fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Execution of r105-smll-152658635200047
Last Updated
June 26, 2018

About the Execution of ITS-Tools.L for HexagonalGrid-PT-816

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15752.830 3600000.00 9023142.00 5098.80 [undef] Time out reached

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
......................
/home/mcc/execution
total 4.1M
-rw-r--r-- 1 mcc users 4.2K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 22K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 3.1K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 19K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:50 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 5.9K May 15 18:50 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 2.4K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 9.5K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 2.1K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 9.4K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 3.5K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 17K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 111 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 349 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 3.5K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 20K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 1.7K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 3.8K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 6 May 15 18:50 equiv_col
-rw-r--r-- 1 mcc users 4 May 15 18:50 instance
-rw-r--r-- 1 mcc users 6 May 15 18:50 iscolored
-rwxr-xr-x 1 mcc users 3.9M May 15 18:50 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool itstoolsl
Input is HexagonalGrid-PT-816, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r105-smll-152658635200047
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-00
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-01
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-02
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-03
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-04
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-05
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-06
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-07
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-08
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-09
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-10
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-11
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-12
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-13
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-14
FORMULA_NAME HexagonalGrid-PT-816-ReachabilityCardinality-15

=== Now, execution of the tool begins

BK_START 1527293642645

Using solver Z3 to compute partial order matrices.
Built C files in :
/home/mcc/execution
Invoking ITS tools like this :CommandLine [args=[/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64, --gc-threshold, 2000000, --quiet, -i, /home/mcc/execution/ReachabilityCardinality.pnml.gal, -t, CGAL, -reachable-file, ReachabilityCardinality.prop, --nowitness], workingDir=/home/mcc/execution]

its-reach command run as :

/home/mcc/BenchKit/itstools/plugins/fr.lip6.move.gal.itstools.binaries_1.0.0.201805241334/bin/its-reach-linux64 --gc-threshold 2000000 --quiet -i /home/mcc/execution/ReachabilityCardinality.pnml.gal -t CGAL -reachable-file ReachabilityCardinality.prop --nowitness
Running compilation step : CommandLine [args=[gcc, -c, -I/home/mcc/BenchKit//lts_install_dir//include, -I., -std=c99, -fPIC, -O3, model.c], workingDir=/home/mcc/execution]
Loading property file ReachabilityCardinality.prop.
Read [invariant] property : HexagonalGrid-PT-816-ReachabilityCardinality-00 with value :((!(pb3_13_6<=po2_14_5))||(pb5_9_7<=pil2_2_3))
Read [invariant] property : HexagonalGrid-PT-816-ReachabilityCardinality-01 with value :(pi2_12_8<=pil3_11_9)
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-02 with value :((pb1_4_6>=2)&&(pb6_14_2>=2))
Read [invariant] property : HexagonalGrid-PT-816-ReachabilityCardinality-03 with value :(!(pb5_8_13>=3))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-04 with value :(!((pb2_14_2>=1)||(pb6_13_4<=pbl_11_4)))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-05 with value :((!((pb3_1_3<=pil4_13_1)||(pb4_3_2<=pb1_13_1)))&&(po1_1_8>=3))
Read [invariant] property : HexagonalGrid-PT-816-ReachabilityCardinality-06 with value :(pbl_10_5>=3)
Read [invariant] property : HexagonalGrid-PT-816-ReachabilityCardinality-07 with value :(!((pol2_10_5>=3)||(!(pi1_7_5<=pol3_14_3))))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-08 with value :(!(((pbl_6_3<=pb2_4_11)||(pbl_6_5>=3))||(!(pi6_1_6>=3))))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-09 with value :(!((!(pil1_11_4>=3))||(pb5_7_3<=pol1_12_1)))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-10 with value :(pb5_8_6>=2)
Read [invariant] property : HexagonalGrid-PT-816-ReachabilityCardinality-11 with value :(((!(pi2_12_7>=3))&&((po2_7_1<=pol2_7_10)||(pb6_12_7>=2)))||(((pil1_3_5<=pol2_2_7)||(pb6_13_10>=1))||(pb4_6_13<=pb5_2_6)))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-12 with value :((((pb2_10_12<=pol3_9_1)&&(pb6_11_2>=2))||((po1_4_8<=pol3_4_10)&&(pi3_2_9>=3)))&&(((pbl_2_1>=2)&&(pb3_5_9<=pb6_5_6))||(pi2_2_6<=pil1_1_7)))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-13 with value :(((pi2_6_5<=pi1_4_8)&&(!(pil1_3_4>=1)))&&((pb3_2_9<=pol1_10_13)&&(pi3_8_6>=2)))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-14 with value :(!((!(pb1_6_3<=pil3_4_7))||(!(pb6_4_10>=3))))
Read [reachable] property : HexagonalGrid-PT-816-ReachabilityCardinality-15 with value :((pb2_5_8>=3)&&((!(pi2_9_14>=1))||(!(pbl_8_15>=2))))
Presburger conditions satisfied. Using coverability to approximate state space in K-Induction.
