fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r112-csrt-152666469300269
Last Updated
June 26, 2018

About the Execution of LoLA for NeoElection-COL-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
4864.970 3569860.00 3630612.00 264.40 T?FT?FTTFTFFFTT? normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
................
/home/mcc/execution
total 264K
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 12K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.9K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.4K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 108 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 346 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.9K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 21K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 98K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-COL-6, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r112-csrt-152666469300269
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-6-CTLCardinality-00
FORMULA_NAME NeoElection-COL-6-CTLCardinality-01
FORMULA_NAME NeoElection-COL-6-CTLCardinality-02
FORMULA_NAME NeoElection-COL-6-CTLCardinality-03
FORMULA_NAME NeoElection-COL-6-CTLCardinality-04
FORMULA_NAME NeoElection-COL-6-CTLCardinality-05
FORMULA_NAME NeoElection-COL-6-CTLCardinality-06
FORMULA_NAME NeoElection-COL-6-CTLCardinality-07
FORMULA_NAME NeoElection-COL-6-CTLCardinality-08
FORMULA_NAME NeoElection-COL-6-CTLCardinality-09
FORMULA_NAME NeoElection-COL-6-CTLCardinality-10
FORMULA_NAME NeoElection-COL-6-CTLCardinality-11
FORMULA_NAME NeoElection-COL-6-CTLCardinality-12
FORMULA_NAME NeoElection-COL-6-CTLCardinality-13
FORMULA_NAME NeoElection-COL-6-CTLCardinality-14
FORMULA_NAME NeoElection-COL-6-CTLCardinality-15

=== Now, execution of the tool begins

BK_START 1527025197611

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-6 formula CTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking CTLCardinality @ NeoElection-COL-6 @ 3567 seconds
lola: LoLA will run for 3567 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 13363/65536 symbol table entries, 4016 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8533 transitions, 1204 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 2597 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-6-CTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: after: (36 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: LP says that atomic proposition is always false: (36 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: place invariant simplifies atomic proposition
lola: before: (p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744 <= p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631)
lola: after: (p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 6)
lola: LP says that atomic proposition is always true: (p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99)
lola: after: (0 <= 35)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: after: (6 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: LP says that atomic proposition is always false: (6 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: place invariant simplifies atomic proposition
lola: before: (p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4122 + p4121 + p4120 + p4119 + p4118 + p4117 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4201 + p4202 + p4203 + p4204 + p4205 + p4206 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p4243 + p4244 + p4245 + p4246 + p4247 + p4248 + p2946 + p2945 + p2944 + p2943 + p2942 + p2941 + p4285 + p4286 + p4287 + p4288 + p4289 + p4290 + p2904 + p2903 + p2902 + p2901 + p2900 + p4327 + p4328 + p4329 + p4330 + p4331 + p4332 + p2899 + p3025 + p3026 + p3027 + p3028 + p3029 + p2862 + p2861 + p3030 + p2860 + p2859 + p2858 + p2857 + p4369 + p2820 + p2819 + p4370 + p4371 + p2818 + p4372 + p2817 + p4373 + p2816 + p4374 + p2815 + p2778 + p2777 + p2776 + p2775 + p2774 + p2773 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416 + p3109 + p3110 + p3111 + p3112 + p3113 + p3114 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458 + p3151 + p3152 + p3996 + p3153 + p3154 + p3995 + p3155 + p3156 + p3994 + p3993 + p3992 + p3991 + p4495 + p4496 + p4497 + p4498 + p4499 + p3954 + p3953 + p3193 + p3194 + p3195 + p3196 + p3197 + p3198 + p3952 + p4500 + p3951 + p3950 + p3949 + p3912 + p3911 + p3910 + p3909 + p3908 + p3907 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3870 + p4579 + p3869 + p3868 + p4580 + p4581 + p3867 + p4582 + p4583 + p3866 + p4584 + p3865 + p3828 + p3827 + p3826 + p3825 + p3824 + p3823 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3786 + p3785 + p3784 + p3783 + p3782 + p3781 + p3744 + p3743 + p3742 + p3741 + p3740 + p4621 + p4622 + p4623 + p4624 + p4625 + p4626 + p3739 + p3702 + p3701 + p3700 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3699 + p3698 + p3697 + p4663 + p4664 + p3660 + p4665 + p3659 + p3658 + p4666 + p3657 + p3656 + p4667 + p3655 + p4668 + p3618 + p3617 + p3616 + p3615 + p3614 + p3613 + p3576 + p3575 + p3574 + p3573 + p3572 + p3571 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3534 + p3533 + p3532 + p3531 + p3530 + p3529 + p3492 + p3491 + p3490 + p3489 + p3488 + p3487 + p4794 + p4793 + p4792 + p4791 + p4790 + p4705 + p4706 + p4707 + p4708 + p4709 + p4789 + p4710 + p3450 + p3449 + p3448 + p3447 + p3446 + p3445 + p4752 + p4751 + p4750 + p4749 + p4748 + p4747 + p3408 + p3407 + p3406 + p3405 + p3404 + p3403 + p3401 + p4733 + p3402 + p4734 + p4732 + p4735 + p3400 + p4736 + p4731 + p4737 + p4730 + p4738 + p4739 + p3409 + p4729 + p4728 + p4727 + p4740 + p4741 + p3410 + p4742 + p3411 + p4743 + p3412 + p4744 + p3413 + p4745 + p3414 + p4746 + p3415 + p4726 + p3416 + p4725 + p3417 + p4724 + p3418 + p3419 + p4723 + p4722 + p4721 + p3420 + p4720 + p3421 + p4753 + p3422 + p4754 + p3423 + p4755 + p3424 + p4756 + p3425 + p4757 + p3426 + p4758 + p3427 + p4759 + p3428 + p3429 + p4760 + p4761 + p3430 + p4762 + p3431 + p4763 + p3432 + p4764 + p3433 + p4765 + p3434 + p4766 + p3435 + p4767 + p3436 + p4768 + p3437 + p4769 + p3438 + p4719 + p3439 + p4718 + p4770 + p4771 + p3440 + p4772 + p3441 + p4773 + p3442 + p4774 + p3443 + p4775 + p3444 + p4776 + p4717 + p4716 + p4777 + p4715 + p4778 + p4714 + p4779 + p4713 + p4712 + p4780 + p4781 + p4711 + p4782 + p3451 + p4783 + p3452 + p4784 + p3453 + p4785 + p3454 + p4786 + p3455 + p4787 + p3456 + p4788 + p3457 + p3458 + p3459 + p4704 + p4703 + p3460 + p4702 + p3461 + p4701 + p3462 + p4700 + p3463 + p4795 + p3464 + p4796 + p3465 + p4797 + p3466 + p4798 + p3467 + p4799 + p3468 + p3469 + p3470 + p3471 + p3472 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3479 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3486 + p3493 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3399 + p3398 + p3397 + p3396 + p4800 + p4801 + p4802 + p4803 + p4804 + p4805 + p4806 + p4807 + p4808 + p4809 + p3395 + p4810 + p4811 + p4812 + p4813 + p4814 + p4815 + p4816 + p4817 + p4818 + p4819 + p3394 + p3393 + p4820 + p4821 + p4822 + p3392 + p3391 + p3390 + p3389 + p3388 + p3387 + p3386 + p3385 + p3384 + p3500 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3507 + p3508 + p3509 + p3383 + p3510 + p3511 + p3512 + p3513 + p3514 + p3515 + p3516 + p3517 + p3518 + p3519 + p3382 + p3520 + p3521 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3528 + p3381 + p3380 + p3379 + p3378 + p3377 + p3535 + p3536 + p3537 + p3538 + p3539 + p3376 + p3375 + p3374 + p3540 + p3541 + p3542 + p3543 + p3373 + p3544 + p3545 + p3372 + p3546 + p3547 + p3371 + p3548 + p3370 + p3549 + p3550 + p3551 + p3369 + p3552 + p3368 + p3553 + p4699 + p3554 + p3555 + p3367 + p3556 + p4698 + p3557 + p3558 + p4697 + p3559 + p4696 + p3560 + p3561 + p3562 + p4695 + p3563 + p3564 + p4694 + p3565 + p3566 + p4693 + p3567 + p4692 + p3568 + p3360 + p3569 + p4691 + p4690 + p3570 + p3359 + p3358 + p4689 + p3357 + p4688 + p3356 + p4687 + p3577 + p3578 + p3355 + p3579 + p4686 + p3354 + p3580 + p3581 + p4685 + p3582 + p3583 + p3353 + p3584 + p4684 + p3585 + p3586 + p3352 + p3587 + p4683 + p3588 + p3589 + p3351 + p4682 + p3590 + p3591 + p3350 + p3592 + p3593 + p3594 + p3595 + p3596 + p3597 + p3598 + p3599 + p4681 + p4680 + p3349 + p3348 + p4679 + p3347 + p4678 + p3346 + p4677 + p3345 + p4676 + p3344 + p3600 + p3601 + p3602 + p3603 + p3604 + p3605 + p3606 + p3607 + p3608 + p3609 + p4675 + p3610 + p3611 + p3612 + p3343 + p4674 + p3342 + p4673 + p3341 + p4672 + p3619 + p3340 + p4671 + p4670 + p3339 + p3338 + p4669 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p3626 + p3627 + p3628 + p3629 + p3630 + p3631 + p3632 + p3633 + p3634 + p3635 + p3636 + p3637 + p3638 + p3639 + p3337 + p3640 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3647 + p3648 + p3649 + p3650 + p3651 + p3652 + p3653 + p3654 + p3336 + p3335 + p3334 + p3333 + p3661 + p3662 + p3663 + p3664 + p3332 + p3665 + p3666 + p3331 + p3667 + p4662 + p3668 + p3330 + p3669 + p4661 + p4660 + p3670 + p3671 + p3672 + p3673 + p3674 + p3675 + p3676 + p3677 + p3329 + p3678 + p3679 + p3680 + p3681 + p3682 + p3683 + p3684 + p3328 + p3685 + p3686 + p3687 + p3688 + p3689 + p4659 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p3696 + p3327 + p4658 + p3326 + p4657 + p3325 + p4656 + p4655 + p4654 + p4653 + p4652 + p4651 + p4650 + p3318 + p4649 + p3317 + p4648 + p3316 + p4647 + p3315 + p4646 + p3314 + p4645 + p3313 + p4644 + p3312 + p4643 + p3311 + p4642 + p3310 + p4641 + p4640 + p3309 + p3308 + p4639 + p3307 + p4638 + p3306 + p4637 + p3305 + p4636 + p3304 + p4635 + p3303 + p4634 + p3302 + p4633 + p3703 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p3301 + p4632 + p3300 + p4631 + p3710 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3717 + p3718 + p3719 + p4630 + p3720 + p3721 + p3722 + p3723 + p3724 + p3725 + p3726 + p3727 + p3728 + p3729 + p4629 + p3730 + p3731 + p3732 + p3733 + p3734 + p3735 + p3736 + p3737 + p3738 + p4628 + p4627 + p4620 + p4619 + p4618 + p4617 + p4616 + p4615 + p4614 + p4613 + p3745 + p3746 + p3747 + p3748 + p3749 + p3750 + p3751 + p3752 + p3753 + p3754 + p3755 + p3756 + p3757 + p3758 + p3759 + p3760 + p3761 + p3762 + p3763 + p3764 + p3765 + p3766 + p3767 + p3768 + p4612 + p3769 + p3770 + p3771 + p3772 + p3773 + p3774 + p3775 + p4611 + p3776 + p3777 + p3778 + p3779 + p3780 + p4610 + p4609 + p4608 + p4607 + p4606 + p4605 + p4604 + p3787 + p3788 + p3789 + p4603 + p4602 + p4601 + p3790 + p3791 + p3792 + p4600 + p3793 + p3299 + p3794 + p3298 + p3795 + p3297 + p3796 + p3296 + p3797 + p3798 + p3799 + p3295 + p3294 + p3293 + p3292 + p3291 + p3290 + p3289 + p3288 + p3287 + p3286 + p3285 + p3284 + p3283 + p3276 + p3275 + p3274 + p3273 + p3272 + p3271 + p3270 + p3269 + p3268 + p4599 + p3267 + p4598 + p3266 + p4597 + p3265 + p4596 + p3264 + p4595 + p3263 + p4594 + p3800 + p3801 + p3802 + p3803 + p3804 + p3805 + p3806 + p3807 + p3808 + p3809 + p3262 + p4593 + p3810 + p3811 + p3812 + p3813 + p3814 + p3815 + p3816 + p3817 + p3818 + p3819 + p3261 + p3820 + p3821 + p3822 + p4592 + p3260 + p4591 + p4590 + p3259 + p3258 + p3829 + p4589 + p3257 + p4588 + p3256 + p4587 + p3255 + p4586 + p3254 + p3830 + p3831 + p3832 + p3833 + p3834 + p3835 + p3836 + p3837 + p3838 + p3839 + p4585 + p3840 + p3841 + p3842 + p3843 + p3844 + p3845 + p3846 + p3847 + p3848 + p3849 + p3850 + p3851 + p3852 + p3853 + p3854 + p3855 + p3856 + p3857 + p3858 + p3859 + p3860 + p3861 + p3862 + p3863 + p3864 + p3253 + p3252 + p3251 + p3250 + p3249 + p3248 + p3247 + p3871 + p3872 + p3873 + p4578 + p3874 + p3246 + p3875 + p4577 + p3876 + p3245 + p3877 + p4576 + p3878 + p3244 + p3879 + p4575 + p3243 + p3880 + p3881 + p3882 + p3883 + p3884 + p3885 + p3886 + p4574 + p3887 + p3242 + p4573 + p3888 + p3241 + p3889 + p4572 + p4571 + p3890 + p3891 + p4570 + p3892 + p4569 + p3893 + p4568 + p3894 + p4567 + p4566 + p3895 + p3234 + p3896 + p4565 + p3897 + p3233 + p3898 + p4564 + p3899 + p3232 + p4563 + p3231 + p4562 + p3230 + p4561 + p4560 + p3229 + p3228 + p4559 + p3227 + p4558 + p3226 + p4557 + p3225 + p4556 + p3224 + p4555 + p3223 + p4554 + p3222 + p4553 + p3221 + p4552 + p3220 + p4551 + p4550 + p3219 + p3218 + p4549 + p3217 + p4548 + p3216 + p4547 + p3215 + p4546 + p3214 + p4545 + p3213 + p4544 + p3212 + p4543 + p3211 + p3210 + p3209 + p3208 + p3207 + p3206 + p3205 + p4536 + p3204 + p4535 + p3203 + p4534 + p3202 + p4533 + p3201 + p4532 + p3200 + p4531 + p4530 + p4529 + p4528 + p4527 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p3906 + p4526 + p4525 + p4524 + p4523 + p4522 + p4521 + p4520 + p4519 + p4518 + p4517 + p4516 + p3913 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p4515 + p4514 + p4513 + p4512 + p3920 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p3927 + p3928 + p3929 + p4511 + p3930 + p3931 + p3932 + p4510 + p3933 + p3934 + p3935 + p4509 + p3936 + p3937 + p3938 + p4508 + p3939 + p4507 + p3940 + p3941 + p4506 + p3942 + p3943 + p3944 + p4505 + p3945 + p3946 + p3947 + p4504 + p3948 + p4503 + p4502 + p4501 + p3199 + p3192 + p3191 + p3955 + p3956 + p3957 + p3958 + p3959 + p3960 + p3961 + p3962 + p3190 + p3963 + p3189 + p3188 + p3964 + p3187 + p3186 + p3965 + p3185 + p3966 + p3184 + p3967 + p3183 + p3968 + p3182 + p3969 + p3181 + p3180 + p3179 + p3970 + p3971 + p3178 + p3972 + p3177 + p3973 + p3176 + p3974 + p3175 + p3975 + p3174 + p3976 + p3173 + p3977 + p3172 + p3978 + p3171 + p3170 + p3979 + p3169 + p3168 + p3980 + p3981 + p3167 + p3982 + p3166 + p3983 + p3984 + p3165 + p3985 + p3164 + p3163 + p3986 + p4494 + p3987 + p3162 + p3988 + p4493 + p3989 + p3161 + p4492 + p3990 + p3160 + p4491 + p4490 + p3159 + p3158 + p4489 + p3157 + p4488 + p4487 + p4486 + p4485 + p4484 + p4483 + p3997 + p3998 + p4482 + p3999 + p3150 + p4481 + p4480 + p3149 + p3148 + p4479 + p3147 + p4478 + p3146 + p4477 + p3145 + p4476 + p3144 + p4475 + p3143 + p4474 + p3142 + p4473 + p3141 + p4472 + p3140 + p4471 + p4470 + p3139 + p3138 + p4469 + p3137 + p4468 + p3136 + p4467 + p3135 + p4466 + p3134 + p4465 + p3133 + p4464 + p3132 + p4463 + p3131 + p4462 + p3130 + p4461 + p4460 + p3129 + p3128 + p4459 + p3127 + p3126 + p3125 + p3124 + p3123 + p3122 + p3121 + p4452 + p3120 + p4451 + p4450 + p3119 + p3118 + p4449 + p3117 + p4448 + p3116 + p4447 + p3115 + p4446 + p4445 + p4444 + p4443 + p4442 + p4441 + p4440 + p3108 + p4439 + p3107 + p4438 + p3106 + p4437 + p3105 + p4436 + p3104 + p4435 + p3103 + p4434 + p3102 + p4433 + p3101 + p4432 + p3100 + p4431 + p4430 + p4429 + p4428 + p4427 + p4426 + p4425 + p4424 + p4423 + p4422 + p4421 + p4420 + p4419 + p4418 + p4417 + p4410 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4403 + p4402 + p4401 + p4400 + p3099 + p3098 + p3097 + p3096 + p3095 + p3094 + p3093 + p3092 + p3091 + p3090 + p3089 + p3088 + p3087 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3080 + p3079 + p3078 + p3077 + p3076 + p3075 + p3074 + p3073 + p4399 + p2765 + p2766 + p4398 + p2767 + p2768 + p2769 + p2770 + p2771 + p2772 + p3066 + p4397 + p3065 + p4396 + p3064 + p4395 + p3063 + p2779 + p4394 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p2786 + p2787 + p3062 + p2788 + p2789 + p2790 + p2791 + p2792 + p2793 + p2794 + p4393 + p2795 + p3061 + p2796 + p4392 + p2797 + p3060 + p2798 + p4391 + p2799 + p4390 + p3059 + p3058 + p4389 + p3057 + p4388 + p3056 + p4387 + p3055 + p4386 + p3054 + p4385 + p3053 + p4384 + p3052 + p4383 + p3051 + p4382 + p3050 + p4381 + p4380 + p3049 + p3048 + p4379 + p3047 + p4378 + p3046 + p4377 + p3045 + p4376 + p3044 + p2800 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p2807 + p2808 + p2809 + p4375 + p2810 + p2811 + p2812 + p2813 + p2814 + p3043 + p3042 + p3041 + p3040 + p3039 + p3038 + p2821 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p2828 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p2835 + p2836 + p3037 + p2837 + p4368 + p2838 + p3036 + p2839 + p4367 + p3035 + p2840 + p2841 + p4366 + p2842 + p3034 + p2843 + p4365 + p2844 + p2845 + p2846 + p2847 + p2848 + p2849 + p3033 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p2856 + p4364 + p3032 + p4363 + p3031 + p4362 + p4361 + p4360 + p2863 + p2864 + p4359 + p2865 + p2866 + p2867 + p2868 + p2869 + p2870 + p2871 + p4358 + p2872 + p2873 + p2874 + p2875 + p2876 + p2877 + p2878 + p4357 + p2879 + p4356 + p3024 + p2880 + p2881 + p4355 + p2882 + p3023 + p2883 + p4354 + p2884 + p3022 + p2885 + p4353 + p2886 + p2887 + p2888 + p2889 + p2890 + p2891 + p2892 + p3021 + p2893 + p2894 + p2895 + p2896 + p2897 + p2898 + p4352 + p3020 + p4351 + p4350 + p3019 + p3018 + p4349 + p3017 + p4348 + p3016 + p4347 + p3015 + p4346 + p3014 + p4345 + p3013 + p4344 + p3012 + p4343 + p3011 + p4342 + p3010 + p4341 + p4340 + p3009 + p3008 + p4339 + p3007 + p4338 + p3006 + p4337 + p3005 + p4336 + p3004 + p4335 + p3003 + p4334 + p3002 + p4333 + p3001 + p3000 + p4326 + p4325 + p4324 + p4323 + p4322 + p4321 + p4320 + p4319 + p4318 + p4317 + p4316 + p4315 + p4314 + p4313 + p4312 + p4311 + p4310 + p4309 + p4308 + p4307 + p4306 + p4305 + p4304 + p4303 + p4302 + p4301 + p4300 + p4299 + p2905 + p2906 + p2907 + p2908 + p2909 + p4298 + p4297 + p4296 + p4295 + p4294 + p4293 + p4292 + p4291 + p2910 + p2911 + p2912 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p2919 + p4284 + p4283 + p4282 + p4281 + p4280 + p4279 + p2920 + p2921 + p2922 + p2923 + p2924 + p2925 + p2926 + p2927 + p2928 + p2929 + p4278 + p4277 + p4276 + p4275 + p4274 + p4273 + p4272 + p2930 + p2931 + p2932 + p2933 + p2934 + p4271 + p2935 + p2936 + p2937 + p2938 + p2939 + p4270 + p4269 + p4268 + p4267 + p4266 + p4265 + p4264 + p2940 + p4263 + p4262 + p4261 + p4260 + p4259 + p4258 + p4257 + p2947 + p2948 + p4256 + p2949 + p4255 + p4254 + p4253 + p4252 + p4251 + p4250 + p2950 + p2951 + p2952 + p2953 + p2954 + p2955 + p4249 + p2956 + p2957 + p2958 + p2959 + p2960 + p2961 + p2962 + p4242 + p2963 + p4241 + p2964 + p4240 + p2965 + p4239 + p2966 + p4238 + p2967 + p4237 + p2968 + p4236 + p2969 + p4235 + p2970 + p2971 + p2972 + p2973 + p2974 + p2975 + p2976 + p4234 + p2977 + p2978 + p2979 + p2980 + p2981 + p2982 + p4233 + p4232 + p4231 + p4230 + p4229 + p4228 + p4227 + p2989 + p4226 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p2996 + p2997 + p4225 + p2998 + p2999 + p4224 + p4223 + p4222 + p4221 + p4220 + p4219 + p4218 + p4217 + p4216 + p4215 + p4214 + p4213 + p4212 + p4211 + p4210 + p4209 + p4208 + p4207 + p4200 + p4000 + p4001 + p4002 + p4003 + p4004 + p4005 + p4006 + p4007 + p4008 + p4009 + p4010 + p4011 + p4012 + p4013 + p4014 + p4015 + p4016 + p4017 + p4018 + p4019 + p4020 + p4021 + p4022 + p4023 + p4024 + p4025 + p4026 + p4027 + p4028 + p4029 + p4030 + p4031 + p4032 + p4039 + p4040 + p4041 + p4042 + p4043 + p4044 + p4045 + p4046 + p4047 + p4048 + p4049 + p4050 + p4051 + p4052 + p4053 + p4054 + p4055 + p4056 + p4057 + p4058 + p4059 + p4060 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4067 + p4068 + p4069 + p4070 + p4071 + p4072 + p4073 + p4074 + p4081 + p4082 + p4083 + p4084 + p4085 + p4086 + p4087 + p4088 + p4089 + p4090 + p4091 + p4092 + p4093 + p4094 + p4095 + p4096 + p4097 + p4098 + p4099 + p4100 + p4101 + p4102 + p4103 + p4104 + p4105 + p4106 + p4107 + p4108 + p4109 + p4110 + p4111 + p4112 + p4113 + p4114 + p4115 + p4116 + p4123 + p4124 + p4125 + p4126 + p4127 + p4128 + p4129 + p4130 + p4131 + p4132 + p4133 + p4134 + p4135 + p4136 + p4137 + p4138 + p4139 + p4140 + p4141 + p4142 + p4143 + p4144 + p4145 + p4146 + p4147 + p4148 + p4149 + p4150 + p4151 + p4152 + p4153 + p4154 + p4155 + p4156 + p4157 + p4158 + p4165 + p4166 + p4167 + p4168 + p4169 + p4170 + p4171 + p4172 + p4173 + p4174 + p4175 + p4176 + p4177 + p4178 + p4179 + p4180 + p4181 + p4182 + p4183 + p4184 + p4185 + p4186 + p4187 + p4188 + p4189 + p4190 + p4191 + p4192 + p4193 + p4194 + p4195 + p4196 + p4197 + p4198 + p4199 <= p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99)
lola: after: (p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4122 + p4121 + p4120 + p4119 + p4118 + p4117 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4201 + p4202 + p4203 + p4204 + p4205 + p4206 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p4243 + p4244 + p4245 + p4246 + p4247 + p4248 + p2946 + p2945 + p2944 + p2943 + p2942 + p2941 + p4285 + p4286 + p4287 + p4288 + p4289 + p4290 + p2904 + p2903 + p2902 + p2901 + p2900 + p4327 + p4328 + p4329 + p4330 + p4331 + p4332 + p2899 + p3025 + p3026 + p3027 + p3028 + p3029 + p2862 + p2861 + p3030 + p2860 + p2859 + p2858 + p2857 + p4369 + p2820 + p2819 + p4370 + p4371 + p2818 + p4372 + p2817 + p4373 + p2816 + p4374 + p2815 + p2778 + p2777 + p2776 + p2775 + p2774 + p2773 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416 + p3109 + p3110 + p3111 + p3112 + p3113 + p3114 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458 + p3151 + p3152 + p3996 + p3153 + p3154 + p3995 + p3155 + p3156 + p3994 + p3993 + p3992 + p3991 + p4495 + p4496 + p4497 + p4498 + p4499 + p3954 + p3953 + p3193 + p3194 + p3195 + p3196 + p3197 + p3198 + p3952 + p4500 + p3951 + p3950 + p3949 + p3912 + p3911 + p3910 + p3909 + p3908 + p3907 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3870 + p4579 + p3869 + p3868 + p4580 + p4581 + p3867 + p4582 + p4583 + p3866 + p4584 + p3865 + p3828 + p3827 + p3826 + p3825 + p3824 + p3823 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3786 + p3785 + p3784 + p3783 + p3782 + p3781 + p3744 + p3743 + p3742 + p3741 + p3740 + p4621 + p4622 + p4623 + p4624 + p4625 + p4626 + p3739 + p3702 + p3701 + p3700 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3699 + p3698 + p3697 + p4663 + p4664 + p3660 + p4665 + p3659 + p3658 + p4666 + p3657 + p3656 + p4667 + p3655 + p4668 + p3618 + p3617 + p3616 + p3615 + p3614 + p3613 + p3576 + p3575 + p3574 + p3573 + p3572 + p3571 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3534 + p3533 + p3532 + p3531 + p3530 + p3529 + p3492 + p3491 + p3490 + p3489 + p3488 + p3487 + p4794 + p4793 + p4792 + p4791 + p4790 + p4705 + p4706 + p4707 + p4708 + p4709 + p4789 + p4710 + p3450 + p3449 + p3448 + p3447 + p3446 + p3445 + p4752 + p4751 + p4750 + p4749 + p4748 + p4747 + p3408 + p3407 + p3406 + p3405 + p3404 + p3403 <= 36)
lola: LP says that atomic proposition is always true: (p4164 + p4163 + p4162 + p4161 + p4160 + p4159 + p4122 + p4121 + p4120 + p4119 + p4118 + p4117 + p4080 + p4079 + p4078 + p4077 + p4076 + p4075 + p4038 + p4037 + p4036 + p4035 + p4034 + p4033 + p4201 + p4202 + p4203 + p4204 + p4205 + p4206 + p2988 + p2987 + p2986 + p2985 + p2984 + p2983 + p4243 + p4244 + p4245 + p4246 + p4247 + p4248 + p2946 + p2945 + p2944 + p2943 + p2942 + p2941 + p4285 + p4286 + p4287 + p4288 + p4289 + p4290 + p2904 + p2903 + p2902 + p2901 + p2900 + p4327 + p4328 + p4329 + p4330 + p4331 + p4332 + p2899 + p3025 + p3026 + p3027 + p3028 + p3029 + p2862 + p2861 + p3030 + p2860 + p2859 + p2858 + p2857 + p4369 + p2820 + p2819 + p4370 + p4371 + p2818 + p4372 + p2817 + p4373 + p2816 + p4374 + p2815 + p2778 + p2777 + p2776 + p2775 + p2774 + p2773 + p3067 + p3068 + p3069 + p3070 + p3071 + p3072 + p4411 + p4412 + p4413 + p4414 + p4415 + p4416 + p3109 + p3110 + p3111 + p3112 + p3113 + p3114 + p4453 + p4454 + p4455 + p4456 + p4457 + p4458 + p3151 + p3152 + p3996 + p3153 + p3154 + p3995 + p3155 + p3156 + p3994 + p3993 + p3992 + p3991 + p4495 + p4496 + p4497 + p4498 + p4499 + p3954 + p3953 + p3193 + p3194 + p3195 + p3196 + p3197 + p3198 + p3952 + p4500 + p3951 + p3950 + p3949 + p3912 + p3911 + p3910 + p3909 + p3908 + p3907 + p4537 + p4538 + p4539 + p4540 + p4541 + p4542 + p3235 + p3236 + p3237 + p3238 + p3239 + p3240 + p3870 + p4579 + p3869 + p3868 + p4580 + p4581 + p3867 + p4582 + p4583 + p3866 + p4584 + p3865 + p3828 + p3827 + p3826 + p3825 + p3824 + p3823 + p3277 + p3278 + p3279 + p3280 + p3281 + p3282 + p3786 + p3785 + p3784 + p3783 + p3782 + p3781 + p3744 + p3743 + p3742 + p3741 + p3740 + p4621 + p4622 + p4623 + p4624 + p4625 + p4626 + p3739 + p3702 + p3701 + p3700 + p3319 + p3320 + p3321 + p3322 + p3323 + p3324 + p3699 + p3698 + p3697 + p4663 + p4664 + p3660 + p4665 + p3659 + p3658 + p4666 + p3657 + p3656 + p4667 + p3655 + p4668 + p3618 + p3617 + p3616 + p3615 + p3614 + p3613 + p3576 + p3575 + p3574 + p3573 + p3572 + p3571 + p3361 + p3362 + p3363 + p3364 + p3365 + p3366 + p3534 + p3533 + p3532 + p3531 + p3530 + p3529 + p3492 + p3491 + p3490 + p3489 + p3488 + p3487 + p4794 + p4793 + p4792 + p4791 + p4790 + p4705 + p4706 + p4707 + p4708 + p4709 + p4789 + p4710 + p3450 + p3449 + p3448 + p3447 + p3446 + p3445 + p4752 + p4751 + p4750 + p4749 + p4748 + p4747 + p3408 + p3407 + p3406 + p3405 + p3404 + p3403 <= 36)
lola: place invariant simplifies atomic proposition
lola: before: (p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617 <= p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624)
lola: after: (6 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 + p159 + p158 + p160 + p157 + p156 + p155 + p169 + p170 + p171 + p172 + p173 + p174 + p176 + p177 + p178 + p179 + p180 + p181 + p183 + p184 + p185 + p186 + p187 + p188 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2108 + p2109 + p190 + p191 + p192 + p193 + p194 + p195 + p197 + p198 + p199 + p2110 + p2111 + p2112 + p2113 + p2115 + p2116 + p2117 + p2118 + p2119 + p2120 + p2122 + p2123 + p2124 + p2125 + p2126 + p2127 + p2129 + p2130 + p2131 + p2132 + p2133 + p2134 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2092 + p2091 + p2157 + p2090 + p2158 + p2159 + p2089 + p2088 + p2160 + p2087 + p2161 + p2162 + p2085 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2084 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2083 + p2082 + p2081 + p2080 + p2078 + p2077 + p2076 + p2075 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2074 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2073 + p2199 + p200 + p201 + p202 + p2071 + p2070 + p2069 + p2068 + p2067 + p2066 + p211 + p212 + p213 + p214 + p215 + p216 + p218 + p219 + p220 + p221 + p222 + p223 + p225 + p226 + p227 + p228 + p229 + p230 + p2064 + p232 + p233 + p234 + p235 + p236 + p237 + p239 + p240 + p241 + p242 + p243 + p244 + p2063 + p2062 + p2061 + p2060 + p2059 + p253 + p254 + p255 + p256 + p257 + p258 + p260 + p261 + p262 + p263 + p264 + p265 + p267 + p268 + p269 + p270 + p271 + p272 + p274 + p275 + p276 + p277 + p278 + p279 + p2050 + p281 + p282 + p283 + p284 + p285 + p286 + p2049 + p2048 + p2047 + p2200 + p2201 + p2046 + p2202 + p2203 + p2204 + p2045 + p2206 + p2207 + p2208 + p2209 + p2043 + p2042 + p295 + p296 + p297 + p298 + p299 + p2210 + p2211 + p2041 + p2040 + p2039 + p2038 + p2036 + p2035 + p2034 + p2033 + p2032 + p2031 + p2029 + p2028 + p2027 + p2026 + p2025 + p2024 + p2022 + p2021 + p2020 + p300 + p302 + p303 + p304 + p305 + p306 + p307 + p309 + p310 + p311 + p312 + p313 + p314 + p2019 + p316 + p317 + p318 + p319 + p320 + p321 + p2018 + p323 + p324 + p325 + p326 + p327 + p328 + p2017 + p337 + p338 + p339 + p340 + p341 + p342 + p344 + p345 + p346 + p347 + p348 + p349 + p351 + p352 + p353 + p354 + p355 + p356 + p358 + p359 + p360 + p361 + p362 + p363 + p365 + p366 + p367 + p368 + p369 + p370 + p2008 + p2007 + p379 + p380 + p381 + p382 + p383 + p384 + p2006 + p386 + p387 + p388 + p389 + p390 + p391 + p393 + p394 + p395 + p396 + p397 + p398 + p2005 + p2004 + p2003 + p1000 + p2001 + p2000 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p400 + p401 + p402 + p403 + p404 + p405 + p407 + p408 + p409 + p410 + p411 + p412 + p421 + p422 + p423 + p424 + p425 + p426 + p428 + p429 + p430 + p431 + p432 + p433 + p435 + p436 + p437 + p438 + p439 + p440 + p442 + p443 + p444 + p445 + p446 + p447 + p449 + p450 + p451 + p452 + p453 + p454 + p463 + p464 + p465 + p466 + p467 + p468 + p470 + p471 + p472 + p473 + p474 + p475 + p477 + p478 + p479 + p480 + p481 + p482 + p484 + p485 + p486 + p487 + p488 + p489 + p491 + p492 + p493 + p494 + p495 + p496 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p505 + p506 + p507 + p508 + p509 + p510 + p512 + p513 + p514 + p515 + p516 + p517 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p547 + p548 + p549 + p550 + p551 + p552 + p554 + p555 + p556 + p557 + p558 + p559 + p561 + p562 + p563 + p564 + p565 + p566 + p568 + p569 + p570 + p571 + p572 + p573 + p575 + p576 + p577 + p578 + p579 + p580 + p589 + p590 + p591 + p592 + p593 + p594 + p596 + p597 + p598 + p599 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p600 + p601 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p631 + p632 + p633 + p634 + p635 + p636 + p638 + p639 + p640 + p641 + p642 + p643 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p673 + p674 + p675 + p676 + p677 + p678 + p680 + p681 + p682 + p683 + p684 + p685 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p701 + p702 + p703 + p704 + p705 + p706 + p715 + p716 + p717 + p718 + p719 + p720 + p722 + p723 + p724 + p725 + p726 + p727 + p729 + p730 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p740 + p741 + p743 + p744 + p745 + p746 + p747 + p748 + p757 + p758 + p759 + p760 + p761 + p762 + p764 + p765 + p766 + p767 + p768 + p769 + p771 + p772 + p773 + p774 + p775 + p776 + p778 + p779 + p780 + p781 + p782 + p783 + p785 + p786 + p787 + p788 + p789 + p790 + p799 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p800 + p801 + p802 + p803 + p804 + p806 + p807 + p808 + p809 + p810 + p811 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p841 + p842 + p843 + p844 + p845 + p846 + p848 + p849 + p850 + p851 + p852 + p853 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p883 + p884 + p885 + p886 + p887 + p888 + p890 + p891 + p892 + p893 + p894 + p895 + p897 + p898 + p899 + p1500 + p1501 + p1502 + p1503 + p1504 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1597 + p1598 + p1599 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p925 + p926 + p927 + p928 + p929 + p930 + p932 + p933 + p934 + p935 + p936 + p937 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p967 + p968 + p969 + p970 + p971 + p972 + p974 + p975 + p976 + p977 + p978 + p979 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p1600 + p1601 + p1602 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1999 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1998 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1997 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1996 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1994 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1993 + p1992 + p1991 + p1990 + p1989 + p1987 + p1986 + p1985 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1984 + p1772 + p1773 + p1774 + p1775 + p1776 + p1777 + p1983 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1982 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1980 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1979 + p1978 + p1977 + p1976 + p1975 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1952 + p1951 + p1950 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1949 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1948 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1947 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1945 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1944 + p1943 + p1942 + p1941 + p1940 + p1938 + p1937 + p1936 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1935 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1934 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1933 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1924 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1923 + p1922 + p1921 + p1920 + p1919 + p1917 + p1916 + p1915 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1914 + p1898 + p1899 + p1913 + p1912 + p1910 + p1909 + p1908 + p1907 + p1906 + p1905 + p1903 + p1902 + p1901 + p1900 <= p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736)
lola: after: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 6)
lola: place invariant simplifies atomic proposition
lola: before: (p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (0 <= 6)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 + p159 + p158 + p160 + p157 + p156 + p155 + p169 + p170 + p171 + p172 + p173 + p174 + p176 + p177 + p178 + p179 + p180 + p181 + p183 + p184 + p185 + p186 + p187 + p188 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2108 + p2109 + p190 + p191 + p192 + p193 + p194 + p195 + p197 + p198 + p199 + p2110 + p2111 + p2112 + p2113 + p2115 + p2116 + p2117 + p2118 + p2119 + p2120 + p2122 + p2123 + p2124 + p2125 + p2126 + p2127 + p2129 + p2130 + p2131 + p2132 + p2133 + p2134 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2092 + p2091 + p2157 + p2090 + p2158 + p2159 + p2089 + p2088 + p2160 + p2087 + p2161 + p2162 + p2085 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2084 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2083 + p2082 + p2081 + p2080 + p2078 + p2077 + p2076 + p2075 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2074 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2073 + p2199 + p200 + p201 + p202 + p2071 + p2070 + p2069 + p2068 + p2067 + p2066 + p211 + p212 + p213 + p214 + p215 + p216 + p218 + p219 + p220 + p221 + p222 + p223 + p225 + p226 + p227 + p228 + p229 + p230 + p2064 + p232 + p233 + p234 + p235 + p236 + p237 + p239 + p240 + p241 + p242 + p243 + p244 + p2063 + p2062 + p2061 + p2060 + p2059 + p253 + p254 + p255 + p256 + p257 + p258 + p260 + p261 + p262 + p263 + p264 + p265 + p267 + p268 + p269 + p270 + p271 + p272 + p274 + p275 + p276 + p277 + p278 + p279 + p2050 + p281 + p282 + p283 + p284 + p285 + p286 + p2049 + p2048 + p2047 + p2200 + p2201 + p2046 + p2202 + p2203 + p2204 + p2045 + p2206 + p2207 + p2208 + p2209 + p2043 + p2042 + p295 + p296 + p297 + p298 + p299 + p2210 + p2211 + p2041 + p2040 + p2039 + p2038 + p2036 + p2035 + p2034 + p2033 + p2032 + p2031 + p2029 + p2028 + p2027 + p2026 + p2025 + p2024 + p2022 + p2021 + p2020 + p300 + p302 + p303 + p304 + p305 + p306 + p307 + p309 + p310 + p311 + p312 + p313 + p314 + p2019 + p316 + p317 + p318 + p319 + p320 + p321 + p2018 + p323 + p324 + p325 + p326 + p327 + p328 + p2017 + p337 + p338 + p339 + p340 + p341 + p342 + p344 + p345 + p346 + p347 + p348 + p349 + p351 + p352 + p353 + p354 + p355 + p356 + p358 + p359 + p360 + p361 + p362 + p363 + p365 + p366 + p367 + p368 + p369 + p370 + p2008 + p2007 + p379 + p380 + p381 + p382 + p383 + p384 + p2006 + p386 + p387 + p388 + p389 + p390 + p391 + p393 + p394 + p395 + p396 + p397 + p398 + p2005 + p2004 + p2003 + p1000 + p2001 + p2000 + p1009 + p1010 + p1011 + p1012 + p1013 + p1014 + p1016 + p1017 + p1018 + p1019 + p1020 + p1021 + p1023 + p1024 + p1025 + p1026 + p1027 + p1028 + p1030 + p1031 + p1032 + p1033 + p1034 + p1035 + p1037 + p1038 + p1039 + p1040 + p1041 + p1042 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p1058 + p1059 + p1060 + p1061 + p1062 + p1063 + p1065 + p1066 + p1067 + p1068 + p1069 + p1070 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p400 + p401 + p402 + p403 + p404 + p405 + p407 + p408 + p409 + p410 + p411 + p412 + p421 + p422 + p423 + p424 + p425 + p426 + p428 + p429 + p430 + p431 + p432 + p433 + p435 + p436 + p437 + p438 + p439 + p440 + p442 + p443 + p444 + p445 + p446 + p447 + p449 + p450 + p451 + p452 + p453 + p454 + p463 + p464 + p465 + p466 + p467 + p468 + p470 + p471 + p472 + p473 + p474 + p475 + p477 + p478 + p479 + p480 + p481 + p482 + p484 + p485 + p486 + p487 + p488 + p489 + p491 + p492 + p493 + p494 + p495 + p496 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1107 + p1108 + p1109 + p1110 + p1111 + p1112 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1149 + p1150 + p1151 + p1152 + p1153 + p1154 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1198 + p1199 + p505 + p506 + p507 + p508 + p509 + p510 + p512 + p513 + p514 + p515 + p516 + p517 + p519 + p520 + p521 + p522 + p523 + p524 + p526 + p527 + p528 + p529 + p530 + p531 + p533 + p534 + p535 + p536 + p537 + p538 + p547 + p548 + p549 + p550 + p551 + p552 + p554 + p555 + p556 + p557 + p558 + p559 + p561 + p562 + p563 + p564 + p565 + p566 + p568 + p569 + p570 + p571 + p572 + p573 + p575 + p576 + p577 + p578 + p579 + p580 + p589 + p590 + p591 + p592 + p593 + p594 + p596 + p597 + p598 + p599 + p1200 + p1201 + p1202 + p1203 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1275 + p1276 + p1277 + p1278 + p1279 + p1280 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p600 + p601 + p603 + p604 + p605 + p606 + p607 + p608 + p610 + p611 + p612 + p613 + p614 + p615 + p617 + p618 + p619 + p620 + p621 + p622 + p631 + p632 + p633 + p634 + p635 + p636 + p638 + p639 + p640 + p641 + p642 + p643 + p645 + p646 + p647 + p648 + p649 + p650 + p652 + p653 + p654 + p655 + p656 + p657 + p659 + p660 + p661 + p662 + p663 + p664 + p673 + p674 + p675 + p676 + p677 + p678 + p680 + p681 + p682 + p683 + p684 + p685 + p687 + p688 + p689 + p690 + p691 + p692 + p694 + p695 + p696 + p697 + p698 + p699 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1317 + p1318 + p1319 + p1320 + p1321 + p1322 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p701 + p702 + p703 + p704 + p705 + p706 + p715 + p716 + p717 + p718 + p719 + p720 + p722 + p723 + p724 + p725 + p726 + p727 + p729 + p730 + p731 + p732 + p733 + p734 + p736 + p737 + p738 + p739 + p740 + p741 + p743 + p744 + p745 + p746 + p747 + p748 + p757 + p758 + p759 + p760 + p761 + p762 + p764 + p765 + p766 + p767 + p768 + p769 + p771 + p772 + p773 + p774 + p775 + p776 + p778 + p779 + p780 + p781 + p782 + p783 + p785 + p786 + p787 + p788 + p789 + p790 + p799 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1499 + p800 + p801 + p802 + p803 + p804 + p806 + p807 + p808 + p809 + p810 + p811 + p813 + p814 + p815 + p816 + p817 + p818 + p820 + p821 + p822 + p823 + p824 + p825 + p827 + p828 + p829 + p830 + p831 + p832 + p841 + p842 + p843 + p844 + p845 + p846 + p848 + p849 + p850 + p851 + p852 + p853 + p855 + p856 + p857 + p858 + p859 + p860 + p862 + p863 + p864 + p865 + p866 + p867 + p869 + p870 + p871 + p872 + p873 + p874 + p883 + p884 + p885 + p886 + p887 + p888 + p890 + p891 + p892 + p893 + p894 + p895 + p897 + p898 + p899 + p1500 + p1501 + p1502 + p1503 + p1504 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1527 + p1528 + p1529 + p1530 + p1531 + p1532 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1569 + p1570 + p1571 + p1572 + p1573 + p1574 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1597 + p1598 + p1599 + p900 + p901 + p902 + p904 + p905 + p906 + p907 + p908 + p909 + p911 + p912 + p913 + p914 + p915 + p916 + p925 + p926 + p927 + p928 + p929 + p930 + p932 + p933 + p934 + p935 + p936 + p937 + p939 + p940 + p941 + p942 + p943 + p944 + p946 + p947 + p948 + p949 + p950 + p951 + p953 + p954 + p955 + p956 + p957 + p958 + p967 + p968 + p969 + p970 + p971 + p972 + p974 + p975 + p976 + p977 + p978 + p979 + p981 + p982 + p983 + p984 + p985 + p986 + p988 + p989 + p990 + p991 + p992 + p993 + p995 + p996 + p997 + p998 + p999 + p1600 + p1601 + p1602 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p1611 + p1612 + p1613 + p1614 + p1615 + p1616 + p1618 + p1619 + p1620 + p1621 + p1622 + p1623 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1653 + p1654 + p1655 + p1656 + p1657 + p1658 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1695 + p1696 + p1697 + p1698 + p1699 + p1700 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1999 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1998 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1997 + p1737 + p1738 + p1739 + p1740 + p1741 + p1742 + p1996 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1994 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1993 + p1992 + p1991 + p1990 + p1989 + p1987 + p1986 + p1985 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1984 + p1772 + p1773 + p1774 + p1775 + p1776 + p1777 + p1983 + p1779 + p1780 + p1781 + p1782 + p1783 + p1784 + p1982 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1980 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1979 + p1978 + p1977 + p1976 + p1975 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1952 + p1951 + p1950 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1949 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1948 + p1821 + p1822 + p1823 + p1824 + p1825 + p1826 + p1947 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1945 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1944 + p1943 + p1942 + p1941 + p1940 + p1938 + p1937 + p1936 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1935 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1934 + p1863 + p1864 + p1865 + p1866 + p1867 + p1868 + p1933 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1924 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1923 + p1922 + p1921 + p1920 + p1919 + p1917 + p1916 + p1915 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1914 + p1898 + p1899 + p1913 + p1912 + p1910 + p1909 + p1908 + p1907 + p1906 + p1905 + p1903 + p1902 + p1901 + p1900 <= p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99)
