About the Execution of ITS-Tools.L for HypercubeGrid-PT-C4K3P3B12
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15749.820 | 3600000.00 | 9440933.00 | 8914.50 | [undef] | Time out reached |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..................
/home/mcc/execution
total 3.1M
-rw-r--r-- 1 mcc users 4.7K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 23K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.0K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 14K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.9K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.9K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 12K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.6K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 11K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 5.0K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 22K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 117 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 355 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.7K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 15K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 2.0K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 4.0K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 10 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rwxr-xr-x 1 mcc users 3.0M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstoolsl
Input is HypercubeGrid-PT-C4K3P3B12, examination is ReachabilityFireability
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r105-smll-152658635300119
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-00
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-01
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-02
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-03
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-04
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-05
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-06
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-07
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-08
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-09
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-10
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-11
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-12
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-13
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-14
FORMULA_NAME HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-15
=== Now, execution of the tool begins
BK_START 1527358747450
Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution]
Converted graph to binary with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.201805241334/bin/convert-linux64, -i, /tmp/graph6781608612221835342.txt, -o, /tmp/graph6781608612221835342.bin, -w, /tmp/graph6781608612221835342.weights], workingDir=null]
Built communities with : CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.louvain.binaries_1.0.0.201805241334/bin/louvain-linux64, /tmp/graph6781608612221835342.bin, -l, -1, -v, -w, /tmp/graph6781608612221835342.weights, -q, 0, -e, 0.001], workingDir=null]
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
// Phase 1: matrix 5400 rows 2457 cols
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityFireability.pnml.gal, -t, CGAL, -reachable-file, ReachabilityFireability.prop, --nowitness], workingDir=/home/mcc/execution]
its-reach command run as :
/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityFireability.pnml.gal -t CGAL -reachable-file ReachabilityFireability.prop --nowitness
Loading property file ReachabilityFireability.prop.
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-00 with value :(((i47.u172.pi_d2_n1_3_1_1_1>=1)&&(i47.u55.pbl_3_1_1_1>=1))||((((i40.u867.po_d3_n1_2_3_2_2>=1)&&(i40.u48.pbl_2_3_1_2>=1))||((i11.u580.po_d2_n1_1_2_3_3>=1)&&(i11.u12.pbl_1_1_3_3>=1)))&&((!((i73.u484.pi_d4_n1_2_2_1_3>=1)&&(i73.u40.pbl_2_2_1_3>=1)))&&(((i73.u210.pi_d3_n1_2_2_1_3>=1)&&(i73.u40.pbl_2_2_1_3>=1))||((i72.u589.po_d2_n1_1_4_2_2>=1)&&(i72.u24.pbl_1_3_2_2>=1))))))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-01 with value :(((i16.u683.po_d4_n1_1_2_3_2>=1)&&(i16.u17.pbl_1_2_3_1>=1))&&(((i28.u155.pi_d2_n1_2_1_2_3>=1)&&(i28.u34.pbl_2_1_2_3>=1))&&((i76.u93.pi_d1_n1_2_1_1_1>=1)&&(i76.u29.pbl_2_1_1_1>=1))))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-02 with value :((!((!((i63.u393.pi_d2_n1_3_2_3_3>=1)&&(i63.u72.pbl_3_2_3_3>=1)))||(((i29.u546.po_d1_n1_3_1_3_1>=1)&&(i29.u35.pbl_2_1_3_1>=1))||((i23.u360.pi_d2_n1_1_3_3_3>=1)&&(i23.u28.pbl_1_3_3_3>=1)))))&&((i57.u662.po_d3_n1_3_2_2_3>=1)&&(i57.u66.pbl_3_2_1_3>=1)))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-03 with value :((i12.u299.pi_d1_n1_1_2_1_1>=1)&&(i12.u13.pbl_1_2_1_1>=1))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-04 with value :((((i9.u241.pi_d4_n1_1_1_2_1>=1)&&(i9.u10.pbl_1_1_2_1>=1))&&((i35.u551.pol_d1_n1_3_2_2_2>=1)&&(i59.u68.pb_d1_n1_3_2_2_2>=1)))&&((i12.u143.pil_d2_n1_1_2_1_1>=1)&&(i75.u7.pb_d2_n2_1_1_1_1>=1)))
Read [invariant] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-05 with value :(!(((i35.u101.pi_d1_n1_2_2_2_2>=1)&&(i35.u42.pbl_2_2_2_2>=1))&&((i62.u453.pi_d3_n1_3_2_3_2>=1)&&(i62.u71.pbl_3_2_3_2>=1))))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-06 with value :(((i78.u445.pi_d3_n1_3_1_1_2>=1)&&(i78.u56.pbl_3_1_1_2>=1))&&((i40.u438.pi_d3_n1_2_3_1_2>=1)&&(i40.u48.pbl_2_3_1_2>=1)))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-07 with value :(((((i42.u275.pi_d4_n1_2_3_2_2>=1)&&(i42.u50.pbl_2_3_2_2>=1))||((i10.u409.pi_d3_n1_1_1_2_3>=1)&&(i10.u11.pbl_1_1_2_3>=1)))||((((i58.u820.po_d2_n1_3_3_2_1>=1)&&(i58.u67.pbl_3_2_2_1>=1))&&((i47.u814.po_d2_n1_3_2_1_1>=1)&&(i47.u55.pbl_3_1_1_1>=1)))&&((i68.u889.po_d3_n1_3_3_4_1>=1)&&(i68.u78.pbl_3_3_3_1>=1))))&&((i52.u561.po_d1_n1_4_1_3_1>=1)&&(i52.u61.pbl_3_1_3_1>=1)))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-08 with value :(((i18.u685.po_d4_n1_1_3_1_2>=1)&&(i18.u20.pbl_1_3_1_1>=1))&&((i0.u408.pi_d3_n1_1_1_2_2>=1)&&(i0.u0.pbl_1_1_2_2>=1)))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-09 with value :(!(((!((i21.u590.po_d2_n1_1_4_2_3>=1)&&(i21.u25.pbl_1_3_2_3>=1)))||((i3.u532.po_d1_n1_2_2_1_3>=1)&&(i3.u3.pbl_1_2_1_3>=1)))||(!(((i45.u442.pil_d3_n1_2_3_4_2>=1)&&(i45.u53.pb_d3_n2_2_3_3_2>=1))||((i1.u349.pi_d2_n1_1_1_3_1>=1)&&(i1.u1.pbl_1_1_3_1>=1))))))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-10 with value :((i41.u806.po_d2_n1_2_4_1_3>=1)&&(i41.u49.pbl_2_3_1_3>=1))
Read [invariant] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-11 with value :(((i44.u608.po_d2_n1_2_4_3_1>=1)&&(i44.u52.pbl_2_3_3_1>=1))||(!((((i17.u748.po_d1_n1_2_2_3_3>=1)&&(i17.u19.pbl_1_2_3_3>=1))&&((i60.u884.po_d3_n1_3_2_3_3>=1)&&(i60.u69.pbl_3_2_2_3>=1)))||((i64.u622.po_d2_n1_3_4_1_1>=1)&&(i64.u73.pbl_3_3_1_1>=1)))))
Read [invariant] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-12 with value :(((!(((i36.u374.pi_d2_n1_2_2_2_3>=1)&&(i36.u43.pbl_2_2_2_3>=1))&&((i9.u782.po_d2_n1_1_2_2_1>=1)&&(i9.u10.pbl_1_1_2_1>=1))))&&(!((i32.u372.pi_d2_n1_2_2_1_1>=1)&&(i32.u38.pbl_2_2_1_1>=1))))||(!((i67.u330.pi_d1_n1_3_3_2_3>=1)&&(i67.u77.pbl_3_3_2_3>=1))))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-13 with value :((((((i52.u714.po_d4_n1_3_1_3_2>=1)&&(i52.u61.pbl_3_1_3_1>=1))||((i64.u327.pi_d1_n1_3_3_1_1>=1)&&(i64.u73.pbl_3_3_1_1>=1)))&&(((i30.u913.po_d4_n1_2_1_3_3>=1)&&(i30.u36.pbl_2_1_3_2>=1))&&((i77.u759.po_d1_n1_3_3_1_1>=1)&&(i77.u47.pbl_2_3_1_1>=1))))&&(!(((i31.u697.po_d4_n1_2_1_3_4>=1)&&(i31.u37.pbl_2_1_3_3>=1))||((i55.u227.pi_d3_n1_3_2_1_1>=1)&&(i55.u64.pbl_3_2_1_1>=1)))))&&(((i4.u351.pi_d2_n1_1_2_2_1>=1)&&(i4.u4.pbl_1_2_2_1>=1))||((((i12.u581.po_d2_n1_1_3_1_1>=1)&&(i12.u13.pbl_1_2_1_1>=1))||((i75.u628.po_d3_n1_1_1_2_1>=1)&&(i75.u7.pbl_1_1_1_1>=1)))&&(((i16.u302.pi_d1_n1_1_2_3_1>=1)&&(i16.u17.pbl_1_2_3_1>=1))&&((i9.u83.pi_d1_n1_1_1_2_1>=1)&&(i9.u10.pbl_1_1_2_1>=1))))))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-14 with value :(((i79.u202.pil_d3_n1_1_3_3_1>=1)&&(i71.u23.pb_d3_n2_1_3_2_1>=1))&&((((i75.u240.pi_d4_n1_1_1_1_1>=1)&&(i75.u7.pbl_1_1_1_1>=1))||(((i80.u684.po_d4_n1_1_2_3_3>=1)&&(i80.u18.pbl_1_2_3_2>=1))||((i4.u89.pi_d1_n1_1_2_2_1>=1)&&(i4.u4.pbl_1_2_2_1>=1))))&&((!((i57.u118.pi_d1_n1_3_2_1_3>=1)&&(i57.u66.pbl_3_2_1_3>=1)))&&((i70.u399.pi_d2_n1_3_3_3_3>=1)&&(i70.u80.pbl_3_3_3_3>=1)))))
Read [reachable] property : HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-15 with value :(((i10.u631.po_d3_n1_1_1_3_3>=1)&&(i10.u11.pbl_1_1_2_3>=1))&&((i37.u375.pi_d2_n1_2_2_3_1>=1)&&(i37.u44.pbl_2_2_3_1>=1)))
built 297 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
built 72 ordering constraints for composite.
invariant :po_d2_n1_3_1_1_1 + pol_d2_n1_3_1_1_1 = 1
invariant :pi_d3_n1_1_1_1_2 + pil_d3_n1_1_1_1_2 = 1
invariant :po_d3_n1_3_3_4_2 + pol_d3_n1_3_3_4_2 = 1
invariant :pi_d1_n1_2_1_1_1 + pil_d1_n1_2_1_1_1 = 1
invariant :pi_d3_n1_3_3_1_2 + pil_d3_n1_3_3_1_2 = 1
invariant :po_d4_n1_1_1_2_3 + pol_d4_n1_1_1_2_3 = 1
invariant :pi_d4_n1_1_1_2_1 + pil_d4_n1_1_1_2_1 = 1
invariant :po_d4_n1_1_1_2_1 + pol_d4_n1_1_1_2_1 = 1
invariant :po_d3_n1_2_2_3_1 + pol_d3_n1_2_2_3_1 = 1
invariant :pb_d1_n1_1_2_2_2 + pb_d1_n2_1_2_2_2 + pb_d2_n1_1_2_2_2 + pb_d2_n2_1_2_2_2 + pb_d3_n1_1_2_2_2 + pb_d3_n2_1_2_2_2 + pb_d4_n1_1_2_2_2 + pb_d4_n2_1_2_2_2 + pbl_1_2_2_2 = 36
invariant :pi_d2_n1_2_3_1_2 + pil_d2_n1_2_3_1_2 = 1
invariant :pi_d3_n1_1_3_2_3 + pil_d3_n1_1_3_2_3 = 1
invariant :pi_d1_n1_3_1_1_1 + pil_d1_n1_3_1_1_1 = 1
invariant :pi_d4_n1_2_1_2_3 + pil_d4_n1_2_1_2_3 = 1
invariant :pi_d3_n1_3_1_2_3 + pil_d3_n1_3_1_2_3 = 1
invariant :po_d1_n1_4_3_2_3 + pol_d1_n1_4_3_2_3 = 1
invariant :po_d4_n1_3_3_3_2 + pol_d4_n1_3_3_3_2 = 1
invariant :po_d1_n1_2_2_1_1 + pol_d1_n1_2_2_1_1 = 1
invariant :pb_d1_n1_3_1_1_2 + pb_d1_n2_3_1_1_2 + pb_d2_n1_3_1_1_2 + pb_d2_n2_3_1_1_2 + pb_d3_n1_3_1_1_2 + pb_d3_n2_3_1_1_2 + pb_d4_n1_3_1_1_2 + pb_d4_n2_3_1_1_2 + pbl_3_1_1_2 = 36
invariant :pi_d2_n1_3_3_1_1 + pil_d2_n1_3_3_1_1 = 1
invariant :po_d2_n1_2_4_2_3 + pol_d2_n1_2_4_2_3 = 1
invariant :po_d1_n1_2_2_3_2 + pol_d1_n1_2_2_3_2 = 1
invariant :po_d2_n1_3_2_1_1 + pol_d2_n1_3_2_1_1 = 1
invariant :pi_d4_n1_1_3_2_2 + pil_d4_n1_1_3_2_2 = 1
invariant :po_d3_n1_2_1_4_1 + pol_d3_n1_2_1_4_1 = 1
invariant :po_d3_n1_3_1_1_1 + pol_d3_n1_3_1_1_1 = 1
invariant :po_d1_n1_2_2_1_3 + pol_d1_n1_2_2_1_3 = 1
invariant :pi_d2_n1_2_2_3_2 + pil_d2_n1_2_2_3_2 = 1
invariant :pi_d1_n1_1_3_1_3 + pil_d1_n1_1_3_1_3 = 1
invariant :pi_d4_n1_1_2_3_2 + pil_d4_n1_1_2_3_2 = 1
invariant :pi_d4_n1_2_1_3_1 + pil_d4_n1_2_1_3_1 = 1
invariant :po_d1_n1_3_1_3_1 + pol_d1_n1_3_1_3_1 = 1
invariant :po_d2_n1_1_1_3_2 + pol_d2_n1_1_1_3_2 = 1
invariant :po_d3_n1_3_1_2_1 + pol_d3_n1_3_1_2_1 = 1
invariant :po_d3_n1_3_1_4_3 + pol_d3_n1_3_1_4_3 = 1
invariant :pi_d2_n1_2_4_1_1 + pil_d2_n1_2_4_1_1 = 1
invariant :po_d1_n1_2_1_1_2 + pol_d1_n1_2_1_1_2 = 1
invariant :po_d1_n1_4_2_2_3 + pol_d1_n1_4_2_2_3 = 1
invariant :pi_d4_n1_3_3_3_1 + pil_d4_n1_3_3_3_1 = 1
invariant :pi_d1_n1_2_3_2_3 + pil_d1_n1_2_3_2_3 = 1
invariant :pi_d4_n1_2_3_3_1 + pil_d4_n1_2_3_3_1 = 1
invariant :pi_d2_n1_3_4_3_3 + pil_d2_n1_3_4_3_3 = 1
invariant :pi_d3_n1_3_3_1_3 + pil_d3_n1_3_3_1_3 = 1
invariant :po_d3_n1_3_2_4_1 + pol_d3_n1_3_2_4_1 = 1
invariant :po_d4_n1_2_2_3_4 + pol_d4_n1_2_2_3_4 = 1
invariant :pi_d2_n1_1_4_2_3 + pil_d2_n1_1_4_2_3 = 1
invariant :pi_d3_n1_2_1_1_3 + pil_d3_n1_2_1_1_3 = 1
invariant :pi_d2_n1_3_1_2_3 + pil_d2_n1_3_1_2_3 = 1
invariant :po_d3_n1_2_3_2_2 + pol_d3_n1_2_3_2_2 = 1
invariant :pb_d1_n1_2_3_1_2 + pb_d1_n2_2_3_1_2 + pb_d2_n1_2_3_1_2 + pb_d2_n2_2_3_1_2 + pb_d3_n1_2_3_1_2 + pb_d3_n2_2_3_1_2 + pb_d4_n1_2_3_1_2 + pb_d4_n2_2_3_1_2 + pbl_2_3_1_2 = 36
invariant :po_d1_n1_2_1_3_3 + pol_d1_n1_2_1_3_3 = 1
invariant :pb_d1_n1_2_3_3_3 + pb_d1_n2_2_3_3_3 + pb_d2_n1_2_3_3_3 + pb_d2_n2_2_3_3_3 + pb_d3_n1_2_3_3_3 + pb_d3_n2_2_3_3_3 + pb_d4_n1_2_3_3_3 + pb_d4_n2_2_3_3_3 + pbl_2_3_3_3 = 36
invariant :pb_d1_n1_2_1_1_3 + pb_d1_n2_2_1_1_3 + pb_d2_n1_2_1_1_3 + pb_d2_n2_2_1_1_3 + pb_d3_n1_2_1_1_3 + pb_d3_n2_2_1_1_3 + pb_d4_n1_2_1_1_3 + pb_d4_n2_2_1_1_3 + pbl_2_1_1_3 = 36
invariant :po_d4_n1_1_2_1_2 + pol_d4_n1_1_2_1_2 = 1
invariant :po_d4_n1_3_1_2_3 + pol_d4_n1_3_1_2_3 = 1
invariant :po_d1_n1_1_2_1_3 + pol_d1_n1_1_2_1_3 = 1
invariant :pb_d1_n1_3_2_1_3 + pb_d1_n2_3_2_1_3 + pb_d2_n1_3_2_1_3 + pb_d2_n2_3_2_1_3 + pb_d3_n1_3_2_1_3 + pb_d3_n2_3_2_1_3 + pb_d4_n1_3_2_1_3 + pb_d4_n2_3_2_1_3 + pbl_3_2_1_3 = 36
invariant :pi_d1_n1_4_3_1_2 + pil_d1_n1_4_3_1_2 = 1
invariant :pi_d2_n1_1_3_2_3 + pil_d2_n1_1_3_2_3 = 1
invariant :pi_d2_n1_1_4_2_1 + pil_d2_n1_1_4_2_1 = 1
invariant :po_d2_n1_2_2_1_3 + pol_d2_n1_2_2_1_3 = 1
invariant :po_d2_n1_3_4_3_1 + pol_d2_n1_3_4_3_1 = 1
invariant :po_d4_n1_1_1_1_1 + pol_d4_n1_1_1_1_1 = 1
invariant :po_d4_n1_3_1_2_4 + pol_d4_n1_3_1_2_4 = 1
invariant :pi_d2_n1_3_2_3_3 + pil_d2_n1_3_2_3_3 = 1
invariant :po_d2_n1_3_1_2_1 + pol_d2_n1_3_1_2_1 = 1
invariant :pi_d2_n1_2_4_3_2 + pil_d2_n1_2_4_3_2 = 1
invariant :po_d4_n1_3_2_1_3 + pol_d4_n1_3_2_1_3 = 1
invariant :po_d2_n1_3_2_1_3 + pol_d2_n1_3_2_1_3 = 1
invariant :pi_d4_n1_2_3_1_1 + pil_d4_n1_2_3_1_1 = 1
invariant :pi_d4_n1_3_3_1_2 + pil_d4_n1_3_3_1_2 = 1
invariant :pi_d3_n1_2_2_1_1 + pil_d3_n1_2_2_1_1 = 1
invariant :pi_d4_n1_1_3_3_2 + pil_d4_n1_1_3_3_2 = 1
invariant :pi_d1_n1_2_1_3_2 + pil_d1_n1_2_1_3_2 = 1
invariant :po_d2_n1_3_3_1_2 + pol_d2_n1_3_3_1_2 = 1
invariant :po_d3_n1_2_1_1_2 + pol_d3_n1_2_1_1_2 = 1
invariant :po_d4_n1_1_3_3_2 + pol_d4_n1_1_3_3_2 = 1
invariant :pi_d1_n1_4_2_1_2 + pil_d1_n1_4_2_1_2 = 1
invariant :pi_d4_n1_1_3_3_3 + pil_d4_n1_1_3_3_3 = 1
invariant :pb_d1_n1_3_3_2_1 + pb_d1_n2_3_3_2_1 + pb_d2_n1_3_3_2_1 + pb_d2_n2_3_3_2_1 + pb_d3_n1_3_3_2_1 + pb_d3_n2_3_3_2_1 + pb_d4_n1_3_3_2_1 + pb_d4_n2_3_3_2_1 + pbl_3_3_2_1 = 36
invariant :pi_d4_n1_2_3_1_4 + pil_d4_n1_2_3_1_4 = 1
invariant :pi_d3_n1_3_1_1_3 + pil_d3_n1_3_1_1_3 = 1
invariant :po_d4_n1_2_2_3_2 + pol_d4_n1_2_2_3_2 = 1
invariant :pi_d1_n1_1_2_3_2 + pil_d1_n1_1_2_3_2 = 1
invariant :pi_d3_n1_1_3_1_2 + pil_d3_n1_1_3_1_2 = 1
invariant :po_d1_n1_4_2_2_1 + pol_d1_n1_4_2_2_1 = 1
invariant :pi_d2_n1_1_2_1_3 + pil_d2_n1_1_2_1_3 = 1
invariant :pi_d4_n1_2_3_2_4 + pil_d4_n1_2_3_2_4 = 1
invariant :pb_d1_n1_3_1_1_1 + pb_d1_n2_3_1_1_1 + pb_d2_n1_3_1_1_1 + pb_d2_n2_3_1_1_1 + pb_d3_n1_3_1_1_1 + pb_d3_n2_3_1_1_1 + pb_d4_n1_3_1_1_1 + pb_d4_n2_3_1_1_1 + pbl_3_1_1_1 = 36
invariant :po_d3_n1_3_1_3_3 + pol_d3_n1_3_1_3_3 = 1
invariant :po_d1_n1_2_2_2_1 + pol_d1_n1_2_2_2_1 = 1
invariant :pi_d4_n1_1_3_3_4 + pil_d4_n1_1_3_3_4 = 1
invariant :pi_d2_n1_1_2_3_2 + pil_d2_n1_1_2_3_2 = 1
invariant :pi_d3_n1_1_1_2_2 + pil_d3_n1_1_1_2_2 = 1
