fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r112-csrt-152666469300268
Last Updated
June 26, 2018

About the Execution of LoLA for NeoElection-COL-6

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
2052.480 3570393.00 3631373.00 369.20 6 0 0 ? 6 6 36 6 0 36 0 0 0 6 30 0 normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.............................................................................
/home/mcc/execution
total 264K
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.8K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 12K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 1.9K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 7.4K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 18K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 108 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 346 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.9K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 21K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.8K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 98K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-COL-6, examination is UpperBounds
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r112-csrt-152666469300268
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of positive values
NUM_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-6-UpperBounds-00
FORMULA_NAME NeoElection-COL-6-UpperBounds-01
FORMULA_NAME NeoElection-COL-6-UpperBounds-02
FORMULA_NAME NeoElection-COL-6-UpperBounds-03
FORMULA_NAME NeoElection-COL-6-UpperBounds-04
FORMULA_NAME NeoElection-COL-6-UpperBounds-05
FORMULA_NAME NeoElection-COL-6-UpperBounds-06
FORMULA_NAME NeoElection-COL-6-UpperBounds-07
FORMULA_NAME NeoElection-COL-6-UpperBounds-08
FORMULA_NAME NeoElection-COL-6-UpperBounds-09
FORMULA_NAME NeoElection-COL-6-UpperBounds-10
FORMULA_NAME NeoElection-COL-6-UpperBounds-11
FORMULA_NAME NeoElection-COL-6-UpperBounds-12
FORMULA_NAME NeoElection-COL-6-UpperBounds-13
FORMULA_NAME NeoElection-COL-6-UpperBounds-14
FORMULA_NAME NeoElection-COL-6-UpperBounds-15

=== Now, execution of the tool begins

BK_START 1527025188799

info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-6 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-6 formula UpperBounds into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking UpperBounds @ NeoElection-COL-6 @ 3568 seconds
lola: LoLA will run for 3568 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 13363/65536 symbol table entries, 4016 collisions
lola: preprocessing...
lola: Size of bit vector: 4830
lola: finding significant places
lola: 4830 places, 8533 transitions, 1204 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 2597 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-6-UpperBounds.task
lola: LP says that atomic proposition is always true: (p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1826 + p1825 + p1824 + p1823 + p1822 + p1821 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1784 + p1783 + p1782 + p1781 + p1780 + p1779 + p1742 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1741 + p1740 + p1739 + p1738 + p1737 + p1700 + p1699 + p1698 + p1697 + p1696 + p1695 + p1658 + p1657 + p1656 + p1655 + p1654 + p1653 + p99 + p1616 + p1615 + p1614 + p1613 + p1612 + p1611 + p62 + p61 + p60 + p59 + p58 + p57 + p986 + p985 + p984 + p983 + p982 + p981 + p20 + p19 + p18 + p17 + p16 + p15 + p944 + p943 + p942 + p941 + p940 + p939 + p902 + p901 + p900 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1532 + p1531 + p1530 + p1529 + p1528 + p1527 + p899 + p898 + p897 + p860 + p859 + p858 + p857 + p856 + p855 + p818 + p817 + p816 + p815 + p814 + p813 + p1490 + p1489 + p1488 + p1487 + p1486 + p1485 + p1448 + p1447 + p1446 + p1445 + p1444 + p1443 + p1406 + p1405 + p1404 + p1403 + p1402 + p1401 + p776 + p775 + p774 + p773 + p772 + p771 + p734 + p733 + p732 + p731 + p730 + p729 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1322 + p1321 + p1320 + p1319 + p1318 + p1317 + p692 + p691 + p690 + p689 + p688 + p687 + p650 + p649 + p648 + p647 + p646 + p645 + p608 + p607 + p606 + p605 + p604 + p603 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1238 + p1237 + p1236 + p1235 + p1234 + p1233 + p566 + p565 + p564 + p563 + p562 + p561 + p524 + p523 + p522 + p521 + p520 + p519 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1112 + p1111 + p1110 + p1109 + p1108 + p1107 + p482 + p481 + p480 + p479 + p478 + p477 + p440 + p439 + p438 + p437 + p436 + p435 + p1070 + p1069 + p1068 + p1067 + p1066 + p1065 + p1028 + p1027 + p1026 + p1025 + p1024 + p1023 + p398 + p397 + p396 + p395 + p394 + p393 + p2031 + p2032 + p2033 + p356 + p355 + p2034 + p354 + p2035 + p353 + p2036 + p352 + p351 + p314 + p313 + p312 + p311 + p310 + p309 + p272 + p271 + p270 + p269 + p268 + p267 + p230 + p229 + p100 + p101 + p102 + p103 + p104 + p228 + p227 + p226 + p225 + p141 + p142 + p143 + p144 + p145 + p146 + p188 + p187 + p186 + p185 + p184 + p183 + p159 + p158 + p160 + p161 + p162 + p163 + p164 + p165 + p166 + p167 + p168 + p169 + p157 + p156 + p170 + p171 + p172 + p173 + p174 + p175 + p176 + p177 + p178 + p179 + p155 + p154 + p153 + p152 + p151 + p150 + p180 + p181 + p182 + p149 + p148 + p147 + p189 + p140 + p190 + p191 + p192 + p193 + p194 + p195 + p196 + p197 + p198 + p199 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p131 + p130 + p129 + p128 + p127 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p119 + p118 + p117 + p116 + p115 + p114 + p113 + p112 + p111 + p110 + p109 + p200 + p201 + p202 + p203 + p204 + p205 + p206 + p207 + p208 + p209 + p210 + p211 + p212 + p213 + p214 + p215 + p216 + p217 + p218 + p219 + p220 + p221 + p222 + p223 + p224 + p108 + p107 + p106 + p105 + p231 + p232 + p233 + p234 + p235 + p236 + p237 + p238 + p239 + p240 + p241 + p242 + p243 + p244 + p245 + p246 + p247 + p248 + p249 + p250 + p251 + p252 + p253 + p254 + p255 + p256 + p257 + p258 + p259 + p2064 + p2063 + p2062 + p260 + p261 + p262 + p263 + p264 + p265 + p266 + p2061 + p2060 + p2059 + p2058 + p2057 + p2056 + p273 + p274 + p275 + p276 + p277 + p278 + p279 + p2055 + p2054 + p280 + p281 + p282 + p283 + p284 + p285 + p286 + p287 + p288 + p289 + p2053 + p290 + p291 + p292 + p293 + p294 + p295 + p296 + p297 + p298 + p299 + p2052 + p2051 + p2050 + p2049 + p2048 + p2047 + p2046 + p2045 + p2044 + p2043 + p2042 + p2041 + p2040 + p300 + p301 + p302 + p303 + p304 + p305 + p306 + p307 + p308 + p2039 + p2038 + p2037 + p315 + p316 + p317 + p318 + p319 + p320 + p321 + p322 + p323 + p324 + p325 + p326 + p327 + p328 + p329 + p330 + p331 + p332 + p333 + p334 + p335 + p336 + p337 + p338 + p339 + p340 + p341 + p342 + p343 + p344 + p345 + p346 + p347 + p348 + p349 + p350 + p357 + p358 + p359 + p360 + p361 + p362 + p363 + p364 + p365 + p366 + p367 + p368 + p369 + p370 + p371 + p372 + p373 + p374 + p375 + p376 + p377 + p378 + p379 + p380 + p381 + p382 + p383 + p384 + p385 + p386 + p387 + p388 + p389 + p2030 + p2029 + p390 + p391 + p392 + p2028 + p2027 + p2026 + p399 + p2025 + p2024 + p1000 + p1001 + p1002 + p1003 + p1004 + p1005 + p2023 + p1006 + p1007 + p1008 + p1009 + p1010 + p1011 + p1012 + p1013 + p2022 + p1014 + p2021 + p1015 + p1016 + p2020 + p1017 + p1018 + p1019 + p1020 + p1021 + p1022 + p2019 + p2018 + p2017 + p1029 + p1030 + p1031 + p1032 + p1033 + p1034 + p2016 + p1035 + p1036 + p1037 + p1038 + p1039 + p2015 + p1040 + p1041 + p2014 + p1042 + p1043 + p2013 + p1044 + p1045 + p1046 + p2012 + p1047 + p1048 + p1049 + p2011 + p1050 + p1051 + p1052 + p2010 + p1053 + p1054 + p1055 + p1056 + p1057 + p1058 + p1059 + p2009 + p2008 + p1060 + p1061 + p2007 + p1062 + p1063 + p1064 + p2006 + p2005 + p2004 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p1099 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p415 + p416 + p417 + p418 + p419 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p2003 + p2002 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p451 + p452 + p453 + p454 + p455 + p456 + p457 + p458 + p459 + p2001 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p2000 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p483 + p484 + p485 + p486 + p487 + p488 + p489 + p490 + p491 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p1100 + p1101 + p1102 + p1103 + p1104 + p1105 + p1106 + p1113 + p1114 + p1115 + p1116 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p1130 + p1131 + p1132 + p1133 + p1134 + p1135 + p1136 + p1137 + p1138 + p1139 + p1140 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p1147 + p1148 + p1155 + p1156 + p1157 + p1158 + p1159 + p1160 + p1161 + p1162 + p1163 + p1164 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p1171 + p1172 + p1173 + p1174 + p1175 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p525 + p526 + p527 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p559 + p560 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p595 + p596 + p597 + p598 + p599 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1207 + p1208 + p1209 + p1210 + p1211 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1239 + p1240 + p1241 + p1242 + p1243 + p1244 + p1245 + p1246 + p1247 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1281 + p1282 + p1283 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p631 + p632 + p633 + p634 + p635 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p667 + p668 + p669 + p670 + p671 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p1300 + p1301 + p1302 + p1303 + p1304 + p1305 + p1306 + p1307 + p1308 + p1309 + p1310 + p1311 + p1312 + p1313 + p1314 + p1315 + p1316 + p1323 + p1324 + p1325 + p1326 + p1327 + p1328 + p1329 + p1330 + p1331 + p1332 + p1333 + p1334 + p1335 + p1336 + p1337 + p1338 + p1339 + p1340 + p1341 + p1342 + p1343 + p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p700 + p701 + p702 + p703 + p704 + p705 + p706 + p707 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p735 + p736 + p737 + p738 + p739 + p740 + p741 + p742 + p743 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p777 + p778 + p779 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p9 + p1400 + p8 + p7 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p811 + p812 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p847 + p848 + p849 + p850 + p851 + p852 + p853 + p854 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p883 + p884 + p885 + p886 + p887 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 + p1524 + p1525 + p1526 + p1533 + p1534 + p1535 + p1536 + p1537 + p1538 + p1539 + p1540 + p1541 + p1542 + p1543 + p1544 + p1545 + p1546 + p1547 + p1548 + p1549 + p1550 + p1551 + p1552 + p1553 + p1554 + p1555 + p1556 + p1557 + p1558 + p1559 + p1560 + p1561 + p1562 + p1563 + p1564 + p1565 + p1566 + p1567 + p1568 + p1575 + p1576 + p1577 + p1578 + p1579 + p1580 + p1581 + p1582 + p1583 + p1584 + p1585 + p1586 + p1587 + p1588 + p1589 + p1590 + p1591 + p1592 + p1593 + p1594 + p1595 + p1596 + p1597 + p1598 + p1599 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p919 + p920 + p921 + p922 + p923 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p955 + p956 + p957 + p958 + p959 + p10 + p11 + p12 + p13 + p14 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p21 + p22 + p23 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p990 + p991 + p992 + p993 + p994 + p995 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p55 + p56 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p1600 + p1601 + p1602 + p1603 + p1604 + p1605 + p1606 + p1607 + p1608 + p1609 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p1610 + p1617 + p1618 + p1619 + p90 + p91 + p92 + p93 + p94 + p95 + p96 + p97 + p98 + p1620 + p1621 + p1622 + p1623 + p1624 + p1625 + p1626 + p1627 + p1628 + p1629 + p1630 + p1631 + p1632 + p1633 + p1634 + p1635 + p1636 + p1637 + p1638 + p1639 + p1640 + p1641 + p1642 + p1643 + p1644 + p1645 + p1646 + p1647 + p1648 + p1649 + p1650 + p1651 + p1652 + p1659 + p1660 + p1661 + p1662 + p1663 + p1664 + p1665 + p1666 + p1667 + p1668 + p1669 + p1670 + p1671 + p1672 + p1673 + p1674 + p1675 + p1676 + p1677 + p1678 + p1679 + p1680 + p1681 + p1682 + p1683 + p1684 + p1685 + p1686 + p1687 + p1688 + p1689 + p1690 + p1691 + p1692 + p1693 + p1694 + p1701 + p1702 + p1703 + p1704 + p1705 + p1706 + p1707 + p1708 + p1709 + p1710 + p1711 + p1712 + p1713 + p1714 + p1715 + p1716 + p1717 + p1718 + p1719 + p1720 + p1721 + p1722 + p1723 + p1724 + p1725 + p1726 + p1727 + p1728 + p1729 + p1730 + p1731 + p1732 + p1733 + p1734 + p1735 + p1736 + p1999 + p1998 + p1997 + p1996 + p1995 + p1988 + p1743 + p1744 + p1745 + p1746 + p1747 + p1748 + p1749 + p1750 + p1751 + p1752 + p1753 + p1754 + p1755 + p1756 + p1757 + p1758 + p1759 + p1760 + p1761 + p1762 + p1763 + p1764 + p1765 + p1766 + p1767 + p1768 + p1769 + p1770 + p1771 + p1772 + p1773 + p1774 + p1775 + p1776 + p1777 + p1778 + p1987 + p1986 + p1985 + p1984 + p1983 + p1982 + p1785 + p1786 + p1787 + p1788 + p1789 + p1790 + p1791 + p1792 + p1793 + p1794 + p1795 + p1796 + p1797 + p1798 + p1799 + p1981 + p1980 + p1979 + p1978 + p1977 + p1976 + p1975 + p1974 + p1973 + p1972 + p1971 + p1970 + p1969 + p1968 + p1967 + p1966 + p1965 + p1964 + p1963 + p1962 + p1961 + p1960 + p1959 + p1958 + p1957 + p1956 + p1955 + p1954 + p1953 + p1946 + p1800 + p1801 + p1802 + p1803 + p1804 + p1805 + p1806 + p1807 + p1808 + p1809 + p1810 + p1811 + p1812 + p1813 + p1814 + p1815 + p1816 + p1817 + p1818 + p1819 + p1820 + p1945 + p1944 + p1943 + p1942 + p1941 + p1940 + p1827 + p1828 + p1829 + p1830 + p1831 + p1832 + p1833 + p1834 + p1835 + p1836 + p1837 + p1838 + p1839 + p1840 + p1841 + p1842 + p1843 + p1844 + p1845 + p1846 + p1847 + p1848 + p1849 + p1850 + p1851 + p1852 + p1853 + p1854 + p1855 + p1856 + p1857 + p1858 + p1859 + p1860 + p1861 + p1862 + p1939 + p1938 + p1937 + p1936 + p1935 + p1934 + p1869 + p1870 + p1871 + p1872 + p1873 + p1874 + p1875 + p1876 + p1877 + p1878 + p1879 + p1880 + p1881 + p1882 + p1883 + p1884 + p1885 + p1886 + p1887 + p1888 + p1889 + p1890 + p1891 + p1892 + p1893 + p1894 + p1895 + p1896 + p1897 + p1898 + p1899 + p1933 + p1932 + p1931 + p1930 + p1929 + p1928 + p1927 + p1926 + p1925 + p1924 + p1923 + p1922 + p1921 + p1920 + p1919 + p1918 + p1917 + p1916 + p1915 + p1914 + p1913 + p1912 + p1911 + p1904 + p1903 + p1902 + p1901 + p1900 <= 0)
