About the Execution of LoLA for NeoElection-COL-5
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
6729.430 | 3569794.00 | 3774081.00 | 535.90 | T?FT?FF?TFTFTTTT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
......................................................
/home/mcc/execution
total 248K
-rw-r--r-- 1 mcc users 3.4K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 2.7K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.5K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 11K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 11K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.7K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 108 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 346 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.2K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 16K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:50 equiv_pt
-rw-r--r-- 1 mcc users 2 May 15 18:50 instance
-rw-r--r-- 1 mcc users 5 May 15 18:50 iscolored
-rw-r--r-- 1 mcc users 89K May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is NeoElection-COL-5, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r112-csrt-152666469300262
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-5-CTLCardinality-00
FORMULA_NAME NeoElection-COL-5-CTLCardinality-01
FORMULA_NAME NeoElection-COL-5-CTLCardinality-02
FORMULA_NAME NeoElection-COL-5-CTLCardinality-03
FORMULA_NAME NeoElection-COL-5-CTLCardinality-04
FORMULA_NAME NeoElection-COL-5-CTLCardinality-05
FORMULA_NAME NeoElection-COL-5-CTLCardinality-06
FORMULA_NAME NeoElection-COL-5-CTLCardinality-07
FORMULA_NAME NeoElection-COL-5-CTLCardinality-08
FORMULA_NAME NeoElection-COL-5-CTLCardinality-09
FORMULA_NAME NeoElection-COL-5-CTLCardinality-10
FORMULA_NAME NeoElection-COL-5-CTLCardinality-11
FORMULA_NAME NeoElection-COL-5-CTLCardinality-12
FORMULA_NAME NeoElection-COL-5-CTLCardinality-13
FORMULA_NAME NeoElection-COL-5-CTLCardinality-14
FORMULA_NAME NeoElection-COL-5-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1527024838929
info: Time: 3600 - MCC
===========================================================================================
prep: translating NeoElection-COL-5 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating COL Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating NeoElection-COL-5 formula CTLCardinality into LoLA format
===========================================================================================
prep: translating COL formula complete
vrfy: Checking CTLCardinality @ NeoElection-COL-5 @ 3568 seconds
lola: LoLA will run for 3568 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 7836/65536 symbol table entries, 1634 collisions
lola: preprocessing...
lola: Size of bit vector: 3090
lola: finding significant places
lola: 3090 places, 4746 transitions, 816 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 1668 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-5-CTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1702 + p1701 + p1699 + p1698 + p1696 + p1695 + p1693 + p1692 + p1690 + p1689 + p1687 + p1686 + p1684 + p1683 + p1681 + p1680 + p1678 + p1677 + p1675 + p1674 + p1672 + p1671 + p1669 + p1668 + p1666 + p1665 + p1663 + p1662 + p1660 + p1659 + p1657 + p1656 + p1654 + p1653 + p1651 + p1650 + p1648 + p1647 + p1645 + p1644 + p1642 + p1641 + p1639 + p1638 + p1636 + p1635 + p1633 + p1632 + p1630 + p1629 + p1627 + p1626 + p1624 + p1623 + p1621 + p1620 + p1618 + p1617 + p1615 + p1614 + p1612 + p1611 + p1609 + p1608 + p1606 + p1605 + p1603 + p1602 + p1600 + p1599 + p1597 + p1596 + p1598 + p1601 + p1604 + p1607 + p1610 + p1613 + p1616 + p1619 + p1622 + p1625 + p1628 + p1631 + p1634 + p1637 + p1640 + p1643 + p1646 + p1649 + p1652 + p1655 + p1658 + p1661 + p1664 + p1667 + p1670 + p1673 + p1676 + p1679 + p1682 + p1685 + p1688 + p1691 + p1694 + p1697 + p1700 + p1703)
lola: after: (0 <= 22)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p5 + p4 + p3 + p2 + p1 + p0)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 <= p5 + p4 + p3 + p2 + p1 + p0)
lola: after: (20 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523)
lola: after: (0 <= 17)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p398 + p397 + p1000 + p1001 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p369 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p368 + p367 + p366 + p365 + p364 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p363 + p362 + p361 + p360 + p359 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p1104 + p333 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p1140 + p317 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p700 + p701 + p702 + p225 + p224 + p223 + p222 + p221 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p220 + p219 + p218 + p217 + p216 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p215 + p214 + p213 + p212 + p211 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p210 + p209 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p208 + p207 + p206 + p205 + p204 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p119 + p118 + p117 + p116 + p115 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p114 + p113 + p112 + p111 + p110 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p109 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p108 + p107 + p106 + p105 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p104 + p103 + p102 + p101 + p100 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99)
lola: after: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: LP says that atomic proposition is always true: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: place invariant simplifies atomic proposition
lola: before: (p3059 + p3058 + p3057 + p3056 + p3055 + p3054 <= p3089 + p3088 + p3087 + p3086 + p3085 + p3084)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p3000 + p3001 + p3002 + p3003 + p3004 + p3005 <= p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1588 + p1587 + p1586 + p1585 + p1584 + p1582 + p1581 + p1580 + p1579 + p1578 + p1577 + p1576 + p1575 + p1574 + p1573 + p1572 + p1570 + p1569 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1560 + p1558 + p1557 + p1556 + p1555 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1546 + p1545 + p1544 + p1543 + p1542 + p1541 + p1540 + p1539 + p1538 + p1537 + p1536 + p1534 + p1533 + p1532 + p1531 + p1530 + p1529 + p1528 + p1527 + p1526 + p1525 + p1524 + p1535 + p1547 + p1559 + p1571 + p1583 + p1595)
lola: after: (p3000 + p3001 + p3002 + p3003 + p3004 + p3005 <= 5)
lola: LP says that atomic proposition is always true: (p3000 + p3001 + p3002 + p3003 + p3004 + p3005 <= 5)
lola: LP says that atomic proposition is always false: (2 <= p3048 + p3049 + p3050 + p3051 + p3052 + p3053)
lola: LP says that atomic proposition is always true: (p1343 + p1342 + p1341 + p1340 + p1339 + p1338 + p1337 + p1336 + p1335 + p1334 + p1332 + p1331 + p1330 + p1329 + p1327 + p1326 + p1325 + p1324 + p1322 + p1321 + p1320 + p1319 + p1317 + p1316 + p1315 + p1314 + p1318 + p1323 + p1328 + p1333 <= p1313 + p1312 + p1311 + p1310 + p1309 + p1308)
lola: place invariant simplifies atomic proposition
lola: before: (p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 <= p3018 + p3019 + p3020 + p3021 + p3022 + p3023 + p3024 + p3025 + p3026 + p3027 + p3028 + p3029 + p3030 + p3031 + p3032 + p3033 + p3034 + p3035 + p3036 + p3037 + p3038 + p3039 + p3040 + p3041 + p3042 + p3043 + p3044 + p3045 + p3046 + p3047)
lola: after: (20 <= p3018 + p3019 + p3020 + p3021 + p3022 + p3023 + p3024 + p3025 + p3026 + p3027 + p3028 + p3029 + p3030 + p3031 + p3032 + p3033 + p3034 + p3035 + p3036 + p3037 + p3038 + p3039 + p3040 + p3041 + p3042 + p3043 + p3044 + p3045 + p3046 + p3047)
lola: LP says that atomic proposition is always false: (20 <= p3018 + p3019 + p3020 + p3021 + p3022 + p3023 + p3024 + p3025 + p3026 + p3027 + p3028 + p3029 + p3030 + p3031 + p3032 + p3033 + p3034 + p3035 + p3036 + p3037 + p3038 + p3039 + p3040 + p3041 + p3042 + p3043 + p3044 + p3045 + p3046 + p3047)
lola: LP says that atomic proposition is always true: (p1313 + p1312 + p1311 + p1310 + p1309 + p1308 <= p3060 + p3061 + p3062 + p3063 + p3064 + p3065)
lola: place invariant simplifies atomic proposition
lola: before: (p3006 + p3007 + p3008 + p3009 + p3010 + p3011 <= p3089 + p3088 + p3087 + p3086 + p3085 + p3084)
lola: after: (p3006 + p3007 + p3008 + p3009 + p3010 + p3011 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p3048 + p3049 + p3050 + p3051 + p3052 + p3053 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p398 + p397 + p1000 + p1001 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p369 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p368 + p367 + p366 + p365 + p364 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p363 + p362 + p361 + p360 + p359 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p1104 + p333 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p1140 + p317 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p700 + p701 + p702 + p225 + p224 + p223 + p222 + p221 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p220 + p219 + p218 + p217 + p216 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p215 + p214 + p213 + p212 + p211 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p210 + p209 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p208 + p207 + p206 + p205 + p204 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p119 + p118 + p117 + p116 + p115 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p114 + p113 + p112 + p111 + p110 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p109 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p108 + p107 + p106 + p105 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p104 + p103 + p102 + p101 + p100 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99)
lola: after: (p3048 + p3049 + p3050 + p3051 + p3052 + p3053 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: LP says that atomic proposition is always true: (p3048 + p3049 + p3050 + p3051 + p3052 + p3053 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523)
lola: after: (0 <= 19)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= p3059 + p3058 + p3057 + p3056 + p3055 + p3054)
lola: after: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= 0)
lola: LP says that atomic proposition is always true: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p5 + p4 + p3 + p2 + p1 + p0 <= p1594 + p1593 + p1592 + p1591 + p1590 + p1589 + p1588 + p1587 + p1586 + p1585 + p1584 + p1582 + p1581 + p1580 + p1579 + p1578 + p1577 + p1576 + p1575 + p1574 + p1573 + p1572 + p1570 + p1569 + p1568 + p1567 + p1566 + p1565 + p1564 + p1563 + p1562 + p1561 + p1560 + p1558 + p1557 + p1556 + p1555 + p1554 + p1553 + p1552 + p1551 + p1550 + p1549 + p1548 + p1546 + p1545 + p1544 + p1543 + p1542 + p1541 + p1540 + p1539 + p1538 + p1537 + p1536 + p1534 + p1533 + p1532 + p1531 + p1530 + p1529 + p1528 + p1527 + p1526 + p1525 + p1524 + p1535 + p1547 + p1559 + p1571 + p1583 + p1595)
lola: after: (0 <= 5)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (p3048 + p3049 + p3050 + p3051 + p3052 + p3053 <= p5 + p4 + p3 + p2 + p1 + p0)
lola: after: (p3048 + p3049 + p3050 + p3051 + p3052 + p3053 <= 0)
lola: LP says that atomic proposition is always true: (p3048 + p3049 + p3050 + p3051 + p3052 + p3053 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p1344 + p1345 + p1346 + p1347 + p1348 + p1349 + p1350 + p1351 + p1352 + p1353 + p1354 + p1355 + p1356 + p1357 + p1358 + p1359 + p1360 + p1361 + p1362 + p1363 + p1364 + p1365 + p1366 + p1367 + p1368 + p1369 + p1370 + p1371 + p1372 + p1373 + p1374 + p1375 + p1376 + p1377 + p1378 + p1379 + p1380 + p1381 + p1382 + p1383 + p1384 + p1385 + p1386 + p1387 + p1388 + p1389 + p1390 + p1391 + p1392 + p1393 + p1394 + p1395 + p1396 + p1397 + p1398 + p1399 + p1400 + p1401 + p1402 + p1403 + p1404 + p1405 + p1406 + p1407 + p1408 + p1409 + p1410 + p1411 + p1412 + p1413 + p1414 + p1415 + p1416 + p1417 + p1418 + p1419 + p1420 + p1421 + p1422 + p1423 + p1424 + p1425 + p1426 + p1427 + p1428 + p1429 + p1430 + p1431 + p1432 + p1433 + p1434 + p1435 + p1436 + p1437 + p1438 + p1439 + p1440 + p1441 + p1442 + p1443 + p1444 + p1445 + p1446 + p1447 + p1448 + p1449 + p1450 + p1451 + p1452 + p1453 + p1454 + p1455 + p1456 + p1457 + p1458 + p1459 + p1460 + p1461 + p1462 + p1463 + p1464 + p1465 + p1466 + p1467 + p1468 + p1469 + p1470 + p1471 + p1472 + p1473 + p1474 + p1475 + p1476 + p1477 + p1478 + p1479 + p1480 + p1481 + p1482 + p1483 + p1484 + p1485 + p1486 + p1487 + p1488 + p1489 + p1490 + p1491 + p1492 + p1493 + p1494 + p1495 + p1496 + p1497 + p1498 + p1499 + p1500 + p1501 + p1502 + p1503 + p1504 + p1505 + p1506 + p1507 + p1508 + p1509 + p1510 + p1511 + p1512 + p1513 + p1514 + p1515 + p1516 + p1517 + p1518 + p1519 + p1520 + p1521 + p1522 + p1523 <= p3089 + p3088 + p3087 + p3086 + p3085 + p3084)
lola: after: (20 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p3060 + p3061 + p3062 + p3063 + p3064 + p3065 <= p3059 + p3058 + p3057 + p3056 + p3055 + p3054)