lola: after: (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 36)
lola: LP says that atomic proposition is always false: (3 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: place invariant simplifies atomic proposition
lola: before: (p2758 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 <= p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736)
lola: after: (0 <= 6)
lola: always true
lola: LP says that atomic proposition is always false: (2 <= p2260 + p2259 + p2258 + p2257 + p2256 + p2255 + p2254)
lola: place invariant simplifies atomic proposition
lola: before: (p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (0 <= 0)
lola: always true
lola: LP says that atomic proposition is always false: (1 <= p2260 + p2259 + p2258 + p2257 + p2256 + p2255 + p2254)
lola: LP says that atomic proposition is always false: (2 <= p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)
lola: place invariant simplifies atomic proposition
lola: before: (p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823 <= p2618 + p2619 + p2620 + p2621 + p2622 + p2623 + p2624)
lola: after: (p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823 <= 0)
lola: LP says that atomic proposition is always true: (p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p98 + p97 + p95 + p94 + p92 + p91 + p89 + p88 + p86 + p85 + p83 + p82 + p80 + p79 + p77 + p76 + p74 + p73 + p71 + p70 + p68 + p67 + p65 + p64 + p62 + p61 + p59 + p58 + p56 + p55 + p53 + p52 + p50 + p49 + p47 + p46 + p44 + p43 + p41 + p40 + p38 + p37 + p35 + p34 + p32 + p31 + p29 + p28 + p26 + p25 + p23 + p22 + p20 + p19 + p17 + p16 + p14 + p13 + p11 + p10 + p7 + p8 + p100 + p101 + p103 + p104 + p106 + p107 + p109 + p110 + p112 + p113 + p115 + p116 + p118 + p119 + p121 + p122 + p124 + p125 + p127 + p128 + p130 + p131 + p133 + p134 + p136 + p137 + p139 + p140 + p142 + p143 + p145 + p146 + p148 + p149 + p151 + p152 + p153 + p150 + p147 + p144 + p141 + p138 + p135 + p132 + p129 + p126 + p123 + p120 + p117 + p114 + p111 + p108 + p105 + p102 + p9 + p12 + p15 + p18 + p21 + p24 + p27 + p30 + p33 + p36 + p39 + p42 + p45 + p48 + p51 + p54 + p57 + p60 + p63 + p66 + p69 + p72 + p75 + p78 + p81 + p84 + p87 + p90 + p93 + p96 + p99 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737)
lola: after: (36 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737)
lola: LP says that atomic proposition is always false: (36 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737)
lola: place invariant simplifies atomic proposition
lola: before: (p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 + p2366 + p2367 + p2368 + p2369 + p2370 + p2371 + p2372 + p2373 + p2374 + p2375 + p2376 + p2377 + p2378 + p2379 + p2380 + p2381 + p2382 + p2383 + p2384 + p2385 + p2386 + p2387 + p2388 + p2389 + p2390 + p2391 + p2392 + p2393 + p2394 + p2395 + p2396 + p2397 + p2398 + p2399 + p2400 + p2401 + p2402 + p2403 + p2404 + p2405 + p2406 + p2407 + p2408 + p2409 + p2410 + p2411 + p2412 + p2413 + p2414 + p2415 + p2416 + p2417 + p2418 + p2419 + p2420 + p2421 + p2422 + p2423 + p2424 + p2425 + p2426 + p2427 + p2428 + p2429 + p2430 + p2431 + p2432 + p2433 + p2434 + p2435 + p2436 + p2437 + p2438 + p2439 + p2440 + p2441 + p2442 + p2443 + p2444 + p2445 + p2446 + p2447 + p2448 + p2449 + p2450 + p2451 + p2452 + p2453 + p2454 + p2455 + p2456 + p2457 + p2458 + p2459 + p2460 + p2461 + p2462 + p2463 + p2464 + p2465 + p2466 + p2467 + p2468 + p2469 + p2470 + p2471 + p2472 + p2473 + p2474 + p2475 + p2476 + p2477 + p2478 + p2479 + p2480 + p2481 + p2482 + p2483 + p2484 + p2485 + p2486 + p2487 + p2488 + p2489 + p2490 + p2491 + p2492 + p2493 + p2494 + p2495 + p2496 + p2497 + p2498 + p2499 + p2500 + p2501 + p2502 + p2503 + p2504 + p2505 + p2506 + p2507 + p2508 + p2509 + p2510 + p2511 + p2512 + p2513 + p2514 + p2515 + p2516 + p2517 + p2518 + p2519 + p2520 + p2521 + p2522 + p2523 + p2524 + p2525 + p2526 + p2527 + p2528 + p2529 + p2530 + p2531 + p2532 + p2533 + p2534 + p2535 + p2536 + p2537 + p2538 + p2539 + p2540 + p2541 + p2542 + p2543 + p2544 + p2545 + p2546 + p2547 + p2548 + p2549 + p2550 + p2551 + p2552 + p2553 + p2554 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: after: (30 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: LP says that atomic proposition is always false: (30 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: LP says that atomic proposition is always false: (1 <= p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: place invariant simplifies atomic proposition
lola: before: (p2735 + p2734 + p2733 + p2732 + p2731 + p2730 + p2729 + p2728 + p2727 + p2726 + p2725 + p2724 + p2723 + p2721 + p2720 + p2719 + p2718 + p2717 + p2716 + p2715 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2707 + p2706 + p2705 + p2704 + p2703 + p2702 + p2701 + p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2673 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2659 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2645 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2652 + p2666 + p2680 + p2694 + p2708 + p2722 + p2736 <= p2616 + p2613 + p2610 + p2607 + p2604 + p2601 + p2598 + p2597 + p2599 + p2600 + p2602 + p2603 + p2605 + p2606 + p2608 + p2609 + p2611 + p2612 + p2614 + p2615 + p2617)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p2625 + p2626 + p2627 + p2628 + p2629 + p2630 + p2631 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: after: (0 <= p0 + p1 + p2 + p3 + p4 + p5 + p6)
lola: always true
lola: NOT(A (F (()))) : NOT(A (F (A (X ((2 <= p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555)))))) : E ((E (X (TRUE)) U FALSE)) : E (G (TRUE)) : A (X (A (G (((p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737 <= p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212)))))) : A (G (E (X (((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 6)))))) : E ((A (F ((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968 + p1969 + p1970 + p1971 + p1972 + p1973 + p1974 + p1799 + p1792 + p1981 + p1785 + p1778 + p1771 + p1764 + p1763 + p1762 + p1988 + p1761 + p1760 + p1759 + p1758 + p1757 + p1750 + p1995 + p1743 + p1736 + p1729 + p1722 + p1721 + p1720 + p1719 + p1718 + p1717 + p1716 + p1715 + p1708 + p1701 + p1694 + p1687 + p1680 + p1679 + p1678 + p1677 + p1676 + p1675 + p1674 + p1673 + p1666 + p1659 + p1652 + p1645 + p1638 + p1637 + p1636 + p1635 + p1634 + p1633 + p1632 + p1631 + p1624 + p1617 + p1610 + p1603 + p994 + p987 + p980 + p973 + p966 + p965 + p964 + p963 + p962 + p961 + p960 + p959 + p952 + p945 + p938 + p931 + p924 + p923 + p922 + p921 + p920 + p919 + p918 + p917 + p910 + p903 + p1596 + p1595 + p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1582 + p1575 + p1568 + p1561 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1547 + p1540 + p1533 + p1526 + p1519 + p1512 + p1511 + p1510 + p1509 + p1508 + p1507 + p1506 + p1505 + p896 + p889 + p882 + p881 + p880 + p879 + p878 + p877 + p876 + p875 + p868 + p861 + p854 + p847 + p840 + p839 + p838 + p837 + p836 + p835 + p834 + p833 + p826 + p819 + p812 + p805 + p1498 + p1491 + p1484 + p1477 + p1470 + p1469 + p1468 + p1467 + p1466 + p1465 + p1464 + p1463 + p1456 + p1449 + p1442 + p1435 + p1428 + p1427 + p1426 + p1425 + p1424 + p1423 + p1422 + p1421 + p1414 + p1407 + p1400 + p798 + p797 + p796 + p795 + p794 + p793 + p792 + p791 + p784 + p777 + p770 + p763 + p756 + p755 + p754 + p753 + p752 + p751 + p750 + p749 + p742 + p735 + p728 + p721 + p714 + p713 + p712 + p711 + p710 + p709 + p708 + p707 + p700 + p1393 + p1386 + p1385 + p1384 + p1383 + p1382 + p1381 + p1380 + p1379 + p1372 + p1365 + p1358 + p1351 + p1344 + p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1330 + p1323 + p1316 + p1309 + p1302 + p1301 + p1300 + p693 + p686 + p679 + p672 + p671 + p670 + p669 + p668 + p667 + p666 + p665 + p658 + p651 + p644 + p637 + p630 + p629 + p628 + p627 + p626 + p625 + p624 + p623 + p616 + p609 + p602 + p1299 + p1298 + p1297 + p1296 + p1295 + p1288 + p1281 + p1274 + p1267 + p1260 + p1259 + p1258 + p1257 + p1256 + p1255 + p1254 + p1253 + p1246 + p1239 + p1232 + p1225 + p1218 + p1217 + p1216 + p1215 + p1214 + p1213 + p1212 + p1211 + p1204 + p595 + p588 + p587 + p586 + p585 + p584 + p583 + p582 + p581 + p574 + p567 + p560 + p553 + p546 + p545 + p544 + p543 + p542 + p541 + p540 + p539 + p532 + p525 + p518 + p511 + p504 + p503 + p502 + p501 + p500 + p1197 + p1190 + p1183 + p1176 + p1175 + p1174 + p1173 + p1172 + p1171 + p1170 + p1169 + p1162 + p1155 + p1148 + p1141 + p1134 + p1133 + p1132 + p1131 + p1130 + p1129 + p1128 + p1127 + p1120 + p1113 + p1106 + p499 + p498 + p497 + p490 + p483 + p476 + p469 + p462 + p461 + p460 + p459 + p458 + p457 + p456 + p455 + p448 + p441 + p434 + p427 + p420 + p419 + p418 + p417 + p416 + p415 + p414 + p413 + p406 + p1099 + p1092 + p1091 + p1090 + p1089 + p1088 + p1087 + p1086 + p1085 + p1078 + p1071 + p1064 + p1057 + p1050 + p1049 + p1048 + p1047 + p1046 + p1045 + p1044 + p1043 + p1036 + p1029 + p1022 + p1015 + p1008 + p1007 + p1006 + p1005 + p1004 + p1003 + p1002 + p1001 + p2002 + p399 + p392 + p385 + p378 + p377 + p376 + p375 + p374 + p2009 + p373 + p372 + p371 + p2010 + p2011 + p2012 + p364 + p357 + p2013 + p350 + p343 + p2014 + p336 + p335 + p2015 + p334 + p333 + p2016 + p332 + p331 + p330 + p329 + p322 + p315 + p308 + p301 + p2023 + p2030 + p2037 + p294 + p293 + p292 + p291 + p2044 + p290 + p2205 + p289 + p288 + p287 + p280 + p273 + p2051 + p266 + p2052 + p259 + p2053 + p252 + p2054 + p251 + p2055 + p250 + p2056 + p2057 + p2058 + p249 + p248 + p247 + p246 + p245 + p238 + p231 + p224 + p2065 + p217 + p210 + p209 + p208 + p207 + p206 + p205 + p204 + p203 + p2072 + p2198 + p2191 + p2184 + p2183 + p2182 + p2181 + p2079 + p2180 + p2179 + p2178 + p2177 + p2170 + p2163 + p2086 + p2156 + p2093 + p2094 + p2095 + p2096 + p2097 + p2098 + p2099 + p2149 + p2142 + p2141 + p2140 + p2139 + p2138 + p2137 + p2136 + p2135 + p2128 + p2121 + p2114 + p196 + p2107 + p2100 + p189 + p182 + p175 + p168 + p167 + p166 + p165 + p164 + p154 + p163 + p162 + p161 <= 36))) U (3 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737))) : A (X (E (G (TRUE)))) : A (F (NOT(A (F (TRUE))))) : A (G (A (G (TRUE)))) : A (F ((E (X (TRUE)) AND A (G ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744)))))) : E (F (())) : A (G (E (X (TRUE)))) : E (G ((A (X (TRUE)) OR ()))) : A ((E (X (FALSE)) U E (G (TRUE)))) : (A (F (A (X ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744))))) AND TRUE)
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:332
lola: rewrite Frontend/Parser/formula_rewrite.k:323
lola: rewrite Frontend/Parser/formula_rewrite.k:335
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:208
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:124
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:133
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:166
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:115
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 219 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 234 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 251 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-6-CTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 3 will run for 270 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 293 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola:
FORMULA NeoElection-COL-6-CTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 5 will run for 319 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 351 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 391 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 439 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 55 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 502 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G (E (X ((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:724
lola: processed formula: NOT(A(TRUE U NOT(EX((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: processed formula length: 364
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 73121 markings, 359703 edges, 14624 markings/sec, 0 secs
lola: 142659 markings, 720020 edges, 13908 markings/sec, 5 secs
lola: 211968 markings, 1081651 edges, 13862 markings/sec, 10 secs
lola: 282976 markings, 1447115 edges, 14202 markings/sec, 15 secs
lola: 347955 markings, 1817782 edges, 12996 markings/sec, 20 secs
lola: 410772 markings, 2190947 edges, 12563 markings/sec, 25 secs
lola: 479908 markings, 2579247 edges, 13827 markings/sec, 30 secs
lola: 552462 markings, 2945807 edges, 14511 markings/sec, 35 secs
lola: 616985 markings, 3293154 edges, 12905 markings/sec, 40 secs
lola: 684276 markings, 3669827 edges, 13458 markings/sec, 45 secs
lola: 751487 markings, 4034708 edges, 13442 markings/sec, 50 secs
lola: 824825 markings, 4432336 edges, 14668 markings/sec, 55 secs
lola: 898269 markings, 4817737 edges, 14689 markings/sec, 60 secs
lola: 967613 markings, 5215813 edges, 13869 markings/sec, 65 secs
lola: 1036426 markings, 5599246 edges, 13763 markings/sec, 70 secs
lola: 1110816 markings, 5996871 edges, 14878 markings/sec, 75 secs
lola: 1180694 markings, 6390076 edges, 13976 markings/sec, 80 secs
lola: 1252887 markings, 6776735 edges, 14439 markings/sec, 85 secs
lola: 1326045 markings, 7164779 edges, 14632 markings/sec, 90 secs