lola: after: (p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1826 + p1825 + p1824 + p1823 + p1822 + p1821 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1784 + p1783 + p1782 + p1781 + p1780 + p1779 + p1742 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1741 + p1740 + p1739 + p1738 + p1737 + p1700 + p1699 + p1698 + p1697 + p1696 + p1695 + p1658 + p1657 + p1656 + p1655 + p1654 + p1653 + p99 + p1616 + p1615 + p1614 + p1613 + p1612 + p1611 + p62 + p61 + p60 + p59 + p58 + p57 + p986 + p985 + p984 + p983 + p982 + p981 + p20 + p19 + p18 + p17 + p16 + p15 + p944 + p943 + p942 + p941 + p940 + p939 + p902 + p901 + p900 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1532 + p1531 + p1530 + p1529 + p1528 + p1527 + p899 + p898 + p897 + p860 + p859 + p858 + p857 + p856 + p855 + p818 + p817 + p816 + p815 + p814 + p813 + p1490 + p1489 + p1488 + p1487 + p1486 + p1485 + p1448 + p1447 + p1446 + p1445 + p1444 + p1443 + p1406 + p1405 + p1404 + p1403 + p1402 + p1401 + p776 + p775 + p774 + p773 + p772 + p771 + p734 + p733 + p732 + p731 + p730 + p729 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1322 + p1321 + p1320 + p1319 + p1318 + p1317 + p692 + p691 + p690 + p689 + p688 + p687 + p650 + p649 + p648 + p647 + p646 + p645 + p608 + p607 + p606 + p605 + p604 + p603 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1238 + p1237 + p1236 + p1235 + p1234 + p1233 + p566 + p565 + p564 + p563 + p562 + p561 + p524 + p523 + p522 + p521 + p520 + p519 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1112 + p1111 + p1110 + p1109 + p1108 + p1107 + p482 + p481 + p480 + p479 + p478 + p477 + p440 + p439 + p438 + p437 + p436 + p435 + p1070 + p1069 + p1068 + p1067 + p1066 + p1065 + p1028 + p1027 + p1026 + p1025 + p1024 + p1023 + p398 + p397 + p396 + p395 + p394 + p393 + p2031 + p2032 + p2033 + p356 + p355 + p2034 + p354 + p2035 + p353 + p2036 + p352 + p351 + p314 + p313 + p312 + p311 + p310 + p309 + p272 + p271 + p270 + p269 + p268 + p267 + p230 + p229 + p100 + p101 + p102 + p103 + p104 + p228 + p227 + p226 + p225 + p141 + p142 + p143 + p144 + p145 + p146 + p188 + p187 + p186 + p185 + p184 + p183 <= 0)
lola: LP says that atomic proposition is always true: (p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1826 + p1825 + p1824 + p1823 + p1822 + p1821 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1784 + p1783 + p1782 + p1781 + p1780 + p1779 + p1742 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1741 + p1740 + p1739 + p1738 + p1737 + p1700 + p1699 + p1698 + p1697 + p1696 + p1695 + p1658 + p1657 + p1656 + p1655 + p1654 + p1653 + p99 + p1616 + p1615 + p1614 + p1613 + p1612 + p1611 + p62 + p61 + p60 + p59 + p58 + p57 + p986 + p985 + p984 + p983 + p982 + p981 + p20 + p19 + p18 + p17 + p16 + p15 + p944 + p943 + p942 + p941 + p940 + p939 + p902 + p901 + p900 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1532 + p1531 + p1530 + p1529 + p1528 + p1527 + p899 + p898 + p897 + p860 + p859 + p858 + p857 + p856 + p855 + p818 + p817 + p816 + p815 + p814 + p813 + p1490 + p1489 + p1488 + p1487 + p1486 + p1485 + p1448 + p1447 + p1446 + p1445 + p1444 + p1443 + p1406 + p1405 + p1404 + p1403 + p1402 + p1401 + p776 + p775 + p774 + p773 + p772 + p771 + p734 + p733 + p732 + p731 + p730 + p729 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1322 + p1321 + p1320 + p1319 + p1318 + p1317 + p692 + p691 + p690 + p689 + p688 + p687 + p650 + p649 + p648 + p647 + p646 + p645 + p608 + p607 + p606 + p605 + p604 + p603 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1238 + p1237 + p1236 + p1235 + p1234 + p1233 + p566 + p565 + p564 + p563 + p562 + p561 + p524 + p523 + p522 + p521 + p520 + p519 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1112 + p1111 + p1110 + p1109 + p1108 + p1107 + p482 + p481 + p480 + p479 + p478 + p477 + p440 + p439 + p438 + p437 + p436 + p435 + p1070 + p1069 + p1068 + p1067 + p1066 + p1065 + p1028 + p1027 + p1026 + p1025 + p1024 + p1023 + p398 + p397 + p396 + p395 + p394 + p393 + p2031 + p2032 + p2033 + p356 + p355 + p2034 + p354 + p2035 + p353 + p2036 + p352 + p351 + p314 + p313 + p312 + p311 + p310 + p309 + p272 + p271 + p270 + p269 + p268 + p267 + p230 + p229 + p100 + p101 + p102 + p103 + p104 + p228 + p227 + p226 + p225 + p141 + p142 + p143 + p144 + p145 + p146 + p188 + p187 + p186 + p185 + p184 + p183 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p4193 + p4186 + p4185 + p4184 + p4183 + p4182 + p4181 + p4180 + p4179 + p4172 + p4165 + p4158 + p4151 + p4144 + p4143 + p4142 + p4141 + p4140 + p4139 + p4138 + p4137 + p4130 + p4123 + p4116 + p4109 + p4102 + p4101 + p4100 + p4099 + p4098 + p4097 + p4096 + p4095 + p4088 + p4081 + p4074 + p4067 + p4060 + p4059 + p4058 + p4057 + p4056 + p4055 + p4054 + p4053 + p4046 + p4039 + p4032 + p4025 + p4018 + p4017 + p4016 + p4015 + p4014 + p4013 + p4012 + p4011 + p4004 + p4200 + p4207 + p2996 + p2989 + p4214 + p2982 + p2975 + p2968 + p2967 + p4221 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p4228 + p2966 + p2965 + p2964 + p2963 + p2962 + p2961 + p4235 + p2954 + p2947 + p4242 + p2940 + p2933 + p2926 + p4249 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4256 + p2919 + p2912 + p4263 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p4270 + p2905 + p4277 + p4284 + p4291 + p4298 + p4305 + p4306 + p4307 + p4308 + p4309 + p4310 + p4311 + p4312 + p2898 + p2891 + p2884 + p2883 + p2882 + p2881 + p4319 + p2880 + p2879 + p2878 + p2877 + p2870 + p4326 + p2863 + p2856 + p2849 + p4333 + p2842 + p2841 + p3003 + p2840 + p3004 + p2839 + p3005 + p2838 + p3006 + p2837 + p3007 + p2836 + p3008 + p3009 + p4340 + p2835 + p3010 + p2828 + p2821 + p2814 + p2807 + p2800 + p4347 + p4348 + p3017 + p4349 + p4350 + p4351 + p4352 + p4353 + p4354 + p3024 + p2799 + p2798 + p4361 + p2797 + p2796 + p3031 + p2795 + p2794 + p2793 + p2786 + p2779 + p4368 + p2772 + p3038 + p2765 + p2758 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2751 + p2744 + p4375 + p2737 + p3045 + p3046 + p3047 + p3048 + p3049 + p2730 + p2723 + p2716 + p3050 + p4382 + p3051 + p2715 + p3052 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2702 + p4389 + p3059 + p4390 + p4391 + p4392 + p4393 + p4394 + p4395 + p4396 + p3066 + p3073 + p3080 + p3087 + p3088 + p3089 + p3090 + p3091 + p3092 + p3093 + p3094 + p4403 + p4410 + p4417 + p3997 + p4424 + p3990 + p4431 + p4432 + p3101 + p4433 + p4434 + p4435 + p4436 + p4437 + p3983 + p4438 + p3108 + p3976 + p4445 + p3975 + p3115 + p3974 + p3973 + p3972 + p3971 + p3970 + p4452 + p3969 + p3122 + p3962 + p4459 + p3129 + p3130 + p3955 + p3131 + p3132 + p3133 + p3134 + p4466 + p3135 + p3136 + p3948 + p4473 + p3941 + p4474 + p3143 + p4475 + p4476 + p4477 + p4478 + p4479 + p4480 + p3150 + p3934 + p3933 + p3932 + p3931 + p3930 + p4487 + p3929 + p3928 + p3157 + p3927 + p3920 + p3913 + p3906 + p4494 + p3164 + p3171 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3178 + p3185 + p3899 + p3192 + p3892 + p3891 + p3199 + p3890 + p4501 + p3889 + p3888 + p4508 + p3887 + p3886 + p3885 + p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4529 + p3878 + p3871 + p4536 + p3206 + p3864 + p4543 + p3857 + p3213 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p4550 + p3220 + p3850 + p3849 + p3848 + p3847 + p3846 + p4557 + p4558 + p3227 + p4559 + p3845 + p4560 + p4561 + p3844 + p4562 + p3843 + p4563 + p4564 + p3234 + p3836 + p3829 + p3822 + p3815 + p4571 + p3241 + p3808 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p4578 + p3801 + p3248 + p4585 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p4592 + p3261 + p3262 + p4599 + p3269 + p3276 + p3283 + p3794 + p3290 + p3787 + p3297 + p3298 + p3299 + p4600 + p4601 + p4602 + p4603 + p4604 + p4605 + p4606 + p3780 + p4613 + p3773 + p4620 + p4627 + p3766 + p3765 + p3764 + p3300 + p3301 + p3763 + p3302 + p4634 + p3303 + p3762 + p3304 + p3761 + p3760 + p3759 + p4641 + p3752 + p4642 + p3311 + p4643 + p4644 + p4645 + p4646 + p4647 + p4648 + p3745 + p3318 + p3738 + p3731 + p4655 + p3325 + p3724 + p3723 + p3722 + p3721 + p3720 + p3719 + p4662 + p3718 + p3717 + p3710 + p3332 + p3703 + p4669 + p3339 + p3340 + p3341 + p3342 + p3343 + p3344 + p4676 + p3345 + p3346 + p3696 + p3689 + p3682 + p3681 + p3680 + p3679 + p4683 + p3678 + p3677 + p4684 + p3353 + p3676 + p4685 + p3675 + p3668 + p4686 + p3661 + p3654 + p4687 + p3647 + p3640 + p4688 + p4689 + p3639 + p4690 + p3638 + p3360 + p3637 + p3636 + p3635 + p3634 + p3633 + p3626 + p3619 + p3612 + p3605 + p4697 + p3367 + p3598 + p3597 + p3596 + p3595 + p3594 + p3374 + p3593 + p3592 + p3591 + p3584 + p3577 + p3570 + p3563 + p3556 + p3555 + p3554 + p3553 + p3552 + p3551 + p3381 + p3550 + p3382 + p3549 + p3383 + p3542 + p3384 + p3535 + p3385 + p3528 + p3386 + p3521 + p3387 + p3388 + p3514 + p3513 + p3512 + p3511 + p3510 + p3509 + p3508 + p3507 + p3395 + p3500 + p3493 + p3486 + p3479 + p3472 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3465 + p3458 + p4704 + p3451 + p3444 + p4711 + p3437 + p4718 + p3430 + p3429 + p3428 + p4725 + p4726 + p4727 + p4728 + p4729 + p3427 + p3426 + p3425 + p3424 + p3423 + p4753 + p3416 + p4746 + p3409 + p4739 + p4730 + p4731 + p3402 + p4732 + p3401 + p4733 + p3400 + p4734 + p3403 + p4735 + p3404 + p4736 + p3405 + p4737 + p3406 + p4738 + p3407 + p3408 + p4740 + p4741 + p3410 + p4742 + p3411 + p4743 + p3412 + p4744 + p3413 + p4745 + p3414 + p3415 + p4747 + p4748 + p3417 + p4749 + p3418 + p3419 + p4750 + p4751 + p3420 + p4752 + p3421 + p3422 + p4754 + p4755 + p4756 + p4757 + p4758 + p4759 + p4724 + p4723 + p4722 + p4721 + p4720 + p3431 + p3432 + p3433 + p3434 + p3435 + p4719 + p3436 + p4717 + p4716 + p4715 + p3438 + p3439 + p4714 + p4713 + p3440 + p4712 + p3441 + p4710 + p3442 + p3443 + p3445 + p3446 + p3447 + p3448 + p3449 + p3450 + p4709 + p4708 + p3452 + p4707 + p3453 + p4706 + p3454 + p4705 + p3455 + p4703 + p3456 + p4702 + p3457 + p4701 + p4700 + p3459 + p3460 + p3461 + p3462 + p3463 + p3464 + p3473 + p3474 + p3475 + p3476 + p3477 + p3478 + p3480 + p3481 + p3482 + p3483 + p3484 + p3485 + p3487 + p3488 + p3489 + p3490 + p3491 + p3492 + p3494 + p3495 + p3496 + p3497 + p3498 + p3499 + p3399 + p3398 + p3397 + p3396 + p3501 + p3502 + p3503 + p3504 + p3505 + p3506 + p3394 + p3393 + p3392 + p3391 + p3390 + p3515 + p3516 + p3517 + p3518 + p3519 + p3389 + p3520 + p3522 + p3523 + p3524 + p3525 + p3526 + p3527 + p3529 + p3530 + p3531 + p3532 + p3533 + p3534 + p3536 + p3537 + p3538 + p3539 + p3540 + p3541 + p3543 + p3544 + p3545 + p3546 + p3547 + p3548 + p3380 + p3379 + p3378 + p3557 + p3558 + p3559 + p3560 + p3561 + p3562 + p3564 + p3565 + p3566 + p3567 + p3568 + p3569 + p3377 + p3571 + p3572 + p3573 + p3574 + p3575 + p3576 + p3578 + p3579 + p3580 + p3581 + p3582 + p3583 + p3376 + p3585 + p3586 + p3587 + p3588 + p3589 + p3590 + p3375 + p3373 + p3372 + p3599 + p3371 + p3370 + p3369 + p3368 + p4699 + p4698 + p3366 + p3365 + p4696 + p3600 + p3601 + p3602 + p3603 + p3604 + p3364 + p3606 + p3607 + p3608 + p3609 + p3610 + p3611 + p4695 + p3613 + p3614 + p3615 + p3616 + p3617 + p3618 + p3363 + p3620 + p3621 + p3622 + p3623 + p3624 + p3625 + p4694 + p3627 + p3628 + p3629 + p3630 + p3631 + p3632 + p3362 + p4693 + p3361 + p4692 + p4691 + p3359 + p3358 + p3357 + p3641 + p3642 + p3643 + p3644 + p3645 + p3646 + p3356 + p3648 + p3649 + p3650 + p3651 + p3652 + p3653 + p3655 + p3656 + p3657 + p3658 + p3659 + p3660 + p3355 + p3662 + p3663 + p3664 + p3665 + p3666 + p3667 + p3669 + p3670 + p3671 + p3672 + p3673 + p3674 + p3354 + p3352 + p3351 + p4682 + p3350 + p3683 + p3684 + p3685 + p4681 + p3686 + p4680 + p3687 + p3688 + p3349 + p3348 + p3690 + p3691 + p3692 + p3693 + p3694 + p3695 + p4679 + p3697 + p3698 + p3347 + p3699 + p4678 + p4677 + p4675 + p4674 + p4673 + p4672 + p4671 + p4670 + p3338 + p3337 + p4668 + p3336 + p4667 + p3335 + p4666 + p3334 + p4665 + p3333 + p4664 + p3700 + p3701 + p3702 + p3704 + p3705 + p3706 + p3707 + p3708 + p3709 + p4663 + p3711 + p3712 + p3713 + p3714 + p3715 + p3716 + p3331 + p3330 + p4661 + p4660 + p3329 + p3328 + p4659 + p3327 + p4658 + p3326 + p3725 + p3726 + p3727 + p3728 + p3729 + p4657 + p4656 + p3324 + p3730 + p3323 + p4654 + p3732 + p3733 + p3322 + p3734 + p4653 + p3735 + p3736 + p3321 + p3737 + p4652 + p3320 + p3739 + p4651 + p4650 + p3740 + p3741 + p3742 + p3319 + p3743 + p4649 + p3744 + p3317 + p3316 + p3746 + p3315 + p3747 + p3748 + p3314 + p3749 + p3313 + p3750 + p3751 + p3312 + p3310 + p4640 + p3753 + p3754 + p3309 + p3755 + p3308 + p3756 + p3757 + p4639 + p3758 + p3307 + p4638 + p3306 + p4637 + p3305 + p4636 + p4635 + p4633 + p4632 + p4631 + p4630 + p4629 + p4628 + p4626 + p3767 + p4625 + p3768 + p3769 + p4624 + p4623 + p4622 + p4621 + p4619 + p3770 + p3771 + p3772 + p4618 + p4617 + p4616 + p4615 + p4614 + p3774 + p4612 + p3775 + p4611 + p3776 + p4610 + p3777 + p3778 + p4609 + p3779 + p4608 + p4607 + p3781 + p3296 + p3782 + p3295 + p3783 + p3784 + p3294 + p3785 + p3293 + p3786 + p3292 + p3291 + p3788 + p3289 + p3789 + p3288 + p3790 + p3791 + p3287 + p3792 + p3793 + p3286 + p3285 + p3284 + p3795 + p3796 + p3282 + p3797 + p3281 + p3798 + p3799 + p3280 + p3279 + p3278 + p3277 + p3275 + p3274 + p3273 + p3272 + p3271 + p3270 + p3268 + p3267 + p4598 + p3266 + p4597 + p3265 + p4596 + p3264 + p4595 + p3263 + p4594 + p4593 + p4591 + p4590 + p4589 + p4588 + p4587 + p4586 + p3254 + p3253 + p4584 + p3252 + p4583 + p3251 + p4582 + p3250 + p4581 + p4580 + p3249 + p4579 + p3800 + p3247 + p3246 + p4577 + p3245 + p4576 + p3244 + p4575 + p3243 + p3809 + p4574 + p3242 + p4573 + p4572 + p3240 + p4570 + p3810 + p3811 + p3812 + p3813 + p3814 + p3239 + p3816 + p3817 + p3818 + p3819 + p3820 + p3821 + p3238 + p3823 + p3824 + p3825 + p3826 + p3827 + p3828 + p4569 + p3830 + p3831 + p3832 + p3237 + p3833 + p4568 + p3834 + p3835 + p3236 + p4567 + p3235 + p3837 + p3838 + p4566 + p3839 + p4565 + p3840 + p3841 + p3233 + p3842 + p3232 + p3231 + p3230 + p3229 + p3228 + p3226 + p3225 + p4556 + p3224 + p4555 + p3223 + p4554 + p3222 + p4553 + p3221 + p4552 + p3851 + p4551 + p3852 + p4549 + p3853 + p4548 + p3854 + p4547 + p3855 + p4546 + p3856 + p4545 + p4544 + p3212 + p3858 + p3211 + p3859 + p4542 + p3210 + p3860 + p3861 + p4541 + p3862 + p4540 + p3863 + p3209 + p3208 + p4539 + p3865 + p3207 + p3866 + p4538 + p3867 + p4537 + p3868 + p3205 + p3869 + p3204 + p4535 + p3870 + p3203 + p4534 + p3872 + p3202 + p3873 + p4533 + p3874 + p3201 + p3875 + p4532 + p3876 + p3200 + p3877 + p4531 + p4530 + p4528 + p3879 + p4527 + p4526 + p3880 + p3881 + p4525 + p3882 + p4524 + p3883 + p4523 + p3884 + p4514 + p4513 + p4512 + p4511 + p4510 + p4509 + p4507 + p4506 + p4505 + p4504 + p4503 + p4502 + p4500 + p3198 + p3197 + p3196 + p3195 + p3893 + p3894 + p3194 + p3895 + p3193 + p3896 + p3191 + p3897 + p3190 + p3189 + p3898 + p3188 + p3187 + p3186 + p3184 + p3183 + p3182 + p3181 + p3180 + p3179 + p3170 + p3169 + p3168 + p4499 + p3167 + p4498 + p3166 + p4497 + p3165 + p4496 + p4495 + p3163 + p3162 + p4493 + p3161 + p4492 + p3160 + p4491 + p3900 + p3901 + p3902 + p3903 + p3904 + p3905 + p4490 + p3907 + p3908 + p3909 + p3910 + p3911 + p3912 + p3159 + p3914 + p3915 + p3916 + p3917 + p3918 + p3919 + p3158 + p3921 + p3922 + p3923 + p3924 + p3925 + p3926 + p4489 + p4488 + p3156 + p3155 + p4486 + p3154 + p4485 + p3153 + p4484 + p3152 + p4483 + p3935 + p3151 + p3936 + p4482 + p3937 + p4481 + p3938 + p3149 + p3939 + p3148 + p3147 + p3146 + p3145 + p3144 + p3940 + p3142 + p3141 + p3942 + p4472 + p3943 + p3140 + p3944 + p4471 + p3945 + p4470 + p3946 + p3139 + p3947 + p3138 + p4469 + p3949 + p3137 + p4468 + p3950 + p3951 + p4467 + p3952 + p4465 + p3953 + p4464 + p3954 + p4463 + p4462 + p4461 + p3956 + p4460 + p3957 + p3128 + p3958 + p3127 + p3959 + p4458 + p3126 + p3960 + p3961 + p4457 + p3125 + p3963 + p4456 + p3964 + p3124 + p3965 + p4455 + p3966 + p3123 + p3967 + p4454 + p3968 + p4453 + p3121 + p3120 + p4451 + p4450 + p3119 + p3118 + p4449 + p3117 + p4448 + p3116 + p4447 + p4446 + p3114 + p3113 + p4444 + p3977 + p3112 + p3978 + p4443 + p3979 + p3111 + p4442 + p3110 + p4441 + p4440 + p3980 + p3981 + p3109 + p3982 + p4439 + p3107 + p3106 + p3105 + p3104 + p3984 + p3103 + p3102 + p3985 + p3100 + p3986 + p4430 + p3987 + p4429 + p3988 + p4428 + p3989 + p4427 + p4426 + p3991 + p4425 + p3992 + p4423 + p3993 + p4422 + p3994 + p4421 + p3995 + p4420 + p3996 + p4419 + p4418 + p4416 + p3998 + p4415 + p3999 + p4414 + p4413 + p4412 + p4411 + p4409 + p4408 + p4407 + p4406 + p4405 + p4404 + p4402 + p4401 + p4400 + p3099 + p3098 + p3097 + p3096 + p3095 + p3086 + p3085 + p3084 + p3083 + p3082 + p3081 + p3079 + p3078 + p3077 + p3076 + p3075 + p3074 + p3072 + p3071 + p3070 + p3069 + p3068 + p4399 + p3067 + p4398 + p4397 + p3065 + p3064 + p3063 + p3062 + p3061 + p3060 + p3058 + p3057 + p4388 + p3056 + p4387 + p2703 + p2704 + p2705 + p2706 + p2707 + p2708 + p3055 + p4386 + p3054 + p4385 + p3053 + p4384 + p4383 + p4381 + p2717 + p2718 + p2719 + p2720 + p2721 + p2722 + p4380 + p2724 + p2725 + p2726 + p2727 + p2728 + p2729 + p2731 + p2732 + p2733 + p2734 + p4379 + p2735 + p4378 + p2736 + p4377 + p4376 + p3044 + p2738 + p2739 + p2740 + p2741 + p2742 + p2743 + p3043 + p2745 + p2746 + p2747 + p2748 + p2749 + p2750 + p4374 + p3042 + p4373 + p3041 + p4372 + p3040 + p4371 + p4370 + p2759 + p2760 + p2761 + p2762 + p2763 + p2764 + p3039 + p2766 + p2767 + p2768 + p2769 + p2770 + p2771 + p4369 + p2773 + p2774 + p3037 + p2775 + p3036 + p2776 + p4367 + p2777 + p3035 + p2778 + p4366 + p3034 + p4365 + p2780 + p2781 + p2782 + p2783 + p2784 + p2785 + p3033 + p2787 + p2788 + p2789 + p2790 + p2791 + p2792 + p4364 + p3032 + p4363 + p4362 + p3030 + p4360 + p3029 + p3028 + p4359 + p3027 + p4358 + p3026 + p4357 + p3025 + p4356 + p4355 + p3023 + p3022 + p3021 + p3020 + p3019 + p3018 + p3016 + p3015 + p4346 + p3014 + p2801 + p2802 + p2803 + p2804 + p2805 + p2806 + p4345 + p2808 + p2809 + p3013 + p4344 + p3012 + p2810 + p2811 + p2812 + p2813 + p4343 + p2815 + p2816 + p2817 + p2818 + p2819 + p2820 + p3011 + p2822 + p2823 + p2824 + p2825 + p2826 + p2827 + p4342 + p2829 + p2830 + p2831 + p2832 + p2833 + p2834 + p4341 + p4339 + p4338 + p4337 + p4336 + p4335 + p4334 + p3002 + p2843 + p2844 + p2845 + p2846 + p2847 + p2848 + p3001 + p2850 + p2851 + p2852 + p2853 + p2854 + p2855 + p4332 + p2857 + p2858 + p3000 + p2859 + p4331 + p4330 + p2860 + p2861 + p4329 + p2862 + p4328 + p4327 + p4325 + p2864 + p2865 + p2866 + p2867 + p2868 + p2869 + p4324 + p2871 + p2872 + p2873 + p2874 + p2875 + p2876 + p4323 + p4322 + p4321 + p4320 + p4318 + p4317 + p4316 + p4315 + p2885 + p2886 + p2887 + p2888 + p2889 + p2890 + p4314 + p2892 + p2893 + p2894 + p2895 + p2896 + p2897 + p4313 + p2899 + p4304 + p4303 + p4302 + p4301 + p4300 + p4299 + p4297 + p4296 + p4295 + p4294 + p4293 + p4292 + p4290 + p4289 + p4288 + p4287 + p4286 + p4285 + p4283 + p4282 + p4281 + p4280 + p4279 + p4278 + p4276 + p4275 + p4274 + p2900 + p2901 + p2902 + p2903 + p2904 + p4273 + p2906 + p2907 + p2908 + p2909 + p4272 + p4271 + p4262 + p2910 + p2911 + p4261 + p2913 + p2914 + p2915 + p2916 + p2917 + p2918 + p4260 + p4259 + p4258 + p4257 + p4255 + p4254 + p4253 + p4252 + p4251 + p4250 + p4248 + p2927 + p2928 + p2929 + p2930 + p2931 + p2932 + p4247 + p2934 + p2935 + p2936 + p2937 + p2938 + p2939 + p4246 + p2941 + p2942 + p4245 + p2943 + p4244 + p2944 + p4243 + p2945 + p4241 + p2946 + p4240 + p4239 + p4238 + p2948 + p2949 + p4237 + p2950 + p2951 + p2952 + p2953 + p4236 + p2955 + p2956 + p2957 + p2958 + p2959 + p2960 + p4234 + p4233 + p4232 + p4231 + p4230 + p4229 + p4220 + p4219 + p2969 + p2970 + p2971 + p2972 + p2973 + p2974 + p4218 + p2976 + p2977 + p2978 + p2979 + p2980 + p2981 + p4217 + p2983 + p2984 + p4216 + p2985 + p4215 + p2986 + p4213 + p2987 + p4212 + p2988 + p4211 + p4210 + p4209 + p2990 + p2991 + p2992 + p2993 + p2994 + p2995 + p4208 + p2997 + p2998 + p2999 + p4206 + p4205 + p4204 + p4203 + p4202 + p4201 + p4000 + p4001 + p4002 + p4003 + p4005 + p4006 + p4007 + p4008 + p4009 + p4010 + p4019 + p4020 + p4021 + p4022 + p4023 + p4024 + p4026 + p4027 + p4028 + p4029 + p4030 + p4031 + p4033 + p4034 + p4035 + p4036 + p4037 + p4038 + p4040 + p4041 + p4042 + p4043 + p4044 + p4045 + p4047 + p4048 + p4049 + p4050 + p4051 + p4052 + p4061 + p4062 + p4063 + p4064 + p4065 + p4066 + p4068 + p4069 + p4070 + p4071 + p4072 + p4073 + p4075 + p4076 + p4077 + p4078 + p4079 + p4080 + p4082 + p4083 + p4084 + p4085 + p4086 + p4087 + p4089 + p4090 + p4091 + p4092 + p4093 + p4094 + p4103 + p4104 + p4105 + p4106 + p4107 + p4108 + p4110 + p4111 + p4112 + p4113 + p4114 + p4115 + p4117 + p4118 + p4119 + p4120 + p4121 + p4122 + p4124 + p4125 + p4126 + p4127 + p4128 + p4129 + p4131 + p4132 + p4133 + p4134 + p4135 + p4136 + p4145 + p4146 + p4147 + p4148 + p4149 + p4150 + p4152 + p4153 + p4154 + p4155 + p4156 + p4157 + p4159 + p4160 + p4161 + p4162 + p4163 + p4164 + p4166 + p4167 + p4168 + p4169 + p4170 + p4171 + p4173 + p4174 + p4175 + p4176 + p4177 + p4178 + p4187 + p4188 + p4189 + p4190 + p4191 + p4192 + p4194 + p4195 + p4196 + p4197 + p4198 + p4199 <= 0)
lola: after: (p4193 + p4186 + p4185 + p4184 + p4183 + p4182 + p4181 + p4180 + p4179 + p4172 + p4165 + p4158 + p4151 + p4144 + p4143 + p4142 + p4141 + p4140 + p4139 + p4138 + p4137 + p4130 + p4123 + p4116 + p4109 + p4102 + p4101 + p4100 + p4099 + p4098 + p4097 + p4096 + p4095 + p4088 + p4081 + p4074 + p4067 + p4060 + p4059 + p4058 + p4057 + p4056 + p4055 + p4054 + p4053 + p4046 + p4039 + p4032 + p4025 + p4018 + p4017 + p4016 + p4015 + p4014 + p4013 + p4012 + p4011 + p4004 + p4200 + p4207 + p2996 + p2989 + p4214 + p2982 + p2975 + p2968 + p2967 + p4221 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p4228 + p2966 + p2965 + p2964 + p2963 + p2962 + p2961 + p4235 + p2954 + p2947 + p4242 + p2940 + p2933 + p2926 + p4249 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4256 + p2919 + p2912 + p4263 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p4270 + p2905 + p4277 + p4284 + p4291 + p4298 + p4305 + p4306 + p4307 + p4308 + p4309 + p4310 + p4311 + p4312 + p2898 + p2891 + p2884 + p2883 + p2882 + p2881 + p4319 + p2880 + p2879 + p2878 + p2877 + p2870 + p4326 + p2863 + p2856 + p2849 + p4333 + p2842 + p2841 + p3003 + p2840 + p3004 + p2839 + p3005 + p2838 + p3006 + p2837 + p3007 + p2836 + p3008 + p3009 + p4340 + p2835 + p3010 + p2828 + p2821 + p2814 + p2807 + p2800 + p4347 + p4348 + p3017 + p4349 + p4350 + p4351 + p4352 + p4353 + p4354 + p3024 + p2799 + p2798 + p4361 + p2797 + p2796 + p3031 + p2795 + p2794 + p2793 + p2786 + p2779 + p4368 + p2772 + p3038 + p2765 + p2758 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2751 + p2744 + p4375 + p2737 + p3045 + p3046 + p3047 + p3048 + p3049 + p2730 + p2723 + p2716 + p3050 + p4382 + p3051 + p2715 + p3052 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2702 + p4389 + p3059 + p4390 + p4391 + p4392 + p4393 + p4394 + p4395 + p4396 + p3066 + p3073 + p3080 + p3087 + p3088 + p3089 + p3090 + p3091 + p3092 + p3093 + p3094 + p4403 + p4410 + p4417 + p3997 + p4424 + p3990 + p4431 + p4432 + p3101 + p4433 + p4434 + p4435 + p4436 + p4437 + p3983 + p4438 + p3108 + p3976 + p4445 + p3975 + p3115 + p3974 + p3973 + p3972 + p3971 + p3970 + p4452 + p3969 + p3122 + p3962 + p4459 + p3129 + p3130 + p3955 + p3131 + p3132 + p3133 + p3134 + p4466 + p3135 + p3136 + p3948 + p4473 + p3941 + p4474 + p3143 + p4475 + p4476 + p4477 + p4478 + p4479 + p4480 + p3150 + p3934 + p3933 + p3932 + p3931 + p3930 + p4487 + p3929 + p3928 + p3157 + p3927 + p3920 + p3913 + p3906 + p4494 + p3164 + p3171 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3178 + p3185 + p3899 + p3192 + p3892 + p3891 + p3199 + p3890 + p4501 + p3889 + p3888 + p4508 + p3887 + p3886 + p3885 + p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4529 + p3878 + p3871 + p4536 + p3206 + p3864 + p4543 + p3857 + p3213 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p4550 + p3220 + p3850 + p3849 + p3848 + p3847 + p3846 + p4557 + p4558 + p3227 + p4559 + p3845 + p4560 + p4561 + p3844 + p4562 + p3843 + p4563 + p4564 + p3234 + p3836 + p3829 + p3822 + p3815 + p4571 + p3241 + p3808 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p4578 + p3801 + p3248 + p4585 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p4592 + p3261 + p3262 + p4599 + p3269 + p3276 + p3283 + p3794 + p3290 + p3787 + p3297 + p3298 + p3299 + p4600 + p4601 + p4602 + p4603 + p4604 + p4605 + p4606 + p3780 + p4613 + p3773 + p4620 + p4627 + p3766 + p3765 + p3764 + p3300 + p3301 + p3763 + p3302 + p4634 + p3303 + p3762 + p3304 + p3761 + p3760 + p3759 + p4641 + p3752 + p4642 + p3311 + p4643 + p4644 + p4645 + p4646 + p4647 + p4648 + p3745 + p3318 + p3738 + p3731 + p4655 + p3325 + p3724 + p3723 + p3722 + p3721 + p3720 + p3719 + p4662 + p3718 + p3717 + p3710 + p3332 + p3703 + p4669 + p3339 + p3340 + p3341 + p3342 + p3343 + p3344 + p4676 + p3345 + p3346 + p3696 + p3689 + p3682 + p3681 + p3680 + p3679 + p4683 + p3678 + p3677 + p4684 + p3353 + p3676 + p4685 + p3675 + p3668 + p4686 + p3661 + p3654 + p4687 + p3647 + p3640 + p4688 + p4689 + p3639 + p4690 + p3638 + p3360 + p3637 + p3636 + p3635 + p3634 + p3633 + p3626 + p3619 + p3612 + p3605 + p4697 + p3367 + p3598 + p3597 + p3596 + p3595 + p3594 + p3374 + p3593 + p3592 + p3591 + p3584 + p3577 + p3570 + p3563 + p3556 + p3555 + p3554 + p3553 + p3552 + p3551 + p3381 + p3550 + p3382 + p3549 + p3383 + p3542 + p3384 + p3535 + p3385 + p3528 + p3386 + p3521 + p3387 + p3388 + p3514 + p3513 + p3512 + p3511 + p3510 + p3509 + p3508 + p3507 + p3395 + p3500 + p3493 + p3486 + p3479 + p3472 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3465 + p3458 + p4704 + p3451 + p3444 + p4711 + p3437 + p4718 + p3430 + p3429 + p3428 + p4725 + p4726 + p4727 + p4728 + p4729 + p3427 + p3426 + p3425 + p3424 + p3423 + p4753 + p3416 + p4746 + p3409 + p4739 + p4730 + p4731 + p3402 + p4732 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p2700 + p2699 + p2698 + p2697 + p2696 + p2695 + p2694 + p2693 + p2692 + p2691 + p2690 + p2689 + p2688 + p2686 + p2685 + p2684 + p2683 + p2682 + p2681 + p2680 + p2679 + p2678 + p2677 + p2676 + p2675 + p2674 + p2672 + p2671 + p2670 + p2669 + p2668 + p2667 + p2666 + p2665 + p2664 + p2663 + p2662 + p2661 + p2660 + p2658 + p2657 + p2656 + p2655 + p2654 + p2653 + p2652 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2644 + p2643 + p2642 + p2641 + p2640 + p2639 + p2638 + p2637 + p2636 + p2635 + p2634 + p2633 + p2632 + p2630 + p2629 + p2628 + p2627 + p2626 + p2625 + p2624 + p2623 + p2622 + p2621 + p2620 + p2619 + p2618 + p2616 + p2615 + p2614 + p2613 + p2612 + p2611 + p2610 + p2609 + p2608 + p2607 + p2606 + p2605 + p2604 + p2617 + p2631 + p2645 + p2659 + p2673 + p2687 + p2701 <= 0)
lola: after: (6 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p2511 + p2510 + p2508 + p2507 + p2505 + p2504 + p2502 + p2501 + p2499 + p2498 + p2496 + p2495 + p2493 + p2492 + p2490 + p2489 + p2487 + p2486 + p2484 + p2483 + p2481 + p2480 + p2478 + p2477 + p2475 + p2474 + p2472 + p2471 + p2469 + p2468 + p2466 + p2465 + p2463 + p2462 + p2460 + p2459 + p2457 + p2456 + p2454 + p2453 + p2451 + p2450 + p2448 + p2447 + p2445 + p2444 + p2442 + p2441 + p2439 + p2438 + p2436 + p2435 + p2433 + p2432 + p2430 + p2429 + p2427 + p2426 + p2424 + p2423 + p2421 + p2420 + p2418 + p2417 + p2415 + p2414 + p2412 + p2411 + p2409 + p2408 + p2406 + p2405 + p2403 + p2402 + p2400 + p2399 + p2397 + p2396 + p2394 + p2393 + p2391 + p2390 + p2388 + p2387 + p2385 + p2384 + p2382 + p2381 + p2379 + p2378 + p2376 + p2375 + p2373 + p2372 + p2370 + p2369 + p2367 + p2366 + p2368 + p2371 + p2374 + p2377 + p2380 + p2383 + p2386 + p2389 + p2392 + p2395 + p2398 + p2401 + p2404 + p2407 + p2410 + p2413 + p2416 + p2419 + p2422 + p2425 + p2428 + p2431 + p2434 + p2437 + p2440 + p2443 + p2446 + p2449 + p2452 + p2455 + p2458 + p2461 + p2464 + p2467 + p2470 + p2473 + p2476 + p2479 + p2482 + p2485 + p2488 + p2491 + p2494 + p2497 + p2500 + p2503 + p2506 + p2509 + p2512 <= 0)
