620 secs
lola: time limit reached - aborting
lola:
preliminary result: 0 7 unknown 42 0 7 42 0 0 7 0 7 0 7 0 42
lola:
preliminary result: 0 7 unknown 42 0 7 42 0 0 7 0 7 0 7 0 42
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: 0 7 unknown 42 0 7 42 0 0 7 0 7 0 7 0 42
lola: memory consumption: 482012 KB
lola: time consumption: 3557 seconds
lola: memory consumption: 482012 KB
lola: time consumption: 3557 seconds
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: 0 7 unknown 42 0 7 42 0 0 7 0 7 0 7 0 42

BK_STOP 1527028842901

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-7"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-7.tgz
mv NeoElection-COL-7 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-COL-7, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r112-csrt-152666469300275"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' UpperBounds.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;