fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r105-smll-152658635300159
Last Updated
June 26, 2018

About the Execution of ITS-Tools.L for HypertorusGrid-PT-d4k3p2b08

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15752.080 3600000.00 6437255.00 8308.80 FFT????????????? normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.....................
/home/mcc/execution
total 3.0M
-rw-r--r-- 1 mcc users 4.7K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 22K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.5K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.9K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 3.2K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 13K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.3K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 9.0K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 4.1K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 118 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 356 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 4.6K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 21K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 2.0K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.0K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 10 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rwxr-xr-x 1 mcc users 2.8M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstoolsl
Input is HypertorusGrid-PT-d4k3p2b08, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r105-smll-152658635300159
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-03
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-04
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-05
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-06
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-07
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-08
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-09
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-10
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-11
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-12
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-13
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-14
FORMULA_NAME HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1527382448936

Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]

its-reach command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Loading property file ReachabilityCardinality.prop.
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00 with value :(po_d3_n1_3_1_2_1>=3)
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01 with value :((!(pbl_3_3_1_2>=3))&&(pi_d4_n1_1_3_1_1>=3))
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02 with value :((!((pb_d1_n1_1_1_2_3<=pb_d1_n1_2_3_1_3)&&(po_d1_n1_1_2_1_2>=2)))||(pil_d4_n1_1_2_1_1<=pol_d3_n1_1_2_1_2))
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-03 with value :((((pil_d4_n1_1_3_3_3<=pb_d4_n2_2_1_2_3)&&(po_d3_n1_2_1_3_1>=1))&&(pil_d4_n1_1_3_2_3<=pb_d2_n2_1_1_2_3))||(pbl_2_1_1_1>=1))
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-04 with value :((!((pi_d3_n1_2_1_1_1<=pol_d2_n1_1_3_2_1)&&(po_d4_n1_2_1_1_1>=2)))&&((pol_d1_n1_1_2_3_2>=2)||(!(pi_d1_n1_1_2_3_3<=pil_d1_n1_3_2_1_1))))
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-05 with value :((po_d2_n1_1_2_1_3<=pil_d4_n1_1_3_3_2)||((pbl_2_2_1_2>=1)&&((pol_d2_n1_1_2_1_1<=pol_d2_n1_3_1_1_3)||(pb_d3_n2_2_2_2_3<=pb_d1_n1_2_1_2_3))))
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-06 with value :(po_d2_n1_2_1_1_2>=2)
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-07 with value :((!(pol_d4_n1_1_3_1_1>=3))||(!(po_d2_n1_1_3_2_2>=3)))
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-08 with value :(!(pbl_2_2_1_1>=3))
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-09 with value :((pi_d3_n1_3_2_1_1<=pb_d2_n1_3_2_2_1)||(!(po_d4_n1_3_3_2_2>=3)))
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-10 with value :(((pil_d3_n1_1_3_1_3<=pol_d2_n1_3_3_3_1)&&((pil_d3_n1_3_1_3_2<=pb_d2_n2_2_2_1_1)||(pb_d3_n1_2_1_3_2<=pol_d2_n1_1_3_2_3)))||(((pb_d1_n2_1_3_1_2>=2)||(pb_d4_n1_2_3_3_1<=pol_d1_n1_1_3_1_1))||((pol_d2_n1_2_2_1_1>=3)&&(pol_d1_n1_2_1_1_3>=2))))
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-11 with value :(po_d1_n1_1_3_2_1<=pol_d4_n1_1_1_1_1)
Read [invariant] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-12 with value :(!(pil_d1_n1_1_1_1_2>=3))
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-13 with value :((po_d2_n1_3_1_1_1<=pb_d1_n2_2_1_3_3)&&(!((pb_d1_n1_1_3_3_1>=1)||(pol_d1_n1_2_3_2_2<=pb_d3_n1_2_1_3_1))))
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-14 with value :(pb_d3_n2_2_1_1_1<=pi_d3_n1_3_2_3_1)
Read [reachable] property : HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-15 with value :(((!(pb_d1_n2_3_3_1_1<=pb_d1_n1_2_3_1_3))&&((pol_d4_n1_3_2_3_1<=pol_d3_n1_3_2_3_1)&&(pol_d3_n1_3_2_2_3<=pol_d3_n1_2_2_3_2)))&&(pol_d3_n1_3_2_1_1>=2))
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution]
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
// Phase 1: matrix 5184 rows 2025 cols
invariant :pi_d2_n1_2_1_1_2 + pil_d2_n1_2_1_1_2 = 1
invariant :po_d4_n1_3_2_2_1 + pol_d4_n1_3_2_2_1 = 1
invariant :po_d1_n1_3_1_2_1 + pol_d1_n1_3_1_2_1 = 1
invariant :po_d2_n1_1_1_1_1 + pol_d2_n1_1_1_1_1 = 1
invariant :po_d2_n1_3_1_1_3 + pol_d2_n1_3_1_1_3 = 1
invariant :po_d3_n1_1_1_2_1 + pol_d3_n1_1_1_2_1 = 1
invariant :pi_d1_n1_2_3_2_1 + pil_d1_n1_2_3_2_1 = 1
invariant :po_d4_n1_1_1_2_3 + pol_d4_n1_1_1_2_3 = 1
invariant :po_d3_n1_2_3_2_1 + pol_d3_n1_2_3_2_1 = 1
invariant :po_d3_n1_3_3_1_3 + pol_d3_n1_3_3_1_3 = 1
invariant :po_d2_n1_3_2_2_3 + pol_d2_n1_3_2_2_3 = 1
invariant :po_d1_n1_1_1_1_1 + pol_d1_n1_1_1_1_1 = 1
invariant :pi_d3_n1_3_1_3_2 + pil_d3_n1_3_1_3_2 = 1
invariant :pb_d1_n1_2_2_3_2 + pb_d1_n2_2_2_3_2 + pb_d2_n1_2_2_3_2 + pb_d2_n2_2_2_3_2 + pb_d3_n1_2_2_3_2 + pb_d3_n2_2_2_3_2 + pb_d4_n1_2_2_3_2 + pb_d4_n2_2_2_3_2 + pbl_2_2_3_2 = 24
invariant :pi_d1_n1_3_2_1_3 + pil_d1_n1_3_2_1_3 = 1
invariant :pi_d2_n1_1_2_3_2 + pil_d2_n1_1_2_3_2 = 1
invariant :po_d4_n1_3_3_1_2 + pol_d4_n1_3_3_1_2 = 1
invariant :po_d4_n1_2_3_1_2 + pol_d4_n1_2_3_1_2 = 1
invariant :po_d4_n1_2_2_1_3 + pol_d4_n1_2_2_1_3 = 1
invariant :pi_d1_n1_2_3_1_2 + pil_d1_n1_2_3_1_2 = 1
invariant :po_d2_n1_3_3_2_1 + pol_d2_n1_3_3_2_1 = 1
invariant :pb_d1_n1_3_3_1_2 + pb_d1_n2_3_3_1_2 + pb_d2_n1_3_3_1_2 + pb_d2_n2_3_3_1_2 + pb_d3_n1_3_3_1_2 + pb_d3_n2_3_3_1_2 + pb_d4_n1_3_3_1_2 + pb_d4_n2_3_3_1_2 + pbl_3_3_1_2 = 24
invariant :pb_d1_n1_3_1_3_1 + pb_d1_n2_3_1_3_1 + pb_d2_n1_3_1_3_1 + pb_d2_n2_3_1_3_1 + pb_d3_n1_3_1_3_1 + pb_d3_n2_3_1_3_1 + pb_d4_n1_3_1_3_1 + pb_d4_n2_3_1_3_1 + pbl_3_1_3_1 = 24
invariant :po_d4_n1_1_3_3_3 + pol_d4_n1_1_3_3_3 = 1
invariant :pb_d1_n1_2_1_2_1 + pb_d1_n2_2_1_2_1 + pb_d2_n1_2_1_2_1 + pb_d2_n2_2_1_2_1 + pb_d3_n1_2_1_2_1 + pb_d3_n2_2_1_2_1 + pb_d4_n1_2_1_2_1 + pb_d4_n2_2_1_2_1 + pbl_2_1_2_1 = 24
invariant :pi_d1_n1_2_1_1_1 + pil_d1_n1_2_1_1_1 = 1
invariant :po_d4_n1_2_3_2_1 + pol_d4_n1_2_3_2_1 = 1
invariant :po_d1_n1_2_1_2_1 + pol_d1_n1_2_1_2_1 = 1
invariant :pi_d1_n1_2_2_3_1 + pil_d1_n1_2_2_3_1 = 1
invariant :po_d2_n1_1_3_3_2 + pol_d2_n1_1_3_3_2 = 1
invariant :pb_d1_n1_2_2_2_1 + pb_d1_n2_2_2_2_1 + pb_d2_n1_2_2_2_1 + pb_d2_n2_2_2_2_1 + pb_d3_n1_2_2_2_1 + pb_d3_n2_2_2_2_1 + pb_d4_n1_2_2_2_1 + pb_d4_n2_2_2_2_1 + pbl_2_2_2_1 = 24
invariant :po_d4_n1_2_1_3_3 + pol_d4_n1_2_1_3_3 = 1
invariant :pi_d4_n1_3_3_1_1 + pil_d4_n1_3_3_1_1 = 1
invariant :pi_d3_n1_3_2_3_1 + pil_d3_n1_3_2_3_1 = 1
invariant :pi_d4_n1_2_1_3_1 + pil_d4_n1_2_1_3_1 = 1
invariant :pi_d1_n1_1_3_3_2 + pil_d1_n1_1_3_3_2 = 1
invariant :po_d3_n1_1_2_3_2 + pol_d3_n1_1_2_3_2 = 1
invariant :pi_d4_n1_1_3_2_2 + pil_d4_n1_1_3_2_2 = 1
invariant :po_d1_n1_1_3_1_2 + pol_d1_n1_1_3_1_2 = 1
invariant :po_d2_n1_1_3_2_3 + pol_d2_n1_1_3_2_3 = 1
invariant :pi_d3_n1_1_2_1_1 + pil_d3_n1_1_2_1_1 = 1
invariant :pi_d1_n1_1_1_3_3 + pil_d1_n1_1_1_3_3 = 1
invariant :pi_d4_n1_1_1_2_1 + pil_d4_n1_1_1_2_1 = 1
invariant :pb_d1_n1_2_1_1_3 + pb_d1_n2_2_1_1_3 + pb_d2_n1_2_1_1_3 + pb_d2_n2_2_1_1_3 + pb_d3_n1_2_1_1_3 + pb_d3_n2_2_1_1_3 + pb_d4_n1_2_1_1_3 + pb_d4_n2_2_1_1_3 + pbl_2_1_1_3 = 24
invariant :pi_d1_n1_1_1_2_1 + pil_d1_n1_1_1_2_1 = 1
invariant :pi_d4_n1_3_3_3_2 + pil_d4_n1_3_3_3_2 = 1
invariant :pi_d4_n1_3_1_1_2 + pil_d4_n1_3_1_1_2 = 1
invariant :pi_d2_n1_2_3_3_3 + pil_d2_n1_2_3_3_3 = 1
invariant :po_d2_n1_2_3_1_3 + pol_d2_n1_2_3_1_3 = 1
invariant :po_d4_n1_2_2_2_1 + pol_d4_n1_2_2_2_1 = 1
invariant :pi_d1_n1_1_1_2_2 + pil_d1_n1_1_1_2_2 = 1
invariant :pb_d1_n1_3_1_1_3 + pb_d1_n2_3_1_1_3 + pb_d2_n1_3_1_1_3 + pb_d2_n2_3_1_1_3 + pb_d3_n1_3_1_1_3 + pb_d3_n2_3_1_1_3 + pb_d4_n1_3_1_1_3 + pb_d4_n2_3_1_1_3 + pbl_3_1_1_3 = 24
invariant :po_d4_n1_1_1_1_3 + pol_d4_n1_1_1_1_3 = 1
invariant :po_d3_n1_2_3_3_2 + pol_d3_n1_2_3_3_2 = 1
invariant :pb_d1_n1_1_1_1_2 + pb_d1_n2_1_1_1_2 + pb_d2_n1_1_1_1_2 + pb_d2_n2_1_1_1_2 + pb_d3_n1_1_1_1_2 + pb_d3_n2_1_1_1_2 + pb_d4_n1_1_1_1_2 + pb_d4_n2_1_1_1_2 + pbl_1_1_1_2 = 24
invariant :pi_d1_n1_3_3_3_3 + pil_d1_n1_3_3_3_3 = 1
invariant :pi_d3_n1_3_1_2_3 + pil_d3_n1_3_1_2_3 = 1
invariant :pi_d4_n1_3_2_1_3 + pil_d4_n1_3_2_1_3 = 1
invariant :po_d4_n1_3_1_2_3 + pol_d4_n1_3_1_2_3 = 1
invariant :pi_d4_n1_2_2_1_1 + pil_d4_n1_2_2_1_1 = 1
invariant :pi_d3_n1_2_1_2_2 + pil_d3_n1_2_1_2_2 = 1
invariant :pi_d1_n1_3_3_1_3 + pil_d1_n1_3_3_1_3 = 1
invariant :po_d2_n1_2_3_3_2 + pol_d2_n1_2_3_3_2 = 1
invariant :pi_d2_n1_2_3_1_2 + pil_d2_n1_2_3_1_2 = 1
invariant :po_d3_n1_3_2_1_2 + pol_d3_n1_3_2_1_2 = 1
invariant :pi_d1_n1_2_1_3_2 + pil_d1_n1_2_1_3_2 = 1
invariant :po_d1_n1_1_2_2_1 + pol_d1_n1_1_2_2_1 = 1
invariant :po_d1_n1_3_2_1_3 + pol_d1_n1_3_2_1_3 = 1
invariant :po_d3_n1_3_1_2_3 + pol_d3_n1_3_1_2_3 = 1
invariant :po_d1_n1_2_3_3_2 + pol_d1_n1_2_3_3_2 = 1
invariant :pi_d4_n1_2_2_2_1 + pil_d4_n1_2_2_2_1 = 1
invariant :pi_d4_n1_1_2_1_1 + pil_d4_n1_1_2_1_1 = 1
invariant :pi_d4_n1_3_1_2_3 + pil_d4_n1_3_1_2_3 = 1
invariant :po_d1_n1_3_3_3_1 + pol_d1_n1_3_3_3_1 = 1
invariant :po_d4_n1_2_3_2_2 + pol_d4_n1_2_3_2_2 = 1
invariant :po_d3_n1_3_1_3_1 + pol_d3_n1_3_1_3_1 = 1
invariant :po_d4_n1_2_3_1_3 + pol_d4_n1_2_3_1_3 = 1
invariant :pi_d3_n1_2_2_1_2 + pil_d3_n1_2_2_1_2 = 1
invariant :po_d3_n1_3_3_1_2 + pol_d3_n1_3_3_1_2 = 1
invariant :pi_d1_n1_1_3_1_2 + pil_d1_n1_1_3_1_2 = 1
invariant :po_d2_n1_3_2_1_3 + pol_d2_n1_3_2_1_3 = 1
invariant :po_d2_n1_2_1_2_1 + pol_d2_n1_2_1_2_1 = 1
invariant :po_d4_n1_3_3_3_1 + pol_d4_n1_3_3_3_1 = 1
invariant :pi_d3_n1_1_1_1_3 + pil_d3_n1_1_1_1_3 = 1
invariant :po_d1_n1_1_2_1_2 + pol_d1_n1_1_2_1_2 = 1
invariant :pi_d3_n1_2_2_3_3 + pil_d3_n1_2_2_3_3 = 1
invariant :pb_d1_n1_3_2_1_1 + pb_d1_n2_3_2_1_1 + pb_d2_n1_3_2_1_1 + pb_d2_n2_3_2_1_1 + pb_d3_n1_3_2_1_1 + pb_d3_n2_3_2_1_1 + pb_d4_n1_3_2_1_1 + pb_d4_n2_3_2_1_1 + pbl_3_2_1_1 = 24
invariant :pi_d2_n1_3_1_3_1 + pil_d2_n1_3_1_3_1 = 1
invariant :po_d3_n1_2_2_2_2 + pol_d3_n1_2_2_2_2 = 1
invariant :po_d4_n1_2_2_3_3 + pol_d4_n1_2_2_3_3 = 1
invariant :pi_d3_n1_2_2_2_1 + pil_d3_n1_2_2_2_1 = 1
invariant :pi_d1_n1_2_3_2_3 + pil_d1_n1_2_3_2_3 = 1
invariant :pi_d2_n1_3_2_3_1 + pil_d2_n1_3_2_3_1 = 1
invariant :pb_d1_n1_2_1_3_3 + pb_d1_n2_2_1_3_3 + pb_d2_n1_2_1_3_3 + pb_d2_n2_2_1_3_3 + pb_d3_n1_2_1_3_3 + pb_d3_n2_2_1_3_3 + pb_d4_n1_2_1_3_3 + pb_d4_n2_2_1_3_3 + pbl_2_1_3_3 = 24
invariant :pi_d4_n1_1_1_1_2 + pil_d4_n1_1_1_1_2 = 1
invariant :po_d1_n1_3_3_3_2 + pol_d1_n1_3_3_3_2 = 1
invariant :pi_d3_n1_2_1_3_1 + pil_d3_n1_2_1_3_1 = 1
invariant :pi_d3_n1_3_2_1_3 + pil_d3_n1_3_2_1_3 = 1
invariant :po_d4_n1_3_3_2_3 + pol_d4_n1_3_3_2_3 = 1
invariant :po_d3_n1_3_2_1_3 + pol_d3_n1_3_2_1_3 = 1
invariant :pi_d1_n1_1_3_3_3 + pil_d1_n1_1_3_3_3 = 1
invariant :pi_d2_n1_3_1_3_3 + pil_d2_n1_3_1_3_3 = 1
