About the Execution of LoLA for NeoElection-COL-6
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
4864.970 | 3569860.00 | 3630612.00 | 264.40 | T?FT?FTTFTFFFTT? | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
................
/home/mcc/execution
total 264K
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 12K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.9K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.4K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 108 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 346 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.9K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 21K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 98K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-COL-6, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r112-csrt-152666469300269
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-6-CTLCardinality-00
FORMULA_NAME NeoElection-COL-6-CTLCardinality-01
FORMULA_NAME NeoElection-COL-6-CTLCardinality-02
FORMULA_NAME NeoElection-COL-6-CTLCardinality-03
FORMULA_NAME NeoElection-COL-6-CTLCardinality-04
FORMULA_NAME NeoElection-COL-6-CTLCardinality-05
FORMULA_NAME NeoElection-COL-6-CTLCardinality-06
FORMULA_NAME NeoElection-COL-6-CTLCardinality-07
FORMULA_NAME NeoElection-COL-6-CTLCardinality-08
FORMULA_NAME NeoElection-COL-6-CTLCardinality-09
FORMULA_NAME NeoElection-COL-6-CTLCardinality-10
FORMULA_NAME NeoElection-COL-6-CTLCardinality-11
FORMULA_NAME NeoElection-COL-6-CTLCardinality-12
FORMULA_NAME NeoElection-COL-6-CTLCardinality-13
FORMULA_NAME NeoElection-COL-6-CTLCardinality-14
FORMULA_NAME NeoElection-COL-6-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1527025197611
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-6 formula CTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking CTLCardinality @ NeoElection-COL-6 @ 3567 seconds
lola: LoLA will run for 3567 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 13363/65536 symbol table entries, 4016 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8533 transitions, 1204 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 2597 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-6-CTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: after: (36 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: LP says that atomic proposition is always false: (36 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: place invariant simplifies atomic proposition
lola: before: (p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744 <= p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631)
lola: after: (p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 6)
lola: LP says that atomic proposition is always true: (p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99)
lola: after: (0 <= 35)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: after: (6 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: LP says that atomic proposition is always false: (6 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: place invariant simplifies atomic proposition
lola: before: (p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4122 + p4121 + p4120 + p4119 + p4118 + p4117 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4201 + p4202 + p4203 + p4204 + p4205 + p4206 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p4243 + p4244 + p4245 + p4246 + p4247 + p4248 + p2946 + p2945 + p2944 + p2943 + p2942 + p2941 + p4285 + p4286 + p4287 + p4288 + p4289 + p4290 + p2904 + p2903 + p2902 + p2901 + p2900 + p4327 + p4328 + p4329 + p4330 + p4331 + p4332 + p2899 + p3025 + p3026 + p3027 + p3028 + p3029 + p2862 + p2861 + p3030 + p2860 + p2859 + p2858 + p2857 + p4369 + p2820 + p2819 + p4370 + p4371 + p2818 + p4372 + p2817 + p4373 + p2816 + p4374 + p2815 + p2778 + p2777 + p2776 + p2775 + p2774 + p2773 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416 + p3109 + p3110 + p3111 + p3112 + p3113 + p3114 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458 + p3151 + p3152 + p3996 + p3153 + p3154 + p3995 + p3155 + p3156 + p3994 + p3993 + p3992 + p3991 + p4495 + p4496 + p4497 + p4498 + p4499 + p3954 + p3953 + p3193 + p3194 + p3195 + p3196 + p3197 + p3198 + p3952 + p4500 + p3951 + p3950 + p3949 + p3912 + p3911 + p3910 + p3909 + p3908 + p3907 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3870 + p4579 + p3869 + p3868 + p4580 + p4581 + p3867 + p4582 + p4583 + p3866 + p4584 + p3865 + p3828 + p3827 + p3826 + p3825 + p3824 + p3823 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3786 + p3785 + p3784 + p3783 + p3782 + p3781 + p3744 + p3743 + p3742 + p3741 + p3740 + p4621 + p4622 + p4623 + p4624 + p4625 + p4626 + p3739 + p3702 + p3701 + p3700 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3699 + p3698 + p3697 + p4663 + p4664 + p3660 + p4665 + p3659 + p3658 + p4666 + p3657 + p3656 + p4667 + p3655 + p4668 + p3618 + p3617 + p3616 + p3615 + p3614 + p3613 + p3576 + p3575 + p3574 + p3573 + p3572 + p3571 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3534 + p3533 + p3532 + p3531 + p3530 + p3529 + p3492 + p3491 + p3490 + p3489 + p3488 + p3487 + p4794 + p4793 + p4792 + p4791 + p4790 + p4705 + p4706 + p4707 + p4708 + p4709 + p4789 + p4710 + p3450 + p3449 + p3448 + p3447 + p3446 + p3445 + p4752 + p4751 + p4750 + p4749 + p4748 + p4747 + p3408 + p3407 + p3406 + p3405 + p3404 + p3403 + p3401 + p4733 + p3402 + p4734 + p4732 + p4735 + p3400 + p4736 + p4731 + p4737 + p4730 + p4738 + p4739 + p3409 + p4729 + p4728 + p4727 + p4740 + p4741 + p3410 + p4742 + p3411 + p4743 + p3412 + p4744 + p3413 + p4745 + p3414 + p4746 + p3415 + p4726 + p3416 + p4725 + p3417 + p4724 + p3418 + p3419 + p4723 + p4722 + p4721 + p3420 + p4720 + p3421 + p4753 + p3422 + p4754 + p3423 + p4755 + p3424 + p4756 + p3425 + p4757 + p3426 + p4758 + p3427 + p4759 + p3428 + p3429 + p4760 + p4761 + p3430 + p4762 + p3431 + p4763 + p3432 + p4764 + p3433 + p4765 + p3434 + p4766 + p3435 + p4767 + p3436 + p4768 + p3437 + p4769 + p3438 + p4719 + p3439 + p4718 + p4770 + p4771 + p3440 + p4772 + p3441 + p4773 + p3442 + p4774 + p3443 + p4775 + p3444 + p4776 + p4717 + p4716 + p4777 + p4715 + p4778 + p4714 + p4779 + p4713 + p4712 + p4780 + p4781 + p4711 + p4782 + p3451 + p4783 + p3452 + p4784 + p3453 + p4785 + p3454 + p4786 + p3455 + p4787 + p3456 + p4788 + p3457 + p3458 + p3459 + p4704 + p4703 + p3460 + p4702 + p3461 + p4701 + p3462 + p4700 + p3463 + p4795 + p3464 + p4796 + p3465 + p4797 + p3466 + p4798 + p3467 + p4799 + p3468 + p3469 + p3470 + p3471 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3399 + p3398 + p3397 + p3396 + p4800 + p4801 + p4802 + p4803 + p4804 + p4805 + p4806 + p4807 + p4808 + p4809 + p3395 + p4810 + p4811 + p4812 + p4813 + p4814 + p4815 + p4816 + p4817 + p4818 + p4819 + p3394 + p3393 + p4820 + p4821 + p4822 + p3392 + p3391 + p3390 + p3389 + p3388 + p3387 + p3386 + p3385 + p3384 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3508 + p3509 + p3383 + p3510 + p3511 + p3512 + p3513 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3382 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3381 + p3380 + p3379 + p3378 + p3377 + p3535 + p3536 + p3537 + p3538 + p3539 + p3376 + p3375 + p3374 + p3540 + p3541 + p3542 + p3543 + p3373 + p3544 + p3545 + p3372 + p3546 + p3547 + p3371 + p3548 + p3370 + p3549 + p3550 + p3551 + p3369 + p3552 + p3368 + p3553 + p4699 + p3554 + p3555 + p3367 + p3556 + p4698 + p3557 + p3558 + p4697 + p3559 + p4696 + p3560 + p3561 + p3562 + p4695 + p3563 + p3564 + p4694 + p3565 + p3566 + p4693 + p3567 + p4692 + p3568 + p3360 + p3569 + p4691 + p4690 + p3570 + p3359 + p3358 + p4689 + p3357 + p4688 + p3356 + p4687 + p3577 + p3578 + p3355 + p3579 + p4686 + p3354 + p3580 + p3581 + p4685 + p3582 + p3583 + p3353 + p3584 + p4684 + p3585 + p3586 + p3352 + p3587 + p4683 + p3588 + p3589 + p3351 + p4682 + p3590 + p3591 + p3350 + p3592 + p3593 + p3594 + p3595 + p3596 + p3597 + p3598 + p3599 + p4681 + p4680 + p3349 + p3348 + p4679 + p3347 + p4678 + p3346 + p4677 + p3345 + p4676 + p3344 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p4675 + p3610 + p3611 + p3612 + p3343 + p4674 + p3342 + p4673 + p3341 + p4672 + p3619 + p3340 + p4671 + p4670 + p3339 + p3338 + p4669 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p3630 + p3631 + p3632 + p3633 + p3634 + p3635 + p3636 + p3637 + p3638 + p3639 + p3337 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p3650 + p3651 + p3652 + p3653 + p3654 + p3336 + p3335 + p3334 + p3333 + p3661 + p3662 + p3663 + p3664 + p3332 + p3665 + p3666 + p3331 + p3667 + p4662 + p3668 + p3330 + p3669 + p4661 + p4660 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3676 + p3677 + p3329 + p3678 + p3679 + p3680 + p3681 + p3682 + p3683 + p3684 + p3328 + p3685 + p3686 + p3687 + p3688 + p3689 + p4659 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3327 + p4658 + p3326 + p4657 + p3325 + p4656 + p4655 + p4654 + p4653 + p4652 + p4651 + p4650 + p3318 + p4649 + p3317 + p4648 + p3316 + p4647 + p3315 + p4646 + p3314 + p4645 + p3313 + p4644 + p3312 + p4643 + p3311 + p4642 + p3310 + p4641 + p4640 + p3309 + p3308 + p4639 + p3307 + p4638 + p3306 + p4637 + p3305 + p4636 + p3304 + p4635 + p3303 + p4634 + p3302 + p4633 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p3301 + p4632 + p3300 + p4631 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p3718 + p3719 + p4630 + p3720 + p3721 + p3722 + p3723 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p4629 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p4628 + p4627 + p4620 + p4619 + p4618 + p4617 + p4616 + p4615 + p4614 + p4613 + p3745 + p3746 + p3747 + p3748 + p3749 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p3760 + p3761 + p3762 + p3763 + p3764 + p3765 + p3766 + p3767 + p3768 + p4612 + p3769 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p4611 + p3776 + p3777 + p3778 + p3779 + p3780 + p4610 + p4609 + p4608 + p4607 + p4606 + p4605 + p4604 + p3787 + p3788 + p3789 + p4603 + p4602 + p4601 + p3790 + p3791 + p3792 + p4600 + p3793 + p3299 + p3794 + p3298 + p3795 + p3297 + p3796 + p3296 + p3797 + p3798 + p3799 + p3295 + p3294 + p3293 + p3292 + p3291 + p3290 + p3289 + p3288 + p3287 + p3286 + p3285 + p3284 + p3283 + p3276 + p3275 + p3274 + p3273 + p3272 + p3271 + p3270 + p3269 + p3268 + p4599 + p3267 + p4598 + p3266 + p4597 + p3265 + p4596 + p3264 + p4595 + p3263 + p4594 + p3800 + p3801 + p3802 + p3803 + p3804 + p3805 + p3806 + p3807 + p3808 + p3809 + p3262 + p4593 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p3261 + p3820 + p3821 + p3822 + p4592 + p3260 + p4591 + p4590 + p3259 + p3258 + p3829 + p4589 + p3257 + p4588 + p3256 + p4587 + p3255 + p4586 + p3254 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p4585 + p3840 + p3841 + p3842 + p3843 + p3844 + p3845 + p3846 + p3847 + p3848 + p3849 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p3860 + p3861 + p3862 + p3863 + p3864 + p3253 + p3252 + p3251 + p3250 + p3249 + p3248 + p3247 + p3871 + p3872 + p3873 + p4578 + p3874 + p3246 + p3875 + p4577 + p3876 + p3245 + p3877 + p4576 + p3878 + p3244 + p3879 + p4575 + p3243 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p3886 + p4574 + p3887 + p3242 + p4573 + p3888 + p3241 + p3889 + p4572 + p4571 + p3890 + p3891 + p4570 + p3892 + p4569 + p3893 + p4568 + p3894 + p4567 + p4566 + p3895 + p3234 + p3896 + p4565 + p3897 + p3233 + p3898 + p4564 + p3899 + p3232 + p4563 + p3231 + p4562 + p3230 + p4561 + p4560 + p3229 + p3228 + p4559 + p3227 + p4558 + p3226 + p4557 + p3225 + p4556 + p3224 + p4555 + p3223 + p4554 + p3222 + p4553 + p3221 + p4552 + p3220 + p4551 + p4550 + p3219 + p3218 + p4549 + p3217 + p4548 + p3216 + p4547 + p3215 + p4546 + p3214 + p4545 + p3213 + p4544 + p3212 + p4543 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p4536 + p3204 + p4535 + p3203 + p4534 + p3202 + p4533 + p3201 + p4532 + p3200 + p4531 + p4530 + p4529 + p4528 + p4527 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p4526 + p4525 + p4524 + p4523 + p4522 + p4521 + p4520 + p4519 + p4518 + p4517 + p4516 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p4515 + p4514 + p4513 + p4512 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p3928 + p3929 + p4511 + p3930 + p3931 + p3932 + p4510 + p3933 + p3934 + p3935 + p4509 + p3936 + p3937 + p3938 + p4508 + p3939 + p4507 + p3940 + p3941 + p4506 + p3942 + p3943 + p3944 + p4505 + p3945 + p3946 + p3947 + p4504 + p3948 + p4503 + p4502 + p4501 + p3199 + p3192 + p3191 + p3955 + p3956 + p3957 + p3958 + p3959 + p3960 + p3961 + p3962 + p3190 + p3963 + p3189 + p3188 + p3964 + p3187 + p3186 + p3965 + p3185 + p3966 + p3184 + p3967 + p3183 + p3968 + p3182 + p3969 + p3181 + p3180 + p3179 + p3970 + p3971 + p3178 + p3972 + p3177 + p3973 + p3176 + p3974 + p3175 + p3975 + p3174 + p3976 + p3173 + p3977 + p3172 + p3978 + p3171 + p3170 + p3979 + p3169 + p3168 + p3980 + p3981 + p3167 + p3982 + p3166 + p3983 + p3984 + p3165 + p3985 + p3164 + p3163 + p3986 + p4494 + p3987 + p3162 + p3988 + p4493 + p3989 + p3161 + p4492 + p3990 + p3160 + p4491 + p4490 + p3159 + p3158 + p4489 + p3157 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p3997 + p3998 + p4482 + p3999 + p3150 + p4481 + p4480 + p3149 + p3148 + p4479 + p3147 + p4478 + p3146 + p4477 + p3145 + p4476 + p3144 + p4475 + p3143 + p4474 + p3142 + p4473 + p3141 + p4472 + p3140 + p4471 + p4470 + p3139 + p3138 + p4469 + p3137 + p4468 + p3136 + p4467 + p3135 + p4466 + p3134 + p4465 + p3133 + p4464 + p3132 + p4463 + p3131 + p4462 + p3130 + p4461 + p4460 + p3129 + p3128 + p4459 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p4452 + p3120 + p4451 + p4450 + p3119 + p3118 + p4449 + p3117 + p4448 + p3116 + p4447 + p3115 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p3108 + p4439 + p3107 + p4438 + p3106 + p4437 + p3105 + p4436 + p3104 + p4435 + p3103 + p4434 + p3102 + p4433 + p3101 + p4432 + p3100 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3079 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p4399 + p2765 + p2766 + p4398 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p3066 + p4397 + p3065 + p4396 + p3064 + p4395 + p3063 + p2779 + p4394 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p3062 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p4393 + p2795 + p3061 + p2796 + p4392 + p2797 + p3060 + p2798 + p4391 + p2799 + p4390 + p3059 + p3058 + p4389 + p3057 + p4388 + p3056 + p4387 + p3055 + p4386 + p3054 + p4385 + p3053 + p4384 + p3052 + p4383 + p3051 + p4382 + p3050 + p4381 + p4380 + p3049 + p3048 + p4379 + p3047 + p4378 + p3046 + p4377 + p3045 + p4376 + p3044 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4375 + p2810 + p2811 + p2812 + p2813 + p2814 + p3043 + p3042 + p3041 + p3040 + p3039 + p3038 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p3037 + p2837 + p4368 + p2838 + p3036 + p2839 + p4367 + p3035 + p2840 + p2841 + p4366 + p2842 + p3034 + p2843 + p4365 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p3033 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p4364 + p3032 + p4363 + p3031 + p4362 + p4361 + p4360 + p2863 + p2864 + p4359 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p4358 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p4357 + p2879 + p4356 + p3024 + p2880 + p2881 + p4355 + p2882 + p3023 + p2883 + p4354 + p2884 + p3022 + p2885 + p4353 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p3021 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p4352 + p3020 + p4351 + p4350 + p3019 + p3018 + p4349 + p3017 + p4348 + p3016 + p4347 + p3015 + p4346 + p3014 + p4345 + p3013 + p4344 + p3012 + p4343 + p3011 + p4342 + p3010 + p4341 + p4340 + p3009 + p3008 + p4339 + p3007 + p4338 + p3006 + p4337 + p3005 + p4336 + p3004 + p4335 + p3003 + p4334 + p3002 + p4333 + p3001 + p3000 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305 + p4304 + p4303 + p4302 + p4301 + p4300 + p4299 + p2905 + p2906 + p2907 + p2908 + p2909 + p4298 + p4297 + p4296 + p4295 + p4294 + p4293 + p4292 + p4291 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4284 + p4283 + p4282 + p4281 + p4280 + p4279 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p4278 + p4277 + p4276 + p4275 + p4274 + p4273 + p4272 + p2930 + p2931 + p2932 + p2933 + p2934 + p4271 + p2935 + p2936 + p2937 + p2938 + p2939 + p4270 + p4269 + p4268 + p4267 + p4266 + p4265 + p4264 + p2940 + p4263 + p4262 + p4261 + p4260 + p4259 + p4258 + p4257 + p2947 + p2948 + p4256 + p2949 + p4255 + p4254 + p4253 + p4252 + p4251 + p4250 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p4249 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p4242 + p2963 + p4241 + p2964 + p4240 + p2965 + p4239 + p2966 + p4238 + p2967 + p4237 + p2968 + p4236 + p2969 + p4235 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p4234 + p2977 + p2978 + p2979 + p2980 + p2981 + p2982 + p4233 + p4232 + p4231 + p4230 + p4229 + p4228 + p4227 + p2989 + p4226 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p4225 + p2998 + p2999 + p4224 + p4223 + p4222 + p4221 + p4220 + p4219 + p4218 + p4217 + p4216 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p4208 + p4207 + p4200 + p4000 + p4001 + p4002 + p4003 + p4004 + p4005 + p4006 + p4007 + p4008 + p4009 + p4010 + p4011 + p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4018 + p4019 + p4020 + p4021 + p4022 + p4023 + p4024 + p4025 + p4026 + p4027 + p4028 + p4029 + p4030 + p4031 + p4032 + p4039 + p4040 + p4041 + p4042 + p4043 + p4044 + p4045 + p4046 + p4047 + p4048 + p4049 + p4050 + p4051 + p4052 + p4053 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4060 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4067 + p4068 + p4069 + p4070 + p4071 + p4072 + p4073 + p4074 + p4081 + p4082 + p4083 + p4084 + p4085 + p4086 + p4087 + p4088 + p4089 + p4090 + p4091 + p4092 + p4093 + p4094 + p4095 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p4102 + p4103 + p4104 + p4105 + p4106 + p4107 + p4108 + p4109 + p4110 + p4111 + p4112 + p4113 + p4114 + p4115 + p4116 + p4123 + p4124 + p4125 + p4126 + p4127 + p4128 + p4129 + p4130 + p4131 + p4132 + p4133 + p4134 + p4135 + p4136 + p4137 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p4144 + p4145 + p4146 + p4147 + p4148 + p4149 + p4150 + p4151 + p4152 + p4153 + p4154 + p4155 + p4156 + p4157 + p4158 + p4165 + p4166 + p4167 + p4168 + p4169 + p4170 + p4171 + p4172 + p4173 + p4174 + p4175 + p4176 + p4177 + p4178 + p4179 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p4186 + p4187 + p4188 + p4189 + p4190 + p4191 + p4192 + p4193 + p4194 + p4195 + p4196 + p4197 + p4198 + p4199 <= p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99)
lola: after: (p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4122 + p4121 + p4120 + p4119 + p4118 + p4117 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4201 + p4202 + p4203 + p4204 + p4205 + p4206 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p4243 + p4244 + p4245 + p4246 + p4247 + p4248 + p2946 + p2945 + p2944 + p2943 + p2942 + p2941 + p4285 + p4286 + p4287 + p4288 + p4289 + p4290 + p2904 + p2903 + p2902 + p2901 + p2900 + p4327 + p4328 + p4329 + p4330 + p4331 + p4332 + p2899 + p3025 + p3026 + p3027 + p3028 + p3029 + p2862 + p2861 + p3030 + p2860 + p2859 + p2858 + p2857 + p4369 + p2820 + p2819 + p4370 + p4371 + p2818 + p4372 + p2817 + p4373 + p2816 + p4374 + p2815 + p2778 + p2777 + p2776 + p2775 + p2774 + p2773 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416 + p3109 + p3110 + p3111 + p3112 + p3113 + p3114 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458 + p3151 + p3152 + p3996 + p3153 + p3154 + p3995 + p3155 + p3156 + p3994 + p3993 + p3992 + p3991 + p4495 + p4496 + p4497 + p4498 + p4499 + p3954 + p3953 + p3193 + p3194 + p3195 + p3196 + p3197 + p3198 + p3952 + p4500 + p3951 + p3950 + p3949 + p3912 + p3911 + p3910 + p3909 + p3908 + p3907 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3870 + p4579 + p3869 + p3868 + p4580 + p4581 + p3867 + p4582 + p4583 + p3866 + p4584 + p3865 + p3828 + p3827 + p3826 + p3825 + p3824 + p3823 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3786 + p3785 + p3784 + p3783 + p3782 + p3781 + p3744 + p3743 + p3742 + p3741 + p3740 + p4621 + p4622 + p4623 + p4624 + p4625 + p4626 + p3739 + p3702 + p3701 + p3700 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3699 + p3698 + p3697 + p4663 + p4664 + p3660 + p4665 + p3659 + p3658 + p4666 + p3657 + p3656 + p4667 + p3655 + p4668 + p3618 + p3617 + p3616 + p3615 + p3614 + p3613 + p3576 + p3575 + p3574 + p3573 + p3572 + p3571 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3534 + p3533 + p3532 + p3531 + p3530 + p3529 + p3492 + p3491 + p3490 + p3489 + p3488 + p3487 + p4794 + p4793 + p4792 + p4791 + p4790 + p4705 + p4706 + p4707 + p4708 + p4709 + p4789 + p4710 + p3450 + p3449 + p3448 + p3447 + p3446 + p3445 + p4752 + p4751 + p4750 + p4749 + p4748 + p4747 + p3408 + p3407 + p3406 + p3405 + p3404 + p3403 <= 36)
lola: LP says that atomic proposition is always true: (p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4122 + p4121 + p4120 + p4119 + p4118 + p4117 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4201 + p4202 + p4203 + p4204 + p4205 + p4206 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p4243 + p4244 + p4245 + p4246 + p4247 + p4248 + p2946 + p2945 + p2944 + p2943 + p2942 + p2941 + p4285 + p4286 + p4287 + p4288 + p4289 + p4290 + p2904 + p2903 + p2902 + p2901 + p2900 + p4327 + p4328 + p4329 + p4330 + p4331 + p4332 + p2899 + p3025 + p3026 + p3027 + p3028 + p3029 + p2862 + p2861 + p3030 + p2860 + p2859 + p2858 + p2857 + p4369 + p2820 + p2819 + p4370 + p4371 + p2818 + p4372 + p2817 + p4373 + p2816 + p4374 + p2815 + p2778 + p2777 + p2776 + p2775 + p2774 + p2773 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416 + p3109 + p3110 + p3111 + p3112 + p3113 + p3114 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458 + p3151 + p3152 + p3996 + p3153 + p3154 + p3995 + p3155 + p3156 + p3994 + p3993 + p3992 + p3991 + p4495 + p4496 + p4497 + p4498 + p4499 + p3954 + p3953 + p3193 + p3194 + p3195 + p3196 + p3197 + p3198 + p3952 + p4500 + p3951 + p3950 + p3949 + p3912 + p3911 + p3910 + p3909 + p3908 + p3907 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3870 + p4579 + p3869 + p3868 + p4580 + p4581 + p3867 + p4582 + p4583 + p3866 + p4584 + p3865 + p3828 + p3827 + p3826 + p3825 + p3824 + p3823 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3786 + p3785 + p3784 + p3783 + p3782 + p3781 + p3744 + p3743 + p3742 + p3741 + p3740 + p4621 + p4622 + p4623 + p4624 + p4625 + p4626 + p3739 + p3702 + p3701 + p3700 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3699 + p3698 + p3697 + p4663 + p4664 + p3660 + p4665 + p3659 + p3658 + p4666 + p3657 + p3656 + p4667 + p3655 + p4668 + p3618 + p3617 + p3616 + p3615 + p3614 + p3613 + p3576 + p3575 + p3574 + p3573 + p3572 + p3571 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3534 + p3533 + p3532 + p3531 + p3530 + p3529 + p3492 + p3491 + p3490 + p3489 + p3488 + p3487 + p4794 + p4793 + p4792 + p4791 + p4790 + p4705 + p4706 + p4707 + p4708 + p4709 + p4789 + p4710 + p3450 + p3449 + p3448 + p3447 + p3446 + p3445 + p4752 + p4751 + p4750 + p4749 + p4748 + p4747 + p3408 + p3407 + p3406 + p3405 + p3404 + p3403 <= 36)
lola: place invariant simplifies atomic proposition
lola: before: (p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617 <= p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624)