lola: after: (36 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p2511 + p2510 + p2508 + p2507 + p2505 + p2504 + p2502 + p2501 + p2499 + p2498 + p2496 + p2495 + p2493 + p2492 + p2490 + p2489 + p2487 + p2486 + p2484 + p2483 + p2481 + p2480 + p2478 + p2477 + p2475 + p2474 + p2472 + p2471 + p2469 + p2468 + p2466 + p2465 + p2463 + p2462 + p2460 + p2459 + p2457 + p2456 + p2454 + p2453 + p2451 + p2450 + p2448 + p2447 + p2445 + p2444 + p2442 + p2441 + p2439 + p2438 + p2436 + p2435 + p2433 + p2432 + p2430 + p2429 + p2427 + p2426 + p2424 + p2423 + p2421 + p2420 + p2418 + p2417 + p2415 + p2414 + p2412 + p2411 + p2409 + p2408 + p2406 + p2405 + p2403 + p2402 + p2400 + p2399 + p2397 + p2396 + p2394 + p2393 + p2391 + p2390 + p2388 + p2387 + p2385 + p2384 + p2382 + p2381 + p2379 + p2378 + p2376 + p2375 + p2373 + p2372 + p2370 + p2369 + p2367 + p2366 + p2368 + p2371 + p2374 + p2377 + p2380 + p2383 + p2386 + p2389 + p2392 + p2395 + p2398 + p2401 + p2404 + p2407 + p2410 + p2413 + p2416 + p2419 + p2422 + p2425 + p2428 + p2431 + p2434 + p2437 + p2440 + p2443 + p2446 + p2449 + p2452 + p2455 + p2458 + p2461 + p2464 + p2467 + p2470 + p2473 + p2476 + p2479 + p2482 + p2485 + p2488 + p2491 + p2494 + p2497 + p2500 + p2503 + p2506 + p2509 + p2512 <= 0)
lola: after: (36 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: LP says that atomic proposition is always true: (p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p2590 + p2591 + p2592 + p2593 + p2594 + p2595 + p2596 <= 0)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p2100 + p2101 + p2102 + p2103 + p2104 + p2105 + p2106 + p2107 + p2108 + p2109 + p2110 + p2111 + p2112 + p2113 + p2114 + p2115 + p2116 + p2117 + p2118 + p2119 + p2120 + p2121 + p2122 + p2123 + p2124 + p2125 + p2126 + p2127 + p2128 + p2129 + p2130 + p2131 + p2132 + p2133 + p2134 + p2135 + p2136 + p2137 + p2138 + p2139 + p2140 + p2141 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2149 + p2150 + p2151 + p2152 + p2153 + p2154 + p2155 + p2156 + p2157 + p2158 + p2159 + p2160 + p2161 + p2162 + p2163 + p2164 + p2165 + p2166 + p2167 + p2168 + p2169 + p2170 + p2171 + p2172 + p2173 + p2174 + p2175 + p2176 + p2177 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2185 + p2186 + p2187 + p2188 + p2189 + p2190 + p2191 + p2192 + p2193 + p2194 + p2195 + p2196 + p2197 + p2198 + p2199 + p2099 + p2098 + p2097 + p2096 + p2095 + p2094 + p2093 + p2092 + p2091 + p2090 + p2089 + p2088 + p2087 + p2086 + p2085 + p2084 + p2083 + p2082 + p2081 + p2080 + p2079 + p2078 + p2077 + p2076 + p2075 + p2074 + p2073 + p2072 + p2200 + p2201 + p2202 + p2203 + p2204 + p2205 + p2206 + p2207 + p2208 + p2209 + p2210 + p2211 + p2212 + p2213 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2221 + p2222 + p2223 + p2224 + p2225 + p2226 + p2227 + p2228 + p2229 + p2230 + p2231 + p2232 + p2233 + p2234 + p2235 + p2236 + p2237 + p2238 + p2239 + p2240 + p2241 + p2242 + p2243 + p2244 + p2245 + p2246 + p2247 + p2248 + p2249 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2257 + p2258 + p2259 + p2260 + p2261 + p2262 + p2263 + p2264 + p2265 + p2266 + p2267 + p2268 + p2269 + p2270 + p2271 + p2272 + p2273 + p2274 + p2275 + p2276 + p2277 + p2278 + p2279 + p2280 + p2281 + p2282 + p2283 + p2284 + p2285 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2293 + p2294 + p2295 + p2296 + p2297 + p2298 + p2299 + p2300 + p2301 + p2302 + p2303 + p2304 + p2305 + p2306 + p2307 + p2308 + p2309 + p2310 + p2311 + p2312 + p2313 + p2314 + p2315 + p2316 + p2317 + p2318 + p2319 + p2320 + p2321 + p2322 + p2323 + p2324 + p2325 + p2326 + p2327 + p2328 + p2329 + p2330 + p2331 + p2332 + p2333 + p2334 + p2335 + p2336 + p2337 + p2338 + p2339 + p2340 + p2341 + p2342 + p2343 + p2344 + p2345 + p2346 + p2347 + p2348 + p2349 + p2350 + p2351 + p2352 + p2353 + p2354 + p2355 + p2356 + p2357 + p2358 + p2359 + p2360 + p2361 + p2362 + p2363 + p2364 + p2365 <= 0)
lola: after: (30 <= 0)
lola: always false
lola: LP says that atomic proposition is always true: (p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816 <= 0)
lola: MAX(p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4808 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4794 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4780 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774) : MAX(p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767) : MAX(p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1826 + p1825 + p1824 + p1823 + p1822 + p1821 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1784 + p1783 + p1782 + p1781 + p1780 + p1779 + p1742 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1741 + p1740 + p1739 + p1738 + p1737 + p1700 + p1699 + p1698 + p1697 + p1696 + p1695 + p1658 + p1657 + p1656 + p1655 + p1654 + p1653 + p99 + p1616 + p1615 + p1614 + p1613 + p1612 + p1611 + p62 + p61 + p60 + p59 + p58 + p57 + p986 + p985 + p984 + p983 + p982 + p981 + p20 + p19 + p18 + p17 + p16 + p15 + p944 + p943 + p942 + p941 + p940 + p939 + p902 + p901 + p900 + p1574 + p1573 + p1572 + p1571 + p1570 + p1569 + p1532 + p1531 + p1530 + p1529 + p1528 + p1527 + p899 + p898 + p897 + p860 + p859 + p858 + p857 + p856 + p855 + p818 + p817 + p816 + p815 + p814 + p813 + p1490 + p1489 + p1488 + p1487 + p1486 + p1485 + p1448 + p1447 + p1446 + p1445 + p1444 + p1443 + p1406 + p1405 + p1404 + p1403 + p1402 + p1401 + p776 + p775 + p774 + p773 + p772 + p771 + p734 + p733 + p732 + p731 + p730 + p729 + p1364 + p1363 + p1362 + p1361 + p1360 + p1359 + p1322 + p1321 + p1320 + p1319 + p1318 + p1317 + p692 + p691 + p690 + p689 + p688 + p687 + p650 + p649 + p648 + p647 + p646 + p645 + p608 + p607 + p606 + p605 + p604 + p603 + p1280 + p1279 + p1278 + p1277 + p1276 + p1275 + p1238 + p1237 + p1236 + p1235 + p1234 + p1233 + p566 + p565 + p564 + p563 + p562 + p561 + p524 + p523 + p522 + p521 + p520 + p519 + p1196 + p1195 + p1194 + p1193 + p1192 + p1191 + p1154 + p1153 + p1152 + p1151 + p1150 + p1149 + p1112 + p1111 + p1110 + p1109 + p1108 + p1107 + p482 + p481 + p480 + p479 + p478 + p477 + p440 + p439 + p438 + p437 + p436 + p435 + p1070 + p1069 + p1068 + p1067 + p1066 + p1065 + p1028 + p1027 + p1026 + p1025 + p1024 + p1023 + p398 + p397 + p396 + p395 + p394 + p393 + p2031 + p2032 + p2033 + p356 + p355 + p2034 + p354 + p2035 + p353 + p2036 + p352 + p351 + p314 + p313 + p312 + p311 + p310 + p309 + p272 + p271 + p270 + p269 + p268 + p267 + p230 + p229 + p100 + p101 + p102 + p103 + p104 + p228 + p227 + p226 + p225 + p141 + p142 + p143 + p144 + p145 + p146 + p188 + p187 + p186 + p185 + p184 + p183) : MAX(p4193 + p4186 + p4185 + p4184 + p4183 + p4182 + p4181 + p4180 + p4179 + p4172 + p4165 + p4158 + p4151 + p4144 + p4143 + p4142 + p4141 + p4140 + p4139 + p4138 + p4137 + p4130 + p4123 + p4116 + p4109 + p4102 + p4101 + p4100 + p4099 + p4098 + p4097 + p4096 + p4095 + p4088 + p4081 + p4074 + p4067 + p4060 + p4059 + p4058 + p4057 + p4056 + p4055 + p4054 + p4053 + p4046 + p4039 + p4032 + p4025 + p4018 + p4017 + p4016 + p4015 + p4014 + p4013 + p4012 + p4011 + p4004 + p4200 + p4207 + p2996 + p2989 + p4214 + p2982 + p2975 + p2968 + p2967 + p4221 + p4222 + p4223 + p4224 + p4225 + p4226 + p4227 + p4228 + p2966 + p2965 + p2964 + p2963 + p2962 + p2961 + p4235 + p2954 + p2947 + p4242 + p2940 + p2933 + p2926 + p4249 + p2925 + p2924 + p2923 + p2922 + p2921 + p2920 + p4256 + p2919 + p2912 + p4263 + p4264 + p4265 + p4266 + p4267 + p4268 + p4269 + p4270 + p2905 + p4277 + p4284 + p4291 + p4298 + p4305 + p4306 + p4307 + p4308 + p4309 + p4310 + p4311 + p4312 + p2898 + p2891 + p2884 + p2883 + p2882 + p2881 + p4319 + p2880 + p2879 + p2878 + p2877 + p2870 + p4326 + p2863 + p2856 + p2849 + p4333 + p2842 + p2841 + p3003 + p2840 + p3004 + p2839 + p3005 + p2838 + p3006 + p2837 + p3007 + p2836 + p3008 + p3009 + p4340 + p2835 + p3010 + p2828 + p2821 + p2814 + p2807 + p2800 + p4347 + p4348 + p3017 + p4349 + p4350 + p4351 + p4352 + p4353 + p4354 + p3024 + p2799 + p2798 + p4361 + p2797 + p2796 + p3031 + p2795 + p2794 + p2793 + p2786 + p2779 + p4368 + p2772 + p3038 + p2765 + p2758 + p2757 + p2756 + p2755 + p2754 + p2753 + p2752 + p2751 + p2744 + p4375 + p2737 + p3045 + p3046 + p3047 + p3048 + p3049 + p2730 + p2723 + p2716 + p3050 + p4382 + p3051 + p2715 + p3052 + p2714 + p2713 + p2712 + p2711 + p2710 + p2709 + p2702 + p4389 + p3059 + p4390 + p4391 + p4392 + p4393 + p4394 + p4395 + p4396 + p3066 + p3073 + p3080 + p3087 + p3088 + p3089 + p3090 + p3091 + p3092 + p3093 + p3094 + p4403 + p4410 + p4417 + p3997 + p4424 + p3990 + p4431 + p4432 + p3101 + p4433 + p4434 + p4435 + p4436 + p4437 + p3983 + p4438 + p3108 + p3976 + p4445 + p3975 + p3115 + p3974 + p3973 + p3972 + p3971 + p3970 + p4452 + p3969 + p3122 + p3962 + p4459 + p3129 + p3130 + p3955 + p3131 + p3132 + p3133 + p3134 + p4466 + p3135 + p3136 + p3948 + p4473 + p3941 + p4474 + p3143 + p4475 + p4476 + p4477 + p4478 + p4479 + p4480 + p3150 + p3934 + p3933 + p3932 + p3931 + p3930 + p4487 + p3929 + p3928 + p3157 + p3927 + p3920 + p3913 + p3906 + p4494 + p3164 + p3171 + p3172 + p3173 + p3174 + p3175 + p3176 + p3177 + p3178 + p3185 + p3899 + p3192 + p3892 + p3891 + p3199 + p3890 + p4501 + p3889 + p3888 + p4508 + p3887 + p3886 + p3885 + p4515 + p4516 + p4517 + p4518 + p4519 + p4520 + p4521 + p4522 + p4529 + p3878 + p3871 + p4536 + p3206 + p3864 + p4543 + p3857 + p3213 + p3214 + p3215 + p3216 + p3217 + p3218 + p3219 + p4550 + p3220 + p3850 + p3849 + p3848 + p3847 + p3846 + p4557 + p4558 + p3227 + p4559 + p3845 + p4560 + p4561 + p3844 + p4562 + p3843 + p4563 + p4564 + p3234 + p3836 + p3829 + p3822 + p3815 + p4571 + p3241 + p3808 + p3807 + p3806 + p3805 + p3804 + p3803 + p3802 + p4578 + p3801 + p3248 + p4585 + p3255 + p3256 + p3257 + p3258 + p3259 + p3260 + p4592 + p3261 + p3262 + p4599 + p3269 + p3276 + p3283 + p3794 + p3290 + p3787 + p3297 + p3298 + p3299 + p4600 + p4601 + p4602 + p4603 + p4604 + p4605 + p4606 + p3780 + p4613 + p3773 + p4620 + p4627 + p3766 + p3765 + p3764 + p3300 + p3301 + p3763 + p3302 + p4634 + p3303 + p3762 + p3304 + p3761 + p3760 + p3759 + p4641 + p3752 + p4642 + p3311 + p4643 + p4644 + p4645 + p4646 + p4647 + p4648 + p3745 + p3318 + p3738 + p3731 + p4655 + p3325 + p3724 + p3723 + p3722 + p3721 + p3720 + p3719 + p4662 + p3718 + p3717 + p3710 + p3332 + p3703 + p4669 + p3339 + p3340 + p3341 + p3342 + p3343 + p3344 + p4676 + p3345 + p3346 + p3696 + p3689 + p3682 + p3681 + p3680 + p3679 + p4683 + p3678 + p3677 + p4684 + p3353 + p3676 + p4685 + p3675 + p3668 + p4686 + p3661 + p3654 + p4687 + p3647 + p3640 + p4688 + p4689 + p3639 + p4690 + p3638 + p3360 + p3637 + p3636 + p3635 + p3634 + p3633 + p3626 + p3619 + p3612 + p3605 + p4697 + p3367 + p3598 + p3597 + p3596 + p3595 + p3594 + p3374 + p3593 + p3592 + p3591 + p3584 + p3577 + p3570 + p3563 + p3556 + p3555 + p3554 + p3553 + p3552 + p3551 + p3381 + p3550 + p3382 + p3549 + p3383 + p3542 + p3384 + p3535 + p3385 + p3528 + p3386 + p3521 + p3387 + p3388 + p3514 + p3513 + p3512 + p3511 + p3510 + p3509 + p3508 + p3507 + p3395 + p3500 + p3493 + p3486 + p3479 + p3472 + p3471 + p3470 + p3469 + p3468 + p3467 + p3466 + p3465 + p3458 + p4704 + p3451 + p3444 + p4711 + p3437 + p4718 + p3430 + p3429 + p3428 + p4725 + p4726 + p4727 + p4728 + p4729 + p3427 + p3426 + p3425 + p3424 + p3423 + p4753 + p3416 + p4746 + p3409 + p4739 + p4730 + p4731 + p3402 + p4732) : MAX(p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603) : MAX(0) : MAX(0) : MAX(p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823) : MAX(0) : MAX(0) : MAX(0) : MAX(p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816) : MAX(0) : MAX(p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823) : MAX(0) : MAX(p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816)
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 222 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4773 + p4772 + p4771 + p4770 + p4769 + p4768 + p4767)
lola: processed formula length: 58
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-1 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1826 + p1825 + p1824 + p1823 + p1822 + p1821 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1784 + p1783 + p1782 + p1781 + p1780 + p1779 + p1742 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1741 + p1740 + p1739 + p1738 + p1737 + p1700 + p1699 + p1698 + p1697 + p1696 + p1695 + p1658 + p165... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p1905 + p1906 + p1907 + p1908 + p1909 + p1910 + p1868 + p1867 + p1866 + p1865 + p1864 + p1863 + p1826 + p1825 + p1824 + p1823 + p1822 + p1821 + p1947 + p1948 + p1949 + p1950 + p1951 + p1952 + p1784 + p1783 + p1782 + p1781 + p1780 + p1779 + p1742 + p1989 + p1990 + p1991 + p1992 + p1993 + p1994 + p1741 + p1740 + p1739 + p1738 + p1737 + p1700 + p1699 + p1698 + p1697 + p1696 + p1695 + p1658 + p165... (shortened)
lola: processed formula length: 2197
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-2 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 6
lola: SUBRESULT
lola: result: 6
lola: produced by: state space
lola: The maximum value of the given expression is 6
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-5 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 273 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 36
lola: SUBRESULT
lola: result: 36
lola: produced by: state space
lola: The maximum value of the given expression is 36
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-6 36 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 296 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-8 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 323 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 36
lola: SUBRESULT