// Phase 1: matrix 6174 rows 3391 cols
invariant :pi2_14_4 + pil2_14_4 = 1
invariant :po1_4_1 + pol1_4_1 = 1
invariant :po1_12_9 + pol1_12_9 = 1
invariant :pi2_13_1 + pil2_13_1 = 1
invariant :pi2_6_13 + pil2_6_13 = 1
invariant :pb1_3_5 + pb2_3_5 + pb3_3_5 + pb4_3_5 + pb5_3_5 + pb6_3_5 + pbl_3_5 = 12
invariant :pb1_8_14 + pb2_8_14 + pb3_8_14 + pb4_8_14 + pb5_8_14 + pb6_8_14 + pbl_8_14 = 12
invariant :po3_4_6 + pol3_4_6 = 1
invariant :po2_8_4 + pol2_8_4 = 1
invariant :po3_1_2 + pol3_1_2 = 1
invariant :po2_3_7 + pol2_3_7 = 1
invariant :pb1_9_3 + pb2_9_3 + pb3_9_3 + pb4_9_3 + pb5_9_3 + pb6_9_3 + pbl_9_3 = 12
invariant :pi2_9_10 + pil2_9_10 = 1
invariant :pi2_4_6 + pil2_4_6 = 1
invariant :pb1_10_5 + pb2_10_5 + pb3_10_5 + pb4_10_5 + pb5_10_5 + pb6_10_5 + pbl_10_5 = 12
invariant :pi2_6_6 + pil2_6_6 = 1
invariant :po1_12_1 + pol1_12_1 = 1
invariant :pi2_10_13 + pil2_10_13 = 1
invariant :pi1_11_2 + pil1_11_2 = 1
invariant :po1_10_12 + pol1_10_12 = 1
invariant :pi5_13_1 + pil5_13_1 = 1
invariant :po2_6_8 + pol2_6_8 = 1
invariant :pb1_15_4 + pb2_15_4 + pb3_15_4 + pb4_15_4 + pb5_15_4 + pb6_15_4 + pbl_15_4 = 12
invariant :pb1_2_9 + pb2_2_9 + pb3_2_9 + pb4_2_9 + pb5_2_9 + pb6_2_9 + pbl_2_9 = 12
invariant :pb1_12_10 + pb2_12_10 + pb3_12_10 + pb4_12_10 + pb5_12_10 + pb6_12_10 + pbl_12_10 = 12
invariant :pi1_6_12 + pil1_6_12 = 1
invariant :pi3_6_2 + pil3_6_2 = 1
invariant :pi2_13_3 + pil2_13_3 = 1
invariant :pb1_4_7 + pb2_4_7 + pb3_4_7 + pb4_4_7 + pb5_4_7 + pb6_4_7 + pbl_4_7 = 12
invariant :pb1_1_3 + pb2_1_3 + pb3_1_3 + pb4_1_3 + pb5_1_3 + pb6_1_3 + pbl_1_3 = 12
invariant :pi2_14_3 + pil2_14_3 = 1
invariant :pi3_8_6 + pil3_8_6 = 1
invariant :pb1_5_3 + pb2_5_3 + pb3_5_3 + pb4_5_3 + pb5_5_3 + pb6_5_3 + pbl_5_3 = 12
invariant :po3_6_8 + pol3_6_8 = 1
invariant :po1_7_7 + pol1_7_7 = 1
invariant :pi3_5_11 + pil3_5_11 = 1
invariant :pi4_8_1 + pil4_8_1 = 1
invariant :po3_9_14 + pol3_9_14 = 1
invariant :pb1_4_4 + pb2_4_4 + pb3_4_4 + pb4_4_4 + pb5_4_4 + pb6_4_4 + pbl_4_4 = 12
invariant :pi3_10_4 + pil3_10_4 = 1
invariant :pb1_7_13 + pb2_7_13 + pb3_7_13 + pb4_7_13 + pb5_7_13 + pb6_7_13 + pbl_7_13 = 12
invariant :po3_6_10 + pol3_6_10 = 1
invariant :pi2_5_4 + pil2_5_4 = 1
invariant :pi3_3_4 + pil3_3_4 = 1
invariant :po2_4_2 + pol2_4_2 = 1