lola: after: (6 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 + p159 + p158 + p160 + p157 + p156 + p155 + p169 + p170 + p171 + p172 + p173 + p174 + p176 + p177 + p178 + p179 + p180 + p181 + p183 + p184 + p185 + p186 + p187 + p188 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2108 + p2109 + p190 + p191 + p192 + p193 + p194 + p195 + p197 + p198 + p199 + p2110 + p2111 + p2112 + p2113 + p2115 + p2116 + p2117 + p2118 + p2119 + p2120 + p2122 + p2123 + p2124 + p2125 + p2126 + p2127 + p2129 + p2130 + p2131 + p2132 + p2133 + p2134 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2092 + p2091 + p2157 + p2090 + p2158 + p2159 + p2089 + p2088 + p2160 + p2087 + p2161 + p2162 + p2085 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2084 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2083 + p2082 + p2081 + p2080 + p2078 + p2077 + p2076 + p2075 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2074 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2073 + p2199 + p200 + p201 + p202 + p2071 + p2070 + p2069 + p2068 + p2067 + p2066 + p211 + p212 + p213 + p214 + p215 + p216 + p218 + p219 + p220 + p221 + p222 + p223 + p225 + p226 + p227 + p228 + p229 + p230 + p2064 + p232 + p233 + p234 + p235 + p236 + p237 + p239 + p240 + p241 + p242 + p243 + p244 + p2063 + p2062 + p2061 + p2060 + p2059 + p253 + p254 + p255 + p256 + p257 + p258 + p260 + p261 + p262 + p263 + p264 + p265 + p267 + p268 + p269 + p270 + p271 + p272 + p274 + p275 + p276 + p277 + p278 + p279 + p2050 + p281 + p282 + p283 + p284 + p285 + p286 + p2049 + p2048 + p2047 + p2200 + p2201 + p2046 + p2202 + p2203 + p2204 + p2045 + p2206 + p2207 + p2208 + p2209 + p2043 + p2042 + p295 + p296 + p297 + p298 + p299 + p2210 + p2211 + p2041 + p2040 + p2039 + p2038 + p2036 + p2035 + p2034 + p2033 + p2032 + p2031 + p2029 + p2028 + p2027 + p2026 + p2025 + p2024 + p2022 + p2021 + p2020 + p300 + p302 + p303 + p304 + p305 + p306 + p307 + p309 + p310 + p311 + p312 + p313 + p314 + p2019 + p316 + p317 + p318 + p319 + p320 + p321 + p2018 + p323 + p324 + p325 + p326 + p327 + p328 + p2017 + p337 + p338 + p339 + p340 + p341 + p342 + p344 + p345 + p346 + p347 + p348 + p349 + p351 + p352 + p353 + p354 + p355 + p356 + p358 + p359 + p360 + p361 + p362 + p363 + p365 + p366 + p367 + p368 + p369 + p370 + p2008 + p2007 + p379 + p380 + p381 + p382 + p383 + p384 + p2006 + p386 + p387 + p388 + p389 + p390 + p391 + p393 + p394 + p395 + p396 + p397 + p398 + p2005 + p2004 + p2003 + p1000 + p2001 + p2000 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p400 + p401 + p402 + p403 + p404 + p405 + p407 + p408 + p409 + p410 + p411 + p412 + p421 + p422 + p423 + p424 + p425 + p426 + p428 + p429 + p430 + p431 + p432 + p433 + p435 + p436 + p437 + p438 + p439 + p440 + p442 + p443 + p444 + p445 + p446 + p447 + p449 + p450 + p451 + p452 + p453 + p454 + p463 + p464 + p465 + p466 + p467 + p468 + p470 + p471 + p472 + p473 + p474 + p475 + p477 + p478 + p479 + p480 + p481 + p482 + p484 + p485 + p486 + p487 + p488 + p489 + p491 + p492 + p493 + p494 + p495 + p496 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p505 + p506 + p507 + p508 + p509 + p510 + p512 + p513 + p514 + p515 + p516 + p517 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p547 + p548 + p549 + p550 + p551 + p552 + p554 + p555 + p556 + p557 + p558 + p559 + p561 + p562 + p563 + p564 + p565 + p566 + p568 + p569 + p570 + p571 + p572 + p573 + p575 + p576 + p577 + p578 + p579 + p580 + p589 + p590 + p591 + p592 + p593 + p594 + p596 + p597 + p598 + p599 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p600 + p601 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p631 + p632 + p633 + p634 + p635 + p636 + p638 + p639 + p640 + p641 + p642 + p643 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p673 + p674 + p675 + p676 + p677 + p678 + p680 + p681 + p682 + p683 + p684 + p685 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p701 + p702 + p703 + p704 + p705 + p706 + p715 + p716 + p717 + p718 + p719 + p720 + p722 + p723 + p724 + p725 + p726 + p727 + p729 + p730 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p740 + p741 + p743 + p744 + p745 + p746 + p747 + p748 + p757 + p758 + p759 + p760 + p761 + p762 + p764 + p765 + p766 + p767 + p768 + p769 + p771 + p772 + p773 + p774 + p775 + p776 + p778 + p779 + p780 + p781 + p782 + p783 + p785 + p786 + p787 + p788 + p789 + p790 + p799 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p800 + p801 + p802 + p803 + p804 + p806 + p807 + p808 + p809 + p810 + p811 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p841 + p842 + p843 + p844 + p845 + p846 + p848 + p849 + p850 + p851 + p852 + p853 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p883 + p884 + p885 + p886 + p887 + p888 + p890 + p891 + p892 + p893 + p894 + p895 + p897 + p898 + p899 + p1500 + p1501 + p1502 + p1503 + p1504 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1597 + p1598 + p1599 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p925 + p926 + p927 + p928 + p929 + p930 + p932 + p933 + p934 + p935 + p936 + p937 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p967 + p968 + p969 + p970 + p971 + p972 + p974 + p975 + p976 + p977 + p978 + p979 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p1600 + p1601 + p1602 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1999 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1998 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1997 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1996 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1994 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1993 + p1992 + p1991 + p1990 + p1989 + p1987 + p1986 + p1985 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1984 + p1772 + p1773 + p1774 + p1775 + p1776 + p1777 + p1983 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1982 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1980 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1979 + p1978 + p1977 + p1976 + p1975 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1952 + p1951 + p1950 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1949 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1948 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1947 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1945 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1944 + p1943 + p1942 + p1941 + p1940 + p1938 + p1937 + p1936 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1935 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1934 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1933 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1924 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1923 + p1922 + p1921 + p1920 + p1919 + p1917 + p1916 + p1915 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1914 + p1898 + p1899 + p1913 + p1912 + p1910 + p1909 + p1908 + p1907 + p1906 + p1905 + p1903 + p1902 + p1901 + p1900 <= p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736)
lola: after: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (0 <= 6)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 + p159 + p158 + p160 + p157 + p156 + p155 + p169 + p170 + p171 + p172 + p173 + p174 + p176 + p177 + p178 + p179 + p180 + p181 + p183 + p184 + p185 + p186 + p187 + p188 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2108 + p2109 + p190 + p191 + p192 + p193 + p194 + p195 + p197 + p198 + p199 + p2110 + p2111 + p2112 + p2113 + p2115 + p2116 + p2117 + p2118 + p2119 + p2120 + p2122 + p2123 + p2124 + p2125 + p2126 + p2127 + p2129 + p2130 + p2131 + p2132 + p2133 + p2134 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2092 + p2091 + p2157 + p2090 + p2158 + p2159 + p2089 + p2088 + p2160 + p2087 + p2161 + p2162 + p2085 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2084 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2083 + p2082 + p2081 + p2080 + p2078 + p2077 + p2076 + p2075 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2074 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2073 + p2199 + p200 + p201 + p202 + p2071 + p2070 + p2069 + p2068 + p2067 + p2066 + p211 + p212 + p213 + p214 + p215 + p216 + p218 + p219 + p220 + p221 + p222 + p223 + p225 + p226 + p227 + p228 + p229 + p230 + p2064 + p232 + p233 + p234 + p235 + p236 + p237 + p239 + p240 + p241 + p242 + p243 + p244 + p2063 + p2062 + p2061 + p2060 + p2059 + p253 + p254 + p255 + p256 + p257 + p258 + p260 + p261 + p262 + p263 + p264 + p265 + p267 + p268 + p269 + p270 + p271 + p272 + p274 + p275 + p276 + p277 + p278 + p279 + p2050 + p281 + p282 + p283 + p284 + p285 + p286 + p2049 + p2048 + p2047 + p2200 + p2201 + p2046 + p2202 + p2203 + p2204 + p2045 + p2206 + p2207 + p2208 + p2209 + p2043 + p2042 + p295 + p296 + p297 + p298 + p299 + p2210 + p2211 + p2041 + p2040 + p2039 + p2038 + p2036 + p2035 + p2034 + p2033 + p2032 + p2031 + p2029 + p2028 + p2027 + p2026 + p2025 + p2024 + p2022 + p2021 + p2020 + p300 + p302 + p303 + p304 + p305 + p306 + p307 + p309 + p310 + p311 + p312 + p313 + p314 + p2019 + p316 + p317 + p318 + p319 + p320 + p321 + p2018 + p323 + p324 + p325 + p326 + p327 + p328 + p2017 + p337 + p338 + p339 + p340 + p341 + p342 + p344 + p345 + p346 + p347 + p348 + p349 + p351 + p352 + p353 + p354 + p355 + p356 + p358 + p359 + p360 + p361 + p362 + p363 + p365 + p366 + p367 + p368 + p369 + p370 + p2008 + p2007 + p379 + p380 + p381 + p382 + p383 + p384 + p2006 + p386 + p387 + p388 + p389 + p390 + p391 + p393 + p394 + p395 + p396 + p397 + p398 + p2005 + p2004 + p2003 + p1000 + p2001 + p2000 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p400 + p401 + p402 + p403 + p404 + p405 + p407 + p408 + p409 + p410 + p411 + p412 + p421 + p422 + p423 + p424 + p425 + p426 + p428 + p429 + p430 + p431 + p432 + p433 + p435 + p436 + p437 + p438 + p439 + p440 + p442 + p443 + p444 + p445 + p446 + p447 + p449 + p450 + p451 + p452 + p453 + p454 + p463 + p464 + p465 + p466 + p467 + p468 + p470 + p471 + p472 + p473 + p474 + p475 + p477 + p478 + p479 + p480 + p481 + p482 + p484 + p485 + p486 + p487 + p488 + p489 + p491 + p492 + p493 + p494 + p495 + p496 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p505 + p506 + p507 + p508 + p509 + p510 + p512 + p513 + p514 + p515 + p516 + p517 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p547 + p548 + p549 + p550 + p551 + p552 + p554 + p555 + p556 + p557 + p558 + p559 + p561 + p562 + p563 + p564 + p565 + p566 + p568 + p569 + p570 + p571 + p572 + p573 + p575 + p576 + p577 + p578 + p579 + p580 + p589 + p590 + p591 + p592 + p593 + p594 + p596 + p597 + p598 + p599 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p600 + p601 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p631 + p632 + p633 + p634 + p635 + p636 + p638 + p639 + p640 + p641 + p642 + p643 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p673 + p674 + p675 + p676 + p677 + p678 + p680 + p681 + p682 + p683 + p684 + p685 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p701 + p702 + p703 + p704 + p705 + p706 + p715 + p716 + p717 + p718 + p719 + p720 + p722 + p723 + p724 + p725 + p726 + p727 + p729 + p730 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p740 + p741 + p743 + p744 + p745 + p746 + p747 + p748 + p757 + p758 + p759 + p760 + p761 + p762 + p764 + p765 + p766 + p767 + p768 + p769 + p771 + p772 + p773 + p774 + p775 + p776 + p778 + p779 + p780 + p781 + p782 + p783 + p785 + p786 + p787 + p788 + p789 + p790 + p799 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p800 + p801 + p802 + p803 + p804 + p806 + p807 + p808 + p809 + p810 + p811 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p841 + p842 + p843 + p844 + p845 + p846 + p848 + p849 + p850 + p851 + p852 + p853 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p883 + p884 + p885 + p886 + p887 + p888 + p890 + p891 + p892 + p893 + p894 + p895 + p897 + p898 + p899 + p1500 + p1501 + p1502 + p1503 + p1504 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1597 + p1598 + p1599 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p925 + p926 + p927 + p928 + p929 + p930 + p932 + p933 + p934 + p935 + p936 + p937 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p967 + p968 + p969 + p970 + p971 + p972 + p974 + p975 + p976 + p977 + p978 + p979 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p1600 + p1601 + p1602 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1999 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1998 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1997 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1996 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1994 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1993 + p1992 + p1991 + p1990 + p1989 + p1987 + p1986 + p1985 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1984 + p1772 + p1773 + p1774 + p1775 + p1776 + p1777 + p1983 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1982 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1980 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1979 + p1978 + p1977 + p1976 + p1975 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1952 + p1951 + p1950 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1949 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1948 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1947 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1945 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1944 + p1943 + p1942 + p1941 + p1940 + p1938 + p1937 + p1936 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1935 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1934 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1933 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1924 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1923 + p1922 + p1921 + p1920 + p1919 + p1917 + p1916 + p1915 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1914 + p1898 + p1899 + p1913 + p1912 + p1910 + p1909 + p1908 + p1907 + p1906 + p1905 + p1903 + p1902 + p1901 + p1900 <= p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99)
lola: after: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 36)