lola: after: (p3060 + p3061 + p3062 + p3063 + p3064 + p3065 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p5 + p4 + p3 + p2 + p1 + p0 <= p1702 + p1701 + p1699 + p1698 + p1696 + p1695 + p1693 + p1692 + p1690 + p1689 + p1687 + p1686 + p1684 + p1683 + p1681 + p1680 + p1678 + p1677 + p1675 + p1674 + p1672 + p1671 + p1669 + p1668 + p1666 + p1665 + p1663 + p1662 + p1660 + p1659 + p1657 + p1656 + p1654 + p1653 + p1651 + p1650 + p1648 + p1647 + p1645 + p1644 + p1642 + p1641 + p1639 + p1638 + p1636 + p1635 + p1633 + p1632 + p1630 + p1629 + p1627 + p1626 + p1624 + p1623 + p1621 + p1620 + p1618 + p1617 + p1615 + p1614 + p1612 + p1611 + p1609 + p1608 + p1606 + p1605 + p1603 + p1602 + p1600 + p1599 + p1597 + p1596 + p1598 + p1601 + p1604 + p1607 + p1610 + p1613 + p1616 + p1619 + p1622 + p1625 + p1628 + p1631 + p1634 + p1637 + p1640 + p1643 + p1646 + p1649 + p1652 + p1655 + p1658 + p1661 + p1664 + p1667 + p1670 + p1673 + p1676 + p1679 + p1682 + p1685 + p1688 + p1691 + p1694 + p1697 + p1700 + p1703)
lola: after: (0 <= 25)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p398 + p397 + p1000 + p1001 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p369 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p368 + p367 + p366 + p365 + p364 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p363 + p362 + p361 + p360 + p359 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p1104 + p333 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p1140 + p317 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p700 + p701 + p702 + p225 + p224 + p223 + p222 + p221 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p220 + p219 + p218 + p217 + p216 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p215 + p214 + p213 + p212 + p211 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p210 + p209 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p208 + p207 + p206 + p205 + p204 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p119 + p118 + p117 + p116 + p115 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p114 + p113 + p112 + p111 + p110 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p109 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p108 + p107 + p106 + p105 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p104 + p103 + p102 + p101 + p100 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99)
lola: after: (1 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: LP says that atomic proposition is always false: (1 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: place invariant simplifies atomic proposition
lola: before: (p1313 + p1312 + p1311 + p1310 + p1309 + p1308 <= p1896 + p1895 + p1902 + p1894 + p1893 + p1892 + p1891 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1860 + p1914 + p1859 + p1858 + p1857 + p1856 + p1855 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1824 + p1823 + p1822 + p1821 + p1820 + p1938 + p1819 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1788 + p1787 + p1786 + p1785 + p1950 + p1784 + p1783 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1752 + p1751 + p1750 + p1962 + p1963 + p1964 + p1965 + p1966 + p1967 + p1968 + p1749 + p1748 + p1747 + p1746 + p1740 + p1974 + p1734 + p1728 + p1722 + p1716 + p1715 + p1980 + p1714 + p1713 + p1712 + p1711 + p1710 + p1986 + p1704 + p1992 + p1998 + p1999 + p2994 + p2988 + p2982 + p2000 + p2001 + p2002 + p2003 + p2004 + p2976 + p2010 + p2975 + p2974 + p2973 + p2016 + p2972 + p2971 + p2970 + p2022 + p2964 + p2028 + p2958 + p2034 + p2035 + p2036 + p2037 + p2038 + p2039 + p2040 + p2952 + p2046 + p2052 + p2946 + p2058 + p2940 + p2064 + p2939 + p2938 + p2937 + p2070 + p2071 + p2072 + p2073 + p2074 + p2075 + p2076 + p2936 + p2935 + p2934 + p2082 + p2928 + p2922 + p2916 + p2910 + p2088 + p2094 + p2904 + p2903 + p2902 + p2901 + p2900 + p2899 + p2898 + p2892 + p2886 + p2880 + p2874 + p2100 + p2868 + p2106 + p2107 + p2108 + p2109 + p2867 + p2866 + p2865 + p2864 + p2863 + p2110 + p2111 + p2112 + p2862 + p2118 + p2856 + p2850 + p2124 + p2844 + p2838 + p2832 + p2831 + p2830 + p2130 + p2829 + p2828 + p2827 + p2826 + p2820 + p2136 + p2814 + p2808 + p2802 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2154 + p2160 + p2796 + p2795 + p2166 + p2794 + p2793 + p2792 + p2791 + p2790 + p2172 + p2784 + p2778 + p2772 + p2766 + p2760 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2759 + p2758 + p2757 + p2756 + p2755 + p2190 + p2754 + p2748 + p2742 + p2736 + p2730 + p2196 + p2724 + p2723 + p2722 + p2721 + p2720 + p2719 + p2718 + p2712 + p2706 + p2700 + p2694 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2676 + p2670 + p2664 + p2658 + p2652 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2640 + p2634 + p2628 + p2622 + p2616 + p2202 + p2615 + p2614 + p2613 + p2612 + p2611 + p2208 + p2610 + p2604 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2598 + p2592 + p2586 + p2226 + p2580 + p2579 + p2578 + p2232 + p2577 + p2576 + p2575 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2544 + p2543 + p2542 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2541 + p2540 + p2262 + p2539 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2274 + p2508 + p2507 + p2506 + p2280 + p2505 + p2504 + p2503 + p2502 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2298 + p2496 + p2490 + p2484 + p2478 + p2472 + p2471 + p2470 + p2469 + p2468 + p2467 + p2466 + p2460 + p2454 + p2448 + p2442 + p2436 + p2435 + p2434 + p2433 + p2432 + p2431 + p2430 + p2424 + p2418 + p2412 + p2406 + p2400 + p2399 + p2398 + p2397 + p2396 + p2395 + p2394 + p2388 + p2382 + p2376 + p2370 + p2364 + p2363 + p2362 + p2304 + p2361 + p2360 + p2359 + p2358 + p2352 + p2346 + p2340 + p2334 + p2328 + p2327 + p2326 + p2310 + p2325 + p2324 + p2323 + p2322 + p2316 + p2315 + p2317 + p2318 + p2319 + p2320 + p2321 + p2314 + p2313 + p2312 + p2311 + p2329 + p2330 + p2331 + p2332 + p2333 + p2335 + p2336 + p2337 + p2338 + p2339 + p2341 + p2342 + p2343 + p2344 + p2345 + p2347 + p2348 + p2349 + p2350 + p2351 + p2353 + p2354 + p2355 + p2356 + p2357 + p2309 + p2308 + p2307 + p2306 + p2305 + p2303 + p2302 + p2301 + p2300 + p2365 + p2366 + p2367 + p2368 + p2369 + p2371 + p2372 + p2373 + p2374 + p2375 + p2377 + p2378 + p2379 + p2380 + p2381 + p2383 + p2384 + p2385 + p2386 + p2387 + p2389 + p2390 + p2391 + p2392 + p2393 + p2401 + p2402 + p2403 + p2404 + p2405 + p2407 + p2408 + p2409 + p2410 + p2411 + p2413 + p2414 + p2415 + p2416 + p2417 + p2419 + p2420 + p2421 + p2422 + p2423 + p2425 + p2426 + p2427 + p2428 + p2429 + p2437 + p2438 + p2439 + p2440 + p2441 + p2443 + p2444 + p2445 + p2446 + p2447 + p2449 + p2450 + p2451 + p2452 + p2453 + p2455 + p2456 + p2457 + p2458 + p2459 + p2461 + p2462 + p2463 + p2464 + p2465 + p2473 + p2474 + p2475 + p2476 + p2477 + p2479 + p2480 + p2481 + p2482 + p2483 + p2485 + p2486 + p2487 + p2488 + p2489 + p2491 + p2492 + p2493 + p2494 + p2495 + p2497 + p2498 + p2499 + p2299 + p2297 + p2296 + p2295 + p2294 + p2293 + p2285 + p2500 + p2501 + p2284 + p2283 + p2282 + p2281 + p2279 + p2278 + p2277 + p2509 + p2276 + p2275 + p2273 + p2272 + p2271 + p2510 + p2511 + p2512 + p2513 + p2270 + p2515 + p2516 + p2517 + p2518 + p2519 + p2269 + p2521 + p2522 + p2523 + p2524 + p2525 + p2267 + p2527 + p2528 + p2529 + p2530 + p2531 + p2266 + p2533 + p2534 + p2535 + p2536 + p2537 + p2265 + p2264 + p2263 + p2261 + p2260 + p2259 + p2258 + p2257 + p2249 + p2248 + p2247 + p2246 + p2545 + p2546 + p2547 + p2548 + p2549 + p2245 + p2551 + p2552 + p2553 + p2554 + p2555 + p2243 + p2557 + p2558 + p2559 + p2560 + p2561 + p2242 + p2563 + p2564 + p2565 + p2566 + p2567 + p2241 + p2569 + p2570 + p2571 + p2572 + p2573 + p2240 + p2239 + p2237 + p2236 + p2235 + p2234 + p2233 + p2231 + p2230 + p2229 + p2228 + p2227 + p2581 + p2582 + p2583 + p2584 + p2585 + p2225 + p2587 + p2588 + p2589 + p2590 + p2591 + p2224 + p2593 + p2594 + p2595 + p2596 + p2597 + p2223 + p2599 + p2222 + p2221 + p2213 + p2212 + p2211 + p2210 + p2600 + p2601 + p2602 + p2603 + p2605 + p2606 + p2607 + p2608 + p2609 + p2209 + p2207 + p2206 + p2205 + p2204 + p2203 + p2201 + p2617 + p2618 + p2619 + p2620 + p2621 + p2200 + p2623 + p2624 + p2625 + p2626 + p2627 + p2629 + p2630 + p2631 + p2632 + p2633 + p2635 + p2636 + p2637 + p2638 + p2639 + p2641 + p2642 + p2643 + p2644 + p2645 + p2653 + p2654 + p2655 + p2656 + p2657 + p2659 + p2660 + p2661 + p2662 + p2663 + p2665 + p2666 + p2667 + p2668 + p2669 + p2671 + p2672 + p2673 + p2674 + p2675 + p2677 + p2678 + p2679 + p2680 + p2681 + p2689 + p2690 + p2691 + p2692 + p2693 + p2695 + p2696 + p2697 + p2698 + p2699 + p2701 + p2702 + p2703 + p2704 + p2705 + p2707 + p2708 + p2709 + p2710 + p2711 + p2713 + p2714 + p2715 + p2716 + p2717 + p2199 + p2198 + p2197 + p2725 + p2726 + p2727 + p2728 + p2729 + p2195 + p2731 + p2732 + p2733 + p2734 + p2735 + p2194 + p2737 + p2738 + p2739 + p2740 + p2741 + p2193 + p2743 + p2744 + p2745 + p2746 + p2747 + p2192 + p2749 + p2750 + p2751 + p2752 + p2753 + p2191 + p2189 + p2188 + p2187 + p2186 + p2185 + p2177 + p2761 + p2762 + p2763 + p2764 + p2765 + p2176 + p2767 + p2768 + p2769 + p2770 + p2771 + p2175 + p2773 + p2774 + p2775 + p2776 + p2777 + p2174 + p2779 + p2780 + p2781 + p2782 + p2783 + p2173 + p2785 + p2786 + p2787 + p2788 + p2789 + p2171 + p2170 + p2169 + p2168 + p2167 + p2165 + p2164 + p2797 + p2798 + p2799 + p2163 + p2162 + p2161 + p2159 + p2158 + p2157 + p2156 + p2155 + p2153 + p2152 + p2151 + p2150 + p2149 + p2141 + p2140 + p2800 + p2801 + p2139 + p2803 + p2804 + p2805 + p2806 + p2807 + p2138 + p2809 + p2810 + p2811 + p2812 + p2813 + p2137 + p2815 + p2816 + p2817 + p2818 + p2819 + p2135 + p2821 + p2822 + p2823 + p2824 + p2825 + p2134 + p2133 + p2132 + p2131 + p2129 + p2128 + p2127 + p2833 + p2834 + p2835 + p2836 + p2837 + p2126 + p2839 + p2840 + p2841 + p2842 + p2843 + p2125 + p2845 + p2846 + p2847 + p2848 + p2849 + p2123 + p2851 + p2852 + p2853 + p2854 + p2855 + p2122 + p2121 + p2120 + p2857 + p2119 + p2858 + p2117 + p2859 + p2116 + p2115 + p2860 + p2861 + p2114 + p2113 + p2105 + p2104 + p2103 + p2869 + p2102 + p2101 + p2870 + p2871 + p2872 + p2873 + p2875 + p2876 + p2877 + p2878 + p2879 + p2881 + p2882 + p2883 + p2884 + p2885 + p2887 + p2888 + p2889 + p2890 + p2891 + p2893 + p2894 + p2895 + p2896 + p2897 + p2905 + p2906 + p2907 + p2908 + p2909 + p2099 + p2098 + p2097 + p2096 + p2095 + p2093 + p2092 + p2091 + p2090 + p2089 + p2087 + p2911 + p2912 + p2913 + p2914 + p2915 + p2086 + p2917 + p2918 + p2919 + p2920 + p2921 + p2085 + p2923 + p2924 + p2925 + p2926 + p2927 + p2084 + p2929 + p2930 + p2931 + p2083 + p2932 + p2933 + p2081 + p2080 + p2079 + p2078 + p2077 + p2069 + p2068 + p2067 + p2066 + p2065 + p2063 + p2062 + p2061 + p2941 + p2942 + p2060 + p2943 + p2059 + p2944 + p2945 + p2057 + p2056 + p2055 + p2947 + p2948 + p2054 + p2949 + p2053 + p2051 + p2050 + p2049 + p2048 + p2047 + p2950 + p2951 + p2045 + p2044 + p2043 + p2953 + p2954 + p2042 + p2955 + p2041 + p2956 + p2957 + p2033 + p2032 + p2031 + p2959 + p2030 + p2960 + p2961 + p2029 + p2962 + p2963 + p2027 + p2026 + p2025 + p2965 + p2966 + p2024 + p2967 + p2023 + p2968 + p2969 + p2021 + p2020 + p2019 + p2018 + p2017 + p2015 + p2014 + p2013 + p2012 + p2011 + p2009 + p2008 + p2007 + p2977 + p2978 + p2006 + p2979 + p2005 + p2980 + p2981 + p2983 + p2984 + p2985 + p2986 + p2987 + p2989 + p2990 + p2991 + p2992 + p2993 + p2995 + p2996 + p2997 + p2998 + p2999 + p1997 + p1996 + p1995 + p1994 + p1993 + p1991 + p1990 + p1989 + p1988 + p1987 + p1705 + p1706 + p1707 + p1708 + p1709 + p1985 + p1984 + p1983 + p1982 + p1981 + p1979 + p1978 + p1717 + p1718 + p1719 + p1720 + p1721 + p1977 + p1723 + p1724 + p1725 + p1726 + p1727 + p1976 + p1729 + p1730 + p1731 + p1732 + p1733 + p1975 + p1735 + p1736 + p1737 + p1738 + p1739 + p1973 + p1741 + p1742 + p1743 + p1744 + p1745 + p1972 + p1971 + p1970 + p1969 + p1961 + p1960 + p1959 + p1753 + p1754 + p1755 + p1756 + p1757 + p1958 + p1759 + p1760 + p1761 + p1762 + p1763 + p1957 + p1765 + p1766 + p1767 + p1768 + p1769 + p1955 + p1771 + p1772 + p1773 + p1774 + p1775 + p1954 + p1777 + p1778 + p1779 + p1780 + p1781 + p1953 + p1952 + p1951 + p1949 + p1948 + p1947 + p1946 + p1789 + p1790 + p1791 + p1792 + p1793 + p1945 + p1795 + p1796 + p1797 + p1798 + p1799 + p1943 + p1801 + p1802 + p1803 + p1804 + p1805 + p1942 + p1807 + p1808 + p1809 + p1810 + p1811 + p1941 + p1813 + p1814 + p1815 + p1816 + p1817 + p1940 + p1939 + p1937 + p1936 + p1935 + p1934 + p1933 + p1825 + p1826 + p1827 + p1828 + p1829 + p1925 + p1831 + p1832 + p1833 + p1834 + p1835 + p1924 + p1837 + p1838 + p1839 + p1840 + p1841 + p1923 + p1843 + p1844 + p1845 + p1846 + p1847 + p1922 + p1849 + p1850 + p1851 + p1852 + p1853 + p1921 + p1919 + p1918 + p1917 + p1916 + p1915 + p1913 + p1861 + p1862 + p1863 + p1864 + p1865 + p1912 + p1867 + p1868 + p1869 + p1870 + p1871 + p1911 + p1873 + p1874 + p1875 + p1876 + p1877 + p1910 + p1879 + p1880 + p1881 + p1882 + p1883 + p1909 + p1885 + p1886 + p1887 + p1888 + p1889 + p1907 + p1906 + p1905 + p1904 + p1903 + p1901 + p1900 + p1897 + p1898 + p1899)