invariant :po_d3_n1_2_1_1_2 + pol_d3_n1_2_1_1_2 = 1
invariant :pi_d3_n1_1_3_3_1 + pil_d3_n1_1_3_3_1 = 1
invariant :pi_d4_n1_2_3_1_3 + pil_d4_n1_2_3_1_3 = 1
invariant :pb_d1_n1_3_2_3_2 + pb_d1_n2_3_2_3_2 + pb_d2_n1_3_2_3_2 + pb_d2_n2_3_2_3_2 + pb_d3_n1_3_2_3_2 + pb_d3_n2_3_2_3_2 + pb_d4_n1_3_2_3_2 + pb_d4_n2_3_2_3_2 + pbl_3_2_3_2 = 24
invariant :pi_d1_n1_3_2_3_1 + pil_d1_n1_3_2_3_1 = 1
invariant :pi_d2_n1_2_3_3_1 + pil_d2_n1_2_3_3_1 = 1
invariant :pi_d2_n1_2_1_2_2 + pil_d2_n1_2_1_2_2 = 1
invariant :pi_d3_n1_3_2_1_1 + pil_d3_n1_3_2_1_1 = 1
invariant :po_d2_n1_3_3_1_2 + pol_d2_n1_3_3_1_2 = 1
invariant :pi_d4_n1_2_2_3_3 + pil_d4_n1_2_2_3_3 = 1
invariant :po_d1_n1_3_2_1_1 + pol_d1_n1_3_2_1_1 = 1
invariant :po_d3_n1_1_3_3_2 + pol_d3_n1_1_3_3_2 = 1
invariant :po_d2_n1_1_1_1_3 + pol_d2_n1_1_1_1_3 = 1
invariant :pi_d2_n1_3_2_1_3 + pil_d2_n1_3_2_1_3 = 1
invariant :po_d1_n1_2_1_3_1 + pol_d1_n1_2_1_3_1 = 1
invariant :po_d4_n1_3_3_2_2 + pol_d4_n1_3_3_2_2 = 1
invariant :pb_d1_n1_2_1_1_1 + pb_d1_n2_2_1_1_1 + pb_d2_n1_2_1_1_1 + pb_d2_n2_2_1_1_1 + pb_d3_n1_2_1_1_1 + pb_d3_n2_2_1_1_1 + pb_d4_n1_2_1_1_1 + pb_d4_n2_2_1_1_1 + pbl_2_1_1_1 = 24
invariant :pb_d1_n1_1_2_3_1 + pb_d1_n2_1_2_3_1 + pb_d2_n1_1_2_3_1 + pb_d2_n2_1_2_3_1 + pb_d3_n1_1_2_3_1 + pb_d3_n2_1_2_3_1 + pb_d4_n1_1_2_3_1 + pb_d4_n2_1_2_3_1 + pbl_1_2_3_1 = 24
invariant :pb_d1_n1_1_1_3_3 + pb_d1_n2_1_1_3_3 + pb_d2_n1_1_1_3_3 + pb_d2_n2_1_1_3_3 + pb_d3_n1_1_1_3_3 + pb_d3_n2_1_1_3_3 + pb_d4_n1_1_1_3_3 + pb_d4_n2_1_1_3_3 + pbl_1_1_3_3 = 24
invariant :po_d1_n1_1_2_3_3 + pol_d1_n1_1_2_3_3 = 1
invariant :po_d1_n1_3_1_1_1 + pol_d1_n1_3_1_1_1 = 1
invariant :po_d2_n1_2_2_2_2 + pol_d2_n1_2_2_2_2 = 1
invariant :po_d1_n1_1_1_1_3 + pol_d1_n1_1_1_1_3 = 1
invariant :po_d2_n1_2_1_3_1 + pol_d2_n1_2_1_3_1 = 1
invariant :pi_d1_n1_1_1_1_1 + pil_d1_n1_1_1_1_1 = 1
invariant :pb_d1_n1_3_1_2_2 + pb_d1_n2_3_1_2_2 + pb_d2_n1_3_1_2_2 + pb_d2_n2_3_1_2_2 + pb_d3_n1_3_1_2_2 + pb_d3_n2_3_1_2_2 + pb_d4_n1_3_1_2_2 + pb_d4_n2_3_1_2_2 + pbl_3_1_2_2 = 24
invariant :pi_d2_n1_1_3_3_2 + pil_d2_n1_1_3_3_2 = 1
invariant :pi_d1_n1_3_3_2_2 + pil_d1_n1_3_3_2_2 = 1
invariant :pi_d3_n1_1_1_2_2 + pil_d3_n1_1_1_2_2 = 1
invariant :po_d2_n1_2_2_2_1 + pol_d2_n1_2_2_2_1 = 1
invariant :po_d1_n1_2_2_3_3 + pol_d1_n1_2_2_3_3 = 1
invariant :pi_d4_n1_3_2_2_3 + pil_d4_n1_3_2_2_3 = 1
invariant :po_d1_n1_1_1_2_1 + pol_d1_n1_1_1_2_1 = 1
invariant :po_d3_n1_3_3_2_1 + pol_d3_n1_3_3_2_1 = 1
invariant :pi_d3_n1_1_2_2_3 + pil_d3_n1_1_2_2_3 = 1
invariant :pi_d3_n1_2_3_3_3 + pil_d3_n1_2_3_3_3 = 1
invariant :pi_d3_n1_1_2_1_2 + pil_d3_n1_1_2_1_2 = 1
invariant :pi_d4_n1_2_1_1_3 + pil_d4_n1_2_1_1_3 = 1
invariant :po_d2_n1_1_2_2_1 + pol_d2_n1_1_2_2_1 = 1
invariant :pi_d1_n1_2_1_2_3 + pil_d1_n1_2_1_2_3 = 1
invariant :pi_d3_n1_2_1_1_3 + pil_d3_n1_2_1_1_3 = 1
invariant :po_d3_n1_1_1_1_1 + pol_d3_n1_1_1_1_1 = 1
invariant :pb_d1_n1_3_2_2_3 + pb_d1_n2_3_2_2_3 + pb_d2_n1_3_2_2_3 + pb_d2_n2_3_2_2_3 + pb_d3_n1_3_2_2_3 + pb_d3_n2_3_2_2_3 + pb_d4_n1_3_2_2_3 + pb_d4_n2_3_2_2_3 + pbl_3_2_2_3 = 24
invariant :pi_d2_n1_1_1_1_1 + pil_d2_n1_1_1_1_1 = 1
invariant :pi_d3_n1_3_1_2_1 + pil_d3_n1_3_1_2_1 = 1
invariant :po_d4_n1_1_2_1_2 + pol_d4_n1_1_2_1_2 = 1
invariant :po_d1_n1_3_1_2_3 + pol_d1_n1_3_1_2_3 = 1
invariant :po_d4_n1_3_1_1_1 + pol_d4_n1_3_1_1_1 = 1
invariant :pi_d4_n1_1_2_3_1 + pil_d4_n1_1_2_3_1 = 1
invariant :po_d1_n1_2_1_1_3 + pol_d1_n1_2_1_1_3 = 1
invariant :pb_d1_n1_1_2_2_1 + pb_d1_n2_1_2_2_1 + pb_d2_n1_1_2_2_1 + pb_d2_n2_1_2_2_1 + pb_d3_n1_1_2_2_1 + pb_d3_n2_1_2_2_1 + pb_d4_n1_1_2_2_1 + pb_d4_n2_1_2_2_1 + pbl_1_2_2_1 = 24
invariant :pi_d4_n1_3_2_2_2 + pil_d4_n1_3_2_2_2 = 1
invariant :pi_d1_n1_2_3_3_2 + pil_d1_n1_2_3_3_2 = 1
invariant :pi_d1_n1_2_2_2_2 + pil_d1_n1_2_2_2_2 = 1
invariant :po_d1_n1_1_2_3_2 + pol_d1_n1_1_2_3_2 = 1
invariant :pi_d2_n1_1_3_2_2 + pil_d2_n1_1_3_2_2 = 1
invariant :pb_d1_n1_3_3_1_3 + pb_d1_n2_3_3_1_3 + pb_d2_n1_3_3_1_3 + pb_d2_n2_3_3_1_3 + pb_d3_n1_3_3_1_3 + pb_d3_n2_3_3_1_3 + pb_d4_n1_3_3_1_3 + pb_d4_n2_3_3_1_3 + pbl_3_3_1_3 = 24
invariant :pb_d1_n1_2_2_1_1 + pb_d1_n2_2_2_1_1 + pb_d2_n1_2_2_1_1 + pb_d2_n2_2_2_1_1 + pb_d3_n1_2_2_1_1 + pb_d3_n2_2_2_1_1 + pb_d4_n1_2_2_1_1 + pb_d4_n2_2_2_1_1 + pbl_2_2_1_1 = 24
invariant :po_d2_n1_3_3_2_2 + pol_d2_n1_3_3_2_2 = 1
invariant :pi_d4_n1_1_2_1_3 + pil_d4_n1_1_2_1_3 = 1
invariant :po_d1_n1_1_1_2_2 + pol_d1_n1_1_1_2_2 = 1
invariant :pi_d4_n1_1_2_1_2 + pil_d4_n1_1_2_1_2 = 1
invariant :pi_d2_n1_3_2_1_1 + pil_d2_n1_3_2_1_1 = 1
invariant :po_d1_n1_1_3_3_2 + pol_d1_n1_1_3_3_2 = 1
invariant :pi_d1_n1_1_2_3_3 + pil_d1_n1_1_2_3_3 = 1
invariant :po_d2_n1_2_2_3_1 + pol_d2_n1_2_2_3_1 = 1
invariant :pb_d1_n1_2_1_2_2 + pb_d1_n2_2_1_2_2 + pb_d2_n1_2_1_2_2 + pb_d2_n2_2_1_2_2 + pb_d3_n1_2_1_2_2 + pb_d3_n2_2_1_2_2 + pb_d4_n1_2_1_2_2 + pb_d4_n2_2_1_2_2 + pbl_2_1_2_2 = 24
invariant :pb_d1_n1_1_3_2_3 + pb_d1_n2_1_3_2_3 + pb_d2_n1_1_3_2_3 + pb_d2_n2_1_3_2_3 + pb_d3_n1_1_3_2_3 + pb_d3_n2_1_3_2_3 + pb_d4_n1_1_3_2_3 + pb_d4_n2_1_3_2_3 + pbl_1_3_2_3 = 24
invariant :pi_d4_n1_1_3_3_1 + pil_d4_n1_1_3_3_1 = 1
invariant :po_d3_n1_3_1_3_3 + pol_d3_n1_3_1_3_3 = 1
invariant :pi_d4_n1_3_1_3_2 + pil_d4_n1_3_1_3_2 = 1
invariant :pb_d1_n1_2_2_3_1 + pb_d1_n2_2_2_3_1 + pb_d2_n1_2_2_3_1 + pb_d2_n2_2_2_3_1 + pb_d3_n1_2_2_3_1 + pb_d3_n2_2_2_3_1 + pb_d4_n1_2_2_3_1 + pb_d4_n2_2_2_3_1 + pbl_2_2_3_1 = 24
invariant :po_d2_n1_3_2_1_1 + pol_d2_n1_3_2_1_1 = 1
invariant :pi_d4_n1_3_2_1_1 + pil_d4_n1_3_2_1_1 = 1
invariant :pi_d1_n1_3_1_2_3 + pil_d1_n1_3_1_2_3 = 1
invariant :pi_d2_n1_3_2_1_2 + pil_d2_n1_3_2_1_2 = 1
invariant :pi_d1_n1_3_2_3_3 + pil_d1_n1_3_2_3_3 = 1
invariant :po_d1_n1_1_2_1_1 + pol_d1_n1_1_2_1_1 = 1
invariant :pi_d3_n1_2_3_2_3 + pil_d3_n1_2_3_2_3 = 1
invariant :pi_d4_n1_3_1_1_1 + pil_d4_n1_3_1_1_1 = 1
invariant :pi_d4_n1_3_1_2_2 + pil_d4_n1_3_1_2_2 = 1
invariant :po_d2_n1_1_3_3_3 + pol_d2_n1_1_3_3_3 = 1
invariant :pi_d2_n1_1_1_3_3 + pil_d2_n1_1_1_3_3 = 1
invariant :po_d1_n1_1_2_2_2 + pol_d1_n1_1_2_2_2 = 1
invariant :pb_d1_n1_3_3_2_3 + pb_d1_n2_3_3_2_3 + pb_d2_n1_3_3_2_3 + pb_d2_n2_3_3_2_3 + pb_d3_n1_3_3_2_3 + pb_d3_n2_3_3_2_3 + pb_d4_n1_3_3_2_3 + pb_d4_n2_3_3_2_3 + pbl_3_3_2_3 = 24
invariant :pi_d3_n1_1_3_1_3 + pil_d3_n1_1_3_1_3 = 1
invariant :pb_d1_n1_1_3_3_1 + pb_d1_n2_1_3_3_1 + pb_d2_n1_1_3_3_1 + pb_d2_n2_1_3_3_1 + pb_d3_n1_1_3_3_1 + pb_d3_n2_1_3_3_1 + pb_d4_n1_1_3_3_1 + pb_d4_n2_1_3_3_1 + pbl_1_3_3_1 = 24
invariant :pi_d3_n1_3_1_1_3 + pil_d3_n1_3_1_1_3 = 1
invariant :po_d3_n1_1_1_1_2 + pol_d3_n1_1_1_1_2 = 1
invariant :pi_d3_n1_3_2_2_2 + pil_d3_n1_3_2_2_2 = 1
invariant :po_d3_n1_3_1_1_2 + pol_d3_n1_3_1_1_2 = 1
invariant :pi_d4_n1_1_2_2_3 + pil_d4_n1_1_2_2_3 = 1
invariant :po_d2_n1_2_3_2_2 + pol_d2_n1_2_3_2_2 = 1
invariant :po_d4_n1_2_1_2_3 + pol_d4_n1_2_1_2_3 = 1
invariant :pi_d3_n1_3_3_2_2 + pil_d3_n1_3_3_2_2 = 1
invariant :pb_d1_n1_1_3_2_2 + pb_d1_n2_1_3_2_2 + pb_d2_n1_1_3_2_2 + pb_d2_n2_1_3_2_2 + pb_d3_n1_1_3_2_2 + pb_d3_n2_1_3_2_2 + pb_d4_n1_1_3_2_2 + pb_d4_n2_1_3_2_2 + pbl_1_3_2_2 = 24
invariant :po_d1_n1_3_3_2_1 + pol_d1_n1_3_3_2_1 = 1
invariant :po_d2_n1_2_1_1_2 + pol_d2_n1_2_1_1_2 = 1
invariant :pi_d4_n1_3_3_1_3 + pil_d4_n1_3_3_1_3 = 1
invariant :pi_d3_n1_2_3_1_2 + pil_d3_n1_2_3_1_2 = 1
invariant :po_d3_n1_2_1_1_1 + pol_d3_n1_2_1_1_1 = 1
invariant :pi_d3_n1_3_3_3_1 + pil_d3_n1_3_3_3_1 = 1
invariant :pi_d3_n1_3_3_1_3 + pil_d3_n1_3_3_1_3 = 1
invariant :pi_d2_n1_3_1_1_3 + pil_d2_n1_3_1_1_3 = 1
invariant :pb_d1_n1_1_1_2_2 + pb_d1_n2_1_1_2_2 + pb_d2_n1_1_1_2_2 + pb_d2_n2_1_1_2_2 + pb_d3_n1_1_1_2_2 + pb_d3_n2_1_1_2_2 + pb_d4_n1_1_1_2_2 + pb_d4_n2_1_1_2_2 + pbl_1_1_2_2 = 24
invariant :po_d3_n1_2_2_1_3 + pol_d3_n1_2_2_1_3 = 1
invariant :po_d4_n1_3_3_3_3 + pol_d4_n1_3_3_3_3 = 1
invariant :pi_d1_n1_1_1_1_3 + pil_d1_n1_1_1_1_3 = 1
invariant :pi_d4_n1_3_3_1_2 + pil_d4_n1_3_3_1_2 = 1
invariant :pi_d3_n1_3_1_3_1 + pil_d3_n1_3_1_3_1 = 1
invariant :pb_d1_n1_2_2_1_2 + pb_d1_n2_2_2_1_2 + pb_d2_n1_2_2_1_2 + pb_d2_n2_2_2_1_2 + pb_d3_n1_2_2_1_2 + pb_d3_n2_2_2_1_2 + pb_d4_n1_2_2_1_2 + pb_d4_n2_2_2_1_2 + pbl_2_2_1_2 = 24
invariant :po_d1_n1_2_3_3_1 + pol_d1_n1_2_3_3_1 = 1
invariant :pi_d1_n1_2_2_3_3 + pil_d1_n1_2_2_3_3 = 1
invariant :pi_d3_n1_3_2_1_2 + pil_d3_n1_3_2_1_2 = 1
invariant :po_d4_n1_1_1_1_1 + pol_d4_n1_1_1_1_1 = 1
invariant :po_d2_n1_3_1_3_1 + pol_d2_n1_3_1_3_1 = 1
invariant :pb_d1_n1_3_1_2_1 + pb_d1_n2_3_1_2_1 + pb_d2_n1_3_1_2_1 + pb_d2_n2_3_1_2_1 + pb_d3_n1_3_1_2_1 + pb_d3_n2_3_1_2_1 + pb_d4_n1_3_1_2_1 + pb_d4_n2_3_1_2_1 + pbl_3_1_2_1 = 24
invariant :po_d4_n1_2_3_3_3 + pol_d4_n1_2_3_3_3 = 1
invariant :pi_d2_n1_1_3_1_3 + pil_d2_n1_1_3_1_3 = 1
invariant :pi_d4_n1_2_3_2_1 + pil_d4_n1_2_3_2_1 = 1
invariant :po_d3_n1_3_1_1_1 + pol_d3_n1_3_1_1_1 = 1
invariant :po_d4_n1_1_3_3_2 + pol_d4_n1_1_3_3_2 = 1
invariant :pi_d3_n1_2_3_2_2 + pil_d3_n1_2_3_2_2 = 1
invariant :pi_d3_n1_3_2_3_3 + pil_d3_n1_3_2_3_3 = 1
invariant :pi_d2_n1_3_1_3_2 + pil_d2_n1_3_1_3_2 = 1
invariant :pi_d4_n1_1_1_3_3 + pil_d4_n1_1_1_3_3 = 1
invariant :pi_d2_n1_3_2_3_2 + pil_d2_n1_3_2_3_2 = 1
invariant :pb_d1_n1_3_2_2_2 + pb_d1_n2_3_2_2_2 + pb_d2_n1_3_2_2_2 + pb_d2_n2_3_2_2_2 + pb_d3_n1_3_2_2_2 + pb_d3_n2_3_2_2_2 + pb_d4_n1_3_2_2_2 + pb_d4_n2_3_2_2_2 + pbl_3_2_2_2 = 24
invariant :pi_d4_n1_2_2_1_3 + pil_d4_n1_2_2_1_3 = 1
invariant :pi_d4_n1_3_2_3_3 + pil_d4_n1_3_2_3_3 = 1
invariant :po_d1_n1_2_2_1_1 + pol_d1_n1_2_2_1_1 = 1
invariant :pi_d2_n1_2_3_2_3 + pil_d2_n1_2_3_2_3 = 1
invariant :pi_d1_n1_1_3_2_3 + pil_d1_n1_1_3_2_3 = 1
invariant :po_d4_n1_3_1_1_2 + pol_d4_n1_3_1_1_2 = 1
invariant :pb_d1_n1_1_2_1_3 + pb_d1_n2_1_2_1_3 + pb_d2_n1_1_2_1_3 + pb_d2_n2_1_2_1_3 + pb_d3_n1_1_2_1_3 + pb_d3_n2_1_2_1_3 + pb_d4_n1_1_2_1_3 + pb_d4_n2_1_2_1_3 + pbl_1_2_1_3 = 24
invariant :pb_d1_n1_1_3_3_3 + pb_d1_n2_1_3_3_3 + pb_d2_n1_1_3_3_3 + pb_d2_n2_1_3_3_3 + pb_d3_n1_1_3_3_3 + pb_d3_n2_1_3_3_3 + pb_d4_n1_1_3_3_3 + pb_d4_n2_1_3_3_3 + pbl_1_3_3_3 = 24
invariant :po_d4_n1_2_1_1_1 + pol_d4_n1_2_1_1_1 = 1
invariant :po_d2_n1_1_2_2_2 + pol_d2_n1_1_2_2_2 = 1
invariant :po_d4_n1_1_2_1_3 + pol_d4_n1_1_2_1_3 = 1
invariant :po_d4_n1_3_2_3_3 + pol_d4_n1_3_2_3_3 = 1
invariant :po_d1_n1_3_3_2_2 + pol_d1_n1_3_3_2_2 = 1
invariant :po_d1_n1_3_3_1_1 + pol_d1_n1_3_3_1_1 = 1
invariant :pi_d3_n1_3_3_1_2 + pil_d3_n1_3_3_1_2 = 1
invariant :pi_d1_n1_3_2_1_2 + pil_d1_n1_3_2_1_2 = 1
invariant :pi_d2_n1_3_2_2_1 + pil_d2_n1_3_2_2_1 = 1
invariant :pi_d3_n1_3_3_3_3 + pil_d3_n1_3_3_3_3 = 1
invariant :pb_d1_n1_1_3_1_3 + pb_d1_n2_1_3_1_3 + pb_d2_n1_1_3_1_3 + pb_d2_n2_1_3_1_3 + pb_d3_n1_1_3_1_3 + pb_d3_n2_1_3_1_3 + pb_d4_n1_1_3_1_3 + pb_d4_n2_1_3_1_3 + pbl_1_3_1_3 = 24
invariant :po_d1_n1_3_2_3_3 + pol_d1_n1_3_2_3_3 = 1
invariant :po_d2_n1_3_3_3_2 + pol_d2_n1_3_3_3_2 = 1
invariant :pb_d1_n1_3_3_1_1 + pb_d1_n2_3_3_1_1 + pb_d2_n1_3_3_1_1 + pb_d2_n2_3_3_1_1 + pb_d3_n1_3_3_1_1 + pb_d3_n2_3_3_1_1 + pb_d4_n1_3_3_1_1 + pb_d4_n2_3_3_1_1 + pbl_3_3_1_1 = 24
invariant :pi_d4_n1_2_1_2_3 + pil_d4_n1_2_1_2_3 = 1
invariant :pi_d4_n1_3_1_3_3 + pil_d4_n1_3_1_3_3 = 1
invariant :pi_d1_n1_3_2_1_1 + pil_d1_n1_3_2_1_1 = 1
invariant :po_d4_n1_3_2_3_1 + pol_d4_n1_3_2_3_1 = 1
invariant :po_d3_n1_1_3_3_3 + pol_d3_n1_1_3_3_3 = 1
invariant :pi_d3_n1_2_3_1_1 + pil_d3_n1_2_3_1_1 = 1
invariant :pi_d4_n1_2_3_3_2 + pil_d4_n1_2_3_3_2 = 1
invariant :po_d2_n1_2_2_1_1 + pol_d2_n1_2_2_1_1 = 1
invariant :po_d1_n1_2_1_2_3 + pol_d1_n1_2_1_2_3 = 1
invariant :pi_d2_n1_3_1_2_3 + pil_d2_n1_3_1_2_3 = 1
invariant :pi_d1_n1_2_3_1_3 + pil_d1_n1_2_3_1_3 = 1
invariant :pi_d4_n1_2_3_1_2 + pil_d4_n1_2_3_1_2 = 1
invariant :pb_d1_n1_3_1_2_3 + pb_d1_n2_3_1_2_3 + pb_d2_n1_3_1_2_3 + pb_d2_n2_3_1_2_3 + pb_d3_n1_3_1_2_3 + pb_d3_n2_3_1_2_3 + pb_d4_n1_3_1_2_3 + pb_d4_n2_3_1_2_3 + pbl_3_1_2_3 = 24
invariant :pi_d1_n1_3_1_3_2 + pil_d1_n1_3_1_3_2 = 1
invariant :po_d3_n1_1_2_2_3 + pol_d3_n1_1_2_2_3 = 1
invariant :pi_d4_n1_1_1_2_2 + pil_d4_n1_1_1_2_2 = 1