lola: LP says that atomic proposition is always false: (3 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: place invariant simplifies atomic proposition
lola: before: (p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 <= p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736)
lola: after: (0 <= 6)
lola: always true
lola: LP says that atomic proposition is always false: (2 <= p2260 + p2259 + p2258 + p2257 + p2256 + p2255 + p2254)
lola: place invariant simplifies atomic proposition
lola: before: (p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (0 <= 0)
lola: always true
lola: LP says that atomic proposition is always false: (1 <= p2260 + p2259 + p2258 + p2257 + p2256 + p2255 + p2254)
lola: LP says that atomic proposition is always false: (2 <= p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: place invariant simplifies atomic proposition
lola: before: (p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823 <= p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624)
lola: after: (p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823 <= 0)
lola: LP says that atomic proposition is always true: (p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737)
lola: after: (36 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737)
lola: LP says that atomic proposition is always false: (36 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737)
lola: place invariant simplifies atomic proposition
lola: before: (p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2501 + p2502 + p2503 + p2504 + p2505 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: after: (30 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: LP says that atomic proposition is always false: (30 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: LP says that atomic proposition is always false: (1 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: place invariant simplifies atomic proposition
lola: before: (p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: after: (0 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: always true
lola: NOT(A (F (()))) : NOT(A (F (A (X ((2 <= p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555)))))) : E ((E (X (TRUE)) U FALSE)) : E (G (TRUE)) : A (X (A (G (((p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737 <= p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)))))) : A (G (E (X (((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 6)))))) : E ((A (F ((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 36))) U (3 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737))) : A (X (E (G (TRUE)))) : A (F (NOT(A (F (TRUE))))) : A (G (A (G (TRUE)))) : A (F ((E (X (TRUE)) AND A (G ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744)))))) : E (F (())) : A (G (E (X (TRUE)))) : E (G ((A (X (TRUE)) OR ()))) : A ((E (X (FALSE)) U E (G (TRUE)))) : (A (F (A (X ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744))))) AND TRUE)
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:208
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:133
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 219 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 234 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 251 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
FORMULA NeoElection-COL-6-CTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 3 will run for 270 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 293 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-COL-6-CTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 5 will run for 319 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 351 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 391 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 439 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 502 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G (E (X ((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:724
lola: processed formula: NOT(A(TRUE U NOT(EX((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: processed formula length: 364
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 73121 markings, 359703 edges, 14624 markings/sec, 0 secs
lola: 142659 markings, 720020 edges, 13908 markings/sec, 5 secs
lola: 211968 markings, 1081651 edges, 13862 markings/sec, 10 secs
lola: 282976 markings, 1447115 edges, 14202 markings/sec, 15 secs
lola: 347955 markings, 1817782 edges, 12996 markings/sec, 20 secs
lola: 410772 markings, 2190947 edges, 12563 markings/sec, 25 secs
lola: 479908 markings, 2579247 edges, 13827 markings/sec, 30 secs
lola: 552462 markings, 2945807 edges, 14511 markings/sec, 35 secs
lola: 616985 markings, 3293154 edges, 12905 markings/sec, 40 secs
lola: 684276 markings, 3669827 edges, 13458 markings/sec, 45 secs
lola: 751487 markings, 4034708 edges, 13442 markings/sec, 50 secs
lola: 824825 markings, 4432336 edges, 14668 markings/sec, 55 secs
lola: 898269 markings, 4817737 edges, 14689 markings/sec, 60 secs
lola: 967613 markings, 5215813 edges, 13869 markings/sec, 65 secs
lola: 1036426 markings, 5599246 edges, 13763 markings/sec, 70 secs
lola: 1110816 markings, 5996871 edges, 14878 markings/sec, 75 secs
lola: 1180694 markings, 6390076 edges, 13976 markings/sec, 80 secs
lola: 1252887 markings, 6776735 edges, 14439 markings/sec, 85 secs
lola: 1326045 markings, 7164779 edges, 14632 markings/sec, 90 secs
lola: 1405420 markings, 7581217 edges, 15875 markings/sec, 95 secs
lola: 1482615 markings, 8005249 edges, 15439 markings/sec, 100 secs
lola: 1556197 markings, 8428138 edges, 14716 markings/sec, 105 secs
lola: 1625533 markings, 8837723 edges, 13867 markings/sec, 110 secs
lola: 1697128 markings, 9243036 edges, 14319 markings/sec, 115 secs
lola: 1768066 markings, 9642411 edges, 14188 markings/sec, 120 secs
lola: 1834443 markings, 10037605 edges, 13275 markings/sec, 125 secs
lola: 1902752 markings, 10427048 edges, 13662 markings/sec, 130 secs
lola: 1972026 markings, 10815598 edges, 13855 markings/sec, 135 secs
lola: 2047193 markings, 11212932 edges, 15033 markings/sec, 140 secs
lola: 2116614 markings, 11634121 edges, 13884 markings/sec, 145 secs
lola: 2170459 markings, 12085540 edges, 10769 markings/sec, 150 secs
lola: 2242521 markings, 12479419 edges, 14412 markings/sec, 155 secs
lola: 2320146 markings, 12890030 edges, 15525 markings/sec, 160 secs
lola: 2394852 markings, 13296457 edges, 14941 markings/sec, 165 secs
lola: 2463255 markings, 13711342 edges, 13681 markings/sec, 170 secs
lola: 2530573 markings, 14108199 edges, 13464 markings/sec, 175 secs
lola: 2598344 markings, 14513786 edges, 13554 markings/sec, 180 secs
lola: 2665139 markings, 14922829 edges, 13359 markings/sec, 185 secs
lola: 2731688 markings, 15328489 edges, 13310 markings/sec, 190 secs
lola: 2800167 markings, 15727553 edges, 13696 markings/sec, 195 secs
lola: 2866119 markings, 16123466 edges, 13190 markings/sec, 200 secs
lola: 2927127 markings, 16538592 edges, 12202 markings/sec, 205 secs
lola: 2989408 markings, 16967163 edges, 12456 markings/sec, 210 secs
lola: 3051153 markings, 17373063 edges, 12349 markings/sec, 215 secs
lola: 3107778 markings, 17743514 edges, 11325 markings/sec, 220 secs
lola: 3165463 markings, 18107157 edges, 11537 markings/sec, 225 secs
lola: 3225692 markings, 18473347 edges, 12046 markings/sec, 230 secs
lola: 3295500 markings, 18870819 edges, 13962 markings/sec, 235 secs
lola: 3358466 markings, 19259565 edges, 12593 markings/sec, 240 secs
lola: 3425763 markings, 19676947 edges, 13459 markings/sec, 245 secs
lola: 3495032 markings, 20106949 edges, 13854 markings/sec, 250 secs
lola: 3557921 markings, 20520375 edges, 12578 markings/sec, 255 secs
lola: 3624679 markings, 20935340 edges, 13352 markings/sec, 260 secs
lola: 3687959 markings, 21339611 edges, 12656 markings/sec, 265 secs
lola: 3751086 markings, 21740860 edges, 12625 markings/sec, 270 secs
lola: 3820594 markings, 22121952 edges, 13902 markings/sec, 275 secs
lola: 3882238 markings, 22505426 edges, 12329 markings/sec, 280 secs
lola: 3941233 markings, 22894719 edges, 11799 markings/sec, 285 secs
lola: 3999712 markings, 23280720 edges, 11696 markings/sec, 290 secs
lola: 4060064 markings, 23670414 edges, 12070 markings/sec, 295 secs
lola: 4119214 markings, 24060046 edges, 11830 markings/sec, 300 secs
lola: 4184971 markings, 24447533 edges, 13151 markings/sec, 305 secs
lola: 4249147 markings, 24844603 edges, 12835 markings/sec, 310 secs
lola: 4314587 markings, 25250927 edges, 13088 markings/sec, 315 secs
lola: 4375930 markings, 25648487 edges, 12269 markings/sec, 320 secs
lola: 4438759 markings, 26042362 edges, 12566 markings/sec, 325 secs
lola: 4498543 markings, 26422809 edges, 11957 markings/sec, 330 secs
lola: 4568283 markings, 26799987 edges, 13948 markings/sec, 335 secs
lola: 4643284 markings, 27181734 edges, 15000 markings/sec, 340 secs
lola: 4715495 markings, 27574386 edges, 14442 markings/sec, 345 secs
lola: 4788074 markings, 27986811 edges, 14516 markings/sec, 350 secs
lola: 4858517 markings, 28380512 edges, 14089 markings/sec, 355 secs
lola: 4927112 markings, 28778458 edges, 13719 markings/sec, 360 secs
lola: 4995396 markings, 29171252 edges, 13657 markings/sec, 365 secs
lola: 5064005 markings, 29567968 edges, 13722 markings/sec, 370 secs
lola: 5126764 markings, 29941624 edges, 12552 markings/sec, 375 secs
lola: 5189335 markings, 30324793 edges, 12514 markings/sec, 380 secs
lola: 5254585 markings, 30725652 edges, 13050 markings/sec, 385 secs
lola: 5315594 markings, 31124759 edges, 12202 markings/sec, 390 secs
lola: 5380581 markings, 31519026 edges, 12997 markings/sec, 395 secs
lola: 5441389 markings, 31898951 edges, 12162 markings/sec, 400 secs
lola: 5504549 markings, 32263396 edges, 12632 markings/sec, 405 secs
lola: 5572060 markings, 32624197 edges, 13502 markings/sec, 410 secs
lola: 5634310 markings, 32992207 edges, 12450 markings/sec, 415 secs
lola: 5701175 markings, 33393011 edges, 13373 markings/sec, 420 secs
lola: 5771987 markings, 33786732 edges, 14162 markings/sec, 425 secs
lola: 5830024 markings, 34168601 edges, 11607 markings/sec, 430 secs
lola: 5898338 markings, 34544661 edges, 13663 markings/sec, 435 secs
lola: 5956040 markings, 34908518 edges, 11540 markings/sec, 440 secs
lola: 6024047 markings, 35318754 edges, 13601 markings/sec, 445 secs
lola: 6096043 markings, 35708726 edges, 14399 markings/sec, 450 secs
lola: 6159807 markings, 36090973 edges, 12753 markings/sec, 455 secs
lola: 6225813 markings, 36486970 edges, 13201 markings/sec, 460 secs
lola: 6290254 markings, 36881982 edges, 12888 markings/sec, 465 secs
lola: 6350707 markings, 37266969 edges, 12091 markings/sec, 470 secs
lola: 6413277 markings, 37639505 edges, 12514 markings/sec, 475 secs
lola: 6474984 markings, 38000200 edges, 12341 markings/sec, 480 secs
lola: 6534282 markings, 38373322 edges, 11860 markings/sec, 485 secs
lola: 6605646 markings, 38770049 edges, 14273 markings/sec, 490 secs
lola: 6673990 markings, 39183989 edges, 13669 markings/sec, 495 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes unknown no yes unknown unknown unknown yes no yes unknown no unknown yes yes unknown
lola: memory consumption: 1291848 KB
lola: time consumption: 550 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 10 will run for 502 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (A (G (((p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737 <= p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance from all successors
lola: rewrite Frontend/Parser/formula_rewrite.k:663
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: ((p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212 + 1 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737))
lola: processed formula length: 398
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EXEF)
lola: state space: using reachability graph (EXef version) (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space /EXEF
lola: The predicate is not invariant from successors.
lola: 9 markings, 8 edges
lola:
FORMULA NeoElection-COL-6-CTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 11 will run for 603 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (E (X (((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:737
lola: processed formula: NOT(E(TRUE U NOT(EX(((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1... (shortened)
lola: processed formula length: 4493
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: no
lola: produced by: CTL model checker
lola: The net does not satisfy the given formula.