lola: after: (p1313 + p1312 + p1311 + p1310 + p1309 + p1308 <= p1896 + p1895 + p1902 + p1894 + p1893 + p1892 + p1891 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1860 + p1914 + p1859 + p1858 + p1857 + p1856 + p1855 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1824 + p1823 + p1822 + p1821 + p1820 + p1938 + p1819 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1788 + p1787 + p1786 + p1785 + p1950 + p1784 + p1783 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1752 + p1751 + p1750 + p1962 + p1963 + p1964 + p1965 + p1966 + p1967 + p1968 + p1749 + p1748 + p1747 + p1746 + p1740 + p1974 + p1734 + p1728 + p1722 + p1716 + p1715 + p1980 + p1714 + p1713 + p1712 + p1711 + p1710 + p1986 + p1704 + p1992 + p1998 + p1999 + p2994 + p2988 + p2982 + p2000 + p2001 + p2002 + p2003 + p2004 + p2976 + p2010 + p2975 + p2974 + p2973 + p2016 + p2972 + p2971 + p2970 + p2022 + p2964 + p2028 + p2958 + p2034 + p2035 + p2036 + p2037 + p2038 + p2039 + p2040 + p2952 + p2046 + p2052 + p2946 + p2058 + p2940 + p2064 + p2939 + p2938 + p2937 + p2070 + p2071 + p2072 + p2073 + p2074 + p2075 + p2076 + p2936 + p2935 + p2934 + p2082 + p2928 + p2922 + p2916 + p2910 + p2088 + p2094 + p2904 + p2903 + p2902 + p2901 + p2900 + p2899 + p2898 + p2892 + p2886 + p2880 + p2874 + p2100 + p2868 + p2106 + p2107 + p2108 + p2109 + p2867 + p2866 + p2865 + p2864 + p2863 + p2110 + p2111 + p2112 + p2862 + p2118 + p2856 + p2850 + p2124 + p2844 + p2838 + p2832 + p2831 + p2830 + p2130 + p2829 + p2828 + p2827 + p2826 + p2820 + p2136 + p2814 + p2808 + p2802 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2154 + p2160 + p2796 + p2795 + p2166 + p2794 + p2793 + p2792 + p2791 + p2790 + p2172 + p2784 + p2778 + p2772 + p2766 + p2760 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2759 + p2758 + p2757 + p2756 + p2755 + p2190 + p2754 + p2748 + p2742 + p2736 + p2730 + p2196 + p2724 + p2723 + p2722 + p2721 + p2720 + p2719 + p2718 + p2712 + p2706 + p2700 + p2694 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2676 + p2670 + p2664 + p2658 + p2652 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2640 + p2634 + p2628 + p2622 + p2616 + p2202 + p2615 + p2614 + p2613 + p2612 + p2611 + p2208 + p2610 + p2604 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2598 + p2592 + p2586 + p2226 + p2580 + p2579 + p2578 + p2232 + p2577 + p2576 + p2575 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2544 + p2543 + p2542 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2541 + p2540 + p2262 + p2539 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2274 + p2508 + p2507 + p2506 + p2280 + p2505 + p2504 + p2503 + p2502 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2298 + p2496 + p2490 + p2484 + p2478 + p2472 + p2471 + p2470 + p2469 + p2468 + p2467 + p2466 + p2460 + p2454 + p2448 + p2442 + p2436 + p2435 + p2434 + p2433 + p2432 + p2431 + p2430 + p2424 + p2418 + p2412 + p2406 + p2400 + p2399 + p2398 + p2397 + p2396 + p2395 + p2394 + p2388 + p2382 + p2376 + p2370 + p2364 + p2363 + p2362 + p2304 + p2361 + p2360 + p2359 + p2358 + p2352 + p2346 + p2340 + p2334 + p2328 + p2327 + p2326 + p2310 + p2325 + p2324 + p2323 + p2322 + p2316)
lola: LP says that atomic proposition is always true: (p1313 + p1312 + p1311 + p1310 + p1309 + p1308 <= p1896 + p1895 + p1902 + p1894 + p1893 + p1892 + p1891 + p1890 + p1908 + p1884 + p1878 + p1872 + p1866 + p1860 + p1914 + p1859 + p1858 + p1857 + p1856 + p1855 + p1920 + p1854 + p1848 + p1842 + p1836 + p1830 + p1926 + p1927 + p1928 + p1929 + p1930 + p1931 + p1932 + p1824 + p1823 + p1822 + p1821 + p1820 + p1938 + p1819 + p1818 + p1812 + p1806 + p1800 + p1944 + p1794 + p1788 + p1787 + p1786 + p1785 + p1950 + p1784 + p1783 + p1782 + p1776 + p1770 + p1956 + p1764 + p1758 + p1752 + p1751 + p1750 + p1962 + p1963 + p1964 + p1965 + p1966 + p1967 + p1968 + p1749 + p1748 + p1747 + p1746 + p1740 + p1974 + p1734 + p1728 + p1722 + p1716 + p1715 + p1980 + p1714 + p1713 + p1712 + p1711 + p1710 + p1986 + p1704 + p1992 + p1998 + p1999 + p2994 + p2988 + p2982 + p2000 + p2001 + p2002 + p2003 + p2004 + p2976 + p2010 + p2975 + p2974 + p2973 + p2016 + p2972 + p2971 + p2970 + p2022 + p2964 + p2028 + p2958 + p2034 + p2035 + p2036 + p2037 + p2038 + p2039 + p2040 + p2952 + p2046 + p2052 + p2946 + p2058 + p2940 + p2064 + p2939 + p2938 + p2937 + p2070 + p2071 + p2072 + p2073 + p2074 + p2075 + p2076 + p2936 + p2935 + p2934 + p2082 + p2928 + p2922 + p2916 + p2910 + p2088 + p2094 + p2904 + p2903 + p2902 + p2901 + p2900 + p2899 + p2898 + p2892 + p2886 + p2880 + p2874 + p2100 + p2868 + p2106 + p2107 + p2108 + p2109 + p2867 + p2866 + p2865 + p2864 + p2863 + p2110 + p2111 + p2112 + p2862 + p2118 + p2856 + p2850 + p2124 + p2844 + p2838 + p2832 + p2831 + p2830 + p2130 + p2829 + p2828 + p2827 + p2826 + p2820 + p2136 + p2814 + p2808 + p2802 + p2142 + p2143 + p2144 + p2145 + p2146 + p2147 + p2148 + p2154 + p2160 + p2796 + p2795 + p2166 + p2794 + p2793 + p2792 + p2791 + p2790 + p2172 + p2784 + p2778 + p2772 + p2766 + p2760 + p2178 + p2179 + p2180 + p2181 + p2182 + p2183 + p2184 + p2759 + p2758 + p2757 + p2756 + p2755 + p2190 + p2754 + p2748 + p2742 + p2736 + p2730 + p2196 + p2724 + p2723 + p2722 + p2721 + p2720 + p2719 + p2718 + p2712 + p2706 + p2700 + p2694 + p2688 + p2687 + p2686 + p2685 + p2684 + p2683 + p2682 + p2676 + p2670 + p2664 + p2658 + p2652 + p2651 + p2650 + p2649 + p2648 + p2647 + p2646 + p2640 + p2634 + p2628 + p2622 + p2616 + p2202 + p2615 + p2614 + p2613 + p2612 + p2611 + p2208 + p2610 + p2604 + p2214 + p2215 + p2216 + p2217 + p2218 + p2219 + p2220 + p2598 + p2592 + p2586 + p2226 + p2580 + p2579 + p2578 + p2232 + p2577 + p2576 + p2575 + p2238 + p2574 + p2568 + p2562 + p2556 + p2244 + p2550 + p2544 + p2543 + p2542 + p2250 + p2251 + p2252 + p2253 + p2254 + p2255 + p2256 + p2541 + p2540 + p2262 + p2539 + p2538 + p2532 + p2526 + p2268 + p2520 + p2514 + p2274 + p2508 + p2507 + p2506 + p2280 + p2505 + p2504 + p2503 + p2502 + p2286 + p2287 + p2288 + p2289 + p2290 + p2291 + p2292 + p2298 + p2496 + p2490 + p2484 + p2478 + p2472 + p2471 + p2470 + p2469 + p2468 + p2467 + p2466 + p2460 + p2454 + p2448 + p2442 + p2436 + p2435 + p2434 + p2433 + p2432 + p2431 + p2430 + p2424 + p2418 + p2412 + p2406 + p2400 + p2399 + p2398 + p2397 + p2396 + p2395 + p2394 + p2388 + p2382 + p2376 + p2370 + p2364 + p2363 + p2362 + p2304 + p2361 + p2360 + p2359 + p2358 + p2352 + p2346 + p2340 + p2334 + p2328 + p2327 + p2326 + p2310 + p2325 + p2324 + p2323 + p2322 + p2316)
lola: place invariant simplifies atomic proposition
lola: before: (1 <= p5 + p4 + p3 + p2 + p1 + p0)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p398 + p397 + p1000 + p1001 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p369 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p368 + p367 + p366 + p365 + p364 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p363 + p362 + p361 + p360 + p359 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p1104 + p333 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p1140 + p317 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p700 + p701 + p702 + p225 + p224 + p223 + p222 + p221 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p220 + p219 + p218 + p217 + p216 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p215 + p214 + p213 + p212 + p211 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p210 + p209 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p208 + p207 + p206 + p205 + p204 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p119 + p118 + p117 + p116 + p115 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p114 + p113 + p112 + p111 + p110 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p109 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p108 + p107 + p106 + p105 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p104 + p103 + p102 + p101 + p100 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99 <= p5 + p4 + p3 + p2 + p1 + p0)
lola: after: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 <= 0)
lola: LP says that atomic proposition is always true: (p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= p5 + p4 + p3 + p2 + p1 + p0)
lola: after: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= 0)
lola: LP says that atomic proposition is always true: (p3012 + p3013 + p3014 + p3015 + p3016 + p3017 <= 0)
lola: place invariant simplifies atomic proposition
lola: before: (p3018 + p3019 + p3020 + p3021 + p3022 + p3023 + p3024 + p3025 + p3026 + p3027 + p3028 + p3029 + p3030 + p3031 + p3032 + p3033 + p3034 + p3035 + p3036 + p3037 + p3038 + p3039 + p3040 + p3041 + p3042 + p3043 + p3044 + p3045 + p3046 + p3047 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p398 + p397 + p1000 + p1001 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p369 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p368 + p367 + p366 + p365 + p364 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p363 + p362 + p361 + p360 + p359 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p1104 + p333 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p1140 + p317 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p700 + p701 + p702 + p225 + p224 + p223 + p222 + p221 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p220 + p219 + p218 + p217 + p216 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p215 + p214 + p213 + p212 + p211 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p210 + p209 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p208 + p207 + p206 + p205 + p204 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p119 + p118 + p117 + p116 + p115 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p114 + p113 + p112 + p111 + p110 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p109 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p108 + p107 + p106 + p105 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p104 + p103 + p102 + p101 + p100 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99)
lola: after: (p3018 + p3019 + p3020 + p3021 + p3022 + p3023 + p3024 + p3025 + p3026 + p3027 + p3028 + p3029 + p3030 + p3031 + p3032 + p3033 + p3034 + p3035 + p3036 + p3037 + p3038 + p3039 + p3040 + p3041 + p3042 + p3043 + p3044 + p3045 + p3046 + p3047 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: place invariant simplifies atomic proposition
lola: before: (p3059 + p3058 + p3057 + p3056 + p3055 + p3054 <= p6 + p7 + p8 + p9 + p10 + p11)
lola: after: (0 <= p6 + p7 + p8 + p9 + p10 + p11)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (2 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027 + p399 + p398 + p397 + p1000 + p1001 + p1002 + p396 + p1003 + p1004 + p1005 + p1006 + p1007 + p1008 + p1009 + p395 + p1010 + p1011 + p1012 + p1013 + p1014 + p394 + p1015 + p1016 + p1017 + p1018 + p1019 + p1020 + p393 + p1021 + p1022 + p1023 + p1024 + p1025 + p1026 + p392 + p391 + p390 + p1032 + p1033 + p1034 + p1035 + p1036 + p1037 + p1038 + p1039 + p389 + p1040 + p1041 + p1042 + p1043 + p1044 + p388 + p1045 + p1046 + p1047 + p1048 + p1049 + p1050 + p387 + p1051 + p1052 + p1053 + p1054 + p1055 + p1056 + p386 + p1057 + p1058 + p1059 + p1060 + p1061 + p1062 + p385 + p384 + p378 + p377 + p376 + p375 + p374 + p373 + p372 + p371 + p370 + p1068 + p1069 + p1070 + p1071 + p1072 + p1073 + p1074 + p1075 + p1076 + p1077 + p1078 + p1079 + p1080 + p1081 + p1082 + p1083 + p1084 + p1085 + p1086 + p1087 + p1088 + p1089 + p1090 + p1091 + p1092 + p1093 + p1094 + p1095 + p1096 + p1097 + p1098 + p369 + p400 + p401 + p402 + p403 + p404 + p405 + p406 + p407 + p408 + p409 + p410 + p411 + p412 + p413 + p414 + p368 + p367 + p366 + p365 + p364 + p420 + p421 + p422 + p423 + p424 + p425 + p426 + p427 + p428 + p429 + p430 + p431 + p432 + p433 + p434 + p435 + p436 + p437 + p438 + p439 + p440 + p441 + p442 + p443 + p444 + p445 + p446 + p447 + p448 + p449 + p450 + p363 + p362 + p361 + p360 + p359 + p456 + p457 + p458 + p459 + p460 + p461 + p462 + p463 + p464 + p465 + p466 + p467 + p468 + p469 + p470 + p471 + p472 + p473 + p474 + p475 + p476 + p477 + p478 + p479 + p480 + p481 + p482 + p483 + p484 + p485 + p486 + p358 + p357 + p356 + p355 + p354 + p353 + p352 + p492 + p493 + p494 + p495 + p496 + p497 + p498 + p499 + p351 + p350 + p349 + p348 + p342 + p341 + p340 + p339 + p338 + p337 + p336 + p335 + p334 + p1104 + p333 + p1105 + p1106 + p1107 + p1108 + p1109 + p1110 + p332 + p1111 + p1112 + p1113 + p1114 + p1115 + p1116 + p331 + p1117 + p1118 + p1119 + p1120 + p1121 + p1122 + p330 + p1123 + p1124 + p1125 + p1126 + p1127 + p1128 + p1129 + p329 + p1130 + p1131 + p1132 + p1133 + p1134 + p328 + p327 + p326 + p325 + p324 + p323 + p322 + p321 + p320 + p319 + p318 + p1140 + p317 + p1141 + p1142 + p1143 + p1144 + p1145 + p1146 + p316 + p1147 + p1148 + p1149 + p1150 + p1151 + p1152 + p315 + p1153 + p1154 + p1155 + p1156 + p1157 + p1158 + p1159 + p314 + p1160 + p1161 + p1162 + p1163 + p1164 + p313 + p1165 + p1166 + p1167 + p1168 + p1169 + p1170 + p312 + p306 + p305 + p304 + p303 + p1176 + p1177 + p1178 + p1179 + p1180 + p1181 + p1182 + p1183 + p1184 + p1185 + p1186 + p1187 + p1188 + p1189 + p1190 + p1191 + p1192 + p1193 + p1194 + p1195 + p1196 + p1197 + p1198 + p1199 + p500 + p501 + p502 + p503 + p504 + p505 + p506 + p507 + p508 + p509 + p510 + p511 + p512 + p513 + p514 + p515 + p516 + p517 + p518 + p519 + p520 + p521 + p522 + p302 + p301 + p300 + p528 + p529 + p530 + p531 + p532 + p533 + p534 + p535 + p536 + p537 + p538 + p539 + p540 + p541 + p542 + p543 + p544 + p545 + p546 + p547 + p548 + p549 + p550 + p551 + p552 + p553 + p554 + p555 + p556 + p557 + p558 + p564 + p565 + p566 + p567 + p568 + p569 + p570 + p571 + p572 + p573 + p574 + p575 + p576 + p577 + p578 + p579 + p580 + p581 + p582 + p583 + p584 + p585 + p586 + p587 + p588 + p589 + p590 + p591 + p592 + p593 + p594 + p1200 + p1201 + p1202 + p1203 + p1204 + p1205 + p1206 + p1212 + p1213 + p1214 + p1215 + p1216 + p1217 + p1218 + p1219 + p1220 + p1221 + p1222 + p1223 + p1224 + p1225 + p1226 + p1227 + p1228 + p1229 + p1230 + p1231 + p1232 + p1233 + p1234 + p1235 + p1236 + p1237 + p1238 + p1239 + p1240 + p1241 + p1242 + p1248 + p1249 + p1250 + p1251 + p1252 + p1253 + p1254 + p1255 + p1256 + p1257 + p1258 + p1259 + p1260 + p1261 + p1262 + p1263 + p1264 + p1265 + p1266 + p1267 + p1268 + p1269 + p1270 + p1271 + p1272 + p1273 + p1274 + p1275 + p1276 + p1277 + p1278 + p1284 + p1285 + p1286 + p1287 + p1288 + p1289 + p1290 + p1291 + p1292 + p1293 + p1294 + p1295 + p1296 + p1297 + p1298 + p1299 + p600 + p601 + p602 + p603 + p604 + p605 + p606 + p607 + p608 + p609 + p610 + p611 + p612 + p613 + p614 + p615 + p616 + p617 + p618 + p619 + p620 + p621 + p622 + p623 + p624 + p625 + p626 + p627 + p628 + p629 + p630 + p299 + p298 + p297 + p296 + p636 + p637 + p638 + p639 + p640 + p641 + p642 + p643 + p644 + p645 + p646 + p647 + p648 + p649 + p650 + p651 + p652 + p653 + p654 + p655 + p656 + p657 + p658 + p659 + p660 + p661 + p662 + p663 + p664 + p665 + p666 + p295 + p294 + p293 + p292 + p291 + p672 + p673 + p674 + p675 + p676 + p677 + p678 + p679 + p680 + p681 + p682 + p683 + p684 + p685 + p686 + p687 + p688 + p689 + p290 + p690 + p691 + p692 + p693 + p694 + p695 + p696 + p697 + p698 + p699 + p289 + p1300 + p1301 + p1302 + p288 + p1303 + p1304 + p1305 + p1306 + p1307 + p287 + p286 + p285 + p284 + p283 + p282 + p281 + p280 + p279 + p278 + p277 + p276 + p270 + p269 + p268 + p267 + p266 + p265 + p264 + p263 + p262 + p261 + p260 + p259 + p258 + p257 + p256 + p255 + p254 + p253 + p252 + p251 + p250 + p249 + p248 + p247 + p246 + p245 + p244 + p243 + p242 + p241 + p240 + p234 + p233 + p232 + p231 + p230 + p229 + p228 + p227 + p226 + p700 + p701 + p702 + p225 + p224 + p223 + p222 + p221 + p708 + p709 + p710 + p711 + p712 + p713 + p714 + p715 + p716 + p717 + p718 + p719 + p720 + p721 + p722 + p723 + p724 + p725 + p726 + p727 + p728 + p729 + p730 + p731 + p732 + p733 + p734 + p735 + p736 + p737 + p738 + p220 + p219 + p218 + p217 + p216 + p744 + p745 + p746 + p747 + p748 + p749 + p750 + p751 + p752 + p753 + p754 + p755 + p756 + p757 + p758 + p759 + p760 + p761 + p762 + p763 + p764 + p765 + p766 + p767 + p768 + p769 + p770 + p771 + p772 + p773 + p774 + p215 + p214 + p213 + p212 + p211 + p780 + p781 + p782 + p783 + p784 + p785 + p786 + p787 + p788 + p789 + p210 + p209 + p790 + p791 + p792 + p793 + p794 + p795 + p796 + p797 + p798 + p799 + p208 + p207 + p206 + p205 + p204 + p800 + p801 + p802 + p803 + p804 + p805 + p806 + p807 + p808 + p809 + p810 + p816 + p817 + p818 + p819 + p820 + p821 + p822 + p823 + p824 + p825 + p826 + p827 + p828 + p829 + p830 + p831 + p832 + p833 + p834 + p835 + p836 + p837 + p838 + p839 + p840 + p841 + p842 + p843 + p844 + p845 + p846 + p852 + p853 + p854 + p855 + p856 + p857 + p858 + p859 + p860 + p861 + p862 + p863 + p864 + p865 + p866 + p867 + p868 + p869 + p870 + p871 + p872 + p873 + p874 + p875 + p876 + p877 + p878 + p879 + p880 + p881 + p882 + p888 + p889 + p890 + p891 + p892 + p893 + p894 + p895 + p896 + p897 + p898 + p899 + p198 + p197 + p196 + p195 + p194 + p193 + p192 + p191 + p190 + p189 + p188 + p187 + p186 + p185 + p184 + p183 + p182 + p181 + p180 + p179 + p178 + p177 + p176 + p175 + p174 + p173 + p172 + p171 + p170 + p169 + p168 + p162 + p161 + p160 + p159 + p158 + p157 + p156 + p155 + p154 + p153 + p152 + p151 + p150 + p149 + p148 + p147 + p146 + p145 + p144 + p143 + p142 + p141 + p140 + p139 + p138 + p137 + p136 + p135 + p134 + p133 + p132 + p126 + p125 + p124 + p123 + p122 + p121 + p120 + p900 + p901 + p902 + p903 + p904 + p905 + p906 + p907 + p908 + p909 + p910 + p911 + p912 + p913 + p914 + p915 + p916 + p917 + p918 + p119 + p118 + p117 + p116 + p115 + p924 + p925 + p926 + p927 + p928 + p929 + p930 + p931 + p932 + p933 + p934 + p935 + p936 + p937 + p938 + p939 + p940 + p941 + p942 + p943 + p944 + p945 + p946 + p947 + p948 + p949 + p950 + p951 + p952 + p953 + p954 + p114 + p113 + p112 + p111 + p110 + p12 + p13 + p14 + p15 + p16 + p17 + p18 + p109 + p960 + p961 + p962 + p963 + p964 + p965 + p966 + p967 + p968 + p969 + p108 + p107 + p106 + p105 + p24 + p25 + p26 + p27 + p28 + p29 + p970 + p971 + p972 + p973 + p974 + p975 + p976 + p977 + p978 + p979 + p30 + p31 + p32 + p33 + p34 + p35 + p36 + p37 + p38 + p39 + p980 + p981 + p982 + p983 + p984 + p985 + p986 + p987 + p988 + p989 + p40 + p41 + p42 + p43 + p44 + p45 + p46 + p47 + p48 + p49 + p104 + p103 + p102 + p101 + p100 + p990 + p996 + p997 + p998 + p999 + p50 + p51 + p52 + p53 + p54 + p60 + p61 + p62 + p63 + p64 + p65 + p66 + p67 + p68 + p69 + p70 + p71 + p72 + p73 + p74 + p75 + p76 + p77 + p78 + p79 + p80 + p81 + p82 + p83 + p84 + p85 + p86 + p87 + p88 + p89 + p90 + p96 + p97 + p98 + p99)
lola: after: (2 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: LP says that atomic proposition is always false: (2 <= p95 + p94 + p93 + p92 + p91 + p59 + p58 + p57 + p56 + p55 + p995 + p994 + p993 + p992 + p991 + p23 + p22 + p21 + p20 + p19 + p959 + p958 + p957 + p956 + p955 + p923 + p922 + p921 + p920 + p919 + p127 + p128 + p129 + p130 + p131 + p163 + p164 + p165 + p166 + p167 + p199 + p887 + p886 + p885 + p884 + p883 + p851 + p850 + p849 + p848 + p847 + p815 + p814 + p813 + p812 + p811 + p200 + p201 + p202 + p203 + p779 + p778 + p777 + p776 + p775 + p743 + p742 + p741 + p740 + p739 + p707 + p706 + p705 + p704 + p703 + p235 + p236 + p237 + p238 + p239 + p271 + p272 + p273 + p274 + p275 + p671 + p670 + p669 + p668 + p667 + p635 + p634 + p633 + p632 + p631 + p1283 + p1282 + p1281 + p1280 + p1279 + p1247 + p1246 + p1245 + p1244 + p1243 + p1211 + p1210 + p1209 + p1208 + p1207 + p599 + p598 + p597 + p596 + p595 + p563 + p562 + p561 + p560 + p559 + p527 + p526 + p525 + p524 + p523 + p1175 + p1174 + p1173 + p1172 + p307 + p308 + p309 + p310 + p311 + p1171 + p1139 + p1138 + p1137 + p1136 + p1135 + p1103 + p1102 + p1101 + p1100 + p343 + p344 + p345 + p346 + p347 + p491 + p490 + p489 + p488 + p487 + p455 + p454 + p453 + p452 + p451 + p419 + p418 + p417 + p416 + p415 + p1099 + p1067 + p1066 + p1065 + p1064 + p379 + p380 + p381 + p382 + p383 + p1063 + p1031 + p1030 + p1029 + p1028 + p1027)
lola: place invariant simplifies atomic proposition
lola: before: (p3089 + p3088 + p3087 + p3086 + p3085 + p3084 <= p6 + p7 + p8 + p9 + p10 + p11)
lola: after: (0 <= p6 + p7 + p8 + p9 + p10 + p11)
lola: always true
lola: E ((TRUE U ((1 <= p3006 + p3007 + p3008 + p3009 + p3010 + p3011)))) : E (X (E (G ((1 <= p6 + p7 + p8 + p9 + p10 + p11))))) : (A ((TRUE U FALSE)) AND E (F (FALSE))) : E (G (A (G (TRUE)))) : A (F (NOT(E (X (TRUE))))) : A (G (E (X (TRUE)))) : A (F (NOT(E (G (TRUE))))) : A (F (((p3006 + p3007 + p3008 + p3009 + p3010 + p3011 <= 0) AND E (G ((2 <= p3000 + p3001 + p3002 + p3003 + p3004 + p3005)))))) : A (G (A (G (())))) : A (X (NOT(A (G (TRUE))))) : NOT((TRUE AND A ((TRUE U FALSE)))) : E (G ((p3060 + p3061 + p3062 + p3063 + p3064 + p3065 <= 0))) : NOT(E (F (()))) : (() OR (FALSE OR E (G (())))) : E (G (A (X (())))) : NOT((E (F (())) AND NOT(E (G ((2 <= p3006 + p3007 + p3008 + p3009 + p3010 + p3011))))))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:288
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:130
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:139
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:326
lola: rewrite Frontend/Parser/formula_rewrite.k:329
lola: rewrite Frontend/Parser/formula_rewrite.k:297
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 253 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 295 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: DEADLOCK
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: DEADLOCK
lola: processed formula length: 8
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 322 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-10 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 354 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 393 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 443 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 506 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola:
========================================
FORMULA NeoElection-COL-5-CTLCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 590 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (X (E (G ((1 <= p6 + p7 + p8 + p9 + p10 + p11)))))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation from a successor
lola: rewrite Frontend/Parser/formula_rewrite.k:627
lola: processed formula: (1 <= p6 + p7 + p8 + p9 + p10 + p11)
lola: processed formula length: 36
lola: 69 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EXEG)
lola: state space: using reachability graph (EXEG version) (--search=depth)
lola: state space: using invisibility based stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: 195482 markings, 307884 edges, 39096 markings/sec, 0 secs
lola: 399412 markings, 634326 edges, 40786 markings/sec, 5 secs
lola: 581031 markings, 934997 edges, 36324 markings/sec, 10 secs
lola: 755692 markings, 1225941 edges, 34932 markings/sec, 15 secs
lola: 872597 markings, 1438146 edges, 23381 markings/sec, 20 secs
lola: 978909 markings, 1631595 edges, 21262 markings/sec, 25 secs
lola: 1083659 markings, 1830602 edges, 20950 markings/sec, 30 secs
lola: 1232123 markings, 2081589 edges, 29693 markings/sec, 35 secs
lola: 1442671 markings, 2435898 edges, 42110 markings/sec, 40 secs
lola: 1648162 markings, 2780330 edges, 41098 markings/sec, 45 secs
lola: 1806568 markings, 3050742 edges, 31681 markings/sec, 50 secs
lola: 2011633 markings, 3389426 edges, 41013 markings/sec, 55 secs
lola: 2166381 markings, 3645112 edges, 30950 markings/sec, 60 secs
lola: 2312851 markings, 3893640 edges, 29294 markings/sec, 65 secs
lola: 2452855 markings, 4131533 edges, 28001 markings/sec, 70 secs
lola: 2552179 markings, 4319872 edges, 19865 markings/sec, 75 secs
lola: 2651295 markings, 4514307 edges, 19823 markings/sec, 80 secs
lola: 2789739 markings, 4753027 edges, 27689 markings/sec, 85 secs
lola: 2989690 markings, 5098654 edges, 39990 markings/sec, 90 secs
lola: 3186089 markings, 5427877 edges, 39280 markings/sec, 95 secs
lola: 3342254 markings, 5701750 edges, 31233 markings/sec, 100 secs
lola: 3479719 markings, 5944573 edges, 27493 markings/sec, 105 secs
lola: 3586098 markings, 6142105 edges, 21276 markings/sec, 110 secs
lola: 3677060 markings, 6326381 edges, 18192 markings/sec, 115 secs
lola: 3772233 markings, 6514990 edges, 19035 markings/sec, 120 secs
lola: 3887648 markings, 6726878 edges, 23083 markings/sec, 125 secs
lola: 3970326 markings, 6900874 edges, 16536 markings/sec, 130 secs
lola: 4065374 markings, 7090564 edges, 19010 markings/sec, 135 secs
lola: 4236383 markings, 7382066 edges, 34202 markings/sec, 140 secs
lola: 4355243 markings, 7604354 edges, 23772 markings/sec, 145 secs
lola: 4447102 markings, 7792567 edges, 18372 markings/sec, 150 secs
lola: 4559530 markings, 8002195 edges, 22486 markings/sec, 155 secs
lola: 4641826 markings, 8178100 edges, 16459 markings/sec, 160 secs
lola: 4739486 markings, 8375133 edges, 19532 markings/sec, 165 secs
lola: 4813211 markings, 8538831 edges, 14745 markings/sec, 170 secs
lola: 4899915 markings, 8719025 edges, 17341 markings/sec, 175 secs
lola: 4978480 markings, 8886513 edges, 15713 markings/sec, 180 secs
lola: 5063195 markings, 9068878 edges, 16943 markings/sec, 185 secs
lola: 5150360 markings, 9248619 edges, 17433 markings/sec, 190 secs
lola: 5216764 markings, 9407871 edges, 13281 markings/sec, 195 secs
lola: 5286137 markings, 9572165 edges, 13875 markings/sec, 200 secs
lola: 5350925 markings, 9727908 edges, 12958 markings/sec, 205 secs
lola: 5433418 markings, 9889854 edges, 16499 markings/sec, 210 secs
lola: 5511712 markings, 10043577 edges, 15659 markings/sec, 215 secs
lola: 5560602 markings, 10175547 edges, 9778 markings/sec, 220 secs
lola: 5634485 markings, 10324334 edges, 14777 markings/sec, 225 secs
lola: 5776401 markings, 10573079 edges, 28383 markings/sec, 230 secs
lola: 5968532 markings, 10911813 edges, 38426 markings/sec, 235 secs