invariant :pi3_13_10 + pil3_13_10 = 1
invariant :pi4_15_7 + pil4_15_7 = 1
invariant :po3_8_4 + pol3_8_4 = 1
invariant :pi1_14_8 + pil1_14_8 = 1
invariant :po1_12_11 + pol1_12_11 = 1
invariant :pb1_11_8 + pb2_11_8 + pb3_11_8 + pb4_11_8 + pb5_11_8 + pb6_11_8 + pbl_11_8 = 12
invariant :po3_3_4 + pol3_3_4 = 1
invariant :pb1_7_10 + pb2_7_10 + pb3_7_10 + pb4_7_10 + pb5_7_10 + pb6_7_10 + pbl_7_10 = 12
invariant :po1_5_8 + pol1_5_8 = 1
invariant :pb1_4_2 + pb2_4_2 + pb3_4_2 + pb4_4_2 + pb5_4_2 + pb6_4_2 + pbl_4_2 = 12
invariant :po1_11_3 + pol1_11_3 = 1
invariant :pi3_2_9 + pil3_2_9 = 1
invariant :po1_1_8 + pol1_1_8 = 1
invariant :po6_1_3 + pol6_1_3 = 1
invariant :pi1_8_6 + pil1_8_6 = 1
invariant :pi2_1_1 + pil2_1_1 = 1
invariant :pi2_11_2 + pil2_11_2 = 1
invariant :pi3_5_4 + pil3_5_4 = 1
invariant :pb1_2_6 + pb2_2_6 + pb3_2_6 + pb4_2_6 + pb5_2_6 + pb6_2_6 + pbl_2_6 = 12
invariant :pi2_9_14 + pil2_9_14 = 1
invariant :pi3_14_1 + pil3_14_1 = 1
invariant :po1_12_8 + pol1_12_8 = 1
invariant :po1_3_9 + pol1_3_9 = 1
invariant :po6_1_6 + pol6_1_6 = 1
invariant :pi2_15_1 + pil2_15_1 = 1
invariant :pi1_3_3 + pil1_3_3 = 1
invariant :po1_9_3 + pol1_9_3 = 1
invariant :pi1_14_5 + pil1_14_5 = 1
invariant :po1_8_2 + pol1_8_2 = 1
invariant :pi3_8_8 + pil3_8_8 = 1
invariant :po5_5_1 + pol5_5_1 = 1
invariant :po3_2_8 + pol3_2_8 = 1
invariant :pi5_10_1 + pil5_10_1 = 1
invariant :po1_12_7 + pol1_12_7 = 1
invariant :po2_12_10 + pol2_12_10 = 1
invariant :po2_14_9 + pol2_14_9 = 1
invariant :po1_8_6 + pol1_8_6 = 1
invariant :po3_8_7 + pol3_8_7 = 1
invariant :po2_5_3 + pol2_5_3 = 1
invariant :po3_7_1 + pol3_7_1 = 1
invariant :po4_10_1 + pol4_10_1 = 1
invariant :pi3_10_10 + pil3_10_10 = 1
invariant :pi1_3_6 + pil1_3_6 = 1
invariant :po2_12_8 + pol2_12_8 = 1
invariant :pi2_9_11 + pil2_9_11 = 1
invariant :pi3_6_4 + pil3_6_4 = 1
invariant :pi5_14_1 + pil5_14_1 = 1
invariant :po2_8_5 + pol2_8_5 = 1
invariant :pi2_9_6 + pil2_9_6 = 1
invariant :po2_5_4 + pol2_5_4 = 1
invariant :pi2_9_4 + pil2_9_4 = 1
invariant :pb1_8_12 + pb2_8_12 + pb3_8_12 + pb4_8_12 + pb5_8_12 + pb6_8_12 + pbl_8_12 = 12
invariant :po1_6_4 + pol1_6_4 = 1
invariant :po3_8_1 + pol3_8_1 = 1
invariant :pi6_1_1 + pil6_1_1 = 1
invariant :pi3_9_2 + pil3_9_2 = 1