lola: 12 markings, 11 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 754 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (A (X ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:734
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: processed formula: A(TRUE U AX((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744)))
lola: processed formula length: 74
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 77411 markings, 372260 edges, 15482 markings/sec, 0 secs
lola: 148057 markings, 726676 edges, 14129 markings/sec, 5 secs
lola: 218540 markings, 1084985 edges, 14097 markings/sec, 10 secs
lola: 290673 markings, 1441271 edges, 14427 markings/sec, 15 secs
lola: 359848 markings, 1833330 edges, 13835 markings/sec, 20 secs
lola: 428401 markings, 2222421 edges, 13711 markings/sec, 25 secs
lola: 497255 markings, 2586899 edges, 13771 markings/sec, 30 secs
lola: 570675 markings, 2946479 edges, 14684 markings/sec, 35 secs
lola: 642933 markings, 3329162 edges, 14452 markings/sec, 40 secs
lola: 711850 markings, 3697683 edges, 13783 markings/sec, 45 secs
lola: 775597 markings, 4043614 edges, 12749 markings/sec, 50 secs
lola: 844458 markings, 4380212 edges, 13772 markings/sec, 55 secs
lola: 907997 markings, 4725962 edges, 12708 markings/sec, 60 secs
lola: 970070 markings, 5066634 edges, 12415 markings/sec, 65 secs
lola: 1035263 markings, 5417276 edges, 13039 markings/sec, 70 secs
lola: 1110592 markings, 5819414 edges, 15066 markings/sec, 75 secs
lola: 1184629 markings, 6211905 edges, 14807 markings/sec, 80 secs
lola: 1257871 markings, 6592955 edges, 14648 markings/sec, 85 secs
lola: 1333702 markings, 6985137 edges, 15166 markings/sec, 90 secs
lola: 1410372 markings, 7363417 edges, 15334 markings/sec, 95 secs
lola: 1484374 markings, 7757728 edges, 14800 markings/sec, 100 secs
lola: 1554058 markings, 8151492 edges, 13937 markings/sec, 105 secs
lola: 1620690 markings, 8529401 edges, 13326 markings/sec, 110 secs
lola: 1690335 markings, 8912740 edges, 13929 markings/sec, 115 secs
lola: 1760192 markings, 9298023 edges, 13971 markings/sec, 120 secs
lola: 1828748 markings, 9693650 edges, 13711 markings/sec, 125 secs
lola: 1900612 markings, 10091912 edges, 14373 markings/sec, 130 secs
lola: 1971726 markings, 10479901 edges, 14223 markings/sec, 135 secs
lola: 2047714 markings, 10865390 edges, 15198 markings/sec, 140 secs
lola: 2115797 markings, 11282157 edges, 13617 markings/sec, 145 secs
lola: 2171562 markings, 11729925 edges, 11153 markings/sec, 150 secs
lola: 2245121 markings, 12117215 edges, 14712 markings/sec, 155 secs
lola: 2324289 markings, 12500506 edges, 15834 markings/sec, 160 secs
lola: 2393855 markings, 12886322 edges, 13913 markings/sec, 165 secs
lola: 2459678 markings, 13266094 edges, 13165 markings/sec, 170 secs
lola: 2525949 markings, 13643477 edges, 13254 markings/sec, 175 secs
lola: 2593048 markings, 14043678 edges, 13420 markings/sec, 180 secs
lola: 2658371 markings, 14421009 edges, 13065 markings/sec, 185 secs
lola: 2723534 markings, 14814238 edges, 13033 markings/sec, 190 secs
lola: 2789484 markings, 15175946 edges, 13190 markings/sec, 195 secs
lola: 2853695 markings, 15556756 edges, 12842 markings/sec, 200 secs
lola: 2910907 markings, 15949643 edges, 11442 markings/sec, 205 secs
lola: 2971230 markings, 16332762 edges, 12065 markings/sec, 210 secs
lola: 3029291 markings, 16702207 edges, 11612 markings/sec, 215 secs
lola: 3085190 markings, 17056443 edges, 11180 markings/sec, 220 secs
lola: 3139520 markings, 17397154 edges, 10866 markings/sec, 225 secs
lola: 3198619 markings, 17749939 edges, 11820 markings/sec, 230 secs
lola: 3262705 markings, 18105109 edges, 12817 markings/sec, 235 secs
lola: 3325472 markings, 18472654 edges, 12553 markings/sec, 240 secs
lola: 3387470 markings, 18854652 edges, 12400 markings/sec, 245 secs
lola: 3453167 markings, 19246834 edges, 13139 markings/sec, 250 secs
lola: 3514205 markings, 19630961 edges, 12208 markings/sec, 255 secs
lola: 3579190 markings, 20025399 edges, 12997 markings/sec, 260 secs
lola: 3639596 markings, 20395415 edges, 12081 markings/sec, 265 secs
lola: 3701678 markings, 20788148 edges, 12416 markings/sec, 270 secs
lola: 3766344 markings, 21150139 edges, 12933 markings/sec, 275 secs
lola: 3831398 markings, 21513469 edges, 13011 markings/sec, 280 secs
lola: 3890468 markings, 21901708 edges, 11814 markings/sec, 285 secs
lola: 3949625 markings, 22271626 edges, 11831 markings/sec, 290 secs
lola: 4007534 markings, 22633595 edges, 11582 markings/sec, 295 secs
lola: 4067184 markings, 23008778 edges, 11930 markings/sec, 300 secs
lola: 4125760 markings, 23368098 edges, 11715 markings/sec, 305 secs
lola: 4191228 markings, 23762566 edges, 13094 markings/sec, 310 secs
lola: 4256193 markings, 24162776 edges, 12993 markings/sec, 315 secs
lola: 4322236 markings, 24553666 edges, 13209 markings/sec, 320 secs
lola: 4381116 markings, 24931022 edges, 11776 markings/sec, 325 secs
lola: 4447591 markings, 25318809 edges, 13295 markings/sec, 330 secs
lola: 4510901 markings, 25694590 edges, 12662 markings/sec, 335 secs
lola: 4583944 markings, 26074429 edges, 14609 markings/sec, 340 secs
lola: 4656593 markings, 26454237 edges, 14530 markings/sec, 345 secs
lola: 4733901 markings, 26859757 edges, 15462 markings/sec, 350 secs
lola: 4803993 markings, 27244480 edges, 14018 markings/sec, 355 secs
lola: 4873221 markings, 27636877 edges, 13846 markings/sec, 360 secs
lola: 4944709 markings, 28026072 edges, 14298 markings/sec, 365 secs
lola: 5014562 markings, 28427162 edges, 13971 markings/sec, 370 secs
lola: 5084060 markings, 28801513 edges, 13900 markings/sec, 375 secs
lola: 5146889 markings, 29184316 edges, 12566 markings/sec, 380 secs
lola: 5214268 markings, 29592828 edges, 13476 markings/sec, 385 secs
lola: 5282436 markings, 29991538 edges, 13634 markings/sec, 390 secs
lola: 5344059 markings, 30382089 edges, 12325 markings/sec, 395 secs
lola: 5407558 markings, 30759484 edges, 12700 markings/sec, 400 secs
lola: 5474765 markings, 31149570 edges, 13441 markings/sec, 405 secs
lola: 5545940 markings, 31519246 edges, 14235 markings/sec, 410 secs
lola: 5612299 markings, 31892082 edges, 13272 markings/sec, 415 secs
lola: 5673686 markings, 32261757 edges, 12277 markings/sec, 420 secs
lola: 5749030 markings, 32665528 edges, 15069 markings/sec, 425 secs
lola: 5810490 markings, 33045452 edges, 12292 markings/sec, 430 secs
lola: 5882401 markings, 33431399 edges, 14382 markings/sec, 435 secs
lola: 5940260 markings, 33790791 edges, 11572 markings/sec, 440 secs
lola: 6005584 markings, 34172942 edges, 13065 markings/sec, 445 secs
lola: 6075249 markings, 34534041 edges, 13933 markings/sec, 450 secs
lola: 6135281 markings, 34891709 edges, 12006 markings/sec, 455 secs
lola: 6198898 markings, 35273118 edges, 12723 markings/sec, 460 secs
lola: 6265668 markings, 35646437 edges, 13354 markings/sec, 465 secs
lola: 6323611 markings, 36011575 edges, 11589 markings/sec, 470 secs
lola: 6386657 markings, 36373022 edges, 12609 markings/sec, 475 secs
lola: 6449481 markings, 36731019 edges, 12565 markings/sec, 480 secs
lola: 6507664 markings, 37104877 edges, 11637 markings/sec, 485 secs
lola: 6578440 markings, 37492171 edges, 14155 markings/sec, 490 secs
lola: 6648898 markings, 37878981 edges, 14092 markings/sec, 495 secs
lola: 6711149 markings, 38255146 edges, 12450 markings/sec, 500 secs
lola: 6775741 markings, 38619383 edges, 12918 markings/sec, 505 secs
lola: 6841700 markings, 38996632 edges, 13192 markings/sec, 510 secs
lola: 6915738 markings, 39369728 edges, 14808 markings/sec, 515 secs
lola: 6988218 markings, 39734762 edges, 14496 markings/sec, 520 secs
lola: 7061946 markings, 40097886 edges, 14746 markings/sec, 525 secs
lola: 7130661 markings, 40474046 edges, 13743 markings/sec, 530 secs
lola: 7198503 markings, 40847736 edges, 13568 markings/sec, 535 secs
lola: 7266351 markings, 41219276 edges, 13570 markings/sec, 540 secs
lola: 7334215 markings, 41594544 edges, 13573 markings/sec, 545 secs
lola: 7402816 markings, 41976453 edges, 13720 markings/sec, 550 secs
lola: 7471232 markings, 42363488 edges, 13683 markings/sec, 555 secs
lola: 7539701 markings, 42730155 edges, 13694 markings/sec, 560 secs
lola: 7603519 markings, 43119387 edges, 12764 markings/sec, 565 secs
lola: 7666836 markings, 43511404 edges, 12663 markings/sec, 570 secs
lola: 7727840 markings, 43889537 edges, 12201 markings/sec, 575 secs
lola: 7791344 markings, 44280323 edges, 12701 markings/sec, 580 secs
lola: 7852919 markings, 44643862 edges, 12315 markings/sec, 585 secs
lola: 7921277 markings, 45030432 edges, 13672 markings/sec, 590 secs
lola: 7993440 markings, 45409178 edges, 14433 markings/sec, 595 secs
lola: 8058889 markings, 45789683 edges, 13090 markings/sec, 600 secs
lola: 8126895 markings, 46188579 edges, 13601 markings/sec, 605 secs
lola: 8198635 markings, 46589213 edges, 14348 markings/sec, 610 secs
lola: 8259951 markings, 46962016 edges, 12263 markings/sec, 615 secs
lola: 8326924 markings, 47341375 edges, 13395 markings/sec, 620 secs
lola: 8389221 markings, 47721498 edges, 12459 markings/sec, 625 secs
lola: 8454600 markings, 48096865 edges, 13076 markings/sec, 630 secs
lola: 8526187 markings, 48464344 edges, 14317 markings/sec, 635 secs
lola: 8590440 markings, 48843383 edges, 12851 markings/sec, 640 secs
lola: 8652771 markings, 49223746 edges, 12466 markings/sec, 645 secs
lola: 8714080 markings, 49592263 edges, 12262 markings/sec, 650 secs
lola: 8776564 markings, 49971217 edges, 12497 markings/sec, 655 secs
lola: 8837317 markings, 50327113 edges, 12151 markings/sec, 660 secs
lola: 8905321 markings, 50715151 edges, 13601 markings/sec, 665 secs
lola: 8972376 markings, 51109016 edges, 13411 markings/sec, 670 secs
lola: 9042563 markings, 51504791 edges, 14037 markings/sec, 675 secs
lola: 9104565 markings, 51879979 edges, 12400 markings/sec, 680 secs
lola: 9172098 markings, 52260826 edges, 13507 markings/sec, 685 secs
lola: 9238246 markings, 52629357 edges, 13230 markings/sec, 690 secs
lola: 9311302 markings, 53027375 edges, 14611 markings/sec, 695 secs
lola: 9382562 markings, 53412983 edges, 14252 markings/sec, 700 secs
lola: 9454103 markings, 53800781 edges, 14308 markings/sec, 705 secs
lola: 9525322 markings, 54193642 edges, 14244 markings/sec, 710 secs
lola: 9595155 markings, 54588321 edges, 13967 markings/sec, 715 secs
lola: 9666124 markings, 54984626 edges, 14194 markings/sec, 720 secs
lola: 9732835 markings, 55371811 edges, 13342 markings/sec, 725 secs
lola: 9797563 markings, 55766099 edges, 12946 markings/sec, 730 secs
lola: 9865108 markings, 56161440 edges, 13509 markings/sec, 735 secs
lola: 9926001 markings, 56545378 edges, 12179 markings/sec, 740 secs
lola: 9991192 markings, 56921760 edges, 13038 markings/sec, 745 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes unknown no yes no no unknown yes no yes unknown no unknown yes yes unknown
lola: memory consumption: 1865176 KB
lola: time consumption: 1304 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 754 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (NOT DEADLOCK))
lola: ========================================
lola: SUBTASK
lola: checking absence of deadlocks
lola: Planning: workflow for deadlock check: search (--findpath=off,--siphontrap=off)
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using deadlock preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The net is not deadlock-free.
lola: 409 markings, 408 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1131 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((NOT DEADLOCK AND A (G ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744))))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:737
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: processed formula: A(TRUE U (NOT DEADLOCK AND NOT(E(TRUE U (p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744 <= 2)))))
lola: processed formula length: 104
lola: 58 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: no
lola: produced by: CTL model checker
lola: The net does not satisfy the given formula.
lola: 504 markings, 965 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 2262 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E ((A (F ((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: rewrite Frontend/Parser/formula_rewrite.k:726
lola: processed formula: E(A(TRUE U (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p196... (shortened)
lola: processed formula length: 4544
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: yes
lola: produced by: CTL model checker
lola: The net satisfies the given formula.