lola: 6157330 markings, 11247971 edges, 37760 markings/sec, 240 secs
lola: 6256293 markings, 11448816 edges, 19793 markings/sec, 245 secs
lola: 6345114 markings, 11628659 edges, 17764 markings/sec, 250 secs
lola: 6430044 markings, 11797185 edges, 16986 markings/sec, 255 secs
lola: 6509656 markings, 11960051 edges, 15922 markings/sec, 260 secs
lola: 6590844 markings, 12133733 edges, 16238 markings/sec, 265 secs
lola: 6704367 markings, 12342244 edges, 22705 markings/sec, 270 secs
lola: 6825793 markings, 12569483 edges, 24285 markings/sec, 275 secs
lola: 6957972 markings, 12818203 edges, 26436 markings/sec, 280 secs
lola: 7113701 markings, 13100491 edges, 31146 markings/sec, 285 secs
lola: 7198240 markings, 13277848 edges, 16908 markings/sec, 290 secs
lola: 7278667 markings, 13448109 edges, 16085 markings/sec, 295 secs
lola: 7369253 markings, 13620335 edges, 18117 markings/sec, 300 secs
lola: 7449662 markings, 13780537 edges, 16082 markings/sec, 305 secs
lola: 7534856 markings, 13954927 edges, 17039 markings/sec, 310 secs
lola: 7674275 markings, 14197014 edges, 27884 markings/sec, 315 secs
lola: 7876400 markings, 14544331 edges, 40425 markings/sec, 320 secs
lola: 8080353 markings, 14888624 edges, 40791 markings/sec, 325 secs
lola: 8275843 markings, 15235670 edges, 39098 markings/sec, 330 secs
lola: 8470224 markings, 15582320 edges, 38876 markings/sec, 335 secs
lola: 8651562 markings, 15915490 edges, 36268 markings/sec, 340 secs
lola: 8826400 markings, 16246569 edges, 34968 markings/sec, 345 secs
lola: 8994351 markings, 16591494 edges, 33590 markings/sec, 350 secs
lola: 9170057 markings, 16948403 edges, 35141 markings/sec, 355 secs
lola: 9371031 markings, 17307545 edges, 40195 markings/sec, 360 secs
lola: 9567762 markings, 17660862 edges, 39346 markings/sec, 365 secs
lola: 9750848 markings, 17988833 edges, 36617 markings/sec, 370 secs
lola: 9931713 markings, 18313644 edges, 36173 markings/sec, 375 secs
lola: 10108537 markings, 18639805 edges, 35365 markings/sec, 380 secs
lola: 10286370 markings, 18945434 edges, 35567 markings/sec, 385 secs
lola: 10421116 markings, 19178379 edges, 26949 markings/sec, 390 secs
lola: 10584181 markings, 19462173 edges, 32613 markings/sec, 395 secs
lola: 10737442 markings, 19729783 edges, 30652 markings/sec, 400 secs
lola: 10898176 markings, 20010488 edges, 32147 markings/sec, 405 secs
lola: 11024116 markings, 20242635 edges, 25188 markings/sec, 410 secs
lola: 11169402 markings, 20507916 edges, 29057 markings/sec, 415 secs
lola: 11319440 markings, 20777741 edges, 30008 markings/sec, 420 secs
lola: 11409271 markings, 20966654 edges, 17966 markings/sec, 425 secs
lola: 11491379 markings, 21139720 edges, 16422 markings/sec, 430 secs
lola: 11581720 markings, 21316404 edges, 18068 markings/sec, 435 secs
lola: 11674001 markings, 21496042 edges, 18456 markings/sec, 440 secs
lola: 11764814 markings, 21683763 edges, 18163 markings/sec, 445 secs
lola: 11906544 markings, 21938712 edges, 28346 markings/sec, 450 secs
lola: 12097550 markings, 22274997 edges, 38201 markings/sec, 455 secs
lola: 12275667 markings, 22604779 edges, 35623 markings/sec, 460 secs
lola: 12467052 markings, 22950882 edges, 38277 markings/sec, 465 secs
lola: 12610453 markings, 23210976 edges, 28680 markings/sec, 470 secs
lola: 12802409 markings, 23547926 edges, 38391 markings/sec, 475 secs
lola: 13024710 markings, 23926666 edges, 44460 markings/sec, 480 secs
lola: 13244095 markings, 24298373 edges, 43877 markings/sec, 485 secs
lola: 13453578 markings, 24668719 edges, 41897 markings/sec, 490 secs
lola: 13665460 markings, 25045847 edges, 42376 markings/sec, 495 secs
lola: 13870593 markings, 25419758 edges, 41027 markings/sec, 500 secs
lola: 14054280 markings, 25786395 edges, 36737 markings/sec, 505 secs
lola: 14239975 markings, 26158453 edges, 37139 markings/sec, 510 secs
lola: 14426033 markings, 26527234 edges, 37212 markings/sec, 515 secs
lola: 14634111 markings, 26889885 edges, 41616 markings/sec, 520 secs
lola: 14837402 markings, 27259681 edges, 40658 markings/sec, 525 secs
lola: 15042571 markings, 27627293 edges, 41034 markings/sec, 530 secs
lola: 15245010 markings, 27996484 edges, 40488 markings/sec, 535 secs
lola: 15403670 markings, 28278242 edges, 31732 markings/sec, 540 secs
lola: 15483025 markings, 28416044 edges, 15871 markings/sec, 545 secs
lola: 15550776 markings, 28541269 edges, 13550 markings/sec, 550 secs
lola: 15656178 markings, 28731297 edges, 21080 markings/sec, 555 secs
lola: 15733222 markings, 28868266 edges, 15409 markings/sec, 560 secs
lola: 15811346 markings, 29006052 edges, 15625 markings/sec, 565 secs
lola: 15868612 markings, 29118856 edges, 11453 markings/sec, 570 secs
lola: 15971755 markings, 29305398 edges, 20629 markings/sec, 575 secs
lola: 16035067 markings, 29428500 edges, 12662 markings/sec, 580 secs
lola: local time limit reached - aborting
lola:
preliminary result: unknown unknown no yes unknown unknown no unknown yes no yes unknown yes yes yes yes
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: unknown unknown no yes unknown unknown no unknown yes no yes unknown yes yes yes yes
lola: memory consumption: 1021604 KB
lola: time consumption: 613 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 591 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (G (NOT DEADLOCK))
lola: ========================================
lola: SUBTASK
lola: checking absence of deadlocks
lola: Planning: workflow for deadlock check: search (--findpath=off,--siphontrap=off)
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using deadlock preserving stubborn set method with insertion algorithm(--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The net is not deadlock-free.
lola: 276 markings, 275 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 738 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F (((1 <= p3006 + p3007 + p3008 + p3009 + p3010 + p3011))))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: processed formula: E (F (((1 <= p3006 + p3007 + p3008 + p3009 + p3010 + p3011))))
lola: processed formula length: 62
lola: 69 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: rewrite Frontend/Parser/formula_rewrite.k:625
lola: formula 0: ((1 <= p3006 + p3007 + p3008 + p3009 + p3010 + p3011))
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to NeoElection-COL-5-CTLCardinality-12-0.sara
lola: state equation: calling and running sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: 14 markings, 13 edges
lola: ========================================
FORMULA NeoElection-COL-5-CTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 985 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (DEADLOCK))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:659
lola: rewrite Frontend/Parser/formula_rewrite.k:683
lola: processed formula: NOT DEADLOCK
lola: processed formula length: 12
lola: 70 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: 105585 markings, 468152 edges, 21117 markings/sec, 0 secs
lola: 196537 markings, 928626 edges, 18190 markings/sec, 5 secs
lola: 292686 markings, 1379311 edges, 19230 markings/sec, 10 secs
lola: 383887 markings, 1805799 edges, 18240 markings/sec, 15 secs
lola: 461229 markings, 2220622 edges, 15468 markings/sec, 20 secs
lola: 541506 markings, 2633651 edges, 16055 markings/sec, 25 secs
lola: 626268 markings, 3061284 edges, 16952 markings/sec, 30 secs
lola: 720022 markings, 3513693 edges, 18751 markings/sec, 35 secs
lola: 816667 markings, 3974223 edges, 19329 markings/sec, 40 secs
lola: 901139 markings, 4439242 edges, 16894 markings/sec, 45 secs
lola: 992291 markings, 4901524 edges, 18230 markings/sec, 50 secs
lola: 1085047 markings, 5354614 edges, 18551 markings/sec, 55 secs
lola: 1175545 markings, 5816337 edges, 18100 markings/sec, 60 secs
lola: 1263266 markings, 6279009 edges, 17544 markings/sec, 65 secs
lola: 1352334 markings, 6728478 edges, 17814 markings/sec, 70 secs
lola: 1450717 markings, 7191482 edges, 19677 markings/sec, 75 secs
lola: 1534108 markings, 7653156 edges, 16678 markings/sec, 80 secs
lola: 1624125 markings, 8101996 edges, 18003 markings/sec, 85 secs
lola: 1719216 markings, 8559571 edges, 19018 markings/sec, 90 secs
lola: 1807879 markings, 8999457 edges, 17733 markings/sec, 95 secs
lola: 1891312 markings, 9456716 edges, 16687 markings/sec, 100 secs
lola: 1981402 markings, 9910133 edges, 18018 markings/sec, 105 secs
lola: 2080074 markings, 10373944 edges, 19734 markings/sec, 110 secs
lola: 2164250 markings, 10835000 edges, 16835 markings/sec, 115 secs
lola: 2252716 markings, 11275321 edges, 17693 markings/sec, 120 secs
lola: 2343555 markings, 11730036 edges, 18168 markings/sec, 125 secs
lola: 2415091 markings, 12154223 edges, 14307 markings/sec, 130 secs
lola: 2478309 markings, 12575849 edges, 12644 markings/sec, 135 secs
lola: 2543005 markings, 12985628 edges, 12939 markings/sec, 140 secs
lola: 2609058 markings, 13392307 edges, 13211 markings/sec, 145 secs
lola: 2689022 markings, 13800183 edges, 15993 markings/sec, 150 secs
lola: 2774172 markings, 14244778 edges, 17030 markings/sec, 155 secs
lola: 2861377 markings, 14687517 edges, 17441 markings/sec, 160 secs
lola: 2950174 markings, 15136797 edges, 17759 markings/sec, 165 secs
lola: 3035375 markings, 15595991 edges, 17040 markings/sec, 170 secs
lola: 3123242 markings, 16041077 edges, 17573 markings/sec, 175 secs
lola: 3207125 markings, 16484460 edges, 16777 markings/sec, 180 secs
lola: 3279438 markings, 16923016 edges, 14463 markings/sec, 185 secs
lola: 3351544 markings, 17361737 edges, 14421 markings/sec, 190 secs
lola: 3422654 markings, 17773498 edges, 14222 markings/sec, 195 secs
lola: 3506240 markings, 18188221 edges, 16717 markings/sec, 200 secs
lola: 3587670 markings, 18593639 edges, 16286 markings/sec, 205 secs
lola: 3661324 markings, 19000056 edges, 14731 markings/sec, 210 secs
lola: 3747657 markings, 19438420 edges, 17267 markings/sec, 215 secs
lola: 3831992 markings, 19864247 edges, 16867 markings/sec, 220 secs
lola: 3902995 markings, 20270065 edges, 14201 markings/sec, 225 secs
lola: 3965233 markings, 20666473 edges, 12448 markings/sec, 230 secs
lola: 4035119 markings, 21066652 edges, 13977 markings/sec, 235 secs
lola: 4112926 markings, 21484513 edges, 15561 markings/sec, 240 secs
lola: 4194951 markings, 21895626 edges, 16405 markings/sec, 245 secs
lola: 4271475 markings, 22300185 edges, 15305 markings/sec, 250 secs
lola: 4347845 markings, 22703249 edges, 15274 markings/sec, 255 secs
lola: 4435318 markings, 23137803 edges, 17495 markings/sec, 260 secs
lola: 4522082 markings, 23573955 edges, 17353 markings/sec, 265 secs
lola: 4600709 markings, 24004838 edges, 15725 markings/sec, 270 secs
lola: 4686497 markings, 24439004 edges, 17158 markings/sec, 275 secs
lola: 4771520 markings, 24863999 edges, 17005 markings/sec, 280 secs
lola: 4847476 markings, 25279143 edges, 15191 markings/sec, 285 secs
lola: 4929327 markings, 25695852 edges, 16370 markings/sec, 290 secs
lola: 5016810 markings, 26117869 edges, 17497 markings/sec, 295 secs
lola: 5097158 markings, 26529816 edges, 16070 markings/sec, 300 secs
lola: 5171016 markings, 26928776 edges, 14772 markings/sec, 305 secs
lola: 5252697 markings, 27343071 edges, 16336 markings/sec, 310 secs
lola: 5332914 markings, 27761120 edges, 16043 markings/sec, 315 secs
lola: 5403718 markings, 28165824 edges, 14161 markings/sec, 320 secs
lola: 5464626 markings, 28556772 edges, 12182 markings/sec, 325 secs
lola: 5530698 markings, 28929395 edges, 13214 markings/sec, 330 secs
lola: 5595888 markings, 29306323 edges, 13038 markings/sec, 335 secs
lola: 5667743 markings, 29681897 edges, 14371 markings/sec, 340 secs
lola: 5746897 markings, 30094391 edges, 15831 markings/sec, 345 secs
lola: 5826437 markings, 30505757 edges, 15908 markings/sec, 350 secs
lola: 5894172 markings, 30912279 edges, 13547 markings/sec, 355 secs
lola: 5967776 markings, 31301140 edges, 14721 markings/sec, 360 secs
lola: 6037796 markings, 31693454 edges, 14004 markings/sec, 365 secs
lola: 6119402 markings, 32111582 edges, 16321 markings/sec, 370 secs
lola: 6195310 markings, 32540797 edges, 15182 markings/sec, 375 secs
lola: 6270981 markings, 32972102 edges, 15134 markings/sec, 380 secs
lola: 6347196 markings, 33386495 edges, 15243 markings/sec, 385 secs
lola: 6438143 markings, 33821440 edges, 18189 markings/sec, 390 secs
lola: 6520698 markings, 34259423 edges, 16511 markings/sec, 395 secs
lola: 6606853 markings, 34705237 edges, 17231 markings/sec, 400 secs
lola: 6693363 markings, 35140493 edges, 17302 markings/sec, 405 secs
lola: 6787661 markings, 35586313 edges, 18860 markings/sec, 410 secs
lola: 6867460 markings, 36027523 edges, 15960 markings/sec, 415 secs
lola: 6952689 markings, 36453785 edges, 17046 markings/sec, 420 secs
lola: 7041722 markings, 36892957 edges, 17807 markings/sec, 425 secs
lola: 7116940 markings, 37317694 edges, 15044 markings/sec, 430 secs
lola: 7183309 markings, 37740958 edges, 13274 markings/sec, 435 secs
lola: 7255840 markings, 38151538 edges, 14506 markings/sec, 440 secs