lola: result: 36
lola: produced by: state space
lola: The maximum value of the given expression is 36
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-9 36 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 355 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-10 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 395 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816)
lola: processed formula length: 58
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-11 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 444 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-12 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 508 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(0)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(0)
lola: processed formula length: 6
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 30
lola: SUBRESULT
lola: result: 30
lola: produced by: state space
lola: The maximum value of the given expression is 30
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-6-UpperBounds-14 30 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 10 will run for 592 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4822 + p4821 + p4820 + p4819 + p4818 + p4817 + p4816)
lola: processed formula length: 58
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 0
lola: SUBRESULT
lola: result: 0
lola: produced by: state space
lola: The maximum value of the given expression is 0
lola: 0 markings, 0 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-15 0 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 710 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: processed formula length: 58
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 6
lola: 8192 markings, 31496 edges, 1638 markings/sec, 0 secs
lola: SUBRESULT
lola: result: 6
lola: produced by: state space
lola: The maximum value of the given expression is 6
lola: 9754 markings, 38603 edges

FORMULA NeoElection-COL-6-UpperBounds-13 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 12 will run for 887 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4829 + p4828 + p4827 + p4826 + p4825 + p4824 + p4823)
lola: processed formula length: 58
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 6
lola: 8785 markings, 33878 edges, 1757 markings/sec, 0 secs
lola: SUBRESULT
lola: result: 6
lola: produced by: state space
lola: The maximum value of the given expression is 6
lola: 9754 markings, 38603 edges
lola: ========================================

FORMULA NeoElection-COL-6-UpperBounds-7 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1181 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p2597 + p2598 + p2599 + p2600 + p2601 + p2602 + p2603)
lola: processed formula length: 58
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 6
lola: SUBRESULT
lola: result: 6
lola: produced by: state space
lola: The maximum value of the given expression is 6
lola: 0 markings, 0 edges

FORMULA NeoElection-COL-6-UpperBounds-4 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 14 will run for 1771 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4808 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4794 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4780 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4815 + p4814 + p4813 + p4812 + p4811 + p4810 + p4809 + p4808 + p4807 + p4806 + p4805 + p4804 + p4803 + p4802 + p4801 + p4800 + p4799 + p4798 + p4797 + p4796 + p4795 + p4794 + p4793 + p4792 + p4791 + p4790 + p4789 + p4788 + p4787 + p4786 + p4785 + p4784 + p4783 + p4782 + p4781 + p4780 + p4779 + p4778 + p4777 + p4776 + p4775 + p4774)
lola: processed formula length: 338
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 6
lola: SUBRESULT
lola: result: 6
lola: produced by: state space
lola: The maximum value of the given expression is 6
lola: 7 markings, 6 edges

FORMULA NeoElection-COL-6-UpperBounds-0 6 TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: ========================================
lola: subprocess 15 will run for 3540 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: MAX(p4193 + p4186 + p4185 + p4184 + p4183 + p4182 + p4181 + p4180 + p4179 + p4172 + p4165 + p4158 + p4151 + p4144 + p4143 + p4142 + p4141 + p4140 + p4139 + p4138 + p4137 + p4130 + p4123 + p4116 + p4109 + p4102 + p4101 + p4100 + p4099 + p4098 + p4097 + p4096 + p4095 + p4088 + p4081 + p4074 + p4067 + p4060 + p4059 + p4058 + p4057 + p4056 + p4055 + p4054 + p4053 + p4046 + p4039 + p4032 + p4025 + p401... (shortened)
lola: ========================================
lola: SUBTASK
lola: computing bound of an expression
lola: processed formula: MAX(p4193 + p4186 + p4185 + p4184 + p4183 + p4182 + p4181 + p4180 + p4179 + p4172 + p4165 + p4158 + p4151 + p4144 + p4143 + p4142 + p4141 + p4140 + p4139 + p4138 + p4137 + p4130 + p4123 + p4116 + p4109 + p4102 + p4101 + p4100 + p4099 + p4098 + p4097 + p4096 + p4095 + p4088 + p4081 + p4074 + p4067 + p4060 + p4059 + p4058 + p4057 + p4056 + p4055 + p4054 + p4053 + p4046 + p4039 + p4032 + p4025 + p401... (shortened)
lola: processed formula length: 4706
lola: 0 rewrites
lola: closed formula file NeoElection-COL-6-UpperBounds.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH
lola: using bound preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: Structural Bound: 4294967295
lola: 14791 markings, 35609 edges, 2958 markings/sec, 0 secs
lola: 41055 markings, 116800 edges, 5253 markings/sec, 5 secs
lola: 67437 markings, 199187 edges, 5276 markings/sec, 10 secs
lola: 91491 markings, 287266 edges, 4811 markings/sec, 15 secs
lola: 115001 markings, 387721 edges, 4702 markings/sec, 20 secs
lola: 139123 markings, 486704 edges, 4824 markings/sec, 25 secs
lola: 162125 markings, 586365 edges, 4600 markings/sec, 30 secs
lola: 184981 markings, 683683 edges, 4571 markings/sec, 35 secs
lola: 210436 markings, 788709 edges, 5091 markings/sec, 40 secs
lola: 236436 markings, 890606 edges, 5200 markings/sec, 45 secs
lola: 260709 markings, 970730 edges, 4855 markings/sec, 50 secs
lola: 286560 markings, 1064563 edges, 5170 markings/sec, 55 secs
lola: 311110 markings, 1170093 edges, 4910 markings/sec, 60 secs
lola: 336048 markings, 1277989 edges, 4988 markings/sec, 65 secs
lola: 359773 markings, 1380641 edges, 4745 markings/sec, 70 secs
lola: 383353 markings, 1483040 edges, 4716 markings/sec, 75 secs
lola: 409010 markings, 1567133 edges, 5131 markings/sec, 80 secs
lola: 436254 markings, 1655707 edges, 5449 markings/sec, 85 secs
lola: 462337 markings, 1751841 edges, 5217 markings/sec, 90 secs
lola: 488645 markings, 1869658 edges, 5262 markings/sec, 95 secs
lola: 514869 markings, 1982672 edges, 5245 markings/sec, 100 secs
lola: 540852 markings, 2087308 edges, 5197 markings/sec, 105 secs
lola: 567291 markings, 2205414 edges, 5288 markings/sec, 110 secs
lola: 593638 markings, 2319193 edges, 5269 markings/sec, 115 secs
lola: 620927 markings, 2414900 edges, 5458 markings/sec, 120 secs
lola: 647327 markings, 2499736 edges, 5280 markings/sec, 125 secs
lola: 674196 markings, 2585515 edges, 5374 markings/sec, 130 secs
lola: 701185 markings, 2669890 edges, 5398 markings/sec, 135 secs
lola: 728872 markings, 2770405 edges, 5537 markings/sec, 140 secs
lola: 755237 markings, 2881408 edges, 5273 markings/sec, 145 secs
lola: 781615 markings, 2991009 edges, 5276 markings/sec, 150 secs
lola: 808028 markings, 3108291 edges, 5283 markings/sec, 155 secs
lola: 834197 markings, 3218255 edges, 5234 markings/sec, 160 secs
lola: 859998 markings, 3324356 edges, 5160 markings/sec, 165 secs
lola: 886638 markings, 3439922 edges, 5328 markings/sec, 170 secs
lola: 913915 markings, 3531524 edges, 5455 markings/sec, 175 secs
lola: 941533 markings, 3623100 edges, 5524 markings/sec, 180 secs
lola: 967880 markings, 3728913 edges, 5269 markings/sec, 185 secs
lola: 994127 markings, 3840251 edges, 5249 markings/sec, 190 secs
lola: 1019992 markings, 3949143 edges, 5173 markings/sec, 195 secs
lola: 1045732 markings, 4062243 edges, 5148 markings/sec, 200 secs
lola: 1071921 markings, 4176568 edges, 5238 markings/sec, 205 secs
lola: 1099019 markings, 4267637 edges, 5420 markings/sec, 210 secs
lola: 1126428 markings, 4352067 edges, 5482 markings/sec, 215 secs
lola: 1153958 markings, 4443467 edges, 5506 markings/sec, 220 secs
lola: 1180196 markings, 4549606 edges, 5248 markings/sec, 225 secs
lola: 1206413 markings, 4662253 edges, 5243 markings/sec, 230 secs
lola: 1232294 markings, 4769283 edges, 5176 markings/sec, 235 secs
lola: 1258887 markings, 4873947 edges, 5319 markings/sec, 240 secs
lola: 1284556 markings, 4958176 edges, 5134 markings/sec, 245 secs
lola: 1309735 markings, 5051507 edges, 5036 markings/sec, 250 secs
lola: 1332365 markings, 5147588 edges, 4526 markings/sec, 255 secs
lola: 1356547 markings, 5251987 edges, 4836 markings/sec, 260 secs
lola: 1381898 markings, 5359687 edges, 5070 markings/sec, 265 secs
lola: 1407655 markings, 5464006 edges, 5151 markings/sec, 270 secs
lola: 1434907 markings, 5550933 edges, 5450 markings/sec, 275 secs
lola: 1461488 markings, 5649722 edges, 5316 markings/sec, 280 secs
lola: 1487605 markings, 5758805 edges, 5223 markings/sec, 285 secs
lola: 1514686 markings, 5846879 edges, 5416 markings/sec, 290 secs
lola: 1541060 markings, 5952433 edges, 5275 markings/sec, 295 secs
lola: 1567393 markings, 6061872 edges, 5267 markings/sec, 300 secs
lola: 1593452 markings, 6172791 edges, 5212 markings/sec, 305 secs
lola: 1620367 markings, 6270059 edges, 5383 markings/sec, 310 secs
lola: 1647882 markings, 6352833 edges, 5503 markings/sec, 315 secs
lola: 1675457 markings, 6440886 edges, 5515 markings/sec, 320 secs
lola: 1702737 markings, 6530382 edges, 5456 markings/sec, 325 secs
lola: 1728854 markings, 6616421 edges, 5223 markings/sec, 330 secs
lola: 1756922 markings, 6701137 edges, 5614 markings/sec, 335 secs
lola: 1785316 markings, 6805337 edges, 5679 markings/sec, 340 secs
lola: 1813082 markings, 6907607 edges, 5553 markings/sec, 345 secs
lola: 1839232 markings, 7026462 edges, 5230 markings/sec, 350 secs
lola: 1865215 markings, 7134499 edges, 5197 markings/sec, 355 secs
lola: 1891456 markings, 7245590 edges, 5248 markings/sec, 360 secs
lola: 1917585 markings, 7356979 edges, 5226 markings/sec, 365 secs
lola: 1944120 markings, 7464736 edges, 5307 markings/sec, 370 secs
lola: 1970887 markings, 7590137 edges, 5353 markings/sec, 375 secs
lola: 1996819 markings, 7695586 edges, 5186 markings/sec, 380 secs
lola: 2022456 markings, 7808976 edges, 5127 markings/sec, 385 secs
lola: 2048278 markings, 7921108 edges, 5164 markings/sec, 390 secs
lola: 2073910 markings, 8029550 edges, 5126 markings/sec, 395 secs
lola: 2099799 markings, 8135978 edges, 5178 markings/sec, 400 secs
lola: 2126631 markings, 8249978 edges, 5366 markings/sec, 405 secs
lola: 2153938 markings, 8377489 edges, 5461 markings/sec, 410 secs
lola: 2181369 markings, 8465877 edges, 5486 markings/sec, 415 secs
lola: 2209146 markings, 8556501 edges, 5555 markings/sec, 420 secs
lola: 2236773 markings, 8650864 edges, 5525 markings/sec, 425 secs
lola: 2262026 markings, 8742710 edges, 5051 markings/sec, 430 secs
lola: 2286258 markings, 8845828 edges, 4846 markings/sec, 435 secs
lola: 2309445 markings, 8944274 edges, 4637 markings/sec, 440 secs
lola: 2334076 markings, 9051147 edges, 4926 markings/sec, 445 secs
lola: 2360230 markings, 9168352 edges, 5231 markings/sec, 450 secs
lola: 2384917 markings, 9270296 edges, 4937 markings/sec, 455 secs
lola: 2408369 markings, 9372219 edges, 4690 markings/sec, 460 secs
lola: 2432910 markings, 9475856 edges, 4908 markings/sec, 465 secs
lola: 2458402 markings, 9593007 edges, 5098 markings/sec, 470 secs
lola: 2485369 markings, 9677523 edges, 5393 markings/sec, 475 secs
lola: 2512099 markings, 9772010 edges, 5346 markings/sec, 480 secs
lola: 2538505 markings, 9850510 edges, 5281 markings/sec, 485 secs
lola: 2564630 markings, 9932962 edges, 5225 markings/sec, 490 secs
lola: 2589629 markings, 10017726 edges, 5000 markings/sec, 495 secs
lola: 2613998 markings, 10118059 edges, 4874 markings/sec, 500 secs
lola: 2639372 markings, 10221449 edges, 5075 markings/sec, 505 secs
lola: 2664642 markings, 10332524 edges, 5054 markings/sec, 510 secs
lola: 2689326 markings, 10435305 edges, 4937 markings/sec, 515 secs
lola: 2713948 markings, 10536042 edges, 4924 markings/sec, 520 secs
lola: 2738772 markings, 10637120 edges, 4965 markings/sec, 525 secs
lola: 2763746 markings, 10719340 edges, 4995 markings/sec, 530 secs
lola: 2787260 markings, 10803998 edges, 4703 markings/sec, 535 secs
lola: 2810467 markings, 10904771 edges, 4641 markings/sec, 540 secs
lola: 2835166 markings, 11012249 edges, 4940 markings/sec, 545 secs
lola: 2859993 markings, 11115589 edges, 4965 markings/sec, 550 secs
lola: 2884491 markings, 11220902 edges, 4900 markings/sec, 555 secs
lola: 2908381 markings, 11303821 edges, 4778 markings/sec, 560 secs
lola: 2932664 markings, 11379470 edges, 4857 markings/sec, 565 secs
lola: 2956697 markings, 11466980 edges, 4807 markings/sec, 570 secs
lola: 2979730 markings, 11563581 edges, 4607 markings/sec, 575 secs
lola: 3002792 markings, 11658320 edges, 4612 markings/sec, 580 secs
lola: 3026738 markings, 11768800 edges, 4789 markings/sec, 585 secs
lola: 3049374 markings, 11858176 edges, 4527 markings/sec, 590 secs
lola: 3071643 markings, 11958331 edges, 4454 markings/sec, 595 secs
lola: 3094892 markings, 12056491 edges, 4650 markings/sec, 600 secs
lola: 3119870 markings, 12147901 edges, 4996 markings/sec, 605 secs
lola: 3145812 markings, 12239079 edges, 5188 markings/sec, 610 secs
lola: 3171869 markings, 12319270 edges, 5211 markings/sec, 615 secs
lola: 3197061 markings, 12399532 edges, 5038 markings/sec, 620 secs
lola: 3223738 markings, 12489325 edges, 5335 markings/sec, 625 secs
lola: 3249082 markings, 12590473 edges, 5069 markings/sec, 630 secs
lola: 3274397 markings, 12699456 edges, 5063 markings/sec, 635 secs