lola: 46 markings, 90 edges
lola: ========================================
FORMULA NeoElection-COL-6-CTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: E (G (E (X ((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:724
lola: processed formula: NOT(A(TRUE U NOT(EX((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: processed formula length: 364
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 79797 markings, 394819 edges, 15959 markings/sec, 0 secs
lola: 157205 markings, 793902 edges, 15482 markings/sec, 5 secs
lola: 233764 markings, 1196195 edges, 15312 markings/sec, 10 secs
lola: 309825 markings, 1590278 edges, 15212 markings/sec, 15 secs
lola: 380322 markings, 2012418 edges, 14099 markings/sec, 20 secs
lola: 449124 markings, 2413598 edges, 13760 markings/sec, 25 secs
lola: 524718 markings, 2811191 edges, 15119 markings/sec, 30 secs
lola: 598990 markings, 3192479 edges, 14854 markings/sec, 35 secs
lola: 675112 markings, 3610736 edges, 15224 markings/sec, 40 secs
lola: 743819 markings, 3992021 edges, 13741 markings/sec, 45 secs
lola: 810043 markings, 4364533 edges, 13245 markings/sec, 50 secs
lola: 884661 markings, 4735517 edges, 14924 markings/sec, 55 secs
lola: 953265 markings, 5133994 edges, 13721 markings/sec, 60 secs
lola: 1020367 markings, 5516710 edges, 13420 markings/sec, 65 secs
lola: 1094513 markings, 5906884 edges, 14829 markings/sec, 70 secs
lola: 1167882 markings, 6311366 edges, 14674 markings/sec, 75 secs
lola: 1235647 markings, 6685978 edges, 13553 markings/sec, 80 secs
lola: 1302525 markings, 7041159 edges, 13376 markings/sec, 85 secs
lola: 1373041 markings, 7412865 edges, 14103 markings/sec, 90 secs
lola: 1446661 markings, 7806602 edges, 14724 markings/sec, 95 secs
lola: 1514353 markings, 8178920 edges, 13538 markings/sec, 100 secs
lola: 1576359 markings, 8552516 edges, 12401 markings/sec, 105 secs
lola: 1642387 markings, 8923868 edges, 13206 markings/sec, 110 secs
lola: 1711186 markings, 9321859 edges, 13760 markings/sec, 115 secs
lola: 1780231 markings, 9707503 edges, 13809 markings/sec, 120 secs
lola: 1845494 markings, 10104381 edges, 13053 markings/sec, 125 secs
lola: 1912841 markings, 10491147 edges, 13469 markings/sec, 130 secs
lola: 1979226 markings, 10851743 edges, 13277 markings/sec, 135 secs
lola: 2047389 markings, 11214058 edges, 13633 markings/sec, 140 secs
lola: 2111557 markings, 11593567 edges, 12834 markings/sec, 145 secs
lola: 2165085 markings, 12040142 edges, 10706 markings/sec, 150 secs
lola: 2234586 markings, 12436840 edges, 13900 markings/sec, 155 secs
lola: 2310748 markings, 12839274 edges, 15232 markings/sec, 160 secs
lola: 2380448 markings, 13205334 edges, 13940 markings/sec, 165 secs
lola: 2442288 markings, 13586780 edges, 12368 markings/sec, 170 secs
lola: 2504204 markings, 13954832 edges, 12383 markings/sec, 175 secs
lola: 2564728 markings, 14314087 edges, 12105 markings/sec, 180 secs
lola: 2625739 markings, 14685746 edges, 12202 markings/sec, 185 secs
lola: 2686785 markings, 15051463 edges, 12209 markings/sec, 190 secs
lola: 2748225 markings, 15421829 edges, 12288 markings/sec, 195 secs
lola: 2809657 markings, 15784476 edges, 12286 markings/sec, 200 secs
lola: 2870004 markings, 16149360 edges, 12069 markings/sec, 205 secs
lola: 2925433 markings, 16528782 edges, 11086 markings/sec, 210 secs
lola: 2981861 markings, 16915111 edges, 11286 markings/sec, 215 secs
lola: 3040810 markings, 17301196 edges, 11790 markings/sec, 220 secs
lola: 3103126 markings, 17712674 edges, 12463 markings/sec, 225 secs
lola: 3166492 markings, 18112894 edges, 12673 markings/sec, 230 secs
lola: 3233185 markings, 18519849 edges, 13339 markings/sec, 235 secs
lola: 3304207 markings, 18916136 edges, 14204 markings/sec, 240 secs
lola: 3365061 markings, 19300596 edges, 12171 markings/sec, 245 secs
lola: 3430690 markings, 19709722 edges, 13126 markings/sec, 250 secs
lola: 3498213 markings, 20127929 edges, 13505 markings/sec, 255 secs
lola: 3560627 markings, 20536586 edges, 12483 markings/sec, 260 secs
lola: 3626558 markings, 20946027 edges, 13186 markings/sec, 265 secs
lola: 3689750 markings, 21351201 edges, 12638 markings/sec, 270 secs
lola: 3754865 markings, 21760358 edges, 13023 markings/sec, 275 secs
lola: 3824203 markings, 22143887 edges, 13868 markings/sec, 280 secs
lola: 3887767 markings, 22542026 edges, 12713 markings/sec, 285 secs
lola: 3949959 markings, 22954709 edges, 12438 markings/sec, 290 secs
lola: 4012042 markings, 23364377 edges, 12417 markings/sec, 295 secs
lola: 4075757 markings, 23775916 edges, 12743 markings/sec, 300 secs
lola: 4137069 markings, 24161721 edges, 12262 markings/sec, 305 secs
lola: 4204162 markings, 24569242 edges, 13419 markings/sec, 310 secs
lola: 4269573 markings, 24975567 edges, 13082 markings/sec, 315 secs
lola: 4337412 markings, 25396651 edges, 13568 markings/sec, 320 secs
lola: 4397943 markings, 25797245 edges, 12106 markings/sec, 325 secs
lola: 4464442 markings, 26205517 edges, 13300 markings/sec, 330 secs
lola: 4531789 markings, 26606007 edges, 13469 markings/sec, 335 secs
lola: 4607532 markings, 26999947 edges, 15149 markings/sec, 340 secs
lola: 4681826 markings, 27391412 edges, 14859 markings/sec, 345 secs
lola: 4751092 markings, 27773736 edges, 13853 markings/sec, 350 secs
lola: 4816003 markings, 28138618 edges, 12982 markings/sec, 355 secs
lola: 4878777 markings, 28499749 edges, 12555 markings/sec, 360 secs
lola: 4948290 markings, 28899510 edges, 13903 markings/sec, 365 secs
lola: 5020421 markings, 29318338 edges, 14426 markings/sec, 370 secs
lola: 5092071 markings, 29725539 edges, 14330 markings/sec, 375 secs
lola: 5156666 markings, 30125077 edges, 12919 markings/sec, 380 secs
lola: 5223727 markings, 30537469 edges, 13412 markings/sec, 385 secs
lola: 5291980 markings, 30960003 edges, 13651 markings/sec, 390 secs
lola: 5355585 markings, 31372919 edges, 12721 markings/sec, 395 secs
lola: 5422612 markings, 31782804 edges, 13405 markings/sec, 400 secs
lola: 5491801 markings, 32190097 edges, 13838 markings/sec, 405 secs
lola: 5566286 markings, 32597458 edges, 14897 markings/sec, 410 secs
lola: 5636383 markings, 33005636 edges, 14019 markings/sec, 415 secs
lola: 5705812 markings, 33419221 edges, 13886 markings/sec, 420 secs
lola: 5784086 markings, 33855911 edges, 15655 markings/sec, 425 secs
lola: 5846173 markings, 34258864 edges, 12417 markings/sec, 430 secs
lola: 5911863 markings, 34632839 edges, 13138 markings/sec, 435 secs
lola: 5972673 markings, 35003949 edges, 12162 markings/sec, 440 secs
lola: 6032781 markings, 35377091 edges, 12022 markings/sec, 445 secs
lola: 6097588 markings, 35718566 edges, 12961 markings/sec, 450 secs
lola: 6160617 markings, 36095740 edges, 12606 markings/sec, 455 secs
lola: 6228593 markings, 36503129 edges, 13595 markings/sec, 460 secs
lola: 6290626 markings, 36884435 edges, 12407 markings/sec, 465 secs
lola: 6349977 markings, 37263147 edges, 11870 markings/sec, 470 secs
lola: 6410750 markings, 37624607 edges, 12155 markings/sec, 475 secs
lola: 6472912 markings, 37984801 edges, 12432 markings/sec, 480 secs
lola: 6532806 markings, 38365565 edges, 11979 markings/sec, 485 secs
lola: 6599039 markings, 38734073 edges, 13247 markings/sec, 490 secs
lola: 6666943 markings, 39131414 edges, 13581 markings/sec, 495 secs
lola: 6727148 markings, 39510672 edges, 12041 markings/sec, 500 secs
lola: 6789871 markings, 39870633 edges, 12545 markings/sec, 505 secs
lola: 6850973 markings, 40227749 edges, 12220 markings/sec, 510 secs
lola: 6918193 markings, 40586510 edges, 13444 markings/sec, 515 secs
lola: 6990284 markings, 40971831 edges, 14418 markings/sec, 520 secs
lola: 7056025 markings, 41338478 edges, 13148 markings/sec, 525 secs
lola: 7125059 markings, 41690861 edges, 13807 markings/sec, 530 secs
lola: 7189120 markings, 42061160 edges, 12812 markings/sec, 535 secs
lola: 7252009 markings, 42418422 edges, 12578 markings/sec, 540 secs
lola: 7314575 markings, 42776256 edges, 12513 markings/sec, 545 secs
lola: 7378962 markings, 43141227 edges, 12877 markings/sec, 550 secs
lola: 7446286 markings, 43534964 edges, 13465 markings/sec, 555 secs
lola: 7513386 markings, 43925142 edges, 13420 markings/sec, 560 secs
lola: 7582307 markings, 44301712 edges, 13784 markings/sec, 565 secs
lola: 7644943 markings, 44705604 edges, 12527 markings/sec, 570 secs
lola: 7707509 markings, 45110524 edges, 12513 markings/sec, 575 secs
lola: 7769016 markings, 45497765 edges, 12301 markings/sec, 580 secs
lola: 7827181 markings, 45869240 edges, 11633 markings/sec, 585 secs
lola: 7885095 markings, 46217819 edges, 11583 markings/sec, 590 secs
lola: 7947722 markings, 46583461 edges, 12525 markings/sec, 595 secs
lola: 8012441 markings, 46936867 edges, 12944 markings/sec, 600 secs
lola: 8072767 markings, 47284059 edges, 12065 markings/sec, 605 secs
lola: 8133447 markings, 47641091 edges, 12136 markings/sec, 610 secs
lola: 8195891 markings, 48009431 edges, 12489 markings/sec, 615 secs
lola: 8254693 markings, 48379608 edges, 11760 markings/sec, 620 secs
lola: 8316602 markings, 48743987 edges, 12382 markings/sec, 625 secs
lola: 8375338 markings, 49101124 edges, 11747 markings/sec, 630 secs
lola: 8434021 markings, 49461732 edges, 11737 markings/sec, 635 secs
lola: 8498579 markings, 49839486 edges, 12912 markings/sec, 640 secs
lola: 8569022 markings, 50212188 edges, 14089 markings/sec, 645 secs
lola: 8632473 markings, 50604019 edges, 12690 markings/sec, 650 secs
lola: 8693633 markings, 50992284 edges, 12232 markings/sec, 655 secs
lola: 8755207 markings, 51374317 edges, 12315 markings/sec, 660 secs
lola: 8818663 markings, 51771025 edges, 12691 markings/sec, 665 secs
lola: 8882455 markings, 52144453 edges, 12758 markings/sec, 670 secs
lola: 8949271 markings, 52537905 edges, 13363 markings/sec, 675 secs
lola: 9016305 markings, 52934617 edges, 13407 markings/sec, 680 secs
lola: 9085142 markings, 53342344 edges, 13767 markings/sec, 685 secs
lola: 9147408 markings, 53734400 edges, 12453 markings/sec, 690 secs
lola: 9213332 markings, 54123077 edges, 13185 markings/sec, 695 secs
lola: 9282897 markings, 54507238 edges, 13913 markings/sec, 700 secs
lola: 9357731 markings, 54916172 edges, 14967 markings/sec, 705 secs
lola: 9430392 markings, 55323932 edges, 14532 markings/sec, 710 secs
lola: 9499239 markings, 55717805 edges, 13769 markings/sec, 715 secs
lola: 9569521 markings, 56122216 edges, 14056 markings/sec, 720 secs
lola: 9640270 markings, 56529747 edges, 14150 markings/sec, 725 secs
lola: 9710014 markings, 56934331 edges, 13949 markings/sec, 730 secs
lola: 9775111 markings, 57329778 edges, 13019 markings/sec, 735 secs
lola: 9840024 markings, 57728331 edges, 12983 markings/sec, 740 secs
lola: 9907025 markings, 58139771 edges, 13400 markings/sec, 745 secs
lola: 9968133 markings, 58534539 edges, 12222 markings/sec, 750 secs
lola: 10033306 markings, 58934716 edges, 13035 markings/sec, 755 secs
lola: 10097827 markings, 59324581 edges, 12904 markings/sec, 760 secs
lola: 10166547 markings, 59722275 edges, 13744 markings/sec, 765 secs