invariant :po_d1_n1_1_2_2_2 + pol_d1_n1_1_2_2_2 = 1
invariant :po_d2_n1_3_3_2_1 + pol_d2_n1_3_3_2_1 = 1
invariant :po_d1_n1_4_2_1_3 + pol_d1_n1_4_2_1_3 = 1
invariant :pi_d4_n1_1_2_1_3 + pil_d4_n1_1_2_1_3 = 1
invariant :po_d2_n1_2_4_1_3 + pol_d2_n1_2_4_1_3 = 1
invariant :po_d3_n1_2_1_1_3 + pol_d3_n1_2_1_1_3 = 1
invariant :po_d3_n1_2_1_3_2 + pol_d3_n1_2_1_3_2 = 1
invariant :pi_d3_n1_2_1_2_2 + pil_d3_n1_2_1_2_2 = 1
invariant :po_d3_n1_1_1_2_1 + pol_d3_n1_1_1_2_1 = 1
invariant :pi_d3_n1_3_3_3_2 + pil_d3_n1_3_3_3_2 = 1
invariant :po_d2_n1_1_2_2_2 + pol_d2_n1_1_2_2_2 = 1
invariant :po_d4_n1_1_2_1_4 + pol_d4_n1_1_2_1_4 = 1
invariant :po_d3_n1_3_2_1_3 + pol_d3_n1_3_2_1_3 = 1
invariant :pi_d4_n1_3_2_3_4 + pil_d4_n1_3_2_3_4 = 1
invariant :pi_d3_n1_2_2_4_3 + pil_d3_n1_2_2_4_3 = 1
invariant :po_d2_n1_2_3_2_2 + pol_d2_n1_2_3_2_2 = 1
invariant :pi_d2_n1_3_3_1_2 + pil_d2_n1_3_3_1_2 = 1
invariant :po_d3_n1_2_3_3_1 + pol_d3_n1_2_3_3_1 = 1
invariant :po_d2_n1_1_2_3_3 + pol_d2_n1_1_2_3_3 = 1
invariant :pi_d3_n1_2_3_2_1 + pil_d3_n1_2_3_2_1 = 1
invariant :pi_d1_n1_3_1_2_2 + pil_d1_n1_3_1_2_2 = 1
invariant :pi_d2_n1_1_1_3_3 + pil_d2_n1_1_1_3_3 = 1
invariant :po_d3_n1_2_2_4_2 + pol_d3_n1_2_2_4_2 = 1
invariant :po_d2_n1_2_4_2_2 + pol_d2_n1_2_4_2_2 = 1
invariant :pi_d4_n1_1_2_1_2 + pil_d4_n1_1_2_1_2 = 1
invariant :po_d4_n1_1_3_3_4 + pol_d4_n1_1_3_3_4 = 1
invariant :pi_d3_n1_3_2_2_1 + pil_d3_n1_3_2_2_1 = 1
invariant :pi_d4_n1_1_2_3_3 + pil_d4_n1_1_2_3_3 = 1
invariant :po_d1_n1_1_1_3_2 + pol_d1_n1_1_1_3_2 = 1
invariant :po_d4_n1_3_1_1_4 + pol_d4_n1_3_1_1_4 = 1
invariant :pi_d3_n1_3_1_4_2 + pil_d3_n1_3_1_4_2 = 1
invariant :po_d1_n1_3_2_3_3 + pol_d1_n1_3_2_3_3 = 1
invariant :po_d1_n1_4_2_1_2 + pol_d1_n1_4_2_1_2 = 1
invariant :pi_d3_n1_1_2_1_2 + pil_d3_n1_1_2_1_2 = 1
invariant :po_d3_n1_3_2_2_3 + pol_d3_n1_3_2_2_3 = 1
invariant :pi_d4_n1_1_1_2_4 + pil_d4_n1_1_1_2_4 = 1
invariant :pb_d1_n1_3_3_1_3 + pb_d1_n2_3_3_1_3 + pb_d2_n1_3_3_1_3 + pb_d2_n2_3_3_1_3 + pb_d3_n1_3_3_1_3 + pb_d3_n2_3_3_1_3 + pb_d4_n1_3_3_1_3 + pb_d4_n2_3_3_1_3 + pbl_3_3_1_3 = 36
invariant :pi_d2_n1_3_1_2_1 + pil_d2_n1_3_1_2_1 = 1
invariant :po_d3_n1_3_3_1_2 + pol_d3_n1_3_3_1_2 = 1
invariant :po_d4_n1_2_3_3_1 + pol_d4_n1_2_3_3_1 = 1
invariant :pi_d1_n1_3_2_1_1 + pil_d1_n1_3_2_1_1 = 1
invariant :pi_d4_n1_1_3_1_3 + pil_d4_n1_1_3_1_3 = 1
invariant :pi_d4_n1_3_3_2_4 + pil_d4_n1_3_3_2_4 = 1
invariant :po_d1_n1_3_2_3_1 + pol_d1_n1_3_2_3_1 = 1
invariant :pb_d1_n1_1_3_3_3 + pb_d1_n2_1_3_3_3 + pb_d2_n1_1_3_3_3 + pb_d2_n2_1_3_3_3 + pb_d3_n1_1_3_3_3 + pb_d3_n2_1_3_3_3 + pb_d4_n1_1_3_3_3 + pb_d4_n2_1_3_3_3 + pbl_1_3_3_3 = 36
invariant :po_d2_n1_2_1_2_2 + pol_d2_n1_2_1_2_2 = 1
invariant :pi_d1_n1_1_3_3_2 + pil_d1_n1_1_3_3_2 = 1
invariant :pi_d4_n1_2_3_2_3 + pil_d4_n1_2_3_2_3 = 1
invariant :po_d4_n1_2_2_3_1 + pol_d4_n1_2_2_3_1 = 1
invariant :pb_d1_n1_3_1_2_3 + pb_d1_n2_3_1_2_3 + pb_d2_n1_3_1_2_3 + pb_d2_n2_3_1_2_3 + pb_d3_n1_3_1_2_3 + pb_d3_n2_3_1_2_3 + pb_d4_n1_3_1_2_3 + pb_d4_n2_3_1_2_3 + pbl_3_1_2_3 = 36
invariant :po_d2_n1_2_3_1_1 + pol_d2_n1_2_3_1_1 = 1
invariant :pi_d2_n1_2_2_1_3 + pil_d2_n1_2_2_1_3 = 1
invariant :po_d1_n1_3_1_1_2 + pol_d1_n1_3_1_1_2 = 1
invariant :po_d4_n1_3_3_3_4 + pol_d4_n1_3_3_3_4 = 1
invariant :pi_d2_n1_1_3_3_2 + pil_d2_n1_1_3_3_2 = 1
invariant :pi_d4_n1_1_2_1_4 + pil_d4_n1_1_2_1_4 = 1
invariant :po_d2_n1_1_1_3_1 + pol_d2_n1_1_1_3_1 = 1
invariant :po_d1_n1_1_2_1_1 + pol_d1_n1_1_2_1_1 = 1
invariant :po_d2_n1_1_2_3_2 + pol_d2_n1_1_2_3_2 = 1
invariant :po_d4_n1_2_3_1_2 + pol_d4_n1_2_3_1_2 = 1
invariant :pi_d2_n1_3_4_2_2 + pil_d2_n1_3_4_2_2 = 1
invariant :po_d3_n1_2_1_2_2 + pol_d3_n1_2_1_2_2 = 1
invariant :po_d2_n1_1_2_2_3 + pol_d2_n1_1_2_2_3 = 1
invariant :po_d3_n1_3_1_2_3 + pol_d3_n1_3_1_2_3 = 1
invariant :po_d2_n1_2_3_3_3 + pol_d2_n1_2_3_3_3 = 1
invariant :po_d3_n1_2_3_1_2 + pol_d3_n1_2_3_1_2 = 1
invariant :pi_d1_n1_1_3_3_1 + pil_d1_n1_1_3_3_1 = 1
invariant :pi_d3_n1_1_2_1_3 + pil_d3_n1_1_2_1_3 = 1
invariant :po_d1_n1_2_2_3_3 + pol_d1_n1_2_2_3_3 = 1
invariant :pi_d4_n1_3_2_2_2 + pil_d4_n1_3_2_2_2 = 1
invariant :pi_d4_n1_2_1_2_2 + pil_d4_n1_2_1_2_2 = 1
invariant :pi_d4_n1_2_1_3_3 + pil_d4_n1_2_1_3_3 = 1
invariant :po_d3_n1_1_3_3_1 + pol_d3_n1_1_3_3_1 = 1
invariant :po_d4_n1_3_3_1_3 + pol_d4_n1_3_3_1_3 = 1
invariant :pi_d4_n1_1_3_1_4 + pil_d4_n1_1_3_1_4 = 1
invariant :pi_d3_n1_3_3_2_3 + pil_d3_n1_3_3_2_3 = 1
invariant :po_d3_n1_2_3_4_2 + pol_d3_n1_2_3_4_2 = 1
invariant :pi_d1_n1_3_2_2_3 + pil_d1_n1_3_2_2_3 = 1
invariant :pi_d3_n1_2_1_2_1 + pil_d3_n1_2_1_2_1 = 1
invariant :pb_d1_n1_2_2_1_3 + pb_d1_n2_2_2_1_3 + pb_d2_n1_2_2_1_3 + pb_d2_n2_2_2_1_3 + pb_d3_n1_2_2_1_3 + pb_d3_n2_2_2_1_3 + pb_d4_n1_2_2_1_3 + pb_d4_n2_2_2_1_3 + pbl_2_2_1_3 = 36
invariant :pi_d1_n1_4_1_2_3 + pil_d1_n1_4_1_2_3 = 1
invariant :pi_d2_n1_2_2_2_3 + pil_d2_n1_2_2_2_3 = 1
invariant :pi_d2_n1_2_3_1_1 + pil_d2_n1_2_3_1_1 = 1
invariant :po_d4_n1_1_2_3_2 + pol_d4_n1_1_2_3_2 = 1
invariant :po_d4_n1_2_1_2_1 + pol_d4_n1_2_1_2_1 = 1
invariant :po_d1_n1_2_3_2_2 + pol_d1_n1_2_3_2_2 = 1
invariant :pb_d1_n1_2_2_1_2 + pb_d1_n2_2_2_1_2 + pb_d2_n1_2_2_1_2 + pb_d2_n2_2_2_1_2 + pb_d3_n1_2_2_1_2 + pb_d3_n2_2_2_1_2 + pb_d4_n1_2_2_1_2 + pb_d4_n2_2_2_1_2 + pbl_2_2_1_2 = 36
invariant :po_d2_n1_2_3_3_2 + pol_d2_n1_2_3_3_2 = 1
invariant :pi_d1_n1_3_3_3_1 + pil_d1_n1_3_3_3_1 = 1
invariant :pi_d2_n1_3_4_1_2 + pil_d2_n1_3_4_1_2 = 1
invariant :po_d3_n1_2_3_3_2 + pol_d3_n1_2_3_3_2 = 1
invariant :po_d2_n1_1_4_1_1 + pol_d2_n1_1_4_1_1 = 1
invariant :po_d2_n1_3_1_2_2 + pol_d2_n1_3_1_2_2 = 1
invariant :po_d1_n1_4_3_2_1 + pol_d1_n1_4_3_2_1 = 1
invariant :pi_d1_n1_1_1_1_1 + pil_d1_n1_1_1_1_1 = 1
invariant :po_d1_n1_4_3_1_1 + pol_d1_n1_4_3_1_1 = 1
invariant :po_d4_n1_2_1_1_1 + pol_d4_n1_2_1_1_1 = 1
invariant :po_d1_n1_4_1_3_1 + pol_d1_n1_4_1_3_1 = 1
invariant :pi_d1_n1_4_3_2_3 + pil_d1_n1_4_3_2_3 = 1
invariant :pi_d2_n1_2_4_1_2 + pil_d2_n1_2_4_1_2 = 1
invariant :po_d3_n1_2_2_2_2 + pol_d3_n1_2_2_2_2 = 1
invariant :pi_d2_n1_3_4_3_1 + pil_d2_n1_3_4_3_1 = 1
invariant :po_d1_n1_2_1_1_1 + pol_d1_n1_2_1_1_1 = 1
invariant :pi_d3_n1_2_1_2_3 + pil_d3_n1_2_1_2_3 = 1
invariant :pi_d3_n1_3_3_2_2 + pil_d3_n1_3_3_2_2 = 1
invariant :po_d4_n1_1_1_1_3 + pol_d4_n1_1_1_1_3 = 1
invariant :po_d3_n1_3_3_3_2 + pol_d3_n1_3_3_3_2 = 1
invariant :po_d4_n1_3_3_2_3 + pol_d4_n1_3_3_2_3 = 1
invariant :po_d3_n1_2_1_2_1 + pol_d3_n1_2_1_2_1 = 1
invariant :po_d1_n1_1_1_2_1 + pol_d1_n1_1_1_2_1 = 1
invariant :pi_d2_n1_2_1_2_1 + pil_d2_n1_2_1_2_1 = 1
invariant :pb_d1_n1_1_2_3_2 + pb_d1_n2_1_2_3_2 + pb_d2_n1_1_2_3_2 + pb_d2_n2_1_2_3_2 + pb_d3_n1_1_2_3_2 + pb_d3_n2_1_2_3_2 + pb_d4_n1_1_2_3_2 + pb_d4_n2_1_2_3_2 + pbl_1_2_3_2 = 36
invariant :pi_d2_n1_2_3_2_3 + pil_d2_n1_2_3_2_3 = 1
invariant :pi_d3_n1_3_2_4_2 + pil_d3_n1_3_2_4_2 = 1
invariant :po_d2_n1_1_4_3_3 + pol_d2_n1_1_4_3_3 = 1
invariant :po_d2_n1_2_2_1_1 + pol_d2_n1_2_2_1_1 = 1
invariant :pb_d1_n1_1_3_3_2 + pb_d1_n2_1_3_3_2 + pb_d2_n1_1_3_3_2 + pb_d2_n2_1_3_3_2 + pb_d3_n1_1_3_3_2 + pb_d3_n2_1_3_3_2 + pb_d4_n1_1_3_3_2 + pb_d4_n2_1_3_3_2 + pbl_1_3_3_2 = 36
invariant :pi_d2_n1_3_1_3_1 + pil_d2_n1_3_1_3_1 = 1
invariant :po_d2_n1_2_3_1_3 + pol_d2_n1_2_3_1_3 = 1
invariant :pb_d1_n1_2_3_1_1 + pb_d1_n2_2_3_1_1 + pb_d2_n1_2_3_1_1 + pb_d2_n2_2_3_1_1 + pb_d3_n1_2_3_1_1 + pb_d3_n2_2_3_1_1 + pb_d4_n1_2_3_1_1 + pb_d4_n2_2_3_1_1 + pbl_2_3_1_1 = 36
invariant :po_d1_n1_4_1_3_2 + pol_d1_n1_4_1_3_2 = 1
invariant :po_d4_n1_3_2_3_3 + pol_d4_n1_3_2_3_3 = 1
invariant :po_d2_n1_2_2_2_1 + pol_d2_n1_2_2_2_1 = 1
invariant :pi_d4_n1_1_1_3_1 + pil_d4_n1_1_1_3_1 = 1
invariant :pi_d1_n1_2_1_1_2 + pil_d1_n1_2_1_1_2 = 1
invariant :pi_d3_n1_1_1_1_1 + pil_d3_n1_1_1_1_1 = 1
invariant :po_d3_n1_3_1_1_3 + pol_d3_n1_3_1_1_3 = 1
invariant :pi_d1_n1_3_3_2_2 + pil_d1_n1_3_3_2_2 = 1
invariant :pb_d1_n1_2_1_3_3 + pb_d1_n2_2_1_3_3 + pb_d2_n1_2_1_3_3 + pb_d2_n2_2_1_3_3 + pb_d3_n1_2_1_3_3 + pb_d3_n2_2_1_3_3 + pb_d4_n1_2_1_3_3 + pb_d4_n2_2_1_3_3 + pbl_2_1_3_3 = 36
invariant :pi_d3_n1_2_2_2_2 + pil_d3_n1_2_2_2_2 = 1
invariant :po_d1_n1_2_3_2_1 + pol_d1_n1_2_3_2_1 = 1
invariant :pb_d1_n1_2_1_2_3 + pb_d1_n2_2_1_2_3 + pb_d2_n1_2_1_2_3 + pb_d2_n2_2_1_2_3 + pb_d3_n1_2_1_2_3 + pb_d3_n2_2_1_2_3 + pb_d4_n1_2_1_2_3 + pb_d4_n2_2_1_2_3 + pbl_2_1_2_3 = 36
invariant :po_d3_n1_1_3_1_2 + pol_d3_n1_1_3_1_2 = 1
invariant :pi_d2_n1_2_4_1_3 + pil_d2_n1_2_4_1_3 = 1
invariant :pi_d4_n1_3_1_1_1 + pil_d4_n1_3_1_1_1 = 1
invariant :po_d4_n1_3_3_3_3 + pol_d4_n1_3_3_3_3 = 1
invariant :po_d2_n1_1_1_2_3 + pol_d2_n1_1_1_2_3 = 1
invariant :po_d4_n1_3_1_3_2 + pol_d4_n1_3_1_3_2 = 1
invariant :po_d4_n1_3_2_3_1 + pol_d4_n1_3_2_3_1 = 1
invariant :po_d2_n1_2_2_2_3 + pol_d2_n1_2_2_2_3 = 1
invariant :pi_d4_n1_1_2_2_1 + pil_d4_n1_1_2_2_1 = 1
invariant :pi_d2_n1_2_4_2_3 + pil_d2_n1_2_4_2_3 = 1
invariant :po_d1_n1_2_1_2_2 + pol_d1_n1_2_1_2_2 = 1
invariant :po_d1_n1_2_3_1_3 + pol_d1_n1_2_3_1_3 = 1
invariant :po_d2_n1_3_1_3_1 + pol_d2_n1_3_1_3_1 = 1
invariant :pb_d1_n1_1_3_1_2 + pb_d1_n2_1_3_1_2 + pb_d2_n1_1_3_1_2 + pb_d2_n2_1_3_1_2 + pb_d3_n1_1_3_1_2 + pb_d3_n2_1_3_1_2 + pb_d4_n1_1_3_1_2 + pb_d4_n2_1_3_1_2 + pbl_1_3_1_2 = 36
invariant :pi_d1_n1_4_2_3_1 + pil_d1_n1_4_2_3_1 = 1
invariant :pi_d3_n1_1_2_3_1 + pil_d3_n1_1_2_3_1 = 1
invariant :po_d3_n1_1_3_3_2 + pol_d3_n1_1_3_3_2 = 1
invariant :pi_d4_n1_3_2_1_4 + pil_d4_n1_3_2_1_4 = 1
invariant :po_d2_n1_1_3_2_2 + pol_d2_n1_1_3_2_2 = 1
invariant :pi_d4_n1_2_1_1_4 + pil_d4_n1_2_1_1_4 = 1
invariant :po_d3_n1_3_2_4_2 + pol_d3_n1_3_2_4_2 = 1
invariant :po_d4_n1_2_3_3_4 + pol_d4_n1_2_3_3_4 = 1
invariant :pi_d4_n1_1_2_1_1 + pil_d4_n1_1_2_1_1 = 1
invariant :pi_d1_n1_1_2_1_1 + pil_d1_n1_1_2_1_1 = 1
invariant :pi_d2_n1_3_3_3_2 + pil_d2_n1_3_3_3_2 = 1
invariant :pi_d2_n1_2_1_3_1 + pil_d2_n1_2_1_3_1 = 1
invariant :pi_d4_n1_3_1_3_4 + pil_d4_n1_3_1_3_4 = 1
invariant :pb_d1_n1_2_3_3_2 + pb_d1_n2_2_3_3_2 + pb_d2_n1_2_3_3_2 + pb_d2_n2_2_3_3_2 + pb_d3_n1_2_3_3_2 + pb_d3_n2_2_3_3_2 + pb_d4_n1_2_3_3_2 + pb_d4_n2_2_3_3_2 + pbl_2_3_3_2 = 36
invariant :po_d1_n1_1_3_2_2 + pol_d1_n1_1_3_2_2 = 1
invariant :po_d4_n1_1_1_3_4 + pol_d4_n1_1_1_3_4 = 1
invariant :po_d1_n1_4_1_2_3 + pol_d1_n1_4_1_2_3 = 1
invariant :po_d3_n1_1_3_2_3 + pol_d3_n1_1_3_2_3 = 1
invariant :pi_d3_n1_2_1_4_1 + pil_d3_n1_2_1_4_1 = 1
invariant :po_d1_n1_3_1_2_1 + pol_d1_n1_3_1_2_1 = 1
invariant :pi_d3_n1_3_3_4_2 + pil_d3_n1_3_3_4_2 = 1
invariant :po_d3_n1_1_2_3_1 + pol_d3_n1_1_2_3_1 = 1
invariant :pb_d1_n1_1_1_1_1 + pb_d1_n2_1_1_1_1 + pb_d2_n1_1_1_1_1 + pb_d2_n2_1_1_1_1 + pb_d3_n1_1_1_1_1 + pb_d3_n2_1_1_1_1 + pb_d4_n1_1_1_1_1 + pb_d4_n2_1_1_1_1 + pbl_1_1_1_1 = 36
invariant :po_d3_n1_1_2_1_3 + pol_d3_n1_1_2_1_3 = 1
invariant :po_d2_n1_1_2_2_1 + pol_d2_n1_1_2_2_1 = 1
invariant :po_d2_n1_2_4_2_1 + pol_d2_n1_2_4_2_1 = 1
invariant :po_d4_n1_2_1_1_3 + pol_d4_n1_2_1_1_3 = 1
invariant :pb_d1_n1_1_1_3_2 + pb_d1_n2_1_1_3_2 + pb_d2_n1_1_1_3_2 + pb_d2_n2_1_1_3_2 + pb_d3_n1_1_1_3_2 + pb_d3_n2_1_1_3_2 + pb_d4_n1_1_1_3_2 + pb_d4_n2_1_1_3_2 + pbl_1_1_3_2 = 36
invariant :pi_d1_n1_3_1_2_3 + pil_d1_n1_3_1_2_3 = 1
invariant :po_d4_n1_3_3_1_2 + pol_d4_n1_3_3_1_2 = 1
invariant :po_d1_n1_3_2_2_3 + pol_d1_n1_3_2_2_3 = 1
invariant :pb_d1_n1_3_2_3_1 + pb_d1_n2_3_2_3_1 + pb_d2_n1_3_2_3_1 + pb_d2_n2_3_2_3_1 + pb_d3_n1_3_2_3_1 + pb_d3_n2_3_2_3_1 + pb_d4_n1_3_2_3_1 + pb_d4_n2_3_2_3_1 + pbl_3_2_3_1 = 36
invariant :pi_d4_n1_3_3_2_3 + pil_d4_n1_3_3_2_3 = 1
invariant :po_d3_n1_1_1_3_3 + pol_d3_n1_1_1_3_3 = 1
invariant :pi_d1_n1_3_3_2_3 + pil_d1_n1_3_3_2_3 = 1
invariant :pi_d2_n1_2_4_3_1 + pil_d2_n1_2_4_3_1 = 1
invariant :pi_d4_n1_3_1_3_1 + pil_d4_n1_3_1_3_1 = 1
invariant :po_d1_n1_4_1_1_2 + pol_d1_n1_4_1_1_2 = 1
invariant :po_d2_n1_2_4_3_3 + pol_d2_n1_2_4_3_3 = 1
invariant :po_d4_n1_2_2_2_1 + pol_d4_n1_2_2_2_1 = 1
invariant :pi_d3_n1_2_1_1_1 + pil_d3_n1_2_1_1_1 = 1
invariant :pi_d4_n1_2_2_3_2 + pil_d4_n1_2_2_3_2 = 1
invariant :pi_d4_n1_3_1_1_2 + pil_d4_n1_3_1_1_2 = 1
invariant :po_d2_n1_2_3_2_1 + pol_d2_n1_2_3_2_1 = 1
invariant :po_d3_n1_2_2_1_2 + pol_d3_n1_2_2_1_2 = 1
invariant :pi_d3_n1_2_3_1_1 + pil_d3_n1_2_3_1_1 = 1
invariant :pb_d1_n1_2_2_3_2 + pb_d1_n2_2_2_3_2 + pb_d2_n1_2_2_3_2 + pb_d2_n2_2_2_3_2 + pb_d3_n1_2_2_3_2 + pb_d3_n2_2_2_3_2 + pb_d4_n1_2_2_3_2 + pb_d4_n2_2_2_3_2 + pbl_2_2_3_2 = 36
invariant :po_d3_n1_1_1_1_1 + pol_d3_n1_1_1_1_1 = 1
invariant :po_d2_n1_3_2_3_1 + pol_d2_n1_3_2_3_1 = 1
invariant :po_d3_n1_2_1_3_3 + pol_d3_n1_2_1_3_3 = 1
invariant :po_d4_n1_3_1_3_1 + pol_d4_n1_3_1_3_1 = 1
invariant :po_d2_n1_2_2_3_3 + pol_d2_n1_2_2_3_3 = 1
invariant :po_d4_n1_1_1_1_2 + pol_d4_n1_1_1_1_2 = 1
invariant :pi_d2_n1_3_1_1_2 + pil_d2_n1_3_1_1_2 = 1
invariant :pi_d1_n1_1_3_3_3 + pil_d1_n1_1_3_3_3 = 1
invariant :po_d3_n1_3_3_2_2 + pol_d3_n1_3_3_2_2 = 1
invariant :pi_d4_n1_3_3_3_4 + pil_d4_n1_3_3_3_4 = 1
invariant :po_d1_n1_1_2_1_2 + pol_d1_n1_1_2_1_2 = 1
invariant :pi_d1_n1_1_3_2_3 + pil_d1_n1_1_3_2_3 = 1
invariant :pi_d2_n1_3_1_2_2 + pil_d2_n1_3_1_2_2 = 1
invariant :po_d4_n1_1_2_3_4 + pol_d4_n1_1_2_3_4 = 1
invariant :po_d4_n1_2_1_2_4 + pol_d4_n1_2_1_2_4 = 1
invariant :po_d4_n1_2_1_3_1 + pol_d4_n1_2_1_3_1 = 1
invariant :po_d2_n1_1_3_1_1 + pol_d2_n1_1_3_1_1 = 1
invariant :po_d2_n1_3_1_3_2 + pol_d2_n1_3_1_3_2 = 1
invariant :pi_d1_n1_3_1_3_1 + pil_d1_n1_3_1_3_1 = 1
invariant :pi_d4_n1_1_1_1_2 + pil_d4_n1_1_1_1_2 = 1
invariant :pi_d4_n1_3_2_3_1 + pil_d4_n1_3_2_3_1 = 1
invariant :po_d1_n1_2_1_1_3 + pol_d1_n1_2_1_1_3 = 1
invariant :pi_d3_n1_2_3_3_1 + pil_d3_n1_2_3_3_1 = 1
invariant :pi_d2_n1_1_2_1_2 + pil_d2_n1_1_2_1_2 = 1
invariant :po_d3_n1_1_2_4_3 + pol_d3_n1_1_2_4_3 = 1
invariant :pi_d1_n1_4_2_3_2 + pil_d1_n1_4_2_3_2 = 1
invariant :po_d4_n1_2_3_2_4 + pol_d4_n1_2_3_2_4 = 1
invariant :po_d2_n1_1_4_2_3 + pol_d2_n1_1_4_2_3 = 1
invariant :pi_d4_n1_2_2_3_4 + pil_d4_n1_2_2_3_4 = 1
invariant :pi_d4_n1_3_1_2_3 + pil_d4_n1_3_1_2_3 = 1
invariant :pi_d4_n1_1_2_2_4 + pil_d4_n1_1_2_2_4 = 1
invariant :po_d2_n1_1_1_1_3 + pol_d2_n1_1_1_1_3 = 1
invariant :pi_d1_n1_2_1_2_1 + pil_d1_n1_2_1_2_1 = 1
invariant :pi_d3_n1_3_1_1_1 + pil_d3_n1_3_1_1_1 = 1
invariant :pi_d4_n1_2_2_2_4 + pil_d4_n1_2_2_2_4 = 1
invariant :pb_d1_n1_3_1_3_3 + pb_d1_n2_3_1_3_3 + pb_d2_n1_3_1_3_3 + pb_d2_n2_3_1_3_3 + pb_d3_n1_3_1_3_3 + pb_d3_n2_3_1_3_3 + pb_d4_n1_3_1_3_3 + pb_d4_n2_3_1_3_3 + pbl_3_1_3_3 = 36
invariant :pi_d3_n1_1_1_2_1 + pil_d3_n1_1_1_2_1 = 1
invariant :po_d1_n1_1_3_2_1 + pol_d1_n1_1_3_2_1 = 1
invariant :pb_d1_n1_3_3_3_1 + pb_d1_n2_3_3_3_1 + pb_d2_n1_3_3_3_1 + pb_d2_n2_3_3_3_1 + pb_d3_n1_3_3_3_1 + pb_d3_n2_3_3_3_1 + pb_d4_n1_3_3_3_1 + pb_d4_n2_3_3_3_1 + pbl_3_3_3_1 = 36
invariant :po_d2_n1_2_1_1_2 + pol_d2_n1_2_1_1_2 = 1
invariant :po_d2_n1_1_1_2_2 + pol_d2_n1_1_1_2_2 = 1
invariant :po_d2_n1_1_1_3_3 + pol_d2_n1_1_1_3_3 = 1
invariant :pi_d1_n1_3_3_2_1 + pil_d1_n1_3_3_2_1 = 1
invariant :po_d2_n1_1_3_3_2 + pol_d2_n1_1_3_3_2 = 1