lola: 7328951 markings, 38570165 edges, 14622 markings/sec, 445 secs
lola: 7410721 markings, 38988718 edges, 16354 markings/sec, 450 secs
lola: 7498401 markings, 39434910 edges, 17536 markings/sec, 455 secs
lola: 7579470 markings, 39864452 edges, 16214 markings/sec, 460 secs
lola: 7651231 markings, 40291912 edges, 14352 markings/sec, 465 secs
lola: 7731538 markings, 40723906 edges, 16061 markings/sec, 470 secs
lola: 7816469 markings, 41161283 edges, 16986 markings/sec, 475 secs
lola: 7897305 markings, 41591304 edges, 16167 markings/sec, 480 secs
lola: 7967044 markings, 42007810 edges, 13948 markings/sec, 485 secs
lola: 8039821 markings, 42395522 edges, 14555 markings/sec, 490 secs
lola: 8115864 markings, 42792920 edges, 15209 markings/sec, 495 secs
lola: 8202938 markings, 43203966 edges, 17415 markings/sec, 500 secs
lola: 8277225 markings, 43617099 edges, 14857 markings/sec, 505 secs
lola: 8357305 markings, 44012386 edges, 16016 markings/sec, 510 secs
lola: 8439018 markings, 44424640 edges, 16343 markings/sec, 515 secs
lola: 8526071 markings, 44837231 edges, 17411 markings/sec, 520 secs
lola: 8599686 markings, 45245985 edges, 14723 markings/sec, 525 secs
lola: 8683990 markings, 45666806 edges, 16861 markings/sec, 530 secs
lola: 8772089 markings, 46106743 edges, 17620 markings/sec, 535 secs
lola: 8840426 markings, 46510190 edges, 13667 markings/sec, 540 secs
lola: 8901589 markings, 46913597 edges, 12233 markings/sec, 545 secs
lola: 8963314 markings, 47310855 edges, 12345 markings/sec, 550 secs
lola: 9029079 markings, 47718054 edges, 13153 markings/sec, 555 secs
lola: 9106813 markings, 48125452 edges, 15547 markings/sec, 560 secs
lola: 9192894 markings, 48571526 edges, 17216 markings/sec, 565 secs
lola: 9282117 markings, 49017491 edges, 17845 markings/sec, 570 secs
lola: 9366585 markings, 49481166 edges, 16894 markings/sec, 575 secs
lola: 9456706 markings, 49930633 edges, 18024 markings/sec, 580 secs
lola: 9543502 markings, 50374602 edges, 17359 markings/sec, 585 secs
lola: 9618128 markings, 50792176 edges, 14925 markings/sec, 590 secs
lola: 9685835 markings, 51224310 edges, 13541 markings/sec, 595 secs
lola: 9756976 markings, 51628553 edges, 14228 markings/sec, 600 secs
lola: 9827197 markings, 52037214 edges, 14044 markings/sec, 605 secs
lola: 9920277 markings, 52485152 edges, 18616 markings/sec, 610 secs
lola: 10002582 markings, 52933323 edges, 16461 markings/sec, 615 secs
lola: 10090563 markings, 53370962 edges, 17596 markings/sec, 620 secs
lola: 10179486 markings, 53817988 edges, 17785 markings/sec, 625 secs
lola: 10255612 markings, 54235712 edges, 15225 markings/sec, 630 secs
lola: 10323986 markings, 54668202 edges, 13675 markings/sec, 635 secs
lola: 10394161 markings, 55073569 edges, 14035 markings/sec, 640 secs
lola: 10462875 markings, 55477814 edges, 13743 markings/sec, 645 secs
lola: 10538042 markings, 55867438 edges, 15033 markings/sec, 650 secs
lola: 10610271 markings, 56252090 edges, 14446 markings/sec, 655 secs
lola: 10693805 markings, 56679442 edges, 16707 markings/sec, 660 secs
lola: 10767074 markings, 57085491 edges, 14654 markings/sec, 665 secs
lola: 10849752 markings, 57498565 edges, 16536 markings/sec, 670 secs
lola: 10931735 markings, 57909922 edges, 16397 markings/sec, 675 secs
lola: 11007957 markings, 58326211 edges, 15244 markings/sec, 680 secs
lola: 11089342 markings, 58739759 edges, 16277 markings/sec, 685 secs
lola: 11167292 markings, 59144325 edges, 15590 markings/sec, 690 secs
lola: 11236397 markings, 59537657 edges, 13821 markings/sec, 695 secs
lola: 11299763 markings, 59942937 edges, 12673 markings/sec, 700 secs
lola: 11370813 markings, 60347263 edges, 14210 markings/sec, 705 secs
lola: 11443173 markings, 60754530 edges, 14472 markings/sec, 710 secs
lola: 11524575 markings, 61185680 edges, 16280 markings/sec, 715 secs
lola: 11606342 markings, 61610494 edges, 16353 markings/sec, 720 secs
lola: 11680047 markings, 62037098 edges, 14741 markings/sec, 725 secs
lola: 11757921 markings, 62464377 edges, 15575 markings/sec, 730 secs
lola: 11832675 markings, 62877668 edges, 14951 markings/sec, 735 secs
lola: 11917532 markings, 63313690 edges, 16971 markings/sec, 740 secs
lola: 11992522 markings, 63740905 edges, 14998 markings/sec, 745 secs
lola: 12067890 markings, 64168520 edges, 15074 markings/sec, 750 secs
lola: 12144978 markings, 64586604 edges, 15418 markings/sec, 755 secs
lola: 12235496 markings, 65019578 edges, 18104 markings/sec, 760 secs
lola: 12316083 markings, 65447072 edges, 16117 markings/sec, 765 secs
lola: 12399796 markings, 65881141 edges, 16743 markings/sec, 770 secs
lola: 12483743 markings, 66306560 edges, 16789 markings/sec, 775 secs
lola: 12564889 markings, 66730487 edges, 16229 markings/sec, 780 secs
lola: 12630406 markings, 67126009 edges, 13103 markings/sec, 785 secs
lola: 12696414 markings, 67531314 edges, 13202 markings/sec, 790 secs
lola: 12767655 markings, 67946693 edges, 14248 markings/sec, 795 secs
lola: 12842628 markings, 68344296 edges, 14995 markings/sec, 800 secs
lola: 12929641 markings, 68783760 edges, 17403 markings/sec, 805 secs
lola: 13009683 markings, 69208023 edges, 16008 markings/sec, 810 secs
lola: 13080923 markings, 69633061 edges, 14248 markings/sec, 815 secs
lola: 13159769 markings, 70055820 edges, 15769 markings/sec, 820 secs
lola: 13242724 markings, 70486724 edges, 16591 markings/sec, 825 secs
lola: 13324722 markings, 70921506 edges, 16400 markings/sec, 830 secs
lola: 13397338 markings, 71351900 edges, 14523 markings/sec, 835 secs
lola: 13476866 markings, 71777708 edges, 15906 markings/sec, 840 secs
lola: 13564426 markings, 72214887 edges, 17512 markings/sec, 845 secs
lola: 13651037 markings, 72639274 edges, 17322 markings/sec, 850 secs
lola: 13728696 markings, 73068497 edges, 15532 markings/sec, 855 secs
lola: 13811224 markings, 73486058 edges, 16506 markings/sec, 860 secs
lola: 13898676 markings, 73900578 edges, 17490 markings/sec, 865 secs
lola: 13982922 markings, 74318173 edges, 16849 markings/sec, 870 secs
lola: 14059039 markings, 74739692 edges, 15223 markings/sec, 875 secs
lola: 14143975 markings, 75167570 edges, 16987 markings/sec, 880 secs
lola: 14224192 markings, 75576342 edges, 16043 markings/sec, 885 secs
lola: 14288692 markings, 75969449 edges, 12900 markings/sec, 890 secs
lola: 14346183 markings, 76360197 edges, 11498 markings/sec, 895 secs
lola: 14405475 markings, 76726459 edges, 11858 markings/sec, 900 secs
lola: 14466450 markings, 77102997 edges, 12195 markings/sec, 905 secs
lola: 14536889 markings, 77468603 edges, 14088 markings/sec, 910 secs
lola: 14615753 markings, 77879473 edges, 15773 markings/sec, 915 secs
lola: 14686983 markings, 78272037 edges, 14246 markings/sec, 920 secs
lola: 14755380 markings, 78664540 edges, 13679 markings/sec, 925 secs
lola: 14816314 markings, 79054347 edges, 12187 markings/sec, 930 secs
lola: 14884554 markings, 79443764 edges, 13648 markings/sec, 935 secs
lola: 14953844 markings, 79833418 edges, 13858 markings/sec, 940 secs
lola: 15027278 markings, 80227361 edges, 14687 markings/sec, 945 secs
lola: 15094095 markings, 80631419 edges, 13363 markings/sec, 950 secs
lola: 15158476 markings, 81026757 edges, 12876 markings/sec, 955 secs
lola: 15227141 markings, 81425581 edges, 13733 markings/sec, 960 secs
lola: 15309282 markings, 81830686 edges, 16428 markings/sec, 965 secs
lola: 15393190 markings, 82245825 edges, 16782 markings/sec, 970 secs
lola: 15467288 markings, 82656283 edges, 14820 markings/sec, 975 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes unknown no yes unknown no no unknown yes no yes unknown yes yes yes yes
lola: caught signal User defined signal 2 - aborting LoLA
lola:
preliminary result: yes unknown no yes unknown no no unknown yes no yes unknown yes yes yes yes
lola: memory consumption: 1743404 KB
lola: time consumption: 1598 seconds
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 14 will run for 985 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (G ((p3060 + p3061 + p3062 + p3063 + p3064 + p3065 <= 0)))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation
lola: processed formula: E (G ((p3060 + p3061 + p3062 + p3063 + p3064 + p3065 <= 0)))
lola: processed formula length: 60
lola: 68 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate is not possibly preserved.
lola: 2655 markings, 8924 edges
lola:
FORMULA NeoElection-COL-5-CTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 1969 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (((p3006 + p3007 + p3008 + p3009 + p3010 + p3011 <= 0) AND E (G ((2 <= p3000 + p3001 + p3002 + p3003 + p3004 + p3005))))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:724
lola: rewrite Frontend/Parser/formula_rewrite.k:732
lola: rewrite Frontend/Parser/formula_rewrite.k:297
========================================
lola: processed formula: A(TRUE U ((p3006 + p3007 + p3008 + p3009 + p3010 + p3011 <= 0) AND NOT(A(TRUE U (p3000 + p3001 + p3002 + p3003 + p3004 + p3005 <= 1)))))
lola: processed formula length: 136
lola: 71 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: 122705 markings, 503668 edges, 24541 markings/sec, 0 secs
lola: 230918 markings, 1048489 edges, 21643 markings/sec, 5 secs
lola: 339455 markings, 1556505 edges, 21707 markings/sec, 10 secs
lola: 448502 markings, 2078825 edges, 21809 markings/sec, 15 secs
lola: 560042 markings, 2576719 edges, 22308 markings/sec, 20 secs
lola: 670315 markings, 3113127 edges, 22055 markings/sec, 25 secs
lola: 785748 markings, 3674082 edges, 23087 markings/sec, 30 secs
lola: 898188 markings, 4197365 edges, 22488 markings/sec, 35 secs
lola: 1000018 markings, 4756100 edges, 20366 markings/sec, 40 secs
lola: 1105760 markings, 5293198 edges, 21148 markings/sec, 45 secs
lola: 1215192 markings, 5845360 edges, 21886 markings/sec, 50 secs
lola: 1322404 markings, 6376450 edges, 21442 markings/sec, 55 secs
lola: 1440299 markings, 6904300 edges, 23579 markings/sec, 60 secs
lola: 1552694 markings, 7463261 edges, 22479 markings/sec, 65 secs
lola: 1662144 markings, 8017018 edges, 21890 markings/sec, 70 secs
lola: 1769322 markings, 8553935 edges, 21436 markings/sec, 75 secs
lola: 1879560 markings, 9084943 edges, 22048 markings/sec, 80 secs
lola: 1988819 markings, 9631124 edges, 21852 markings/sec, 85 secs
lola: 2100133 markings, 10209887 edges, 22263 markings/sec, 90 secs
lola: 2209237 markings, 10792372 edges, 21821 markings/sec, 95 secs
lola: 2315790 markings, 11370206 edges, 21311 markings/sec, 100 secs
lola: 2435234 markings, 11914531 edges, 23889 markings/sec, 105 secs
lola: 2541444 markings, 12481127 edges, 21242 markings/sec, 110 secs
lola: 2648298 markings, 13017694 edges, 21371 markings/sec, 115 secs
lola: 2748314 markings, 13524033 edges, 20003 markings/sec, 120 secs
lola: 2849293 markings, 14015558 edges, 20196 markings/sec, 125 secs
lola: 2950441 markings, 14529975 edges, 20230 markings/sec, 130 secs
lola: 3053099 markings, 15091632 edges, 20532 markings/sec, 135 secs
lola: 3164173 markings, 15631371 edges, 22215 markings/sec, 140 secs
lola: 3263099 markings, 16190146 edges, 19785 markings/sec, 145 secs
lola: 3358261 markings, 16699819 edges, 19032 markings/sec, 150 secs
lola: 3451155 markings, 17199533 edges, 18579 markings/sec, 155 secs
lola: 3542667 markings, 17698943 edges, 18302 markings/sec, 160 secs
lola: 3636189 markings, 18197400 edges, 18704 markings/sec, 165 secs
lola: 3737180 markings, 18692419 edges, 20198 markings/sec, 170 secs
lola: 3837383 markings, 19192343 edges, 20041 markings/sec, 175 secs
lola: 3938130 markings, 19763260 edges, 20149 markings/sec, 180 secs
lola: 4041218 markings, 20316106 edges, 20618 markings/sec, 185 secs
lola: 4144055 markings, 20863168 edges, 20567 markings/sec, 190 secs
lola: 4247255 markings, 21401114 edges, 20640 markings/sec, 195 secs
lola: 4351238 markings, 21886708 edges, 20797 markings/sec, 200 secs
lola: 4456084 markings, 22375070 edges, 20969 markings/sec, 205 secs
lola: 4552304 markings, 22889906 edges, 19244 markings/sec, 210 secs
lola: 4655310 markings, 23406439 edges, 20601 markings/sec, 215 secs
lola: 4759875 markings, 23925203 edges, 20913 markings/sec, 220 secs
lola: 4864997 markings, 24436572 edges, 21024 markings/sec, 225 secs
lola: 4964647 markings, 24944180 edges, 19930 markings/sec, 230 secs
lola: 5065942 markings, 25466250 edges, 20259 markings/sec, 235 secs
lola: 5167935 markings, 25955123 edges, 20399 markings/sec, 240 secs
lola: 5259502 markings, 26487581 edges, 18313 markings/sec, 245 secs
lola: 5354217 markings, 26998262 edges, 18943 markings/sec, 250 secs
lola: 5448342 markings, 27500403 edges, 18825 markings/sec, 255 secs
lola: 5545543 markings, 27988329 edges, 19440 markings/sec, 260 secs
lola: 5642278 markings, 28492911 edges, 19347 markings/sec, 265 secs
lola: 5748864 markings, 28999186 edges, 21317 markings/sec, 270 secs
lola: 5844645 markings, 29529210 edges, 19156 markings/sec, 275 secs
lola: 5940844 markings, 30027353 edges, 19240 markings/sec, 280 secs