invariant :pi3_4_5 + pil3_4_5 = 1
invariant :po1_15_5 + pol1_15_5 = 1
invariant :pi1_5_5 + pil1_5_5 = 1
invariant :pi3_11_12 + pil3_11_12 = 1
invariant :pi1_1_2 + pil1_1_2 = 1
invariant :pi3_14_2 + pil3_14_2 = 1
invariant :pi1_9_3 + pil1_9_3 = 1
invariant :pb1_3_3 + pb2_3_3 + pb3_3_3 + pb4_3_3 + pb5_3_3 + pb6_3_3 + pbl_3_3 = 12
invariant :pi2_10_12 + pil2_10_12 = 1
invariant :po1_8_11 + pol1_8_11 = 1
invariant :pi3_10_12 + pil3_10_12 = 1
invariant :po2_9_2 + pol2_9_2 = 1
invariant :po3_4_11 + pol3_4_11 = 1
invariant :po3_5_9 + pol3_5_9 = 1
invariant :pb1_6_3 + pb2_6_3 + pb3_6_3 + pb4_6_3 + pb5_6_3 + pb6_6_3 + pbl_6_3 = 12
invariant :pb1_4_1 + pb2_4_1 + pb3_4_1 + pb4_4_1 + pb5_4_1 + pb6_4_1 + pbl_4_1 = 12
invariant :pi2_1_5 + pil2_1_5 = 1
invariant :pi1_10_1 + pil1_10_1 = 1
invariant :po1_5_5 + pol1_5_5 = 1
invariant :po1_6_7 + pol1_6_7 = 1
invariant :po2_15_8 + pol2_15_8 = 1
invariant :pi1_4_11 + pil1_4_11 = 1
invariant :po1_13_7 + pol1_13_7 = 1
invariant :po2_12_7 + pol2_12_7 = 1
invariant :po1_3_10 + pol1_3_10 = 1
invariant :pi1_10_10 + pil1_10_10 = 1
invariant :pi2_6_4 + pil2_6_4 = 1
invariant :pb1_7_9 + pb2_7_9 + pb3_7_9 + pb4_7_9 + pb5_7_9 + pb6_7_9 + pbl_7_9 = 12
invariant :pi3_15_6 + pil3_15_6 = 1
invariant :pi2_8_6 + pil2_8_6 = 1
invariant :po2_5_6 + pol2_5_6 = 1
invariant :pi3_8_10 + pil3_8_10 = 1
invariant :pi1_7_13 + pil1_7_13 = 1
invariant :pi1_9_7 + pil1_9_7 = 1
invariant :pi1_6_2 + pil1_6_2 = 1
invariant :pi1_4_7 + pil1_4_7 = 1
invariant :pi2_10_3 + pil2_10_3 = 1
invariant :pi3_9_13 + pil3_9_13 = 1
invariant :pi1_8_13 + pil1_8_13 = 1
invariant :po1_3_1 + pol1_3_1 = 1
invariant :po1_14_1 + pol1_14_1 = 1
invariant :pi5_15_1 + pil5_15_1 = 1
invariant :pi3_8_11 + pil3_8_11 = 1
invariant :pi1_1_3 + pil1_1_3 = 1
invariant :pb1_6_9 + pb2_6_9 + pb3_6_9 + pb4_6_9 + pb5_6_9 + pb6_6_9 + pbl_6_9 = 12
invariant :pb1_2_1 + pb2_2_1 + pb3_2_1 + pb4_2_1 + pb5_2_1 + pb6_2_1 + pbl_2_1 = 12
invariant :po1_5_1 + pol1_5_1 = 1
invariant :pi1_15_4 + pil1_15_4 = 1
invariant :po1_8_10 + pol1_8_10 = 1
invariant :pi1_12_10 + pil1_12_10 = 1
invariant :pi1_10_2 + pil1_10_2 = 1
invariant :pi2_6_1 + pil2_6_1 = 1
invariant :pi2_9_3 + pil2_9_3 = 1
invariant :po1_4_2 + pol1_4_2 = 1
invariant :po2_8_9 + pol2_8_9 = 1