lola: 3300021 markings, 12807371 edges, 5125 markings/sec, 640 secs
lola: 3325269 markings, 12913598 edges, 5050 markings/sec, 645 secs
lola: 3349705 markings, 13018582 edges, 4887 markings/sec, 650 secs
lola: 3375148 markings, 13126325 edges, 5089 markings/sec, 655 secs
lola: 3401145 markings, 13224199 edges, 5199 markings/sec, 660 secs
lola: 3427256 markings, 13309539 edges, 5222 markings/sec, 665 secs
lola: 3453443 markings, 13403590 edges, 5237 markings/sec, 670 secs
lola: 3478685 markings, 13510202 edges, 5048 markings/sec, 675 secs
lola: 3504265 markings, 13618596 edges, 5116 markings/sec, 680 secs
lola: 3529864 markings, 13723764 edges, 5120 markings/sec, 685 secs
lola: 3555144 markings, 13833693 edges, 5056 markings/sec, 690 secs
lola: 3580248 markings, 13946619 edges, 5021 markings/sec, 695 secs
lola: 3606275 markings, 14031490 edges, 5205 markings/sec, 700 secs
lola: 3632661 markings, 14111732 edges, 5277 markings/sec, 705 secs
lola: 3659364 markings, 14200494 edges, 5341 markings/sec, 710 secs
lola: 3684445 markings, 14302244 edges, 5016 markings/sec, 715 secs
lola: 3708467 markings, 14406998 edges, 4804 markings/sec, 720 secs
lola: 3731573 markings, 14501799 edges, 4621 markings/sec, 725 secs
lola: 3755046 markings, 14603129 edges, 4695 markings/sec, 730 secs
lola: 3779757 markings, 14683452 edges, 4942 markings/sec, 735 secs
lola: 3804415 markings, 14767696 edges, 4932 markings/sec, 740 secs
lola: 3827362 markings, 14864118 edges, 4589 markings/sec, 745 secs
lola: 3850805 markings, 14964601 edges, 4689 markings/sec, 750 secs
lola: 3874133 markings, 15061129 edges, 4666 markings/sec, 755 secs
lola: 3897167 markings, 15159281 edges, 4607 markings/sec, 760 secs
lola: 3922929 markings, 15255456 edges, 5152 markings/sec, 765 secs
lola: 3948806 markings, 15335851 edges, 5175 markings/sec, 770 secs
lola: 3974208 markings, 15438687 edges, 5080 markings/sec, 775 secs
lola: 3999066 markings, 15534001 edges, 4972 markings/sec, 780 secs
lola: 4024675 markings, 15620415 edges, 5122 markings/sec, 785 secs
lola: 4049878 markings, 15722882 edges, 5041 markings/sec, 790 secs
lola: 4075760 markings, 15829545 edges, 5176 markings/sec, 795 secs
lola: 4101315 markings, 15940582 edges, 5111 markings/sec, 800 secs
lola: 4127861 markings, 16032753 edges, 5309 markings/sec, 805 secs
lola: 4155149 markings, 16116678 edges, 5458 markings/sec, 810 secs
lola: 4182240 markings, 16202688 edges, 5418 markings/sec, 815 secs
lola: 4208587 markings, 16288805 edges, 5269 markings/sec, 820 secs
lola: 4234794 markings, 16375086 edges, 5241 markings/sec, 825 secs
lola: 4261524 markings, 16455727 edges, 5346 markings/sec, 830 secs
lola: 4288220 markings, 16554452 edges, 5339 markings/sec, 835 secs
lola: 4314863 markings, 16651084 edges, 5329 markings/sec, 840 secs
lola: 4340126 markings, 16761574 edges, 5053 markings/sec, 845 secs
lola: 4365515 markings, 16867189 edges, 5078 markings/sec, 850 secs
lola: 4390925 markings, 16975094 edges, 5082 markings/sec, 855 secs
lola: 4415876 markings, 17081928 edges, 4990 markings/sec, 860 secs
lola: 4442109 markings, 17186823 edges, 5247 markings/sec, 865 secs
lola: 4468194 markings, 17309025 edges, 5217 markings/sec, 870 secs
lola: 4493190 markings, 17415745 edges, 4999 markings/sec, 875 secs
lola: 4517971 markings, 17524442 edges, 4956 markings/sec, 880 secs
lola: 4542169 markings, 17624523 edges, 4840 markings/sec, 885 secs
lola: 4566209 markings, 17725745 edges, 4808 markings/sec, 890 secs
lola: 4590230 markings, 17828974 edges, 4804 markings/sec, 895 secs
lola: 4613572 markings, 17923812 edges, 4668 markings/sec, 900 secs
lola: 4638082 markings, 18034924 edges, 4902 markings/sec, 905 secs
lola: 4662924 markings, 18148384 edges, 4968 markings/sec, 910 secs
lola: 4687875 markings, 18226522 edges, 4990 markings/sec, 915 secs
lola: 4713147 markings, 18309853 edges, 5054 markings/sec, 920 secs
lola: 4738628 markings, 18394735 edges, 5096 markings/sec, 925 secs
lola: 4763708 markings, 18486411 edges, 5016 markings/sec, 930 secs
lola: 4788014 markings, 18585359 edges, 4861 markings/sec, 935 secs
lola: 4813081 markings, 18694599 edges, 5013 markings/sec, 940 secs
lola: 4838897 markings, 18805039 edges, 5163 markings/sec, 945 secs
lola: 4864681 markings, 18921953 edges, 5157 markings/sec, 950 secs
lola: 4889357 markings, 19022068 edges, 4935 markings/sec, 955 secs
lola: 4914028 markings, 19130074 edges, 4934 markings/sec, 960 secs
lola: 4939208 markings, 19236520 edges, 5036 markings/sec, 965 secs
lola: 4964573 markings, 19352381 edges, 5073 markings/sec, 970 secs
lola: 4991442 markings, 19436617 edges, 5374 markings/sec, 975 secs
lola: 5017512 markings, 19529604 edges, 5214 markings/sec, 980 secs
lola: 5043353 markings, 19602211 edges, 5168 markings/sec, 985 secs
lola: 5069128 markings, 19690441 edges, 5155 markings/sec, 990 secs
lola: 5095104 markings, 19769705 edges, 5195 markings/sec, 995 secs
lola: 5120869 markings, 19866584 edges, 5153 markings/sec, 1000 secs
lola: 5146045 markings, 19975400 edges, 5035 markings/sec, 1005 secs
lola: 5171006 markings, 20081259 edges, 4992 markings/sec, 1010 secs
lola: 5196857 markings, 20191806 edges, 5170 markings/sec, 1015 secs
lola: 5220725 markings, 20292758 edges, 4774 markings/sec, 1020 secs
lola: 5245519 markings, 20401809 edges, 4959 markings/sec, 1025 secs
lola: 5271188 markings, 20509019 edges, 5134 markings/sec, 1030 secs
lola: 5296440 markings, 20626298 edges, 5050 markings/sec, 1035 secs
lola: 5322168 markings, 20712991 edges, 5146 markings/sec, 1040 secs
lola: 5348538 markings, 20800608 edges, 5274 markings/sec, 1045 secs
lola: 5373851 markings, 20894623 edges, 5063 markings/sec, 1050 secs
lola: 5399287 markings, 21009817 edges, 5087 markings/sec, 1055 secs
lola: 5425012 markings, 21122734 edges, 5145 markings/sec, 1060 secs
lola: 5450563 markings, 21227965 edges, 5110 markings/sec, 1065 secs
lola: 5475782 markings, 21337161 edges, 5044 markings/sec, 1070 secs
lola: 5501443 markings, 21451669 edges, 5132 markings/sec, 1075 secs
lola: 5527403 markings, 21540920 edges, 5192 markings/sec, 1080 secs
lola: 5554161 markings, 21624822 edges, 5352 markings/sec, 1085 secs
lola: 5579989 markings, 21720616 edges, 5166 markings/sec, 1090 secs
lola: 5604832 markings, 21819637 edges, 4969 markings/sec, 1095 secs
lola: 5629216 markings, 21934046 edges, 4877 markings/sec, 1100 secs
lola: 5653746 markings, 22033964 edges, 4906 markings/sec, 1105 secs
lola: 5678802 markings, 22151556 edges, 5011 markings/sec, 1110 secs
lola: 5703908 markings, 22251115 edges, 5021 markings/sec, 1115 secs
lola: 5728519 markings, 22366547 edges, 4922 markings/sec, 1120 secs
lola: 5753068 markings, 22466664 edges, 4910 markings/sec, 1125 secs
lola: 5776606 markings, 22577897 edges, 4708 markings/sec, 1130 secs
lola: 5800639 markings, 22652721 edges, 4807 markings/sec, 1135 secs
lola: 5825262 markings, 22741815 edges, 4925 markings/sec, 1140 secs
lola: 5849151 markings, 22810896 edges, 4778 markings/sec, 1145 secs
lola: 5874242 markings, 22894038 edges, 5018 markings/sec, 1150 secs
lola: 5899109 markings, 22973675 edges, 4973 markings/sec, 1155 secs
lola: 5924702 markings, 23067444 edges, 5119 markings/sec, 1160 secs
lola: 5948932 markings, 23160512 edges, 4846 markings/sec, 1165 secs
lola: 5973130 markings, 23266094 edges, 4840 markings/sec, 1170 secs
lola: 5996345 markings, 23365924 edges, 4643 markings/sec, 1175 secs
lola: 6021007 markings, 23476759 edges, 4932 markings/sec, 1180 secs
lola: 6045542 markings, 23579581 edges, 4907 markings/sec, 1185 secs
lola: 6069557 markings, 23688556 edges, 4803 markings/sec, 1190 secs
lola: 6093603 markings, 23791365 edges, 4809 markings/sec, 1195 secs
lola: 6118058 markings, 23896088 edges, 4891 markings/sec, 1200 secs
lola: 6142684 markings, 23997789 edges, 4925 markings/sec, 1205 secs
lola: 6168024 markings, 24086791 edges, 5068 markings/sec, 1210 secs
lola: 6193262 markings, 24166883 edges, 5048 markings/sec, 1215 secs
lola: 6218235 markings, 24259835 edges, 4995 markings/sec, 1220 secs
lola: 6241966 markings, 24358697 edges, 4746 markings/sec, 1225 secs
lola: 6265535 markings, 24459984 edges, 4714 markings/sec, 1230 secs
lola: 6290377 markings, 24573157 edges, 4968 markings/sec, 1235 secs
lola: 6314381 markings, 24669737 edges, 4801 markings/sec, 1240 secs
lola: 6338660 markings, 24783909 edges, 4856 markings/sec, 1245 secs
lola: 6363926 markings, 24889836 edges, 5053 markings/sec, 1250 secs
lola: 6389060 markings, 24990486 edges, 5027 markings/sec, 1255 secs
lola: 6414998 markings, 25083245 edges, 5188 markings/sec, 1260 secs
lola: 6440629 markings, 25158942 edges, 5126 markings/sec, 1265 secs
lola: 6466936 markings, 25245952 edges, 5261 markings/sec, 1270 secs
lola: 6492359 markings, 25339678 edges, 5085 markings/sec, 1275 secs
lola: 6516901 markings, 25444003 edges, 4908 markings/sec, 1280 secs
lola: 6542310 markings, 25561549 edges, 5082 markings/sec, 1285 secs
lola: 6567069 markings, 25666718 edges, 4952 markings/sec, 1290 secs
lola: 6591866 markings, 25772668 edges, 4959 markings/sec, 1295 secs
lola: 6616941 markings, 25864672 edges, 5015 markings/sec, 1300 secs
lola: 6643245 markings, 25951498 edges, 5261 markings/sec, 1305 secs
lola: 6669202 markings, 26047557 edges, 5191 markings/sec, 1310 secs
lola: 6694122 markings, 26156876 edges, 4984 markings/sec, 1315 secs
lola: 6719775 markings, 26267075 edges, 5131 markings/sec, 1320 secs
lola: 6744934 markings, 26371996 edges, 5032 markings/sec, 1325 secs
lola: 6770170 markings, 26482962 edges, 5047 markings/sec, 1330 secs
lola: 6794575 markings, 26594499 edges, 4881 markings/sec, 1335 secs
lola: 6818798 markings, 26675581 edges, 4845 markings/sec, 1340 secs
lola: 6843060 markings, 26749461 edges, 4852 markings/sec, 1345 secs
lola: 6866784 markings, 26838576 edges, 4745 markings/sec, 1350 secs
lola: 6891305 markings, 26944119 edges, 4904 markings/sec, 1355 secs
lola: 6916578 markings, 27040040 edges, 5055 markings/sec, 1360 secs
lola: 6941584 markings, 27124971 edges, 5001 markings/sec, 1365 secs
lola: 6964785 markings, 27215708 edges, 4640 markings/sec, 1370 secs
lola: 6987616 markings, 27315455 edges, 4566 markings/sec, 1375 secs
lola: 7010417 markings, 27411123 edges, 4560 markings/sec, 1380 secs
lola: 7032973 markings, 27508706 edges, 4511 markings/sec, 1385 secs
lola: 7055799 markings, 27602641 edges, 4565 markings/sec, 1390 secs
lola: 7079888 markings, 27681270 edges, 4818 markings/sec, 1395 secs
lola: 7106255 markings, 27764387 edges, 5273 markings/sec, 1400 secs
lola: 7132395 markings, 27853934 edges, 5228 markings/sec, 1405 secs
lola: 7158652 markings, 27942908 edges, 5251 markings/sec, 1410 secs
lola: 7183898 markings, 28023850 edges, 5049 markings/sec, 1415 secs
lola: 7207693 markings, 28102250 edges, 4759 markings/sec, 1420 secs
lola: 7231137 markings, 28180161 edges, 4689 markings/sec, 1425 secs
lola: 7255250 markings, 28256850 edges, 4823 markings/sec, 1430 secs
lola: 7281032 markings, 28356136 edges, 5156 markings/sec, 1435 secs
lola: 7307497 markings, 28454891 edges, 5293 markings/sec, 1440 secs
lola: 7331131 markings, 28550545 edges, 4727 markings/sec, 1445 secs
lola: 7353838 markings, 28657400 edges, 4541 markings/sec, 1450 secs
lola: 7376749 markings, 28750210 edges, 4582 markings/sec, 1455 secs
lola: 7398964 markings, 28849831 edges, 4443 markings/sec, 1460 secs
lola: 7421327 markings, 28946300 edges, 4473 markings/sec, 1465 secs
lola: 7443761 markings, 29041552 edges, 4487 markings/sec, 1470 secs
lola: 7466468 markings, 29134262 edges, 4541 markings/sec, 1475 secs
lola: 7489667 markings, 29237550 edges, 4640 markings/sec, 1480 secs
lola: 7513307 markings, 29349798 edges, 4728 markings/sec, 1485 secs
lola: 7536892 markings, 29459321 edges, 4717 markings/sec, 1490 secs
lola: 7559472 markings, 29550619 edges, 4516 markings/sec, 1495 secs
lola: 7581761 markings, 29654884 edges, 4458 markings/sec, 1500 secs
lola: 7606307 markings, 29755424 edges, 4909 markings/sec, 1505 secs
lola: 7631382 markings, 29865272 edges, 5015 markings/sec, 1510 secs
lola: 7656744 markings, 29979255 edges, 5072 markings/sec, 1515 secs
lola: 7681420 markings, 30084093 edges, 4935 markings/sec, 1520 secs
lola: 7708080 markings, 30189545 edges, 5332 markings/sec, 1525 secs
lola: 7733139 markings, 30309936 edges, 5012 markings/sec, 1530 secs
lola: 7759966 markings, 30438595 edges, 5365 markings/sec, 1535 secs
lola: 7786715 markings, 30521721 edges, 5350 markings/sec, 1540 secs
lola: 7812856 markings, 30618478 edges, 5228 markings/sec, 1545 secs
lola: 7839552 markings, 30696126 edges, 5339 markings/sec, 1550 secs
lola: 7866379 markings, 30797612 edges, 5365 markings/sec, 1555 secs
lola: 7893585 markings, 30899427 edges, 5441 markings/sec, 1560 secs
lola: 7919313 markings, 31004795 edges, 5146 markings/sec, 1565 secs
lola: 7944252 markings, 31121674 edges, 4988 markings/sec, 1570 secs
lola: 7970979 markings, 31226151 edges, 5345 markings/sec, 1575 secs
lola: 7997175 markings, 31351768 edges, 5239 markings/sec, 1580 secs
lola: 8023812 markings, 31473425 edges, 5327 markings/sec, 1585 secs
lola: 8049434 markings, 31576832 edges, 5124 markings/sec, 1590 secs
lola: 8074872 markings, 31696650 edges, 5088 markings/sec, 1595 secs
lola: 8101659 markings, 31801394 edges, 5357 markings/sec, 1600 secs
lola: 8127511 markings, 31924938 edges, 5170 markings/sec, 1605 secs
lola: 8154040 markings, 32043377 edges, 5306 markings/sec, 1610 secs
lola: 8181418 markings, 32130345 edges, 5476 markings/sec, 1615 secs
lola: 8208393 markings, 32231185 edges, 5395 markings/sec, 1620 secs
lola: 8235345 markings, 32312450 edges, 5390 markings/sec, 1625 secs
lola: 8261136 markings, 32394061 edges, 5158 markings/sec, 1630 secs
lola: 8287167 markings, 32479719 edges, 5206 markings/sec, 1635 secs
lola: 8310836 markings, 32574654 edges, 4734 markings/sec, 1640 secs
lola: 8334993 markings, 32672025 edges, 4831 markings/sec, 1645 secs