lola: 6036162 markings, 30531306 edges, 19064 markings/sec, 285 secs
lola: 6137981 markings, 31058816 edges, 20364 markings/sec, 290 secs
lola: 6243242 markings, 31608430 edges, 21052 markings/sec, 295 secs
lola: 6355886 markings, 32173662 edges, 22529 markings/sec, 300 secs
lola: 6464241 markings, 32759898 edges, 21671 markings/sec, 305 secs
lola: 6568039 markings, 33316846 edges, 20760 markings/sec, 310 secs
lola: 6674492 markings, 33900687 edges, 21291 markings/sec, 315 secs
lola: 6776740 markings, 34492039 edges, 20450 markings/sec, 320 secs
lola: 6882057 markings, 35081735 edges, 21063 markings/sec, 325 secs
lola: 6984329 markings, 35646845 edges, 20454 markings/sec, 330 secs
lola: 7086596 markings, 36228304 edges, 20453 markings/sec, 335 secs
lola: 7191474 markings, 36822159 edges, 20976 markings/sec, 340 secs
lola: 7295469 markings, 37411722 edges, 20799 markings/sec, 345 secs
lola: 7404475 markings, 37965996 edges, 21801 markings/sec, 350 secs
lola: 7522393 markings, 38518008 edges, 23584 markings/sec, 355 secs
lola: 7631885 markings, 39107887 edges, 21898 markings/sec, 360 secs
lola: 7743824 markings, 39678090 edges, 22388 markings/sec, 365 secs
lola: 7855117 markings, 40238491 edges, 22259 markings/sec, 370 secs
lola: 7969076 markings, 40798576 edges, 22792 markings/sec, 375 secs
lola: 8079022 markings, 41392514 edges, 21989 markings/sec, 380 secs
lola: 8192623 markings, 41954466 edges, 22720 markings/sec, 385 secs
lola: 8298330 markings, 42527467 edges, 21141 markings/sec, 390 secs
lola: 8402931 markings, 43096336 edges, 20920 markings/sec, 395 secs
lola: 8505489 markings, 43659064 edges, 20512 markings/sec, 400 secs
lola: 8611683 markings, 44215302 edges, 21239 markings/sec, 405 secs
lola: 8713373 markings, 44755009 edges, 20338 markings/sec, 410 secs
lola: 8826773 markings, 45303012 edges, 22680 markings/sec, 415 secs
lola: 8926960 markings, 45853849 edges, 20037 markings/sec, 420 secs
lola: 9024477 markings, 46371418 edges, 19503 markings/sec, 425 secs
lola: 9127737 markings, 46930963 edges, 20652 markings/sec, 430 secs
lola: 9237247 markings, 47493693 edges, 21902 markings/sec, 435 secs
lola: 9345706 markings, 48069670 edges, 21692 markings/sec, 440 secs
lola: 9452061 markings, 48665416 edges, 21271 markings/sec, 445 secs
lola: 9550497 markings, 49243880 edges, 19687 markings/sec, 450 secs
lola: 9654562 markings, 49831906 edges, 20813 markings/sec, 455 secs
lola: 9767324 markings, 50398747 edges, 22552 markings/sec, 460 secs
lola: 9873842 markings, 50960915 edges, 21304 markings/sec, 465 secs
lola: 9975620 markings, 51522876 edges, 20356 markings/sec, 470 secs
lola: 10079071 markings, 52087745 edges, 20690 markings/sec, 475 secs
lola: 10182999 markings, 52645060 edges, 20786 markings/sec, 480 secs
lola: 10287632 markings, 53199182 edges, 20927 markings/sec, 485 secs
lola: 10388732 markings, 53783170 edges, 20220 markings/sec, 490 secs
lola: 10494999 markings, 54346243 edges, 21253 markings/sec, 495 secs
lola: 10592213 markings, 54887718 edges, 19443 markings/sec, 500 secs
lola: 10690851 markings, 55468815 edges, 19728 markings/sec, 505 secs
lola: 10787098 markings, 56032980 edges, 19249 markings/sec, 510 secs
lola: 10883895 markings, 56584089 edges, 19359 markings/sec, 515 secs
lola: 10984758 markings, 57148300 edges, 20173 markings/sec, 520 secs
lola: 11090304 markings, 57704143 edges, 21109 markings/sec, 525 secs
lola: 11189886 markings, 58233014 edges, 19916 markings/sec, 530 secs
lola: 11278819 markings, 58762647 edges, 17787 markings/sec, 535 secs
lola: 11369688 markings, 59294021 edges, 18174 markings/sec, 540 secs
lola: 11460408 markings, 59802461 edges, 18144 markings/sec, 545 secs
lola: 11558027 markings, 60329151 edges, 19524 markings/sec, 550 secs
lola: 11650080 markings, 60839371 edges, 18411 markings/sec, 555 secs
lola: 11756626 markings, 61354016 edges, 21309 markings/sec, 560 secs
lola: 11857815 markings, 61909114 edges, 20238 markings/sec, 565 secs
lola: 11951543 markings, 62408564 edges, 18746 markings/sec, 570 secs
lola: 12045339 markings, 62912439 edges, 18759 markings/sec, 575 secs
lola: 12139274 markings, 63412757 edges, 18787 markings/sec, 580 secs
lola: 12237586 markings, 63927953 edges, 19662 markings/sec, 585 secs
lola: 12331594 markings, 64455074 edges, 18802 markings/sec, 590 secs
lola: 12427518 markings, 64971244 edges, 19185 markings/sec, 595 secs
lola: 12524253 markings, 65474778 edges, 19347 markings/sec, 600 secs
lola: 12613666 markings, 66014405 edges, 17883 markings/sec, 605 secs
lola: 12702651 markings, 66527084 edges, 17797 markings/sec, 610 secs
lola: 12796312 markings, 67053431 edges, 18732 markings/sec, 615 secs
lola: 12893425 markings, 67584001 edges, 19423 markings/sec, 620 secs
lola: 12989868 markings, 68124201 edges, 19289 markings/sec, 625 secs
lola: 13095781 markings, 68660199 edges, 21183 markings/sec, 630 secs
lola: 13195287 markings, 69225873 edges, 19901 markings/sec, 635 secs
lola: 13295841 markings, 69792314 edges, 20111 markings/sec, 640 secs
lola: 13396014 markings, 70364282 edges, 20035 markings/sec, 645 secs
lola: 13487208 markings, 70866992 edges, 18239 markings/sec, 650 secs
lola: 13579251 markings, 71375831 edges, 18409 markings/sec, 655 secs
lola: 13686130 markings, 71869632 edges, 21376 markings/sec, 660 secs
lola: 13790706 markings, 72369111 edges, 20915 markings/sec, 665 secs
lola: 13888192 markings, 72879582 edges, 19497 markings/sec, 670 secs
lola: 13990802 markings, 73393456 edges, 20522 markings/sec, 675 secs
lola: 14088733 markings, 73888518 edges, 19586 markings/sec, 680 secs
lola: 14190391 markings, 74383602 edges, 20332 markings/sec, 685 secs
lola: 14290775 markings, 74898219 edges, 20077 markings/sec, 690 secs
lola: 14394700 markings, 75426996 edges, 20785 markings/sec, 695 secs
lola: 14497699 markings, 75935076 edges, 20600 markings/sec, 700 secs
lola: 14597381 markings, 76507170 edges, 19936 markings/sec, 705 secs
lola: 14706419 markings, 77088926 edges, 21808 markings/sec, 710 secs
lola: 14813313 markings, 77658300 edges, 21379 markings/sec, 715 secs
lola: 14919127 markings, 78208654 edges, 21163 markings/sec, 720 secs
lola: 15036042 markings, 78764046 edges, 23383 markings/sec, 725 secs
lola: 15145816 markings, 79325578 edges, 21955 markings/sec, 730 secs
lola: 15251741 markings, 79902139 edges, 21185 markings/sec, 735 secs
lola: 15360573 markings, 80476752 edges, 21766 markings/sec, 740 secs
lola: 15471571 markings, 81041333 edges, 22200 markings/sec, 745 secs
lola: 15581496 markings, 81615065 edges, 21985 markings/sec, 750 secs
lola: 15690054 markings, 82209763 edges, 21712 markings/sec, 755 secs
lola: 15793912 markings, 82804566 edges, 20772 markings/sec, 760 secs
lola: 15895993 markings, 83393727 edges, 20416 markings/sec, 765 secs
lola: 16009111 markings, 83952621 edges, 22624 markings/sec, 770 secs
lola: 16118373 markings, 84526225 edges, 21852 markings/sec, 775 secs
lola: 16222135 markings, 85094004 edges, 20752 markings/sec, 780 secs
lola: 16329119 markings, 85666240 edges, 21397 markings/sec, 785 secs
lola: 16435978 markings, 86222146 edges, 21372 markings/sec, 790 secs
lola: 16543936 markings, 86796854 edges, 21592 markings/sec, 795 secs
lola: 16647246 markings, 87395895 edges, 20662 markings/sec, 800 secs
lola: 16756854 markings, 87954571 edges, 21922 markings/sec, 805 secs
lola: 16858032 markings, 88546685 edges, 20236 markings/sec, 810 secs
lola: 16958567 markings, 89111529 edges, 20107 markings/sec, 815 secs
lola: 17059104 markings, 89685816 edges, 20107 markings/sec, 820 secs
lola: 17157254 markings, 90231708 edges, 19630 markings/sec, 825 secs
lola: 17253567 markings, 90774707 edges, 19263 markings/sec, 830 secs
lola: 17354813 markings, 91286682 edges, 20249 markings/sec, 835 secs
lola: 17450806 markings, 91804993 edges, 19199 markings/sec, 840 secs
lola: 17543588 markings, 92351787 edges, 18556 markings/sec, 845 secs
lola: 17636571 markings, 92883589 edges, 18597 markings/sec, 850 secs
lola: 17730316 markings, 93410888 edges, 18749 markings/sec, 855 secs
lola: 17823516 markings, 93904968 edges, 18640 markings/sec, 860 secs
lola: 17923859 markings, 94416367 edges, 20069 markings/sec, 865 secs
lola: 18035762 markings, 94952026 edges, 22381 markings/sec, 870 secs
lola: 18127219 markings, 95477886 edges, 18291 markings/sec, 875 secs
lola: 18225351 markings, 95998273 edges, 19626 markings/sec, 880 secs
lola: 18320143 markings, 96499034 edges, 18958 markings/sec, 885 secs
lola: 18418101 markings, 96985505 edges, 19592 markings/sec, 890 secs
lola: 18514482 markings, 97491838 edges, 19276 markings/sec, 895 secs
lola: 18614827 markings, 98066610 edges, 20069 markings/sec, 900 secs
lola: 18721815 markings, 98606895 edges, 21398 markings/sec, 905 secs
lola: 18818958 markings, 99167328 edges, 19429 markings/sec, 910 secs
lola: 18915724 markings, 99710597 edges, 19353 markings/sec, 915 secs
lola: 19014426 markings, 100261304 edges, 19740 markings/sec, 920 secs
lola: 19112280 markings, 100809355 edges, 19571 markings/sec, 925 secs
lola: 19210394 markings, 101352538 edges, 19623 markings/sec, 930 secs
lola: 19319118 markings, 101893634 edges, 21745 markings/sec, 935 secs
lola: 19419627 markings, 102432693 edges, 20102 markings/sec, 940 secs
lola: 19512409 markings, 102965983 edges, 18556 markings/sec, 945 secs
lola: 19605159 markings, 103487829 edges, 18550 markings/sec, 950 secs
lola: 19698505 markings, 104007919 edges, 18669 markings/sec, 955 secs
lola: 19793554 markings, 104514659 edges, 19010 markings/sec, 960 secs
lola: 19892465 markings, 105024913 edges, 19782 markings/sec, 965 secs
lola: 20002383 markings, 105598106 edges, 21984 markings/sec, 970 secs
lola: 20108286 markings, 106174707 edges, 21181 markings/sec, 975 secs
lola: 20207907 markings, 106729909 edges, 19924 markings/sec, 980 secs
lola: 20304620 markings, 107256481 edges, 19343 markings/sec, 985 secs
lola: 20404683 markings, 107812424 edges, 20013 markings/sec, 990 secs
lola: 20505689 markings, 108383498 edges, 20201 markings/sec, 995 secs
lola: 20605094 markings, 108932732 edges, 19881 markings/sec, 1000 secs
lola: 20703320 markings, 109492831 edges, 19645 markings/sec, 1005 secs
lola: 20796735 markings, 110043837 edges, 18683 markings/sec, 1010 secs
lola: 20889943 markings, 110612390 edges, 18642 markings/sec, 1015 secs
lola: 20984752 markings, 111158813 edges, 18962 markings/sec, 1020 secs
lola: 21081306 markings, 111718631 edges, 19311 markings/sec, 1025 secs
lola: 21183466 markings, 112281819 edges, 20432 markings/sec, 1030 secs
lola: 21279251 markings, 112829741 edges, 19157 markings/sec, 1035 secs
lola: 21371372 markings, 113376973 edges, 18424 markings/sec, 1040 secs
lola: 21471030 markings, 113948327 edges, 19932 markings/sec, 1045 secs
lola: 21574284 markings, 114545946 edges, 20651 markings/sec, 1050 secs
lola: 21676613 markings, 115146249 edges, 20466 markings/sec, 1055 secs
lola: 21781713 markings, 115751148 edges, 21020 markings/sec, 1060 secs
lola: 21883066 markings, 116343386 edges, 20271 markings/sec, 1065 secs
lola: 21983584 markings, 116928905 edges, 20104 markings/sec, 1070 secs
lola: 22084771 markings, 117504426 edges, 20237 markings/sec, 1075 secs
lola: 22204420 markings, 118047422 edges, 23930 markings/sec, 1080 secs
lola: 22310669 markings, 118622255 edges, 21250 markings/sec, 1085 secs
lola: 22420982 markings, 119176562 edges, 22063 markings/sec, 1090 secs
lola: 22529967 markings, 119734827 edges, 21797 markings/sec, 1095 secs
lola: 22643778 markings, 120284340 edges, 22762 markings/sec, 1100 secs
lola: 22753587 markings, 120856797 edges, 21962 markings/sec, 1105 secs
lola: 22865151 markings, 121433793 edges, 22313 markings/sec, 1110 secs
lola: 22973985 markings, 121969703 edges, 21767 markings/sec, 1115 secs
lola: 23070306 markings, 122533110 edges, 19264 markings/sec, 1120 secs
lola: 23170973 markings, 123087249 edges, 20133 markings/sec, 1125 secs
lola: 23271053 markings, 123622653 edges, 20016 markings/sec, 1130 secs
lola: 23371943 markings, 124141268 edges, 20178 markings/sec, 1135 secs
lola: 23481730 markings, 124697003 edges, 21957 markings/sec, 1140 secs
lola: 23592988 markings, 125240447 edges, 22252 markings/sec, 1145 secs
lola: 23693095 markings, 125817727 edges, 20021 markings/sec, 1150 secs
lola: 23799438 markings, 126386655 edges, 21269 markings/sec, 1155 secs
lola: 23903353 markings, 126933909 edges, 20783 markings/sec, 1160 secs
lola: 24011761 markings, 127498326 edges, 21682 markings/sec, 1165 secs
lola: 24119220 markings, 128068465 edges, 21492 markings/sec, 1170 secs
lola: 24220088 markings, 128654822 edges, 20174 markings/sec, 1175 secs
lola: 24324846 markings, 129248230 edges, 20952 markings/sec, 1180 secs
lola: 24431049 markings, 129821918 edges, 21241 markings/sec, 1185 secs
lola: 24540316 markings, 130363107 edges, 21853 markings/sec, 1190 secs
lola: 24643049 markings, 130943735 edges, 20547 markings/sec, 1195 secs
lola: 24745931 markings, 131513627 edges, 20576 markings/sec, 1200 secs