invariant :pi_d2_n1_3_3_2_1 + pil_d2_n1_3_3_2_1 = 1
invariant :pb_d1_n1_1_3_1_2 + pb_d1_n2_1_3_1_2 + pb_d2_n1_1_3_1_2 + pb_d2_n2_1_3_1_2 + pb_d3_n1_1_3_1_2 + pb_d3_n2_1_3_1_2 + pb_d4_n1_1_3_1_2 + pb_d4_n2_1_3_1_2 + -1'pbl_1_1_1_1 + -1'pbl_1_1_1_2 + -1'pbl_1_1_1_3 + -1'pbl_1_1_2_1 + -1'pbl_1_1_2_2 + -1'pbl_1_1_2_3 + -1'pbl_1_1_3_1 + -1'pbl_1_1_3_2 + -1'pbl_1_1_3_3 + -1'pbl_1_2_1_1 + -1'pbl_1_2_1_2 + -1'pbl_1_2_1_3 + -1'pbl_1_2_2_1 + -1'pbl_1_2_2_2 + -1'pbl_1_2_2_3 + -1'pbl_1_2_3_1 + -1'pbl_1_2_3_2 + -1'pbl_1_2_3_3 + -1'pbl_1_3_1_1 + -1'pbl_1_3_1_3 + -1'pbl_1_3_2_1 + -1'pbl_1_3_2_2 + -1'pbl_1_3_2_3 + -1'pbl_1_3_3_1 + -1'pbl_1_3_3_2 + -1'pbl_1_3_3_3 + -1'pbl_2_1_1_1 + -1'pbl_2_1_1_2 + -1'pbl_2_1_1_3 + -1'pbl_2_1_2_1 + -1'pbl_2_1_2_2 + -1'pbl_2_1_2_3 + -1'pbl_2_1_3_1 + -1'pbl_2_1_3_2 + -1'pbl_2_1_3_3 + -1'pbl_2_2_1_1 + -1'pbl_2_2_1_2 + -1'pbl_2_2_1_3 + -1'pbl_2_2_2_1 + -1'pbl_2_2_2_2 + -1'pbl_2_2_2_3 + -1'pbl_2_2_3_1 + -1'pbl_2_2_3_2 + -1'pbl_2_2_3_3 + -1'pbl_2_3_1_1 + -1'pbl_2_3_1_2 + -1'pbl_2_3_1_3 + -1'pbl_2_3_2_1 + -1'pbl_2_3_2_2 + -1'pbl_2_3_2_3 + -1'pbl_2_3_3_1 + -1'pbl_2_3_3_2 + -1'pbl_2_3_3_3 + -1'pbl_3_1_1_1 + -1'pbl_3_1_1_2 + -1'pbl_3_1_1_3 + -1'pbl_3_1_2_1 + -1'pbl_3_1_2_2 + -1'pbl_3_1_2_3 + -1'pbl_3_1_3_1 + -1'pbl_3_1_3_2 + -1'pbl_3_1_3_3 + -1'pbl_3_2_1_1 + -1'pbl_3_2_1_2 + -1'pbl_3_2_1_3 + -1'pbl_3_2_2_1 + -1'pbl_3_2_2_2 + -1'pbl_3_2_2_3 + -1'pbl_3_2_3_1 + -1'pbl_3_2_3_2 + -1'pbl_3_2_3_3 + -1'pbl_3_3_1_1 + -1'pbl_3_3_1_2 + -1'pbl_3_3_1_3 + -1'pbl_3_3_2_1 + -1'pbl_3_3_2_2 + -1'pbl_3_3_2_3 + -1'pbl_3_3_3_1 + -1'pbl_3_3_3_2 + -1'pbl_3_3_3_3 + -1'pil_d1_n1_1_1_1_1 + -1'pil_d1_n1_1_1_1_2 + -1'pil_d1_n1_1_1_1_3 + -1'pil_d1_n1_1_1_2_1 + -1'pil_d1_n1_1_1_2_2 + -1'pil_d1_n1_1_1_2_3 + -1'pil_d1_n1_1_1_3_1 + -1'pil_d1_n1_1_1_3_2 + -1'pil_d1_n1_1_1_3_3 + -1'pil_d1_n1_1_2_1_1 + -1'pil_d1_n1_1_2_1_2 + -1'pil_d1_n1_1_2_1_3 + -1'pil_d1_n1_1_2_2_1 + -1'pil_d1_n1_1_2_2_2 + -1'pil_d1_n1_1_2_2_3 + -1'pil_d1_n1_1_2_3_1 + -1'pil_d1_n1_1_2_3_2 + -1'pil_d1_n1_1_2_3_3 + -1'pil_d1_n1_1_3_1_1 + -1'pil_d1_n1_1_3_1_2 + -1'pil_d1_n1_1_3_1_3 + -1'pil_d1_n1_1_3_2_1 + -1'pil_d1_n1_1_3_2_2 + -1'pil_d1_n1_1_3_2_3 + -1'pil_d1_n1_1_3_3_1 + -1'pil_d1_n1_1_3_3_2 + -1'pil_d1_n1_1_3_3_3 + -1'pil_d1_n1_2_1_1_1 + -1'pil_d1_n1_2_1_1_2 + -1'pil_d1_n1_2_1_1_3 + -1'pil_d1_n1_2_1_2_1 + -1'pil_d1_n1_2_1_2_2 + -1'pil_d1_n1_2_1_2_3 + -1'pil_d1_n1_2_1_3_1 + -1'pil_d1_n1_2_1_3_2 + -1'pil_d1_n1_2_1_3_3 + -1'pil_d1_n1_2_2_1_1 + -1'pil_d1_n1_2_2_1_2 + -1'pil_d1_n1_2_2_1_3 + -1'pil_d1_n1_2_2_2_1 + -1'pil_d1_n1_2_2_2_2 + -1'pil_d1_n1_2_2_2_3 + -1'pil_d1_n1_2_2_3_1 + -1'pil_d1_n1_2_2_3_2 + -1'pil_d1_n1_2_2_3_3 + -1'pil_d1_n1_2_3_1_1 + -1'pil_d1_n1_2_3_1_2 + -1'pil_d1_n1_2_3_1_3 + -1'pil_d1_n1_2_3_2_1 + -1'pil_d1_n1_2_3_2_2 + -1'pil_d1_n1_2_3_2_3 + -1'pil_d1_n1_2_3_3_1 + -1'pil_d1_n1_2_3_3_2 + -1'pil_d1_n1_2_3_3_3 + -1'pil_d1_n1_3_1_1_1 + -1'pil_d1_n1_3_1_1_2 + -1'pil_d1_n1_3_1_1_3 + -1'pil_d1_n1_3_1_2_1 + -1'pil_d1_n1_3_1_2_2 + -1'pil_d1_n1_3_1_2_3 + -1'pil_d1_n1_3_1_3_1 + -1'pil_d1_n1_3_1_3_2 + -1'pil_d1_n1_3_1_3_3 + -1'pil_d1_n1_3_2_1_1 + -1'pil_d1_n1_3_2_1_2 + -1'pil_d1_n1_3_2_1_3 + -1'pil_d1_n1_3_2_2_1 + -1'pil_d1_n1_3_2_2_2 + -1'pil_d1_n1_3_2_2_3 + -1'pil_d1_n1_3_2_3_1 + -1'pil_d1_n1_3_2_3_2 + -1'pil_d1_n1_3_2_3_3 + -1'pil_d1_n1_3_3_1_1 + -1'pil_d1_n1_3_3_1_2 + -1'pil_d1_n1_3_3_1_3 + -1'pil_d1_n1_3_3_2_1 + -1'pil_d1_n1_3_3_2_2 + -1'pil_d1_n1_3_3_2_3 + -1'pil_d1_n1_3_3_3_1 + -1'pil_d1_n1_3_3_3_2 + -1'pil_d1_n1_3_3_3_3 + -1'pil_d2_n1_1_1_1_1 + -1'pil_d2_n1_1_1_1_2 + -1'pil_d2_n1_1_1_1_3 + -1'pil_d2_n1_1_1_2_1 + -1'pil_d2_n1_1_1_2_2 + -1'pil_d2_n1_1_1_2_3 + -1'pil_d2_n1_1_1_3_1 + -1'pil_d2_n1_1_1_3_2 + -1'pil_d2_n1_1_1_3_3 + -1'pil_d2_n1_1_2_1_1 + -1'pil_d2_n1_1_2_1_2 + -1'pil_d2_n1_1_2_1_3 + -1'pil_d2_n1_1_2_2_1 + -1'pil_d2_n1_1_2_2_2 + -1'pil_d2_n1_1_2_2_3 + -1'pil_d2_n1_1_2_3_1 + -1'pil_d2_n1_1_2_3_2 + -1'pil_d2_n1_1_2_3_3 + -1'pil_d2_n1_1_3_1_1 + -1'pil_d2_n1_1_3_1_2 + -1'pil_d2_n1_1_3_1_3 + -1'pil_d2_n1_1_3_2_1 + -1'pil_d2_n1_1_3_2_2 + -1'pil_d2_n1_1_3_2_3 + -1'pil_d2_n1_1_3_3_1 + -1'pil_d2_n1_1_3_3_2 + -1'pil_d2_n1_1_3_3_3 + -1'pil_d2_n1_2_1_1_1 + -1'pil_d2_n1_2_1_1_2 + -1'pil_d2_n1_2_1_1_3 + -1'pil_d2_n1_2_1_2_1 + -1'pil_d2_n1_2_1_2_2 + -1'pil_d2_n1_2_1_2_3 + -1'pil_d2_n1_2_1_3_1 + -1'pil_d2_n1_2_1_3_2 + -1'pil_d2_n1_2_1_3_3 + -1'pil_d2_n1_2_2_1_1 + -1'pil_d2_n1_2_2_1_2 + -1'pil_d2_n1_2_2_1_3 + -1'pil_d2_n1_2_2_2_1 + -1'pil_d2_n1_2_2_2_2 + -1'pil_d2_n1_2_2_2_3 + -1'pil_d2_n1_2_2_3_1 + -1'pil_d2_n1_2_2_3_2 + -1'pil_d2_n1_2_2_3_3 + -1'pil_d2_n1_2_3_1_1 + -1'pil_d2_n1_2_3_1_2 + -1'pil_d2_n1_2_3_1_3 + -1'pil_d2_n1_2_3_2_1 + -1'pil_d2_n1_2_3_2_2 + -1'pil_d2_n1_2_3_2_3 + -1'pil_d2_n1_2_3_3_1 + -1'pil_d2_n1_2_3_3_2 + -1'pil_d2_n1_2_3_3_3 + -1'pil_d2_n1_3_1_1_1 + -1'pil_d2_n1_3_1_1_2 + -1'pil_d2_n1_3_1_1_3 + -1'pil_d2_n1_3_1_2_1 + -1'pil_d2_n1_3_1_2_2 + -1'pil_d2_n1_3_1_2_3 + -1'pil_d2_n1_3_1_3_1 + -1'pil_d2_n1_3_1_3_2 + -1'pil_d2_n1_3_1_3_3 + -1'pil_d2_n1_3_2_1_1 + -1'pil_d2_n1_3_2_1_2 + -1'pil_d2_n1_3_2_1_3 + -1'pil_d2_n1_3_2_2_1 + -1'pil_d2_n1_3_2_2_2 + -1'pil_d2_n1_3_2_2_3 + -1'pil_d2_n1_3_2_3_1 + -1'pil_d2_n1_3_2_3_2 + -1'pil_d2_n1_3_2_3_3 + -1'pil_d2_n1_3_3_1_1 + -1'pil_d2_n1_3_3_1_2 + -1'pil_d2_n1_3_3_1_3 + -1'pil_d2_n1_3_3_2_1 + -1'pil_d2_n1_3_3_2_2 + -1'pil_d2_n1_3_3_2_3 + -1'pil_d2_n1_3_3_3_1 + -1'pil_d2_n1_3_3_3_2 + -1'pil_d2_n1_3_3_3_3 + -1'pil_d3_n1_1_1_1_1 + -1'pil_d3_n1_1_1_1_2 + -1'pil_d3_n1_1_1_1_3 + -1'pil_d3_n1_1_1_2_1 + -1'pil_d3_n1_1_1_2_2 + -1'pil_d3_n1_1_1_2_3 + -1'pil_d3_n1_1_1_3_1 + -1'pil_d3_n1_1_1_3_2 + -1'pil_d3_n1_1_1_3_3 + -1'pil_d3_n1_1_2_1_1 + -1'pil_d3_n1_1_2_1_2 + -1'pil_d3_n1_1_2_1_3 + -1'pil_d3_n1_1_2_2_1 + -1'pil_d3_n1_1_2_2_2 + -1'pil_d3_n1_1_2_2_3 + -1'pil_d3_n1_1_2_3_1 + -1'pil_d3_n1_1_2_3_2 + -1'pil_d3_n1_1_2_3_3 + -1'pil_d3_n1_1_3_1_1 + -1'pil_d3_n1_1_3_1_2 + -1'pil_d3_n1_1_3_1_3 + -1'pil_d3_n1_1_3_2_1 + -1'pil_d3_n1_1_3_2_2 + -1'pil_d3_n1_1_3_2_3 + -1'pil_d3_n1_1_3_3_1 + -1'pil_d3_n1_1_3_3_2 + -1'pil_d3_n1_1_3_3_3 + -1'pil_d3_n1_2_1_1_1 + -1'pil_d3_n1_2_1_1_2 + -1'pil_d3_n1_2_1_1_3 + -1'pil_d3_n1_2_1_2_1 + -1'pil_d3_n1_2_1_2_2 + -1'pil_d3_n1_2_1_2_3 + -1'pil_d3_n1_2_1_3_1 + -1'pil_d3_n1_2_1_3_2 + -1'pil_d3_n1_2_1_3_3 + -1'pil_d3_n1_2_2_1_1 + -1'pil_d3_n1_2_2_1_2 + -1'pil_d3_n1_2_2_1_3 + -1'pil_d3_n1_2_2_2_1 + -1'pil_d3_n1_2_2_2_2 + -1'pil_d3_n1_2_2_2_3 + -1'pil_d3_n1_2_2_3_1 + -1'pil_d3_n1_2_2_3_2 + -1'pil_d3_n1_2_2_3_3 + -1'pil_d3_n1_2_3_1_1 + -1'pil_d3_n1_2_3_1_2 + -1'pil_d3_n1_2_3_1_3 + -1'pil_d3_n1_2_3_2_1 + -1'pil_d3_n1_2_3_2_2 + -1'pil_d3_n1_2_3_2_3 + -1'pil_d3_n1_2_3_3_1 + -1'pil_d3_n1_2_3_3_2 + -1'pil_d3_n1_2_3_3_3 + -1'pil_d3_n1_3_1_1_1 + -1'pil_d3_n1_3_1_1_2 + -1'pil_d3_n1_3_1_1_3 + -1'pil_d3_n1_3_1_2_1 + -1'pil_d3_n1_3_1_2_2 + -1'pil_d3_n1_3_1_2_3 + -1'pil_d3_n1_3_1_3_1 + -1'pil_d3_n1_3_1_3_2 + -1'pil_d3_n1_3_1_3_3 + -1'pil_d3_n1_3_2_1_1 + -1'pil_d3_n1_3_2_1_2 + -1'pil_d3_n1_3_2_1_3 + -1'pil_d3_n1_3_2_2_1 + -1'pil_d3_n1_3_2_2_2 + -1'pil_d3_n1_3_2_2_3 + -1'pil_d3_n1_3_2_3_1 + -1'pil_d3_n1_3_2_3_2 + -1'pil_d3_n1_3_2_3_3 + -1'pil_d3_n1_3_3_1_1 + -1'pil_d3_n1_3_3_1_2 + -1'pil_d3_n1_3_3_1_3 + -1'pil_d3_n1_3_3_2_1 + -1'pil_d3_n1_3_3_2_2 + -1'pil_d3_n1_3_3_2_3 + -1'pil_d3_n1_3_3_3_1 + -1'pil_d3_n1_3_3_3_2 + -1'pil_d3_n1_3_3_3_3 + -1'pil_d4_n1_1_1_1_1 + -1'pil_d4_n1_1_1_1_2 + -1'pil_d4_n1_1_1_1_3 + -1'pil_d4_n1_1_1_2_1 + -1'pil_d4_n1_1_1_2_2 + -1'pil_d4_n1_1_1_2_3 + -1'pil_d4_n1_1_1_3_1 + -1'pil_d4_n1_1_1_3_2 + -1'pil_d4_n1_1_1_3_3 + -1'pil_d4_n1_1_2_1_1 + -1'pil_d4_n1_1_2_1_2 + -1'pil_d4_n1_1_2_1_3 + -1'pil_d4_n1_1_2_2_1 + -1'pil_d4_n1_1_2_2_2 + -1'pil_d4_n1_1_2_2_3 + -1'pil_d4_n1_1_2_3_1 + -1'pil_d4_n1_1_2_3_2 + -1'pil_d4_n1_1_2_3_3 + -1'pil_d4_n1_1_3_1_1 + -1'pil_d4_n1_1_3_1_2 + -1'pil_d4_n1_1_3_1_3 + -1'pil_d4_n1_1_3_2_1 + -1'pil_d4_n1_1_3_2_2 + -1'pil_d4_n1_1_3_2_3 + -1'pil_d4_n1_1_3_3_1 + -1'pil_d4_n1_1_3_3_2 + -1'pil_d4_n1_1_3_3_3 + -1'pil_d4_n1_2_1_1_1 + -1'pil_d4_n1_2_1_1_2 + -1'pil_d4_n1_2_1_1_3 + -1'pil_d4_n1_2_1_2_1 + -1'pil_d4_n1_2_1_2_2 + -1'pil_d4_n1_2_1_2_3 + -1'pil_d4_n1_2_1_3_1 + -1'pil_d4_n1_2_1_3_2 + -1'pil_d4_n1_2_1_3_3 + -1'pil_d4_n1_2_2_1_1 + -1'pil_d4_n1_2_2_1_2 + -1'pil_d4_n1_2_2_1_3 + -1'pil_d4_n1_2_2_2_1 + -1'pil_d4_n1_2_2_2_2 + -1'pil_d4_n1_2_2_2_3 + -1'pil_d4_n1_2_2_3_1 + -1'pil_d4_n1_2_2_3_2 + -1'pil_d4_n1_2_2_3_3 + -1'pil_d4_n1_2_3_1_1 + -1'pil_d4_n1_2_3_1_2 + -1'pil_d4_n1_2_3_1_3 + -1'pil_d4_n1_2_3_2_1 + -1'pil_d4_n1_2_3_2_2 + -1'pil_d4_n1_2_3_2_3 + -1'pil_d4_n1_2_3_3_1 + -1'pil_d4_n1_2_3_3_2 + -1'pil_d4_n1_2_3_3_3 + -1'pil_d4_n1_3_1_1_1 + -1'pil_d4_n1_3_1_1_2 + -1'pil_d4_n1_3_1_1_3 + -1'pil_d4_n1_3_1_2_1 + -1'pil_d4_n1_3_1_2_2 + -1'pil_d4_n1_3_1_2_3 + -1'pil_d4_n1_3_1_3_1 + -1'pil_d4_n1_3_1_3_2 + -1'pil_d4_n1_3_1_3_3 + -1'pil_d4_n1_3_2_1_1 + -1'pil_d4_n1_3_2_1_2 + -1'pil_d4_n1_3_2_1_3 + -1'pil_d4_n1_3_2_2_1 + -1'pil_d4_n1_3_2_2_2 + -1'pil_d4_n1_3_2_2_3 + -1'pil_d4_n1_3_2_3_1 + -1'pil_d4_n1_3_2_3_2 + -1'pil_d4_n1_3_2_3_3 + -1'pil_d4_n1_3_3_1_1 + -1'pil_d4_n1_3_3_1_2 + -1'pil_d4_n1_3_3_1_3 + -1'pil_d4_n1_3_3_2_1 + -1'pil_d4_n1_3_3_2_2 + -1'pil_d4_n1_3_3_2_3 + -1'pil_d4_n1_3_3_3_1 + -1'pil_d4_n1_3_3_3_2 + -1'pil_d4_n1_3_3_3_3 + -1'pol_d1_n1_1_1_1_1 + -1'pol_d1_n1_1_1_1_2 + -1'pol_d1_n1_1_1_1_3 + -1'pol_d1_n1_1_1_2_1 + -1'pol_d1_n1_1_1_2_2 + -1'pol_d1_n1_1_1_2_3 + -1'pol_d1_n1_1_1_3_1 + -1'pol_d1_n1_1_1_3_2 + -1'pol_d1_n1_1_1_3_3 + -1'pol_d1_n1_1_2_1_1 + -1'pol_d1_n1_1_2_1_2 + -1'pol_d1_n1_1_2_1_3 + -1'pol_d1_n1_1_2_2_1 + -1'pol_d1_n1_1_2_2_2 + -1'pol_d1_n1_1_2_2_3 + -1'pol_d1_n1_1_2_3_1 + -1'pol_d1_n1_1_2_3_2 + -1'pol_d1_n1_1_2_3_3 + -1'pol_d1_n1_1_3_1_1 + -1'pol_d1_n1_1_3_1_2 + -1'pol_d1_n1_1_3_1_3 + -1'pol_d1_n1_1_3_2_1 + -1'pol_d1_n1_1_3_2_2 + -1'pol_d1_n1_1_3_2_3 + -1'pol_d1_n1_1_3_3_1 + -1'pol_d1_n1_1_3_3_2 + -1'pol_d1_n1_1_3_3_3 + -1'pol_d1_n1_2_1_1_1 + -1'pol_d1_n1_2_1_1_2 + -1'pol_d1_n1_2_1_1_3 + -1'pol_d1_n1_2_1_2_1 + -1'pol_d1_n1_2_1_2_2 + -1'pol_d1_n1_2_1_2_3 + -1'pol_d1_n1_2_1_3_1 + -1'pol_d1_n1_2_1_3_2 + -1'pol_d1_n1_2_1_3_3 + -1'pol_d1_n1_2_2_1_1 + -1'pol_d1_n1_2_2_1_2 + -1'pol_d1_n1_2_2_1_3 + -1'pol_d1_n1_2_2_2_1 + -1'pol_d1_n1_2_2_2_2 + -1'pol_d1_n1_2_2_2_3 + -1'pol_d1_n1_2_2_3_1 + -1'pol_d1_n1_2_2_3_2 + -1'pol_d1_n1_2_2_3_3 + -1'pol_d1_n1_2_3_1_1 + -1'pol_d1_n1_2_3_1_2 + -1'pol_d1_n1_2_3_1_3 + -1'pol_d1_n1_2_3_2_1 + -1'pol_d1_n1_2_3_2_2 + -1'pol_d1_n1_2_3_2_3 + -1'pol_d1_n1_2_3_3_1 + -1'pol_d1_n1_2_3_3_2 + -1'pol_d1_n1_2_3_3_3 + -1'pol_d1_n1_3_1_1_1 + -1'pol_d1_n1_3_1_1_2 + -1'pol_d1_n1_3_1_1_3 + -1'pol_d1_n1_3_1_2_1 + -1'pol_d1_n1_3_1_2_2 + -1'pol_d1_n1_3_1_2_3 + -1'pol_d1_n1_3_1_3_1 + -1'pol_d1_n1_3_1_3_2 + -1'pol_d1_n1_3_1_3_3 + -1'pol_d1_n1_3_2_1_1 + -1'pol_d1_n1_3_2_1_2 + -1'pol_d1_n1_3_2_1_3 + -1'pol_d1_n1_3_2_2_1 + -1'pol_d1_n1_3_2_2_2 + -1'pol_d1_n1_3_2_2_3 + -1'pol_d1_n1_3_2_3_1 + -1'pol_d1_n1_3_2_3_2 + -1'pol_d1_n1_3_2_3_3 + -1'pol_d1_n1_3_3_1_1 + -1'pol_d1_n1_3_3_1_2 + -1'pol_d1_n1_3_3_1_3 + -1'pol_d1_n1_3_3_2_1 + -1'pol_d1_n1_3_3_2_2 + -1'pol_d1_n1_3_3_2_3 + -1'pol_d1_n1_3_3_3_1 + -1'pol_d1_n1_3_3_3_2 + -1'pol_d1_n1_3_3_3_3 + -1'pol_d2_n1_1_1_1_1 + -1'pol_d2_n1_1_1_1_2 + -1'pol_d2_n1_1_1_1_3 + -1'pol_d2_n1_1_1_2_1 + -1'pol_d2_n1_1_1_2_2 + -1'pol_d2_n1_1_1_2_3 + -1'pol_d2_n1_1_1_3_1 + -1'pol_d2_n1_1_1_3_2 + -1'pol_d2_n1_1_1_3_3 + -1'pol_d2_n1_1_2_1_1 + -1'pol_d2_n1_1_2_1_2 + -1'pol_d2_n1_1_2_1_3 + -1'pol_d2_n1_1_2_2_1 + -1'pol_d2_n1_1_2_2_2 + -1'pol_d2_n1_1_2_2_3 + -1'pol_d2_n1_1_2_3_1 + -1'pol_d2_n1_1_2_3_2 + -1'pol_d2_n1_1_2_3_3 + -1'pol_d2_n1_1_3_1_1 + -1'pol_d2_n1_1_3_1_2 + -1'pol_d2_n1_1_3_1_3 + -1'pol_d2_n1_1_3_2_1 + -1'pol_d2_n1_1_3_2_2 + -1'pol_d2_n1_1_3_2_3 + -1'pol_d2_n1_1_3_3_1 + -1'pol_d2_n1_1_3_3_2 + -1'pol_d2_n1_1_3_3_3 + -1'pol_d2_n1_2_1_1_1 + -1'pol_d2_n1_2_1_1_2 + -1'pol_d2_n1_2_1_1_3 + -1'pol_d2_n1_2_1_2_1 + -1'pol_d2_n1_2_1_2_2 + -1'pol_d2_n1_2_1_2_3 + -1'pol_d2_n1_2_1_3_1 + -1'pol_d2_n1_2_1_3_2 + -1'pol_d2_n1_2_1_3_3 + -1'pol_d2_n1_2_2_1_1 + -1'pol_d2_n1_2_2_1_2 + -1'pol_d2_n1_2_2_1_3 + -1'pol_d2_n1_2_2_2_1 + -1'pol_d2_n1_2_2_2_2 + -1'pol_d2_n1_2_2_2_3 + -1'pol_d2_n1_2_2_3_1 + -1'pol_d2_n1_2_2_3_2 + -1'pol_d2_n1_2_2_3_3 + -1'pol_d2_n1_2_3_1_1 + -1'pol_d2_n1_2_3_1_2 + -1'pol_d2_n1_2_3_1_3 + -1'pol_d2_n1_2_3_2_1 + -1'pol_d2_n1_2_3_2_2 + -1'pol_d2_n1_2_3_2_3 + -1'pol_d2_n1_2_3_3_1 + -1'pol_d2_n1_2_3_3_2 + -1'pol_d2_n1_2_3_3_3 + -1'pol_d2_n1_3_1_1_1 + -1'pol_d2_n1_3_1_1_2 + -1'pol_d2_n1_3_1_1_3 + -1'pol_d2_n1_3_1_2_1 + -1'pol_d2_n1_3_1_2_2 + -1'pol_d2_n1_3_1_2_3 + -1'pol_d2_n1_3_1_3_1 + -1'pol_d2_n1_3_1_3_2 + -1'pol_d2_n1_3_1_3_3 + -1'pol_d2_n1_3_2_1_1 + -1'pol_d2_n1_3_2_1_2 + -1'pol_d2_n1_3_2_1_3 + -1'pol_d2_n1_3_2_2_1 + -1'pol_d2_n1_3_2_2_2 + -1'pol_d2_n1_3_2_2_3 + -1'pol_d2_n1_3_2_3_1 + -1'pol_d2_n1_3_2_3_2 + -1'pol_d2_n1_3_2_3_3 + -1'pol_d2_n1_3_3_1_1 + -1'pol_d2_n1_3_3_1_2 + -1'pol_d2_n1_3_3_1_3 + -1'pol_d2_n1_3_3_2_1 + -1'pol_d2_n1_3_3_2_2 + -1'pol_d2_n1_3_3_2_3 + -1'pol_d2_n1_3_3_3_1 + -1'pol_d2_n1_3_3_3_2 + -1'pol_d2_n1_3_3_3_3 + -1'pol_d3_n1_1_1_1_1 + -1'pol_d3_n1_1_1_1_2 + -1'pol_d3_n1_1_1_1_3 + -1'pol_d3_n1_1_1_2_1 + -1'pol_d3_n1_1_1_2_2 + -1'pol_d3_n1_1_1_2_3 + -1'pol_d3_n1_1_1_3_1 + -1'pol_d3_n1_1_1_3_2 + -1'pol_d3_n1_1_1_3_3 + -1'pol_d3_n1_1_2_1_1 + -1'pol_d3_n1_1_2_1_2 + -1'pol_d3_n1_1_2_1_3 + -1'pol_d3_n1_1_2_2_1 + -1'pol_d3_n1_1_2_2_2 + -1'pol_d3_n1_1_2_2_3 + -1'pol_d3_n1_1_2_3_1 + -1'pol_d3_n1_1_2_3_2 + -1'pol_d3_n1_1_2_3_3 + -1'pol_d3_n1_1_3_1_1 + -1'pol_d3_n1_1_3_1_2 + -1'pol_d3_n1_1_3_1_3 + -1'pol_d3_n1_1_3_2_1 + -1'pol_d3_n1_1_3_2_2 + -1'pol_d3_n1_1_3_2_3 + -1'pol_d3_n1_1_3_3_1 + -1'pol_d3_n1_1_3_3_2 + -1'pol_d3_n1_1_3_3_3 + -1'pol_d3_n1_2_1_1_1 + -1'pol_d3_n1_2_1_1_2 + -1'pol_d3_n1_2_1_1_3 + -1'pol_d3_n1_2_1_2_1 + -1'pol_d3_n1_2_1_2_2 + -1'pol_d3_n1_2_1_2_3 + -1'pol_d3_n1_2_1_3_1 + -1'pol_d3_n1_2_1_3_2 + -1'pol_d3_n1_2_1_3_3 + -1'pol_d3_n1_2_2_1_1 + -1'pol_d3_n1_2_2_1_2 + -1'pol_d3_n1_2_2_1_3 + -1'pol_d3_n1_2_2_2_1 + -1'pol_d3_n1_2_2_2_2 + -1'pol_d3_n1_2_2_2_3 + -1'pol_d3_n1_2_2_3_1 + -1'pol_d3_n1_2_2_3_2 + -1'pol_d3_n1_2_2_3_3 + -1'pol_d3_n1_2_3_1_1 + -1'pol_d3_n1_2_3_1_2 + -1'pol_d3_n1_2_3_1_3 + -1'pol_d3_n1_2_3_2_1 + -1'pol_d3_n1_2_3_2_2 + -1'pol_d3_n1_2_3_2_3 + -1'pol_d3_n1_2_3_3_1 + -1'pol_d3_n1_2_3_3_2 + -1'pol_d3_n1_2_3_3_3 + -1'pol_d3_n1_3_1_1_1 + -1'pol_d3_n1_3_1_1_2 + -1'pol_d3_n1_3_1_1_3 + -1'pol_d3_n1_3_1_2_1 + -1'pol_d3_n1_3_1_2_2 + -1'pol_d3_n1_3_1_2_3 + -1'pol_d3_n1_3_1_3_1 + -1'pol_d3_n1_3_1_3_2 + -1'pol_d3_n1_3_1_3_3 + -1'pol_d3_n1_3_2_1_1 + -1'pol_d3_n1_3_2_1_2 + -1'pol_d3_n1_3_2_1_3 + -1'pol_d3_n1_3_2_2_1 + -1'pol_d3_n1_3_2_2_2 + -1'pol_d3_n1_3_2_2_3 + -1'pol_d3_n1_3_2_3_1 + -1'pol_d3_n1_3_2_3_2 + -1'pol_d3_n1_3_2_3_3 + -1'pol_d3_n1_3_3_1_1 + -1'pol_d3_n1_3_3_1_2 + -1'pol_d3_n1_3_3_1_3 + -1'pol_d3_n1_3_3_2_1 + -1'pol_d3_n1_3_3_2_2 + -1'pol_d3_n1_3_3_2_3 + -1'pol_d3_n1_3_3_3_1 + -1'pol_d3_n1_3_3_3_2 + -1'pol_d3_n1_3_3_3_3 + -1'pol_d4_n1_1_1_1_1 + -1'pol_d4_n1_1_1_1_2 + -1'pol_d4_n1_1_1_1_3 + -1'pol_d4_n1_1_1_2_1 + -1'pol_d4_n1_1_1_2_2 + -1'pol_d4_n1_1_1_2_3 + -1'pol_d4_n1_1_1_3_1 + -1'pol_d4_n1_1_1_3_2 + -1'pol_d4_n1_1_1_3_3 + -1'pol_d4_n1_1_2_1_1 + -1'pol_d4_n1_1_2_1_2 + -1'pol_d4_n1_1_2_1_3 + -1'pol_d4_n1_1_2_2_1 + -1'pol_d4_n1_1_2_2_2 + -1'pol_d4_n1_1_2_2_3 + -1'pol_d4_n1_1_2_3_1 + -1'pol_d4_n1_1_2_3_2 + -1'pol_d4_n1_1_2_3_3 + -1'pol_d4_n1_1_3_1_1 + -1'pol_d4_n1_1_3_1_2 + -1'pol_d4_n1_1_3_1_3 + -1'pol_d4_n1_1_3_2_1 + -1'pol_d4_n1_1_3_2_2 + -1'pol_d4_n1_1_3_2_3 + -1'pol_d4_n1_1_3_3_1 + -1'pol_d4_n1_1_3_3_2 + -1'pol_d4_n1_1_3_3_3 + -1'pol_d4_n1_2_1_1_1 + -1'pol_d4_n1_2_1_1_2 + -1'pol_d4_n1_2_1_1_3 + -1'pol_d4_n1_2_1_2_1 + -1'pol_d4_n1_2_1_2_2 + -1'pol_d4_n1_2_1_2_3 + -1'pol_d4_n1_2_1_3_1 + -1'pol_d4_n1_2_1_3_2 + -1'pol_d4_n1_2_1_3_3 + -1'pol_d4_n1_2_2_1_1 + -1'pol_d4_n1_2_2_1_2 + -1'pol_d4_n1_2_2_1_3 + -1'pol_d4_n1_2_2_2_1 + -1'pol_d4_n1_2_2_2_2 + -1'pol_d4_n1_2_2_2_3 + -1'pol_d4_n1_2_2_3_1 + -1'pol_d4_n1_2_2_3_2 + -1'pol_d4_n1_2_2_3_3 + -1'pol_d4_n1_2_3_1_1 + -1'pol_d4_n1_2_3_1_2 + -1'pol_d4_n1_2_3_1_3 + -1'pol_d4_n1_2_3_2_1 + -1'pol_d4_n1_2_3_2_2 + -1'pol_d4_n1_2_3_2_3 + -1'pol_d4_n1_2_3_3_1 + -1'pol_d4_n1_2_3_3_2 + -1'pol_d4_n1_2_3_3_3 + -1'pol_d4_n1_3_1_1_1 + -1'pol_d4_n1_3_1_1_2 + -1'pol_d4_n1_3_1_1_3 + -1'pol_d4_n1_3_1_2_1 + -1'pol_d4_n1_3_1_2_2 + -1'pol_d4_n1_3_1_2_3 + -1'pol_d4_n1_3_1_3_1 + -1'pol_d4_n1_3_1_3_2 + -1'pol_d4_n1_3_1_3_3 + -1'pol_d4_n1_3_2_1_1 + -1'pol_d4_n1_3_2_1_2 + -1'pol_d4_n1_3_2_1_3 + -1'pol_d4_n1_3_2_2_1 + -1'pol_d4_n1_3_2_2_2 + -1'pol_d4_n1_3_2_2_3 + -1'pol_d4_n1_3_2_3_1 + -1'pol_d4_n1_3_2_3_2 + -1'pol_d4_n1_3_2_3_3 + -1'pol_d4_n1_3_3_1_1 + -1'pol_d4_n1_3_3_1_2 + -1'pol_d4_n1_3_3_1_3 + -1'pol_d4_n1_3_3_2_1 + -1'pol_d4_n1_3_3_2_2 + -1'pol_d4_n1_3_3_2_3 + -1'pol_d4_n1_3_3_3_1 + -1'pol_d4_n1_3_3_3_2 + -1'pol_d4_n1_3_3_3_3 = -1272
invariant :pi_d2_n1_3_3_3_1 + pil_d2_n1_3_3_3_1 = 1
invariant :po_d3_n1_1_1_3_3 + pol_d3_n1_1_1_3_3 = 1
invariant :po_d3_n1_1_2_2_1 + pol_d3_n1_1_2_2_1 = 1
invariant :po_d3_n1_2_2_2_3 + pol_d3_n1_2_2_2_3 = 1
invariant :pi_d1_n1_3_1_2_1 + pil_d1_n1_3_1_2_1 = 1
invariant :po_d2_n1_1_1_3_1 + pol_d2_n1_1_1_3_1 = 1
invariant :po_d2_n1_3_1_1_1 + pol_d2_n1_3_1_1_1 = 1
invariant :pi_d4_n1_1_3_2_3 + pil_d4_n1_1_3_2_3 = 1
invariant :pi_d3_n1_1_3_1_1 + pil_d3_n1_1_3_1_1 = 1
invariant :pi_d3_n1_2_1_1_2 + pil_d3_n1_2_1_1_2 = 1
invariant :po_d3_n1_3_1_2_2 + pol_d3_n1_3_1_2_2 = 1
invariant :po_d1_n1_3_3_1_3 + pol_d1_n1_3_3_1_3 = 1
invariant :po_d3_n1_1_3_3_1 + pol_d3_n1_1_3_3_1 = 1
invariant :pi_d4_n1_1_1_3_1 + pil_d4_n1_1_1_3_1 = 1
invariant :pb_d1_n1_2_3_2_3 + pb_d1_n2_2_3_2_3 + pb_d2_n1_2_3_2_3 + pb_d2_n2_2_3_2_3 + pb_d3_n1_2_3_2_3 + pb_d3_n2_2_3_2_3 + pb_d4_n1_2_3_2_3 + pb_d4_n2_2_3_2_3 + pbl_2_3_2_3 = 24
invariant :pi_d1_n1_3_3_3_1 + pil_d1_n1_3_3_3_1 = 1
invariant :pi_d3_n1_2_1_2_3 + pil_d3_n1_2_1_2_3 = 1
invariant :pi_d2_n1_2_2_2_3 + pil_d2_n1_2_2_2_3 = 1
invariant :po_d3_n1_2_1_3_2 + pol_d3_n1_2_1_3_2 = 1
invariant :po_d2_n1_3_2_2_2 + pol_d2_n1_3_2_2_2 = 1
invariant :pi_d2_n1_1_1_3_1 + pil_d2_n1_1_1_3_1 = 1
invariant :po_d3_n1_1_2_2_2 + pol_d3_n1_1_2_2_2 = 1
invariant :pb_d1_n1_2_1_1_2 + pb_d1_n2_2_1_1_2 + pb_d2_n1_2_1_1_2 + pb_d2_n2_2_1_1_2 + pb_d3_n1_2_1_1_2 + pb_d3_n2_2_1_1_2 + pb_d4_n1_2_1_1_2 + pb_d4_n2_2_1_1_2 + pbl_2_1_1_2 = 24
invariant :po_d1_n1_3_1_3_3 + pol_d1_n1_3_1_3_3 = 1
invariant :po_d2_n1_1_3_1_2 + pol_d2_n1_1_3_1_2 = 1
invariant :po_d3_n1_3_1_3_2 + pol_d3_n1_3_1_3_2 = 1
invariant :po_d3_n1_1_3_1_2 + pol_d3_n1_1_3_1_2 = 1
invariant :po_d4_n1_1_1_1_2 + pol_d4_n1_1_1_1_2 = 1
invariant :po_d4_n1_1_2_2_2 + pol_d4_n1_1_2_2_2 = 1
invariant :po_d4_n1_3_1_2_1 + pol_d4_n1_3_1_2_1 = 1
invariant :po_d3_n1_2_1_3_1 + pol_d3_n1_2_1_3_1 = 1
invariant :pb_d1_n1_1_2_3_2 + pb_d1_n2_1_2_3_2 + pb_d2_n1_1_2_3_2 + pb_d2_n2_1_2_3_2 + pb_d3_n1_1_2_3_2 + pb_d3_n2_1_2_3_2 + pb_d4_n1_1_2_3_2 + pb_d4_n2_1_2_3_2 + pbl_1_2_3_2 = 24
invariant :po_d1_n1_3_2_2_1 + pol_d1_n1_3_2_2_1 = 1
invariant :pi_d1_n1_3_1_3_1 + pil_d1_n1_3_1_3_1 = 1
invariant :pi_d2_n1_1_1_2_3 + pil_d2_n1_1_1_2_3 = 1
invariant :po_d4_n1_1_3_1_3 + pol_d4_n1_1_3_1_3 = 1
invariant :pb_d1_n1_1_1_3_2 + pb_d1_n2_1_1_3_2 + pb_d2_n1_1_1_3_2 + pb_d2_n2_1_1_3_2 + pb_d3_n1_1_1_3_2 + pb_d3_n2_1_1_3_2 + pb_d4_n1_1_1_3_2 + pb_d4_n2_1_1_3_2 + pbl_1_1_3_2 = 24
invariant :pbl_1_1_1_1 + pbl_1_1_1_2 + pbl_1_1_1_3 + pbl_1_1_2_1 + pbl_1_1_2_2 + pbl_1_1_2_3 + pbl_1_1_3_1 + pbl_1_1_3_2 + pbl_1_1_3_3 + pbl_1_2_1_1 + pbl_1_2_1_2 + pbl_1_2_1_3 + pbl_1_2_2_1 + pbl_1_2_2_2 + pbl_1_2_2_3 + pbl_1_2_3_1 + pbl_1_2_3_2 + pbl_1_2_3_3 + pbl_1_3_1_1 + pbl_1_3_1_2 + pbl_1_3_1_3 + pbl_1_3_2_1 + pbl_1_3_2_2 + pbl_1_3_2_3 + pbl_1_3_3_1 + pbl_1_3_3_2 + pbl_1_3_3_3 + pbl_2_1_1_1 + pbl_2_1_1_2 + pbl_2_1_1_3 + pbl_2_1_2_1 + pbl_2_1_2_2 + pbl_2_1_2_3 + pbl_2_1_3_1 + pbl_2_1_3_2 + pbl_2_1_3_3 + pbl_2_2_1_1 + pbl_2_2_1_2 + pbl_2_2_1_3 + pbl_2_2_2_1 + pbl_2_2_2_2 + pbl_2_2_2_3 + pbl_2_2_3_1 + pbl_2_2_3_2 + pbl_2_2_3_3 + pbl_2_3_1_1 + pbl_2_3_1_2 + pbl_2_3_1_3 + pbl_2_3_2_1 + pbl_2_3_2_2 + pbl_2_3_2_3 + pbl_2_3_3_1 + pbl_2_3_3_2 + pbl_2_3_3_3 + pbl_3_1_1_1 + pbl_3_1_1_2 + pbl_3_1_1_3 + pbl_3_1_2_1 + pbl_3_1_2_2 + pbl_3_1_2_3 + pbl_3_1_3_1 + pbl_3_1_3_2 + pbl_3_1_3_3 + pbl_3_2_1_1 + pbl_3_2_1_2 + pbl_3_2_1_3 + pbl_3_2_2_1 + pbl_3_2_2_2 + pbl_3_2_2_3 + pbl_3_2_3_1 + pbl_3_2_3_2 + pbl_3_2_3_3 + pbl_3_3_1_1 + pbl_3_3_1_2 + pbl_3_3_1_3 + pbl_3_3_2_1 + pbl_3_3_2_2 + pbl_3_3_2_3 + pbl_3_3_3_1 + pbl_3_3_3_2 + pbl_3_3_3_3 + pil_d1_n1_1_1_1_1 + pil_d1_n1_1_1_1_2 + pil_d1_n1_1_1_1_3 + pil_d1_n1_1_1_2_1 + pil_d1_n1_1_1_2_2 + pil_d1_n1_1_1_2_3 + pil_d1_n1_1_1_3_1 + pil_d1_n1_1_1_3_2 + pil_d1_n1_1_1_3_3 + pil_d1_n1_1_2_1_1 + pil_d1_n1_1_2_1_2 + pil_d1_n1_1_2_1_3 + pil_d1_n1_1_2_2_1 + pil_d1_n1_1_2_2_2 + pil_d1_n1_1_2_2_3 + pil_d1_n1_1_2_3_1 + pil_d1_n1_1_2_3_2 + pil_d1_n1_1_2_3_3 + pil_d1_n1_1_3_1_1 + pil_d1_n1_1_3_1_2 + pil_d1_n1_1_3_1_3 + pil_d1_n1_1_3_2_1 + pil_d1_n1_1_3_2_2 + pil_d1_n1_1_3_2_3 + pil_d1_n1_1_3_3_1 + pil_d1_n1_1_3_3_2 + pil_d1_n1_1_3_3_3 + pil_d1_n1_2_1_1_1 + pil_d1_n1_2_1_1_2 + pil_d1_n1_2_1_1_3 + pil_d1_n1_2_1_2_1 + pil_d1_n1_2_1_2_2 + pil_d1_n1_2_1_2_3 + pil_d1_n1_2_1_3_1 + pil_d1_n1_2_1_3_2 + pil_d1_n1_2_1_3_3 + pil_d1_n1_2_2_1_1 + pil_d1_n1_2_2_1_2 + pil_d1_n1_2_2_1_3 + pil_d1_n1_2_2_2_1 + pil_d1_n1_2_2_2_2 + pil_d1_n1_2_2_2_3 + pil_d1_n1_2_2_3_1 + pil_d1_n1_2_2_3_2 + pil_d1_n1_2_2_3_3 + pil_d1_n1_2_3_1_1 + pil_d1_n1_2_3_1_2 + pil_d1_n1_2_3_1_3 + pil_d1_n1_2_3_2_1 + pil_d1_n1_2_3_2_2 + pil_d1_n1_2_3_2_3 + pil_d1_n1_2_3_3_1 + pil_d1_n1_2_3_3_2 + pil_d1_n1_2_3_3_3 + pil_d1_n1_3_1_1_1 + pil_d1_n1_3_1_1_2 + pil_d1_n1_3_1_1_3 + pil_d1_n1_3_1_2_1 + pil_d1_n1_3_1_2_2 + pil_d1_n1_3_1_2_3 + pil_d1_n1_3_1_3_1 + pil_d1_n1_3_1_3_2 + pil_d1_n1_3_1_3_3 + pil_d1_n1_3_2_1_1 + pil_d1_n1_3_2_1_2 + pil_d1_n1_3_2_1_3 + pil_d1_n1_3_2_2_1 + pil_d1_n1_3_2_2_2 + pil_d1_n1_3_2_2_3 + pil_d1_n1_3_2_3_1 + pil_d1_n1_3_2_3_2 + pil_d1_n1_3_2_3_3 + pil_d1_n1_3_3_1_1 + pil_d1_n1_3_3_1_2 + pil_d1_n1_3_3_1_3 + pil_d1_n1_3_3_2_1 + pil_d1_n1_3_3_2_2 + pil_d1_n1_3_3_2_3 + pil_d1_n1_3_3_3_1 + pil_d1_n1_3_3_3_2 + pil_d1_n1_3_3_3_3 + pil_d2_n1_1_1_1_1 + pil_d2_n1_1_1_1_2 + pil_d2_n1_1_1_1_3 + pil_d2_n1_1_1_2_1 + pil_d2_n1_1_1_2_2 + pil_d2_n1_1_1_2_3 + pil_d2_n1_1_1_3_1 + pil_d2_n1_1_1_3_2 + pil_d2_n1_1_1_3_3 + pil_d2_n1_1_2_1_1 + pil_d2_n1_1_2_1_2 + pil_d2_n1_1_2_1_3 + pil_d2_n1_1_2_2_1 + pil_d2_n1_1_2_2_2 + pil_d2_n1_1_2_2_3 + pil_d2_n1_1_2_3_1 + pil_d2_n1_1_2_3_2 + pil_d2_n1_1_2_3_3 + pil_d2_n1_1_3_1_1 + pil_d2_n1_1_3_1_2 + pil_d2_n1_1_3_1_3 + pil_d2_n1_1_3_2_1 + pil_d2_n1_1_3_2_2 + pil_d2_n1_1_3_2_3 + pil_d2_n1_1_3_3_1 + pil_d2_n1_1_3_3_2 + pil_d2_n1_1_3_3_3 + pil_d2_n1_2_1_1_1 + pil_d2_n1_2_1_1_2 + pil_d2_n1_2_1_1_3 + pil_d2_n1_2_1_2_1 + pil_d2_n1_2_1_2_2 + pil_d2_n1_2_1_2_3 + pil_d2_n1_2_1_3_1 + pil_d2_n1_2_1_3_2 + pil_d2_n1_2_1_3_3 + pil_d2_n1_2_2_1_1 + pil_d2_n1_2_2_1_2 + pil_d2_n1_2_2_1_3 + pil_d2_n1_2_2_2_1 + pil_d2_n1_2_2_2_2 + pil_d2_n1_2_2_2_3 + pil_d2_n1_2_2_3_1 + pil_d2_n1_2_2_3_2 + pil_d2_n1_2_2_3_3 + pil_d2_n1_2_3_1_1 + pil_d2_n1_2_3_1_2 + pil_d2_n1_2_3_1_3 + pil_d2_n1_2_3_2_1 + pil_d2_n1_2_3_2_2 + pil_d2_n1_2_3_2_3 + pil_d2_n1_2_3_3_1 + pil_d2_n1_2_3_3_2 + pil_d2_n1_2_3_3_3 + pil_d2_n1_3_1_1_1 + pil_d2_n1_3_1_1_2 + pil_d2_n1_3_1_1_3 + pil_d2_n1_3_1_2_1 + pil_d2_n1_3_1_2_2 + pil_d2_n1_3_1_2_3 + pil_d2_n1_3_1_3_1 + pil_d2_n1_3_1_3_2 + pil_d2_n1_3_1_3_3 + pil_d2_n1_3_2_1_1 + pil_d2_n1_3_2_1_2 + pil_d2_n1_3_2_1_3 + pil_d2_n1_3_2_2_1 + pil_d2_n1_3_2_2_2 + pil_d2_n1_3_2_2_3 + pil_d2_n1_3_2_3_1 + pil_d2_n1_3_2_3_2 + pil_d2_n1_3_2_3_3 + pil_d2_n1_3_3_1_1 + pil_d2_n1_3_3_1_2 + pil_d2_n1_3_3_1_3 + pil_d2_n1_3_3_2_1 + pil_d2_n1_3_3_2_2 + pil_d2_n1_3_3_2_3 + pil_d2_n1_3_3_3_1 + pil_d2_n1_3_3_3_2 + pil_d2_n1_3_3_3_3 + pil_d3_n1_1_1_1_1 + pil_d3_n1_1_1_1_2 + pil_d3_n1_1_1_1_3 + pil_d3_n1_1_1_2_1 + pil_d3_n1_1_1_2_2 + pil_d3_n1_1_1_2_3 + pil_d3_n1_1_1_3_1 + pil_d3_n1_1_1_3_2 + pil_d3_n1_1_1_3_3 + pil_d3_n1_1_2_1_1 + pil_d3_n1_1_2_1_2 + pil_d3_n1_1_2_1_3 + pil_d3_n1_1_2_2_1 + pil_d3_n1_1_2_2_2 + pil_d3_n1_1_2_2_3 + pil_d3_n1_1_2_3_1 + pil_d3_n1_1_2_3_2 + pil_d3_n1_1_2_3_3 + pil_d3_n1_1_3_1_1 + pil_d3_n1_1_3_1_2 + pil_d3_n1_1_3_1_3 + pil_d3_n1_1_3_2_1 + pil_d3_n1_1_3_2_2 + pil_d3_n1_1_3_2_3 + pil_d3_n1_1_3_3_1 + pil_d3_n1_1_3_3_2 + pil_d3_n1_1_3_3_3 + pil_d3_n1_2_1_1_1 + pil_d3_n1_2_1_1_2 + pil_d3_n1_2_1_1_3 + pil_d3_n1_2_1_2_1 + pil_d3_n1_2_1_2_2 + pil_d3_n1_2_1_2_3 + pil_d3_n1_2_1_3_1 + pil_d3_n1_2_1_3_2 + pil_d3_n1_2_1_3_3 + pil_d3_n1_2_2_1_1 + pil_d3_n1_2_2_1_2 + pil_d3_n1_2_2_1_3 + pil_d3_n1_2_2_2_1 + pil_d3_n1_2_2_2_2 + pil_d3_n1_2_2_2_3 + pil_d3_n1_2_2_3_1 + pil_d3_n1_2_2_3_2 + pil_d3_n1_2_2_3_3 + pil_d3_n1_2_3_1_1 + pil_d3_n1_2_3_1_2 + pil_d3_n1_2_3_1_3 + pil_d3_n1_2_3_2_1 + pil_d3_n1_2_3_2_2 + pil_d3_n1_2_3_2_3 + pil_d3_n1_2_3_3_1 + pil_d3_n1_2_3_3_2 + pil_d3_n1_2_3_3_3 + pil_d3_n1_3_1_1_1 + pil_d3_n1_3_1_1_2 + pil_d3_n1_3_1_1_3 + pil_d3_n1_3_1_2_1 + pil_d3_n1_3_1_2_2 + pil_d3_n1_3_1_2_3 + pil_d3_n1_3_1_3_1 + pil_d3_n1_3_1_3_2 + pil_d3_n1_3_1_3_3 + pil_d3_n1_3_2_1_1 + pil_d3_n1_3_2_1_2 + pil_d3_n1_3_2_1_3 + pil_d3_n1_3_2_2_1 + pil_d3_n1_3_2_2_2 + pil_d3_n1_3_2_2_3 + pil_d3_n1_3_2_3_1 + pil_d3_n1_3_2_3_2 + pil_d3_n1_3_2_3_3 + pil_d3_n1_3_3_1_1 + pil_d3_n1_3_3_1_2 + pil_d3_n1_3_3_1_3 + pil_d3_n1_3_3_2_1 + pil_d3_n1_3_3_2_2 + pil_d3_n1_3_3_2_3 + pil_d3_n1_3_3_3_1 + pil_d3_n1_3_3_3_2 + pil_d3_n1_3_3_3_3 + pil_d4_n1_1_1_1_1 + pil_d4_n1_1_1_1_2 + pil_d4_n1_1_1_1_3 + pil_d4_n1_1_1_2_1 + pil_d4_n1_1_1_2_2 + pil_d4_n1_1_1_2_3 + pil_d4_n1_1_1_3_1 + pil_d4_n1_1_1_3_2 + pil_d4_n1_1_1_3_3 + pil_d4_n1_1_2_1_1 + pil_d4_n1_1_2_1_2 + pil_d4_n1_1_2_1_3 + pil_d4_n1_1_2_2_1 + pil_d4_n1_1_2_2_2 + pil_d4_n1_1_2_2_3 + pil_d4_n1_1_2_3_1 + pil_d4_n1_1_2_3_2 + pil_d4_n1_1_2_3_3 + pil_d4_n1_1_3_1_1 + pil_d4_n1_1_3_1_2 + pil_d4_n1_1_3_1_3 + pil_d4_n1_1_3_2_1 + pil_d4_n1_1_3_2_2 + pil_d4_n1_1_3_2_3 + pil_d4_n1_1_3_3_1 + pil_d4_n1_1_3_3_2 + pil_d4_n1_1_3_3_3 + pil_d4_n1_2_1_1_1 + pil_d4_n1_2_1_1_2 + pil_d4_n1_2_1_1_3 + pil_d4_n1_2_1_2_1 + pil_d4_n1_2_1_2_2 + pil_d4_n1_2_1_2_3 + pil_d4_n1_2_1_3_1 + pil_d4_n1_2_1_3_2 + pil_d4_n1_2_1_3_3 + pil_d4_n1_2_2_1_1 + pil_d4_n1_2_2_1_2 + pil_d4_n1_2_2_1_3 + pil_d4_n1_2_2_2_1 + pil_d4_n1_2_2_2_2 + pil_d4_n1_2_2_2_3 + pil_d4_n1_2_2_3_1 + pil_d4_n1_2_2_3_2 + pil_d4_n1_2_2_3_3 + pil_d4_n1_2_3_1_1 + pil_d4_n1_2_3_1_2 + pil_d4_n1_2_3_1_3 + pil_d4_n1_2_3_2_1 + pil_d4_n1_2_3_2_2 + pil_d4_n1_2_3_2_3 + pil_d4_n1_2_3_3_1 + pil_d4_n1_2_3_3_2 + pil_d4_n1_2_3_3_3 + pil_d4_n1_3_1_1_1 + pil_d4_n1_3_1_1_2 + pil_d4_n1_3_1_1_3 + pil_d4_n1_3_1_2_1 + pil_d4_n1_3_1_2_2 + pil_d4_n1_3_1_2_3 + pil_d4_n1_3_1_3_1 + pil_d4_n1_3_1_3_2 + pil_d4_n1_3_1_3_3 + pil_d4_n1_3_2_1_1 + pil_d4_n1_3_2_1_2 + pil_d4_n1_3_2_1_3 + pil_d4_n1_3_2_2_1 + pil_d4_n1_3_2_2_2 + pil_d4_n1_3_2_2_3 + pil_d4_n1_3_2_3_1 + pil_d4_n1_3_2_3_2 + pil_d4_n1_3_2_3_3 + pil_d4_n1_3_3_1_1 + pil_d4_n1_3_3_1_2 + pil_d4_n1_3_3_1_3 + pil_d4_n1_3_3_2_1 + pil_d4_n1_3_3_2_2 + pil_d4_n1_3_3_2_3 + pil_d4_n1_3_3_3_1 + pil_d4_n1_3_3_3_2 + pil_d4_n1_3_3_3_3 + pol_d1_n1_1_1_1_1 + pol_d1_n1_1_1_1_2 + pol_d1_n1_1_1_1_3 + pol_d1_n1_1_1_2_1 + pol_d1_n1_1_1_2_2 + pol_d1_n1_1_1_2_3 + pol_d1_n1_1_1_3_1 + pol_d1_n1_1_1_3_2 + pol_d1_n1_1_1_3_3 + pol_d1_n1_1_2_1_1 + pol_d1_n1_1_2_1_2 + pol_d1_n1_1_2_1_3 + pol_d1_n1_1_2_2_1 + pol_d1_n1_1_2_2_2 + pol_d1_n1_1_2_2_3 + pol_d1_n1_1_2_3_1 + pol_d1_n1_1_2_3_2 + pol_d1_n1_1_2_3_3 + pol_d1_n1_1_3_1_1 + pol_d1_n1_1_3_1_2 + pol_d1_n1_1_3_1_3 + pol_d1_n1_1_3_2_1 + pol_d1_n1_1_3_2_2 + pol_d1_n1_1_3_2_3 + pol_d1_n1_1_3_3_1 + pol_d1_n1_1_3_3_2 + pol_d1_n1_1_3_3_3 + pol_d1_n1_2_1_1_1 + pol_d1_n1_2_1_1_2 + pol_d1_n1_2_1_1_3 + pol_d1_n1_2_1_2_1 + pol_d1_n1_2_1_2_2 + pol_d1_n1_2_1_2_3 + pol_d1_n1_2_1_3_1 + pol_d1_n1_2_1_3_2 + pol_d1_n1_2_1_3_3 + pol_d1_n1_2_2_1_1 + pol_d1_n1_2_2_1_2 + pol_d1_n1_2_2_1_3 + pol_d1_n1_2_2_2_1 + pol_d1_n1_2_2_2_2 + pol_d1_n1_2_2_2_3 + pol_d1_n1_2_2_3_1 + pol_d1_n1_2_2_3_2 + pol_d1_n1_2_2_3_3 + pol_d1_n1_2_3_1_1 + pol_d1_n1_2_3_1_2 + pol_d1_n1_2_3_1_3 + pol_d1_n1_2_3_2_1 + pol_d1_n1_2_3_2_2 + pol_d1_n1_2_3_2_3 + pol_d1_n1_2_3_3_1 + pol_d1_n1_2_3_3_2 + pol_d1_n1_2_3_3_3 + pol_d1_n1_3_1_1_1 + pol_d1_n1_3_1_1_2 + pol_d1_n1_3_1_1_3 + pol_d1_n1_3_1_2_1 + pol_d1_n1_3_1_2_2 + pol_d1_n1_3_1_2_3 + pol_d1_n1_3_1_3_1 + pol_d1_n1_3_1_3_2 + pol_d1_n1_3_1_3_3 + pol_d1_n1_3_2_1_1 + pol_d1_n1_3_2_1_2 + pol_d1_n1_3_2_1_3 + pol_d1_n1_3_2_2_1 + pol_d1_n1_3_2_2_2 + pol_d1_n1_3_2_2_3 + pol_d1_n1_3_2_3_1 + pol_d1_n1_3_2_3_2 + pol_d1_n1_3_2_3_3 + pol_d1_n1_3_3_1_1 + pol_d1_n1_3_3_1_2 + pol_d1_n1_3_3_1_3 + pol_d1_n1_3_3_2_1 + pol_d1_n1_3_3_2_2 + pol_d1_n1_3_3_2_3 + pol_d1_n1_3_3_3_1 + pol_d1_n1_3_3_3_2 + pol_d1_n1_3_3_3_3 + pol_d2_n1_1_1_1_1 + pol_d2_n1_1_1_1_2 + pol_d2_n1_1_1_1_3 + pol_d2_n1_1_1_2_1 + pol_d2_n1_1_1_2_2 + pol_d2_n1_1_1_2_3 + pol_d2_n1_1_1_3_1 + pol_d2_n1_1_1_3_2 + pol_d2_n1_1_1_3_3 + pol_d2_n1_1_2_1_1 + pol_d2_n1_1_2_1_2 + pol_d2_n1_1_2_1_3 + pol_d2_n1_1_2_2_1 + pol_d2_n1_1_2_2_2 + pol_d2_n1_1_2_2_3 + pol_d2_n1_1_2_3_1 + pol_d2_n1_1_2_3_2 + pol_d2_n1_1_2_3_3 + pol_d2_n1_1_3_1_1 + pol_d2_n1_1_3_1_2 + pol_d2_n1_1_3_1_3 + pol_d2_n1_1_3_2_1 + pol_d2_n1_1_3_2_2 + pol_d2_n1_1_3_2_3 + pol_d2_n1_1_3_3_1 + pol_d2_n1_1_3_3_2 + pol_d2_n1_1_3_3_3 + pol_d2_n1_2_1_1_1 + pol_d2_n1_2_1_1_2 + pol_d2_n1_2_1_1_3 + pol_d2_n1_2_1_2_1 + pol_d2_n1_2_1_2_2 + pol_d2_n1_2_1_2_3 + pol_d2_n1_2_1_3_1 + pol_d2_n1_2_1_3_2 + pol_d2_n1_2_1_3_3 + pol_d2_n1_2_2_1_1 + pol_d2_n1_2_2_1_2 + pol_d2_n1_2_2_1_3 + pol_d2_n1_2_2_2_1 + pol_d2_n1_2_2_2_2 + pol_d2_n1_2_2_2_3 + pol_d2_n1_2_2_3_1 + pol_d2_n1_2_2_3_2 + pol_d2_n1_2_2_3_3 + pol_d2_n1_2_3_1_1 + pol_d2_n1_2_3_1_2 + pol_d2_n1_2_3_1_3 + pol_d2_n1_2_3_2_1 + pol_d2_n1_2_3_2_2 + pol_d2_n1_2_3_2_3 + pol_d2_n1_2_3_3_1 + pol_d2_n1_2_3_3_2 + pol_d2_n1_2_3_3_3 + pol_d2_n1_3_1_1_1 + pol_d2_n1_3_1_1_2 + pol_d2_n1_3_1_1_3 + pol_d2_n1_3_1_2_1 + pol_d2_n1_3_1_2_2 + pol_d2_n1_3_1_2_3 + pol_d2_n1_3_1_3_1 + pol_d2_n1_3_1_3_2 + pol_d2_n1_3_1_3_3 + pol_d2_n1_3_2_1_1 + pol_d2_n1_3_2_1_2 + pol_d2_n1_3_2_1_3 + pol_d2_n1_3_2_2_1 + pol_d2_n1_3_2_2_2 + pol_d2_n1_3_2_2_3 + pol_d2_n1_3_2_3_1 + pol_d2_n1_3_2_3_2 + pol_d2_n1_3_2_3_3 + pol_d2_n1_3_3_1_1 + pol_d2_n1_3_3_1_2 + pol_d2_n1_3_3_1_3 + pol_d2_n1_3_3_2_1 + pol_d2_n1_3_3_2_2 + pol_d2_n1_3_3_2_3 + pol_d2_n1_3_3_3_1 + pol_d2_n1_3_3_3_2 + pol_d2_n1_3_3_3_3 + pol_d3_n1_1_1_1_1 + pol_d3_n1_1_1_1_2 + pol_d3_n1_1_1_1_3 + pol_d3_n1_1_1_2_1 + pol_d3_n1_1_1_2_2 + pol_d3_n1_1_1_2_3 + pol_d3_n1_1_1_3_1 + pol_d3_n1_1_1_3_2 + pol_d3_n1_1_1_3_3 + pol_d3_n1_1_2_1_1 + pol_d3_n1_1_2_1_2 + pol_d3_n1_1_2_1_3 + pol_d3_n1_1_2_2_1 + pol_d3_n1_1_2_2_2 + pol_d3_n1_1_2_2_3 + pol_d3_n1_1_2_3_1 + pol_d3_n1_1_2_3_2 + pol_d3_n1_1_2_3_3 + pol_d3_n1_1_3_1_1 + pol_d3_n1_1_3_1_2 + pol_d3_n1_1_3_1_3 + pol_d3_n1_1_3_2_1 + pol_d3_n1_1_3_2_2 + pol_d3_n1_1_3_2_3 + pol_d3_n1_1_3_3_1 + pol_d3_n1_1_3_3_2 + pol_d3_n1_1_3_3_3 + pol_d3_n1_2_1_1_1 + pol_d3_n1_2_1_1_2 + pol_d3_n1_2_1_1_3 + pol_d3_n1_2_1_2_1 + pol_d3_n1_2_1_2_2 + pol_d3_n1_2_1_2_3 + pol_d3_n1_2_1_3_1 + pol_d3_n1_2_1_3_2 + pol_d3_n1_2_1_3_3 + pol_d3_n1_2_2_1_1 + pol_d3_n1_2_2_1_2 + pol_d3_n1_2_2_1_3 + pol_d3_n1_2_2_2_1 + pol_d3_n1_2_2_2_2 + pol_d3_n1_2_2_2_3 + pol_d3_n1_2_2_3_1 + pol_d3_n1_2_2_3_2 + pol_d3_n1_2_2_3_3 + pol_d3_n1_2_3_1_1 + pol_d3_n1_2_3_1_2 + pol_d3_n1_2_3_1_3 + pol_d3_n1_2_3_2_1 + pol_d3_n1_2_3_2_2 + pol_d3_n1_2_3_2_3 + pol_d3_n1_2_3_3_1 + pol_d3_n1_2_3_3_2 + pol_d3_n1_2_3_3_3 + pol_d3_n1_3_1_1_1 + pol_d3_n1_3_1_1_2 + pol_d3_n1_3_1_1_3 + pol_d3_n1_3_1_2_1 + pol_d3_n1_3_1_2_2 + pol_d3_n1_3_1_2_3 + pol_d3_n1_3_1_3_1 + pol_d3_n1_3_1_3_2 + pol_d3_n1_3_1_3_3 + pol_d3_n1_3_2_1_1 + pol_d3_n1_3_2_1_2 + pol_d3_n1_3_2_1_3 + pol_d3_n1_3_2_2_1 + pol_d3_n1_3_2_2_2 + pol_d3_n1_3_2_2_3 + pol_d3_n1_3_2_3_1 + pol_d3_n1_3_2_3_2 + pol_d3_n1_3_2_3_3 + pol_d3_n1_3_3_1_1 + pol_d3_n1_3_3_1_2 + pol_d3_n1_3_3_1_3 + pol_d3_n1_3_3_2_1 + pol_d3_n1_3_3_2_2 + pol_d3_n1_3_3_2_3 + pol_d3_n1_3_3_3_1 + pol_d3_n1_3_3_3_2 + pol_d3_n1_3_3_3_3 + pol_d4_n1_1_1_1_1 + pol_d4_n1_1_1_1_2 + pol_d4_n1_1_1_1_3 + pol_d4_n1_1_1_2_1 + pol_d4_n1_1_1_2_2 + pol_d4_n1_1_1_2_3 + pol_d4_n1_1_1_3_1 + pol_d4_n1_1_1_3_2 + pol_d4_n1_1_1_3_3 + pol_d4_n1_1_2_1_1 + pol_d4_n1_1_2_1_2 + pol_d4_n1_1_2_1_3 + pol_d4_n1_1_2_2_1 + pol_d4_n1_1_2_2_2 + pol_d4_n1_1_2_2_3 + pol_d4_n1_1_2_3_1 + pol_d4_n1_1_2_3_2 + pol_d4_n1_1_2_3_3 + pol_d4_n1_1_3_1_1 + pol_d4_n1_1_3_1_2 + pol_d4_n1_1_3_1_3 + pol_d4_n1_1_3_2_1 + pol_d4_n1_1_3_2_2 + pol_d4_n1_1_3_2_3 + pol_d4_n1_1_3_3_1 + pol_d4_n1_1_3_3_2 + pol_d4_n1_1_3_3_3 + pol_d4_n1_2_1_1_1 + pol_d4_n1_2_1_1_2 + pol_d4_n1_2_1_1_3 + pol_d4_n1_2_1_2_1 + pol_d4_n1_2_1_2_2 + pol_d4_n1_2_1_2_3 + pol_d4_n1_2_1_3_1 + pol_d4_n1_2_1_3_2 + pol_d4_n1_2_1_3_3 + pol_d4_n1_2_2_1_1 + pol_d4_n1_2_2_1_2 + pol_d4_n1_2_2_1_3 + pol_d4_n1_2_2_2_1 + pol_d4_n1_2_2_2_2 + pol_d4_n1_2_2_2_3 + pol_d4_n1_2_2_3_1 + pol_d4_n1_2_2_3_2 + pol_d4_n1_2_2_3_3 + pol_d4_n1_2_3_1_1 + pol_d4_n1_2_3_1_2 + pol_d4_n1_2_3_1_3 + pol_d4_n1_2_3_2_1 + pol_d4_n1_2_3_2_2 + pol_d4_n1_2_3_2_3 + pol_d4_n1_2_3_3_1 + pol_d4_n1_2_3_3_2 + pol_d4_n1_2_3_3_3 + pol_d4_n1_3_1_1_1 + pol_d4_n1_3_1_1_2 + pol_d4_n1_3_1_1_3 + pol_d4_n1_3_1_2_1 + pol_d4_n1_3_1_2_2 + pol_d4_n1_3_1_2_3 + pol_d4_n1_3_1_3_1 + pol_d4_n1_3_1_3_2 + pol_d4_n1_3_1_3_3 + pol_d4_n1_3_2_1_1 + pol_d4_n1_3_2_1_2 + pol_d4_n1_3_2_1_3 + pol_d4_n1_3_2_2_1 + pol_d4_n1_3_2_2_2 + pol_d4_n1_3_2_2_3 + pol_d4_n1_3_2_3_1 + pol_d4_n1_3_2_3_2 + pol_d4_n1_3_2_3_3 + pol_d4_n1_3_3_1_1 + pol_d4_n1_3_3_1_2 + pol_d4_n1_3_3_1_3 + pol_d4_n1_3_3_2_1 + pol_d4_n1_3_3_2_2 + pol_d4_n1_3_3_2_3 + pol_d4_n1_3_3_3_1 + pol_d4_n1_3_3_3_2 + pol_d4_n1_3_3_3_3 = 1296
invariant :po_d4_n1_3_1_2_2 + pol_d4_n1_3_1_2_2 = 1
invariant :pi_d2_n1_1_2_3_1 + pil_d2_n1_1_2_3_1 = 1
invariant :pi_d3_n1_3_3_2_3 + pil_d3_n1_3_3_2_3 = 1
invariant :po_d4_n1_1_1_2_2 + pol_d4_n1_1_1_2_2 = 1
invariant :po_d2_n1_2_1_1_1 + pol_d2_n1_2_1_1_1 = 1
invariant :pi_d4_n1_2_3_1_1 + pil_d4_n1_2_3_1_1 = 1
invariant :po_d2_n1_1_1_2_2 + pol_d2_n1_1_1_2_2 = 1
invariant :po_d1_n1_2_3_2_1 + pol_d1_n1_2_3_2_1 = 1
invariant :po_d4_n1_1_2_3_2 + pol_d4_n1_1_2_3_2 = 1
invariant :po_d2_n1_2_2_3_3 + pol_d2_n1_2_2_3_3 = 1
invariant :pi_d2_n1_3_3_1_3 + pil_d2_n1_3_3_1_3 = 1
invariant :pi_d3_n1_1_1_3_2 + pil_d3_n1_1_1_3_2 = 1
invariant :po_d3_n1_2_3_3_3 + pol_d3_n1_2_3_3_3 = 1
invariant :pb_d1_n1_2_3_3_2 + pb_d1_n2_2_3_3_2 + pb_d2_n1_2_3_3_2 + pb_d2_n2_2_3_3_2 + pb_d3_n1_2_3_3_2 + pb_d3_n2_2_3_3_2 + pb_d4_n1_2_3_3_2 + pb_d4_n2_2_3_3_2 + pbl_2_3_3_2 = 24
invariant :po_d2_n1_1_3_3_1 + pol_d2_n1_1_3_3_1 = 1
invariant :pi_d2_n1_1_3_1_2 + pil_d2_n1_1_3_1_2 = 1
invariant :po_d1_n1_3_1_3_2 + pol_d1_n1_3_1_3_2 = 1
invariant :po_d2_n1_3_1_3_3 + pol_d2_n1_3_1_3_3 = 1
invariant :po_d4_n1_1_2_2_1 + pol_d4_n1_1_2_2_1 = 1
invariant :pb_d1_n1_1_2_2_3 + pb_d1_n2_1_2_2_3 + pb_d2_n1_1_2_2_3 + pb_d2_n2_1_2_2_3 + pb_d3_n1_1_2_2_3 + pb_d3_n2_1_2_2_3 + pb_d4_n1_1_2_2_3 + pb_d4_n2_1_2_2_3 + pbl_1_2_2_3 = 24
invariant :pi_d2_n1_1_1_1_3 + pil_d2_n1_1_1_1_3 = 1
invariant :pi_d1_n1_1_3_1_3 + pil_d1_n1_1_3_1_3 = 1
invariant :pi_d2_n1_3_3_3_2 + pil_d2_n1_3_3_3_2 = 1
invariant :po_d2_n1_1_1_3_2 + pol_d2_n1_1_1_3_2 = 1
invariant :pi_d2_n1_2_3_1_3 + pil_d2_n1_2_3_1_3 = 1
invariant :po_d3_n1_3_2_1_1 + pol_d3_n1_3_2_1_1 = 1
invariant :pi_d1_n1_2_1_3_3 + pil_d1_n1_2_1_3_3 = 1
invariant :pi_d3_n1_1_1_1_1 + pil_d3_n1_1_1_1_1 = 1
invariant :pi_d3_n1_2_1_3_3 + pil_d3_n1_2_1_3_3 = 1
invariant :pi_d4_n1_3_3_2_3 + pil_d4_n1_3_3_2_3 = 1
invariant :po_d3_n1_2_2_1_2 + pol_d3_n1_2_2_1_2 = 1
invariant :pi_d4_n1_1_3_1_3 + pil_d4_n1_1_3_1_3 = 1
invariant :po_d4_n1_2_1_1_3 + pol_d4_n1_2_1_1_3 = 1
invariant :po_d4_n1_2_1_2_2 + pol_d4_n1_2_1_2_2 = 1