lola: 1405420 markings, 7581217 edges, 15875 markings/sec, 95 secs
lola: 1482615 markings, 8005249 edges, 15439 markings/sec, 100 secs
lola: 1556197 markings, 8428138 edges, 14716 markings/sec, 105 secs
lola: 1625533 markings, 8837723 edges, 13867 markings/sec, 110 secs
lola: 1697128 markings, 9243036 edges, 14319 markings/sec, 115 secs
lola: 1768066 markings, 9642411 edges, 14188 markings/sec, 120 secs
lola: 1834443 markings, 10037605 edges, 13275 markings/sec, 125 secs
lola: 1902752 markings, 10427048 edges, 13662 markings/sec, 130 secs
lola: 1972026 markings, 10815598 edges, 13855 markings/sec, 135 secs
lola: 2047193 markings, 11212932 edges, 15033 markings/sec, 140 secs
lola: 2116614 markings, 11634121 edges, 13884 markings/sec, 145 secs
lola: 2170459 markings, 12085540 edges, 10769 markings/sec, 150 secs
lola: 2242521 markings, 12479419 edges, 14412 markings/sec, 155 secs
lola: 2320146 markings, 12890030 edges, 15525 markings/sec, 160 secs
lola: 2394852 markings, 13296457 edges, 14941 markings/sec, 165 secs
lola: 2463255 markings, 13711342 edges, 13681 markings/sec, 170 secs
lola: 2530573 markings, 14108199 edges, 13464 markings/sec, 175 secs
lola: 2598344 markings, 14513786 edges, 13554 markings/sec, 180 secs
lola: 2665139 markings, 14922829 edges, 13359 markings/sec, 185 secs
lola: 2731688 markings, 15328489 edges, 13310 markings/sec, 190 secs
lola: 2800167 markings, 15727553 edges, 13696 markings/sec, 195 secs
lola: 2866119 markings, 16123466 edges, 13190 markings/sec, 200 secs
lola: 2927127 markings, 16538592 edges, 12202 markings/sec, 205 secs
lola: 2989408 markings, 16967163 edges, 12456 markings/sec, 210 secs
lola: 3051153 markings, 17373063 edges, 12349 markings/sec, 215 secs
lola: 3107778 markings, 17743514 edges, 11325 markings/sec, 220 secs
lola: 3165463 markings, 18107157 edges, 11537 markings/sec, 225 secs
lola: 3225692 markings, 18473347 edges, 12046 markings/sec, 230 secs
lola: 3295500 markings, 18870819 edges, 13962 markings/sec, 235 secs
lola: 3358466 markings, 19259565 edges, 12593 markings/sec, 240 secs
lola: 3425763 markings, 19676947 edges, 13459 markings/sec, 245 secs
lola: 3495032 markings, 20106949 edges, 13854 markings/sec, 250 secs
lola: 3557921 markings, 20520375 edges, 12578 markings/sec, 255 secs
lola: 3624679 markings, 20935340 edges, 13352 markings/sec, 260 secs
lola: 3687959 markings, 21339611 edges, 12656 markings/sec, 265 secs
lola: 3751086 markings, 21740860 edges, 12625 markings/sec, 270 secs
lola: 3820594 markings, 22121952 edges, 13902 markings/sec, 275 secs
lola: 3882238 markings, 22505426 edges, 12329 markings/sec, 280 secs
lola: 3941233 markings, 22894719 edges, 11799 markings/sec, 285 secs
lola: 3999712 markings, 23280720 edges, 11696 markings/sec, 290 secs
lola: 4060064 markings, 23670414 edges, 12070 markings/sec, 295 secs
lola: 4119214 markings, 24060046 edges, 11830 markings/sec, 300 secs
lola: 4184971 markings, 24447533 edges, 13151 markings/sec, 305 secs
lola: 4249147 markings, 24844603 edges, 12835 markings/sec, 310 secs
lola: 4314587 markings, 25250927 edges, 13088 markings/sec, 315 secs
lola: 4375930 markings, 25648487 edges, 12269 markings/sec, 320 secs
lola: 4438759 markings, 26042362 edges, 12566 markings/sec, 325 secs
lola: 4498543 markings, 26422809 edges, 11957 markings/sec, 330 secs
lola: 4568283 markings, 26799987 edges, 13948 markings/sec, 335 secs
lola: 4643284 markings, 27181734 edges, 15000 markings/sec, 340 secs
lola: 4715495 markings, 27574386 edges, 14442 markings/sec, 345 secs
lola: 4788074 markings, 27986811 edges, 14516 markings/sec, 350 secs
lola: 4858517 markings, 28380512 edges, 14089 markings/sec, 355 secs
lola: 4927112 markings, 28778458 edges, 13719 markings/sec, 360 secs
lola: 4995396 markings, 29171252 edges, 13657 markings/sec, 365 secs
lola: 5064005 markings, 29567968 edges, 13722 markings/sec, 370 secs
lola: 5126764 markings, 29941624 edges, 12552 markings/sec, 375 secs
lola: 5189335 markings, 30324793 edges, 12514 markings/sec, 380 secs
lola: 5254585 markings, 30725652 edges, 13050 markings/sec, 385 secs
lola: 5315594 markings, 31124759 edges, 12202 markings/sec, 390 secs
lola: 5380581 markings, 31519026 edges, 12997 markings/sec, 395 secs
lola: 5441389 markings, 31898951 edges, 12162 markings/sec, 400 secs
lola: 5504549 markings, 32263396 edges, 12632 markings/sec, 405 secs
lola: 5572060 markings, 32624197 edges, 13502 markings/sec, 410 secs
lola: 5634310 markings, 32992207 edges, 12450 markings/sec, 415 secs
lola: 5701175 markings, 33393011 edges, 13373 markings/sec, 420 secs
lola: 5771987 markings, 33786732 edges, 14162 markings/sec, 425 secs
lola: 5830024 markings, 34168601 edges, 11607 markings/sec, 430 secs
lola: 5898338 markings, 34544661 edges, 13663 markings/sec, 435 secs
lola: 5956040 markings, 34908518 edges, 11540 markings/sec, 440 secs
lola: 6024047 markings, 35318754 edges, 13601 markings/sec, 445 secs
lola: 6096043 markings, 35708726 edges, 14399 markings/sec, 450 secs
lola: 6159807 markings, 36090973 edges, 12753 markings/sec, 455 secs
lola: 6225813 markings, 36486970 edges, 13201 markings/sec, 460 secs
lola: 6290254 markings, 36881982 edges, 12888 markings/sec, 465 secs
lola: 6350707 markings, 37266969 edges, 12091 markings/sec, 470 secs
lola: 6413277 markings, 37639505 edges, 12514 markings/sec, 475 secs
lola: 6474984 markings, 38000200 edges, 12341 markings/sec, 480 secs
lola: 6534282 markings, 38373322 edges, 11860 markings/sec, 485 secs
lola: 6605646 markings, 38770049 edges, 14273 markings/sec, 490 secs
lola: 6673990 markings, 39183989 edges, 13669 markings/sec, 495 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes unknown no yes unknown unknown unknown yes no yes unknown no unknown yes yes unknown
lola: memory consumption: 1291848 KB
lola: time consumption: 550 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 10 will run for 502 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (X (A (G (((p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737 <= p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance from all successors
lola: rewrite Frontend/Parser/formula_rewrite.k:663
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: ((p2253 + p2252 + p2251 + p2250 + p2249 + p2248 + p2247 + p2246 + p2245 + p2244 + p2243 + p2242 + p2241 + p2240 + p2239 + p2238 + p2237 + p2236 + p2235 + p2234 + p2233 + p2232 + p2231 + p2230 + p2229 + p2228 + p2227 + p2226 + p2225 + p2224 + p2223 + p2222 + p2221 + p2220 + p2219 + p2218 + p2217 + p2216 + p2215 + p2214 + p2213 + p2212 + 1 <= p2743 + p2742 + p2741 + p2740 + p2739 + p2738 + p2737))
lola: processed formula length: 398
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EXEF)
lola: state space: using reachability graph (EXef version) (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space /EXEF
lola: The predicate is not invariant from successors.
lola: 9 markings, 8 edges
lola:
FORMULA NeoElection-COL-6-CTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
========================================
lola: subprocess 11 will run for 603 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (E (X (((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:737
lola: processed formula: NOT(E(TRUE U NOT(EX(((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1... (shortened)
lola: processed formula length: 4493
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: no
lola: produced by: CTL model checker
lola: The net does not satisfy the given formula.
lola: 12 markings, 11 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 754 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (A (X ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:734
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: processed formula: A(TRUE U AX((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744)))
lola: processed formula length: 74
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 77411 markings, 372260 edges, 15482 markings/sec, 0 secs
lola: 148057 markings, 726676 edges, 14129 markings/sec, 5 secs
lola: 218540 markings, 1084985 edges, 14097 markings/sec, 10 secs
lola: 290673 markings, 1441271 edges, 14427 markings/sec, 15 secs
lola: 359848 markings, 1833330 edges, 13835 markings/sec, 20 secs
lola: 428401 markings, 2222421 edges, 13711 markings/sec, 25 secs
lola: 497255 markings, 2586899 edges, 13771 markings/sec, 30 secs
lola: 570675 markings, 2946479 edges, 14684 markings/sec, 35 secs
lola: 642933 markings, 3329162 edges, 14452 markings/sec, 40 secs
lola: 711850 markings, 3697683 edges, 13783 markings/sec, 45 secs
lola: 775597 markings, 4043614 edges, 12749 markings/sec, 50 secs
lola: 844458 markings, 4380212 edges, 13772 markings/sec, 55 secs
lola: 907997 markings, 4725962 edges, 12708 markings/sec, 60 secs
lola: 970070 markings, 5066634 edges, 12415 markings/sec, 65 secs
lola: 1035263 markings, 5417276 edges, 13039 markings/sec, 70 secs
lola: 1110592 markings, 5819414 edges, 15066 markings/sec, 75 secs
lola: 1184629 markings, 6211905 edges, 14807 markings/sec, 80 secs
lola: 1257871 markings, 6592955 edges, 14648 markings/sec, 85 secs
lola: 1333702 markings, 6985137 edges, 15166 markings/sec, 90 secs
lola: 1410372 markings, 7363417 edges, 15334 markings/sec, 95 secs
lola: 1484374 markings, 7757728 edges, 14800 markings/sec, 100 secs
lola: 1554058 markings, 8151492 edges, 13937 markings/sec, 105 secs
lola: 1620690 markings, 8529401 edges, 13326 markings/sec, 110 secs
lola: 1690335 markings, 8912740 edges, 13929 markings/sec, 115 secs
lola: 1760192 markings, 9298023 edges, 13971 markings/sec, 120 secs
lola: 1828748 markings, 9693650 edges, 13711 markings/sec, 125 secs
lola: 1900612 markings, 10091912 edges, 14373 markings/sec, 130 secs
lola: 1971726 markings, 10479901 edges, 14223 markings/sec, 135 secs
lola: 2047714 markings, 10865390 edges, 15198 markings/sec, 140 secs
lola: 2115797 markings, 11282157 edges, 13617 markings/sec, 145 secs
lola: 2171562 markings, 11729925 edges, 11153 markings/sec, 150 secs
lola: 2245121 markings, 12117215 edges, 14712 markings/sec, 155 secs
lola: 2324289 markings, 12500506 edges, 15834 markings/sec, 160 secs
lola: 2393855 markings, 12886322 edges, 13913 markings/sec, 165 secs
lola: 2459678 markings, 13266094 edges, 13165 markings/sec, 170 secs
lola: 2525949 markings, 13643477 edges, 13254 markings/sec, 175 secs
lola: 2593048 markings, 14043678 edges, 13420 markings/sec, 180 secs
lola: 2658371 markings, 14421009 edges, 13065 markings/sec, 185 secs
lola: 2723534 markings, 14814238 edges, 13033 markings/sec, 190 secs
lola: 2789484 markings, 15175946 edges, 13190 markings/sec, 195 secs
lola: 2853695 markings, 15556756 edges, 12842 markings/sec, 200 secs
lola: 2910907 markings, 15949643 edges, 11442 markings/sec, 205 secs
lola: 2971230 markings, 16332762 edges, 12065 markings/sec, 210 secs
lola: 3029291 markings, 16702207 edges, 11612 markings/sec, 215 secs
lola: 3085190 markings, 17056443 edges, 11180 markings/sec, 220 secs
lola: 3139520 markings, 17397154 edges, 10866 markings/sec, 225 secs
lola: 3198619 markings, 17749939 edges, 11820 markings/sec, 230 secs
lola: 3262705 markings, 18105109 edges, 12817 markings/sec, 235 secs
lola: 3325472 markings, 18472654 edges, 12553 markings/sec, 240 secs
lola: 3387470 markings, 18854652 edges, 12400 markings/sec, 245 secs
lola: 3453167 markings, 19246834 edges, 13139 markings/sec, 250 secs
lola: 3514205 markings, 19630961 edges, 12208 markings/sec, 255 secs
lola: 3579190 markings, 20025399 edges, 12997 markings/sec, 260 secs
lola: 3639596 markings, 20395415 edges, 12081 markings/sec, 265 secs
lola: 3701678 markings, 20788148 edges, 12416 markings/sec, 270 secs
lola: 3766344 markings, 21150139 edges, 12933 markings/sec, 275 secs
lola: 3831398 markings, 21513469 edges, 13011 markings/sec, 280 secs
lola: 3890468 markings, 21901708 edges, 11814 markings/sec, 285 secs
lola: 3949625 markings, 22271626 edges, 11831 markings/sec, 290 secs
lola: 4007534 markings, 22633595 edges, 11582 markings/sec, 295 secs
lola: 4067184 markings, 23008778 edges, 11930 markings/sec, 300 secs
lola: 4125760 markings, 23368098 edges, 11715 markings/sec, 305 secs
lola: 4191228 markings, 23762566 edges, 13094 markings/sec, 310 secs
lola: 4256193 markings, 24162776 edges, 12993 markings/sec, 315 secs
lola: 4322236 markings, 24553666 edges, 13209 markings/sec, 320 secs
lola: 4381116 markings, 24931022 edges, 11776 markings/sec, 325 secs
lola: 4447591 markings, 25318809 edges, 13295 markings/sec, 330 secs
lola: 4510901 markings, 25694590 edges, 12662 markings/sec, 335 secs
lola: 4583944 markings, 26074429 edges, 14609 markings/sec, 340 secs
lola: 4656593 markings, 26454237 edges, 14530 markings/sec, 345 secs
lola: 4733901 markings, 26859757 edges, 15462 markings/sec, 350 secs
lola: 4803993 markings, 27244480 edges, 14018 markings/sec, 355 secs
lola: 4873221 markings, 27636877 edges, 13846 markings/sec, 360 secs
lola: 4944709 markings, 28026072 edges, 14298 markings/sec, 365 secs
lola: 5014562 markings, 28427162 edges, 13971 markings/sec, 370 secs
lola: 5084060 markings, 28801513 edges, 13900 markings/sec, 375 secs
lola: 5146889 markings, 29184316 edges, 12566 markings/sec, 380 secs
lola: 5214268 markings, 29592828 edges, 13476 markings/sec, 385 secs
lola: 5282436 markings, 29991538 edges, 13634 markings/sec, 390 secs
lola: 5344059 markings, 30382089 edges, 12325 markings/sec, 395 secs
lola: 5407558 markings, 30759484 edges, 12700 markings/sec, 400 secs
lola: 5474765 markings, 31149570 edges, 13441 markings/sec, 405 secs