invariant :po3_15_2 + pol3_15_2 = 1
invariant :pi1_7_1 + pil1_7_1 = 1
invariant :po2_6_2 + pol2_6_2 = 1
invariant :po2_9_9 + pol2_9_9 = 1
invariant :po3_7_6 + pol3_7_6 = 1
invariant :pb1_10_3 + pb2_10_3 + pb3_10_3 + pb4_10_3 + pb5_10_3 + pb6_10_3 + pbl_10_3 = 12
invariant :pi1_4_6 + pil1_4_6 = 1
invariant :po1_2_2 + pol1_2_2 = 1
invariant :pi2_4_1 + pil2_4_1 = 1
invariant :pb1_8_15 + pb2_8_15 + pb3_8_15 + pb4_8_15 + pb5_8_15 + pb6_8_15 + pbl_8_15 = 12
invariant :po3_7_10 + pol3_7_10 = 1
invariant :pi3_9_14 + pil3_9_14 = 1
invariant :pb1_3_8 + pb2_3_8 + pb3_3_8 + pb4_3_8 + pb5_3_8 + pb6_3_8 + pbl_3_8 = 12
invariant :po3_4_3 + pol3_4_3 = 1
invariant :po3_14_7 + pol3_14_7 = 1
invariant :po2_8_14 + pol2_8_14 = 1
invariant :po2_11_12 + pol2_11_12 = 1
invariant :pi2_9_12 + pil2_9_12 = 1
invariant :po1_10_10 + pol1_10_10 = 1
invariant :po2_5_5 + pol2_5_5 = 1
invariant :pi2_12_2 + pil2_12_2 = 1
invariant :po1_2_6 + pol1_2_6 = 1
invariant :pi2_10_1 + pil2_10_1 = 1
invariant :pi3_6_3 + pil3_6_3 = 1
invariant :po1_8_7 + pol1_8_7 = 1
invariant :pi2_8_9 + pil2_8_9 = 1
invariant :po1_9_7 + pol1_9_7 = 1
invariant :pb1_13_6 + pb2_13_6 + pb3_13_6 + pb4_13_6 + pb5_13_6 + pb6_13_6 + pbl_13_6 = 12
invariant :pi1_5_10 + pil1_5_10 = 1
invariant :pi4_15_6 + pil4_15_6 = 1
invariant :pi2_12_9 + pil2_12_9 = 1
invariant :pb1_2_4 + pb2_2_4 + pb3_2_4 + pb4_2_4 + pb5_2_4 + pb6_2_4 + pbl_2_4 = 12
invariant :pb1_3_2 + pb2_3_2 + pb3_3_2 + pb4_3_2 + pb5_3_2 + pb6_3_2 + pbl_3_2 = 12
invariant :po1_3_6 + pol1_3_6 = 1
invariant :pb1_10_7 + pb2_10_7 + pb3_10_7 + pb4_10_7 + pb5_10_7 + pb6_10_7 + pbl_10_7 = 12
invariant :pi3_7_6 + pil3_7_6 = 1
invariant :po1_9_12 + pol1_9_12 = 1
invariant :pi3_2_3 + pil3_2_3 = 1
invariant :pi2_7_14 + pil2_7_14 = 1
invariant :pi1_8_2 + pil1_8_2 = 1
invariant :po1_4_4 + pol1_4_4 = 1
invariant :po1_14_7 + pol1_14_7 = 1
invariant :pb1_10_2 + pb2_10_2 + pb3_10_2 + pb4_10_2 + pb5_10_2 + pb6_10_2 + pbl_10_2 = 12
invariant :pi1_7_8 + pil1_7_8 = 1
invariant :po1_10_4 + pol1_10_4 = 1
invariant :po3_3_2 + pol3_3_2 = 1
invariant :po1_14_6 + pol1_14_6 = 1
invariant :pi1_4_5 + pil1_4_5 = 1
invariant :po1_15_4 + pol1_15_4 = 1
invariant :po1_1_6 + pol1_1_6 = 1
invariant :pi2_11_5 + pil2_11_5 = 1
invariant :po1_2_3 + pol1_2_3 = 1