invariant :po_d1_n1_1_1_3_1 + pol_d1_n1_1_1_3_1 = 1
invariant :pi_d1_n1_1_2_1_2 + pil_d1_n1_1_2_1_2 = 1
invariant :po_d4_n1_3_2_1_1 + pol_d4_n1_3_2_1_1 = 1
invariant :po_d4_n1_3_2_3_2 + pol_d4_n1_3_2_3_2 = 1
invariant :pi_d2_n1_1_1_1_2 + pil_d2_n1_1_1_1_2 = 1
invariant :po_d3_n1_3_3_3_3 + pol_d3_n1_3_3_3_3 = 1
invariant :po_d2_n1_2_2_1_2 + pol_d2_n1_2_2_1_2 = 1
invariant :po_d2_n1_2_2_1_3 + pol_d2_n1_2_2_1_3 = 1
invariant :pi_d1_n1_1_2_1_3 + pil_d1_n1_1_2_1_3 = 1
invariant :pi_d2_n1_1_3_2_1 + pil_d2_n1_1_3_2_1 = 1
invariant :pb_d1_n1_3_2_3_1 + pb_d1_n2_3_2_3_1 + pb_d2_n1_3_2_3_1 + pb_d2_n2_3_2_3_1 + pb_d3_n1_3_2_3_1 + pb_d3_n2_3_2_3_1 + pb_d4_n1_3_2_3_1 + pb_d4_n2_3_2_3_1 + pbl_3_2_3_1 = 24
invariant :po_d2_n1_2_3_2_1 + pol_d2_n1_2_3_2_1 = 1
invariant :po_d4_n1_2_3_1_1 + pol_d4_n1_2_3_1_1 = 1
invariant :pb_d1_n1_1_2_3_3 + pb_d1_n2_1_2_3_3 + pb_d2_n1_1_2_3_3 + pb_d2_n2_1_2_3_3 + pb_d3_n1_1_2_3_3 + pb_d3_n2_1_2_3_3 + pb_d4_n1_1_2_3_3 + pb_d4_n2_1_2_3_3 + pbl_1_2_3_3 = 24
invariant :pi_d4_n1_3_2_2_1 + pil_d4_n1_3_2_2_1 = 1
invariant :pi_d3_n1_1_2_3_1 + pil_d3_n1_1_2_3_1 = 1
invariant :pi_d1_n1_2_1_3_1 + pil_d1_n1_2_1_3_1 = 1
invariant :pi_d2_n1_2_1_3_2 + pil_d2_n1_2_1_3_2 = 1
invariant :pi_d2_n1_3_3_2_3 + pil_d2_n1_3_3_2_3 = 1
invariant :pi_d1_n1_3_3_1_2 + pil_d1_n1_3_3_1_2 = 1
invariant :pi_d2_n1_2_3_2_1 + pil_d2_n1_2_3_2_1 = 1
invariant :po_d3_n1_1_1_3_1 + pol_d3_n1_1_1_3_1 = 1
invariant :pi_d1_n1_1_2_2_1 + pil_d1_n1_1_2_2_1 = 1
invariant :pi_d1_n1_3_2_2_3 + pil_d1_n1_3_2_2_3 = 1
invariant :pi_d3_n1_1_3_2_1 + pil_d3_n1_1_3_2_1 = 1
invariant :pi_d4_n1_2_1_3_3 + pil_d4_n1_2_1_3_3 = 1
invariant :po_d4_n1_1_2_2_3 + pol_d4_n1_1_2_2_3 = 1
invariant :po_d2_n1_3_3_1_1 + pol_d2_n1_3_3_1_1 = 1
invariant :pi_d4_n1_3_1_1_3 + pil_d4_n1_3_1_1_3 = 1
invariant :po_d4_n1_3_2_2_2 + pol_d4_n1_3_2_2_2 = 1
invariant :po_d4_n1_1_1_2_1 + pol_d4_n1_1_1_2_1 = 1
invariant :pi_d3_n1_3_1_3_3 + pil_d3_n1_3_1_3_3 = 1
invariant :pi_d1_n1_1_1_2_3 + pil_d1_n1_1_1_2_3 = 1
invariant :pb_d1_n1_3_1_1_1 + pb_d1_n2_3_1_1_1 + pb_d2_n1_3_1_1_1 + pb_d2_n2_3_1_1_1 + pb_d3_n1_3_1_1_1 + pb_d3_n2_3_1_1_1 + pb_d4_n1_3_1_1_1 + pb_d4_n2_3_1_1_1 + pbl_3_1_1_1 = 24
invariant :po_d3_n1_1_3_1_1 + pol_d3_n1_1_3_1_1 = 1
invariant :pi_d1_n1_1_1_1_2 + pil_d1_n1_1_1_1_2 = 1
invariant :pi_d3_n1_2_1_2_1 + pil_d3_n1_2_1_2_1 = 1
invariant :pi_d2_n1_2_2_3_2 + pil_d2_n1_2_2_3_2 = 1
invariant :pi_d2_n1_3_2_2_2 + pil_d2_n1_3_2_2_2 = 1
invariant :po_d2_n1_1_2_3_2 + pol_d2_n1_1_2_3_2 = 1
invariant :pi_d4_n1_1_2_2_2 + pil_d4_n1_1_2_2_2 = 1
invariant :pi_d1_n1_2_1_1_3 + pil_d1_n1_2_1_1_3 = 1
invariant :po_d1_n1_2_2_2_1 + pol_d1_n1_2_2_2_1 = 1
invariant :po_d3_n1_1_3_2_1 + pol_d3_n1_1_3_2_1 = 1
invariant :pb_d1_n1_2_3_2_1 + pb_d1_n2_2_3_2_1 + pb_d2_n1_2_3_2_1 + pb_d2_n2_2_3_2_1 + pb_d3_n1_2_3_2_1 + pb_d3_n2_2_3_2_1 + pb_d4_n1_2_3_2_1 + pb_d4_n2_2_3_2_1 + pbl_2_3_2_1 = 24
invariant :po_d1_n1_1_3_2_2 + pol_d1_n1_1_3_2_2 = 1
invariant :pi_d2_n1_2_2_1_2 + pil_d2_n1_2_2_1_2 = 1
invariant :po_d4_n1_1_3_2_2 + pol_d4_n1_1_3_2_2 = 1
invariant :pi_d1_n1_1_3_2_2 + pil_d1_n1_1_3_2_2 = 1
invariant :po_d1_n1_2_1_1_2 + pol_d1_n1_2_1_1_2 = 1
invariant :po_d4_n1_3_3_1_1 + pol_d4_n1_3_3_1_1 = 1
invariant :pb_d1_n1_2_3_1_3 + pb_d1_n2_2_3_1_3 + pb_d2_n1_2_3_1_3 + pb_d2_n2_2_3_1_3 + pb_d3_n1_2_3_1_3 + pb_d3_n2_2_3_1_3 + pb_d4_n1_2_3_1_3 + pb_d4_n2_2_3_1_3 + pbl_2_3_1_3 = 24
invariant :po_d3_n1_2_1_2_1 + pol_d3_n1_2_1_2_1 = 1
invariant :pi_d4_n1_3_2_1_2 + pil_d4_n1_3_2_1_2 = 1
invariant :po_d1_n1_1_3_3_3 + pol_d1_n1_1_3_3_3 = 1
invariant :po_d1_n1_2_1_3_2 + pol_d1_n1_2_1_3_2 = 1
invariant :po_d1_n1_3_2_1_2 + pol_d1_n1_3_2_1_2 = 1
invariant :po_d1_n1_2_3_3_3 + pol_d1_n1_2_3_3_3 = 1
invariant :po_d3_n1_3_3_2_2 + pol_d3_n1_3_3_2_2 = 1
invariant :po_d3_n1_3_1_1_3 + pol_d3_n1_3_1_1_3 = 1
invariant :pi_d3_n1_1_2_3_3 + pil_d3_n1_1_2_3_3 = 1
invariant :po_d1_n1_2_2_2_2 + pol_d1_n1_2_2_2_2 = 1
invariant :pi_d2_n1_2_2_2_1 + pil_d2_n1_2_2_2_1 = 1
invariant :pb_d1_n1_2_1_3_2 + pb_d1_n2_2_1_3_2 + pb_d2_n1_2_1_3_2 + pb_d2_n2_2_1_3_2 + pb_d3_n1_2_1_3_2 + pb_d3_n2_2_1_3_2 + pb_d4_n1_2_1_3_2 + pb_d4_n2_2_1_3_2 + pbl_2_1_3_2 = 24
invariant :pi_d2_n1_3_3_3_3 + pil_d2_n1_3_3_3_3 = 1
invariant :pb_d1_n1_2_2_2_3 + pb_d1_n2_2_2_2_3 + pb_d2_n1_2_2_2_3 + pb_d2_n2_2_2_2_3 + pb_d3_n1_2_2_2_3 + pb_d3_n2_2_2_2_3 + pb_d4_n1_2_2_2_3 + pb_d4_n2_2_2_2_3 + pbl_2_2_2_3 = 24
invariant :po_d2_n1_1_3_2_2 + pol_d2_n1_1_3_2_2 = 1
invariant :pi_d3_n1_1_2_3_2 + pil_d3_n1_1_2_3_2 = 1
invariant :po_d4_n1_1_3_2_3 + pol_d4_n1_1_3_2_3 = 1
invariant :po_d2_n1_1_3_1_1 + pol_d2_n1_1_3_1_1 = 1
invariant :po_d3_n1_2_3_1_2 + pol_d3_n1_2_3_1_2 = 1
invariant :pi_d1_n1_2_2_1_3 + pil_d1_n1_2_2_1_3 = 1
invariant :po_d4_n1_3_1_3_2 + pol_d4_n1_3_1_3_2 = 1
invariant :pi_d2_n1_3_3_1_1 + pil_d2_n1_3_3_1_1 = 1
invariant :po_d4_n1_2_2_3_2 + pol_d4_n1_2_2_3_2 = 1
invariant :po_d4_n1_2_3_3_2 + pol_d4_n1_2_3_3_2 = 1
invariant :pb_d1_n1_1_1_2_3 + pb_d1_n2_1_1_2_3 + pb_d2_n1_1_1_2_3 + pb_d2_n2_1_1_2_3 + pb_d3_n1_1_1_2_3 + pb_d3_n2_1_1_2_3 + pb_d4_n1_1_1_2_3 + pb_d4_n2_1_1_2_3 + pbl_1_1_2_3 = 24
invariant :pi_d1_n1_3_3_2_1 + pil_d1_n1_3_3_2_1 = 1
invariant :po_d4_n1_1_3_2_1 + pol_d4_n1_1_3_2_1 = 1
invariant :pi_d3_n1_1_3_3_2 + pil_d3_n1_1_3_3_2 = 1
invariant :pb_d1_n1_1_2_2_2 + pb_d1_n2_1_2_2_2 + pb_d2_n1_1_2_2_2 + pb_d2_n2_1_2_2_2 + pb_d3_n1_1_2_2_2 + pb_d3_n2_1_2_2_2 + pb_d4_n1_1_2_2_2 + pb_d4_n2_1_2_2_2 + pbl_1_2_2_2 = 24
invariant :pi_d3_n1_2_2_2_2 + pil_d3_n1_2_2_2_2 = 1
invariant :pb_d1_n1_2_2_2_2 + pb_d1_n2_2_2_2_2 + pb_d2_n1_2_2_2_2 + pb_d2_n2_2_2_2_2 + pb_d3_n1_2_2_2_2 + pb_d3_n2_2_2_2_2 + pb_d4_n1_2_2_2_2 + pb_d4_n2_2_2_2_2 + pbl_2_2_2_2 = 24
invariant :pi_d1_n1_2_3_3_3 + pil_d1_n1_2_3_3_3 = 1
invariant :po_d4_n1_3_3_3_2 + pol_d4_n1_3_3_3_2 = 1
invariant :po_d1_n1_1_1_2_3 + pol_d1_n1_1_1_2_3 = 1
invariant :pb_d1_n1_1_3_3_2 + pb_d1_n2_1_3_3_2 + pb_d2_n1_1_3_3_2 + pb_d2_n2_1_3_3_2 + pb_d3_n1_1_3_3_2 + pb_d3_n2_1_3_3_2 + pb_d4_n1_1_3_3_2 + pb_d4_n2_1_3_3_2 + pbl_1_3_3_2 = 24
invariant :pi_d2_n1_1_1_3_2 + pil_d2_n1_1_1_3_2 = 1
invariant :pi_d4_n1_2_3_2_2 + pil_d4_n1_2_3_2_2 = 1
invariant :po_d3_n1_3_1_2_1 + pol_d3_n1_3_1_2_1 = 1
invariant :pb_d1_n1_1_3_1_1 + pb_d1_n2_1_3_1_1 + pb_d2_n1_1_3_1_1 + pb_d2_n2_1_3_1_1 + pb_d3_n1_1_3_1_1 + pb_d3_n2_1_3_1_1 + pb_d4_n1_1_3_1_1 + pb_d4_n2_1_3_1_1 + pbl_1_3_1_1 = 24
invariant :po_d4_n1_1_2_3_1 + pol_d4_n1_1_2_3_1 = 1
invariant :po_d1_n1_2_2_1_3 + pol_d1_n1_2_2_1_3 = 1
invariant :pi_d4_n1_1_1_1_1 + pil_d4_n1_1_1_1_1 = 1
invariant :po_d2_n1_3_1_2_3 + pol_d2_n1_3_1_2_3 = 1
invariant :pi_d2_n1_2_1_2_1 + pil_d2_n1_2_1_2_1 = 1
invariant :pi_d4_n1_2_3_3_1 + pil_d4_n1_2_3_3_1 = 1
invariant :po_d2_n1_3_2_2_1 + pol_d2_n1_3_2_2_1 = 1
invariant :pi_d4_n1_1_3_3_3 + pil_d4_n1_1_3_3_3 = 1
invariant :po_d3_n1_1_3_1_3 + pol_d3_n1_1_3_1_3 = 1
invariant :pb_d1_n1_3_2_3_3 + pb_d1_n2_3_2_3_3 + pb_d2_n1_3_2_3_3 + pb_d2_n2_3_2_3_3 + pb_d3_n1_3_2_3_3 + pb_d3_n2_3_2_3_3 + pb_d4_n1_3_2_3_3 + pb_d4_n2_3_2_3_3 + pbl_3_2_3_3 = 24
invariant :pi_d1_n1_2_3_3_1 + pil_d1_n1_2_3_3_1 = 1
invariant :pi_d1_n1_3_2_3_2 + pil_d1_n1_3_2_3_2 = 1
invariant :pb_d1_n1_1_3_2_1 + pb_d1_n2_1_3_2_1 + pb_d2_n1_1_3_2_1 + pb_d2_n2_1_3_2_1 + pb_d3_n1_1_3_2_1 + pb_d3_n2_1_3_2_1 + pb_d4_n1_1_3_2_1 + pb_d4_n2_1_3_2_1 + pbl_1_3_2_1 = 24
invariant :po_d1_n1_3_1_3_1 + pol_d1_n1_3_1_3_1 = 1
invariant :pi_d1_n1_2_1_1_2 + pil_d1_n1_2_1_1_2 = 1
invariant :po_d3_n1_2_2_3_2 + pol_d3_n1_2_2_3_2 = 1
invariant :po_d4_n1_1_1_3_1 + pol_d4_n1_1_1_3_1 = 1
invariant :pi_d1_n1_2_2_3_2 + pil_d1_n1_2_2_3_2 = 1
invariant :pi_d1_n1_2_3_1_1 + pil_d1_n1_2_3_1_1 = 1
invariant :pi_d1_n1_1_1_3_2 + pil_d1_n1_1_1_3_2 = 1
invariant :po_d2_n1_1_3_2_1 + pol_d2_n1_1_3_2_1 = 1
invariant :po_d1_n1_1_1_3_2 + pol_d1_n1_1_1_3_2 = 1
invariant :po_d3_n1_2_1_2_3 + pol_d3_n1_2_1_2_3 = 1
invariant :pi_d2_n1_3_2_3_3 + pil_d2_n1_3_2_3_3 = 1
invariant :po_d3_n1_3_2_2_2 + pol_d3_n1_3_2_2_2 = 1
invariant :pi_d3_n1_3_3_3_2 + pil_d3_n1_3_3_3_2 = 1
invariant :po_d3_n1_1_3_2_2 + pol_d3_n1_1_3_2_2 = 1
invariant :pi_d2_n1_1_3_3_1 + pil_d2_n1_1_3_3_1 = 1
invariant :pi_d2_n1_2_3_1_1 + pil_d2_n1_2_3_1_1 = 1
invariant :pi_d4_n1_2_2_3_1 + pil_d4_n1_2_2_3_1 = 1
invariant :po_d3_n1_1_1_2_3 + pol_d3_n1_1_1_2_3 = 1
invariant :po_d3_n1_1_1_3_2 + pol_d3_n1_1_1_3_2 = 1
invariant :pi_d2_n1_2_3_2_2 + pil_d2_n1_2_3_2_2 = 1
invariant :po_d3_n1_3_2_3_1 + pol_d3_n1_3_2_3_1 = 1
invariant :pi_d2_n1_3_1_1_1 + pil_d2_n1_3_1_1_1 = 1
invariant :po_d3_n1_1_2_1_2 + pol_d3_n1_1_2_1_2 = 1
invariant :po_d4_n1_2_1_3_1 + pol_d4_n1_2_1_3_1 = 1
invariant :pi_d4_n1_2_2_1_2 + pil_d4_n1_2_2_1_2 = 1
invariant :po_d3_n1_1_2_3_1 + pol_d3_n1_1_2_3_1 = 1
invariant :pb_d1_n1_3_3_2_1 + pb_d1_n2_3_3_2_1 + pb_d2_n1_3_3_2_1 + pb_d2_n2_3_3_2_1 + pb_d3_n1_3_3_2_1 + pb_d3_n2_3_3_2_1 + pb_d4_n1_3_3_2_1 + pb_d4_n2_3_3_2_1 + pbl_3_3_2_1 = 24
invariant :pi_d4_n1_3_2_3_1 + pil_d4_n1_3_2_3_1 = 1
invariant :pi_d1_n1_3_1_1_2 + pil_d1_n1_3_1_1_2 = 1
invariant :po_d4_n1_2_2_2_2 + pol_d4_n1_2_2_2_2 = 1
invariant :po_d1_n1_3_1_2_2 + pol_d1_n1_3_1_2_2 = 1
invariant :po_d2_n1_3_3_3_1 + pol_d2_n1_3_3_3_1 = 1
invariant :pi_d4_n1_2_1_1_1 + pil_d4_n1_2_1_1_1 = 1
invariant :po_d3_n1_3_3_2_3 + pol_d3_n1_3_3_2_3 = 1
invariant :pi_d2_n1_2_2_1_3 + pil_d2_n1_2_2_1_3 = 1
invariant :po_d3_n1_3_3_3_2 + pol_d3_n1_3_3_3_2 = 1
invariant :pb_d1_n1_2_3_1_1 + pb_d1_n2_2_3_1_1 + pb_d2_n1_2_3_1_1 + pb_d2_n2_2_3_1_1 + pb_d3_n1_2_3_1_1 + pb_d3_n2_2_3_1_1 + pb_d4_n1_2_3_1_1 + pb_d4_n2_2_3_1_1 + pbl_2_3_1_1 = 24
invariant :pi_d3_n1_1_1_1_2 + pil_d3_n1_1_1_1_2 = 1
invariant :pi_d2_n1_2_2_2_2 + pil_d2_n1_2_2_2_2 = 1
invariant :po_d4_n1_3_1_1_3 + pol_d4_n1_3_1_1_3 = 1
invariant :pi_d2_n1_1_2_1_2 + pil_d2_n1_1_2_1_2 = 1
invariant :pi_d3_n1_1_1_2_3 + pil_d3_n1_1_1_2_3 = 1
invariant :pi_d4_n1_1_2_3_2 + pil_d4_n1_1_2_3_2 = 1
invariant :po_d3_n1_2_1_3_3 + pol_d3_n1_2_1_3_3 = 1
invariant :pi_d3_n1_3_3_2_1 + pil_d3_n1_3_3_2_1 = 1
invariant :pb_d1_n1_2_2_3_3 + pb_d1_n2_2_2_3_3 + pb_d2_n1_2_2_3_3 + pb_d2_n2_2_2_3_3 + pb_d3_n1_2_2_3_3 + pb_d3_n2_2_2_3_3 + pb_d4_n1_2_2_3_3 + pb_d4_n2_2_2_3_3 + pbl_2_2_3_3 = 24
invariant :po_d1_n1_3_1_1_3 + pol_d1_n1_3_1_1_3 = 1
invariant :po_d2_n1_3_1_2_1 + pol_d2_n1_3_1_2_1 = 1
invariant :po_d2_n1_3_1_3_2 + pol_d2_n1_3_1_3_2 = 1
invariant :pb_d1_n1_1_1_2_1 + pb_d1_n2_1_1_2_1 + pb_d2_n1_1_1_2_1 + pb_d2_n2_1_1_2_1 + pb_d3_n1_1_1_2_1 + pb_d3_n2_1_1_2_1 + pb_d4_n1_1_1_2_1 + pb_d4_n2_1_1_2_1 + pbl_1_1_2_1 = 24
invariant :pi_d1_n1_2_2_1_2 + pil_d1_n1_2_2_1_2 = 1
invariant :pi_d3_n1_1_2_2_1 + pil_d3_n1_1_2_2_1 = 1
invariant :po_d1_n1_2_2_1_2 + pol_d1_n1_2_2_1_2 = 1
invariant :po_d2_n1_2_3_2_3 + pol_d2_n1_2_3_2_3 = 1
invariant :po_d1_n1_2_3_1_3 + pol_d1_n1_2_3_1_3 = 1
invariant :pi_d4_n1_1_2_3_3 + pil_d4_n1_1_2_3_3 = 1
invariant :po_d4_n1_1_3_3_1 + pol_d4_n1_1_3_3_1 = 1
invariant :pi_d3_n1_1_3_1_2 + pil_d3_n1_1_3_1_2 = 1
invariant :po_d2_n1_2_3_3_1 + pol_d2_n1_2_3_3_1 = 1
invariant :pi_d1_n1_1_3_2_1 + pil_d1_n1_1_3_2_1 = 1
invariant :pi_d4_n1_1_1_1_3 + pil_d4_n1_1_1_1_3 = 1
invariant :pi_d1_n1_3_1_2_2 + pil_d1_n1_3_1_2_2 = 1
invariant :pi_d1_n1_3_3_2_3 + pil_d1_n1_3_3_2_3 = 1
invariant :pb_d1_n1_2_1_2_3 + pb_d1_n2_2_1_2_3 + pb_d2_n1_2_1_2_3 + pb_d2_n2_2_1_2_3 + pb_d3_n1_2_1_2_3 + pb_d3_n2_2_1_2_3 + pb_d4_n1_2_1_2_3 + pb_d4_n2_2_1_2_3 + pbl_2_1_2_3 = 24
invariant :po_d2_n1_2_1_3_2 + pol_d2_n1_2_1_3_2 = 1
invariant :po_d3_n1_3_2_2_1 + pol_d3_n1_3_2_2_1 = 1
invariant :po_d1_n1_3_3_3_3 + pol_d1_n1_3_3_3_3 = 1
invariant :pi_d3_n1_3_1_2_2 + pil_d3_n1_3_1_2_2 = 1
invariant :pi_d3_n1_3_1_1_1 + pil_d3_n1_3_1_1_1 = 1
invariant :pi_d1_n1_1_2_2_3 + pil_d1_n1_1_2_2_3 = 1
invariant :po_d1_n1_3_2_3_2 + pol_d1_n1_3_2_3_2 = 1
invariant :po_d4_n1_2_2_1_2 + pol_d4_n1_2_2_1_2 = 1
invariant :pi_d4_n1_1_1_2_3 + pil_d4_n1_1_1_2_3 = 1
invariant :pi_d2_n1_2_2_1_1 + pil_d2_n1_2_2_1_1 = 1