lola: 8360938 markings, 32783691 edges, 5189 markings/sec, 1650 secs
lola: 8387235 markings, 32896085 edges, 5259 markings/sec, 1655 secs
lola: 8413359 markings, 33008281 edges, 5225 markings/sec, 1660 secs
lola: 8440429 markings, 33097223 edges, 5414 markings/sec, 1665 secs
lola: 8467091 markings, 33188864 edges, 5332 markings/sec, 1670 secs
lola: 8492866 markings, 33298949 edges, 5155 markings/sec, 1675 secs
lola: 8519148 markings, 33412298 edges, 5256 markings/sec, 1680 secs
lola: 8544747 markings, 33518044 edges, 5120 markings/sec, 1685 secs
lola: 8570426 markings, 33628402 edges, 5136 markings/sec, 1690 secs
lola: 8596652 markings, 33723195 edges, 5245 markings/sec, 1695 secs
lola: 8623447 markings, 33806675 edges, 5359 markings/sec, 1700 secs
lola: 8649775 markings, 33902787 edges, 5266 markings/sec, 1705 secs
lola: 8675104 markings, 34004165 edges, 5066 markings/sec, 1710 secs
lola: 8700497 markings, 34115076 edges, 5079 markings/sec, 1715 secs
lola: 8725664 markings, 34225249 edges, 5033 markings/sec, 1720 secs
lola: 8751286 markings, 34330133 edges, 5124 markings/sec, 1725 secs
lola: 8776419 markings, 34441853 edges, 5027 markings/sec, 1730 secs
lola: 8802049 markings, 34546800 edges, 5126 markings/sec, 1735 secs
lola: 8827492 markings, 34664753 edges, 5089 markings/sec, 1740 secs
lola: 8854089 markings, 34749485 edges, 5319 markings/sec, 1745 secs
lola: 8878608 markings, 34830685 edges, 4904 markings/sec, 1750 secs
lola: 8902164 markings, 34897886 edges, 4711 markings/sec, 1755 secs
lola: 8926007 markings, 34988648 edges, 4769 markings/sec, 1760 secs
lola: 8949376 markings, 35086660 edges, 4674 markings/sec, 1765 secs
lola: 8973893 markings, 35191294 edges, 4903 markings/sec, 1770 secs
lola: 8997233 markings, 35267267 edges, 4668 markings/sec, 1775 secs
lola: 9021884 markings, 35358060 edges, 4930 markings/sec, 1780 secs
lola: 9046136 markings, 35465262 edges, 4850 markings/sec, 1785 secs
lola: 9068525 markings, 35558027 edges, 4478 markings/sec, 1790 secs
lola: 9091479 markings, 35653092 edges, 4591 markings/sec, 1795 secs
lola: 9114722 markings, 35725398 edges, 4649 markings/sec, 1800 secs
lola: 9139434 markings, 35814089 edges, 4942 markings/sec, 1805 secs
lola: 9161999 markings, 35902098 edges, 4513 markings/sec, 1810 secs
lola: 9184423 markings, 35999928 edges, 4485 markings/sec, 1815 secs
lola: 9208213 markings, 36105152 edges, 4758 markings/sec, 1820 secs
lola: 9231019 markings, 36195118 edges, 4561 markings/sec, 1825 secs
lola: 9253738 markings, 36298342 edges, 4544 markings/sec, 1830 secs
lola: 9278351 markings, 36403563 edges, 4923 markings/sec, 1835 secs
lola: 9304070 markings, 36495035 edges, 5144 markings/sec, 1840 secs
lola: 9329854 markings, 36578889 edges, 5157 markings/sec, 1845 secs
lola: 9354695 markings, 36665543 edges, 4968 markings/sec, 1850 secs
lola: 9380564 markings, 36759094 edges, 5174 markings/sec, 1855 secs
lola: 9406640 markings, 36864996 edges, 5215 markings/sec, 1860 secs
lola: 9432369 markings, 36965934 edges, 5146 markings/sec, 1865 secs
lola: 9455909 markings, 37044023 edges, 4708 markings/sec, 1870 secs
lola: 9478537 markings, 37133867 edges, 4526 markings/sec, 1875 secs
lola: 9501426 markings, 37231698 edges, 4578 markings/sec, 1880 secs
lola: 9524502 markings, 37327776 edges, 4615 markings/sec, 1885 secs
lola: 9546853 markings, 37425208 edges, 4470 markings/sec, 1890 secs
lola: 9570232 markings, 37527929 edges, 4676 markings/sec, 1895 secs
lola: 9593513 markings, 37605408 edges, 4656 markings/sec, 1900 secs
lola: 9617358 markings, 37680938 edges, 4769 markings/sec, 1905 secs
lola: 9640692 markings, 37777770 edges, 4667 markings/sec, 1910 secs
lola: 9664954 markings, 37881095 edges, 4852 markings/sec, 1915 secs
lola: 9690181 markings, 37970840 edges, 5045 markings/sec, 1920 secs
lola: 9716427 markings, 38082954 edges, 5249 markings/sec, 1925 secs
lola: 9744488 markings, 38185203 edges, 5612 markings/sec, 1930 secs
lola: 9771970 markings, 38291311 edges, 5496 markings/sec, 1935 secs
lola: 9798479 markings, 38408064 edges, 5302 markings/sec, 1940 secs
lola: 9825849 markings, 38518415 edges, 5474 markings/sec, 1945 secs
lola: 9852961 markings, 38596639 edges, 5422 markings/sec, 1950 secs
lola: 9880007 markings, 38685403 edges, 5409 markings/sec, 1955 secs
lola: 9906898 markings, 38772742 edges, 5378 markings/sec, 1960 secs
lola: 9934493 markings, 38861712 edges, 5519 markings/sec, 1965 secs
lola: 9961009 markings, 38961534 edges, 5303 markings/sec, 1970 secs
lola: 9987267 markings, 39075199 edges, 5252 markings/sec, 1975 secs
lola: 10013676 markings, 39183770 edges, 5282 markings/sec, 1980 secs
lola: 10039563 markings, 39301504 edges, 5177 markings/sec, 1985 secs
lola: 10065573 markings, 39408467 edges, 5202 markings/sec, 1990 secs
lola: 10092262 markings, 39524405 edges, 5338 markings/sec, 1995 secs
lola: 10118809 markings, 39630284 edges, 5309 markings/sec, 2000 secs
lola: 10145255 markings, 39743870 edges, 5289 markings/sec, 2005 secs
lola: 10172037 markings, 39835176 edges, 5356 markings/sec, 2010 secs
lola: 10199613 markings, 39924133 edges, 5515 markings/sec, 2015 secs
lola: 10226506 markings, 40023011 edges, 5379 markings/sec, 2020 secs
lola: 10252621 markings, 40140840 edges, 5223 markings/sec, 2025 secs
lola: 10279054 markings, 40255797 edges, 5287 markings/sec, 2030 secs
lola: 10305490 markings, 40362263 edges, 5287 markings/sec, 2035 secs
lola: 10331617 markings, 40475853 edges, 5225 markings/sec, 2040 secs
lola: 10356882 markings, 40589724 edges, 5053 markings/sec, 2045 secs
lola: 10382734 markings, 40674861 edges, 5170 markings/sec, 2050 secs
lola: 10408012 markings, 40752535 edges, 5056 markings/sec, 2055 secs
lola: 10432960 markings, 40841516 edges, 4990 markings/sec, 2060 secs
lola: 10458529 markings, 40934604 edges, 5114 markings/sec, 2065 secs
lola: 10482334 markings, 41036032 edges, 4761 markings/sec, 2070 secs
lola: 10506336 markings, 41142778 edges, 4800 markings/sec, 2075 secs
lola: 10529069 markings, 41236007 edges, 4547 markings/sec, 2080 secs
lola: 10552944 markings, 41347131 edges, 4775 markings/sec, 2085 secs
lola: 10577440 markings, 41439389 edges, 4899 markings/sec, 2090 secs
lola: 10599888 markings, 41543556 edges, 4490 markings/sec, 2095 secs
lola: 10623388 markings, 41639585 edges, 4700 markings/sec, 2100 secs
lola: 10645884 markings, 41740389 edges, 4499 markings/sec, 2105 secs
lola: 10668592 markings, 41834684 edges, 4542 markings/sec, 2110 secs
lola: 10692444 markings, 41911076 edges, 4770 markings/sec, 2115 secs
lola: 10718767 markings, 42001499 edges, 5265 markings/sec, 2120 secs
lola: 10745161 markings, 42081485 edges, 5279 markings/sec, 2125 secs
lola: 10770991 markings, 42164089 edges, 5166 markings/sec, 2130 secs
lola: 10796762 markings, 42257760 edges, 5154 markings/sec, 2135 secs
lola: 10821996 markings, 42365386 edges, 5047 markings/sec, 2140 secs
lola: 10847575 markings, 42479955 edges, 5116 markings/sec, 2145 secs
lola: 10872274 markings, 42580981 edges, 4940 markings/sec, 2150 secs
lola: 10897483 markings, 42687199 edges, 5042 markings/sec, 2155 secs
lola: 10922073 markings, 42787394 edges, 4918 markings/sec, 2160 secs
lola: 10946145 markings, 42870903 edges, 4814 markings/sec, 2165 secs
lola: 10970638 markings, 42949212 edges, 4899 markings/sec, 2170 secs
lola: 10994947 markings, 43037239 edges, 4862 markings/sec, 2175 secs
lola: 11017306 markings, 43136673 edges, 4472 markings/sec, 2180 secs
lola: 11040413 markings, 43232599 edges, 4621 markings/sec, 2185 secs
lola: 11065943 markings, 43342015 edges, 5106 markings/sec, 2190 secs
lola: 11090391 markings, 43448600 edges, 4890 markings/sec, 2195 secs
lola: 11114761 markings, 43550860 edges, 4874 markings/sec, 2200 secs
lola: 11137841 markings, 43642865 edges, 4616 markings/sec, 2205 secs
lola: 11163103 markings, 43731671 edges, 5052 markings/sec, 2210 secs
lola: 11189025 markings, 43807228 edges, 5184 markings/sec, 2215 secs
lola: 11213558 markings, 43901777 edges, 4907 markings/sec, 2220 secs
lola: 11237640 markings, 44002879 edges, 4816 markings/sec, 2225 secs
lola: 11262295 markings, 44097556 edges, 4931 markings/sec, 2230 secs
lola: 11287714 markings, 44181197 edges, 5084 markings/sec, 2235 secs
lola: 11312348 markings, 44270705 edges, 4927 markings/sec, 2240 secs
lola: 11336765 markings, 44375868 edges, 4883 markings/sec, 2245 secs
lola: 11361675 markings, 44484801 edges, 4982 markings/sec, 2250 secs
lola: 11384412 markings, 44581316 edges, 4547 markings/sec, 2255 secs
lola: 11408767 markings, 44686067 edges, 4871 markings/sec, 2260 secs
lola: 11434726 markings, 44776532 edges, 5192 markings/sec, 2265 secs
lola: 11462171 markings, 44864513 edges, 5489 markings/sec, 2270 secs
lola: 11488798 markings, 44974312 edges, 5325 markings/sec, 2275 secs
lola: 11515353 markings, 45087605 edges, 5311 markings/sec, 2280 secs
lola: 11542883 markings, 45186916 edges, 5506 markings/sec, 2285 secs
lola: 11569279 markings, 45297795 edges, 5279 markings/sec, 2290 secs
lola: 11595910 markings, 45408907 edges, 5326 markings/sec, 2295 secs
lola: 11623634 markings, 45490831 edges, 5545 markings/sec, 2300 secs
lola: 11650368 markings, 45581439 edges, 5347 markings/sec, 2305 secs
lola: 11677653 markings, 45669985 edges, 5457 markings/sec, 2310 secs
lola: 11705227 markings, 45756787 edges, 5515 markings/sec, 2315 secs
lola: 11732414 markings, 45855445 edges, 5437 markings/sec, 2320 secs
lola: 11758664 markings, 45968132 edges, 5250 markings/sec, 2325 secs
lola: 11785075 markings, 46080012 edges, 5282 markings/sec, 2330 secs
lola: 11811115 markings, 46186338 edges, 5208 markings/sec, 2335 secs
lola: 11837045 markings, 46307470 edges, 5186 markings/sec, 2340 secs
lola: 11862565 markings, 46409737 edges, 5104 markings/sec, 2345 secs
lola: 11887956 markings, 46517055 edges, 5078 markings/sec, 2350 secs
lola: 11912831 markings, 46621091 edges, 4975 markings/sec, 2355 secs
lola: 11939193 markings, 46739686 edges, 5272 markings/sec, 2360 secs
lola: 11966231 markings, 46834493 edges, 5408 markings/sec, 2365 secs
lola: 11993652 markings, 46931144 edges, 5484 markings/sec, 2370 secs
lola: 12021174 markings, 47020702 edges, 5504 markings/sec, 2375 secs
lola: 12047818 markings, 47117409 edges, 5329 markings/sec, 2380 secs
lola: 12074168 markings, 47234652 edges, 5270 markings/sec, 2385 secs
lola: 12100409 markings, 47342406 edges, 5248 markings/sec, 2390 secs
lola: 12126391 markings, 47461998 edges, 5196 markings/sec, 2395 secs
lola: 12152880 markings, 47567619 edges, 5298 markings/sec, 2400 secs
lola: 12179029 markings, 47681659 edges, 5230 markings/sec, 2405 secs
lola: 12205271 markings, 47796497 edges, 5248 markings/sec, 2410 secs
lola: 12232451 markings, 47893384 edges, 5436 markings/sec, 2415 secs
lola: 12259687 markings, 47990175 edges, 5447 markings/sec, 2420 secs
lola: 12287007 markings, 48072981 edges, 5464 markings/sec, 2425 secs
lola: 12312709 markings, 48175779 edges, 5140 markings/sec, 2430 secs
lola: 12338137 markings, 48282786 edges, 5086 markings/sec, 2435 secs
lola: 12364983 markings, 48379888 edges, 5369 markings/sec, 2440 secs
lola: 12392024 markings, 48469907 edges, 5408 markings/sec, 2445 secs
lola: 12417987 markings, 48572773 edges, 5193 markings/sec, 2450 secs
lola: 12444198 markings, 48685891 edges, 5242 markings/sec, 2455 secs
lola: 12470130 markings, 48793649 edges, 5186 markings/sec, 2460 secs
lola: 12496001 markings, 48905053 edges, 5174 markings/sec, 2465 secs
lola: 12522471 markings, 49004933 edges, 5294 markings/sec, 2470 secs
lola: 12549089 markings, 49094799 edges, 5324 markings/sec, 2475 secs
lola: 12573251 markings, 49196830 edges, 4832 markings/sec, 2480 secs
lola: 12596842 markings, 49280535 edges, 4718 markings/sec, 2485 secs
lola: 12619986 markings, 49378342 edges, 4629 markings/sec, 2490 secs
lola: 12647171 markings, 49471798 edges, 5437 markings/sec, 2495 secs
lola: 12674051 markings, 49558767 edges, 5376 markings/sec, 2500 secs
lola: 12701130 markings, 49645539 edges, 5416 markings/sec, 2505 secs
lola: 12727815 markings, 49748480 edges, 5337 markings/sec, 2510 secs
lola: 12753970 markings, 49858455 edges, 5231 markings/sec, 2515 secs
lola: 12780331 markings, 49974280 edges, 5272 markings/sec, 2520 secs
lola: 12805940 markings, 50083986 edges, 5122 markings/sec, 2525 secs
lola: 12831833 markings, 50195529 edges, 5179 markings/sec, 2530 secs
lola: 12858152 markings, 50287251 edges, 5264 markings/sec, 2535 secs
lola: 12884710 markings, 50372505 edges, 5312 markings/sec, 2540 secs
lola: 12911094 markings, 50468848 edges, 5277 markings/sec, 2545 secs
lola: 12936804 markings, 50576504 edges, 5142 markings/sec, 2550 secs
lola: 12962705 markings, 50685543 edges, 5180 markings/sec, 2555 secs
lola: 12988350 markings, 50796293 edges, 5129 markings/sec, 2560 secs
lola: 13014004 markings, 50907520 edges, 5131 markings/sec, 2565 secs
lola: 13039948 markings, 51016721 edges, 5189 markings/sec, 2570 secs
lola: 13065996 markings, 51114808 edges, 5210 markings/sec, 2575 secs
lola: 13092245 markings, 51206171 edges, 5250 markings/sec, 2580 secs
lola: 13118097 markings, 51303597 edges, 5170 markings/sec, 2585 secs
lola: 13144650 markings, 51392528 edges, 5311 markings/sec, 2590 secs
lola: 13171727 markings, 51484196 edges, 5415 markings/sec, 2595 secs
lola: 13197782 markings, 51594745 edges, 5211 markings/sec, 2600 secs
lola: 13223827 markings, 51702343 edges, 5209 markings/sec, 2605 secs
lola: 13250823 markings, 51789867 edges, 5399 markings/sec, 2610 secs
lola: 13278024 markings, 51886360 edges, 5440 markings/sec, 2615 secs
lola: 13304185 markings, 51997817 edges, 5232 markings/sec, 2620 secs
lola: 13330311 markings, 52110898 edges, 5225 markings/sec, 2625 secs
lola: 13356533 markings, 52222744 edges, 5244 markings/sec, 2630 secs
lola: 13382347 markings, 52334139 edges, 5163 markings/sec, 2635 secs
lola: 13409105 markings, 52421871 edges, 5352 markings/sec, 2640 secs