lola: 5545940 markings, 31519246 edges, 14235 markings/sec, 410 secs
lola: 5612299 markings, 31892082 edges, 13272 markings/sec, 415 secs
lola: 5673686 markings, 32261757 edges, 12277 markings/sec, 420 secs
lola: 5749030 markings, 32665528 edges, 15069 markings/sec, 425 secs
lola: 5810490 markings, 33045452 edges, 12292 markings/sec, 430 secs
lola: 5882401 markings, 33431399 edges, 14382 markings/sec, 435 secs
lola: 5940260 markings, 33790791 edges, 11572 markings/sec, 440 secs
lola: 6005584 markings, 34172942 edges, 13065 markings/sec, 445 secs
lola: 6075249 markings, 34534041 edges, 13933 markings/sec, 450 secs
lola: 6135281 markings, 34891709 edges, 12006 markings/sec, 455 secs
lola: 6198898 markings, 35273118 edges, 12723 markings/sec, 460 secs
lola: 6265668 markings, 35646437 edges, 13354 markings/sec, 465 secs
lola: 6323611 markings, 36011575 edges, 11589 markings/sec, 470 secs
lola: 6386657 markings, 36373022 edges, 12609 markings/sec, 475 secs
lola: 6449481 markings, 36731019 edges, 12565 markings/sec, 480 secs
lola: 6507664 markings, 37104877 edges, 11637 markings/sec, 485 secs
lola: 6578440 markings, 37492171 edges, 14155 markings/sec, 490 secs
lola: 6648898 markings, 37878981 edges, 14092 markings/sec, 495 secs
lola: 6711149 markings, 38255146 edges, 12450 markings/sec, 500 secs
lola: 6775741 markings, 38619383 edges, 12918 markings/sec, 505 secs
lola: 6841700 markings, 38996632 edges, 13192 markings/sec, 510 secs
lola: 6915738 markings, 39369728 edges, 14808 markings/sec, 515 secs
lola: 6988218 markings, 39734762 edges, 14496 markings/sec, 520 secs
lola: 7061946 markings, 40097886 edges, 14746 markings/sec, 525 secs
lola: 7130661 markings, 40474046 edges, 13743 markings/sec, 530 secs
lola: 7198503 markings, 40847736 edges, 13568 markings/sec, 535 secs
lola: 7266351 markings, 41219276 edges, 13570 markings/sec, 540 secs
lola: 7334215 markings, 41594544 edges, 13573 markings/sec, 545 secs
lola: 7402816 markings, 41976453 edges, 13720 markings/sec, 550 secs
lola: 7471232 markings, 42363488 edges, 13683 markings/sec, 555 secs
lola: 7539701 markings, 42730155 edges, 13694 markings/sec, 560 secs
lola: 7603519 markings, 43119387 edges, 12764 markings/sec, 565 secs
lola: 7666836 markings, 43511404 edges, 12663 markings/sec, 570 secs
lola: 7727840 markings, 43889537 edges, 12201 markings/sec, 575 secs
lola: 7791344 markings, 44280323 edges, 12701 markings/sec, 580 secs
lola: 7852919 markings, 44643862 edges, 12315 markings/sec, 585 secs
lola: 7921277 markings, 45030432 edges, 13672 markings/sec, 590 secs
lola: 7993440 markings, 45409178 edges, 14433 markings/sec, 595 secs
lola: 8058889 markings, 45789683 edges, 13090 markings/sec, 600 secs
lola: 8126895 markings, 46188579 edges, 13601 markings/sec, 605 secs
lola: 8198635 markings, 46589213 edges, 14348 markings/sec, 610 secs
lola: 8259951 markings, 46962016 edges, 12263 markings/sec, 615 secs
lola: 8326924 markings, 47341375 edges, 13395 markings/sec, 620 secs
lola: 8389221 markings, 47721498 edges, 12459 markings/sec, 625 secs
lola: 8454600 markings, 48096865 edges, 13076 markings/sec, 630 secs
lola: 8526187 markings, 48464344 edges, 14317 markings/sec, 635 secs
lola: 8590440 markings, 48843383 edges, 12851 markings/sec, 640 secs
lola: 8652771 markings, 49223746 edges, 12466 markings/sec, 645 secs
lola: 8714080 markings, 49592263 edges, 12262 markings/sec, 650 secs
lola: 8776564 markings, 49971217 edges, 12497 markings/sec, 655 secs
lola: 8837317 markings, 50327113 edges, 12151 markings/sec, 660 secs
lola: 8905321 markings, 50715151 edges, 13601 markings/sec, 665 secs
lola: 8972376 markings, 51109016 edges, 13411 markings/sec, 670 secs
lola: 9042563 markings, 51504791 edges, 14037 markings/sec, 675 secs
lola: 9104565 markings, 51879979 edges, 12400 markings/sec, 680 secs
lola: 9172098 markings, 52260826 edges, 13507 markings/sec, 685 secs
lola: 9238246 markings, 52629357 edges, 13230 markings/sec, 690 secs
lola: 9311302 markings, 53027375 edges, 14611 markings/sec, 695 secs
lola: 9382562 markings, 53412983 edges, 14252 markings/sec, 700 secs
lola: 9454103 markings, 53800781 edges, 14308 markings/sec, 705 secs
lola: 9525322 markings, 54193642 edges, 14244 markings/sec, 710 secs
lola: 9595155 markings, 54588321 edges, 13967 markings/sec, 715 secs
lola: 9666124 markings, 54984626 edges, 14194 markings/sec, 720 secs
lola: 9732835 markings, 55371811 edges, 13342 markings/sec, 725 secs
lola: 9797563 markings, 55766099 edges, 12946 markings/sec, 730 secs
lola: 9865108 markings, 56161440 edges, 13509 markings/sec, 735 secs
lola: 9926001 markings, 56545378 edges, 12179 markings/sec, 740 secs
lola: 9991192 markings, 56921760 edges, 13038 markings/sec, 745 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes unknown no yes no no unknown yes no yes unknown no unknown yes yes unknown
lola: memory consumption: 1865176 KB
lola: time consumption: 1304 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 754 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (NOT DEADLOCK))
lola: ========================================
lola: SUBTASK
lola: checking absence of deadlocks
lola: Planning: workflow for deadlock check: search (--findpath=off,--siphontrap=off)
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using deadlock preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The net is not deadlock-free.
lola: 409 markings, 408 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1131 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F ((NOT DEADLOCK AND A (G ((3 <= p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744))))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:737
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: processed formula: A(TRUE U (NOT DEADLOCK AND NOT(E(TRUE U (p2750 + p2749 + p2748 + p2747 + p2746 + p2745 + p2744 <= 2)))))
lola: processed formula length: 104
lola: 58 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: no
lola: produced by: CTL model checker
lola: The net does not satisfy the given formula.
lola: 504 markings, 965 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 2262 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E ((A (F ((p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p1968... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: rewrite Frontend/Parser/formula_rewrite.k:726
lola: processed formula: E(A(TRUE U (p1904 + p1911 + p1897 + p1890 + p1889 + p1888 + p1918 + p1887 + p1886 + p1885 + p1884 + p1883 + p1876 + p1925 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1869 + p1862 + p1855 + p1848 + p1847 + p1846 + p1939 + p1845 + p1844 + p1843 + p1842 + p1841 + p1834 + p1946 + p1827 + p1820 + p1813 + p1806 + p1805 + p1804 + p1953 + p1803 + p1802 + p1801 + p1800 + p1960 + p1967 + p196... (shortened)
lola: processed formula length: 4544
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: yes
lola: produced by: CTL model checker
lola: The net satisfies the given formula.
lola: 46 markings, 90 edges
lola: ========================================

FORMULA NeoElection-COL-6-CTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: ...considering subproblem: E (G (E (X ((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:721
lola: rewrite Frontend/Parser/formula_rewrite.k:724
lola: processed formula: NOT(A(TRUE U NOT(EX((p2596 + p2595 + p2594 + p2593 + p2592 + p2591 + p2590 + p2589 + p2588 + p2587 + p2586 + p2585 + p2584 + p2583 + p2582 + p2581 + p2580 + p2579 + p2578 + p2577 + p2576 + p2575 + p2574 + p2573 + p2572 + p2571 + p2570 + p2569 + p2568 + p2567 + p2566 + p2565 + p2564 + p2563 + p2562 + p2561 + p2560 + p2559 + p2558 + p2557 + p2556 + p2555 <= 1)))))
lola: processed formula length: 364
lola: 57 rewrites
lola: closed formula file NeoElection-COL-6-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 1 significant temporal operators and needs 5 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 79797 markings, 394819 edges, 15959 markings/sec, 0 secs
lola: 157205 markings, 793902 edges, 15482 markings/sec, 5 secs
lola: 233764 markings, 1196195 edges, 15312 markings/sec, 10 secs
lola: 309825 markings, 1590278 edges, 15212 markings/sec, 15 secs
lola: 380322 markings, 2012418 edges, 14099 markings/sec, 20 secs
lola: 449124 markings, 2413598 edges, 13760 markings/sec, 25 secs
lola: 524718 markings, 2811191 edges, 15119 markings/sec, 30 secs
lola: 598990 markings, 3192479 edges, 14854 markings/sec, 35 secs
lola: 675112 markings, 3610736 edges, 15224 markings/sec, 40 secs
lola: 743819 markings, 3992021 edges, 13741 markings/sec, 45 secs
lola: 810043 markings, 4364533 edges, 13245 markings/sec, 50 secs
lola: 884661 markings, 4735517 edges, 14924 markings/sec, 55 secs
lola: 953265 markings, 5133994 edges, 13721 markings/sec, 60 secs
lola: 1020367 markings, 5516710 edges, 13420 markings/sec, 65 secs
lola: 1094513 markings, 5906884 edges, 14829 markings/sec, 70 secs
lola: 1167882 markings, 6311366 edges, 14674 markings/sec, 75 secs
lola: 1235647 markings, 6685978 edges, 13553 markings/sec, 80 secs
lola: 1302525 markings, 7041159 edges, 13376 markings/sec, 85 secs
lola: 1373041 markings, 7412865 edges, 14103 markings/sec, 90 secs
lola: 1446661 markings, 7806602 edges, 14724 markings/sec, 95 secs
lola: 1514353 markings, 8178920 edges, 13538 markings/sec, 100 secs
lola: 1576359 markings, 8552516 edges, 12401 markings/sec, 105 secs
lola: 1642387 markings, 8923868 edges, 13206 markings/sec, 110 secs
lola: 1711186 markings, 9321859 edges, 13760 markings/sec, 115 secs
lola: 1780231 markings, 9707503 edges, 13809 markings/sec, 120 secs
lola: 1845494 markings, 10104381 edges, 13053 markings/sec, 125 secs
lola: 1912841 markings, 10491147 edges, 13469 markings/sec, 130 secs
lola: 1979226 markings, 10851743 edges, 13277 markings/sec, 135 secs
lola: 2047389 markings, 11214058 edges, 13633 markings/sec, 140 secs
lola: 2111557 markings, 11593567 edges, 12834 markings/sec, 145 secs
lola: 2165085 markings, 12040142 edges, 10706 markings/sec, 150 secs
lola: 2234586 markings, 12436840 edges, 13900 markings/sec, 155 secs
lola: 2310748 markings, 12839274 edges, 15232 markings/sec, 160 secs
lola: 2380448 markings, 13205334 edges, 13940 markings/sec, 165 secs
lola: 2442288 markings, 13586780 edges, 12368 markings/sec, 170 secs
lola: 2504204 markings, 13954832 edges, 12383 markings/sec, 175 secs
lola: 2564728 markings, 14314087 edges, 12105 markings/sec, 180 secs
lola: 2625739 markings, 14685746 edges, 12202 markings/sec, 185 secs
lola: 2686785 markings, 15051463 edges, 12209 markings/sec, 190 secs
lola: 2748225 markings, 15421829 edges, 12288 markings/sec, 195 secs
lola: 2809657 markings, 15784476 edges, 12286 markings/sec, 200 secs
lola: 2870004 markings, 16149360 edges, 12069 markings/sec, 205 secs
lola: 2925433 markings, 16528782 edges, 11086 markings/sec, 210 secs
lola: 2981861 markings, 16915111 edges, 11286 markings/sec, 215 secs
lola: 3040810 markings, 17301196 edges, 11790 markings/sec, 220 secs
lola: 3103126 markings, 17712674 edges, 12463 markings/sec, 225 secs
lola: 3166492 markings, 18112894 edges, 12673 markings/sec, 230 secs
lola: 3233185 markings, 18519849 edges, 13339 markings/sec, 235 secs
lola: 3304207 markings, 18916136 edges, 14204 markings/sec, 240 secs
lola: 3365061 markings, 19300596 edges, 12171 markings/sec, 245 secs
lola: 3430690 markings, 19709722 edges, 13126 markings/sec, 250 secs
lola: 3498213 markings, 20127929 edges, 13505 markings/sec, 255 secs
lola: 3560627 markings, 20536586 edges, 12483 markings/sec, 260 secs
lola: 3626558 markings, 20946027 edges, 13186 markings/sec, 265 secs
lola: 3689750 markings, 21351201 edges, 12638 markings/sec, 270 secs
lola: 3754865 markings, 21760358 edges, 13023 markings/sec, 275 secs
lola: 3824203 markings, 22143887 edges, 13868 markings/sec, 280 secs
lola: 3887767 markings, 22542026 edges, 12713 markings/sec, 285 secs
lola: 3949959 markings, 22954709 edges, 12438 markings/sec, 290 secs
lola: 4012042 markings, 23364377 edges, 12417 markings/sec, 295 secs
lola: 4075757 markings, 23775916 edges, 12743 markings/sec, 300 secs
lola: 4137069 markings, 24161721 edges, 12262 markings/sec, 305 secs
lola: 4204162 markings, 24569242 edges, 13419 markings/sec, 310 secs
lola: 4269573 markings, 24975567 edges, 13082 markings/sec, 315 secs
lola: 4337412 markings, 25396651 edges, 13568 markings/sec, 320 secs
lola: 4397943 markings, 25797245 edges, 12106 markings/sec, 325 secs
lola: 4464442 markings, 26205517 edges, 13300 markings/sec, 330 secs
lola: 4531789 markings, 26606007 edges, 13469 markings/sec, 335 secs
lola: 4607532 markings, 26999947 edges, 15149 markings/sec, 340 secs
lola: 4681826 markings, 27391412 edges, 14859 markings/sec, 345 secs
lola: 4751092 markings, 27773736 edges, 13853 markings/sec, 350 secs
lola: 4816003 markings, 28138618 edges, 12982 markings/sec, 355 secs
lola: 4878777 markings, 28499749 edges, 12555 markings/sec, 360 secs
lola: 4948290 markings, 28899510 edges, 13903 markings/sec, 365 secs
lola: 5020421 markings, 29318338 edges, 14426 markings/sec, 370 secs
lola: 5092071 markings, 29725539 edges, 14330 markings/sec, 375 secs
lola: 5156666 markings, 30125077 edges, 12919 markings/sec, 380 secs
lola: 5223727 markings, 30537469 edges, 13412 markings/sec, 385 secs
lola: 5291980 markings, 30960003 edges, 13651 markings/sec, 390 secs
lola: 5355585 markings, 31372919 edges, 12721 markings/sec, 395 secs
lola: 5422612 markings, 31782804 edges, 13405 markings/sec, 400 secs
lola: 5491801 markings, 32190097 edges, 13838 markings/sec, 405 secs
lola: 5566286 markings, 32597458 edges, 14897 markings/sec, 410 secs