lola: 10240511 markings, 60104683 edges, 14793 markings/sec, 770 secs
lola: 10299579 markings, 60488843 edges, 11814 markings/sec, 775 secs
lola: 10368620 markings, 60872071 edges, 13808 markings/sec, 780 secs
lola: 10439344 markings, 61283535 edges, 14145 markings/sec, 785 secs
lola: 10498625 markings, 61659333 edges, 11856 markings/sec, 790 secs
lola: 10561038 markings, 62015960 edges, 12483 markings/sec, 795 secs
lola: 10620005 markings, 62383271 edges, 11793 markings/sec, 800 secs
lola: 10681483 markings, 62755158 edges, 12296 markings/sec, 805 secs
lola: 10746427 markings, 63107399 edges, 12989 markings/sec, 810 secs
lola: 10806230 markings, 63463721 edges, 11961 markings/sec, 815 secs
lola: 10866131 markings, 63823092 edges, 11980 markings/sec, 820 secs
lola: 10925107 markings, 64187444 edges, 11795 markings/sec, 825 secs
lola: 10982207 markings, 64546354 edges, 11420 markings/sec, 830 secs
lola: 11044330 markings, 64918469 edges, 12425 markings/sec, 835 secs
lola: 11110167 markings, 65306192 edges, 13167 markings/sec, 840 secs
lola: 11174583 markings, 65705387 edges, 12883 markings/sec, 845 secs
lola: 11246389 markings, 66104258 edges, 14361 markings/sec, 850 secs
lola: 11310748 markings, 66510333 edges, 12872 markings/sec, 855 secs
lola: 11380753 markings, 66908639 edges, 14001 markings/sec, 860 secs
lola: 11442489 markings, 67279385 edges, 12347 markings/sec, 865 secs
lola: 11511514 markings, 67647871 edges, 13805 markings/sec, 870 secs
lola: 11578418 markings, 68000288 edges, 13381 markings/sec, 875 secs
lola: 11644023 markings, 68342907 edges, 13121 markings/sec, 880 secs
lola: 11714066 markings, 68694421 edges, 14009 markings/sec, 885 secs
lola: 11781367 markings, 69051771 edges, 13460 markings/sec, 890 secs
lola: 11843191 markings, 69408253 edges, 12365 markings/sec, 895 secs
lola: 11907080 markings, 69760155 edges, 12778 markings/sec, 900 secs
lola: 11977766 markings, 70132047 edges, 14137 markings/sec, 905 secs
lola: 12042348 markings, 70498078 edges, 12916 markings/sec, 910 secs
lola: 12107201 markings, 70845697 edges, 12971 markings/sec, 915 secs
lola: 12167942 markings, 71188245 edges, 12148 markings/sec, 920 secs
lola: 12233006 markings, 71546173 edges, 13013 markings/sec, 925 secs
lola: 12300979 markings, 71908246 edges, 13595 markings/sec, 930 secs
lola: 12370474 markings, 72286040 edges, 13899 markings/sec, 935 secs
lola: 12435126 markings, 72667118 edges, 12930 markings/sec, 940 secs
lola: 12501615 markings, 73047926 edges, 13298 markings/sec, 945 secs
lola: 12565099 markings, 73416832 edges, 12697 markings/sec, 950 secs
lola: 12632440 markings, 73786765 edges, 13468 markings/sec, 955 secs
lola: 12691343 markings, 74172626 edges, 11781 markings/sec, 960 secs
lola: 12751587 markings, 74532916 edges, 12049 markings/sec, 965 secs
lola: 12814381 markings, 74884918 edges, 12559 markings/sec, 970 secs
lola: 12875614 markings, 75246393 edges, 12247 markings/sec, 975 secs
lola: 12935885 markings, 75614049 edges, 12054 markings/sec, 980 secs
lola: 12997018 markings, 75989197 edges, 12227 markings/sec, 985 secs
lola: 13053806 markings, 76354553 edges, 11358 markings/sec, 990 secs
lola: 13110529 markings, 76733217 edges, 11345 markings/sec, 995 secs
lola: 13167414 markings, 77103105 edges, 11377 markings/sec, 1000 secs
lola: 13228914 markings, 77470821 edges, 12300 markings/sec, 1005 secs
lola: 13287381 markings, 77835352 edges, 11693 markings/sec, 1010 secs
lola: 13349211 markings, 78210228 edges, 12366 markings/sec, 1015 secs
lola: 13408352 markings, 78586309 edges, 11828 markings/sec, 1020 secs
lola: 13468840 markings, 78974045 edges, 12098 markings/sec, 1025 secs
lola: 13531248 markings, 79355393 edges, 12482 markings/sec, 1030 secs
lola: 13591111 markings, 79747397 edges, 11973 markings/sec, 1035 secs
lola: 13651845 markings, 80130526 edges, 12147 markings/sec, 1040 secs
lola: 13712511 markings, 80516409 edges, 12133 markings/sec, 1045 secs
lola: 13775031 markings, 80918368 edges, 12504 markings/sec, 1050 secs
lola: 13841438 markings, 81312554 edges, 13281 markings/sec, 1055 secs
lola: 13914663 markings, 81701126 edges, 14645 markings/sec, 1060 secs
lola: 13988539 markings, 82107742 edges, 14775 markings/sec, 1065 secs
lola: 14057870 markings, 82511598 edges, 13866 markings/sec, 1070 secs
lola: 14121739 markings, 82893059 edges, 12774 markings/sec, 1075 secs
lola: 14184083 markings, 83276193 edges, 12469 markings/sec, 1080 secs
lola: 14246093 markings, 83665154 edges, 12402 markings/sec, 1085 secs
lola: 14307456 markings, 84042028 edges, 12273 markings/sec, 1090 secs
lola: 14374091 markings, 84418788 edges, 13327 markings/sec, 1095 secs
lola: 14441244 markings, 84801620 edges, 13431 markings/sec, 1100 secs
lola: 14506393 markings, 85193113 edges, 13030 markings/sec, 1105 secs
lola: 14566675 markings, 85571808 edges, 12056 markings/sec, 1110 secs
lola: 14629646 markings, 85942053 edges, 12594 markings/sec, 1115 secs
lola: 14693754 markings, 86319190 edges, 12822 markings/sec, 1120 secs
lola: 14754230 markings, 86689185 edges, 12095 markings/sec, 1125 secs
lola: 14813068 markings, 87063556 edges, 11768 markings/sec, 1130 secs
lola: 14880331 markings, 87453121 edges, 13453 markings/sec, 1135 secs
lola: 14944385 markings, 87826409 edges, 12811 markings/sec, 1140 secs
lola: 15013504 markings, 88201541 edges, 13824 markings/sec, 1145 secs
lola: 15082771 markings, 88580009 edges, 13853 markings/sec, 1150 secs
lola: 15153100 markings, 88973245 edges, 14066 markings/sec, 1155 secs
lola: 15219067 markings, 89356146 edges, 13193 markings/sec, 1160 secs
lola: 15285871 markings, 89744612 edges, 13361 markings/sec, 1165 secs
lola: 15347499 markings, 90127817 edges, 12326 markings/sec, 1170 secs
lola: 15409133 markings, 90519668 edges, 12327 markings/sec, 1175 secs
lola: 15471448 markings, 90901816 edges, 12463 markings/sec, 1180 secs
lola: 15539200 markings, 91276505 edges, 13550 markings/sec, 1185 secs
lola: 15602405 markings, 91655739 edges, 12641 markings/sec, 1190 secs
lola: 15661034 markings, 92016541 edges, 11726 markings/sec, 1195 secs
lola: 15718926 markings, 92365872 edges, 11578 markings/sec, 1200 secs
lola: 15779374 markings, 92713969 edges, 12090 markings/sec, 1205 secs
lola: 15842336 markings, 93094485 edges, 12592 markings/sec, 1210 secs
lola: 15904727 markings, 93482061 edges, 12478 markings/sec, 1215 secs
lola: 15965678 markings, 93856569 edges, 12190 markings/sec, 1220 secs
lola: 16032107 markings, 94242254 edges, 13286 markings/sec, 1225 secs
lola: 16096012 markings, 94631072 edges, 12781 markings/sec, 1230 secs
lola: 16161825 markings, 95004373 edges, 13163 markings/sec, 1235 secs
lola: 16234259 markings, 95408038 edges, 14487 markings/sec, 1240 secs
lola: 16303098 markings, 95811163 edges, 13768 markings/sec, 1245 secs
lola: 16368730 markings, 96215015 edges, 13126 markings/sec, 1250 secs
lola: 16436644 markings, 96619900 edges, 13583 markings/sec, 1255 secs
lola: 16500210 markings, 97023485 edges, 12713 markings/sec, 1260 secs
lola: 16567701 markings, 97418624 edges, 13498 markings/sec, 1265 secs
lola: 16633849 markings, 97815680 edges, 13230 markings/sec, 1270 secs
lola: 16703746 markings, 98225496 edges, 13979 markings/sec, 1275 secs
lola: 16768235 markings, 98604154 edges, 12898 markings/sec, 1280 secs
lola: 16835297 markings, 98992941 edges, 13412 markings/sec, 1285 secs
lola: 16898250 markings, 99371589 edges, 12591 markings/sec, 1290 secs
lola: 16959551 markings, 99748820 edges, 12260 markings/sec, 1295 secs
lola: 17019649 markings, 100116596 edges, 12020 markings/sec, 1300 secs
lola: 17086428 markings, 100504888 edges, 13356 markings/sec, 1305 secs
lola: 17153394 markings, 100902350 edges, 13393 markings/sec, 1310 secs
lola: 17217667 markings, 101268579 edges, 12855 markings/sec, 1315 secs
lola: 17281542 markings, 101639496 edges, 12775 markings/sec, 1320 secs
lola: 17347975 markings, 102013906 edges, 13287 markings/sec, 1325 secs
lola: 17421593 markings, 102394700 edges, 14724 markings/sec, 1330 secs
lola: 17492303 markings, 102781005 edges, 14142 markings/sec, 1335 secs
lola: 17566248 markings, 103172784 edges, 14789 markings/sec, 1340 secs
lola: 17636116 markings, 103556319 edges, 13974 markings/sec, 1345 secs
lola: 17703763 markings, 103940000 edges, 13529 markings/sec, 1350 secs
lola: 17770682 markings, 104321351 edges, 13384 markings/sec, 1355 secs
lola: 17847126 markings, 104708331 edges, 15289 markings/sec, 1360 secs
lola: 17920998 markings, 105095443 edges, 14774 markings/sec, 1365 secs
lola: 17988772 markings, 105498151 edges, 13555 markings/sec, 1370 secs
lola: 18060233 markings, 105877102 edges, 14292 markings/sec, 1375 secs
lola: 18131520 markings, 106271763 edges, 14257 markings/sec, 1380 secs
lola: 18203970 markings, 106659026 edges, 14490 markings/sec, 1385 secs
lola: 18270985 markings, 107048888 edges, 13403 markings/sec, 1390 secs
lola: 18341321 markings, 107430807 edges, 14067 markings/sec, 1395 secs
lola: 18410350 markings, 107809622 edges, 13806 markings/sec, 1400 secs
lola: 18482592 markings, 108198071 edges, 14448 markings/sec, 1405 secs
lola: 18549436 markings, 108591920 edges, 13369 markings/sec, 1410 secs
lola: 18617359 markings, 108981403 edges, 13585 markings/sec, 1415 secs
lola: 18684372 markings, 109370080 edges, 13403 markings/sec, 1420 secs
lola: 18754147 markings, 109759760 edges, 13955 markings/sec, 1425 secs
lola: 18817051 markings, 110172987 edges, 12581 markings/sec, 1430 secs
lola: 18883010 markings, 110560314 edges, 13192 markings/sec, 1435 secs
lola: 18950594 markings, 110940707 edges, 13517 markings/sec, 1440 secs
lola: 19015785 markings, 111333018 edges, 13038 markings/sec, 1445 secs
lola: 19081079 markings, 111730705 edges, 13059 markings/sec, 1450 secs
lola: 19146005 markings, 112121993 edges, 12985 markings/sec, 1455 secs
lola: 19205092 markings, 112515832 edges, 11817 markings/sec, 1460 secs
lola: 19264918 markings, 112918142 edges, 11965 markings/sec, 1465 secs
lola: 19327268 markings, 113310875 edges, 12470 markings/sec, 1470 secs
lola: 19391450 markings, 113694898 edges, 12836 markings/sec, 1475 secs
lola: 19454627 markings, 114089259 edges, 12635 markings/sec, 1480 secs
lola: 19516805 markings, 114489097 edges, 12436 markings/sec, 1485 secs
lola: 19576332 markings, 114873155 edges, 11905 markings/sec, 1490 secs
lola: 19641454 markings, 115252191 edges, 13024 markings/sec, 1495 secs
lola: 19699799 markings, 115646507 edges, 11669 markings/sec, 1500 secs
lola: 19758742 markings, 116028596 edges, 11789 markings/sec, 1505 secs
lola: 19820593 markings, 116410374 edges, 12370 markings/sec, 1510 secs
lola: 19882348 markings, 116801536 edges, 12351 markings/sec, 1515 secs
lola: 19942321 markings, 117187226 edges, 11995 markings/sec, 1520 secs
lola: 20012124 markings, 117565257 edges, 13961 markings/sec, 1525 secs
lola: 20080474 markings, 117949416 edges, 13670 markings/sec, 1530 secs
lola: 20146964 markings, 118325925 edges, 13298 markings/sec, 1535 secs