invariant :pi_d1_n1_2_2_2_1 + pil_d1_n1_2_2_2_1 = 1
invariant :pb_d1_n1_1_1_3_1 + pb_d1_n2_1_1_3_1 + pb_d2_n1_1_1_3_1 + pb_d2_n2_1_1_3_1 + pb_d3_n1_1_1_3_1 + pb_d3_n2_1_1_3_1 + pb_d4_n1_1_1_3_1 + pb_d4_n2_1_1_3_1 + pbl_1_1_3_1 = 24
invariant :po_d2_n1_2_3_1_1 + pol_d2_n1_2_3_1_1 = 1
invariant :pi_d1_n1_1_2_3_1 + pil_d1_n1_1_2_3_1 = 1
invariant :pi_d3_n1_1_3_2_2 + pil_d3_n1_1_3_2_2 = 1
invariant :pi_d2_n1_2_2_3_3 + pil_d2_n1_2_2_3_3 = 1
invariant :po_d3_n1_2_2_2_1 + pol_d3_n1_2_2_2_1 = 1
invariant :pi_d2_n1_1_2_2_3 + pil_d2_n1_1_2_2_3 = 1
invariant :pi_d4_n1_3_1_2_1 + pil_d4_n1_3_1_2_1 = 1
invariant :po_d1_n1_1_3_2_1 + pol_d1_n1_1_3_2_1 = 1
invariant :po_d2_n1_2_1_2_3 + pol_d2_n1_2_1_2_3 = 1
invariant :pb_d1_n1_3_1_3_3 + pb_d1_n2_3_1_3_3 + pb_d2_n1_3_1_3_3 + pb_d2_n2_3_1_3_3 + pb_d3_n1_3_1_3_3 + pb_d3_n2_3_1_3_3 + pb_d4_n1_3_1_3_3 + pb_d4_n2_3_1_3_3 + pbl_3_1_3_3 = 24
invariant :po_d4_n1_1_2_1_1 + pol_d4_n1_1_2_1_1 = 1
invariant :pb_d1_n1_1_1_1_1 + pb_d1_n2_1_1_1_1 + pb_d2_n1_1_1_1_1 + pb_d2_n2_1_1_1_1 + pb_d3_n1_1_1_1_1 + pb_d3_n2_1_1_1_1 + pb_d4_n1_1_1_1_1 + pb_d4_n2_1_1_1_1 + pbl_1_1_1_1 = 24
invariant :po_d1_n1_2_3_1_2 + pol_d1_n1_2_3_1_2 = 1
invariant :pi_d2_n1_3_1_2_2 + pil_d2_n1_3_1_2_2 = 1
invariant :pi_d3_n1_3_3_1_1 + pil_d3_n1_3_3_1_1 = 1
invariant :pb_d1_n1_1_2_1_1 + pb_d1_n2_1_2_1_1 + pb_d2_n1_1_2_1_1 + pb_d2_n2_1_2_1_1 + pb_d3_n1_1_2_1_1 + pb_d3_n2_1_2_1_1 + pb_d4_n1_1_2_1_1 + pb_d4_n2_1_2_1_1 + pbl_1_2_1_1 = 24
invariant :po_d1_n1_2_2_3_1 + pol_d1_n1_2_2_3_1 = 1
invariant :po_d2_n1_1_1_2_1 + pol_d2_n1_1_1_2_1 = 1
invariant :po_d1_n1_2_2_3_2 + pol_d1_n1_2_2_3_2 = 1
invariant :pi_d2_n1_1_3_3_3 + pil_d2_n1_1_3_3_3 = 1
invariant :pi_d4_n1_1_3_1_1 + pil_d4_n1_1_3_1_1 = 1
invariant :pi_d2_n1_1_2_3_3 + pil_d2_n1_1_2_3_3 = 1
invariant :po_d1_n1_1_1_1_2 + pol_d1_n1_1_1_1_2 = 1
invariant :po_d4_n1_1_2_3_3 + pol_d4_n1_1_2_3_3 = 1
invariant :pb_d1_n1_2_2_1_3 + pb_d1_n2_2_2_1_3 + pb_d2_n1_2_2_1_3 + pb_d2_n2_2_2_1_3 + pb_d3_n1_2_2_1_3 + pb_d3_n2_2_2_1_3 + pb_d4_n1_2_2_1_3 + pb_d4_n2_2_2_1_3 + pbl_2_2_1_3 = 24
invariant :pi_d1_n1_3_3_1_1 + pil_d1_n1_3_3_1_1 = 1
invariant :pi_d3_n1_3_2_2_3 + pil_d3_n1_3_2_2_3 = 1
invariant :po_d1_n1_3_3_2_3 + pol_d1_n1_3_3_2_3 = 1
invariant :po_d4_n1_3_1_3_1 + pol_d4_n1_3_1_3_1 = 1
invariant :pi_d1_n1_1_1_3_1 + pil_d1_n1_1_1_3_1 = 1
invariant :pi_d4_n1_3_3_3_3 + pil_d4_n1_3_3_3_3 = 1
invariant :po_d1_n1_2_3_1_1 + pol_d1_n1_2_3_1_1 = 1
invariant :pi_d3_n1_1_1_2_1 + pil_d3_n1_1_1_2_1 = 1
invariant :po_d2_n1_1_1_1_2 + pol_d2_n1_1_1_1_2 = 1
invariant :po_d3_n1_1_1_2_2 + pol_d3_n1_1_1_2_2 = 1
invariant :po_d3_n1_3_3_3_1 + pol_d3_n1_3_3_3_1 = 1
invariant :po_d4_n1_3_1_3_3 + pol_d4_n1_3_1_3_3 = 1
invariant :pb_d1_n1_3_2_2_1 + pb_d1_n2_3_2_2_1 + pb_d2_n1_3_2_2_1 + pb_d2_n2_3_2_2_1 + pb_d3_n1_3_2_2_1 + pb_d3_n2_3_2_2_1 + pb_d4_n1_3_2_2_1 + pb_d4_n2_3_2_2_1 + pbl_3_2_2_1 = 24
invariant :po_d2_n1_1_2_1_3 + pol_d2_n1_1_2_1_3 = 1
invariant :po_d4_n1_2_2_3_1 + pol_d4_n1_2_2_3_1 = 1
invariant :pb_d1_n1_2_3_1_2 + pb_d1_n2_2_3_1_2 + pb_d2_n1_2_3_1_2 + pb_d2_n2_2_3_1_2 + pb_d3_n1_2_3_1_2 + pb_d3_n2_2_3_1_2 + pb_d4_n1_2_3_1_2 + pb_d4_n2_2_3_1_2 + pbl_2_3_1_2 = 24
invariant :po_d1_n1_3_2_2_3 + pol_d1_n1_3_2_2_3 = 1
invariant :po_d2_n1_3_1_2_2 + pol_d2_n1_3_1_2_2 = 1
invariant :pi_d2_n1_1_2_2_2 + pil_d2_n1_1_2_2_2 = 1
invariant :pb_d1_n1_3_2_1_2 + pb_d1_n2_3_2_1_2 + pb_d2_n1_3_2_1_2 + pb_d2_n2_3_2_1_2 + pb_d3_n1_3_2_1_2 + pb_d3_n2_3_2_1_2 + pb_d4_n1_3_2_1_2 + pb_d4_n2_3_2_1_2 + pbl_3_2_1_2 = 24
invariant :pi_d4_n1_2_3_2_3 + pil_d4_n1_2_3_2_3 = 1
invariant :po_d1_n1_2_2_2_3 + pol_d1_n1_2_2_2_3 = 1
invariant :po_d1_n1_3_2_2_2 + pol_d1_n1_3_2_2_2 = 1
invariant :pi_d1_n1_1_2_1_1 + pil_d1_n1_1_2_1_1 = 1
invariant :po_d3_n1_2_2_3_1 + pol_d3_n1_2_2_3_1 = 1
invariant :pi_d2_n1_1_2_1_1 + pil_d2_n1_1_2_1_1 = 1
invariant :po_d2_n1_2_1_1_3 + pol_d2_n1_2_1_1_3 = 1
invariant :pi_d2_n1_2_3_3_2 + pil_d2_n1_2_3_3_2 = 1
invariant :po_d4_n1_2_1_3_2 + pol_d4_n1_2_1_3_2 = 1
invariant :po_d1_n1_1_2_1_3 + pol_d1_n1_1_2_1_3 = 1
invariant :po_d1_n1_1_3_2_3 + pol_d1_n1_1_3_2_3 = 1
invariant :pi_d3_n1_1_2_2_2 + pil_d3_n1_1_2_2_2 = 1
invariant :pi_d4_n1_2_1_2_2 + pil_d4_n1_2_1_2_2 = 1
invariant :pi_d1_n1_3_2_2_2 + pil_d1_n1_3_2_2_2 = 1
invariant :pi_d2_n1_1_1_2_2 + pil_d2_n1_1_1_2_2 = 1
invariant :po_d3_n1_2_3_1_1 + pol_d3_n1_2_3_1_1 = 1
invariant :po_d3_n1_2_1_1_3 + pol_d3_n1_2_1_1_3 = 1
invariant :po_d1_n1_1_2_3_1 + pol_d1_n1_1_2_3_1 = 1
invariant :pi_d3_n1_2_3_1_3 + pil_d3_n1_2_3_1_3 = 1
invariant :po_d1_n1_3_2_3_1 + pol_d1_n1_3_2_3_1 = 1
invariant :po_d2_n1_1_2_1_1 + pol_d2_n1_1_2_1_1 = 1
invariant :pi_d3_n1_3_2_2_1 + pil_d3_n1_3_2_2_1 = 1
invariant :pi_d1_n1_1_3_1_1 + pil_d1_n1_1_3_1_1 = 1
invariant :po_d3_n1_1_2_1_3 + pol_d3_n1_1_2_1_3 = 1
invariant :po_d4_n1_3_3_2_1 + pol_d4_n1_3_3_2_1 = 1
invariant :pi_d4_n1_1_2_2_1 + pil_d4_n1_1_2_2_1 = 1
invariant :po_d1_n1_2_3_2_2 + pol_d1_n1_2_3_2_2 = 1
invariant :po_d2_n1_1_1_3_3 + pol_d2_n1_1_1_3_3 = 1
invariant :po_d1_n1_3_1_1_2 + pol_d1_n1_3_1_1_2 = 1
invariant :po_d2_n1_1_2_3_3 + pol_d2_n1_1_2_3_3 = 1
invariant :po_d4_n1_2_3_2_3 + pol_d4_n1_2_3_2_3 = 1
invariant :pi_d1_n1_2_2_1_1 + pil_d1_n1_2_2_1_1 = 1
invariant :pi_d2_n1_1_3_2_3 + pil_d2_n1_1_3_2_3 = 1
invariant :pi_d2_n1_3_3_2_2 + pil_d2_n1_3_3_2_2 = 1
invariant :pi_d2_n1_3_1_2_1 + pil_d2_n1_3_1_2_1 = 1
invariant :pb_d1_n1_2_3_3_3 + pb_d1_n2_2_3_3_3 + pb_d2_n1_2_3_3_3 + pb_d2_n2_2_3_3_3 + pb_d3_n1_2_3_3_3 + pb_d3_n2_2_3_3_3 + pb_d4_n1_2_3_3_3 + pb_d4_n2_2_3_3_3 + pbl_2_3_3_3 = 24
invariant :pi_d4_n1_1_3_3_2 + pil_d4_n1_1_3_3_2 = 1
invariant :po_d1_n1_2_1_3_3 + pol_d1_n1_2_1_3_3 = 1
invariant :po_d2_n1_1_1_2_3 + pol_d2_n1_1_1_2_3 = 1
invariant :pb_d1_n1_2_3_2_2 + pb_d1_n2_2_3_2_2 + pb_d2_n1_2_3_2_2 + pb_d2_n2_2_3_2_2 + pb_d3_n1_2_3_2_2 + pb_d3_n2_2_3_2_2 + pb_d4_n1_2_3_2_2 + pb_d4_n2_2_3_2_2 + pbl_2_3_2_2 = 24
invariant :po_d2_n1_2_3_3_3 + pol_d2_n1_2_3_3_3 = 1
invariant :po_d4_n1_1_1_3_2 + pol_d4_n1_1_1_3_2 = 1
invariant :pi_d3_n1_2_2_3_2 + pil_d3_n1_2_2_3_2 = 1
invariant :pi_d4_n1_3_2_3_2 + pil_d4_n1_3_2_3_2 = 1
invariant :pi_d2_n1_2_1_3_1 + pil_d2_n1_2_1_3_1 = 1
invariant :po_d3_n1_3_3_1_1 + pol_d3_n1_3_3_1_1 = 1
invariant :po_d2_n1_1_2_3_1 + pol_d2_n1_1_2_3_1 = 1
invariant :po_d1_n1_2_3_2_3 + pol_d1_n1_2_3_2_3 = 1
invariant :po_d3_n1_2_2_3_3 + pol_d3_n1_2_2_3_3 = 1
invariant :pi_d2_n1_1_2_1_3 + pil_d2_n1_1_2_1_3 = 1
invariant :po_d4_n1_1_3_1_1 + pol_d4_n1_1_3_1_1 = 1
invariant :po_d3_n1_2_3_3_1 + pol_d3_n1_2_3_3_1 = 1
invariant :po_d1_n1_3_3_1_2 + pol_d1_n1_3_3_1_2 = 1
invariant :po_d2_n1_2_1_3_3 + pol_d2_n1_2_1_3_3 = 1
invariant :po_d4_n1_3_2_1_2 + pol_d4_n1_3_2_1_2 = 1
invariant :pb_d1_n1_2_3_3_1 + pb_d1_n2_2_3_3_1 + pb_d2_n1_2_3_3_1 + pb_d2_n2_2_3_3_1 + pb_d3_n1_2_3_3_1 + pb_d3_n2_2_3_3_1 + pb_d4_n1_2_3_3_1 + pb_d4_n2_2_3_3_1 + pbl_2_3_3_1 = 24
invariant :pi_d3_n1_1_3_3_3 + pil_d3_n1_1_3_3_3 = 1
invariant :pi_d2_n1_2_2_3_1 + pil_d2_n1_2_2_3_1 = 1
invariant :po_d1_n1_1_1_3_3 + pol_d1_n1_1_1_3_3 = 1
invariant :po_d2_n1_1_2_2_3 + pol_d2_n1_1_2_2_3 = 1
invariant :pb_d1_n1_3_3_3_1 + pb_d1_n2_3_3_3_1 + pb_d2_n1_3_3_3_1 + pb_d2_n2_3_3_3_1 + pb_d3_n1_3_3_3_1 + pb_d3_n2_3_3_3_1 + pb_d4_n1_3_3_3_1 + pb_d4_n2_3_3_3_1 + pbl_3_3_3_1 = 24
invariant :po_d3_n1_1_1_1_3 + pol_d3_n1_1_1_1_3 = 1
invariant :po_d1_n1_1_2_2_3 + pol_d1_n1_1_2_2_3 = 1
invariant :po_d2_n1_3_1_1_2 + pol_d2_n1_3_1_1_2 = 1
invariant :pi_d4_n1_3_3_2_1 + pil_d4_n1_3_3_2_1 = 1
invariant :pi_d3_n1_2_2_1_1 + pil_d3_n1_2_2_1_1 = 1
invariant :pi_d2_n1_2_1_3_3 + pil_d2_n1_2_1_3_3 = 1
invariant :pi_d1_n1_3_1_1_1 + pil_d1_n1_3_1_1_1 = 1
invariant :pb_d1_n1_3_1_1_2 + pb_d1_n2_3_1_1_2 + pb_d2_n1_3_1_1_2 + pb_d2_n2_3_1_1_2 + pb_d3_n1_3_1_1_2 + pb_d3_n2_3_1_1_2 + pb_d4_n1_3_1_1_2 + pb_d4_n2_3_1_1_2 + pbl_3_1_1_2 = 24
invariant :pi_d1_n1_1_2_2_2 + pil_d1_n1_1_2_2_2 = 1
invariant :po_d3_n1_2_3_2_3 + pol_d3_n1_2_3_2_3 = 1
invariant :pi_d2_n1_1_3_1_1 + pil_d2_n1_1_3_1_1 = 1
invariant :pb_d1_n1_3_3_3_3 + pb_d1_n2_3_3_3_3 + pb_d2_n1_3_3_3_3 + pb_d2_n2_3_3_3_3 + pb_d3_n1_3_3_3_3 + pb_d3_n2_3_3_3_3 + pb_d4_n1_3_3_3_3 + pb_d4_n2_3_3_3_3 + pbl_3_3_3_3 = 24
invariant :pi_d4_n1_2_2_2_3 + pil_d4_n1_2_2_2_3 = 1
invariant :pi_d1_n1_2_1_2_1 + pil_d1_n1_2_1_2_1 = 1
invariant :pb_d1_n1_3_2_1_3 + pb_d1_n2_3_2_1_3 + pb_d2_n1_3_2_1_3 + pb_d2_n2_3_2_1_3 + pb_d3_n1_3_2_1_3 + pb_d3_n2_3_2_1_3 + pb_d4_n1_3_2_1_3 + pb_d4_n2_3_2_1_3 + pbl_3_2_1_3 = 24
invariant :pi_d2_n1_2_1_1_1 + pil_d2_n1_2_1_1_1 = 1
invariant :pb_d1_n1_3_3_3_2 + pb_d1_n2_3_3_3_2 + pb_d2_n1_3_3_3_2 + pb_d2_n2_3_3_3_2 + pb_d3_n1_3_3_3_2 + pb_d3_n2_3_3_3_2 + pb_d4_n1_3_3_3_2 + pb_d4_n2_3_3_3_2 + pbl_3_3_3_2 = 24
invariant :pi_d4_n1_2_2_3_2 + pil_d4_n1_2_2_3_2 = 1
invariant :po_d2_n1_2_2_3_2 + pol_d2_n1_2_2_3_2 = 1
invariant :po_d3_n1_1_2_3_3 + pol_d3_n1_1_2_3_3 = 1
invariant :pi_d1_n1_1_3_3_1 + pil_d1_n1_1_3_3_1 = 1
invariant :pi_d4_n1_2_3_3_3 + pil_d4_n1_2_3_3_3 = 1
invariant :pi_d4_n1_1_3_2_1 + pil_d4_n1_1_3_2_1 = 1
invariant :po_d3_n1_1_3_2_3 + pol_d3_n1_1_3_2_3 = 1
invariant :po_d1_n1_2_1_2_2 + pol_d1_n1_2_1_2_2 = 1
invariant :pi_d3_n1_1_1_3_1 + pil_d3_n1_1_1_3_1 = 1
invariant :pi_d4_n1_2_1_1_2 + pil_d4_n1_2_1_1_2 = 1
invariant :po_d2_n1_3_3_1_3 + pol_d2_n1_3_3_1_3 = 1
invariant :po_d3_n1_3_2_3_3 + pol_d3_n1_3_2_3_3 = 1
invariant :pb_d1_n1_3_1_3_2 + pb_d1_n2_3_1_3_2 + pb_d2_n1_3_1_3_2 + pb_d2_n2_3_1_3_2 + pb_d3_n1_3_1_3_2 + pb_d3_n2_3_1_3_2 + pb_d4_n1_3_1_3_2 + pb_d4_n2_3_1_3_2 + pbl_3_1_3_2 = 24
invariant :po_d1_n1_1_3_1_3 + pol_d1_n1_1_3_1_3 = 1
invariant :po_d3_n1_2_3_1_3 + pol_d3_n1_2_3_1_3 = 1
invariant :pi_d3_n1_2_3_3_2 + pil_d3_n1_2_3_3_2 = 1
invariant :pi_d3_n1_3_1_1_2 + pil_d3_n1_3_1_1_2 = 1
invariant :pi_d3_n1_2_2_3_1 + pil_d3_n1_2_2_3_1 = 1
invariant :po_d2_n1_3_3_2_3 + pol_d2_n1_3_3_2_3 = 1
invariant :po_d3_n1_3_2_2_3 + pol_d3_n1_3_2_2_3 = 1
invariant :pb_d1_n1_2_1_3_1 + pb_d1_n2_2_1_3_1 + pb_d2_n1_2_1_3_1 + pb_d2_n2_2_1_3_1 + pb_d3_n1_2_1_3_1 + pb_d3_n2_2_1_3_1 + pb_d4_n1_2_1_3_1 + pb_d4_n2_2_1_3_1 + pbl_2_1_3_1 = 24
invariant :pb_d1_n1_1_1_1_3 + pb_d1_n2_1_1_1_3 + pb_d2_n1_1_1_1_3 + pb_d2_n2_1_1_1_3 + pb_d3_n1_1_1_1_3 + pb_d3_n2_1_1_1_3 + pb_d4_n1_1_1_1_3 + pb_d4_n2_1_1_1_3 + pbl_1_1_1_3 = 24
invariant :pi_d3_n1_2_3_3_1 + pil_d3_n1_2_3_3_1 = 1
invariant :pi_d1_n1_3_2_2_1 + pil_d1_n1_3_2_2_1 = 1
invariant :pi_d1_n1_2_2_2_3 + pil_d1_n1_2_2_2_3 = 1
invariant :pi_d2_n1_1_1_2_1 + pil_d2_n1_1_1_2_1 = 1
invariant :po_d4_n1_3_2_2_3 + pol_d4_n1_3_2_2_3 = 1
invariant :po_d4_n1_3_3_1_3 + pol_d4_n1_3_3_1_3 = 1
invariant :po_d2_n1_3_2_3_1 + pol_d2_n1_3_2_3_1 = 1
invariant :po_d4_n1_2_3_3_1 + pol_d4_n1_2_3_3_1 = 1
invariant :pi_d2_n1_3_1_1_2 + pil_d2_n1_3_1_1_2 = 1
invariant :pi_d4_n1_3_3_2_2 + pil_d4_n1_3_3_2_2 = 1
invariant :po_d4_n1_1_3_1_2 + pol_d4_n1_1_3_1_2 = 1
invariant :pi_d4_n1_1_3_1_2 + pil_d4_n1_1_3_1_2 = 1
invariant :pi_d2_n1_1_2_2_1 + pil_d2_n1_1_2_2_1 = 1
invariant :po_d2_n1_1_2_1_2 + pol_d2_n1_1_2_1_2 = 1
invariant :po_d4_n1_1_1_3_3 + pol_d4_n1_1_1_3_3 = 1
invariant :po_d2_n1_2_3_1_2 + pol_d2_n1_2_3_1_2 = 1
invariant :pi_d2_n1_2_1_2_3 + pil_d2_n1_2_1_2_3 = 1
invariant :pi_d3_n1_2_3_2_1 + pil_d3_n1_2_3_2_1 = 1
invariant :pi_d2_n1_3_2_2_3 + pil_d2_n1_3_2_2_3 = 1
invariant :pi_d3_n1_1_2_1_3 + pil_d3_n1_1_2_1_3 = 1
invariant :po_d2_n1_2_1_2_2 + pol_d2_n1_2_1_2_2 = 1
invariant :pi_d3_n1_2_1_3_2 + pil_d3_n1_2_1_3_2 = 1
invariant :po_d3_n1_2_2_1_1 + pol_d3_n1_2_2_1_1 = 1
invariant :po_d4_n1_2_1_1_2 + pol_d4_n1_2_1_1_2 = 1
invariant :po_d1_n1_2_1_1_1 + pol_d1_n1_2_1_1_1 = 1
invariant :po_d2_n1_1_3_1_3 + pol_d2_n1_1_3_1_3 = 1
invariant :pi_d4_n1_3_3_3_1 + pil_d4_n1_3_3_3_1 = 1
invariant :po_d3_n1_2_3_2_2 + pol_d3_n1_2_3_2_2 = 1
invariant :po_d4_n1_2_1_2_1 + pol_d4_n1_2_1_2_1 = 1
invariant :pi_d1_n1_3_1_3_3 + pil_d1_n1_3_1_3_3 = 1
invariant :pi_d1_n1_3_3_3_2 + pil_d1_n1_3_3_3_2 = 1