lola: 5636383 markings, 33005636 edges, 14019 markings/sec, 415 secs
lola: 5705812 markings, 33419221 edges, 13886 markings/sec, 420 secs
lola: 5784086 markings, 33855911 edges, 15655 markings/sec, 425 secs
lola: 5846173 markings, 34258864 edges, 12417 markings/sec, 430 secs
lola: 5911863 markings, 34632839 edges, 13138 markings/sec, 435 secs
lola: 5972673 markings, 35003949 edges, 12162 markings/sec, 440 secs
lola: 6032781 markings, 35377091 edges, 12022 markings/sec, 445 secs
lola: 6097588 markings, 35718566 edges, 12961 markings/sec, 450 secs
lola: 6160617 markings, 36095740 edges, 12606 markings/sec, 455 secs
lola: 6228593 markings, 36503129 edges, 13595 markings/sec, 460 secs
lola: 6290626 markings, 36884435 edges, 12407 markings/sec, 465 secs
lola: 6349977 markings, 37263147 edges, 11870 markings/sec, 470 secs
lola: 6410750 markings, 37624607 edges, 12155 markings/sec, 475 secs
lola: 6472912 markings, 37984801 edges, 12432 markings/sec, 480 secs
lola: 6532806 markings, 38365565 edges, 11979 markings/sec, 485 secs
lola: 6599039 markings, 38734073 edges, 13247 markings/sec, 490 secs
lola: 6666943 markings, 39131414 edges, 13581 markings/sec, 495 secs
lola: 6727148 markings, 39510672 edges, 12041 markings/sec, 500 secs
lola: 6789871 markings, 39870633 edges, 12545 markings/sec, 505 secs
lola: 6850973 markings, 40227749 edges, 12220 markings/sec, 510 secs
lola: 6918193 markings, 40586510 edges, 13444 markings/sec, 515 secs
lola: 6990284 markings, 40971831 edges, 14418 markings/sec, 520 secs
lola: 7056025 markings, 41338478 edges, 13148 markings/sec, 525 secs
lola: 7125059 markings, 41690861 edges, 13807 markings/sec, 530 secs
lola: 7189120 markings, 42061160 edges, 12812 markings/sec, 535 secs
lola: 7252009 markings, 42418422 edges, 12578 markings/sec, 540 secs
lola: 7314575 markings, 42776256 edges, 12513 markings/sec, 545 secs
lola: 7378962 markings, 43141227 edges, 12877 markings/sec, 550 secs
lola: 7446286 markings, 43534964 edges, 13465 markings/sec, 555 secs
lola: 7513386 markings, 43925142 edges, 13420 markings/sec, 560 secs
lola: 7582307 markings, 44301712 edges, 13784 markings/sec, 565 secs
lola: 7644943 markings, 44705604 edges, 12527 markings/sec, 570 secs
lola: 7707509 markings, 45110524 edges, 12513 markings/sec, 575 secs
lola: 7769016 markings, 45497765 edges, 12301 markings/sec, 580 secs
lola: 7827181 markings, 45869240 edges, 11633 markings/sec, 585 secs
lola: 7885095 markings, 46217819 edges, 11583 markings/sec, 590 secs
lola: 7947722 markings, 46583461 edges, 12525 markings/sec, 595 secs
lola: 8012441 markings, 46936867 edges, 12944 markings/sec, 600 secs
lola: 8072767 markings, 47284059 edges, 12065 markings/sec, 605 secs
lola: 8133447 markings, 47641091 edges, 12136 markings/sec, 610 secs
lola: 8195891 markings, 48009431 edges, 12489 markings/sec, 615 secs
lola: 8254693 markings, 48379608 edges, 11760 markings/sec, 620 secs
lola: 8316602 markings, 48743987 edges, 12382 markings/sec, 625 secs
lola: 8375338 markings, 49101124 edges, 11747 markings/sec, 630 secs
lola: 8434021 markings, 49461732 edges, 11737 markings/sec, 635 secs
lola: 8498579 markings, 49839486 edges, 12912 markings/sec, 640 secs
lola: 8569022 markings, 50212188 edges, 14089 markings/sec, 645 secs
lola: 8632473 markings, 50604019 edges, 12690 markings/sec, 650 secs
lola: 8693633 markings, 50992284 edges, 12232 markings/sec, 655 secs
lola: 8755207 markings, 51374317 edges, 12315 markings/sec, 660 secs
lola: 8818663 markings, 51771025 edges, 12691 markings/sec, 665 secs
lola: 8882455 markings, 52144453 edges, 12758 markings/sec, 670 secs
lola: 8949271 markings, 52537905 edges, 13363 markings/sec, 675 secs
lola: 9016305 markings, 52934617 edges, 13407 markings/sec, 680 secs
lola: 9085142 markings, 53342344 edges, 13767 markings/sec, 685 secs
lola: 9147408 markings, 53734400 edges, 12453 markings/sec, 690 secs
lola: 9213332 markings, 54123077 edges, 13185 markings/sec, 695 secs
lola: 9282897 markings, 54507238 edges, 13913 markings/sec, 700 secs
lola: 9357731 markings, 54916172 edges, 14967 markings/sec, 705 secs
lola: 9430392 markings, 55323932 edges, 14532 markings/sec, 710 secs
lola: 9499239 markings, 55717805 edges, 13769 markings/sec, 715 secs
lola: 9569521 markings, 56122216 edges, 14056 markings/sec, 720 secs
lola: 9640270 markings, 56529747 edges, 14150 markings/sec, 725 secs
lola: 9710014 markings, 56934331 edges, 13949 markings/sec, 730 secs
lola: 9775111 markings, 57329778 edges, 13019 markings/sec, 735 secs
lola: 9840024 markings, 57728331 edges, 12983 markings/sec, 740 secs
lola: 9907025 markings, 58139771 edges, 13400 markings/sec, 745 secs
lola: 9968133 markings, 58534539 edges, 12222 markings/sec, 750 secs
lola: 10033306 markings, 58934716 edges, 13035 markings/sec, 755 secs
lola: 10097827 markings, 59324581 edges, 12904 markings/sec, 760 secs
lola: 10166547 markings, 59722275 edges, 13744 markings/sec, 765 secs
lola: 10240511 markings, 60104683 edges, 14793 markings/sec, 770 secs
lola: 10299579 markings, 60488843 edges, 11814 markings/sec, 775 secs
lola: 10368620 markings, 60872071 edges, 13808 markings/sec, 780 secs
lola: 10439344 markings, 61283535 edges, 14145 markings/sec, 785 secs
lola: 10498625 markings, 61659333 edges, 11856 markings/sec, 790 secs
lola: 10561038 markings, 62015960 edges, 12483 markings/sec, 795 secs
lola: 10620005 markings, 62383271 edges, 11793 markings/sec, 800 secs
lola: 10681483 markings, 62755158 edges, 12296 markings/sec, 805 secs
lola: 10746427 markings, 63107399 edges, 12989 markings/sec, 810 secs
lola: 10806230 markings, 63463721 edges, 11961 markings/sec, 815 secs
lola: 10866131 markings, 63823092 edges, 11980 markings/sec, 820 secs
lola: 10925107 markings, 64187444 edges, 11795 markings/sec, 825 secs
lola: 10982207 markings, 64546354 edges, 11420 markings/sec, 830 secs
lola: 11044330 markings, 64918469 edges, 12425 markings/sec, 835 secs
lola: 11110167 markings, 65306192 edges, 13167 markings/sec, 840 secs
lola: 11174583 markings, 65705387 edges, 12883 markings/sec, 845 secs
lola: 11246389 markings, 66104258 edges, 14361 markings/sec, 850 secs
lola: 11310748 markings, 66510333 edges, 12872 markings/sec, 855 secs
lola: 11380753 markings, 66908639 edges, 14001 markings/sec, 860 secs
lola: 11442489 markings, 67279385 edges, 12347 markings/sec, 865 secs
lola: 11511514 markings, 67647871 edges, 13805 markings/sec, 870 secs
lola: 11578418 markings, 68000288 edges, 13381 markings/sec, 875 secs
lola: 11644023 markings, 68342907 edges, 13121 markings/sec, 880 secs
lola: 11714066 markings, 68694421 edges, 14009 markings/sec, 885 secs
lola: 11781367 markings, 69051771 edges, 13460 markings/sec, 890 secs
lola: 11843191 markings, 69408253 edges, 12365 markings/sec, 895 secs
lola: 11907080 markings, 69760155 edges, 12778 markings/sec, 900 secs
lola: 11977766 markings, 70132047 edges, 14137 markings/sec, 905 secs
lola: 12042348 markings, 70498078 edges, 12916 markings/sec, 910 secs
lola: 12107201 markings, 70845697 edges, 12971 markings/sec, 915 secs
lola: 12167942 markings, 71188245 edges, 12148 markings/sec, 920 secs
lola: 12233006 markings, 71546173 edges, 13013 markings/sec, 925 secs
lola: 12300979 markings, 71908246 edges, 13595 markings/sec, 930 secs
lola: 12370474 markings, 72286040 edges, 13899 markings/sec, 935 secs
lola: 12435126 markings, 72667118 edges, 12930 markings/sec, 940 secs
lola: 12501615 markings, 73047926 edges, 13298 markings/sec, 945 secs
lola: 12565099 markings, 73416832 edges, 12697 markings/sec, 950 secs
lola: 12632440 markings, 73786765 edges, 13468 markings/sec, 955 secs
lola: 12691343 markings, 74172626 edges, 11781 markings/sec, 960 secs
lola: 12751587 markings, 74532916 edges, 12049 markings/sec, 965 secs
lola: 12814381 markings, 74884918 edges, 12559 markings/sec, 970 secs
lola: 12875614 markings, 75246393 edges, 12247 markings/sec, 975 secs
lola: 12935885 markings, 75614049 edges, 12054 markings/sec, 980 secs
lola: 12997018 markings, 75989197 edges, 12227 markings/sec, 985 secs
lola: 13053806 markings, 76354553 edges, 11358 markings/sec, 990 secs
lola: 13110529 markings, 76733217 edges, 11345 markings/sec, 995 secs
lola: 13167414 markings, 77103105 edges, 11377 markings/sec, 1000 secs
lola: 13228914 markings, 77470821 edges, 12300 markings/sec, 1005 secs
lola: 13287381 markings, 77835352 edges, 11693 markings/sec, 1010 secs
lola: 13349211 markings, 78210228 edges, 12366 markings/sec, 1015 secs
lola: 13408352 markings, 78586309 edges, 11828 markings/sec, 1020 secs
lola: 13468840 markings, 78974045 edges, 12098 markings/sec, 1025 secs
lola: 13531248 markings, 79355393 edges, 12482 markings/sec, 1030 secs
lola: 13591111 markings, 79747397 edges, 11973 markings/sec, 1035 secs
lola: 13651845 markings, 80130526 edges, 12147 markings/sec, 1040 secs
lola: 13712511 markings, 80516409 edges, 12133 markings/sec, 1045 secs
lola: 13775031 markings, 80918368 edges, 12504 markings/sec, 1050 secs
lola: 13841438 markings, 81312554 edges, 13281 markings/sec, 1055 secs
lola: 13914663 markings, 81701126 edges, 14645 markings/sec, 1060 secs
lola: 13988539 markings, 82107742 edges, 14775 markings/sec, 1065 secs
lola: 14057870 markings, 82511598 edges, 13866 markings/sec, 1070 secs
lola: 14121739 markings, 82893059 edges, 12774 markings/sec, 1075 secs
lola: 14184083 markings, 83276193 edges, 12469 markings/sec, 1080 secs
lola: 14246093 markings, 83665154 edges, 12402 markings/sec, 1085 secs
lola: 14307456 markings, 84042028 edges, 12273 markings/sec, 1090 secs
lola: 14374091 markings, 84418788 edges, 13327 markings/sec, 1095 secs
lola: 14441244 markings, 84801620 edges, 13431 markings/sec, 1100 secs
lola: 14506393 markings, 85193113 edges, 13030 markings/sec, 1105 secs
lola: 14566675 markings, 85571808 edges, 12056 markings/sec, 1110 secs
lola: 14629646 markings, 85942053 edges, 12594 markings/sec, 1115 secs
lola: 14693754 markings, 86319190 edges, 12822 markings/sec, 1120 secs
lola: 14754230 markings, 86689185 edges, 12095 markings/sec, 1125 secs
lola: 14813068 markings, 87063556 edges, 11768 markings/sec, 1130 secs
lola: 14880331 markings, 87453121 edges, 13453 markings/sec, 1135 secs
lola: 14944385 markings, 87826409 edges, 12811 markings/sec, 1140 secs
lola: 15013504 markings, 88201541 edges, 13824 markings/sec, 1145 secs
lola: 15082771 markings, 88580009 edges, 13853 markings/sec, 1150 secs
lola: 15153100 markings, 88973245 edges, 14066 markings/sec, 1155 secs
lola: 15219067 markings, 89356146 edges, 13193 markings/sec, 1160 secs
lola: 15285871 markings, 89744612 edges, 13361 markings/sec, 1165 secs
lola: 15347499 markings, 90127817 edges, 12326 markings/sec, 1170 secs
lola: 15409133 markings, 90519668 edges, 12327 markings/sec, 1175 secs
lola: 15471448 markings, 90901816 edges, 12463 markings/sec, 1180 secs
lola: 15539200 markings, 91276505 edges, 13550 markings/sec, 1185 secs
lola: 15602405 markings, 91655739 edges, 12641 markings/sec, 1190 secs
lola: 15661034 markings, 92016541 edges, 11726 markings/sec, 1195 secs
lola: 15718926 markings, 92365872 edges, 11578 markings/sec, 1200 secs
lola: 15779374 markings, 92713969 edges, 12090 markings/sec, 1205 secs
lola: 15842336 markings, 93094485 edges, 12592 markings/sec, 1210 secs
lola: 15904727 markings, 93482061 edges, 12478 markings/sec, 1215 secs
lola: 15965678 markings, 93856569 edges, 12190 markings/sec, 1220 secs
lola: 16032107 markings, 94242254 edges, 13286 markings/sec, 1225 secs
lola: 16096012 markings, 94631072 edges, 12781 markings/sec, 1230 secs
lola: 16161825 markings, 95004373 edges, 13163 markings/sec, 1235 secs
lola: 16234259 markings, 95408038 edges, 14487 markings/sec, 1240 secs
lola: 16303098 markings, 95811163 edges, 13768 markings/sec, 1245 secs
lola: 16368730 markings, 96215015 edges, 13126 markings/sec, 1250 secs
lola: 16436644 markings, 96619900 edges, 13583 markings/sec, 1255 secs
lola: 16500210 markings, 97023485 edges, 12713 markings/sec, 1260 secs
lola: 16567701 markings, 97418624 edges, 13498 markings/sec, 1265 secs
lola: 16633849 markings, 97815680 edges, 13230 markings/sec, 1270 secs
lola: 16703746 markings, 98225496 edges, 13979 markings/sec, 1275 secs
lola: 16768235 markings, 98604154 edges, 12898 markings/sec, 1280 secs
lola: 16835297 markings, 98992941 edges, 13412 markings/sec, 1285 secs
lola: 16898250 markings, 99371589 edges, 12591 markings/sec, 1290 secs
lola: 16959551 markings, 99748820 edges, 12260 markings/sec, 1295 secs
lola: 17019649 markings, 100116596 edges, 12020 markings/sec, 1300 secs
lola: 17086428 markings, 100504888 edges, 13356 markings/sec, 1305 secs
lola: 17153394 markings, 100902350 edges, 13393 markings/sec, 1310 secs
lola: 17217667 markings, 101268579 edges, 12855 markings/sec, 1315 secs
lola: 17281542 markings, 101639496 edges, 12775 markings/sec, 1320 secs
lola: 17347975 markings, 102013906 edges, 13287 markings/sec, 1325 secs
lola: 17421593 markings, 102394700 edges, 14724 markings/sec, 1330 secs
lola: 17492303 markings, 102781005 edges, 14142 markings/sec, 1335 secs
lola: 17566248 markings, 103172784 edges, 14789 markings/sec, 1340 secs
lola: 17636116 markings, 103556319 edges, 13974 markings/sec, 1345 secs
lola: 17703763 markings, 103940000 edges, 13529 markings/sec, 1350 secs
lola: 17770682 markings, 104321351 edges, 13384 markings/sec, 1355 secs
lola: 17847126 markings, 104708331 edges, 15289 markings/sec, 1360 secs
lola: 17920998 markings, 105095443 edges, 14774 markings/sec, 1365 secs
lola: 17988772 markings, 105498151 edges, 13555 markings/sec, 1370 secs