invariant :pi_d2_n1_3_4_2_1 + pil_d2_n1_3_4_2_1 = 1
invariant :pi_d4_n1_3_1_1_3 + pil_d4_n1_3_1_1_3 = 1
invariant :pb_d1_n1_2_3_2_1 + pb_d1_n2_2_3_2_1 + pb_d2_n1_2_3_2_1 + pb_d2_n2_2_3_2_1 + pb_d3_n1_2_3_2_1 + pb_d3_n2_2_3_2_1 + pb_d4_n1_2_3_2_1 + pb_d4_n2_2_3_2_1 + pbl_2_3_2_1 = 36
invariant :pi_d2_n1_1_2_3_1 + pil_d2_n1_1_2_3_1 = 1
invariant :po_d4_n1_3_1_3_3 + pol_d4_n1_3_1_3_3 = 1
invariant :pi_d1_n1_4_1_1_2 + pil_d1_n1_4_1_1_2 = 1
invariant :po_d1_n1_4_1_2_2 + pol_d1_n1_4_1_2_2 = 1
invariant :po_d3_n1_2_3_2_1 + pol_d3_n1_2_3_2_1 = 1
invariant :pi_d2_n1_1_4_1_2 + pil_d2_n1_1_4_1_2 = 1
invariant :pi_d3_n1_2_2_2_1 + pil_d3_n1_2_2_2_1 = 1
invariant :pi_d2_n1_3_2_1_2 + pil_d2_n1_3_2_1_2 = 1
invariant :po_d3_n1_1_2_2_2 + pol_d3_n1_1_2_2_2 = 1
invariant :pb_d1_n1_1_1_3_3 + pb_d1_n2_1_1_3_3 + pb_d2_n1_1_1_3_3 + pb_d2_n2_1_1_3_3 + pb_d3_n1_1_1_3_3 + pb_d3_n2_1_1_3_3 + pb_d4_n1_1_1_3_3 + pb_d4_n2_1_1_3_3 + pbl_1_1_3_3 = 36
invariant :po_d2_n1_1_2_3_1 + pol_d2_n1_1_2_3_1 = 1
invariant :pi_d1_n1_2_2_1_1 + pil_d1_n1_2_2_1_1 = 1
invariant :pi_d1_n1_4_3_3_2 + pil_d1_n1_4_3_3_2 = 1
invariant :pi_d3_n1_2_3_4_2 + pil_d3_n1_2_3_4_2 = 1
invariant :po_d1_n1_3_3_2_3 + pol_d1_n1_3_3_2_3 = 1
invariant :po_d2_n1_3_4_1_1 + pol_d2_n1_3_4_1_1 = 1
invariant :po_d4_n1_2_2_1_1 + pol_d4_n1_2_2_1_1 = 1
invariant :pb_d1_n1_2_2_1_1 + pb_d1_n2_2_2_1_1 + pb_d2_n1_2_2_1_1 + pb_d2_n2_2_2_1_1 + pb_d3_n1_2_2_1_1 + pb_d3_n2_2_2_1_1 + pb_d4_n1_2_2_1_1 + pb_d4_n2_2_2_1_1 + pbl_2_2_1_1 = 36
invariant :po_d3_n1_2_2_3_3 + pol_d3_n1_2_2_3_3 = 1
invariant :po_d2_n1_1_4_3_2 + pol_d2_n1_1_4_3_2 = 1
invariant :po_d3_n1_3_3_1_3 + pol_d3_n1_3_3_1_3 = 1
invariant :po_d3_n1_1_3_4_3 + pol_d3_n1_1_3_4_3 = 1
invariant :pi_d1_n1_3_2_2_1 + pil_d1_n1_3_2_2_1 = 1
invariant :pi_d2_n1_3_4_2_3 + pil_d2_n1_3_4_2_3 = 1
invariant :pi_d4_n1_1_2_3_1 + pil_d4_n1_1_2_3_1 = 1
invariant :po_d3_n1_1_2_4_1 + pol_d3_n1_1_2_4_1 = 1
invariant :pb_d1_n1_1_1_2_2 + pb_d1_n2_1_1_2_2 + pb_d2_n1_1_1_2_2 + pb_d2_n2_1_1_2_2 + pb_d3_n1_1_1_2_2 + pb_d3_n2_1_1_2_2 + pb_d4_n1_1_1_2_2 + pb_d4_n2_1_1_2_2 + pbl_1_1_2_2 = 36
invariant :pi_d4_n1_1_1_1_4 + pil_d4_n1_1_1_1_4 = 1
invariant :pi_d2_n1_1_1_1_1 + pil_d2_n1_1_1_1_1 = 1
invariant :po_d4_n1_3_3_1_1 + pol_d4_n1_3_3_1_1 = 1
invariant :pi_d1_n1_1_1_3_1 + pil_d1_n1_1_1_3_1 = 1
invariant :po_d4_n1_3_2_3_4 + pol_d4_n1_3_2_3_4 = 1
invariant :pi_d3_n1_3_3_1_1 + pil_d3_n1_3_3_1_1 = 1
invariant :pi_d2_n1_2_4_2_1 + pil_d2_n1_2_4_2_1 = 1
invariant :pi_d4_n1_1_3_2_3 + pil_d4_n1_1_3_2_3 = 1
invariant :pi_d4_n1_2_2_2_1 + pil_d4_n1_2_2_2_1 = 1
invariant :po_d4_n1_3_1_1_1 + pol_d4_n1_3_1_1_1 = 1
invariant :pi_d2_n1_1_2_2_2 + pil_d2_n1_1_2_2_2 = 1
invariant :pi_d1_n1_4_3_3_3 + pil_d1_n1_4_3_3_3 = 1
invariant :pi_d1_n1_2_3_3_2 + pil_d1_n1_2_3_3_2 = 1
invariant :po_d4_n1_2_1_2_2 + pol_d4_n1_2_1_2_2 = 1
invariant :po_d3_n1_1_2_2_3 + pol_d3_n1_1_2_2_3 = 1
invariant :po_d3_n1_3_2_1_1 + pol_d3_n1_3_2_1_1 = 1
invariant :pb_d1_n1_2_3_2_3 + pb_d1_n2_2_3_2_3 + pb_d2_n1_2_3_2_3 + pb_d2_n2_2_3_2_3 + pb_d3_n1_2_3_2_3 + pb_d3_n2_2_3_2_3 + pb_d4_n1_2_3_2_3 + pb_d4_n2_2_3_2_3 + pbl_2_3_2_3 = 36
invariant :pi_d3_n1_2_2_3_1 + pil_d3_n1_2_2_3_1 = 1
invariant :pi_d1_n1_2_2_1_2 + pil_d1_n1_2_2_1_2 = 1
invariant :pi_d3_n1_3_3_4_1 + pil_d3_n1_3_3_4_1 = 1
invariant :pi_d1_n1_2_1_3_1 + pil_d1_n1_2_1_3_1 = 1
invariant :pi_d4_n1_1_2_2_2 + pil_d4_n1_1_2_2_2 = 1
invariant :po_d1_n1_4_1_3_3 + pol_d1_n1_4_1_3_3 = 1
invariant :po_d3_n1_1_1_3_1 + pol_d3_n1_1_1_3_1 = 1
invariant :po_d4_n1_1_2_2_4 + pol_d4_n1_1_2_2_4 = 1
invariant :pi_d2_n1_3_3_1_3 + pil_d2_n1_3_3_1_3 = 1
invariant :pi_d3_n1_2_3_2_2 + pil_d3_n1_2_3_2_2 = 1
invariant :po_d1_n1_3_1_2_3 + pol_d1_n1_3_1_2_3 = 1
invariant :po_d1_n1_4_3_3_3 + pol_d1_n1_4_3_3_3 = 1
invariant :po_d4_n1_1_2_2_1 + pol_d4_n1_1_2_2_1 = 1
invariant :po_d3_n1_1_3_1_3 + pol_d3_n1_1_3_1_3 = 1
invariant :pi_d4_n1_3_2_1_1 + pil_d4_n1_3_2_1_1 = 1
invariant :pi_d4_n1_3_3_1_3 + pil_d4_n1_3_3_1_3 = 1
invariant :po_d3_n1_1_2_4_2 + pol_d3_n1_1_2_4_2 = 1
invariant :pi_d1_n1_3_3_3_2 + pil_d1_n1_3_3_3_2 = 1
invariant :po_d3_n1_1_2_3_2 + pol_d3_n1_1_2_3_2 = 1
invariant :po_d2_n1_3_2_2_1 + pol_d2_n1_3_2_2_1 = 1
invariant :pi_d3_n1_3_1_3_2 + pil_d3_n1_3_1_3_2 = 1
invariant :po_d1_n1_2_3_2_3 + pol_d1_n1_2_3_2_3 = 1
invariant :po_d2_n1_3_3_2_3 + pol_d2_n1_3_3_2_3 = 1
invariant :po_d4_n1_2_3_2_3 + pol_d4_n1_2_3_2_3 = 1
invariant :po_d4_n1_2_3_1_4 + pol_d4_n1_2_3_1_4 = 1
invariant :pi_d4_n1_3_2_1_2 + pil_d4_n1_3_2_1_2 = 1
invariant :pi_d2_n1_1_1_2_1 + pil_d2_n1_1_1_2_1 = 1
invariant :po_d4_n1_3_3_2_4 + pol_d4_n1_3_3_2_4 = 1
invariant :pi_d1_n1_1_2_2_3 + pil_d1_n1_1_2_2_3 = 1
invariant :po_d4_n1_1_1_2_2 + pol_d4_n1_1_1_2_2 = 1
invariant :po_d4_n1_2_1_3_3 + pol_d4_n1_2_1_3_3 = 1
invariant :pi_d3_n1_2_1_3_2 + pil_d3_n1_2_1_3_2 = 1
invariant :po_d2_n1_2_2_1_2 + pol_d2_n1_2_2_1_2 = 1
invariant :po_d1_n1_3_3_1_1 + pol_d1_n1_3_3_1_1 = 1
invariant :pi_d1_n1_2_3_2_2 + pil_d1_n1_2_3_2_2 = 1
invariant :pi_d4_n1_1_2_2_3 + pil_d4_n1_1_2_2_3 = 1
invariant :pi_d3_n1_1_3_3_2 + pil_d3_n1_1_3_3_2 = 1
invariant :pi_d3_n1_1_3_3_3 + pil_d3_n1_1_3_3_3 = 1
invariant :pi_d3_n1_2_1_4_2 + pil_d3_n1_2_1_4_2 = 1
invariant :pi_d3_n1_3_1_2_1 + pil_d3_n1_3_1_2_1 = 1
invariant :po_d1_n1_3_3_2_1 + pol_d1_n1_3_3_2_1 = 1
invariant :pi_d1_n1_3_3_1_2 + pil_d1_n1_3_3_1_2 = 1
invariant :pi_d2_n1_2_2_1_2 + pil_d2_n1_2_2_1_2 = 1
invariant :pi_d2_n1_2_2_1_1 + pil_d2_n1_2_2_1_1 = 1
invariant :po_d1_n1_2_3_1_1 + pol_d1_n1_2_3_1_1 = 1
invariant :po_d1_n1_4_1_1_3 + pol_d1_n1_4_1_1_3 = 1
invariant :pi_d1_n1_2_2_2_2 + pil_d1_n1_2_2_2_2 = 1
invariant :pi_d2_n1_2_1_2_3 + pil_d2_n1_2_1_2_3 = 1
invariant :pi_d3_n1_2_2_1_3 + pil_d3_n1_2_2_1_3 = 1
invariant :pi_d1_n1_1_1_2_3 + pil_d1_n1_1_1_2_3 = 1
invariant :po_d2_n1_3_2_1_2 + pol_d2_n1_3_2_1_2 = 1
invariant :pi_d4_n1_3_1_1_4 + pil_d4_n1_3_1_1_4 = 1
invariant :po_d2_n1_1_3_1_2 + pol_d2_n1_1_3_1_2 = 1
invariant :pi_d4_n1_3_2_2_4 + pil_d4_n1_3_2_2_4 = 1
invariant :pb_d1_n1_1_2_1_2 + pb_d1_n2_1_2_1_2 + pb_d2_n1_1_2_1_2 + pb_d2_n2_1_2_1_2 + pb_d3_n1_1_2_1_2 + pb_d3_n2_1_2_1_2 + pb_d4_n1_1_2_1_2 + pb_d4_n2_1_2_1_2 + pbl_1_2_1_2 = 36
invariant :pi_d2_n1_3_4_1_1 + pil_d2_n1_3_4_1_1 = 1
invariant :po_d2_n1_2_1_2_3 + pol_d2_n1_2_1_2_3 = 1
invariant :pi_d1_n1_2_3_1_1 + pil_d1_n1_2_3_1_1 = 1
invariant :pi_d1_n1_4_2_2_2 + pil_d1_n1_4_2_2_2 = 1
invariant :po_d1_n1_4_2_3_3 + pol_d1_n1_4_2_3_3 = 1
invariant :po_d4_n1_2_3_3_2 + pol_d4_n1_2_3_3_2 = 1
invariant :pi_d3_n1_2_2_4_1 + pil_d3_n1_2_2_4_1 = 1
invariant :pi_d1_n1_4_1_1_1 + pil_d1_n1_4_1_1_1 = 1
invariant :pi_d1_n1_1_2_1_2 + pil_d1_n1_1_2_1_2 = 1
invariant :pb_d1_n1_1_2_2_3 + pb_d1_n2_1_2_2_3 + pb_d2_n1_1_2_2_3 + pb_d2_n2_1_2_2_3 + pb_d3_n1_1_2_2_3 + pb_d3_n2_1_2_2_3 + pb_d4_n1_1_2_2_3 + pb_d4_n2_1_2_2_3 + pbl_1_2_2_3 = 36
invariant :pb_d1_n1_2_1_3_2 + pb_d1_n2_2_1_3_2 + pb_d2_n1_2_1_3_2 + pb_d2_n2_2_1_3_2 + pb_d3_n1_2_1_3_2 + pb_d3_n2_2_1_3_2 + pb_d4_n1_2_1_3_2 + pb_d4_n2_2_1_3_2 + pbl_2_1_3_2 = 36
invariant :pb_d1_n1_1_2_1_3 + pb_d1_n2_1_2_1_3 + pb_d2_n1_1_2_1_3 + pb_d2_n2_1_2_1_3 + pb_d3_n1_1_2_1_3 + pb_d3_n2_1_2_1_3 + pb_d4_n1_1_2_1_3 + pb_d4_n2_1_2_1_3 + pbl_1_2_1_3 = 36
invariant :pi_d3_n1_3_2_1_1 + pil_d3_n1_3_2_1_1 = 1
invariant :pi_d3_n1_1_2_4_3 + pil_d3_n1_1_2_4_3 = 1
invariant :pi_d4_n1_2_2_3_3 + pil_d4_n1_2_2_3_3 = 1
invariant :po_d2_n1_3_3_3_1 + pol_d2_n1_3_3_3_1 = 1
invariant :po_d2_n1_2_1_3_1 + pol_d2_n1_2_1_3_1 = 1
invariant :pi_d1_n1_4_3_2_2 + pil_d1_n1_4_3_2_2 = 1
invariant :pi_d4_n1_2_2_1_2 + pil_d4_n1_2_2_1_2 = 1
invariant :po_d3_n1_2_2_2_3 + pol_d3_n1_2_2_2_3 = 1
invariant :po_d4_n1_1_3_1_1 + pol_d4_n1_1_3_1_1 = 1
invariant :po_d1_n1_3_1_3_2 + pol_d1_n1_3_1_3_2 = 1
invariant :pi_d2_n1_3_2_2_1 + pil_d2_n1_3_2_2_1 = 1
invariant :pi_d2_n1_3_2_2_3 + pil_d2_n1_3_2_2_3 = 1
invariant :po_d2_n1_3_3_3_3 + pol_d2_n1_3_3_3_3 = 1
invariant :pi_d4_n1_2_2_2_2 + pil_d4_n1_2_2_2_2 = 1
invariant :po_d3_n1_2_2_1_1 + pol_d3_n1_2_2_1_1 = 1
invariant :pi_d4_n1_1_3_1_1 + pil_d4_n1_1_3_1_1 = 1
invariant :po_d2_n1_3_3_2_2 + pol_d2_n1_3_3_2_2 = 1
invariant :pi_d3_n1_3_1_4_3 + pil_d3_n1_3_1_4_3 = 1
invariant :pi_d4_n1_3_2_2_1 + pil_d4_n1_3_2_2_1 = 1
invariant :po_d2_n1_1_3_1_3 + pol_d2_n1_1_3_1_3 = 1
invariant :pi_d4_n1_1_3_2_4 + pil_d4_n1_1_3_2_4 = 1
invariant :pi_d2_n1_1_2_2_1 + pil_d2_n1_1_2_2_1 = 1
invariant :pi_d4_n1_2_1_1_1 + pil_d4_n1_2_1_1_1 = 1
invariant :po_d3_n1_1_3_4_1 + pol_d3_n1_1_3_4_1 = 1
invariant :pb_d1_n1_3_2_1_2 + pb_d1_n2_3_2_1_2 + pb_d2_n1_3_2_1_2 + pb_d2_n2_3_2_1_2 + pb_d3_n1_3_2_1_2 + pb_d3_n2_3_2_1_2 + pb_d4_n1_3_2_1_2 + pb_d4_n2_3_2_1_2 + pbl_3_2_1_2 = 36
invariant :pi_d3_n1_3_1_3_1 + pil_d3_n1_3_1_3_1 = 1
invariant :pb_d1_n1_2_2_2_1 + pb_d1_n2_2_2_2_1 + pb_d2_n1_2_2_2_1 + pb_d2_n2_2_2_2_1 + pb_d3_n1_2_2_2_1 + pb_d3_n2_2_2_2_1 + pb_d4_n1_2_2_2_1 + pb_d4_n2_2_2_2_1 + pbl_2_2_2_1 = 36
invariant :pi_d3_n1_1_3_1_3 + pil_d3_n1_1_3_1_3 = 1
invariant :po_d4_n1_3_1_2_1 + pol_d4_n1_3_1_2_1 = 1
invariant :po_d2_n1_1_2_1_1 + pol_d2_n1_1_2_1_1 = 1
invariant :po_d2_n1_2_1_3_2 + pol_d2_n1_2_1_3_2 = 1
invariant :pb_d1_n1_3_3_3_2 + pb_d1_n2_3_3_3_2 + pb_d2_n1_3_3_3_2 + pb_d2_n2_3_3_3_2 + pb_d3_n1_3_3_3_2 + pb_d3_n2_3_3_3_2 + pb_d4_n1_3_3_3_2 + pb_d4_n2_3_3_3_2 + pbl_3_3_3_2 = 36
invariant :pi_d3_n1_1_3_4_1 + pil_d3_n1_1_3_4_1 = 1
invariant :pi_d3_n1_2_3_2_3 + pil_d3_n1_2_3_2_3 = 1
invariant :po_d3_n1_3_3_2_1 + pol_d3_n1_3_3_2_1 = 1
invariant :po_d4_n1_1_1_1_4 + pol_d4_n1_1_1_1_4 = 1
invariant :pi_d1_n1_4_1_3_1 + pil_d1_n1_4_1_3_1 = 1
invariant :pi_d1_n1_3_3_1_3 + pil_d1_n1_3_3_1_3 = 1
invariant :pi_d3_n1_2_3_3_3 + pil_d3_n1_2_3_3_3 = 1
invariant :po_d1_n1_1_3_3_3 + pol_d1_n1_1_3_3_3 = 1
invariant :po_d3_n1_3_2_3_3 + pol_d3_n1_3_2_3_3 = 1
invariant :po_d4_n1_1_3_3_1 + pol_d4_n1_1_3_3_1 = 1
invariant :pi_d1_n1_1_1_2_2 + pil_d1_n1_1_1_2_2 = 1
invariant :pi_d4_n1_2_3_1_3 + pil_d4_n1_2_3_1_3 = 1
invariant :pi_d2_n1_3_1_3_2 + pil_d2_n1_3_1_3_2 = 1
invariant :po_d2_n1_1_4_3_1 + pol_d2_n1_1_4_3_1 = 1
invariant :pi_d2_n1_3_3_3_3 + pil_d2_n1_3_3_3_3 = 1
invariant :po_d2_n1_1_3_2_3 + pol_d2_n1_1_3_2_3 = 1
invariant :pi_d2_n1_2_1_2_2 + pil_d2_n1_2_1_2_2 = 1
invariant :po_d2_n1_3_2_2_2 + pol_d2_n1_3_2_2_2 = 1
invariant :po_d2_n1_1_1_2_1 + pol_d2_n1_1_1_2_1 = 1
invariant :po_d1_n1_3_2_3_2 + pol_d1_n1_3_2_3_2 = 1
invariant :pi_d3_n1_3_3_3_3 + pil_d3_n1_3_3_3_3 = 1
invariant :pi_d4_n1_2_1_1_3 + pil_d4_n1_2_1_1_3 = 1
invariant :pi_d4_n1_2_2_1_4 + pil_d4_n1_2_2_1_4 = 1
invariant :po_d4_n1_2_3_1_1 + pol_d4_n1_2_3_1_1 = 1
invariant :po_d1_n1_4_1_2_1 + pol_d1_n1_4_1_2_1 = 1
invariant :po_d2_n1_1_3_2_1 + pol_d2_n1_1_3_2_1 = 1
invariant :pi_d2_n1_1_1_3_2 + pil_d2_n1_1_1_3_2 = 1
invariant :pb_d1_n1_3_1_3_2 + pb_d1_n2_3_1_3_2 + pb_d2_n1_3_1_3_2 + pb_d2_n2_3_1_3_2 + pb_d3_n1_3_1_3_2 + pb_d3_n2_3_1_3_2 + pb_d4_n1_3_1_3_2 + pb_d4_n2_3_1_3_2 + pbl_3_1_3_2 = 36
invariant :pi_d1_n1_2_2_2_1 + pil_d1_n1_2_2_2_1 = 1
invariant :po_d4_n1_2_3_1_3 + pol_d4_n1_2_3_1_3 = 1
invariant :pi_d4_n1_2_2_1_3 + pil_d4_n1_2_2_1_3 = 1
invariant :pi_d3_n1_3_2_2_2 + pil_d3_n1_3_2_2_2 = 1
invariant :po_d4_n1_1_3_2_2 + pol_d4_n1_1_3_2_2 = 1
invariant :po_d3_n1_2_2_1_3 + pol_d3_n1_2_2_1_3 = 1
invariant :po_d1_n1_3_3_1_2 + pol_d1_n1_3_3_1_2 = 1
invariant :pi_d1_n1_2_1_2_3 + pil_d1_n1_2_1_2_3 = 1
invariant :pi_d3_n1_3_1_3_3 + pil_d3_n1_3_1_3_3 = 1
invariant :po_d3_n1_2_1_3_1 + pol_d3_n1_2_1_3_1 = 1
invariant :po_d4_n1_1_1_3_1 + pol_d4_n1_1_1_3_1 = 1
invariant :pi_d1_n1_3_2_3_2 + pil_d1_n1_3_2_3_2 = 1
invariant :po_d4_n1_3_2_1_4 + pol_d4_n1_3_2_1_4 = 1
invariant :po_d1_n1_1_3_1_1 + pol_d1_n1_1_3_1_1 = 1
invariant :po_d3_n1_2_1_1_1 + pol_d3_n1_2_1_1_1 = 1
invariant :po_d4_n1_2_1_3_2 + pol_d4_n1_2_1_3_2 = 1
invariant :pb_d1_n1_3_2_1_1 + pb_d1_n2_3_2_1_1 + pb_d2_n1_3_2_1_1 + pb_d2_n2_3_2_1_1 + pb_d3_n1_3_2_1_1 + pb_d3_n2_3_2_1_1 + pb_d4_n1_3_2_1_1 + pb_d4_n2_3_2_1_1 + pbl_3_2_1_1 = 36
invariant :po_d1_n1_4_3_1_2 + pol_d1_n1_4_3_1_2 = 1
invariant :po_d3_n1_1_1_1_3 + pol_d3_n1_1_1_1_3 = 1
invariant :po_d3_n1_1_3_2_1 + pol_d3_n1_1_3_2_1 = 1
invariant :pi_d1_n1_2_2_1_3 + pil_d1_n1_2_2_1_3 = 1
invariant :po_d1_n1_2_2_2_3 + pol_d1_n1_2_2_2_3 = 1
invariant :pi_d2_n1_1_3_1_1 + pil_d2_n1_1_3_1_1 = 1
invariant :pi_d3_n1_2_3_1_2 + pil_d3_n1_2_3_1_2 = 1
invariant :pb_d1_n1_1_1_1_3 + pb_d1_n2_1_1_1_3 + pb_d2_n1_1_1_1_3 + pb_d2_n2_1_1_1_3 + pb_d3_n1_1_1_1_3 + pb_d3_n2_1_1_1_3 + pb_d4_n1_1_1_1_3 + pb_d4_n2_1_1_1_3 + pbl_1_1_1_3 = 36
invariant :pb_d1_n1_2_3_2_2 + pb_d1_n2_2_3_2_2 + pb_d2_n1_2_3_2_2 + pb_d2_n2_2_3_2_2 + pb_d3_n1_2_3_2_2 + pb_d3_n2_2_3_2_2 + pb_d4_n1_2_3_2_2 + pb_d4_n2_2_3_2_2 + pbl_2_3_2_2 = 36
invariant :pi_d1_n1_2_2_2_3 + pil_d1_n1_2_2_2_3 = 1
invariant :po_d2_n1_3_2_3_2 + pol_d2_n1_3_2_3_2 = 1
invariant :pi_d1_n1_1_2_2_1 + pil_d1_n1_1_2_2_1 = 1
invariant :pi_d2_n1_3_1_1_3 + pil_d2_n1_3_1_1_3 = 1
invariant :pi_d2_n1_1_2_1_1 + pil_d2_n1_1_2_1_1 = 1
invariant :pi_d3_n1_1_2_3_3 + pil_d3_n1_1_2_3_3 = 1
invariant :po_d3_n1_2_3_2_3 + pol_d3_n1_2_3_2_3 = 1
invariant :pi_d4_n1_3_3_2_1 + pil_d4_n1_3_3_2_1 = 1
invariant :pi_d4_n1_2_3_3_2 + pil_d4_n1_2_3_3_2 = 1
invariant :po_d1_n1_3_3_1_3 + pol_d1_n1_3_3_1_3 = 1
invariant :po_d3_n1_1_2_1_2 + pol_d3_n1_1_2_1_2 = 1
invariant :po_d4_n1_3_1_1_2 + pol_d4_n1_3_1_1_2 = 1
invariant :pi_d4_n1_2_1_2_4 + pil_d4_n1_2_1_2_4 = 1
invariant :pi_d1_n1_3_3_1_1 + pil_d1_n1_3_3_1_1 = 1
invariant :po_d2_n1_3_4_1_2 + pol_d2_n1_3_4_1_2 = 1
invariant :pi_d1_n1_4_2_2_3 + pil_d1_n1_4_2_2_3 = 1
invariant :po_d3_n1_3_1_3_1 + pol_d3_n1_3_1_3_1 = 1
invariant :pi_d3_n1_1_2_2_2 + pil_d3_n1_1_2_2_2 = 1
invariant :pi_d2_n1_1_4_1_1 + pil_d2_n1_1_4_1_1 = 1
invariant :po_d3_n1_2_3_1_1 + pol_d3_n1_2_3_1_1 = 1
invariant :pb_d1_n1_1_1_2_3 + pb_d1_n2_1_1_2_3 + pb_d2_n1_1_1_2_3 + pb_d2_n2_1_1_2_3 + pb_d3_n1_1_1_2_3 + pb_d3_n2_1_1_2_3 + pb_d4_n1_1_1_2_3 + pb_d4_n2_1_1_2_3 + pbl_1_1_2_3 = 36
invariant :po_d4_n1_2_2_3_3 + pol_d4_n1_2_2_3_3 = 1
invariant :po_d2_n1_3_4_3_2 + pol_d2_n1_3_4_3_2 = 1
invariant :pi_d4_n1_3_3_3_3 + pil_d4_n1_3_3_3_3 = 1
invariant :pb_d1_n1_1_3_2_2 + pb_d1_n2_1_3_2_2 + pb_d2_n1_1_3_2_2 + pb_d2_n2_1_3_2_2 + pb_d3_n1_1_3_2_2 + pb_d3_n2_1_3_2_2 + pb_d4_n1_1_3_2_2 + pb_d4_n2_1_3_2_2 + pbl_1_3_2_2 = 36
invariant :pi_d3_n1_1_1_4_1 + pil_d3_n1_1_1_4_1 = 1
invariant :po_d1_n1_1_3_3_2 + pol_d1_n1_1_3_3_2 = 1
invariant :pi_d2_n1_1_3_2_1 + pil_d2_n1_1_3_2_1 = 1
invariant :pi_d2_n1_3_3_2_3 + pil_d2_n1_3_3_2_3 = 1
invariant :po_d3_n1_3_1_3_2 + pol_d3_n1_3_1_3_2 = 1
invariant :pi_d4_n1_3_3_1_4 + pil_d4_n1_3_3_1_4 = 1
invariant :pi_d1_n1_1_3_1_2 + pil_d1_n1_1_3_1_2 = 1
invariant :po_d2_n1_2_2_3_2 + pol_d2_n1_2_2_3_2 = 1
invariant :po_d2_n1_3_4_2_1 + pol_d2_n1_3_4_2_1 = 1
invariant :pi_d1_n1_3_2_3_1 + pil_d1_n1_3_2_3_1 = 1
invariant :pi_d2_n1_1_1_3_1 + pil_d2_n1_1_1_3_1 = 1
invariant :po_d3_n1_3_1_4_1 + pol_d3_n1_3_1_4_1 = 1