lola: 24849542 markings, 132068740 edges, 20722 markings/sec, 1205 secs
lola: 24954364 markings, 132609010 edges, 20964 markings/sec, 1210 secs
lola: 25054414 markings, 133165985 edges, 20010 markings/sec, 1215 secs
lola: 25158654 markings, 133744838 edges, 20848 markings/sec, 1220 secs
lola: 25262850 markings, 134293695 edges, 20839 markings/sec, 1225 secs
lola: 25355888 markings, 134858489 edges, 18608 markings/sec, 1230 secs
lola: 25449906 markings, 135392533 edges, 18804 markings/sec, 1235 secs
lola: 25543297 markings, 135931870 edges, 18678 markings/sec, 1240 secs
lola: 25639369 markings, 136467558 edges, 19214 markings/sec, 1245 secs
lola: 25735538 markings, 137011735 edges, 19234 markings/sec, 1250 secs
lola: 25841996 markings, 137560903 edges, 21292 markings/sec, 1255 secs
lola: 25935028 markings, 138075343 edges, 18606 markings/sec, 1260 secs
lola: 26023022 markings, 138590519 edges, 17599 markings/sec, 1265 secs
lola: 26109796 markings, 139099685 edges, 17355 markings/sec, 1270 secs
lola: 26206801 markings, 139645983 edges, 19401 markings/sec, 1275 secs
lola: 26308468 markings, 140197641 edges, 20333 markings/sec, 1280 secs
lola: 26415002 markings, 140748595 edges, 21307 markings/sec, 1285 secs
lola: 26526675 markings, 141298192 edges, 22335 markings/sec, 1290 secs
lola: 26626806 markings, 141871018 edges, 20026 markings/sec, 1295 secs
lola: 26733129 markings, 142438338 edges, 21265 markings/sec, 1300 secs
lola: 26835733 markings, 142980025 edges, 20521 markings/sec, 1305 secs
lola: 26941781 markings, 143531568 edges, 21210 markings/sec, 1310 secs
lola: 27044361 markings, 144097957 edges, 20516 markings/sec, 1315 secs
lola: 27146713 markings, 144652730 edges, 20470 markings/sec, 1320 secs
lola: 27249049 markings, 145179318 edges, 20467 markings/sec, 1325 secs
lola: 27342925 markings, 145754040 edges, 18775 markings/sec, 1330 secs
lola: 27440254 markings, 146314450 edges, 19466 markings/sec, 1335 secs
lola: 27536944 markings, 146864145 edges, 19338 markings/sec, 1340 secs
lola: 27638937 markings, 147404699 edges, 20399 markings/sec, 1345 secs
lola: 27742789 markings, 147961110 edges, 20770 markings/sec, 1350 secs
lola: 27848008 markings, 148498196 edges, 21044 markings/sec, 1355 secs
lola: 27943961 markings, 149079959 edges, 19191 markings/sec, 1360 secs
lola: 28044899 markings, 149645244 edges, 20188 markings/sec, 1365 secs
lola: 28146220 markings, 150218434 edges, 20264 markings/sec, 1370 secs
lola: 28250994 markings, 150767743 edges, 20955 markings/sec, 1375 secs
lola: 28362697 markings, 151338008 edges, 22341 markings/sec, 1380 secs
lola: 28485306 markings, 151903973 edges, 24522 markings/sec, 1385 secs
lola: 28596515 markings, 152497975 edges, 22242 markings/sec, 1390 secs
lola: 28713405 markings, 153074720 edges, 23378 markings/sec, 1395 secs
lola: 28830487 markings, 153648818 edges, 23416 markings/sec, 1400 secs
lola: 28945562 markings, 154217356 edges, 23015 markings/sec, 1405 secs
lola: 29060134 markings, 154825825 edges, 22914 markings/sec, 1410 secs
lola: 29178863 markings, 155394473 edges, 23746 markings/sec, 1415 secs
lola: 29284094 markings, 155994270 edges, 21046 markings/sec, 1420 secs
lola: 29391581 markings, 156567243 edges, 21497 markings/sec, 1425 secs
lola: 29497964 markings, 157137103 edges, 21277 markings/sec, 1430 secs
lola: 29606926 markings, 157683640 edges, 21792 markings/sec, 1435 secs
lola: 29721001 markings, 158256916 edges, 22815 markings/sec, 1440 secs
lola: 29835640 markings, 158812921 edges, 22928 markings/sec, 1445 secs
lola: 29940794 markings, 159400203 edges, 21031 markings/sec, 1450 secs
lola: 30050137 markings, 159973622 edges, 21869 markings/sec, 1455 secs
lola: 30158823 markings, 160541359 edges, 21737 markings/sec, 1460 secs
lola: 30270440 markings, 161114045 edges, 22323 markings/sec, 1465 secs
lola: 30383692 markings, 161717236 edges, 22650 markings/sec, 1470 secs
lola: 30491940 markings, 162328081 edges, 21650 markings/sec, 1475 secs
lola: 30597962 markings, 162938631 edges, 21204 markings/sec, 1480 secs
lola: 30712085 markings, 163518145 edges, 22825 markings/sec, 1485 secs
lola: 30823888 markings, 164090397 edges, 22361 markings/sec, 1490 secs
lola: 30930697 markings, 164670155 edges, 21362 markings/sec, 1495 secs
lola: 31039604 markings, 165257079 edges, 21781 markings/sec, 1500 secs
lola: 31150177 markings, 165836320 edges, 22115 markings/sec, 1505 secs
lola: 31261238 markings, 166418052 edges, 22212 markings/sec, 1510 secs
lola: 31364432 markings, 167016242 edges, 20639 markings/sec, 1515 secs
lola: 31476834 markings, 167586094 edges, 22480 markings/sec, 1520 secs
lola: 31582282 markings, 168199819 edges, 21090 markings/sec, 1525 secs
lola: 31685972 markings, 168784007 edges, 20738 markings/sec, 1530 secs
lola: 31787035 markings, 169361843 edges, 20213 markings/sec, 1535 secs
lola: 31893958 markings, 169943589 edges, 21385 markings/sec, 1540 secs
lola: 31995915 markings, 170505163 edges, 20391 markings/sec, 1545 secs
lola: 32110026 markings, 171084220 edges, 22822 markings/sec, 1550 secs
lola: 32214183 markings, 171694121 edges, 20831 markings/sec, 1555 secs
lola: 32317139 markings, 172273957 edges, 20591 markings/sec, 1560 secs
lola: 32421327 markings, 172857586 edges, 20838 markings/sec, 1565 secs
lola: 32528323 markings, 173428543 edges, 21399 markings/sec, 1570 secs
lola: 32640044 markings, 174003158 edges, 22344 markings/sec, 1575 secs
lola: 32757613 markings, 174568034 edges, 23514 markings/sec, 1580 secs
lola: 32863321 markings, 175173737 edges, 21142 markings/sec, 1585 secs
lola: 32973500 markings, 175752096 edges, 22036 markings/sec, 1590 secs
lola: 33083231 markings, 176327258 edges, 21946 markings/sec, 1595 secs
lola: 33193870 markings, 176894551 edges, 22128 markings/sec, 1600 secs
lola: 33299168 markings, 177471461 edges, 21060 markings/sec, 1605 secs
lola: 33408303 markings, 178042926 edges, 21827 markings/sec, 1610 secs
lola: 33513457 markings, 178602661 edges, 21031 markings/sec, 1615 secs
lola: 33612115 markings, 179180960 edges, 19732 markings/sec, 1620 secs
lola: 33713678 markings, 179753189 edges, 20313 markings/sec, 1625 secs
lola: 33814533 markings, 180320527 edges, 20171 markings/sec, 1630 secs
lola: 33916575 markings, 180879742 edges, 20408 markings/sec, 1635 secs
lola: 34027476 markings, 181434460 edges, 22180 markings/sec, 1640 secs
lola: 34134103 markings, 181995065 edges, 21325 markings/sec, 1645 secs
lola: 34232728 markings, 182561849 edges, 19725 markings/sec, 1650 secs
lola: 34332331 markings, 183118113 edges, 19921 markings/sec, 1655 secs
lola: 34430263 markings, 183665582 edges, 19586 markings/sec, 1660 secs
lola: 34533560 markings, 184223168 edges, 20659 markings/sec, 1665 secs
lola: 34644781 markings, 184781647 edges, 22244 markings/sec, 1670 secs
lola: 34755677 markings, 185367679 edges, 22179 markings/sec, 1675 secs
lola: 34864842 markings, 185952876 edges, 21833 markings/sec, 1680 secs
lola: 34967102 markings, 186524733 edges, 20452 markings/sec, 1685 secs
lola: 35071470 markings, 187110630 edges, 20874 markings/sec, 1690 secs
lola: 35175642 markings, 187693890 edges, 20834 markings/sec, 1695 secs
lola: 35280525 markings, 188280295 edges, 20977 markings/sec, 1700 secs
lola: 35384237 markings, 188860156 edges, 20742 markings/sec, 1705 secs
lola: 35483532 markings, 189443302 edges, 19859 markings/sec, 1710 secs
lola: 35587343 markings, 190038629 edges, 20762 markings/sec, 1715 secs
lola: 35684137 markings, 190633957 edges, 19359 markings/sec, 1720 secs
lola: 35782584 markings, 191208381 edges, 19689 markings/sec, 1725 secs
lola: 35888046 markings, 191787149 edges, 21092 markings/sec, 1730 secs
lola: 35987213 markings, 192356738 edges, 19833 markings/sec, 1735 secs
lola: 36087436 markings, 192919195 edges, 20045 markings/sec, 1740 secs
lola: 36183013 markings, 193490873 edges, 19115 markings/sec, 1745 secs
lola: 36280765 markings, 194063702 edges, 19550 markings/sec, 1750 secs
lola: 36379344 markings, 194628511 edges, 19716 markings/sec, 1755 secs
lola: 36474986 markings, 195185116 edges, 19128 markings/sec, 1760 secs
lola: 36576005 markings, 195767835 edges, 20204 markings/sec, 1765 secs
lola: 36675574 markings, 196343226 edges, 19914 markings/sec, 1770 secs
lola: 36775915 markings, 196907012 edges, 20068 markings/sec, 1775 secs
lola: 36872395 markings, 197462238 edges, 19296 markings/sec, 1780 secs
lola: 36966664 markings, 198031357 edges, 18854 markings/sec, 1785 secs
lola: 37061310 markings, 198596009 edges, 18929 markings/sec, 1790 secs
lola: 37153295 markings, 199147616 edges, 18397 markings/sec, 1795 secs
lola: 37258930 markings, 199714300 edges, 21127 markings/sec, 1800 secs
lola: 37360813 markings, 200292303 edges, 20377 markings/sec, 1805 secs
lola: 37464299 markings, 200892515 edges, 20697 markings/sec, 1810 secs
lola: 37561995 markings, 201463496 edges, 19539 markings/sec, 1815 secs
lola: 37663262 markings, 202054279 edges, 20253 markings/sec, 1820 secs
lola: 37765291 markings, 202634650 edges, 20406 markings/sec, 1825 secs
lola: 37860582 markings, 203203335 edges, 19058 markings/sec, 1830 secs
lola: 37959763 markings, 203768687 edges, 19836 markings/sec, 1835 secs
lola: 38057460 markings, 204357824 edges, 19539 markings/sec, 1840 secs
lola: 38155815 markings, 204940883 edges, 19671 markings/sec, 1845 secs
lola: 38255542 markings, 205513779 edges, 19945 markings/sec, 1850 secs
lola: 38353735 markings, 206073546 edges, 19639 markings/sec, 1855 secs
lola: 38452724 markings, 206627153 edges, 19798 markings/sec, 1860 secs
lola: 38569419 markings, 207159511 edges, 23339 markings/sec, 1865 secs
lola: 38673257 markings, 207724411 edges, 20768 markings/sec, 1870 secs
lola: 38780167 markings, 208263099 edges, 21382 markings/sec, 1875 secs
lola: 38885093 markings, 208798655 edges, 20985 markings/sec, 1880 secs
lola: 38995023 markings, 209324419 edges, 21986 markings/sec, 1885 secs
lola: 39101312 markings, 209880209 edges, 21258 markings/sec, 1890 secs
lola: 39207769 markings, 210429677 edges, 21291 markings/sec, 1895 secs
lola: 39311939 markings, 210944866 edges, 20834 markings/sec, 1900 secs
lola: 39403185 markings, 211481546 edges, 18249 markings/sec, 1905 secs
lola: 39497587 markings, 211980877 edges, 18880 markings/sec, 1910 secs
lola: 39594706 markings, 212503543 edges, 19424 markings/sec, 1915 secs
lola: 39693846 markings, 213020200 edges, 19828 markings/sec, 1920 secs
lola: 39792201 markings, 213547000 edges, 19671 markings/sec, 1925 secs
lola: 39901228 markings, 214067486 edges, 21805 markings/sec, 1930 secs
lola: 39995444 markings, 214587746 edges, 18843 markings/sec, 1935 secs
lola: 40087920 markings, 215081460 edges, 18495 markings/sec, 1940 secs
lola: 40184002 markings, 215592595 edges, 19216 markings/sec, 1945 secs
lola: 40275321 markings, 216087555 edges, 18264 markings/sec, 1950 secs
lola: 40369613 markings, 216578397 edges, 18858 markings/sec, 1955 secs
lola: 40467364 markings, 217096095 edges, 19550 markings/sec, 1960 secs
lola: local time limit reached - aborting
lola:
preliminary result: yes unknown no yes unknown no no unknown yes no yes no yes yes yes yes
lola: memory consumption: 6666232 KB
lola: time consumption: 3568 seconds
lola: Child process aborted or communication problem between parent and child process
lola: ========================================
lola: ...considering subproblem: E (X (E (G ((1 <= p6 + p7 + p8 + p9 + p10 + p11)))))
lola: ========================================
lola: SUBTASK
lola: checking possible preservation from a successor
lola: rewrite Frontend/Parser/formula_rewrite.k:627
lola: processed formula: (1 <= p6 + p7 + p8 + p9 + p10 + p11)
lola: processed formula length: 36
lola: 69 rewrites
lola: closed formula file NeoElection-COL-5-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space /EXEG)
lola: state space: using reachability graph (EXEG version) (--search=depth)
lola: state space: using invisibility based stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: time limit reached - aborting
lola:
preliminary result: yes unknown no yes unknown no no unknown yes no yes no yes yes yes yes
lola:
preliminary result: yes unknown no yes unknown no no unknown yes no yes no yes yes yes yes
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes unknown no yes unknown no no unknown yes no yes no yes yes yes yes
lola: memory consumption: 36164 KB
lola: time consumption: 3568 seconds
lola: caught signal User defined signal 1 - aborting LoLA
lola:
preliminary result: yes unknown no yes unknown no no unknown yes no yes no yes yes yes yes
lola: memory consumption: 36228 KB
lola: time consumption: 3568 seconds
BK_STOP 1527028408723
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-COL-5"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-COL-5.tgz
mv NeoElection-COL-5 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is NeoElection-COL-5, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r112-csrt-152666469300262"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;