lola: 18060233 markings, 105877102 edges, 14292 markings/sec, 1375 secs
lola: 18131520 markings, 106271763 edges, 14257 markings/sec, 1380 secs
lola: 18203970 markings, 106659026 edges, 14490 markings/sec, 1385 secs
lola: 18270985 markings, 107048888 edges, 13403 markings/sec, 1390 secs
lola: 18341321 markings, 107430807 edges, 14067 markings/sec, 1395 secs
lola: 18410350 markings, 107809622 edges, 13806 markings/sec, 1400 secs
lola: 18482592 markings, 108198071 edges, 14448 markings/sec, 1405 secs
lola: 18549436 markings, 108591920 edges, 13369 markings/sec, 1410 secs
lola: 18617359 markings, 108981403 edges, 13585 markings/sec, 1415 secs
lola: 18684372 markings, 109370080 edges, 13403 markings/sec, 1420 secs
lola: 18754147 markings, 109759760 edges, 13955 markings/sec, 1425 secs
lola: 18817051 markings, 110172987 edges, 12581 markings/sec, 1430 secs
lola: 18883010 markings, 110560314 edges, 13192 markings/sec, 1435 secs
lola: 18950594 markings, 110940707 edges, 13517 markings/sec, 1440 secs
lola: 19015785 markings, 111333018 edges, 13038 markings/sec, 1445 secs
lola: 19081079 markings, 111730705 edges, 13059 markings/sec, 1450 secs
lola: 19146005 markings, 112121993 edges, 12985 markings/sec, 1455 secs
lola: 19205092 markings, 112515832 edges, 11817 markings/sec, 1460 secs
lola: 19264918 markings, 112918142 edges, 11965 markings/sec, 1465 secs
lola: 19327268 markings, 113310875 edges, 12470 markings/sec, 1470 secs
lola: 19391450 markings, 113694898 edges, 12836 markings/sec, 1475 secs
lola: 19454627 markings, 114089259 edges, 12635 markings/sec, 1480 secs
lola: 19516805 markings, 114489097 edges, 12436 markings/sec, 1485 secs
lola: 19576332 markings, 114873155 edges, 11905 markings/sec, 1490 secs
lola: 19641454 markings, 115252191 edges, 13024 markings/sec, 1495 secs
lola: 19699799 markings, 115646507 edges, 11669 markings/sec, 1500 secs
lola: 19758742 markings, 116028596 edges, 11789 markings/sec, 1505 secs
lola: 19820593 markings, 116410374 edges, 12370 markings/sec, 1510 secs
lola: 19882348 markings, 116801536 edges, 12351 markings/sec, 1515 secs
lola: 19942321 markings, 117187226 edges, 11995 markings/sec, 1520 secs
lola: 20012124 markings, 117565257 edges, 13961 markings/sec, 1525 secs
lola: 20080474 markings, 117949416 edges, 13670 markings/sec, 1530 secs
lola: 20146964 markings, 118325925 edges, 13298 markings/sec, 1535 secs
lola: 20212785 markings, 118710661 edges, 13164 markings/sec, 1540 secs
lola: 20276508 markings, 119094367 edges, 12745 markings/sec, 1545 secs
lola: 20338733 markings, 119485971 edges, 12445 markings/sec, 1550 secs
lola: 20399400 markings, 119870029 edges, 12133 markings/sec, 1555 secs
lola: 20465086 markings, 120244572 edges, 13137 markings/sec, 1560 secs
lola: 20528563 markings, 120622077 edges, 12695 markings/sec, 1565 secs
lola: 20593538 markings, 121017112 edges, 12995 markings/sec, 1570 secs
lola: 20657483 markings, 121394934 edges, 12789 markings/sec, 1575 secs
lola: 20724569 markings, 121783750 edges, 13417 markings/sec, 1580 secs
lola: 20788329 markings, 122168795 edges, 12752 markings/sec, 1585 secs
lola: 20850728 markings, 122556833 edges, 12480 markings/sec, 1590 secs
lola: 20912465 markings, 122934681 edges, 12347 markings/sec, 1595 secs
lola: 20977428 markings, 123313808 edges, 12993 markings/sec, 1600 secs
lola: 21041250 markings, 123699294 edges, 12764 markings/sec, 1605 secs
lola: 21104051 markings, 124066682 edges, 12560 markings/sec, 1610 secs
lola: 21173346 markings, 124445047 edges, 13859 markings/sec, 1615 secs
lola: 21241728 markings, 124819332 edges, 13676 markings/sec, 1620 secs
lola: 21306973 markings, 125193142 edges, 13049 markings/sec, 1625 secs
lola: 21371744 markings, 125569897 edges, 12954 markings/sec, 1630 secs
lola: 21438498 markings, 125950299 edges, 13351 markings/sec, 1635 secs
lola: 21500184 markings, 126351948 edges, 12337 markings/sec, 1640 secs
lola: 21561859 markings, 126744404 edges, 12335 markings/sec, 1645 secs
lola: 21626463 markings, 127129129 edges, 12921 markings/sec, 1650 secs
lola: 21692604 markings, 127504399 edges, 13228 markings/sec, 1655 secs
lola: 21757786 markings, 127898603 edges, 13036 markings/sec, 1660 secs
lola: 21820513 markings, 128284123 edges, 12545 markings/sec, 1665 secs
lola: 21884540 markings, 128667735 edges, 12805 markings/sec, 1670 secs
lola: 21948914 markings, 129044091 edges, 12875 markings/sec, 1675 secs
lola: 22010172 markings, 129430013 edges, 12252 markings/sec, 1680 secs
lola: 22071952 markings, 129802754 edges, 12356 markings/sec, 1685 secs
lola: 22136905 markings, 130191705 edges, 12991 markings/sec, 1690 secs
lola: 22199824 markings, 130582016 edges, 12584 markings/sec, 1695 secs
lola: 22266225 markings, 130962036 edges, 13280 markings/sec, 1700 secs
lola: 22336490 markings, 131354717 edges, 14053 markings/sec, 1705 secs
lola: 22403334 markings, 131742696 edges, 13369 markings/sec, 1710 secs
lola: 22470357 markings, 132132407 edges, 13405 markings/sec, 1715 secs
lola: 22533306 markings, 132524079 edges, 12590 markings/sec, 1720 secs
lola: 22595442 markings, 132919511 edges, 12427 markings/sec, 1725 secs
lola: 22658845 markings, 133306146 edges, 12681 markings/sec, 1730 secs
lola: 22726486 markings, 133683879 edges, 13528 markings/sec, 1735 secs
lola: 22791475 markings, 134069821 edges, 12998 markings/sec, 1740 secs
lola: 22856270 markings, 134461142 edges, 12959 markings/sec, 1745 secs
lola: 22917527 markings, 134841340 edges, 12251 markings/sec, 1750 secs
lola: 22983510 markings, 135220836 edges, 13197 markings/sec, 1755 secs
lola: 23047071 markings, 135608460 edges, 12712 markings/sec, 1760 secs
lola: 23107579 markings, 135984415 edges, 12102 markings/sec, 1765 secs
lola: 23172465 markings, 136379386 edges, 12977 markings/sec, 1770 secs
lola: 23238716 markings, 136774940 edges, 13250 markings/sec, 1775 secs
lola: 23303930 markings, 137156965 edges, 13043 markings/sec, 1780 secs
lola: 23380219 markings, 137545769 edges, 15258 markings/sec, 1785 secs
lola: 23451491 markings, 137930137 edges, 14254 markings/sec, 1790 secs
lola: 23518707 markings, 138316212 edges, 13443 markings/sec, 1795 secs
lola: 23587894 markings, 138686383 edges, 13837 markings/sec, 1800 secs
lola: 23659943 markings, 139075975 edges, 14410 markings/sec, 1805 secs
lola: 23728608 markings, 139451918 edges, 13733 markings/sec, 1810 secs
lola: 23796454 markings, 139832786 edges, 13569 markings/sec, 1815 secs
lola: 23868254 markings, 140221018 edges, 14360 markings/sec, 1820 secs
lola: 23936211 markings, 140595609 edges, 13591 markings/sec, 1825 secs
lola: 24008827 markings, 140984255 edges, 14523 markings/sec, 1830 secs
lola: 24073175 markings, 141359757 edges, 12870 markings/sec, 1835 secs
lola: 24136593 markings, 141721111 edges, 12684 markings/sec, 1840 secs
lola: 24197569 markings, 142077315 edges, 12195 markings/sec, 1845 secs
lola: 24260731 markings, 142437060 edges, 12632 markings/sec, 1850 secs
lola: 24329054 markings, 142820117 edges, 13665 markings/sec, 1855 secs
lola: 24383239 markings, 143201529 edges, 10837 markings/sec, 1860 secs
lola: 24449965 markings, 143563770 edges, 13345 markings/sec, 1865 secs
lola: 24513283 markings, 143935425 edges, 12664 markings/sec, 1870 secs
lola: 24572745 markings, 144297135 edges, 11892 markings/sec, 1875 secs
lola: 24636249 markings, 144684072 edges, 12701 markings/sec, 1880 secs
lola: 24695987 markings, 145060959 edges, 11948 markings/sec, 1885 secs
lola: 24752293 markings, 145430231 edges, 11261 markings/sec, 1890 secs
lola: 24806900 markings, 145792663 edges, 10921 markings/sec, 1895 secs
lola: 24867695 markings, 146173318 edges, 12159 markings/sec, 1900 secs
lola: 24929920 markings, 146554254 edges, 12445 markings/sec, 1905 secs
lola: 24994550 markings, 146938938 edges, 12926 markings/sec, 1910 secs
lola: 25052146 markings, 147308505 edges, 11519 markings/sec, 1915 secs
lola: 25109269 markings, 147678043 edges, 11425 markings/sec, 1920 secs
lola: 25172049 markings, 148055910 edges, 12556 markings/sec, 1925 secs
lola: 25231368 markings, 148435537 edges, 11864 markings/sec, 1930 secs
lola: 25287528 markings, 148800847 edges, 11232 markings/sec, 1935 secs
lola: 25345339 markings, 149177486 edges, 11562 markings/sec, 1940 secs
lola: 25406052 markings, 149536982 edges, 12143 markings/sec, 1945 secs
lola: 25461988 markings, 149893137 edges, 11187 markings/sec, 1950 secs
lola: 25521670 markings, 150239391 edges, 11936 markings/sec, 1955 secs
lola: 25589155 markings, 150593877 edges, 13497 markings/sec, 1960 secs
lola: 25652750 markings, 150953067 edges, 12719 markings/sec, 1965 secs
lola: 25715769 markings, 151320588 edges, 12604 markings/sec, 1970 secs
lola: 25780154 markings, 151709649 edges, 12877 markings/sec, 1975 secs
lola: 25843992 markings, 152097541 edges, 12768 markings/sec, 1980 secs
lola: 25906843 markings, 152491791 edges, 12570 markings/sec, 1985 secs
lola: 25969777 markings, 152873786 edges, 12587 markings/sec, 1990 secs
lola: 26035384 markings, 153257620 edges, 13121 markings/sec, 1995 secs
lola: 26105783 markings, 153645615 edges, 14080 markings/sec, 2000 secs
lola: 26169688 markings, 154036342 edges, 12781 markings/sec, 2005 secs
lola: 26227504 markings, 154396731 edges, 11563 markings/sec, 2010 secs
lola: 26287332 markings, 154749933 edges, 11966 markings/sec, 2015 secs
lola: 26347329 markings, 155100605 edges, 11999 markings/sec, 2020 secs
lola: 26403433 markings, 155446467 edges, 11221 markings/sec, 2025 secs
lola: 26457810 markings, 155805659 edges, 10875 markings/sec, 2030 secs
lola: 26526576 markings, 156173905 edges, 13753 markings/sec, 2035 secs
lola: 26585080 markings, 156529355 edges, 11701 markings/sec, 2040 secs
lola: 26647319 markings, 156879135 edges, 12448 markings/sec, 2045 secs
lola: 26719654 markings, 157272284 edges, 14467 markings/sec, 2050 secs
lola: 26789264 markings, 157661373 edges, 13922 markings/sec, 2055 secs
lola: 26857402 markings, 158052588 edges, 13628 markings/sec, 2060 secs
lola: 26924986 markings, 158444547 edges, 13517 markings/sec, 2065 secs
lola: 26988854 markings, 158833405 edges, 12774 markings/sec, 2070 secs
lola: 27050431 markings, 159227127 edges, 12315 markings/sec, 2075 secs
lola: 27112416 markings, 159611423 edges, 12397 markings/sec, 2080 secs
lola: 27181581 markings, 159994267 edges, 13833 markings/sec, 2085 secs
lola: 27244071 markings, 160375581 edges, 12498 markings/sec, 2090 secs
lola: 27308850 markings, 160766837 edges, 12956 markings/sec, 2095 secs
lola: 27372456 markings, 161149210 edges, 12721 markings/sec, 2100 secs
lola: 27438125 markings, 161529352 edges, 13134 markings/sec, 2105 secs
lola: 27500071 markings, 161903310 edges, 12389 markings/sec, 2110 secs
lola: 27560042 markings, 162276102 edges, 11994 markings/sec, 2115 secs
lola: 27620632 markings, 162648425 edges, 12118 markings/sec, 2120 secs
lola: 27684215 markings, 163016517 edges, 12717 markings/sec, 2125 secs
lola: 27747478 markings, 163400011 edges, 12653 markings/sec, 2130 secs
lola: 27812871 markings, 163775300 edges, 13079 markings/sec, 2135 secs
lola: 27882213 markings, 164162132 edges, 13868 markings/sec, 2140 secs
lola: 27949858 markings, 164553600 edges, 13529 markings/sec, 2145 secs
lola: 28013890 markings, 164938389 edges, 12806 markings/sec, 2150 secs
lola: 28075096 markings, 165312711 edges, 12241 markings/sec, 2155 secs
lola: 28133738 markings, 165683338 edges, 11728 markings/sec, 2160 secs
lola: 28192675 markings, 166041908 edges, 11787 markings/sec, 2165 secs
lola: 28258618 markings, 166408710 edges, 13189 markings/sec, 2170 secs
lola: 28321628 markings, 166779940 edges, 12602 markings/sec, 2175 secs
lola: 28385904 markings, 167161665 edges, 12855 markings/sec, 2180 secs
lola: 28444531 markings, 167529521 edges, 11725 markings/sec, 2185 secs
lola: 28507225 markings, 167900862 edges, 12539 markings/sec, 2190 secs
lola: 28570755 markings, 168266223 edges, 12706 markings/sec, 2195 secs
lola: 28630075 markings, 168633326 edges, 11864 markings/sec, 2200 secs
lola: 28688527 markings, 169012358 edges, 11690 markings/sec, 2205 secs
lola: 28760431 markings, 169403871 edges, 14381 markings/sec, 2210 secs
lola: 28822682 markings, 169781809 edges, 12450 markings/sec, 2215 secs
lola: 28892376 markings, 170181040 edges, 13939 markings/sec, 2220 secs
lola: 28961668 markings, 170583354 edges, 13858 markings/sec, 2225 secs
lola: 29030110 markings, 170975013 edges, 13688 markings/sec, 2230 secs
lola: 29097703 markings, 171367852 edges, 13519 markings/sec, 2235 secs
lola: 29158462 markings, 171737168 edges, 12152 markings/sec, 2240 secs
lola: 29217889 markings, 172115766 edges, 11885 markings/sec, 2245 secs
lola: 29280668 markings, 172491333 edges, 12556 markings/sec, 2250 secs
lola: 29341768 markings, 172893980 edges, 12220 markings/sec, 2255 secs
lola: time limit reached - aborting
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola: memory consumption: 4758020 KB
lola: time consumption: 3567 seconds
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes unknown no yes no no yes yes no yes no no no yes yes unknown
lola: memory consumption: 4758240 KB
lola: time consumption: 3567 seconds

BK_STOP 1527028767471

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-6"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-6.tgz
mv NeoElection-COL-6 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-COL-6, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r112-csrt-152666469300269"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;