invariant :po_d1_n1_3_2_2_1 + pol_d1_n1_3_2_2_1 = 1
invariant :pi_d3_n1_2_3_3_2 + pil_d3_n1_2_3_3_2 = 1
invariant :pi_d2_n1_2_1_1_1 + pil_d2_n1_2_1_1_1 = 1
invariant :pi_d4_n1_2_3_1_2 + pil_d4_n1_2_3_1_2 = 1
invariant :pi_d3_n1_3_2_1_2 + pil_d3_n1_3_2_1_2 = 1
invariant :pi_d3_n1_3_2_4_3 + pil_d3_n1_3_2_4_3 = 1
invariant :pi_d2_n1_2_2_3_1 + pil_d2_n1_2_2_3_1 = 1
invariant :po_d2_n1_2_1_3_3 + pol_d2_n1_2_1_3_3 = 1
invariant :po_d4_n1_1_1_2_4 + pol_d4_n1_1_1_2_4 = 1
invariant :pi_d2_n1_3_3_2_2 + pil_d2_n1_3_3_2_2 = 1
invariant :pb_d1_n1_3_3_2_2 + pb_d1_n2_3_3_2_2 + pb_d2_n1_3_3_2_2 + pb_d2_n2_3_3_2_2 + pb_d3_n1_3_3_2_2 + pb_d3_n2_3_3_2_2 + pb_d4_n1_3_3_2_2 + pb_d4_n2_3_3_2_2 + pbl_3_3_2_2 = 36
invariant :pb_d1_n1_2_1_3_1 + pb_d1_n2_2_1_3_1 + pb_d2_n1_2_1_3_1 + pb_d2_n2_2_1_3_1 + pb_d3_n1_2_1_3_1 + pb_d3_n2_2_1_3_1 + pb_d4_n1_2_1_3_1 + pb_d4_n2_2_1_3_1 + -1'pbl_1_1_1_1 + -1'pbl_1_1_1_2 + -1'pbl_1_1_1_3 + -1'pbl_1_1_2_1 + -1'pbl_1_1_2_2 + -1'pbl_1_1_2_3 + -1'pbl_1_1_3_1 + -1'pbl_1_1_3_2 + -1'pbl_1_1_3_3 + -1'pbl_1_2_1_1 + -1'pbl_1_2_1_2 + -1'pbl_1_2_1_3 + -1'pbl_1_2_2_1 + -1'pbl_1_2_2_2 + -1'pbl_1_2_2_3 + -1'pbl_1_2_3_1 + -1'pbl_1_2_3_2 + -1'pbl_1_2_3_3 + -1'pbl_1_3_1_1 + -1'pbl_1_3_1_2 + -1'pbl_1_3_1_3 + -1'pbl_1_3_2_1 + -1'pbl_1_3_2_2 + -1'pbl_1_3_2_3 + -1'pbl_1_3_3_1 + -1'pbl_1_3_3_2 + -1'pbl_1_3_3_3 + -1'pbl_2_1_1_1 + -1'pbl_2_1_1_2 + -1'pbl_2_1_1_3 + -1'pbl_2_1_2_1 + -1'pbl_2_1_2_2 + -1'pbl_2_1_2_3 + -1'pbl_2_1_3_2 + -1'pbl_2_1_3_3 + -1'pbl_2_2_1_1 + -1'pbl_2_2_1_2 + -1'pbl_2_2_1_3 + -1'pbl_2_2_2_1 + -1'pbl_2_2_2_2 + -1'pbl_2_2_2_3 + -1'pbl_2_2_3_1 + -1'pbl_2_2_3_2 + -1'pbl_2_2_3_3 + -1'pbl_2_3_1_1 + -1'pbl_2_3_1_2 + -1'pbl_2_3_1_3 + -1'pbl_2_3_2_1 + -1'pbl_2_3_2_2 + -1'pbl_2_3_2_3 + -1'pbl_2_3_3_1 + -1'pbl_2_3_3_2 + -1'pbl_2_3_3_3 + -1'pbl_3_1_1_1 + -1'pbl_3_1_1_2 + -1'pbl_3_1_1_3 + -1'pbl_3_1_2_1 + -1'pbl_3_1_2_2 + -1'pbl_3_1_2_3 + -1'pbl_3_1_3_1 + -1'pbl_3_1_3_2 + -1'pbl_3_1_3_3 + -1'pbl_3_2_1_1 + -1'pbl_3_2_1_2 + -1'pbl_3_2_1_3 + -1'pbl_3_2_2_1 + -1'pbl_3_2_2_2 + -1'pbl_3_2_2_3 + -1'pbl_3_2_3_1 + -1'pbl_3_2_3_2 + -1'pbl_3_2_3_3 + -1'pbl_3_3_1_1 + -1'pbl_3_3_1_2 + -1'pbl_3_3_1_3 + -1'pbl_3_3_2_1 + -1'pbl_3_3_2_2 + -1'pbl_3_3_2_3 + -1'pbl_3_3_3_1 + -1'pbl_3_3_3_2 + -1'pbl_3_3_3_3 + -1'pil_d1_n1_1_1_1_1 + -1'pil_d1_n1_1_1_1_2 + -1'pil_d1_n1_1_1_1_3 + -1'pil_d1_n1_1_1_2_1 + -1'pil_d1_n1_1_1_2_2 + -1'pil_d1_n1_1_1_2_3 + -1'pil_d1_n1_1_1_3_1 + -1'pil_d1_n1_1_1_3_2 + -1'pil_d1_n1_1_1_3_3 + -1'pil_d1_n1_1_2_1_1 + -1'pil_d1_n1_1_2_1_2 + -1'pil_d1_n1_1_2_1_3 + -1'pil_d1_n1_1_2_2_1 + -1'pil_d1_n1_1_2_2_2 + -1'pil_d1_n1_1_2_2_3 + -1'pil_d1_n1_1_2_3_1 + -1'pil_d1_n1_1_2_3_2 + -1'pil_d1_n1_1_2_3_3 + -1'pil_d1_n1_1_3_1_1 + -1'pil_d1_n1_1_3_1_2 + -1'pil_d1_n1_1_3_1_3 + -1'pil_d1_n1_1_3_2_1 + -1'pil_d1_n1_1_3_2_2 + -1'pil_d1_n1_1_3_2_3 + -1'pil_d1_n1_1_3_3_1 + -1'pil_d1_n1_1_3_3_2 + -1'pil_d1_n1_1_3_3_3 + -1'pil_d1_n1_2_1_1_1 + -1'pil_d1_n1_2_1_1_2 + -1'pil_d1_n1_2_1_1_3 + -1'pil_d1_n1_2_1_2_1 + -1'pil_d1_n1_2_1_2_2 + -1'pil_d1_n1_2_1_2_3 + -1'pil_d1_n1_2_1_3_1 + -1'pil_d1_n1_2_1_3_2 + -1'pil_d1_n1_2_1_3_3 + -1'pil_d1_n1_2_2_1_1 + -1'pil_d1_n1_2_2_1_2 + -1'pil_d1_n1_2_2_1_3 + -1'pil_d1_n1_2_2_2_1 + -1'pil_d1_n1_2_2_2_2 + -1'pil_d1_n1_2_2_2_3 + -1'pil_d1_n1_2_2_3_1 + -1'pil_d1_n1_2_2_3_2 + -1'pil_d1_n1_2_2_3_3 + -1'pil_d1_n1_2_3_1_1 + -1'pil_d1_n1_2_3_1_2 + -1'pil_d1_n1_2_3_1_3 + -1'pil_d1_n1_2_3_2_1 + -1'pil_d1_n1_2_3_2_2 + -1'pil_d1_n1_2_3_2_3 + -1'pil_d1_n1_2_3_3_1 + -1'pil_d1_n1_2_3_3_2 + -1'pil_d1_n1_2_3_3_3 + -1'pil_d1_n1_3_1_1_1 + -1'pil_d1_n1_3_1_1_2 + -1'pil_d1_n1_3_1_1_3 + -1'pil_d1_n1_3_1_2_1 + -1'pil_d1_n1_3_1_2_2 + -1'pil_d1_n1_3_1_2_3 + -1'pil_d1_n1_3_1_3_1 + -1'pil_d1_n1_3_1_3_2 + -1'pil_d1_n1_3_1_3_3 + -1'pil_d1_n1_3_2_1_1 + -1'pil_d1_n1_3_2_1_2 + -1'pil_d1_n1_3_2_1_3 + -1'pil_d1_n1_3_2_2_1 + -1'pil_d1_n1_3_2_2_2 + -1'pil_d1_n1_3_2_2_3 + -1'pil_d1_n1_3_2_3_1 + -1'pil_d1_n1_3_2_3_2 + -1'pil_d1_n1_3_2_3_3 + -1'pil_d1_n1_3_3_1_1 + -1'pil_d1_n1_3_3_1_2 + -1'pil_d1_n1_3_3_1_3 + -1'pil_d1_n1_3_3_2_1 + -1'pil_d1_n1_3_3_2_2 + -1'pil_d1_n1_3_3_2_3 + -1'pil_d1_n1_3_3_3_1 + -1'pil_d1_n1_3_3_3_2 + -1'pil_d1_n1_3_3_3_3 + -1'pil_d1_n1_4_1_1_1 + -1'pil_d1_n1_4_1_1_2 + -1'pil_d1_n1_4_1_1_3 + -1'pil_d1_n1_4_1_2_1 + -1'pil_d1_n1_4_1_2_2 + -1'pil_d1_n1_4_1_2_3 + -1'pil_d1_n1_4_1_3_1 + -1'pil_d1_n1_4_1_3_2 + -1'pil_d1_n1_4_1_3_3 + -1'pil_d1_n1_4_2_1_1 + -1'pil_d1_n1_4_2_1_2 + -1'pil_d1_n1_4_2_1_3 + -1'pil_d1_n1_4_2_2_1 + -1'pil_d1_n1_4_2_2_2 + -1'pil_d1_n1_4_2_2_3 + -1'pil_d1_n1_4_2_3_1 + -1'pil_d1_n1_4_2_3_2 + -1'pil_d1_n1_4_2_3_3 + -1'pil_d1_n1_4_3_1_1 + -1'pil_d1_n1_4_3_1_2 + -1'pil_d1_n1_4_3_1_3 + -1'pil_d1_n1_4_3_2_1 + -1'pil_d1_n1_4_3_2_2 + -1'pil_d1_n1_4_3_2_3 + -1'pil_d1_n1_4_3_3_1 + -1'pil_d1_n1_4_3_3_2 + -1'pil_d1_n1_4_3_3_3 + -1'pil_d2_n1_1_1_1_1 + -1'pil_d2_n1_1_1_1_2 + -1'pil_d2_n1_1_1_1_3 + -1'pil_d2_n1_1_1_2_1 + -1'pil_d2_n1_1_1_2_2 + -1'pil_d2_n1_1_1_2_3 + -1'pil_d2_n1_1_1_3_1 + -1'pil_d2_n1_1_1_3_2 + -1'pil_d2_n1_1_1_3_3 + -1'pil_d2_n1_1_2_1_1 + -1'pil_d2_n1_1_2_1_2 + -1'pil_d2_n1_1_2_1_3 + -1'pil_d2_n1_1_2_2_1 + -1'pil_d2_n1_1_2_2_2 + -1'pil_d2_n1_1_2_2_3 + -1'pil_d2_n1_1_2_3_1 + -1'pil_d2_n1_1_2_3_2 + -1'pil_d2_n1_1_2_3_3 + -1'pil_d2_n1_1_3_1_1 + -1'pil_d2_n1_1_3_1_2 + -1'pil_d2_n1_1_3_1_3 + -1'pil_d2_n1_1_3_2_1 + -1'pil_d2_n1_1_3_2_2 + -1'pil_d2_n1_1_3_2_3 + -1'pil_d2_n1_1_3_3_1 + -1'pil_d2_n1_1_3_3_2 + -1'pil_d2_n1_1_3_3_3 + -1'pil_d2_n1_1_4_1_1 + -1'pil_d2_n1_1_4_1_2 + -1'pil_d2_n1_1_4_1_3 + -1'pil_d2_n1_1_4_2_1 + -1'pil_d2_n1_1_4_2_2 + -1'pil_d2_n1_1_4_2_3 + -1'pil_d2_n1_1_4_3_1 + -1'pil_d2_n1_1_4_3_2 + -1'pil_d2_n1_1_4_3_3 + -1'pil_d2_n1_2_1_1_1 + -1'pil_d2_n1_2_1_1_2 + -1'pil_d2_n1_2_1_1_3 + -1'pil_d2_n1_2_1_2_1 + -1'pil_d2_n1_2_1_2_2 + -1'pil_d2_n1_2_1_2_3 + -1'pil_d2_n1_2_1_3_1 + -1'pil_d2_n1_2_1_3_2 + -1'pil_d2_n1_2_1_3_3 + -1'pil_d2_n1_2_2_1_1 + -1'pil_d2_n1_2_2_1_2 + -1'pil_d2_n1_2_2_1_3 + -1'pil_d2_n1_2_2_2_1 + -1'pil_d2_n1_2_2_2_2 + -1'pil_d2_n1_2_2_2_3 + -1'pil_d2_n1_2_2_3_1 + -1'pil_d2_n1_2_2_3_2 + -1'pil_d2_n1_2_2_3_3 + -1'pil_d2_n1_2_3_1_1 + -1'pil_d2_n1_2_3_1_2 + -1'pil_d2_n1_2_3_1_3 + -1'pil_d2_n1_2_3_2_1 + -1'pil_d2_n1_2_3_2_2 + -1'pil_d2_n1_2_3_2_3 + -1'pil_d2_n1_2_3_3_1 + -1'pil_d2_n1_2_3_3_2 + -1'pil_d2_n1_2_3_3_3 + -1'pil_d2_n1_2_4_1_1 + -1'pil_d2_n1_2_4_1_2 + -1'pil_d2_n1_2_4_1_3 + -1'pil_d2_n1_2_4_2_1 + -1'pil_d2_n1_2_4_2_2 + -1'pil_d2_n1_2_4_2_3 + -1'pil_d2_n1_2_4_3_1 + -1'pil_d2_n1_2_4_3_2 + -1'pil_d2_n1_2_4_3_3 + -1'pil_d2_n1_3_1_1_1 + -1'pil_d2_n1_3_1_1_2 + -1'pil_d2_n1_3_1_1_3 + -1'pil_d2_n1_3_1_2_1 + -1'pil_d2_n1_3_1_2_2 + -1'pil_d2_n1_3_1_2_3 + -1'pil_d2_n1_3_1_3_1 + -1'pil_d2_n1_3_1_3_2 + -1'pil_d2_n1_3_1_3_3 + -1'pil_d2_n1_3_2_1_1 + -1'pil_d2_n1_3_2_1_2 + -1'pil_d2_n1_3_2_1_3 + -1'pil_d2_n1_3_2_2_1 + -1'pil_d2_n1_3_2_2_2 + -1'pil_d2_n1_3_2_2_3 + -1'pil_d2_n1_3_2_3_1 + -1'pil_d2_n1_3_2_3_2 + -1'pil_d2_n1_3_2_3_3 + -1'pil_d2_n1_3_3_1_1 + -1'pil_d2_n1_3_3_1_2 + -1'pil_d2_n1_3_3_1_3 + -1'pil_d2_n1_3_3_2_1 + -1'pil_d2_n1_3_3_2_2 + -1'pil_d2_n1_3_3_2_3 + -1'pil_d2_n1_3_3_3_1 + -1'pil_d2_n1_3_3_3_2 + -1'pil_d2_n1_3_3_3_3 + -1'pil_d2_n1_3_4_1_1 + -1'pil_d2_n1_3_4_1_2 + -1'pil_d2_n1_3_4_1_3 + -1'pil_d2_n1_3_4_2_1 + -1'pil_d2_n1_3_4_2_2 + -1'pil_d2_n1_3_4_2_3 + -1'pil_d2_n1_3_4_3_1 + -1'pil_d2_n1_3_4_3_2 + -1'pil_d2_n1_3_4_3_3 + -1'pil_d3_n1_1_1_1_1 + -1'pil_d3_n1_1_1_1_2 + -1'pil_d3_n1_1_1_1_3 + -1'pil_d3_n1_1_1_2_1 + -1'pil_d3_n1_1_1_2_2 + -1'pil_d3_n1_1_1_2_3 + -1'pil_d3_n1_1_1_3_1 + -1'pil_d3_n1_1_1_3_2 + -1'pil_d3_n1_1_1_3_3 + -1'pil_d3_n1_1_1_4_1 + -1'pil_d3_n1_1_1_4_2 + -1'pil_d3_n1_1_1_4_3 + -1'pil_d3_n1_1_2_1_1 + -1'pil_d3_n1_1_2_1_2 + -1'pil_d3_n1_1_2_1_3 + -1'pil_d3_n1_1_2_2_1 + -1'pil_d3_n1_1_2_2_2 + -1'pil_d3_n1_1_2_2_3 + -1'pil_d3_n1_1_2_3_1 + -1'pil_d3_n1_1_2_3_2 + -1'pil_d3_n1_1_2_3_3 + -1'pil_d3_n1_1_2_4_1 + -1'pil_d3_n1_1_2_4_2 + -1'pil_d3_n1_1_2_4_3 + -1'pil_d3_n1_1_3_1_1 + -1'pil_d3_n1_1_3_1_2 + -1'pil_d3_n1_1_3_1_3 + -1'pil_d3_n1_1_3_2_1 + -1'pil_d3_n1_1_3_2_2 + -1'pil_d3_n1_1_3_2_3 + -1'pil_d3_n1_1_3_3_1 + -1'pil_d3_n1_1_3_3_2 + -1'pil_d3_n1_1_3_3_3 + -1'pil_d3_n1_1_3_4_1 + -1'pil_d3_n1_1_3_4_2 + -1'pil_d3_n1_1_3_4_3 + -1'pil_d3_n1_2_1_1_1 + -1'pil_d3_n1_2_1_1_2 + -1'pil_d3_n1_2_1_1_3 + -1'pil_d3_n1_2_1_2_1 + -1'pil_d3_n1_2_1_2_2 + -1'pil_d3_n1_2_1_2_3 + -1'pil_d3_n1_2_1_3_1 + -1'pil_d3_n1_2_1_3_2 + -1'pil_d3_n1_2_1_3_3 + -1'pil_d3_n1_2_1_4_1 + -1'pil_d3_n1_2_1_4_2 + -1'pil_d3_n1_2_1_4_3 + -1'pil_d3_n1_2_2_1_1 + -1'pil_d3_n1_2_2_1_2 + -1'pil_d3_n1_2_2_1_3 + -1'pil_d3_n1_2_2_2_1 + -1'pil_d3_n1_2_2_2_2 + -1'pil_d3_n1_2_2_2_3 + -1'pil_d3_n1_2_2_3_1 + -1'pil_d3_n1_2_2_3_2 + -1'pil_d3_n1_2_2_3_3 + -1'pil_d3_n1_2_2_4_1 + -1'pil_d3_n1_2_2_4_2 + -1'pil_d3_n1_2_2_4_3 + -1'pil_d3_n1_2_3_1_1 + -1'pil_d3_n1_2_3_1_2 + -1'pil_d3_n1_2_3_1_3 + -1'pil_d3_n1_2_3_2_1 + -1'pil_d3_n1_2_3_2_2 + -1'pil_d3_n1_2_3_2_3 + -1'pil_d3_n1_2_3_3_1 + -1'pil_d3_n1_2_3_3_2 + -1'pil_d3_n1_2_3_3_3 + -1'pil_d3_n1_2_3_4_1 + -1'pil_d3_n1_2_3_4_2 + -1'pil_d3_n1_2_3_4_3 + -1'pil_d3_n1_3_1_1_1 + -1'pil_d3_n1_3_1_1_2 + -1'pil_d3_n1_3_1_1_3 + -1'pil_d3_n1_3_1_2_1 + -1'pil_d3_n1_3_1_2_2 + -1'pil_d3_n1_3_1_2_3 + -1'pil_d3_n1_3_1_3_1 + -1'pil_d3_n1_3_1_3_2 + -1'pil_d3_n1_3_1_3_3 + -1'pil_d3_n1_3_1_4_1 + -1'pil_d3_n1_3_1_4_2 + -1'pil_d3_n1_3_1_4_3 + -1'pil_d3_n1_3_2_1_1 + -1'pil_d3_n1_3_2_1_2 + -1'pil_d3_n1_3_2_1_3 + -1'pil_d3_n1_3_2_2_1 + -1'pil_d3_n1_3_2_2_2 + -1'pil_d3_n1_3_2_2_3 + -1'pil_d3_n1_3_2_3_1 + -1'pil_d3_n1_3_2_3_2 + -1'pil_d3_n1_3_2_3_3 + -1'pil_d3_n1_3_2_4_1 + -1'pil_d3_n1_3_2_4_2 + -1'pil_d3_n1_3_2_4_3 + -1'pil_d3_n1_3_3_1_1 + -1'pil_d3_n1_3_3_1_2 + -1'pil_d3_n1_3_3_1_3 + -1'pil_d3_n1_3_3_2_1 + -1'pil_d3_n1_3_3_2_2 + -1'pil_d3_n1_3_3_2_3 + -1'pil_d3_n1_3_3_3_1 + -1'pil_d3_n1_3_3_3_2 + -1'pil_d3_n1_3_3_3_3 + -1'pil_d3_n1_3_3_4_1 + -1'pil_d3_n1_3_3_4_2 + -1'pil_d3_n1_3_3_4_3 + -1'pil_d4_n1_1_1_1_1 + -1'pil_d4_n1_1_1_1_2 + -1'pil_d4_n1_1_1_1_3 + -1'pil_d4_n1_1_1_1_4 + -1'pil_d4_n1_1_1_2_1 + -1'pil_d4_n1_1_1_2_2 + -1'pil_d4_n1_1_1_2_3 + -1'pil_d4_n1_1_1_2_4 + -1'pil_d4_n1_1_1_3_1 + -1'pil_d4_n1_1_1_3_2 + -1'pil_d4_n1_1_1_3_3 + -1'pil_d4_n1_1_1_3_4 + -1'pil_d4_n1_1_2_1_1 + -1'pil_d4_n1_1_2_1_2 + -1'pil_d4_n1_1_2_1_3 + -1'pil_d4_n1_1_2_1_4 + -1'pil_d4_n1_1_2_2_1 + -1'pil_d4_n1_1_2_2_2 + -1'pil_d4_n1_1_2_2_3 + -1'pil_d4_n1_1_2_2_4 + -1'pil_d4_n1_1_2_3_1 + -1'pil_d4_n1_1_2_3_2 + -1'pil_d4_n1_1_2_3_3 + -1'pil_d4_n1_1_2_3_4 + -1'pil_d4_n1_1_3_1_1 + -1'pil_d4_n1_1_3_1_2 + -1'pil_d4_n1_1_3_1_3 + -1'pil_d4_n1_1_3_1_4 + -1'pil_d4_n1_1_3_2_1 + -1'pil_d4_n1_1_3_2_2 + -1'pil_d4_n1_1_3_2_3 + -1'pil_d4_n1_1_3_2_4 + -1'pil_d4_n1_1_3_3_1 + -1'pil_d4_n1_1_3_3_2 + -1'pil_d4_n1_1_3_3_3 + -1'pil_d4_n1_1_3_3_4 + -1'pil_d4_n1_2_1_1_1 + -1'pil_d4_n1_2_1_1_2 + -1'pil_d4_n1_2_1_1_3 + -1'pil_d4_n1_2_1_1_4 + -1'pil_d4_n1_2_1_2_1 + -1'pil_d4_n1_2_1_2_2 + -1'pil_d4_n1_2_1_2_3 + -1'pil_d4_n1_2_1_2_4 + -1'pil_d4_n1_2_1_3_1 + -1'pil_d4_n1_2_1_3_2 + -1'pil_d4_n1_2_1_3_3 + -1'pil_d4_n1_2_1_3_4 + -1'pil_d4_n1_2_2_1_1 + -1'pil_d4_n1_2_2_1_2 + -1'pil_d4_n1_2_2_1_3 + -1'pil_d4_n1_2_2_1_4 + -1'pil_d4_n1_2_2_2_1 + -1'pil_d4_n1_2_2_2_2 + -1'pil_d4_n1_2_2_2_3 + -1'pil_d4_n1_2_2_2_4 + -1'pil_d4_n1_2_2_3_1 + -1'pil_d4_n1_2_2_3_2 + -1'pil_d4_n1_2_2_3_3 + -1'pil_d4_n1_2_2_3_4 + -1'pil_d4_n1_2_3_1_1 + -1'pil_d4_n1_2_3_1_2 + -1'pil_d4_n1_2_3_1_3 + -1'pil_d4_n1_2_3_1_4 + -1'pil_d4_n1_2_3_2_1 + -1'pil_d4_n1_2_3_2_2 + -1'pil_d4_n1_2_3_2_3 + -1'pil_d4_n1_2_3_2_4 + -1'pil_d4_n1_2_3_3_1 + -1'pil_d4_n1_2_3_3_2 + -1'pil_d4_n1_2_3_3_3 + -1'pil_d4_n1_2_3_3_4 + -1'pil_d4_n1_3_1_1_1 + -1'pil_d4_n1_3_1_1_2 + -1'pil_d4_n1_3_1_1_3 + -1'pil_d4_n1_3_1_1_4 + -1'pil_d4_n1_3_1_2_1 + -1'pil_d4_n1_3_1_2_2 + -1'pil_d4_n1_3_1_2_3 + -1'pil_d4_n1_3_1_2_4 + -1'pil_d4_n1_3_1_3_1 + -1'pil_d4_n1_3_1_3_2 + -1'pil_d4_n1_3_1_3_3 + -1'pil_d4_n1_3_1_3_4 + -1'pil_d4_n1_3_2_1_1 + -1'pil_d4_n1_3_2_1_2 + -1'pil_d4_n1_3_2_1_3 + -1'pil_d4_n1_3_2_1_4 + -1'pil_d4_n1_3_2_2_1 + -1'pil_d4_n1_3_2_2_2 + -1'pil_d4_n1_3_2_2_3 + -1'pil_d4_n1_3_2_2_4 + -1'pil_d4_n1_3_2_3_1 + -1'pil_d4_n1_3_2_3_2 + -1'pil_d4_n1_3_2_3_3 + -1'pil_d4_n1_3_2_3_4 + -1'pil_d4_n1_3_3_1_1 + -1'pil_d4_n1_3_3_1_2 + -1'pil_d4_n1_3_3_1_3 + -1'pil_d4_n1_3_3_1_4 + -1'pil_d4_n1_3_3_2_1 + -1'pil_d4_n1_3_3_2_2 + -1'pil_d4_n1_3_3_2_3 + -1'pil_d4_n1_3_3_2_4 + -1'pil_d4_n1_3_3_3_1 + -1'pil_d4_n1_3_3_3_2 + -1'pil_d4_n1_3_3_3_3 + -1'pil_d4_n1_3_3_3_4 + -1'pol_d1_n1_1_1_1_1 + -1'pol_d1_n1_1_1_1_2 + -1'pol_d1_n1_1_1_1_3 + -1'pol_d1_n1_1_1_2_1 + -1'pol_d1_n1_1_1_2_2 + -1'pol_d1_n1_1_1_2_3 + -1'pol_d1_n1_1_1_3_1 + -1'pol_d1_n1_1_1_3_2 + -1'pol_d1_n1_1_1_3_3 + -1'pol_d1_n1_1_2_1_1 + -1'pol_d1_n1_1_2_1_2 + -1'pol_d1_n1_1_2_1_3 + -1'pol_d1_n1_1_2_2_1 + -1'pol_d1_n1_1_2_2_2 + -1'pol_d1_n1_1_2_2_3 + -1'pol_d1_n1_1_2_3_1 + -1'pol_d1_n1_1_2_3_2 + -1'pol_d1_n1_1_2_3_3 + -1'pol_d1_n1_1_3_1_1 + -1'pol_d1_n1_1_3_1_2 + -1'pol_d1_n1_1_3_1_3 + -1'pol_d1_n1_1_3_2_1 + -1'pol_d1_n1_1_3_2_2 + -1'pol_d1_n1_1_3_2_3 + -1'pol_d1_n1_1_3_3_1 + -1'pol_d1_n1_1_3_3_2 + -1'pol_d1_n1_1_3_3_3 + -1'pol_d1_n1_2_1_1_1 + -1'pol_d1_n1_2_1_1_2 + -1'pol_d1_n1_2_1_1_3 + -1'pol_d1_n1_2_1_2_1 + -1'pol_d1_n1_2_1_2_2 + -1'pol_d1_n1_2_1_2_3 + -1'pol_d1_n1_2_1_3_1 + -1'pol_d1_n1_2_1_3_2 + -1'pol_d1_n1_2_1_3_3 + -1'pol_d1_n1_2_2_1_1 + -1'pol_d1_n1_2_2_1_2 + -1'pol_d1_n1_2_2_1_3 + -1'pol_d1_n1_2_2_2_1 + -1'pol_d1_n1_2_2_2_2 + -1'pol_d1_n1_2_2_2_3 + -1'pol_d1_n1_2_2_3_1 + -1'pol_d1_n1_2_2_3_2 + -1'pol_d1_n1_2_2_3_3 + -1'pol_d1_n1_2_3_1_1 + -1'pol_d1_n1_2_3_1_2 + -1'pol_d1_n1_2_3_1_3 + -1'pol_d1_n1_2_3_2_1 + -1'pol_d1_n1_2_3_2_2 + -1'pol_d1_n1_2_3_2_3 + -1'pol_d1_n1_2_3_3_1 + -1'pol_d1_n1_2_3_3_2 + -1'pol_d1_n1_2_3_3_3 + -1'pol_d1_n1_3_1_1_1 + -1'pol_d1_n1_3_1_1_2 + -1'pol_d1_n1_3_1_1_3 + -1'pol_d1_n1_3_1_2_1 + -1'pol_d1_n1_3_1_2_2 + -1'pol_d1_n1_3_1_2_3 + -1'pol_d1_n1_3_1_3_1 + -1'pol_d1_n1_3_1_3_2 + -1'pol_d1_n1_3_1_3_3 + -1'pol_d1_n1_3_2_1_1 + -1'pol_d1_n1_3_2_1_2 + -1'pol_d1_n1_3_2_1_3 + -1'pol_d1_n1_3_2_2_1 + -1'pol_d1_n1_3_2_2_2 + -1'pol_d1_n1_3_2_2_3 + -1'pol_d1_n1_3_2_3_1 + -1'pol_d1_n1_3_2_3_2 + -1'pol_d1_n1_3_2_3_3 + -1'pol_d1_n1_3_3_1_1 + -1'pol_d1_n1_3_3_1_2 + -1'pol_d1_n1_3_3_1_3 + -1'pol_d1_n1_3_3_2_1 + -1'pol_d1_n1_3_3_2_2 + -1'pol_d1_n1_3_3_2_3 + -1'pol_d1_n1_3_3_3_1 + -1'pol_d1_n1_3_3_3_2 + -1'pol_d1_n1_3_3_3_3 + -1'pol_d1_n1_4_1_1_1 + -1'pol_d1_n1_4_1_1_2 + -1'pol_d1_n1_4_1_1_3 + -1'pol_d1_n1_4_1_2_1 + -1'pol_d1_n1_4_1_2_2 + -1'pol_d1_n1_4_1_2_3 + -1'pol_d1_n1_4_1_3_1 + -1'pol_d1_n1_4_1_3_2 + -1'pol_d1_n1_4_1_3_3 + -1'pol_d1_n1_4_2_1_1 + -1'pol_d1_n1_4_2_1_2 + -1'pol_d1_n1_4_2_1_3 + -1'pol_d1_n1_4_2_2_1 + -1'pol_d1_n1_4_2_2_2 + -1'pol_d1_n1_4_2_2_3 + -1'pol_d1_n1_4_2_3_1 + -1'pol_d1_n1_4_2_3_2 + -1'pol_d1_n1_4_2_3_3 + -1'pol_d1_n1_4_3_1_1 + -1'pol_d1_n1_4_3_1_2 + -1'pol_d1_n1_4_3_1_3 + -1'pol_d1_n1_4_3_2_1 + -1'pol_d1_n1_4_3_2_2 + -1'pol_d1_n1_4_3_2_3 + -1'pol_d1_n1_4_3_3_1 + -1'pol_d1_n1_4_3_3_2 + -1'pol_d1_n1_4_3_3_3 + -1'pol_d2_n1_1_1_1_1 + -1'pol_d2_n1_1_1_1_2 + -1'pol_d2_n1_1_1_1_3 + -1'pol_d2_n1_1_1_2_1 + -1'pol_d2_n1_1_1_2_2 + -1'pol_d2_n1_1_1_2_3 + -1'pol_d2_n1_1_1_3_1 + -1'pol_d2_n1_1_1_3_2 + -1'pol_d2_n1_1_1_3_3 + -1'pol_d2_n1_1_2_1_1 + -1'pol_d2_n1_1_2_1_2 + -1'pol_d2_n1_1_2_1_3 + -1'pol_d2_n1_1_2_2_1 + -1'pol_d2_n1_1_2_2_2 + -1'pol_d2_n1_1_2_2_3 + -1'pol_d2_n1_1_2_3_1 + -1'pol_d2_n1_1_2_3_2 + -1'pol_d2_n1_1_2_3_3 + -1'pol_d2_n1_1_3_1_1 + -1'pol_d2_n1_1_3_1_2 + -1'pol_d2_n1_1_3_1_3 + -1'pol_d2_n1_1_3_2_1 + -1'pol_d2_n1_1_3_2_2 + -1'pol_d2_n1_1_3_2_3 + -1'pol_d2_n1_1_3_3_1 + -1'pol_d2_n1_1_3_3_2 + -1'pol_d2_n1_1_3_3_3 + -1'pol_d2_n1_1_4_1_1 + -1'pol_d2_n1_1_4_1_2 + -1'pol_d2_n1_1_4_1_3 + -1'pol_d2_n1_1_4_2_1 + -1'pol_d2_n1_1_4_2_2 + -1'pol_d2_n1_1_4_2_3 + -1'pol_d2_n1_1_4_3_1 + -1'pol_d2_n1_1_4_3_2 + -1'pol_d2_n1_1_4_3_3 + -1'pol_d2_n1_2_1_1_1 + -1'pol_d2_n1_2_1_1_2 + -1'pol_d2_n1_2_1_1_3 + -1'pol_d2_n1_2_1_2_1 + -1'pol_d2_n1_2_1_2_2 + -1'pol_d2_n1_2_1_2_3 + -1'pol_d2_n1_2_1_3_1 + -1'pol_d2_n1_2_1_3_2 + -1'pol_d2_n1_2_1_3_3 + -1'pol_d2_n1_2_2_1_1 + -1'pol_d2_n1_2_2_1_2 + -1'pol_d2_n1_2_2_1_3 + -1'pol_d2_n1_2_2_2_1 + -1'pol_d2_n1_2_2_2_2 + -1'pol_d2_n1_2_2_2_3 + -1'pol_d2_n1_2_2_3_1 + -1'pol_d2_n1_2_2_3_2 + -1'pol_d2_n1_2_2_3_3 + -1'pol_d2_n1_2_3_1_1 + -1'pol_d2_n1_2_3_1_2 + -1'pol_d2_n1_2_3_1_3 + -1'pol_d2_n1_2_3_2_1 + -1'pol_d2_n1_2_3_2_2 + -1'pol_d2_n1_2_3_2_3 + -1'pol_d2_n1_2_3_3_1 + -1'pol_d2_n1_2_3_3_2 + -1'pol_d2_n1_2_3_3_3 + -1'pol_d2_n1_2_4_1_1 + -1'pol_d2_n1_2_4_1_2 + -1'pol_d2_n1_2_4_1_3 + -1'pol_d2_n1_2_4_2_1 + -1'pol_d2_n1_2_4_2_2 + -1'pol_d2_n1_2_4_2_3 + -1'pol_d2_n1_2_4_3_1 + -1'pol_d2_n1_2_4_3_2 + -1'pol_d2_n1_2_4_3_3 + -1'pol_d2_n1_3_1_1_1 + -1'pol_d2_n1_3_1_1_2 + -1'pol_d2_n1_3_1_1_3 + -1'pol_d2_n1_3_1_2_1 + -1'pol_d2_n1_3_1_2_2 + -1'pol_d2_n1_3_1_2_3 + -1'pol_d2_n1_3_1_3_1 + -1'pol_d2_n1_3_1_3_2 + -1'pol_d2_n1_3_1_3_3 + -1'pol_d2_n1_3_2_1_1 + -1'pol_d2_n1_3_2_1_2 + -1'pol_d2_n1_3_2_1_3 + -1'pol_d2_n1_3_2_2_1 + -1'pol_d2_n1_3_2_2_2 + -1'pol_d2_n1_3_2_2_3 + -1'pol_d2_n1_3_2_3_1 + -1'pol_d2_n1_3_2_3_2 + -1'pol_d2_n1_3_2_3_3 + -1'pol_d2_n1_3_3_1_1 + -1'pol_d2_n1_3_3_1_2 + -1'pol_d2_n1_3_3_1_3 + -1'pol_d2_n1_3_3_2_1 + -1'pol_d2_n1_3_3_2_2 + -1'pol_d2_n1_3_3_2_3 + -1'pol_d2_n1_3_3_3_1 + -1'pol_d2_n1_3_3_3_2 + -1'pol_d2_n1_3_3_3_3 + -1'pol_d2_n1_3_4_1_1 + -1'pol_d2_n1_3_4_1_2 + -1'pol_d2_n1_3_4_1_3 + -1'pol_d2_n1_3_4_2_1 + -1'pol_d2_n1_3_4_2_2 + -1'pol_d2_n1_3_4_2_3 + -1'pol_d2_n1_3_4_3_1 + -1'pol_d2_n1_3_4_3_2 + -1'pol_d2_n1_3_4_3_3 + -1'pol_d3_n1_1_1_1_1 + -1'pol_d3_n1_1_1_1_2 + -1'pol_d3_n1_1_1_1_3 + -1'pol_d3_n1_1_1_2_1 + -1'pol_d3_n1_1_1_2_2 + -1'pol_d3_n1_1_1_2_3 + -1'pol_d3_n1_1_1_3_1 + -1'pol_d3_n1_1_1_3_2 + -1'pol_d3_n1_1_1_3_3 + -1'pol_d3_n1_1_1_4_1 + -1'pol_d3_n1_1_1_4_2 + -1'pol_d3_n1_1_1_4_3 + -1'pol_d3_n1_1_2_1_1 + -1'pol_d3_n1_1_2_1_2 + -1'pol_d3_n1_1_2_1_3 + -1'pol_d3_n1_1_2_2_1 + -1'pol_d3_n1_1_2_2_2 + -1'pol_d3_n1_1_2_2_3 + -1'pol_d3_n1_1_2_3_1 + -1'pol_d3_n1_1_2_3_2 + -1'pol_d3_n1_1_2_3_3 + -1'pol_d3_n1_1_2_4_1 + -1'pol_d3_n1_1_2_4_2 + -1'pol_d3_n1_1_2_4_3 + -1'pol_d3_n1_1_3_1_1 + -1'pol_d3_n1_1_3_1_2 + -1'pol_d3_n1_1_3_1_3 + -1'pol_d3_n1_1_3_2_1 + -1'pol_d3_n1_1_3_2_2 + -1'pol_d3_n1_1_3_2_3 + -1'pol_d3_n1_1_3_3_1 + -1'pol_d3_n1_1_3_3_2 + -1'pol_d3_n1_1_3_3_3 + -1'pol_d3_n1_1_3_4_1 + -1'pol_d3_n1_1_3_4_2 + -1'pol_d3_n1_1_3_4_3 + -1'pol_d3_n1_2_1_1_1 + -1'pol_d3_n1_2_1_1_2 + -1'pol_d3_n1_2_1_1_3 + -1'pol_d3_n1_2_1_2_1 + -1'pol_d3_n1_2_1_2_2 + -1'pol_d3_n1_2_1_2_3 + -1'pol_d3_n1_2_1_3_1 + -1'pol_d3_n1_2_1_3_2 + -1'pol_d3_n1_2_1_3_3 + -1'pol_d3_n1_2_1_4_1 + -1'pol_d3_n1_2_1_4_2 + -1'pol_d3_n1_2_1_4_3 + -1'pol_d3_n1_2_2_1_1 + -1'pol_d3_n1_2_2_1_2 + -1'pol_d3_n1_2_2_1_3 + -1'pol_d3_n1_2_2_2_1 + -1'pol_d3_n1_2_2_2_2 + -1'pol_d3_n1_2_2_2_3 + -1'pol_d3_n1_2_2_3_1 + -1'pol_d3_n1_2_2_3_2 + -1'pol_d3_n1_2_2_3_3 + -1'pol_d3_n1_2_2_4_1 + -1'pol_d3_n1_2_2_4_2 + -1'pol_d3_n1_2_2_4_3 + -1'pol_d3_n1_2_3_1_1 + -1'pol_d3_n1_2_3_1_2 + -1'pol_d3_n1_2_3_1_3 + -1'pol_d3_n1_2_3_2_1 + -1'pol_d3_n1_2_3_2_2 + -1'pol_d3_n1_2_3_2_3 + -1'pol_d3_n1_2_3_3_1 + -1'pol_d3_n1_2_3_3_2 + -1'pol_d3_n1_2_3_3_3 + -1'pol_d3_n1_2_3_4_1 + -1'pol_d3_n1_2_3_4_2 + -1'pol_d3_n1_2_3_4_3 + -1'pol_d3_n1_3_1_1_1 + -1'pol_d3_n1_3_1_1_2 + -1'pol_d3_n1_3_1_1_3 + -1'pol_d3_n1_3_1_2_1 + -1'pol_d3_n1_3_1_2_2 + -1'pol_d3_n1_3_1_2_3 + -1'pol_d3_n1_3_1_3_1 + -1'pol_d3_n1_3_1_3_2 + -1'pol_d3_n1_3_1_3_3 + -1'pol_d3_n1_3_1_4_1 + -1'pol_d3_n1_3_1_4_2 + -1'pol_d3_n1_3_1_4_3 + -1'pol_d3_n1_3_2_1_1 + -1'pol_d3_n1_3_2_1_2 + -1'pol_d3_n1_3_2_1_3 + -1'pol_d3_n1_3_2_2_1 + -1'pol_d3_n1_3_2_2_2 + -1'pol_d3_n1_3_2_2_3 + -1'pol_d3_n1_3_2_3_1 + -1'pol_d3_n1_3_2_3_2 + -1'pol_d3_n1_3_2_3_3 + -1'pol_d3_n1_3_2_4_1 + -1'pol_d3_n1_3_2_4_2 + -1'pol_d3_n1_3_2_4_3 + -1'pol_d3_n1_3_3_1_1 + -1'pol_d3_n1_3_3_1_2 + -1'pol_d3_n1_3_3_1_3 + -1'pol_d3_n1_3_3_2_1 + -1'pol_d3_n1_3_3_2_2 + -1'pol_d3_n1_3_3_2_3 + -1'pol_d3_n1_3_3_3_1 + -1'pol_d3_n1_3_3_3_2 + -1'pol_d3_n1_3_3_3_3 + -1'pol_d3_n1_3_3_4_1 + -1'pol_d3_n1_3_3_4_2 + -1'pol_d3_n1_3_3_4_3 + -1'pol_d4_n1_1_1_1_1 + -1'pol_d4_n1_1_1_1_2 + -1'pol_d4_n1_1_1_1_3 + -1'pol_d4_n1_1_1_1_4 + -1'pol_d4_n1_1_1_2_1 + -1'pol_d4_n1_1_1_2_2 + -1'pol_d4_n1_1_1_2_3 + -1'pol_d4_n1_1_1_2_4 + -1'pol_d4_n1_1_1_3_1 + -1'pol_d4_n1_1_1_3_2 + -1'pol_d4_n1_1_1_3_3 + -1'pol_d4_n1_1_1_3_4 + -1'pol_d4_n1_1_2_1_1 + -1'pol_d4_n1_1_2_1_2 + -1'pol_d4_n1_1_2_1_3 + -1'pol_d4_n1_1_2_1_4 + -1'pol_d4_n1_1_2_2_1 + -1'pol_d4_n1_1_2_2_2 + -1'pol_d4_n1_1_2_2_3 + -1'pol_d4_n1_1_2_2_4 + -1'pol_d4_n1_1_2_3_1 + -1'pol_d4_n1_1_2_3_2 + -1'pol_d4_n1_1_2_3_3 + -1'pol_d4_n1_1_2_3_4 + -1'pol_d4_n1_1_3_1_1 + -1'pol_d4_n1_1_3_1_2 + -1'pol_d4_n1_1_3_1_3 + -1'pol_d4_n1_1_3_1_4 + -1'pol_d4_n1_1_3_2_1 + -1'pol_d4_n1_1_3_2_2 + -1'pol_d4_n1_1_3_2_3 + -1'pol_d4_n1_1_3_2_4 + -1'pol_d4_n1_1_3_3_1 + -1'pol_d4_n1_1_3_3_2 + -1'pol_d4_n1_1_3_3_3 + -1'pol_d4_n1_1_3_3_4 + -1'pol_d4_n1_2_1_1_1 + -1'pol_d4_n1_2_1_1_2 + -1'pol_d4_n1_2_1_1_3 + -1'pol_d4_n1_2_1_1_4 + -1'pol_d4_n1_2_1_2_1 + -1'pol_d4_n1_2_1_2_2 + -1'pol_d4_n1_2_1_2_3 + -1'pol_d4_n1_2_1_2_4 + -1'pol_d4_n1_2_1_3_1 + -1'pol_d4_n1_2_1_3_2 + -1'pol_d4_n1_2_1_3_3 + -1'pol_d4_n1_2_1_3_4 + -1'pol_d4_n1_2_2_1_1 + -1'pol_d4_n1_2_2_1_2 + -1'pol_d4_n1_2_2_1_3 + -1'pol_d4_n1_2_2_1_4 + -1'pol_d4_n1_2_2_2_1 + -1'pol_d4_n1_2_2_2_2 + -1'pol_d4_n1_2_2_2_3 + -1'pol_d4_n1_2_2_2_4 + -1'pol_d4_n1_2_2_3_1 + -1'pol_d4_n1_2_2_3_2 + -1'pol_d4_n1_2_2_3_3 + -1'pol_d4_n1_2_2_3_4 + -1'pol_d4_n1_2_3_1_1 + -1'pol_d4_n1_2_3_1_2 + -1'pol_d4_n1_2_3_1_3 + -1'pol_d4_n1_2_3_1_4 + -1'pol_d4_n1_2_3_2_1 + -1'pol_d4_n1_2_3_2_2 + -1'pol_d4_n1_2_3_2_3 + -1'pol_d4_n1_2_3_2_4 + -1'pol_d4_n1_2_3_3_1 + -1'pol_d4_n1_2_3_3_2 + -1'pol_d4_n1_2_3_3_3 + -1'pol_d4_n1_2_3_3_4 + -1'pol_d4_n1_3_1_1_1 + -1'pol_d4_n1_3_1_1_2 + -1'pol_d4_n1_3_1_1_3 + -1'pol_d4_n1_3_1_1_4 + -1'pol_d4_n1_3_1_2_1 + -1'pol_d4_n1_3_1_2_2 + -1'pol_d4_n1_3_1_2_3 + -1'pol_d4_n1_3_1_2_4 + -1'pol_d4_n1_3_1_3_1 + -1'pol_d4_n1_3_1_3_2 + -1'pol_d4_n1_3_1_3_3 + -1'pol_d4_n1_3_1_3_4 + -1'pol_d4_n1_3_2_1_1 + -1'pol_d4_n1_3_2_1_2 + -1'pol_d4_n1_3_2_1_3 + -1'pol_d4_n1_3_2_1_4 + -1'pol_d4_n1_3_2_2_1 + -1'pol_d4_n1_3_2_2_2 + -1'pol_d4_n1_3_2_2_3 + -1'pol_d4_n1_3_2_2_4 + -1'pol_d4_n1_3_2_3_1 + -1'pol_d4_n1_3_2_3_2 + -1'pol_d4_n1_3_2_3_3 + -1'pol_d4_n1_3_2_3_4 + -1'pol_d4_n1_3_3_1_1 + -1'pol_d4_n1_3_3_1_2 + -1'pol_d4_n1_3_3_1_3 + -1'pol_d4_n1_3_3_1_4 + -1'pol_d4_n1_3_3_2_1 + -1'pol_d4_n1_3_3_2_2 + -1'pol_d4_n1_3_3_2_3 + -1'pol_d4_n1_3_3_2_4 + -1'pol_d4_n1_3_3_3_1 + -1'pol_d4_n1_3_3_3_2 + -1'pol_d4_n1_3_3_3_3 + -1'pol_d4_n1_3_3_3_4 = -1800
invariant :pi_d1_n1_2_3_1_2 + pil_d1_n1_2_3_1_2 = 1
invariant :po_d4_n1_3_3_3_1 + pol_d4_n1_3_3_3_1 = 1
invariant :po_d1_n1_2_3_3_3 + pol_d1_n1_2_3_3_3 = 1
invariant :po_d3_n1_1_2_3_3 + pol_d3_n1_1_2_3_3 = 1
invariant :pi_d1_n1_3_2_3_3 + pil_d1_n1_3_2_3_3 = 1
invariant :po_d4_n1_1_2_1_3 + pol_d4_n1_1_2_1_3 = 1
invariant :pi_d4_n1_2_3_2_1 + pil_d4_n1_2_3_2_1 = 1
invariant :po_d1_n1_1_2_2_1 + pol_d1_n1_1_2_2_1 = 1
invariant :po_d4_n1_1_2_3_3 + pol_d4_n1_1_2_3_3 = 1
invariant :pi_d2_n1_1_3_1_3 + pil_d2_n1_1_3_1_3 = 1
invariant :po_d3_n1_1_2_2_1 + pol_d3_n1_1_2_2_1 = 1
invariant :po_d1_n1_1_2_3_3 + pol_d1_n1_1_2_3_3 = 1
invariant :pi_d3_n1_3_1_2_2 + pil_d3_n1_3_1_2_2 = 1
invariant :po_d1_n1_1_1_1_1 + pol_d1_n1_1_1_1_1 = 1
invariant :pb_d1_n1_3_3_1_2 + pb_d1_n2_3_3_1_2 + pb_d2_n1_3_3_1_2 + pb_d2_n2_3_3_1_2 + pb_d3_n1_3_3_1_2 + pb_d3_n2_3_3_1_2 + pb_d4_n1_3_3_1_2 + pb_d4_n2_3_3_1_2 + pbl_3_3_1_2 = 36
invariant :pi_d3_n1_1_1_4_2 + pil_d3_n1_1_1_4_2 = 1
invariant :po_d2_n1_1_1_1_2 + pol_d2_n1_1_1_1_2 = 1
invariant :po_d4_n1_2_1_1_2 + pol_d4_n1_2_1_1_2 = 1
invariant :pi_d4_n1_3_2_3_3 + pil_d4_n1_3_2_3_3 = 1
invariant :pi_d1_n1_1_1_1_2 + pil_d1_n1_1_1_1_2 = 1
invariant :pi_d2_n1_3_4_1_3 + pil_d2_n1_3_4_1_3 = 1
invariant :pi_d1_n1_4_3_2_1 + pil_d1_n1_4_3_2_1 = 1
invariant :pi_d3_n1_1_1_2_3 + pil_d3_n1_1_1_2_3 = 1
invariant :po_d1_n1_2_1_2_3 + pol_d1_n1_2_1_2_3 = 1
invariant :po_d2_n1_3_1_1_2 + pol_d2_n1_3_1_1_2 = 1
invariant :pi_d4_n1_1_1_1_1 + pil_d4_n1_1_1_1_1 = 1
invariant :pi_d4_n1_1_3_3_1 + pil_d4_n1_1_3_3_1 = 1
invariant :po_d1_n1_1_2_3_1 + pol_d1_n1_1_2_3_1 = 1
invariant :po_d1_n1_3_2_1_1 + pol_d1_n1_3_2_1_1 = 1
invariant :po_d1_n1_2_3_1_2 + pol_d1_n1_2_3_1_2 = 1
invariant :po_d1_n1_3_1_3_3 + pol_d1_n1_3_1_3_3 = 1
invariant :po_d1_n1_2_2_2_2 + pol_d1_n1_2_2_2_2 = 1
invariant :po_d1_n1_1_1_2_3 + pol_d1_n1_1_1_2_3 = 1
invariant :po_d1_n1_3_3_3_1 + pol_d1_n1_3_3_3_1 = 1
invariant :po_d1_n1_2_1_2_1 + pol_d1_n1_2_1_2_1 = 1
invariant :po_d2_n1_2_1_1_1 + pol_d2_n1_2_1_1_1 = 1
invariant :po_d3_n1_2_3_1_3 + pol_d3_n1_2_3_1_3 = 1
invariant :pi_d4_n1_2_3_2_2 + pil_d4_n1_2_3_2_2 = 1
invariant :po_d3_n1_2_3_3_3 + pol_d3_n1_2_3_3_3 = 1
invariant :po_d3_n1_2_3_4_1 + pol_d3_n1_2_3_4_1 = 1
invariant :po_d4_n1_2_2_2_4 + pol_d4_n1_2_2_2_4 = 1
invariant :po_d1_n1_2_1_3_1 + pol_d1_n1_2_1_3_1 = 1
invariant :pi_d2_n1_1_4_1_3 + pil_d2_n1_1_4_1_3 = 1
invariant :pi_d4_n1_3_3_1_1 + pil_d4_n1_3_3_1_1 = 1
invariant :po_d3_n1_3_1_2_2 + pol_d3_n1_3_1_2_2 = 1
invariant :po_d1_n1_1_3_2_3 + pol_d1_n1_1_3_2_3 = 1
invariant :po_d1_n1_4_2_2_2 + pol_d1_n1_4_2_2_2 = 1
invariant :po_d1_n1_1_2_2_3 + pol_d1_n1_1_2_2_3 = 1
invariant :pi_d1_n1_3_2_1_3 + pil_d1_n1_3_2_1_3 = 1
invariant :pi_d3_n1_1_1_3_3 + pil_d3_n1_1_1_3_3 = 1
invariant :pi_d1_n1_2_2_3_3 + pil_d1_n1_2_2_3_3 = 1
invariant :pi_d1_n1_4_3_1_1 + pil_d1_n1_4_3_1_1 = 1
invariant :pi_d2_n1_1_1_1_3 + pil_d2_n1_1_1_1_3 = 1
invariant :po_d3_n1_3_1_1_2 + pol_d3_n1_3_1_1_2 = 1
invariant :po_d4_n1_3_2_2_3 + pol_d4_n1_3_2_2_3 = 1
invariant :pi_d1_n1_2_1_1_3 + pil_d1_n1_2_1_1_3 = 1
invariant :pi_d1_n1_3_1_1_2 + pil_d1_n1_3_1_1_2 = 1
invariant :pi_d3_n1_1_3_4_2 + pil_d3_n1_1_3_4_2 = 1
invariant :po_d1_n1_3_2_1_2 + pol_d1_n1_3_2_1_2 = 1
invariant :pi_d4_n1_2_3_3_3 + pil_d4_n1_2_3_3_3 = 1
invariant :po_d1_n1_1_3_3_1 + pol_d1_n1_1_3_3_1 = 1
invariant :pi_d4_n1_3_2_3_2 + pil_d4_n1_3_2_3_2 = 1
invariant :po_d2_n1_2_1_2_1 + pol_d2_n1_2_1_2_1 = 1
invariant :po_d1_n1_2_2_1_2 + pol_d1_n1_2_2_1_2 = 1
invariant :pb_d1_n1_1_2_1_1 + pb_d1_n2_1_2_1_1 + pb_d2_n1_1_2_1_1 + pb_d2_n2_1_2_1_1 + pb_d3_n1_1_2_1_1 + pb_d3_n2_1_2_1_1 + pb_d4_n1_1_2_1_1 + pb_d4_n2_1_2_1_1 + pbl_1_2_1_1 = 36
invariant :pi_d2_n1_2_1_3_3 + pil_d2_n1_2_1_3_3 = 1
invariant :po_d1_n1_3_3_2_2 + pol_d1_n1_3_3_2_2 = 1
invariant :po_d4_n1_2_2_1_3 + pol_d4_n1_2_2_1_3 = 1
invariant :pi_d1_n1_4_1_2_2 + pil_d1_n1_4_1_2_2 = 1
invariant :pi_d2_n1_1_1_2_2 + pil_d2_n1_1_1_2_2 = 1
invariant :pi_d2_n1_2_2_2_2 + pil_d2_n1_2_2_2_2 = 1
invariant :po_d1_n1_4_2_3_2 + pol_d1_n1_4_2_3_2 = 1
invariant :po_d1_n1_4_2_3_1 + pol_d1_n1_4_2_3_1 = 1
invariant :pi_d2_n1_3_4_3_2 + pil_d2_n1_3_4_3_2 = 1
invariant :pi_d1_n1_4_2_2_1 + pil_d1_n1_4_2_2_1 = 1
invariant :pb_d1_n1_1_3_1_3 + pb_d1_n2_1_3_1_3 + pb_d2_n1_1_3_1_3 + pb_d2_n2_1_3_1_3 + pb_d3_n1_1_3_1_3 + pb_d3_n2_1_3_1_3 + pb_d4_n1_1_3_1_3 + pb_d4_n2_1_3_1_3 + pbl_1_3_1_3 = 36
invariant :pi_d2_n1_1_2_2_3 + pil_d2_n1_1_2_2_3 = 1
invariant :pi_d4_n1_1_1_3_4 + pil_d4_n1_1_1_3_4 = 1
invariant :pi_d2_n1_3_3_2_1 + pil_d2_n1_3_3_2_1 = 1
invariant :pi_d3_n1_2_2_1_2 + pil_d3_n1_2_2_1_2 = 1
invariant :pi_d3_n1_2_1_3_3 + pil_d3_n1_2_1_3_3 = 1
invariant :pi_d2_n1_2_2_3_3 + pil_d2_n1_2_2_3_3 = 1
invariant :pi_d4_n1_1_1_3_2 + pil_d4_n1_1_1_3_2 = 1
invariant :po_d1_n1_1_1_3_1 + pol_d1_n1_1_1_3_1 = 1
invariant :po_d3_n1_1_1_4_3 + pol_d3_n1_1_1_4_3 = 1
invariant :po_d1_n1_2_2_3_1 + pol_d1_n1_2_2_3_1 = 1
invariant :po_d3_n1_3_3_1_1 + pol_d3_n1_3_3_1_1 = 1
invariant :po_d4_n1_2_1_1_4 + pol_d4_n1_2_1_1_4 = 1
invariant :po_d3_n1_2_2_4_1 + pol_d3_n1_2_2_4_1 = 1
invariant :pb_d1_n1_1_3_2_1 + pb_d1_n2_1_3_2_1 + pb_d2_n1_1_3_2_1 + pb_d2_n2_1_3_2_1 + pb_d3_n1_1_3_2_1 + pb_d3_n2_1_3_2_1 + pb_d4_n1_1_3_2_1 + pb_d4_n2_1_3_2_1 + pbl_1_3_2_1 = 36
invariant :pi_d1_n1_4_3_1_3 + pil_d1_n1_4_3_1_3 = 1
invariant :po_d3_n1_1_1_4_2 + pol_d3_n1_1_1_4_2 = 1
invariant :pb_d1_n1_3_1_2_1 + pb_d1_n2_3_1_2_1 + pb_d2_n1_3_1_2_1 + pb_d2_n2_3_1_2_1 + pb_d3_n1_3_1_2_1 + pb_d3_n2_3_1_2_1 + pb_d4_n1_3_1_2_1 + pb_d4_n2_3_1_2_1 + pbl_3_1_2_1 = 36
invariant :pi_d1_n1_3_1_2_1 + pil_d1_n1_3_1_2_1 = 1
invariant :po_d3_n1_1_1_4_1 + pol_d3_n1_1_1_4_1 = 1
invariant :po_d4_n1_3_1_1_3 + pol_d4_n1_3_1_1_3 = 1
invariant :pi_d3_n1_3_2_1_3 + pil_d3_n1_3_2_1_3 = 1
invariant :pi_d3_n1_2_2_4_2 + pil_d3_n1_2_2_4_2 = 1
invariant :pi_d3_n1_1_2_1_1 + pil_d3_n1_1_2_1_1 = 1
invariant :pi_d4_n1_3_2_2_3 + pil_d4_n1_3_2_2_3 = 1
invariant :pi_d4_n1_2_2_3_1 + pil_d4_n1_2_2_3_1 = 1
invariant :po_d2_n1_3_3_1_3 + pol_d2_n1_3_3_1_3 = 1
invariant :pb_d1_n1_1_2_3_3 + pb_d1_n2_1_2_3_3 + pb_d2_n1_1_2_3_3 + pb_d2_n2_1_2_3_3 + pb_d3_n1_1_2_3_3 + pb_d3_n2_1_2_3_3 + pb_d4_n1_1_2_3_3 + pb_d4_n2_1_2_3_3 + pbl_1_2_3_3 = 36
invariant :po_d1_n1_1_1_2_2 + pol_d1_n1_1_1_2_2 = 1
invariant :pb_d1_n1_3_3_3_3 + pb_d1_n2_3_3_3_3 + pb_d2_n1_3_3_3_3 + pb_d2_n2_3_3_3_3 + pb_d3_n1_3_3_3_3 + pb_d3_n2_3_3_3_3 + pb_d4_n1_3_3_3_3 + pb_d4_n2_3_3_3_3 + pbl_3_3_3_3 = 36
invariant :pi_d2_n1_2_2_2_1 + pil_d2_n1_2_2_2_1 = 1
invariant :pi_d1_n1_3_2_2_2 + pil_d1_n1_3_2_2_2 = 1
invariant :po_d3_n1_3_2_2_2 + pol_d3_n1_3_2_2_2 = 1
invariant :po_d3_n1_3_2_4_3 + pol_d3_n1_3_2_4_3 = 1
invariant :pi_d1_n1_1_3_1_1 + pil_d1_n1_1_3_1_1 = 1
invariant :po_d4_n1_3_1_3_4 + pol_d4_n1_3_1_3_4 = 1
invariant :pi_d3_n1_1_3_4_3 + pil_d3_n1_1_3_4_3 = 1
invariant :pi_d4_n1_1_1_2_2 + pil_d4_n1_1_1_2_2 = 1
invariant :po_d2_n1_1_3_3_3 + pol_d2_n1_1_3_3_3 = 1
invariant :pi_d3_n1_1_2_3_2 + pil_d3_n1_1_2_3_2 = 1
invariant :po_d1_n1_2_1_3_2 + pol_d1_n1_2_1_3_2 = 1
invariant :po_d4_n1_3_3_2_2 + pol_d4_n1_3_3_2_2 = 1
invariant :po_d3_n1_1_3_2_2 + pol_d3_n1_1_3_2_2 = 1
invariant :po_d2_n1_1_2_1_3 + pol_d2_n1_1_2_1_3 = 1
invariant :po_d4_n1_2_3_2_2 + pol_d4_n1_2_3_2_2 = 1