invariant :po_d3_n1_1_2_1_1 + pol_d3_n1_1_2_1_1 = 1
invariant :pi_d3_n1_1_1_3_3 + pil_d3_n1_1_1_3_3 = 1
invariant :pi_d4_n1_1_1_3_2 + pil_d4_n1_1_1_3_2 = 1
invariant :po_d2_n1_3_2_1_2 + pol_d2_n1_3_2_1_2 = 1
invariant :pi_d1_n1_3_1_1_3 + pil_d1_n1_3_1_1_3 = 1
invariant :po_d4_n1_2_2_2_3 + pol_d4_n1_2_2_2_3 = 1
invariant :pi_d3_n1_2_2_2_3 + pil_d3_n1_2_2_2_3 = 1
invariant :pi_d1_n1_2_3_2_2 + pil_d1_n1_2_3_2_2 = 1
invariant :po_d2_n1_3_2_3_2 + pol_d2_n1_3_2_3_2 = 1
invariant :pi_d3_n1_2_1_1_1 + pil_d3_n1_2_1_1_1 = 1
invariant :pi_d4_n1_3_1_3_1 + pil_d4_n1_3_1_3_1 = 1
invariant :pi_d3_n1_3_2_3_2 + pil_d3_n1_3_2_3_2 = 1
invariant :po_d2_n1_3_2_3_3 + pol_d2_n1_3_2_3_3 = 1
invariant :po_d4_n1_2_2_1_1 + pol_d4_n1_2_2_1_1 = 1
invariant :pi_d3_n1_1_3_2_3 + pil_d3_n1_1_3_2_3 = 1
invariant :pi_d3_n1_2_2_1_3 + pil_d3_n1_2_2_1_3 = 1
invariant :po_d4_n1_3_2_1_3 + pol_d4_n1_3_2_1_3 = 1
invariant :pi_d4_n1_2_1_2_1 + pil_d4_n1_2_1_2_1 = 1
invariant :pi_d4_n1_2_2_2_2 + pil_d4_n1_2_2_2_2 = 1
invariant :po_d2_n1_3_3_3_3 + pol_d2_n1_3_3_3_3 = 1
invariant :pi_d1_n1_1_2_3_2 + pil_d1_n1_1_2_3_2 = 1
invariant :po_d3_n1_3_2_3_2 + pol_d3_n1_3_2_3_2 = 1
invariant :po_d2_n1_2_2_2_3 + pol_d2_n1_2_2_2_3 = 1
invariant :pi_d2_n1_3_3_1_2 + pil_d2_n1_3_3_1_2 = 1
invariant :pb_d1_n1_3_3_2_2 + pb_d1_n2_3_3_2_2 + pb_d2_n1_3_3_2_2 + pb_d2_n2_3_3_2_2 + pb_d3_n1_3_3_2_2 + pb_d3_n2_3_3_2_2 + pb_d4_n1_3_3_2_2 + pb_d4_n2_3_3_2_2 + pbl_3_3_2_2 = 24
invariant :pb_d1_n1_1_2_1_2 + pb_d1_n2_1_2_1_2 + pb_d2_n1_1_2_1_2 + pb_d2_n2_1_2_1_2 + pb_d3_n1_1_2_1_2 + pb_d3_n2_1_2_1_2 + pb_d4_n1_1_2_1_2 + pb_d4_n2_1_2_1_2 + pbl_1_2_1_2 = 24
invariant :pi_d4_n1_2_1_3_2 + pil_d4_n1_2_1_3_2 = 1
invariant :pi_d2_n1_2_1_1_3 + pil_d2_n1_2_1_1_3 = 1
invariant :po_d1_n1_1_3_1_1 + pol_d1_n1_1_3_1_1 = 1
invariant :po_d1_n1_1_3_3_1 + pol_d1_n1_1_3_3_1 = 1
invariant :pi_d1_n1_2_1_2_2 + pil_d1_n1_2_1_2_2 = 1
invariant :po_d3_n1_2_1_2_2 + pol_d3_n1_2_1_2_2 = 1
Compilation finished in 89399 ms.
Running link step : CommandLine [args=[gcc, -shared, -o, gal.so, model.o], workingDir=/home/mcc/execution]
Link finished in 101 ms.
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality00==true], workingDir=/home/mcc/execution]
FORMULA HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality00==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality01==true], workingDir=/home/mcc/execution]
FORMULA HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01 FALSE TECHNIQUES SAT_SMT K_INDUCTION(0)
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality01==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality02==true], workingDir=/home/mcc/execution]
FORMULA HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02 TRUE TECHNIQUES SAT_SMT K_INDUCTION(0)
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality02==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
255

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityCardinality -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityCardinality -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 27, 2018 12:54:10 AM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -louvain, -smt]
May 27, 2018 12:54:10 AM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 27, 2018 12:54:11 AM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 389 ms
May 27, 2018 12:54:11 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2025 places.
May 27, 2018 12:54:11 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 5184 transitions.
May 27, 2018 12:54:12 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1145 ms
May 27, 2018 12:54:14 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1189 ms
May 27, 2018 12:54:14 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1312 ms
May 27, 2018 12:54:14 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 141 ms
May 27, 2018 12:54:14 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 1 ms
May 27, 2018 12:54:15 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 5184 transitions.
May 27, 2018 12:54:15 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Too many transitions (5184) to apply POR reductions. Disabling POR matrices.
May 27, 2018 12:54:15 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 5184 transitions.
May 27, 2018 12:54:16 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 2633ms conformant to PINS in folder :/home/mcc/execution
May 27, 2018 12:54:17 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 16 in 3584 ms.
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00(UNSAT) depth K=0 took 58 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01(UNSAT) depth K=0 took 15 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02(UNSAT) depth K=0 took 15 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-03(UNSAT) depth K=0 took 15 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-04(UNSAT) depth K=0 took 60 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-05(UNSAT) depth K=0 took 35 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-06(UNSAT) depth K=0 took 14 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-07(UNSAT) depth K=0 took 11 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-08(UNSAT) depth K=0 took 10 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-09(UNSAT) depth K=0 took 10 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-10(UNSAT) depth K=0 took 6 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-11(UNSAT) depth K=0 took 8 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-12(UNSAT) depth K=0 took 6 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-13(UNSAT) depth K=0 took 8 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-14(UNSAT) depth K=0 took 11 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-15(UNSAT) depth K=0 took 7 ms
May 27, 2018 12:54:18 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 5184 transitions.
May 27, 2018 12:54:20 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00(UNSAT) depth K=1 took 1779 ms
May 27, 2018 12:54:22 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01(UNSAT) depth K=1 took 1963 ms
May 27, 2018 12:54:23 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 730 place invariants in 3366 ms
May 27, 2018 12:54:24 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02(UNSAT) depth K=1 took 1889 ms
May 27, 2018 12:54:25 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-03(UNSAT) depth K=1 took 1336 ms
May 27, 2018 12:54:29 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-04(UNSAT) depth K=1 took 3708 ms
May 27, 2018 12:54:31 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-05(UNSAT) depth K=1 took 1767 ms
May 27, 2018 12:54:32 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-06(UNSAT) depth K=1 took 1314 ms
May 27, 2018 12:54:33 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-07(UNSAT) depth K=1 took 1306 ms
May 27, 2018 12:54:34 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-08(UNSAT) depth K=1 took 1248 ms
May 27, 2018 12:54:36 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-09(UNSAT) depth K=1 took 1359 ms
May 27, 2018 12:54:37 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-10(UNSAT) depth K=1 took 1343 ms
May 27, 2018 12:54:39 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-11(UNSAT) depth K=1 took 1551 ms
May 27, 2018 12:54:40 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-12(UNSAT) depth K=1 took 1309 ms
May 27, 2018 12:54:41 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-13(UNSAT) depth K=1 took 1357 ms
May 27, 2018 12:54:43 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-14(UNSAT) depth K=1 took 1576 ms
May 27, 2018 12:54:44 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 2025 variables to be positive in 23478 ms
May 27, 2018 12:54:45 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-15(UNSAT) depth K=1 took 1709 ms
May 27, 2018 12:57:27 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00
May 27, 2018 12:57:27 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00
May 27, 2018 12:57:27 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-00(FALSE) depth K=0 took 163843 ms
May 27, 2018 1:00:30 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved UNreachability of reachability predicate HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01
May 27, 2018 1:00:30 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01
May 27, 2018 1:00:30 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-01(FALSE) depth K=0 took 182614 ms
May 27, 2018 1:04:42 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, proved invariant HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02
May 27, 2018 1:04:42 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is UNSAT, successfully proved induction at step 0 for HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02
May 27, 2018 1:04:42 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-02(TRUE) depth K=0 took 251701 ms
pins2lts-mc, 0.000: Registering PINS so language module
pins2lts-mc, 0.000, ** error **: out of memory trying to get 4294967296
java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypertorusGridPTd4k3p2b08ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
255
at fr.lip6.move.gal.application.LTSminRunner.checkProperty(LTSminRunner.java:167)
at fr.lip6.move.gal.application.LTSminRunner.access$9(LTSminRunner.java:122)
at fr.lip6.move.gal.application.LTSminRunner$1.run(LTSminRunner.java:91)
at java.lang.Thread.run(Thread.java:748)
java.lang.RuntimeException: SMT solver raised an exception or timeout :(error "Solver has unexpectedly terminated")
at fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver.checkSat(NextBMCSolver.java:297)
at fr.lip6.move.gal.gal2smt.bmc.KInductionSolver.verify(KInductionSolver.java:573)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.runKInduction(Gal2SMTFrontEnd.java:301)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.access$1(Gal2SMTFrontEnd.java:274)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd$2.run(Gal2SMTFrontEnd.java:166)
at java.lang.Thread.run(Thread.java:748)
May 27, 2018 1:09:08 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
WARNING: Unexpected error occurred while running SMT. Was verifying HypertorusGrid-PT-d4k3p2b08-ReachabilityCardinality-03 K-induction depth 0
Exception in thread "Thread-8" java.lang.RuntimeException: java.lang.RuntimeException: SMT solver raised an exception or timeout :(error "Solver has unexpectedly terminated")
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.runKInduction(Gal2SMTFrontEnd.java:336)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.access$1(Gal2SMTFrontEnd.java:274)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd$2.run(Gal2SMTFrontEnd.java:166)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: SMT solver raised an exception or timeout :(error "Solver has unexpectedly terminated")
at fr.lip6.move.gal.gal2smt.bmc.NextBMCSolver.checkSat(NextBMCSolver.java:297)
at fr.lip6.move.gal.gal2smt.bmc.KInductionSolver.verify(KInductionSolver.java:573)
at fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd.runKInduction(Gal2SMTFrontEnd.java:301)
... 3 more
ITS-tools command line returned an error code 137

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="HypertorusGrid-PT-d4k3p2b08"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="itstoolsl"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/HypertorusGrid-PT-d4k3p2b08.tgz
mv HypertorusGrid-PT-d4k3p2b08 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstoolsl"
echo " Input is HypertorusGrid-PT-d4k3p2b08, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r105-smll-152658635300159"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;