lola: 20212785 markings, 118710661 edges, 13164 markings/sec, 1540 secs
lola: 20276508 markings, 119094367 edges, 12745 markings/sec, 1545 secs
lola: 20338733 markings, 119485971 edges, 12445 markings/sec, 1550 secs
lola: 20399400 markings, 119870029 edges, 12133 markings/sec, 1555 secs
lola: 20465086 markings, 120244572 edges, 13137 markings/sec, 1560 secs
lola: 20528563 markings, 120622077 edges, 12695 markings/sec, 1565 secs
lola: 20593538 markings, 121017112 edges, 12995 markings/sec, 1570 secs
lola: 20657483 markings, 121394934 edges, 12789 markings/sec, 1575 secs
lola: 20724569 markings, 121783750 edges, 13417 markings/sec, 1580 secs
lola: 20788329 markings, 122168795 edges, 12752 markings/sec, 1585 secs
lola: 20850728 markings, 122556833 edges, 12480 markings/sec, 1590 secs
lola: 20912465 markings, 122934681 edges, 12347 markings/sec, 1595 secs
lola: 20977428 markings, 123313808 edges, 12993 markings/sec, 1600 secs
lola: 21041250 markings, 123699294 edges, 12764 markings/sec, 1605 secs
lola: 21104051 markings, 124066682 edges, 12560 markings/sec, 1610 secs
lola: 21173346 markings, 124445047 edges, 13859 markings/sec, 1615 secs
lola: 21241728 markings, 124819332 edges, 13676 markings/sec, 1620 secs
lola: 21306973 markings, 125193142 edges, 13049 markings/sec, 1625 secs
lola: 21371744 markings, 125569897 edges, 12954 markings/sec, 1630 secs
lola: 21438498 markings, 125950299 edges, 13351 markings/sec, 1635 secs
lola: 21500184 markings, 126351948 edges, 12337 markings/sec, 1640 secs
lola: 21561859 markings, 126744404 edges, 12335 markings/sec, 1645 secs
lola: 21626463 markings, 127129129 edges, 12921 markings/sec, 1650 secs
lola: 21692604 markings, 127504399 edges, 13228 markings/sec, 1655 secs
lola: 21757786 markings, 127898603 edges, 13036 markings/sec, 1660 secs
lola: 21820513 markings, 128284123 edges, 12545 markings/sec, 1665 secs
lola: 21884540 markings, 128667735 edges, 12805 markings/sec, 1670 secs
lola: 21948914 markings, 129044091 edges, 12875 markings/sec, 1675 secs
lola: 22010172 markings, 129430013 edges, 12252 markings/sec, 1680 secs
lola: 22071952 markings, 129802754 edges, 12356 markings/sec, 1685 secs
lola: 22136905 markings, 130191705 edges, 12991 markings/sec, 1690 secs
lola: 22199824 markings, 130582016 edges, 12584 markings/sec, 1695 secs
lola: 22266225 markings, 130962036 edges, 13280 markings/sec, 1700 secs
lola: 22336490 markings, 131354717 edges, 14053 markings/sec, 1705 secs
lola: 22403334 markings, 131742696 edges, 13369 markings/sec, 1710 secs
lola: 22470357 markings, 132132407 edges, 13405 markings/sec, 1715 secs
lola: 22533306 markings, 132524079 edges, 12590 markings/sec, 1720 secs
lola: 22595442 markings, 132919511 edges, 12427 markings/sec, 1725 secs
lola: 22658845 markings, 133306146 edges, 12681 markings/sec, 1730 secs
lola: 22726486 markings, 133683879 edges, 13528 markings/sec, 1735 secs
lola: 22791475 markings, 134069821 edges, 12998 markings/sec, 1740 secs
lola: 22856270 markings, 134461142 edges, 12959 markings/sec, 1745 secs
lola: 22917527 markings, 134841340 edges, 12251 markings/sec, 1750 secs
lola: 22983510 markings, 135220836 edges, 13197 markings/sec, 1755 secs
lola: 23047071 markings, 135608460 edges, 12712 markings/sec, 1760 secs
lola: 23107579 markings, 135984415 edges, 12102 markings/sec, 1765 secs
lola: 23172465 markings, 136379386 edges, 12977 markings/sec, 1770 secs
lola: 23238716 markings, 136774940 edges, 13250 markings/sec, 1775 secs
lola: 23303930 markings, 137156965 edges, 13043 markings/sec, 1780 secs
lola: 23380219 markings, 137545769 edges, 15258 markings/sec, 1785 secs
lola: 23451491 markings, 137930137 edges, 14254 markings/sec, 1790 secs
lola: 23518707 markings, 138316212 edges, 13443 markings/sec, 1795 secs
lola: 23587894 markings, 138686383 edges, 13837 markings/sec, 1800 secs
lola: 23659943 markings, 139075975 edges, 14410 markings/sec, 1805 secs
lola: 23728608 markings, 139451918 edges, 13733 markings/sec, 1810 secs
lola: 23796454 markings, 139832786 edges, 13569 markings/sec, 1815 secs
lola: 23868254 markings, 140221018 edges, 14360 markings/sec, 1820 secs
lola: 23936211 markings, 140595609 edges, 13591 markings/sec, 1825 secs
lola: 24008827 markings, 140984255 edges, 14523 markings/sec, 1830 secs
lola: 24073175 markings, 141359757 edges, 12870 markings/sec, 1835 secs
lola: 24136593 markings, 141721111 edges, 12684 markings/sec, 1840 secs
lola: 24197569 markings, 142077315 edges, 12195 markings/sec, 1845 secs
lola: 24260731 markings, 142437060 edges, 12632 markings/sec, 1850 secs
lola: 24329054 markings, 142820117 edges, 13665 markings/sec, 1855 secs
lola: 24383239 markings, 143201529 edges, 10837 markings/sec, 1860 secs
lola: 24449965 markings, 143563770 edges, 13345 markings/sec, 1865 secs
lola: 24513283 markings, 143935425 edges, 12664 markings/sec, 1870 secs
lola: 24572745 markings, 144297135 edges, 11892 markings/sec, 1875 secs
lola: 24636249 markings, 144684072 edges, 12701 markings/sec, 1880 secs
lola: 24695987 markings, 145060959 edges, 11948 markings/sec, 1885 secs
lola: 24752293 markings, 145430231 edges, 11261 markings/sec, 1890 secs
lola: 24806900 markings, 145792663 edges, 10921 markings/sec, 1895 secs
lola: 24867695 markings, 146173318 edges, 12159 markings/sec, 1900 secs
lola: 24929920 markings, 146554254 edges, 12445 markings/sec, 1905 secs
lola: 24994550 markings, 146938938 edges, 12926 markings/sec, 1910 secs
lola: 25052146 markings, 147308505 edges, 11519 markings/sec, 1915 secs
lola: 25109269 markings, 147678043 edges, 11425 markings/sec, 1920 secs
lola: 25172049 markings, 148055910 edges, 12556 markings/sec, 1925 secs
lola: 25231368 markings, 148435537 edges, 11864 markings/sec, 1930 secs
lola: 25287528 markings, 148800847 edges, 11232 markings/sec, 1935 secs
lola: 25345339 markings, 149177486 edges, 11562 markings/sec, 1940 secs
lola: 25406052 markings, 149536982 edges, 12143 markings/sec, 1945 secs
lola: 25461988 markings, 149893137 edges, 11187 markings/sec, 1950 secs
lola: 25521670 markings, 150239391 edges, 11936 markings/sec, 1955 secs
lola: 25589155 markings, 150593877 edges, 13497 markings/sec, 1960 secs
lola: 25652750 markings, 150953067 edges, 12719 markings/sec, 1965 secs
lola: 25715769 markings, 151320588 edges, 12604 markings/sec, 1970 secs
lola: 25780154 markings, 151709649 edges, 12877 markings/sec, 1975 secs
lola: 25843992 markings, 152097541 edges, 12768 markings/sec, 1980 secs
lola: 25906843 markings, 152491791 edges, 12570 markings/sec, 1985 secs
lola: 25969777 markings, 152873786 edges, 12587 markings/sec, 1990 secs
lola: 26035384 markings, 153257620 edges, 13121 markings/sec, 1995 secs
lola: 26105783 markings, 153645615 edges, 14080 markings/sec, 2000 secs
lola: 26169688 markings, 154036342 edges, 12781 markings/sec, 2005 secs
lola: 26227504 markings, 154396731 edges, 11563 markings/sec, 2010 secs
lola: 26287332 markings, 154749933 edges, 11966 markings/sec, 2015 secs
lola: 26347329 markings, 155100605 edges, 11999 markings/sec, 2020 secs
lola: 26403433 markings, 155446467 edges, 11221 markings/sec, 2025 secs
lola: 26457810 markings, 155805659 edges, 10875 markings/sec, 2030 secs
lola: 26526576 markings, 156173905 edges, 13753 markings/sec, 2035 secs
lola: 26585080 markings, 156529355 edges, 11701 markings/sec, 2040 secs
lola: 26647319 markings, 156879135 edges, 12448 markings/sec, 2045 secs
lola: 26719654 markings, 157272284 edges, 14467 markings/sec, 2050 secs
lola: 26789264 markings, 157661373 edges, 13922 markings/sec, 2055 secs
lola: 26857402 markings, 158052588 edges, 13628 markings/sec, 2060 secs
lola: 26924986 markings, 158444547 edges, 13517 markings/sec, 2065 secs
lola: 26988854 markings, 158833405 edges, 12774 markings/sec, 2070 secs
lola: 27050431 markings, 159227127 edges, 12315 markings/sec, 2075 secs
lola: 27112416 markings, 159611423 edges, 12397 markings/sec, 2080 secs
lola: 27181581 markings, 159994267 edges, 13833 markings/sec, 2085 secs
lola: 27244071 markings, 160375581 edges, 12498 markings/sec, 2090 secs
lola: 27308850 markings, 160766837 edges, 12956 markings/sec, 2095 secs
lola: 27372456 markings, 161149210 edges, 12721 markings/sec, 2100 secs
lola: 27438125 markings, 161529352 edges, 13134 markings/sec, 2105 secs
lola: 27500071 markings, 161903310 edges, 12389 markings/sec, 2110 secs
lola: 27560042 markings, 162276102 edges, 11994 markings/sec, 2115 secs
lola: 27620632 markings, 162648425 edges, 12118 markings/sec, 2120 secs
lola: 27684215 markings, 163016517 edges, 12717 markings/sec, 2125 secs
lola: 27747478 markings, 163400011 edges, 12653 markings/sec, 2130 secs
lola: 27812871 markings, 163775300 edges, 13079 markings/sec, 2135 secs
lola: 27882213 markings, 164162132 edges, 13868 markings/sec, 2140 secs
lola: 27949858 markings, 164553600 edges, 13529 markings/sec, 2145 secs
lola: 28013890 markings, 164938389 edges, 12806 markings/sec, 2150 secs
lola: 28075096 markings, 165312711 edges, 12241 markings/sec, 2155 secs
lola: 28133738 markings, 165683338 edges, 11728 markings/sec, 2160 secs
lola: 28192675 markings, 166041908 edges, 11787 markings/sec, 2165 secs
lola: 28258618 markings, 166408710 edges, 13189 markings/sec, 2170 secs
lola: 28321628 markings, 166779940 edges, 12602 markings/sec, 2175 secs
lola: 28385904 markings, 167161665 edges, 12855 markings/sec, 2180 secs
lola: 28444531 markings, 167529521 edges, 11725 markings/sec, 2185 secs
lola: 28507225 markings, 167900862 edges, 12539 markings/sec, 2190 secs
lola: 28570755 markings, 168266223 edges, 12706 markings/sec, 2195 secs
lola: 28630075 markings, 168633326 edges, 11864 markings/sec, 2200 secs
lola: 28688527 markings, 169012358 edges, 11690 markings/sec, 2205 secs
lola: 28760431 markings, 169403871 edges, 14381 markings/sec, 2210 secs
lola: 28822682 markings, 169781809 edges, 12450 markings/sec, 2215 secs
lola: 28892376 markings, 170181040 edges, 13939 markings/sec, 2220 secs
lola: 28961668 markings, 170583354 edges, 13858 markings/sec, 2225 secs
lola: 29030110 markings, 170975013 edges, 13688 markings/sec, 2230 secs
lola: 29097703 markings, 171367852 edges, 13519 markings/sec, 2235 secs
lola: 29158462 markings, 171737168 edges, 12152 markings/sec, 2240 secs
lola: 29217889 markings, 172115766 edges, 11885 markings/sec, 2245 secs
lola: 29280668 markings, 172491333 edges, 12556 markings/sec, 2250 secs
lola: 29341768 markings, 172893980 edges, 12220 markings/sec, 2255 secs
lola: time limit reached - aborting
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola: memory consumption: 4758020 KB
lola: time consumption: 3567 seconds
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola: memory consumption: 4758240 KB
lola: time consumption: 3567 seconds
BK_STOP 1527028767471
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-6"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-6.tgz
mv NeoElection-COL-6 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-COL-6, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r112-csrt-152666469300269"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;