invariant :pi_d1_n1_4_2_3_3 + pil_d1_n1_4_2_3_3 = 1
invariant :pi_d1_n1_2_3_3_1 + pil_d1_n1_2_3_3_1 = 1
invariant :pi_d2_n1_1_4_3_1 + pil_d2_n1_1_4_3_1 = 1
invariant :pi_d4_n1_2_2_1_1 + pil_d4_n1_2_2_1_1 = 1
invariant :po_d3_n1_3_1_4_2 + pol_d3_n1_3_1_4_2 = 1
invariant :pi_d1_n1_4_1_2_1 + pil_d1_n1_4_1_2_1 = 1
invariant :pi_d2_n1_1_1_1_2 + pil_d2_n1_1_1_1_2 = 1
invariant :po_d1_n1_2_3_3_2 + pol_d1_n1_2_3_3_2 = 1
invariant :pi_d1_n1_1_2_3_1 + pil_d1_n1_1_2_3_1 = 1
invariant :pi_d1_n1_3_1_3_3 + pil_d1_n1_3_1_3_3 = 1
invariant :po_d4_n1_1_1_3_3 + pol_d4_n1_1_1_3_3 = 1
invariant :pi_d1_n1_3_1_1_3 + pil_d1_n1_3_1_1_3 = 1
invariant :pb_d1_n1_3_1_2_2 + pb_d1_n2_3_1_2_2 + pb_d2_n1_3_1_2_2 + pb_d2_n2_3_1_2_2 + pb_d3_n1_3_1_2_2 + pb_d3_n2_3_1_2_2 + pb_d4_n1_3_1_2_2 + pb_d4_n2_3_1_2_2 + pbl_3_1_2_2 = 36
invariant :pi_d3_n1_3_2_3_3 + pil_d3_n1_3_2_3_3 = 1
invariant :po_d3_n1_1_1_3_2 + pol_d3_n1_1_1_3_2 = 1
invariant :pi_d2_n1_1_4_3_2 + pil_d2_n1_1_4_3_2 = 1
invariant :po_d4_n1_3_2_3_2 + pol_d4_n1_3_2_3_2 = 1
invariant :pi_d3_n1_2_3_4_3 + pil_d3_n1_2_3_4_3 = 1
invariant :po_d2_n1_2_4_3_2 + pol_d2_n1_2_4_3_2 = 1
invariant :pb_d1_n1_2_1_1_2 + pb_d1_n2_2_1_1_2 + pb_d2_n1_2_1_1_2 + pb_d2_n2_2_1_1_2 + pb_d3_n1_2_1_1_2 + pb_d3_n2_2_1_1_2 + pb_d4_n1_2_1_1_2 + pb_d4_n2_2_1_1_2 + pbl_2_1_1_2 = 36
invariant :pi_d4_n1_1_1_3_3 + pil_d4_n1_1_1_3_3 = 1
invariant :pi_d2_n1_2_3_3_1 + pil_d2_n1_2_3_3_1 = 1
invariant :pi_d3_n1_2_3_4_1 + pil_d3_n1_2_3_4_1 = 1
invariant :pi_d3_n1_1_3_3_1 + pil_d3_n1_1_3_3_1 = 1
invariant :pi_d1_n1_4_3_3_1 + pil_d1_n1_4_3_3_1 = 1
invariant :po_d2_n1_1_1_1_1 + pol_d2_n1_1_1_1_1 = 1
invariant :po_d4_n1_1_3_3_3 + pol_d4_n1_1_3_3_3 = 1
invariant :po_d3_n1_2_2_4_3 + pol_d3_n1_2_2_4_3 = 1
invariant :pi_d1_n1_1_1_1_3 + pil_d1_n1_1_1_1_3 = 1
invariant :po_d1_n1_1_1_1_2 + pol_d1_n1_1_1_1_2 = 1
invariant :po_d1_n1_1_2_3_2 + pol_d1_n1_1_2_3_2 = 1
invariant :po_d3_n1_2_1_4_3 + pol_d3_n1_2_1_4_3 = 1
invariant :pi_d4_n1_3_1_2_2 + pil_d4_n1_3_1_2_2 = 1
invariant :po_d4_n1_1_3_1_4 + pol_d4_n1_1_3_1_4 = 1
invariant :po_d1_n1_4_2_1_1 + pol_d1_n1_4_2_1_1 = 1
invariant :pi_d4_n1_3_3_2_2 + pil_d4_n1_3_3_2_2 = 1
invariant :pb_d1_n1_1_2_2_1 + pb_d1_n2_1_2_2_1 + pb_d2_n1_1_2_2_1 + pb_d2_n2_1_2_2_1 + pb_d3_n1_1_2_2_1 + pb_d3_n2_1_2_2_1 + pb_d4_n1_1_2_2_1 + pb_d4_n2_1_2_2_1 + pbl_1_2_2_1 = 36
invariant :po_d3_n1_2_2_3_2 + pol_d3_n1_2_2_3_2 = 1
invariant :po_d1_n1_3_1_1_1 + pol_d1_n1_3_1_1_1 = 1
invariant :pb_d1_n1_3_2_2_2 + pb_d1_n2_3_2_2_2 + pb_d2_n1_3_2_2_2 + pb_d2_n2_3_2_2_2 + pb_d3_n1_3_2_2_2 + pb_d3_n2_3_2_2_2 + pb_d4_n1_3_2_2_2 + pb_d4_n2_3_2_2_2 + pbl_3_2_2_2 = 36
invariant :pi_d2_n1_3_2_3_2 + pil_d2_n1_3_2_3_2 = 1
invariant :pb_d1_n1_2_1_2_2 + pb_d1_n2_2_1_2_2 + pb_d2_n1_2_1_2_2 + pb_d2_n2_2_1_2_2 + pb_d3_n1_2_1_2_2 + pb_d3_n2_2_1_2_2 + pb_d4_n1_2_1_2_2 + pb_d4_n2_2_1_2_2 + pbl_2_1_2_2 = 36
invariant :pi_d4_n1_1_3_2_1 + pil_d4_n1_1_3_2_1 = 1
invariant :pi_d1_n1_2_2_3_1 + pil_d1_n1_2_2_3_1 = 1
invariant :pi_d3_n1_2_2_3_2 + pil_d3_n1_2_2_3_2 = 1
invariant :pi_d4_n1_3_1_3_3 + pil_d4_n1_3_1_3_3 = 1
invariant :po_d4_n1_2_2_2_2 + pol_d4_n1_2_2_2_2 = 1
invariant :pi_d3_n1_1_2_2_1 + pil_d3_n1_1_2_2_1 = 1
invariant :po_d1_n1_3_3_3_3 + pol_d1_n1_3_3_3_3 = 1
invariant :pb_d1_n1_3_1_1_3 + pb_d1_n2_3_1_1_3 + pb_d2_n1_3_1_1_3 + pb_d2_n2_3_1_1_3 + pb_d3_n1_3_1_1_3 + pb_d3_n2_3_1_1_3 + pb_d4_n1_3_1_1_3 + pb_d4_n2_3_1_1_3 + pbl_3_1_1_3 = 36
invariant :pb_d1_n1_2_2_2_2 + pb_d1_n2_2_2_2_2 + pb_d2_n1_2_2_2_2 + pb_d2_n2_2_2_2_2 + pb_d3_n1_2_2_2_2 + pb_d3_n2_2_2_2_2 + pb_d4_n1_2_2_2_2 + pb_d4_n2_2_2_2_2 + pbl_2_2_2_2 = 36
invariant :po_d4_n1_1_3_2_3 + pol_d4_n1_1_3_2_3 = 1
invariant :pb_d1_n1_2_3_1_3 + pb_d1_n2_2_3_1_3 + pb_d2_n1_2_3_1_3 + pb_d2_n2_2_3_1_3 + pb_d3_n1_2_3_1_3 + pb_d3_n2_2_3_1_3 + pb_d4_n1_2_3_1_3 + pb_d4_n2_2_3_1_3 + pbl_2_3_1_3 = 36
invariant :pb_d1_n1_2_3_3_1 + pb_d1_n2_2_3_3_1 + pb_d2_n1_2_3_3_1 + pb_d2_n2_2_3_3_1 + pb_d3_n1_2_3_3_1 + pb_d3_n2_2_3_3_1 + pb_d4_n1_2_3_3_1 + pb_d4_n2_2_3_3_1 + pbl_2_3_3_1 = 36
invariant :po_d4_n1_3_2_2_2 + pol_d4_n1_3_2_2_2 = 1
invariant :po_d1_n1_4_1_1_1 + pol_d1_n1_4_1_1_1 = 1
invariant :po_d4_n1_3_2_1_2 + pol_d4_n1_3_2_1_2 = 1
invariant :pi_d4_n1_3_1_2_4 + pil_d4_n1_3_1_2_4 = 1
invariant :po_d3_n1_3_2_2_1 + pol_d3_n1_3_2_2_1 = 1
invariant :po_d4_n1_2_2_1_4 + pol_d4_n1_2_2_1_4 = 1
invariant :pb_d1_n1_1_3_2_3 + pb_d1_n2_1_3_2_3 + pb_d2_n1_1_3_2_3 + pb_d2_n2_1_3_2_3 + pb_d3_n1_1_3_2_3 + pb_d3_n2_1_3_2_3 + pb_d4_n1_1_3_2_3 + pb_d4_n2_1_3_2_3 + pbl_1_3_2_3 = 36
invariant :po_d3_n1_3_3_3_1 + pol_d3_n1_3_3_3_1 = 1
invariant :po_d1_n1_1_3_1_2 + pol_d1_n1_1_3_1_2 = 1
invariant :po_d2_n1_3_3_1_1 + pol_d2_n1_3_3_1_1 = 1
invariant :pi_d3_n1_1_2_4_2 + pil_d3_n1_1_2_4_2 = 1
invariant :pi_d4_n1_1_1_2_3 + pil_d4_n1_1_1_2_3 = 1
invariant :pi_d3_n1_1_3_2_2 + pil_d3_n1_1_3_2_2 = 1
invariant :pb_d1_n1_3_2_3_2 + pb_d1_n2_3_2_3_2 + pb_d2_n1_3_2_3_2 + pb_d2_n2_3_2_3_2 + pb_d3_n1_3_2_3_2 + pb_d3_n2_3_2_3_2 + pb_d4_n1_3_2_3_2 + pb_d4_n2_3_2_3_2 + pbl_3_2_3_2 = 36
invariant :pi_d2_n1_2_1_1_3 + pil_d2_n1_2_1_1_3 = 1
invariant :pi_d1_n1_2_2_3_2 + pil_d1_n1_2_2_3_2 = 1
invariant :pi_d2_n1_2_3_3_3 + pil_d2_n1_2_3_3_3 = 1
invariant :po_d4_n1_3_3_2_1 + pol_d4_n1_3_3_2_1 = 1
invariant :pi_d3_n1_2_2_3_3 + pil_d3_n1_2_2_3_3 = 1
invariant :pi_d2_n1_2_1_1_2 + pil_d2_n1_2_1_1_2 = 1
invariant :po_d4_n1_3_2_2_4 + pol_d4_n1_3_2_2_4 = 1
invariant :pb_d1_n1_1_1_3_1 + pb_d1_n2_1_1_3_1 + pb_d2_n1_1_1_3_1 + pb_d2_n2_1_1_3_1 + pb_d3_n1_1_1_3_1 + pb_d3_n2_1_1_3_1 + pb_d4_n1_1_1_3_1 + pb_d4_n2_1_1_3_1 + pbl_1_1_3_1 = 36
invariant :po_d2_n1_1_4_1_2 + pol_d2_n1_1_4_1_2 = 1
invariant :po_d2_n1_3_1_3_3 + pol_d2_n1_3_1_3_3 = 1
invariant :pb_d1_n1_2_2_3_3 + pb_d1_n2_2_2_3_3 + pb_d2_n1_2_2_3_3 + pb_d2_n2_2_2_3_3 + pb_d3_n1_2_2_3_3 + pb_d3_n2_2_2_3_3 + pb_d4_n1_2_2_3_3 + pb_d4_n2_2_2_3_3 + pbl_2_2_3_3 = 36
invariant :pb_d1_n1_3_2_2_3 + pb_d1_n2_3_2_2_3 + pb_d2_n1_3_2_2_3 + pb_d2_n2_3_2_2_3 + pb_d3_n1_3_2_2_3 + pb_d3_n2_3_2_2_3 + pb_d4_n1_3_2_2_3 + pb_d4_n2_3_2_2_3 + pbl_3_2_2_3 = 36
invariant :pi_d1_n1_3_3_3_3 + pil_d1_n1_3_3_3_3 = 1
invariant :pi_d4_n1_3_1_2_1 + pil_d4_n1_3_1_2_1 = 1
invariant :po_d1_n1_4_3_1_3 + pol_d1_n1_4_3_1_3 = 1
invariant :pi_d1_n1_1_2_1_3 + pil_d1_n1_1_2_1_3 = 1
invariant :po_d4_n1_1_3_1_2 + pol_d4_n1_1_3_1_2 = 1
invariant :po_d2_n1_2_4_3_1 + pol_d2_n1_2_4_3_1 = 1
invariant :pi_d1_n1_2_3_3_3 + pil_d1_n1_2_3_3_3 = 1
invariant :po_d1_n1_3_2_2_2 + pol_d1_n1_3_2_2_2 = 1
invariant :pi_d3_n1_3_1_1_2 + pil_d3_n1_3_1_1_2 = 1
invariant :pb_d1_n1_3_2_3_3 + pb_d1_n2_3_2_3_3 + pb_d2_n1_3_2_3_3 + pb_d2_n2_3_2_3_3 + pb_d3_n1_3_2_3_3 + pb_d3_n2_3_2_3_3 + pb_d4_n1_3_2_3_3 + pb_d4_n2_3_2_3_3 + pbl_3_2_3_3 = 36
invariant :po_d2_n1_3_4_2_3 + pol_d2_n1_3_4_2_3 = 1
invariant :po_d2_n1_1_4_2_1 + pol_d2_n1_1_4_2_1 = 1
invariant :po_d1_n1_1_1_1_3 + pol_d1_n1_1_1_1_3 = 1
invariant :pi_d2_n1_1_3_3_3 + pil_d2_n1_1_3_3_3 = 1
invariant :pi_d1_n1_1_1_3_3 + pil_d1_n1_1_1_3_3 = 1
invariant :po_d2_n1_2_2_3_1 + pol_d2_n1_2_2_3_1 = 1
invariant :pi_d2_n1_3_2_1_3 + pil_d2_n1_3_2_1_3 = 1
invariant :po_d2_n1_3_4_1_3 + pol_d2_n1_3_4_1_3 = 1
invariant :po_d4_n1_1_3_2_1 + pol_d4_n1_1_3_2_1 = 1
invariant :pi_d3_n1_3_2_2_3 + pil_d3_n1_3_2_2_3 = 1
invariant :po_d2_n1_3_1_2_3 + pol_d2_n1_3_1_2_3 = 1
invariant :po_d3_n1_1_1_2_3 + pol_d3_n1_1_1_2_3 = 1
invariant :pi_d2_n1_1_3_1_2 + pil_d2_n1_1_3_1_2 = 1
invariant :pi_d1_n1_2_1_3_3 + pil_d1_n1_2_1_3_3 = 1
invariant :po_d2_n1_1_4_1_3 + pol_d2_n1_1_4_1_3 = 1
invariant :pb_d1_n1_1_1_1_2 + pb_d1_n2_1_1_1_2 + pb_d2_n1_1_1_1_2 + pb_d2_n2_1_1_1_2 + pb_d3_n1_1_1_1_2 + pb_d3_n2_1_1_1_2 + pb_d4_n1_1_1_1_2 + pb_d4_n2_1_1_1_2 + pbl_1_1_1_2 = 36
invariant :pi_d4_n1_1_1_1_3 + pil_d4_n1_1_1_1_3 = 1
invariant :po_d3_n1_3_3_4_1 + pol_d3_n1_3_3_4_1 = 1
invariant :pb_d1_n1_1_3_1_1 + pb_d1_n2_1_3_1_1 + pb_d2_n1_1_3_1_1 + pb_d2_n2_1_3_1_1 + pb_d3_n1_1_3_1_1 + pb_d3_n2_1_3_1_1 + pb_d4_n1_1_3_1_1 + pb_d4_n2_1_3_1_1 + pbl_1_3_1_1 = 36
invariant :pi_d1_n1_4_1_3_3 + pil_d1_n1_4_1_3_3 = 1
invariant :pi_d4_n1_2_2_2_3 + pil_d4_n1_2_2_2_3 = 1
invariant :po_d4_n1_1_2_3_1 + pol_d4_n1_1_2_3_1 = 1
invariant :po_d4_n1_2_1_3_4 + pol_d4_n1_2_1_3_4 = 1
invariant :pi_d1_n1_3_2_1_2 + pil_d1_n1_3_2_1_2 = 1
invariant :po_d3_n1_3_2_3_1 + pol_d3_n1_3_2_3_1 = 1
invariant :po_d1_n1_2_3_3_1 + pol_d1_n1_2_3_3_1 = 1
invariant :pi_d3_n1_1_3_2_1 + pil_d3_n1_1_3_2_1 = 1
invariant :pi_d3_n1_3_2_3_1 + pil_d3_n1_3_2_3_1 = 1
invariant :po_d2_n1_2_3_3_1 + pol_d2_n1_2_3_3_1 = 1
invariant :po_d2_n1_1_3_3_1 + pol_d2_n1_1_3_3_1 = 1
invariant :pi_d2_n1_3_2_2_2 + pil_d2_n1_3_2_2_2 = 1
invariant :pb_d1_n1_3_2_2_1 + pb_d1_n2_3_2_2_1 + pb_d2_n1_3_2_2_1 + pb_d2_n2_3_2_2_1 + pb_d3_n1_3_2_2_1 + pb_d3_n2_3_2_2_1 + pb_d4_n1_3_2_2_1 + pb_d4_n2_3_2_2_1 + pbl_3_2_2_1 = 36
invariant :po_d1_n1_3_3_3_2 + pol_d1_n1_3_3_3_2 = 1
invariant :po_d2_n1_2_4_1_1 + pol_d2_n1_2_4_1_1 = 1
invariant :pi_d4_n1_1_2_3_4 + pil_d4_n1_1_2_3_4 = 1
invariant :po_d2_n1_2_4_1_2 + pol_d2_n1_2_4_1_2 = 1
invariant :po_d1_n1_4_3_2_2 + pol_d1_n1_4_3_2_2 = 1
invariant :po_d4_n1_3_1_2_2 + pol_d4_n1_3_1_2_2 = 1
invariant :pi_d3_n1_2_2_2_3 + pil_d3_n1_2_2_2_3 = 1
invariant :po_d2_n1_1_4_2_2 + pol_d2_n1_1_4_2_2 = 1
invariant :pi_d2_n1_1_1_2_3 + pil_d2_n1_1_1_2_3 = 1
invariant :pi_d2_n1_3_3_3_1 + pil_d2_n1_3_3_3_1 = 1
invariant :pb_d1_n1_2_1_1_1 + pb_d1_n2_2_1_1_1 + pb_d2_n1_2_1_1_1 + pb_d2_n2_2_1_1_1 + pb_d3_n1_2_1_1_1 + pb_d3_n2_2_1_1_1 + pb_d4_n1_2_1_1_1 + pb_d4_n2_2_1_1_1 + pbl_2_1_1_1 = 36
invariant :pi_d3_n1_1_1_3_1 + pil_d3_n1_1_1_3_1 = 1
invariant :po_d1_n1_3_1_2_2 + pol_d1_n1_3_1_2_2 = 1
invariant :po_d3_n1_2_1_4_2 + pol_d3_n1_2_1_4_2 = 1
invariant :po_d4_n1_3_2_2_1 + pol_d4_n1_3_2_2_1 = 1
invariant :po_d4_n1_1_1_3_2 + pol_d4_n1_1_1_3_2 = 1
invariant :pi_d1_n1_1_2_2_2 + pil_d1_n1_1_2_2_2 = 1
invariant :pi_d3_n1_1_3_1_1 + pil_d3_n1_1_3_1_1 = 1
invariant :pi_d2_n1_2_3_1_3 + pil_d2_n1_2_3_1_3 = 1
invariant :pi_d2_n1_2_3_3_2 + pil_d2_n1_2_3_3_2 = 1
invariant :pi_d1_n1_4_1_3_2 + pil_d1_n1_4_1_3_2 = 1
invariant :pi_d4_n1_2_1_1_2 + pil_d4_n1_2_1_1_2 = 1
invariant :pi_d1_n1_4_1_1_3 + pil_d1_n1_4_1_1_3 = 1
invariant :pi_d2_n1_2_4_2_2 + pil_d2_n1_2_4_2_2 = 1
invariant :po_d3_n1_1_2_1_1 + pol_d3_n1_1_2_1_1 = 1
invariant :pb_d1_n1_2_1_2_1 + pb_d1_n2_2_1_2_1 + pb_d2_n1_2_1_2_1 + pb_d2_n2_2_1_2_1 + pb_d3_n1_2_1_2_1 + pb_d3_n2_2_1_2_1 + pb_d4_n1_2_1_2_1 + pb_d4_n2_2_1_2_1 + pbl_2_1_2_1 = 36
invariant :pi_d3_n1_2_1_3_1 + pil_d3_n1_2_1_3_1 = 1
invariant :po_d3_n1_1_1_2_2 + pol_d3_n1_1_1_2_2 = 1
invariant :pi_d3_n1_3_3_3_1 + pil_d3_n1_3_3_3_1 = 1
invariant :po_d2_n1_3_1_1_3 + pol_d2_n1_3_1_1_3 = 1
invariant :pi_d4_n1_3_3_3_2 + pil_d4_n1_3_3_3_2 = 1
invariant :pb_d1_n1_2_2_2_3 + pb_d1_n2_2_2_2_3 + pb_d2_n1_2_2_2_3 + pb_d2_n2_2_2_2_3 + pb_d3_n1_2_2_2_3 + pb_d3_n2_2_2_2_3 + pb_d4_n1_2_2_2_3 + pb_d4_n2_2_2_2_3 + pbl_2_2_2_3 = 36
invariant :po_d4_n1_2_2_2_3 + pol_d4_n1_2_2_2_3 = 1
invariant :po_d2_n1_3_3_3_2 + pol_d2_n1_3_3_3_2 = 1
invariant :pi_d3_n1_2_3_1_3 + pil_d3_n1_2_3_1_3 = 1
invariant :po_d2_n1_3_4_2_2 + pol_d2_n1_3_4_2_2 = 1
invariant :pi_d4_n1_1_3_1_2 + pil_d4_n1_1_3_1_2 = 1
invariant :pi_d1_n1_1_3_2_2 + pil_d1_n1_1_3_2_2 = 1
invariant :pi_d1_n1_2_1_2_2 + pil_d1_n1_2_1_2_2 = 1
invariant :po_d4_n1_1_2_2_2 + pol_d4_n1_1_2_2_2 = 1
invariant :po_d4_n1_1_2_2_3 + pol_d4_n1_1_2_2_3 = 1
invariant :pb_d1_n1_3_1_3_1 + pb_d1_n2_3_1_3_1 + pb_d2_n1_3_1_3_1 + pb_d2_n2_3_1_3_1 + pb_d3_n1_3_1_3_1 + pb_d3_n2_3_1_3_1 + pb_d4_n1_3_1_3_1 + pb_d4_n2_3_1_3_1 + pbl_3_1_3_1 = 36
invariant :po_d3_n1_3_3_2_3 + pol_d3_n1_3_3_2_3 = 1
invariant :pi_d3_n1_2_1_1_2 + pil_d3_n1_2_1_1_2 = 1
invariant :po_d4_n1_1_3_2_4 + pol_d4_n1_1_3_2_4 = 1
invariant :po_d1_n1_1_1_3_3 + pol_d1_n1_1_1_3_3 = 1
invariant :pi_d3_n1_3_2_3_2 + pil_d3_n1_3_2_3_2 = 1
invariant :pi_d3_n1_1_1_3_2 + pil_d3_n1_1_1_3_2 = 1
invariant :pi_d1_n1_1_3_2_1 + pil_d1_n1_1_3_2_1 = 1
invariant :pi_d2_n1_3_1_3_3 + pil_d2_n1_3_1_3_3 = 1
invariant :po_d3_n1_1_3_3_3 + pol_d3_n1_1_3_3_3 = 1
invariant :po_d4_n1_1_2_1_1 + pol_d4_n1_1_2_1_1 = 1
invariant :pi_d2_n1_1_4_3_3 + pil_d2_n1_1_4_3_3 = 1
invariant :pb_d1_n1_2_2_3_1 + pb_d1_n2_2_2_3_1 + pb_d2_n1_2_2_3_1 + pb_d2_n2_2_2_3_1 + pb_d3_n1_2_2_3_1 + pb_d3_n2_2_2_3_1 + pb_d4_n1_2_2_3_1 + pb_d4_n2_2_2_3_1 + pbl_2_2_3_1 = 36
invariant :po_d4_n1_2_1_2_3 + pol_d4_n1_2_1_2_3 = 1
invariant :po_d2_n1_2_3_1_2 + pol_d2_n1_2_3_1_2 = 1
invariant :po_d3_n1_1_3_4_2 + pol_d3_n1_1_3_4_2 = 1
invariant :pi_d3_n1_3_2_4_1 + pil_d3_n1_3_2_4_1 = 1
invariant :po_d2_n1_3_4_3_3 + pol_d2_n1_3_4_3_3 = 1
invariant :pi_d2_n1_1_2_3_3 + pil_d2_n1_1_2_3_3 = 1
invariant :po_d2_n1_1_2_1_2 + pol_d2_n1_1_2_1_2 = 1
invariant :pi_d1_n1_4_2_1_3 + pil_d1_n1_4_2_1_3 = 1
invariant :po_d1_n1_4_3_3_2 + pol_d1_n1_4_3_3_2 = 1
invariant :pi_d2_n1_1_4_2_2 + pil_d2_n1_1_4_2_2 = 1
invariant :po_d4_n1_2_2_1_2 + pol_d4_n1_2_2_1_2 = 1
invariant :pi_d2_n1_3_1_1_1 + pil_d2_n1_3_1_1_1 = 1
invariant :pi_d1_n1_2_3_2_1 + pil_d1_n1_2_3_2_1 = 1
invariant :pi_d2_n1_1_3_2_2 + pil_d2_n1_1_3_2_2 = 1
invariant :pi_d3_n1_1_1_4_3 + pil_d3_n1_1_1_4_3 = 1
invariant :po_d4_n1_1_3_1_3 + pol_d4_n1_1_3_1_3 = 1
invariant :pi_d1_n1_1_1_2_1 + pil_d1_n1_1_1_2_1 = 1
invariant :po_d1_n1_3_1_1_3 + pol_d1_n1_3_1_1_3 = 1
invariant :po_d3_n1_3_2_3_2 + pol_d3_n1_3_2_3_2 = 1
invariant :po_d4_n1_2_3_3_3 + pol_d4_n1_2_3_3_3 = 1
invariant :pi_d1_n1_1_2_3_3 + pil_d1_n1_1_2_3_3 = 1
invariant :pi_d3_n1_1_2_2_3 + pil_d3_n1_1_2_2_3 = 1
invariant :pi_d2_n1_2_3_2_1 + pil_d2_n1_2_3_2_1 = 1
invariant :pi_d2_n1_2_4_3_3 + pil_d2_n1_2_4_3_3 = 1
invariant :pi_d4_n1_2_1_3_2 + pil_d4_n1_2_1_3_2 = 1
invariant :pb_d1_n1_1_2_3_1 + pb_d1_n2_1_2_3_1 + pb_d2_n1_1_2_3_1 + pb_d2_n2_1_2_3_1 + pb_d3_n1_1_2_3_1 + pb_d3_n2_1_2_3_1 + pb_d4_n1_1_2_3_1 + pb_d4_n2_1_2_3_1 + pbl_1_2_3_1 = 36
invariant :pi_d3_n1_3_1_4_1 + pil_d3_n1_3_1_4_1 = 1
invariant :po_d2_n1_2_2_2_2 + pol_d2_n1_2_2_2_2 = 1
invariant :po_d4_n1_2_3_2_1 + pol_d4_n1_2_3_2_1 = 1
invariant :po_d3_n1_3_3_3_3 + pol_d3_n1_3_3_3_3 = 1
invariant :po_d4_n1_3_2_1_1 + pol_d4_n1_3_2_1_1 = 1
invariant :po_d2_n1_3_2_3_3 + pol_d2_n1_3_2_3_3 = 1
invariant :pi_d1_n1_1_1_3_2 + pil_d1_n1_1_1_3_2 = 1
invariant :po_d3_n1_1_1_1_2 + pol_d3_n1_1_1_1_2 = 1
invariant :pb_d1_n1_3_3_2_3 + pb_d1_n2_3_3_2_3 + pb_d2_n1_3_3_2_3 + pb_d2_n2_3_3_2_3 + pb_d3_n1_3_3_2_3 + pb_d3_n2_3_3_2_3 + pb_d4_n1_3_3_2_3 + pb_d4_n2_3_3_2_3 + pbl_3_3_2_3 = 36
invariant :pi_d1_n1_4_2_1_1 + pil_d1_n1_4_2_1_1 = 1
invariant :pi_d3_n1_2_1_4_3 + pil_d3_n1_2_1_4_3 = 1
invariant :pi_d2_n1_3_2_3_1 + pil_d2_n1_3_2_3_1 = 1
invariant :pi_d2_n1_2_1_3_2 + pil_d2_n1_2_1_3_2 = 1
invariant :pi_d3_n1_3_3_2_1 + pil_d3_n1_3_3_2_1 = 1
invariant :po_d3_n1_3_2_1_2 + pol_d3_n1_3_2_1_2 = 1
invariant :po_d2_n1_3_2_2_3 + pol_d2_n1_3_2_2_3 = 1
invariant :pi_d1_n1_3_1_3_2 + pil_d1_n1_3_1_3_2 = 1
invariant :pi_d4_n1_3_1_3_2 + pil_d4_n1_3_1_3_2 = 1