lola: 13435740 markings, 52505506 edges, 5327 markings/sec, 2645 secs
lola: 13463862 markings, 52599994 edges, 5624 markings/sec, 2650 secs
lola: 13491498 markings, 52706582 edges, 5527 markings/sec, 2655 secs
lola: 13517181 markings, 52809555 edges, 5137 markings/sec, 2660 secs
lola: 13545188 markings, 52937750 edges, 5601 markings/sec, 2665 secs
lola: 13571178 markings, 53050040 edges, 5198 markings/sec, 2670 secs
lola: 13597759 markings, 53158700 edges, 5316 markings/sec, 2675 secs
lola: 13625952 markings, 53287434 edges, 5639 markings/sec, 2680 secs
lola: 13654473 markings, 53380655 edges, 5704 markings/sec, 2685 secs
lola: 13682374 markings, 53488439 edges, 5580 markings/sec, 2690 secs
lola: 13710558 markings, 53610184 edges, 5637 markings/sec, 2695 secs
lola: 13737445 markings, 53726869 edges, 5377 markings/sec, 2700 secs
lola: 13765112 markings, 53851149 edges, 5533 markings/sec, 2705 secs
lola: 13793555 markings, 53952650 edges, 5689 markings/sec, 2710 secs
lola: 13820300 markings, 54038689 edges, 5349 markings/sec, 2715 secs
lola: 13846577 markings, 54145380 edges, 5255 markings/sec, 2720 secs
lola: 13872995 markings, 54258593 edges, 5284 markings/sec, 2725 secs
lola: 13899499 markings, 54354176 edges, 5301 markings/sec, 2730 secs
lola: 13925287 markings, 54465867 edges, 5158 markings/sec, 2735 secs
lola: 13951682 markings, 54561897 edges, 5279 markings/sec, 2740 secs
lola: 13978226 markings, 54670482 edges, 5309 markings/sec, 2745 secs
lola: 14004190 markings, 54781508 edges, 5193 markings/sec, 2750 secs
lola: 14030280 markings, 54874274 edges, 5218 markings/sec, 2755 secs
lola: 14057263 markings, 54967447 edges, 5397 markings/sec, 2760 secs
lola: 14082576 markings, 55075585 edges, 5063 markings/sec, 2765 secs
lola: 14108712 markings, 55189326 edges, 5227 markings/sec, 2770 secs
lola: 14135577 markings, 55281151 edges, 5373 markings/sec, 2775 secs
lola: 14161973 markings, 55395220 edges, 5279 markings/sec, 2780 secs
lola: 14188733 markings, 55494693 edges, 5352 markings/sec, 2785 secs
lola: 14215733 markings, 55597561 edges, 5400 markings/sec, 2790 secs
lola: 14242304 markings, 55698822 edges, 5314 markings/sec, 2795 secs
lola: 14268913 markings, 55806158 edges, 5322 markings/sec, 2800 secs
lola: 14295625 markings, 55907738 edges, 5342 markings/sec, 2805 secs
lola: 14320571 markings, 55997815 edges, 4989 markings/sec, 2810 secs
lola: 14346283 markings, 56104918 edges, 5142 markings/sec, 2815 secs
lola: 14372903 markings, 56190407 edges, 5324 markings/sec, 2820 secs
lola: 14399459 markings, 56272809 edges, 5311 markings/sec, 2825 secs
lola: 14427496 markings, 56378185 edges, 5607 markings/sec, 2830 secs
lola: 14452678 markings, 56485464 edges, 5036 markings/sec, 2835 secs
lola: 14479004 markings, 56598221 edges, 5265 markings/sec, 2840 secs
lola: 14506009 markings, 56721039 edges, 5401 markings/sec, 2845 secs
lola: 14531422 markings, 56829223 edges, 5083 markings/sec, 2850 secs
lola: 14557570 markings, 56943008 edges, 5230 markings/sec, 2855 secs
lola: 14584639 markings, 57054809 edges, 5414 markings/sec, 2860 secs
lola: 14612567 markings, 57149280 edges, 5586 markings/sec, 2865 secs
lola: 14638456 markings, 57255337 edges, 5178 markings/sec, 2870 secs
lola: 14664841 markings, 57375191 edges, 5277 markings/sec, 2875 secs
lola: 14690246 markings, 57481749 edges, 5081 markings/sec, 2880 secs
lola: 14717141 markings, 57594954 edges, 5379 markings/sec, 2885 secs
lola: 14743947 markings, 57686969 edges, 5361 markings/sec, 2890 secs
lola: 14770345 markings, 57782865 edges, 5280 markings/sec, 2895 secs
lola: 14796138 markings, 57892565 edges, 5159 markings/sec, 2900 secs
lola: 14821755 markings, 57987014 edges, 5123 markings/sec, 2905 secs
lola: 14847177 markings, 58091489 edges, 5084 markings/sec, 2910 secs
lola: 14873301 markings, 58186308 edges, 5225 markings/sec, 2915 secs
lola: 14898501 markings, 58291553 edges, 5040 markings/sec, 2920 secs
lola: 14923989 markings, 58383381 edges, 5098 markings/sec, 2925 secs
lola: 14949862 markings, 58473406 edges, 5175 markings/sec, 2930 secs
lola: 14975509 markings, 58581718 edges, 5129 markings/sec, 2935 secs
lola: 15001787 markings, 58679400 edges, 5256 markings/sec, 2940 secs
lola: 15026564 markings, 58779063 edges, 4955 markings/sec, 2945 secs
lola: 15051800 markings, 58875674 edges, 5047 markings/sec, 2950 secs
lola: 15076763 markings, 58968214 edges, 4993 markings/sec, 2955 secs
lola: 15101906 markings, 59061200 edges, 5029 markings/sec, 2960 secs
lola: 15126360 markings, 59162194 edges, 4891 markings/sec, 2965 secs
lola: 15150477 markings, 59248297 edges, 4823 markings/sec, 2970 secs
lola: 15174713 markings, 59340543 edges, 4847 markings/sec, 2975 secs
lola: 15200016 markings, 59424039 edges, 5061 markings/sec, 2980 secs
lola: 15226679 markings, 59505385 edges, 5333 markings/sec, 2985 secs
lola: 15255147 markings, 59608949 edges, 5694 markings/sec, 2990 secs
lola: 15281017 markings, 59713508 edges, 5174 markings/sec, 2995 secs
lola: 15306475 markings, 59815322 edges, 5092 markings/sec, 3000 secs
lola: 15333655 markings, 59944539 edges, 5436 markings/sec, 3005 secs
lola: 15359081 markings, 60053352 edges, 5085 markings/sec, 3010 secs
lola: 15384574 markings, 60155587 edges, 5099 markings/sec, 3015 secs
lola: 15411386 markings, 60283627 edges, 5362 markings/sec, 3020 secs
lola: 15438743 markings, 60374064 edges, 5471 markings/sec, 3025 secs
lola: 15467557 markings, 60483250 edges, 5763 markings/sec, 3030 secs
lola: 15493754 markings, 60590043 edges, 5239 markings/sec, 3035 secs
lola: 15521277 markings, 60718730 edges, 5505 markings/sec, 3040 secs
lola: 15548213 markings, 60830689 edges, 5387 markings/sec, 3045 secs
lola: 15574105 markings, 60948465 edges, 5178 markings/sec, 3050 secs
lola: 15602105 markings, 61047672 edges, 5600 markings/sec, 3055 secs
lola: 15628965 markings, 61123993 edges, 5372 markings/sec, 3060 secs
lola: 15655063 markings, 61212729 edges, 5220 markings/sec, 3065 secs
lola: 15681964 markings, 61297325 edges, 5380 markings/sec, 3070 secs
lola: 15708242 markings, 61394993 edges, 5256 markings/sec, 3075 secs
lola: 15733429 markings, 61505754 edges, 5037 markings/sec, 3080 secs
lola: 15759778 markings, 61614544 edges, 5270 markings/sec, 3085 secs
lola: 15785460 markings, 61727095 edges, 5136 markings/sec, 3090 secs
lola: 15810996 markings, 61836756 edges, 5107 markings/sec, 3095 secs
lola: 15836728 markings, 61942282 edges, 5146 markings/sec, 3100 secs
lola: 15862532 markings, 62054061 edges, 5161 markings/sec, 3105 secs
lola: 15888878 markings, 62143267 edges, 5269 markings/sec, 3110 secs
lola: 15915404 markings, 62235015 edges, 5305 markings/sec, 3115 secs
lola: 15940613 markings, 62340521 edges, 5042 markings/sec, 3120 secs
lola: 15965300 markings, 62446555 edges, 4937 markings/sec, 3125 secs
lola: 15989744 markings, 62547627 edges, 4889 markings/sec, 3130 secs
lola: 16015170 markings, 62659161 edges, 5085 markings/sec, 3135 secs
lola: 16040044 markings, 62766754 edges, 4975 markings/sec, 3140 secs
lola: 16065895 markings, 62854705 edges, 5170 markings/sec, 3145 secs
lola: 16092095 markings, 62938675 edges, 5240 markings/sec, 3150 secs
lola: 16115843 markings, 63025940 edges, 4750 markings/sec, 3155 secs
lola: 16138351 markings, 63121854 edges, 4502 markings/sec, 3160 secs
lola: 16162100 markings, 63223472 edges, 4750 markings/sec, 3165 secs
lola: 16184317 markings, 63322739 edges, 4443 markings/sec, 3170 secs
lola: 16206527 markings, 63416176 edges, 4442 markings/sec, 3175 secs
lola: 16229926 markings, 63518625 edges, 4680 markings/sec, 3180 secs
lola: 16254628 markings, 63620441 edges, 4940 markings/sec, 3185 secs
lola: 16279031 markings, 63733618 edges, 4881 markings/sec, 3190 secs
lola: 16305385 markings, 63823952 edges, 5271 markings/sec, 3195 secs
lola: 16331373 markings, 63913330 edges, 5198 markings/sec, 3200 secs
lola: 16357161 markings, 63994186 edges, 5158 markings/sec, 3205 secs
lola: 16383220 markings, 64080817 edges, 5212 markings/sec, 3210 secs
lola: 16410049 markings, 64168074 edges, 5366 markings/sec, 3215 secs
lola: 16436177 markings, 64264119 edges, 5226 markings/sec, 3220 secs
lola: 16460388 markings, 64369463 edges, 4842 markings/sec, 3225 secs
lola: 16482385 markings, 64462609 edges, 4399 markings/sec, 3230 secs
lola: 16504843 markings, 64563534 edges, 4492 markings/sec, 3235 secs
lola: 16526946 markings, 64654870 edges, 4421 markings/sec, 3240 secs
lola: 16549404 markings, 64753947 edges, 4492 markings/sec, 3245 secs
lola: 16571614 markings, 64847974 edges, 4442 markings/sec, 3250 secs
lola: 16596586 markings, 64958851 edges, 4994 markings/sec, 3255 secs
lola: 16622330 markings, 65051864 edges, 5149 markings/sec, 3260 secs
lola: 16648260 markings, 65137356 edges, 5186 markings/sec, 3265 secs
lola: 16673545 markings, 65227914 edges, 5057 markings/sec, 3270 secs
lola: 16698077 markings, 65325905 edges, 4906 markings/sec, 3275 secs
lola: 16723155 markings, 65432266 edges, 5016 markings/sec, 3280 secs
lola: 16748010 markings, 65547202 edges, 4971 markings/sec, 3285 secs
lola: 16773072 markings, 65649482 edges, 5012 markings/sec, 3290 secs
lola: 16797806 markings, 65753894 edges, 4947 markings/sec, 3295 secs
lola: 16821993 markings, 65866172 edges, 4837 markings/sec, 3300 secs
lola: 16847861 markings, 65952112 edges, 5174 markings/sec, 3305 secs
lola: 16873689 markings, 66029543 edges, 5166 markings/sec, 3310 secs
lola: 16900100 markings, 66117284 edges, 5282 markings/sec, 3315 secs
lola: 16924859 markings, 66207516 edges, 4952 markings/sec, 3320 secs
lola: 16948406 markings, 66307204 edges, 4709 markings/sec, 3325 secs
lola: 16971207 markings, 66410236 edges, 4560 markings/sec, 3330 secs
lola: 16996079 markings, 66513450 edges, 4974 markings/sec, 3335 secs
lola: 17021792 markings, 66626612 edges, 5143 markings/sec, 3340 secs
lola: 17047510 markings, 66712443 edges, 5144 markings/sec, 3345 secs
lola: 17073664 markings, 66800636 edges, 5231 markings/sec, 3350 secs
lola: 17099023 markings, 66904289 edges, 5072 markings/sec, 3355 secs
lola: 17124781 markings, 67015570 edges, 5152 markings/sec, 3360 secs
lola: 17149504 markings, 67118250 edges, 4945 markings/sec, 3365 secs
lola: 17173750 markings, 67222545 edges, 4849 markings/sec, 3370 secs
lola: 17197824 markings, 67327830 edges, 4815 markings/sec, 3375 secs
lola: 17223257 markings, 67413536 edges, 5087 markings/sec, 3380 secs
lola: 17248136 markings, 67491883 edges, 4976 markings/sec, 3385 secs
lola: 17272817 markings, 67594371 edges, 4936 markings/sec, 3390 secs
lola: 17298211 markings, 67693322 edges, 5079 markings/sec, 3395 secs
lola: 17324609 markings, 67782585 edges, 5280 markings/sec, 3400 secs
lola: 17349845 markings, 67883841 edges, 5047 markings/sec, 3405 secs
lola: 17375158 markings, 67995137 edges, 5063 markings/sec, 3410 secs
lola: 17399994 markings, 68098952 edges, 4967 markings/sec, 3415 secs
lola: 17425003 markings, 68201860 edges, 5002 markings/sec, 3420 secs
lola: 17451006 markings, 68283368 edges, 5201 markings/sec, 3425 secs
lola: 17477170 markings, 68369065 edges, 5233 markings/sec, 3430 secs
lola: 17502653 markings, 68449054 edges, 5097 markings/sec, 3435 secs
lola: 17528203 markings, 68539973 edges, 5110 markings/sec, 3440 secs
lola: 17553235 markings, 68622324 edges, 5006 markings/sec, 3445 secs
lola: 17578354 markings, 68703588 edges, 5024 markings/sec, 3450 secs
lola: 17605093 markings, 68785326 edges, 5348 markings/sec, 3455 secs
lola: 17632168 markings, 68885155 edges, 5415 markings/sec, 3460 secs
lola: 17658184 markings, 68983274 edges, 5203 markings/sec, 3465 secs
lola: 17682813 markings, 69091855 edges, 4926 markings/sec, 3470 secs
lola: 17707568 markings, 69193588 edges, 4951 markings/sec, 3475 secs
lola: 17732440 markings, 69306252 edges, 4974 markings/sec, 3480 secs
lola: 17756941 markings, 69412274 edges, 4900 markings/sec, 3485 secs
lola: 17781277 markings, 69515227 edges, 4867 markings/sec, 3490 secs
lola: 17807025 markings, 69618406 edges, 5150 markings/sec, 3495 secs
lola: 17832707 markings, 69740799 edges, 5136 markings/sec, 3500 secs
lola: 17858425 markings, 69854453 edges, 5144 markings/sec, 3505 secs
lola: 17882556 markings, 69957370 edges, 4826 markings/sec, 3510 secs
lola: 17907240 markings, 70061493 edges, 4937 markings/sec, 3515 secs
lola: 17931154 markings, 70170228 edges, 4783 markings/sec, 3520 secs
lola: 17953448 markings, 70262891 edges, 4459 markings/sec, 3525 secs
lola: 17975360 markings, 70355866 edges, 4382 markings/sec, 3530 secs
lola: time limit reached - aborting
lola:
preliminary result: 6 0 0 unknown 6 6 36 6 0 36 0 0 0 6 30 0
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: 6 0 0 unknown 6 6 36 6 0 36 0 0 0 6 30 0
lola:
preliminary result: 6 0 0 unknown 6 6 36 6 0 36 0 0 0 6 30 0
lola: memory consumption: 1882428 KB
lola: time consumption: 3568 seconds
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: 6 0 0 unknown 6 6 36 6 0 36 0 0 0 6 30 0
lola: memory consumption: 1882428 KB
lola: time consumption: 3568 seconds

BK_STOP 1527028759192

--------------------
content from stderr:

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-6"
export BK_EXAMINATION="UpperBounds"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-6.tgz
mv NeoElection-COL-6 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-COL-6, examination is UpperBounds"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r112-csrt-152666469300268"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "UpperBounds" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "UpperBounds" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "UpperBounds.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property UpperBounds.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "UpperBounds.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' UpperBounds.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;