invariant :pi_d2_n1_2_3_2_2 + pil_d2_n1_2_3_2_2 = 1
invariant :po_d1_n1_4_3_3_1 + pol_d1_n1_4_3_3_1 = 1
invariant :po_d2_n1_2_3_2_3 + pol_d2_n1_2_3_2_3 = 1
invariant :pi_d3_n1_1_1_1_3 + pil_d3_n1_1_1_1_3 = 1
invariant :po_d4_n1_3_3_1_4 + pol_d4_n1_3_3_1_4 = 1
invariant :po_d1_n1_1_3_1_3 + pol_d1_n1_1_3_1_3 = 1
invariant :po_d1_n1_3_2_1_3 + pol_d1_n1_3_2_1_3 = 1
invariant :pi_d1_n1_2_3_1_3 + pil_d1_n1_2_3_1_3 = 1
invariant :pi_d3_n1_1_2_4_1 + pil_d3_n1_1_2_4_1 = 1
invariant :pb_d1_n1_3_3_1_1 + pb_d1_n2_3_3_1_1 + pb_d2_n1_3_3_1_1 + pb_d2_n2_3_3_1_1 + pb_d3_n1_3_3_1_1 + pb_d3_n2_3_3_1_1 + pb_d4_n1_3_3_1_1 + pb_d4_n2_3_3_1_1 + pbl_3_3_1_1 = 36
invariant :pb_d1_n1_1_3_3_1 + pb_d1_n2_1_3_3_1 + pb_d2_n1_1_3_3_1 + pb_d2_n2_1_3_3_1 + pb_d3_n1_1_3_3_1 + pb_d3_n2_1_3_3_1 + pb_d4_n1_1_3_3_1 + pb_d4_n2_1_3_3_1 + pbl_1_3_3_1 = 36
invariant :pb_d1_n1_1_1_2_1 + pb_d1_n2_1_1_2_1 + pb_d2_n1_1_1_2_1 + pb_d2_n2_1_1_2_1 + pb_d3_n1_1_1_2_1 + pb_d3_n2_1_1_2_1 + pb_d4_n1_1_1_2_1 + pb_d4_n2_1_1_2_1 + pbl_1_1_2_1 = 36
invariant :pi_d2_n1_1_3_3_1 + pil_d2_n1_1_3_3_1 = 1
invariant :po_d3_n1_1_3_1_1 + pol_d3_n1_1_3_1_1 = 1
invariant :po_d2_n1_2_1_1_3 + pol_d2_n1_2_1_1_3 = 1
invariant :po_d3_n1_3_3_4_3 + pol_d3_n1_3_3_4_3 = 1
invariant :pi_d2_n1_3_2_1_1 + pil_d2_n1_3_2_1_1 = 1
invariant :pi_d4_n1_3_2_1_3 + pil_d4_n1_3_2_1_3 = 1
invariant :po_d3_n1_2_2_2_1 + pol_d3_n1_2_2_2_1 = 1
invariant :pi_d4_n1_2_3_3_4 + pil_d4_n1_2_3_3_4 = 1
invariant :pi_d4_n1_2_1_3_4 + pil_d4_n1_2_1_3_4 = 1
invariant :po_d3_n1_2_3_4_3 + pol_d3_n1_2_3_4_3 = 1
invariant :pi_d3_n1_3_3_4_3 + pil_d3_n1_3_3_4_3 = 1
invariant :pbl_1_1_1_1 + pbl_1_1_1_2 + pbl_1_1_1_3 + pbl_1_1_2_1 + pbl_1_1_2_2 + pbl_1_1_2_3 + pbl_1_1_3_1 + pbl_1_1_3_2 + pbl_1_1_3_3 + pbl_1_2_1_1 + pbl_1_2_1_2 + pbl_1_2_1_3 + pbl_1_2_2_1 + pbl_1_2_2_2 + pbl_1_2_2_3 + pbl_1_2_3_1 + pbl_1_2_3_2 + pbl_1_2_3_3 + pbl_1_3_1_1 + pbl_1_3_1_2 + pbl_1_3_1_3 + pbl_1_3_2_1 + pbl_1_3_2_2 + pbl_1_3_2_3 + pbl_1_3_3_1 + pbl_1_3_3_2 + pbl_1_3_3_3 + pbl_2_1_1_1 + pbl_2_1_1_2 + pbl_2_1_1_3 + pbl_2_1_2_1 + pbl_2_1_2_2 + pbl_2_1_2_3 + pbl_2_1_3_1 + pbl_2_1_3_2 + pbl_2_1_3_3 + pbl_2_2_1_1 + pbl_2_2_1_2 + pbl_2_2_1_3 + pbl_2_2_2_1 + pbl_2_2_2_2 + pbl_2_2_2_3 + pbl_2_2_3_1 + pbl_2_2_3_2 + pbl_2_2_3_3 + pbl_2_3_1_1 + pbl_2_3_1_2 + pbl_2_3_1_3 + pbl_2_3_2_1 + pbl_2_3_2_2 + pbl_2_3_2_3 + pbl_2_3_3_1 + pbl_2_3_3_2 + pbl_2_3_3_3 + pbl_3_1_1_1 + pbl_3_1_1_2 + pbl_3_1_1_3 + pbl_3_1_2_1 + pbl_3_1_2_2 + pbl_3_1_2_3 + pbl_3_1_3_1 + pbl_3_1_3_2 + pbl_3_1_3_3 + pbl_3_2_1_1 + pbl_3_2_1_2 + pbl_3_2_1_3 + pbl_3_2_2_1 + pbl_3_2_2_2 + pbl_3_2_2_3 + pbl_3_2_3_1 + pbl_3_2_3_2 + pbl_3_2_3_3 + pbl_3_3_1_1 + pbl_3_3_1_2 + pbl_3_3_1_3 + pbl_3_3_2_1 + pbl_3_3_2_2 + pbl_3_3_2_3 + pbl_3_3_3_1 + pbl_3_3_3_2 + pbl_3_3_3_3 + pil_d1_n1_1_1_1_1 + pil_d1_n1_1_1_1_2 + pil_d1_n1_1_1_1_3 + pil_d1_n1_1_1_2_1 + pil_d1_n1_1_1_2_2 + pil_d1_n1_1_1_2_3 + pil_d1_n1_1_1_3_1 + pil_d1_n1_1_1_3_2 + pil_d1_n1_1_1_3_3 + pil_d1_n1_1_2_1_1 + pil_d1_n1_1_2_1_2 + pil_d1_n1_1_2_1_3 + pil_d1_n1_1_2_2_1 + pil_d1_n1_1_2_2_2 + pil_d1_n1_1_2_2_3 + pil_d1_n1_1_2_3_1 + pil_d1_n1_1_2_3_2 + pil_d1_n1_1_2_3_3 + pil_d1_n1_1_3_1_1 + pil_d1_n1_1_3_1_2 + pil_d1_n1_1_3_1_3 + pil_d1_n1_1_3_2_1 + pil_d1_n1_1_3_2_2 + pil_d1_n1_1_3_2_3 + pil_d1_n1_1_3_3_1 + pil_d1_n1_1_3_3_2 + pil_d1_n1_1_3_3_3 + pil_d1_n1_2_1_1_1 + pil_d1_n1_2_1_1_2 + pil_d1_n1_2_1_1_3 + pil_d1_n1_2_1_2_1 + pil_d1_n1_2_1_2_2 + pil_d1_n1_2_1_2_3 + pil_d1_n1_2_1_3_1 + pil_d1_n1_2_1_3_2 + pil_d1_n1_2_1_3_3 + pil_d1_n1_2_2_1_1 + pil_d1_n1_2_2_1_2 + pil_d1_n1_2_2_1_3 + pil_d1_n1_2_2_2_1 + pil_d1_n1_2_2_2_2 + pil_d1_n1_2_2_2_3 + pil_d1_n1_2_2_3_1 + pil_d1_n1_2_2_3_2 + pil_d1_n1_2_2_3_3 + pil_d1_n1_2_3_1_1 + pil_d1_n1_2_3_1_2 + pil_d1_n1_2_3_1_3 + pil_d1_n1_2_3_2_1 + pil_d1_n1_2_3_2_2 + pil_d1_n1_2_3_2_3 + pil_d1_n1_2_3_3_1 + pil_d1_n1_2_3_3_2 + pil_d1_n1_2_3_3_3 + pil_d1_n1_3_1_1_1 + pil_d1_n1_3_1_1_2 + pil_d1_n1_3_1_1_3 + pil_d1_n1_3_1_2_1 + pil_d1_n1_3_1_2_2 + pil_d1_n1_3_1_2_3 + pil_d1_n1_3_1_3_1 + pil_d1_n1_3_1_3_2 + pil_d1_n1_3_1_3_3 + pil_d1_n1_3_2_1_1 + pil_d1_n1_3_2_1_2 + pil_d1_n1_3_2_1_3 + pil_d1_n1_3_2_2_1 + pil_d1_n1_3_2_2_2 + pil_d1_n1_3_2_2_3 + pil_d1_n1_3_2_3_1 + pil_d1_n1_3_2_3_2 + pil_d1_n1_3_2_3_3 + pil_d1_n1_3_3_1_1 + pil_d1_n1_3_3_1_2 + pil_d1_n1_3_3_1_3 + pil_d1_n1_3_3_2_1 + pil_d1_n1_3_3_2_2 + pil_d1_n1_3_3_2_3 + pil_d1_n1_3_3_3_1 + pil_d1_n1_3_3_3_2 + pil_d1_n1_3_3_3_3 + pil_d1_n1_4_1_1_1 + pil_d1_n1_4_1_1_2 + pil_d1_n1_4_1_1_3 + pil_d1_n1_4_1_2_1 + pil_d1_n1_4_1_2_2 + pil_d1_n1_4_1_2_3 + pil_d1_n1_4_1_3_1 + pil_d1_n1_4_1_3_2 + pil_d1_n1_4_1_3_3 + pil_d1_n1_4_2_1_1 + pil_d1_n1_4_2_1_2 + pil_d1_n1_4_2_1_3 + pil_d1_n1_4_2_2_1 + pil_d1_n1_4_2_2_2 + pil_d1_n1_4_2_2_3 + pil_d1_n1_4_2_3_1 + pil_d1_n1_4_2_3_2 + pil_d1_n1_4_2_3_3 + pil_d1_n1_4_3_1_1 + pil_d1_n1_4_3_1_2 + pil_d1_n1_4_3_1_3 + pil_d1_n1_4_3_2_1 + pil_d1_n1_4_3_2_2 + pil_d1_n1_4_3_2_3 + pil_d1_n1_4_3_3_1 + pil_d1_n1_4_3_3_2 + pil_d1_n1_4_3_3_3 + pil_d2_n1_1_1_1_1 + pil_d2_n1_1_1_1_2 + pil_d2_n1_1_1_1_3 + pil_d2_n1_1_1_2_1 + pil_d2_n1_1_1_2_2 + pil_d2_n1_1_1_2_3 + pil_d2_n1_1_1_3_1 + pil_d2_n1_1_1_3_2 + pil_d2_n1_1_1_3_3 + pil_d2_n1_1_2_1_1 + pil_d2_n1_1_2_1_2 + pil_d2_n1_1_2_1_3 + pil_d2_n1_1_2_2_1 + pil_d2_n1_1_2_2_2 + pil_d2_n1_1_2_2_3 + pil_d2_n1_1_2_3_1 + pil_d2_n1_1_2_3_2 + pil_d2_n1_1_2_3_3 + pil_d2_n1_1_3_1_1 + pil_d2_n1_1_3_1_2 + pil_d2_n1_1_3_1_3 + pil_d2_n1_1_3_2_1 + pil_d2_n1_1_3_2_2 + pil_d2_n1_1_3_2_3 + pil_d2_n1_1_3_3_1 + pil_d2_n1_1_3_3_2 + pil_d2_n1_1_3_3_3 + pil_d2_n1_1_4_1_1 + pil_d2_n1_1_4_1_2 + pil_d2_n1_1_4_1_3 + pil_d2_n1_1_4_2_1 + pil_d2_n1_1_4_2_2 + pil_d2_n1_1_4_2_3 + pil_d2_n1_1_4_3_1 + pil_d2_n1_1_4_3_2 + pil_d2_n1_1_4_3_3 + pil_d2_n1_2_1_1_1 + pil_d2_n1_2_1_1_2 + pil_d2_n1_2_1_1_3 + pil_d2_n1_2_1_2_1 + pil_d2_n1_2_1_2_2 + pil_d2_n1_2_1_2_3 + pil_d2_n1_2_1_3_1 + pil_d2_n1_2_1_3_2 + pil_d2_n1_2_1_3_3 + pil_d2_n1_2_2_1_1 + pil_d2_n1_2_2_1_2 + pil_d2_n1_2_2_1_3 + pil_d2_n1_2_2_2_1 + pil_d2_n1_2_2_2_2 + pil_d2_n1_2_2_2_3 + pil_d2_n1_2_2_3_1 + pil_d2_n1_2_2_3_2 + pil_d2_n1_2_2_3_3 + pil_d2_n1_2_3_1_1 + pil_d2_n1_2_3_1_2 + pil_d2_n1_2_3_1_3 + pil_d2_n1_2_3_2_1 + pil_d2_n1_2_3_2_2 + pil_d2_n1_2_3_2_3 + pil_d2_n1_2_3_3_1 + pil_d2_n1_2_3_3_2 + pil_d2_n1_2_3_3_3 + pil_d2_n1_2_4_1_1 + pil_d2_n1_2_4_1_2 + pil_d2_n1_2_4_1_3 + pil_d2_n1_2_4_2_1 + pil_d2_n1_2_4_2_2 + pil_d2_n1_2_4_2_3 + pil_d2_n1_2_4_3_1 + pil_d2_n1_2_4_3_2 + pil_d2_n1_2_4_3_3 + pil_d2_n1_3_1_1_1 + pil_d2_n1_3_1_1_2 + pil_d2_n1_3_1_1_3 + pil_d2_n1_3_1_2_1 + pil_d2_n1_3_1_2_2 + pil_d2_n1_3_1_2_3 + pil_d2_n1_3_1_3_1 + pil_d2_n1_3_1_3_2 + pil_d2_n1_3_1_3_3 + pil_d2_n1_3_2_1_1 + pil_d2_n1_3_2_1_2 + pil_d2_n1_3_2_1_3 + pil_d2_n1_3_2_2_1 + pil_d2_n1_3_2_2_2 + pil_d2_n1_3_2_2_3 + pil_d2_n1_3_2_3_1 + pil_d2_n1_3_2_3_2 + pil_d2_n1_3_2_3_3 + pil_d2_n1_3_3_1_1 + pil_d2_n1_3_3_1_2 + pil_d2_n1_3_3_1_3 + pil_d2_n1_3_3_2_1 + pil_d2_n1_3_3_2_2 + pil_d2_n1_3_3_2_3 + pil_d2_n1_3_3_3_1 + pil_d2_n1_3_3_3_2 + pil_d2_n1_3_3_3_3 + pil_d2_n1_3_4_1_1 + pil_d2_n1_3_4_1_2 + pil_d2_n1_3_4_1_3 + pil_d2_n1_3_4_2_1 + pil_d2_n1_3_4_2_2 + pil_d2_n1_3_4_2_3 + pil_d2_n1_3_4_3_1 + pil_d2_n1_3_4_3_2 + pil_d2_n1_3_4_3_3 + pil_d3_n1_1_1_1_1 + pil_d3_n1_1_1_1_2 + pil_d3_n1_1_1_1_3 + pil_d3_n1_1_1_2_1 + pil_d3_n1_1_1_2_2 + pil_d3_n1_1_1_2_3 + pil_d3_n1_1_1_3_1 + pil_d3_n1_1_1_3_2 + pil_d3_n1_1_1_3_3 + pil_d3_n1_1_1_4_1 + pil_d3_n1_1_1_4_2 + pil_d3_n1_1_1_4_3 + pil_d3_n1_1_2_1_1 + pil_d3_n1_1_2_1_2 + pil_d3_n1_1_2_1_3 + pil_d3_n1_1_2_2_1 + pil_d3_n1_1_2_2_2 + pil_d3_n1_1_2_2_3 + pil_d3_n1_1_2_3_1 + pil_d3_n1_1_2_3_2 + pil_d3_n1_1_2_3_3 + pil_d3_n1_1_2_4_1 + pil_d3_n1_1_2_4_2 + pil_d3_n1_1_2_4_3 + pil_d3_n1_1_3_1_1 + pil_d3_n1_1_3_1_2 + pil_d3_n1_1_3_1_3 + pil_d3_n1_1_3_2_1 + pil_d3_n1_1_3_2_2 + pil_d3_n1_1_3_2_3 + pil_d3_n1_1_3_3_1 + pil_d3_n1_1_3_3_2 + pil_d3_n1_1_3_3_3 + pil_d3_n1_1_3_4_1 + pil_d3_n1_1_3_4_2 + pil_d3_n1_1_3_4_3 + pil_d3_n1_2_1_1_1 + pil_d3_n1_2_1_1_2 + pil_d3_n1_2_1_1_3 + pil_d3_n1_2_1_2_1 + pil_d3_n1_2_1_2_2 + pil_d3_n1_2_1_2_3 + pil_d3_n1_2_1_3_1 + pil_d3_n1_2_1_3_2 + pil_d3_n1_2_1_3_3 + pil_d3_n1_2_1_4_1 + pil_d3_n1_2_1_4_2 + pil_d3_n1_2_1_4_3 + pil_d3_n1_2_2_1_1 + pil_d3_n1_2_2_1_2 + pil_d3_n1_2_2_1_3 + pil_d3_n1_2_2_2_1 + pil_d3_n1_2_2_2_2 + pil_d3_n1_2_2_2_3 + pil_d3_n1_2_2_3_1 + pil_d3_n1_2_2_3_2 + pil_d3_n1_2_2_3_3 + pil_d3_n1_2_2_4_1 + pil_d3_n1_2_2_4_2 + pil_d3_n1_2_2_4_3 + pil_d3_n1_2_3_1_1 + pil_d3_n1_2_3_1_2 + pil_d3_n1_2_3_1_3 + pil_d3_n1_2_3_2_1 + pil_d3_n1_2_3_2_2 + pil_d3_n1_2_3_2_3 + pil_d3_n1_2_3_3_1 + pil_d3_n1_2_3_3_2 + pil_d3_n1_2_3_3_3 + pil_d3_n1_2_3_4_1 + pil_d3_n1_2_3_4_2 + pil_d3_n1_2_3_4_3 + pil_d3_n1_3_1_1_1 + pil_d3_n1_3_1_1_2 + pil_d3_n1_3_1_1_3 + pil_d3_n1_3_1_2_1 + pil_d3_n1_3_1_2_2 + pil_d3_n1_3_1_2_3 + pil_d3_n1_3_1_3_1 + pil_d3_n1_3_1_3_2 + pil_d3_n1_3_1_3_3 + pil_d3_n1_3_1_4_1 + pil_d3_n1_3_1_4_2 + pil_d3_n1_3_1_4_3 + pil_d3_n1_3_2_1_1 + pil_d3_n1_3_2_1_2 + pil_d3_n1_3_2_1_3 + pil_d3_n1_3_2_2_1 + pil_d3_n1_3_2_2_2 + pil_d3_n1_3_2_2_3 + pil_d3_n1_3_2_3_1 + pil_d3_n1_3_2_3_2 + pil_d3_n1_3_2_3_3 + pil_d3_n1_3_2_4_1 + pil_d3_n1_3_2_4_2 + pil_d3_n1_3_2_4_3 + pil_d3_n1_3_3_1_1 + pil_d3_n1_3_3_1_2 + pil_d3_n1_3_3_1_3 + pil_d3_n1_3_3_2_1 + pil_d3_n1_3_3_2_2 + pil_d3_n1_3_3_2_3 + pil_d3_n1_3_3_3_1 + pil_d3_n1_3_3_3_2 + pil_d3_n1_3_3_3_3 + pil_d3_n1_3_3_4_1 + pil_d3_n1_3_3_4_2 + pil_d3_n1_3_3_4_3 + pil_d4_n1_1_1_1_1 + pil_d4_n1_1_1_1_2 + pil_d4_n1_1_1_1_3 + pil_d4_n1_1_1_1_4 + pil_d4_n1_1_1_2_1 + pil_d4_n1_1_1_2_2 + pil_d4_n1_1_1_2_3 + pil_d4_n1_1_1_2_4 + pil_d4_n1_1_1_3_1 + pil_d4_n1_1_1_3_2 + pil_d4_n1_1_1_3_3 + pil_d4_n1_1_1_3_4 + pil_d4_n1_1_2_1_1 + pil_d4_n1_1_2_1_2 + pil_d4_n1_1_2_1_3 + pil_d4_n1_1_2_1_4 + pil_d4_n1_1_2_2_1 + pil_d4_n1_1_2_2_2 + pil_d4_n1_1_2_2_3 + pil_d4_n1_1_2_2_4 + pil_d4_n1_1_2_3_1 + pil_d4_n1_1_2_3_2 + pil_d4_n1_1_2_3_3 + pil_d4_n1_1_2_3_4 + pil_d4_n1_1_3_1_1 + pil_d4_n1_1_3_1_2 + pil_d4_n1_1_3_1_3 + pil_d4_n1_1_3_1_4 + pil_d4_n1_1_3_2_1 + pil_d4_n1_1_3_2_2 + pil_d4_n1_1_3_2_3 + pil_d4_n1_1_3_2_4 + pil_d4_n1_1_3_3_1 + pil_d4_n1_1_3_3_2 + pil_d4_n1_1_3_3_3 + pil_d4_n1_1_3_3_4 + pil_d4_n1_2_1_1_1 + pil_d4_n1_2_1_1_2 + pil_d4_n1_2_1_1_3 + pil_d4_n1_2_1_1_4 + pil_d4_n1_2_1_2_1 + pil_d4_n1_2_1_2_2 + pil_d4_n1_2_1_2_3 + pil_d4_n1_2_1_2_4 + pil_d4_n1_2_1_3_1 + pil_d4_n1_2_1_3_2 + pil_d4_n1_2_1_3_3 + pil_d4_n1_2_1_3_4 + pil_d4_n1_2_2_1_1 + pil_d4_n1_2_2_1_2 + pil_d4_n1_2_2_1_3 + pil_d4_n1_2_2_1_4 + pil_d4_n1_2_2_2_1 + pil_d4_n1_2_2_2_2 + pil_d4_n1_2_2_2_3 + pil_d4_n1_2_2_2_4 + pil_d4_n1_2_2_3_1 + pil_d4_n1_2_2_3_2 + pil_d4_n1_2_2_3_3 + pil_d4_n1_2_2_3_4 + pil_d4_n1_2_3_1_1 + pil_d4_n1_2_3_1_2 + pil_d4_n1_2_3_1_3 + pil_d4_n1_2_3_1_4 + pil_d4_n1_2_3_2_1 + pil_d4_n1_2_3_2_2 + pil_d4_n1_2_3_2_3 + pil_d4_n1_2_3_2_4 + pil_d4_n1_2_3_3_1 + pil_d4_n1_2_3_3_2 + pil_d4_n1_2_3_3_3 + pil_d4_n1_2_3_3_4 + pil_d4_n1_3_1_1_1 + pil_d4_n1_3_1_1_2 + pil_d4_n1_3_1_1_3 + pil_d4_n1_3_1_1_4 + pil_d4_n1_3_1_2_1 + pil_d4_n1_3_1_2_2 + pil_d4_n1_3_1_2_3 + pil_d4_n1_3_1_2_4 + pil_d4_n1_3_1_3_1 + pil_d4_n1_3_1_3_2 + pil_d4_n1_3_1_3_3 + pil_d4_n1_3_1_3_4 + pil_d4_n1_3_2_1_1 + pil_d4_n1_3_2_1_2 + pil_d4_n1_3_2_1_3 + pil_d4_n1_3_2_1_4 + pil_d4_n1_3_2_2_1 + pil_d4_n1_3_2_2_2 + pil_d4_n1_3_2_2_3 + pil_d4_n1_3_2_2_4 + pil_d4_n1_3_2_3_1 + pil_d4_n1_3_2_3_2 + pil_d4_n1_3_2_3_3 + pil_d4_n1_3_2_3_4 + pil_d4_n1_3_3_1_1 + pil_d4_n1_3_3_1_2 + pil_d4_n1_3_3_1_3 + pil_d4_n1_3_3_1_4 + pil_d4_n1_3_3_2_1 + pil_d4_n1_3_3_2_2 + pil_d4_n1_3_3_2_3 + pil_d4_n1_3_3_2_4 + pil_d4_n1_3_3_3_1 + pil_d4_n1_3_3_3_2 + pil_d4_n1_3_3_3_3 + pil_d4_n1_3_3_3_4 + pol_d1_n1_1_1_1_1 + pol_d1_n1_1_1_1_2 + pol_d1_n1_1_1_1_3 + pol_d1_n1_1_1_2_1 + pol_d1_n1_1_1_2_2 + pol_d1_n1_1_1_2_3 + pol_d1_n1_1_1_3_1 + pol_d1_n1_1_1_3_2 + pol_d1_n1_1_1_3_3 + pol_d1_n1_1_2_1_1 + pol_d1_n1_1_2_1_2 + pol_d1_n1_1_2_1_3 + pol_d1_n1_1_2_2_1 + pol_d1_n1_1_2_2_2 + pol_d1_n1_1_2_2_3 + pol_d1_n1_1_2_3_1 + pol_d1_n1_1_2_3_2 + pol_d1_n1_1_2_3_3 + pol_d1_n1_1_3_1_1 + pol_d1_n1_1_3_1_2 + pol_d1_n1_1_3_1_3 + pol_d1_n1_1_3_2_1 + pol_d1_n1_1_3_2_2 + pol_d1_n1_1_3_2_3 + pol_d1_n1_1_3_3_1 + pol_d1_n1_1_3_3_2 + pol_d1_n1_1_3_3_3 + pol_d1_n1_2_1_1_1 + pol_d1_n1_2_1_1_2 + pol_d1_n1_2_1_1_3 + pol_d1_n1_2_1_2_1 + pol_d1_n1_2_1_2_2 + pol_d1_n1_2_1_2_3 + pol_d1_n1_2_1_3_1 + pol_d1_n1_2_1_3_2 + pol_d1_n1_2_1_3_3 + pol_d1_n1_2_2_1_1 + pol_d1_n1_2_2_1_2 + pol_d1_n1_2_2_1_3 + pol_d1_n1_2_2_2_1 + pol_d1_n1_2_2_2_2 + pol_d1_n1_2_2_2_3 + pol_d1_n1_2_2_3_1 + pol_d1_n1_2_2_3_2 + pol_d1_n1_2_2_3_3 + pol_d1_n1_2_3_1_1 + pol_d1_n1_2_3_1_2 + pol_d1_n1_2_3_1_3 + pol_d1_n1_2_3_2_1 + pol_d1_n1_2_3_2_2 + pol_d1_n1_2_3_2_3 + pol_d1_n1_2_3_3_1 + pol_d1_n1_2_3_3_2 + pol_d1_n1_2_3_3_3 + pol_d1_n1_3_1_1_1 + pol_d1_n1_3_1_1_2 + pol_d1_n1_3_1_1_3 + pol_d1_n1_3_1_2_1 + pol_d1_n1_3_1_2_2 + pol_d1_n1_3_1_2_3 + pol_d1_n1_3_1_3_1 + pol_d1_n1_3_1_3_2 + pol_d1_n1_3_1_3_3 + pol_d1_n1_3_2_1_1 + pol_d1_n1_3_2_1_2 + pol_d1_n1_3_2_1_3 + pol_d1_n1_3_2_2_1 + pol_d1_n1_3_2_2_2 + pol_d1_n1_3_2_2_3 + pol_d1_n1_3_2_3_1 + pol_d1_n1_3_2_3_2 + pol_d1_n1_3_2_3_3 + pol_d1_n1_3_3_1_1 + pol_d1_n1_3_3_1_2 + pol_d1_n1_3_3_1_3 + pol_d1_n1_3_3_2_1 + pol_d1_n1_3_3_2_2 + pol_d1_n1_3_3_2_3 + pol_d1_n1_3_3_3_1 + pol_d1_n1_3_3_3_2 + pol_d1_n1_3_3_3_3 + pol_d1_n1_4_1_1_1 + pol_d1_n1_4_1_1_2 + pol_d1_n1_4_1_1_3 + pol_d1_n1_4_1_2_1 + pol_d1_n1_4_1_2_2 + pol_d1_n1_4_1_2_3 + pol_d1_n1_4_1_3_1 + pol_d1_n1_4_1_3_2 + pol_d1_n1_4_1_3_3 + pol_d1_n1_4_2_1_1 + pol_d1_n1_4_2_1_2 + pol_d1_n1_4_2_1_3 + pol_d1_n1_4_2_2_1 + pol_d1_n1_4_2_2_2 + pol_d1_n1_4_2_2_3 + pol_d1_n1_4_2_3_1 + pol_d1_n1_4_2_3_2 + pol_d1_n1_4_2_3_3 + pol_d1_n1_4_3_1_1 + pol_d1_n1_4_3_1_2 + pol_d1_n1_4_3_1_3 + pol_d1_n1_4_3_2_1 + pol_d1_n1_4_3_2_2 + pol_d1_n1_4_3_2_3 + pol_d1_n1_4_3_3_1 + pol_d1_n1_4_3_3_2 + pol_d1_n1_4_3_3_3 + pol_d2_n1_1_1_1_1 + pol_d2_n1_1_1_1_2 + pol_d2_n1_1_1_1_3 + pol_d2_n1_1_1_2_1 + pol_d2_n1_1_1_2_2 + pol_d2_n1_1_1_2_3 + pol_d2_n1_1_1_3_1 + pol_d2_n1_1_1_3_2 + pol_d2_n1_1_1_3_3 + pol_d2_n1_1_2_1_1 + pol_d2_n1_1_2_1_2 + pol_d2_n1_1_2_1_3 + pol_d2_n1_1_2_2_1 + pol_d2_n1_1_2_2_2 + pol_d2_n1_1_2_2_3 + pol_d2_n1_1_2_3_1 + pol_d2_n1_1_2_3_2 + pol_d2_n1_1_2_3_3 + pol_d2_n1_1_3_1_1 + pol_d2_n1_1_3_1_2 + pol_d2_n1_1_3_1_3 + pol_d2_n1_1_3_2_1 + pol_d2_n1_1_3_2_2 + pol_d2_n1_1_3_2_3 + pol_d2_n1_1_3_3_1 + pol_d2_n1_1_3_3_2 + pol_d2_n1_1_3_3_3 + pol_d2_n1_1_4_1_1 + pol_d2_n1_1_4_1_2 + pol_d2_n1_1_4_1_3 + pol_d2_n1_1_4_2_1 + pol_d2_n1_1_4_2_2 + pol_d2_n1_1_4_2_3 + pol_d2_n1_1_4_3_1 + pol_d2_n1_1_4_3_2 + pol_d2_n1_1_4_3_3 + pol_d2_n1_2_1_1_1 + pol_d2_n1_2_1_1_2 + pol_d2_n1_2_1_1_3 + pol_d2_n1_2_1_2_1 + pol_d2_n1_2_1_2_2 + pol_d2_n1_2_1_2_3 + pol_d2_n1_2_1_3_1 + pol_d2_n1_2_1_3_2 + pol_d2_n1_2_1_3_3 + pol_d2_n1_2_2_1_1 + pol_d2_n1_2_2_1_2 + pol_d2_n1_2_2_1_3 + pol_d2_n1_2_2_2_1 + pol_d2_n1_2_2_2_2 + pol_d2_n1_2_2_2_3 + pol_d2_n1_2_2_3_1 + pol_d2_n1_2_2_3_2 + pol_d2_n1_2_2_3_3 + pol_d2_n1_2_3_1_1 + pol_d2_n1_2_3_1_2 + pol_d2_n1_2_3_1_3 + pol_d2_n1_2_3_2_1 + pol_d2_n1_2_3_2_2 + pol_d2_n1_2_3_2_3 + pol_d2_n1_2_3_3_1 + pol_d2_n1_2_3_3_2 + pol_d2_n1_2_3_3_3 + pol_d2_n1_2_4_1_1 + pol_d2_n1_2_4_1_2 + pol_d2_n1_2_4_1_3 + pol_d2_n1_2_4_2_1 + pol_d2_n1_2_4_2_2 + pol_d2_n1_2_4_2_3 + pol_d2_n1_2_4_3_1 + pol_d2_n1_2_4_3_2 + pol_d2_n1_2_4_3_3 + pol_d2_n1_3_1_1_1 + pol_d2_n1_3_1_1_2 + pol_d2_n1_3_1_1_3 + pol_d2_n1_3_1_2_1 + pol_d2_n1_3_1_2_2 + pol_d2_n1_3_1_2_3 + pol_d2_n1_3_1_3_1 + pol_d2_n1_3_1_3_2 + pol_d2_n1_3_1_3_3 + pol_d2_n1_3_2_1_1 + pol_d2_n1_3_2_1_2 + pol_d2_n1_3_2_1_3 + pol_d2_n1_3_2_2_1 + pol_d2_n1_3_2_2_2 + pol_d2_n1_3_2_2_3 + pol_d2_n1_3_2_3_1 + pol_d2_n1_3_2_3_2 + pol_d2_n1_3_2_3_3 + pol_d2_n1_3_3_1_1 + pol_d2_n1_3_3_1_2 + pol_d2_n1_3_3_1_3 + pol_d2_n1_3_3_2_1 + pol_d2_n1_3_3_2_2 + pol_d2_n1_3_3_2_3 + pol_d2_n1_3_3_3_1 + pol_d2_n1_3_3_3_2 + pol_d2_n1_3_3_3_3 + pol_d2_n1_3_4_1_1 + pol_d2_n1_3_4_1_2 + pol_d2_n1_3_4_1_3 + pol_d2_n1_3_4_2_1 + pol_d2_n1_3_4_2_2 + pol_d2_n1_3_4_2_3 + pol_d2_n1_3_4_3_1 + pol_d2_n1_3_4_3_2 + pol_d2_n1_3_4_3_3 + pol_d3_n1_1_1_1_1 + pol_d3_n1_1_1_1_2 + pol_d3_n1_1_1_1_3 + pol_d3_n1_1_1_2_1 + pol_d3_n1_1_1_2_2 + pol_d3_n1_1_1_2_3 + pol_d3_n1_1_1_3_1 + pol_d3_n1_1_1_3_2 + pol_d3_n1_1_1_3_3 + pol_d3_n1_1_1_4_1 + pol_d3_n1_1_1_4_2 + pol_d3_n1_1_1_4_3 + pol_d3_n1_1_2_1_1 + pol_d3_n1_1_2_1_2 + pol_d3_n1_1_2_1_3 + pol_d3_n1_1_2_2_1 + pol_d3_n1_1_2_2_2 + pol_d3_n1_1_2_2_3 + pol_d3_n1_1_2_3_1 + pol_d3_n1_1_2_3_2 + pol_d3_n1_1_2_3_3 + pol_d3_n1_1_2_4_1 + pol_d3_n1_1_2_4_2 + pol_d3_n1_1_2_4_3 + pol_d3_n1_1_3_1_1 + pol_d3_n1_1_3_1_2 + pol_d3_n1_1_3_1_3 + pol_d3_n1_1_3_2_1 + pol_d3_n1_1_3_2_2 + pol_d3_n1_1_3_2_3 + pol_d3_n1_1_3_3_1 + pol_d3_n1_1_3_3_2 + pol_d3_n1_1_3_3_3 + pol_d3_n1_1_3_4_1 + pol_d3_n1_1_3_4_2 + pol_d3_n1_1_3_4_3 + pol_d3_n1_2_1_1_1 + pol_d3_n1_2_1_1_2 + pol_d3_n1_2_1_1_3 + pol_d3_n1_2_1_2_1 + pol_d3_n1_2_1_2_2 + pol_d3_n1_2_1_2_3 + pol_d3_n1_2_1_3_1 + pol_d3_n1_2_1_3_2 + pol_d3_n1_2_1_3_3 + pol_d3_n1_2_1_4_1 + pol_d3_n1_2_1_4_2 + pol_d3_n1_2_1_4_3 + pol_d3_n1_2_2_1_1 + pol_d3_n1_2_2_1_2 + pol_d3_n1_2_2_1_3 + pol_d3_n1_2_2_2_1 + pol_d3_n1_2_2_2_2 + pol_d3_n1_2_2_2_3 + pol_d3_n1_2_2_3_1 + pol_d3_n1_2_2_3_2 + pol_d3_n1_2_2_3_3 + pol_d3_n1_2_2_4_1 + pol_d3_n1_2_2_4_2 + pol_d3_n1_2_2_4_3 + pol_d3_n1_2_3_1_1 + pol_d3_n1_2_3_1_2 + pol_d3_n1_2_3_1_3 + pol_d3_n1_2_3_2_1 + pol_d3_n1_2_3_2_2 + pol_d3_n1_2_3_2_3 + pol_d3_n1_2_3_3_1 + pol_d3_n1_2_3_3_2 + pol_d3_n1_2_3_3_3 + pol_d3_n1_2_3_4_1 + pol_d3_n1_2_3_4_2 + pol_d3_n1_2_3_4_3 + pol_d3_n1_3_1_1_1 + pol_d3_n1_3_1_1_2 + pol_d3_n1_3_1_1_3 + pol_d3_n1_3_1_2_1 + pol_d3_n1_3_1_2_2 + pol_d3_n1_3_1_2_3 + pol_d3_n1_3_1_3_1 + pol_d3_n1_3_1_3_2 + pol_d3_n1_3_1_3_3 + pol_d3_n1_3_1_4_1 + pol_d3_n1_3_1_4_2 + pol_d3_n1_3_1_4_3 + pol_d3_n1_3_2_1_1 + pol_d3_n1_3_2_1_2 + pol_d3_n1_3_2_1_3 + pol_d3_n1_3_2_2_1 + pol_d3_n1_3_2_2_2 + pol_d3_n1_3_2_2_3 + pol_d3_n1_3_2_3_1 + pol_d3_n1_3_2_3_2 + pol_d3_n1_3_2_3_3 + pol_d3_n1_3_2_4_1 + pol_d3_n1_3_2_4_2 + pol_d3_n1_3_2_4_3 + pol_d3_n1_3_3_1_1 + pol_d3_n1_3_3_1_2 + pol_d3_n1_3_3_1_3 + pol_d3_n1_3_3_2_1 + pol_d3_n1_3_3_2_2 + pol_d3_n1_3_3_2_3 + pol_d3_n1_3_3_3_1 + pol_d3_n1_3_3_3_2 + pol_d3_n1_3_3_3_3 + pol_d3_n1_3_3_4_1 + pol_d3_n1_3_3_4_2 + pol_d3_n1_3_3_4_3 + pol_d4_n1_1_1_1_1 + pol_d4_n1_1_1_1_2 + pol_d4_n1_1_1_1_3 + pol_d4_n1_1_1_1_4 + pol_d4_n1_1_1_2_1 + pol_d4_n1_1_1_2_2 + pol_d4_n1_1_1_2_3 + pol_d4_n1_1_1_2_4 + pol_d4_n1_1_1_3_1 + pol_d4_n1_1_1_3_2 + pol_d4_n1_1_1_3_3 + pol_d4_n1_1_1_3_4 + pol_d4_n1_1_2_1_1 + pol_d4_n1_1_2_1_2 + pol_d4_n1_1_2_1_3 + pol_d4_n1_1_2_1_4 + pol_d4_n1_1_2_2_1 + pol_d4_n1_1_2_2_2 + pol_d4_n1_1_2_2_3 + pol_d4_n1_1_2_2_4 + pol_d4_n1_1_2_3_1 + pol_d4_n1_1_2_3_2 + pol_d4_n1_1_2_3_3 + pol_d4_n1_1_2_3_4 + pol_d4_n1_1_3_1_1 + pol_d4_n1_1_3_1_2 + pol_d4_n1_1_3_1_3 + pol_d4_n1_1_3_1_4 + pol_d4_n1_1_3_2_1 + pol_d4_n1_1_3_2_2 + pol_d4_n1_1_3_2_3 + pol_d4_n1_1_3_2_4 + pol_d4_n1_1_3_3_1 + pol_d4_n1_1_3_3_2 + pol_d4_n1_1_3_3_3 + pol_d4_n1_1_3_3_4 + pol_d4_n1_2_1_1_1 + pol_d4_n1_2_1_1_2 + pol_d4_n1_2_1_1_3 + pol_d4_n1_2_1_1_4 + pol_d4_n1_2_1_2_1 + pol_d4_n1_2_1_2_2 + pol_d4_n1_2_1_2_3 + pol_d4_n1_2_1_2_4 + pol_d4_n1_2_1_3_1 + pol_d4_n1_2_1_3_2 + pol_d4_n1_2_1_3_3 + pol_d4_n1_2_1_3_4 + pol_d4_n1_2_2_1_1 + pol_d4_n1_2_2_1_2 + pol_d4_n1_2_2_1_3 + pol_d4_n1_2_2_1_4 + pol_d4_n1_2_2_2_1 + pol_d4_n1_2_2_2_2 + pol_d4_n1_2_2_2_3 + pol_d4_n1_2_2_2_4 + pol_d4_n1_2_2_3_1 + pol_d4_n1_2_2_3_2 + pol_d4_n1_2_2_3_3 + pol_d4_n1_2_2_3_4 + pol_d4_n1_2_3_1_1 + pol_d4_n1_2_3_1_2 + pol_d4_n1_2_3_1_3 + pol_d4_n1_2_3_1_4 + pol_d4_n1_2_3_2_1 + pol_d4_n1_2_3_2_2 + pol_d4_n1_2_3_2_3 + pol_d4_n1_2_3_2_4 + pol_d4_n1_2_3_3_1 + pol_d4_n1_2_3_3_2 + pol_d4_n1_2_3_3_3 + pol_d4_n1_2_3_3_4 + pol_d4_n1_3_1_1_1 + pol_d4_n1_3_1_1_2 + pol_d4_n1_3_1_1_3 + pol_d4_n1_3_1_1_4 + pol_d4_n1_3_1_2_1 + pol_d4_n1_3_1_2_2 + pol_d4_n1_3_1_2_3 + pol_d4_n1_3_1_2_4 + pol_d4_n1_3_1_3_1 + pol_d4_n1_3_1_3_2 + pol_d4_n1_3_1_3_3 + pol_d4_n1_3_1_3_4 + pol_d4_n1_3_2_1_1 + pol_d4_n1_3_2_1_2 + pol_d4_n1_3_2_1_3 + pol_d4_n1_3_2_1_4 + pol_d4_n1_3_2_2_1 + pol_d4_n1_3_2_2_2 + pol_d4_n1_3_2_2_3 + pol_d4_n1_3_2_2_4 + pol_d4_n1_3_2_3_1 + pol_d4_n1_3_2_3_2 + pol_d4_n1_3_2_3_3 + pol_d4_n1_3_2_3_4 + pol_d4_n1_3_3_1_1 + pol_d4_n1_3_3_1_2 + pol_d4_n1_3_3_1_3 + pol_d4_n1_3_3_1_4 + pol_d4_n1_3_3_2_1 + pol_d4_n1_3_3_2_2 + pol_d4_n1_3_3_2_3 + pol_d4_n1_3_3_2_4 + pol_d4_n1_3_3_3_1 + pol_d4_n1_3_3_3_2 + pol_d4_n1_3_3_3_3 + pol_d4_n1_3_3_3_4 = 1836
invariant :pi_d4_n1_2_1_2_1 + pil_d4_n1_2_1_2_1 = 1
invariant :po_d3_n1_2_1_2_3 + pol_d3_n1_2_1_2_3 = 1
Compilation finished in 108606 ms.
Running link step : CommandLine [args=[gcc, -shared, -o, gal.so, model.o], workingDir=/home/mcc/execution]
Link finished in 106 ms.
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability00==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability00==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability01==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability01==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability02==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability02==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability03==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability03==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability04==true], workingDir=/home/mcc/execution]
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability04==true], workingDir=/home/mcc/execution]
255
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityFireability -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityFireability -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 26, 2018 6:19:09 PM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityFireability, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -louvain, -smt]
May 26, 2018 6:19:09 PM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 26, 2018 6:19:09 PM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 402 ms
May 26, 2018 6:19:09 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 2457 places.
May 26, 2018 6:19:10 PM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 5400 transitions.
May 26, 2018 6:19:11 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1354 ms
May 26, 2018 6:19:12 PM fr.lip6.move.gal.application.MccTranslator applyOrder
INFO: Applying decomposition
May 26, 2018 6:19:13 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1147 ms
May 26, 2018 6:19:13 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1336 ms
May 26, 2018 6:19:14 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 5400 transitions.
May 26, 2018 6:19:14 PM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Too many transitions (5400) to apply POR reductions. Disabling POR matrices.
May 26, 2018 6:19:14 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 5400 transitions.
May 26, 2018 6:19:14 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 822 ms
May 26, 2018 6:19:15 PM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 3138ms conformant to PINS in folder :/home/mcc/execution
Begin: Sat May 26 18:19:16 2018
Computation of communities with the Newman-Girvan Modularity quality function
level 0:
start computation: Sat May 26 18:19:16 2018
network size: 2457 nodes, 16848 links, 10800 weight
quality increased from -0.000981481 to 0.496793
end computation: Sat May 26 18:19:16 2018
level 1:
start computation: Sat May 26 18:19:16 2018
network size: 945 nodes, 3969 links, 10800 weight
quality increased from 0.496793 to 0.947652
end computation: Sat May 26 18:19:16 2018
level 2:
start computation: Sat May 26 18:19:16 2018
network size: 81 nodes, 513 links, 10800 weight
quality increased from 0.947652 to 0.947652
end computation: Sat May 26 18:19:16 2018
End: Sat May 26 18:19:16 2018
Total duration: 0 sec
0.947652
May 26, 2018 6:19:16 PM fr.lip6.move.gal.instantiate.CompositeBuilder decomposeWithOrder
INFO: Decomposing Gal with order
May 26, 2018 6:19:16 PM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 686 ms
May 26, 2018 6:19:17 PM fr.lip6.move.gal.instantiate.CompositeBuilder rewriteArraysToAllowPartition
INFO: Rewriting arrays to variables to allow decomposition.
May 26, 2018 6:19:17 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 16 in 4597 ms.
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-00(UNSAT) depth K=0 took 50 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-01(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-02(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-03(UNSAT) depth K=0 took 0 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-04(UNSAT) depth K=0 took 0 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-05(UNSAT) depth K=0 took 0 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-06(UNSAT) depth K=0 took 0 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-07(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-08(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-09(UNSAT) depth K=0 took 0 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-10(UNSAT) depth K=0 took 0 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-11(UNSAT) depth K=0 took 0 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-12(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-13(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-14(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-15(UNSAT) depth K=0 took 1 ms
May 26, 2018 6:19:18 PM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 5400 transitions.
May 26, 2018 6:19:21 PM fr.lip6.move.gal.instantiate.Instantiator fuseIsomorphicEffects
INFO: Removed a total of 7776 redundant transitions.
May 26, 2018 6:19:22 PM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityFireability.pnml.gal : 172 ms
May 26, 2018 6:19:22 PM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityFireability.prop : 1 ms
May 26, 2018 6:19:24 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-00(UNSAT) depth K=1 took 6010 ms
May 26, 2018 6:19:26 PM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 946 place invariants in 4784 ms
May 26, 2018 6:19:26 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-01(UNSAT) depth K=1 took 2323 ms
May 26, 2018 6:19:28 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-02(UNSAT) depth K=1 took 1634 ms
May 26, 2018 6:19:29 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-03(UNSAT) depth K=1 took 1632 ms
May 26, 2018 6:19:31 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-04(UNSAT) depth K=1 took 1671 ms
May 26, 2018 6:19:33 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-05(UNSAT) depth K=1 took 1874 ms
May 26, 2018 6:19:35 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-06(UNSAT) depth K=1 took 1957 ms
May 26, 2018 6:19:37 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-07(UNSAT) depth K=1 took 1833 ms
May 26, 2018 6:19:38 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-08(UNSAT) depth K=1 took 1817 ms
May 26, 2018 6:19:40 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-09(UNSAT) depth K=1 took 1909 ms
May 26, 2018 6:19:42 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-10(UNSAT) depth K=1 took 1960 ms
May 26, 2018 6:19:46 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-11(UNSAT) depth K=1 took 3361 ms
May 26, 2018 6:19:47 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-12(UNSAT) depth K=1 took 1828 ms
May 26, 2018 6:19:49 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-13(UNSAT) depth K=1 took 1682 ms
May 26, 2018 6:19:50 PM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 2457 variables to be positive in 28969 ms
May 26, 2018 6:19:51 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-14(UNSAT) depth K=1 took 1858 ms
May 26, 2018 6:19:53 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-15(UNSAT) depth K=1 took 2196 ms
pins2lts-mc, 0.000: Registering PINS so language module
pins2lts-mc, 0.000, ** error **: out of memory trying to get 4294967296
java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HypercubeGridPTC4K3P3B12ReachabilityFireability04==true], workingDir=/home/mcc/execution]
255
at fr.lip6.move.gal.application.LTSminRunner.checkProperty(LTSminRunner.java:167)
at fr.lip6.move.gal.application.LTSminRunner.access$9(LTSminRunner.java:122)
at fr.lip6.move.gal.application.LTSminRunner$1.run(LTSminRunner.java:91)
at java.lang.Thread.run(Thread.java:748)
ITS-tools command line returned an error code 137
May 26, 2018 6:55:06 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: Induction result is SAT, non conclusive we might be starting from unreachable statesHypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-00
May 26, 2018 6:55:06 PM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runKInduction
INFO: KInduction solution for property HypercubeGrid-PT-C4K3P3B12-ReachabilityFireability-00(SAT) depth K=0 took 2116412 ms
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="HypercubeGrid-PT-C4K3P3B12"
export BK_EXAMINATION="ReachabilityFireability"
export BK_TOOL="itstoolsl"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/HypercubeGrid-PT-C4K3P3B12.tgz
mv HypercubeGrid-PT-C4K3P3B12 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstoolsl"
echo " Input is HypercubeGrid-PT-C4K3P3B12, examination is ReachabilityFireability"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r105-smll-152658635300119"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityFireability" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityFireability" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityFireability.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityFireability.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityFireability.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;