invariant :po1_8_12 + pol1_8_12 = 1
invariant :pb1_2_2 + pb2_2_2 + pb3_2_2 + pb4_2_2 + pb5_2_2 + pb6_2_2 + pbl_2_2 = 12
invariant :po2_7_9 + pol2_7_9 = 1
invariant :pi3_12_6 + pil3_12_6 = 1
invariant :pi2_6_5 + pil2_6_5 = 1
invariant :pi1_11_4 + pil1_11_4 = 1
invariant :pi3_11_1 + pil3_11_1 = 1
invariant :pi3_4_6 + pil3_4_6 = 1
invariant :pb1_14_2 + pb2_14_2 + pb3_14_2 + pb4_14_2 + pb5_14_2 + pb6_14_2 + pbl_14_2 = 12
invariant :pi2_8_11 + pil2_8_11 = 1
invariant :po2_4_1 + pol2_4_1 = 1
invariant :pi2_7_10 + pil2_7_10 = 1
invariant :pi2_11_4 + pil2_11_4 = 1
invariant :po1_9_1 + pol1_9_1 = 1
invariant :pi1_9_8 + pil1_9_8 = 1
invariant :po3_4_1 + pol3_4_1 = 1
invariant :pi1_10_11 + pil1_10_11 = 1
invariant :po1_10_8 + pol1_10_8 = 1
invariant :pi3_5_6 + pil3_5_6 = 1
invariant :pi3_5_3 + pil3_5_3 = 1
invariant :pb1_14_9 + pb2_14_9 + pb3_14_9 + pb4_14_9 + pb5_14_9 + pb6_14_9 + pbl_14_9 = 12
invariant :po2_12_9 + pol2_12_9 = 1
invariant :pi3_9_3 + pil3_9_3 = 1
invariant :po3_14_5 + pol3_14_5 = 1
invariant :pi1_13_4 + pil1_13_4 = 1
invariant :pi1_11_10 + pil1_11_10 = 1
invariant :pi2_1_7 + pil2_1_7 = 1
invariant :po1_14_9 + pol1_14_9 = 1
invariant :po2_10_5 + pol2_10_5 = 1
invariant :pi2_10_11 + pil2_10_11 = 1
invariant :pi1_8_12 + pil1_8_12 = 1
invariant :po3_8_3 + pol3_8_3 = 1
invariant :po1_2_9 + pol1_2_9 = 1
invariant :po1_15_8 + pol1_15_8 = 1
invariant :po3_5_7 + pol3_5_7 = 1
invariant :pi3_4_4 + pil3_4_4 = 1
invariant :po1_15_2 + pol1_15_2 = 1
invariant :pi3_9_6 + pil3_9_6 = 1
invariant :po3_1_5 + pol3_1_5 = 1
invariant :pi1_7_11 + pil1_7_11 = 1
invariant :pi2_11_12 + pil2_11_12 = 1
invariant :pi2_4_2 + pil2_4_2 = 1
invariant :pi4_11_1 + pil4_11_1 = 1
invariant :po5_11_1 + pol5_11_1 = 1
invariant :po2_4_11 + pol2_4_11 = 1
invariant :po3_8_10 + pol3_8_10 = 1
invariant :pi1_5_6 + pil1_5_6 = 1
invariant :pi1_9_4 + pil1_9_4 = 1
invariant :pi1_1_1 + pil1_1_1 = 1
invariant :pi3_5_5 + pil3_5_5 = 1
invariant :pi1_15_7 + pil1_15_7 = 1
invariant :po3_15_3 + pol3_15_3 = 1
invariant :pi1_13_8 + pil1_13_8 = 1
invariant :pi3_15_3 + pil3_15_3 = 1
invariant :po6_3_1 + pol6_3_1 = 1
invariant :po1_5_4 + pol1_5_4 = 1
invariant :pb1_1_7 + pb2_1_7 + pb3_1_7 + pb4_1_7 + pb5_1_7 + pb6_1_7 + pbl_1_7 = 12
invariant :pb1_13_7 + pb2_13_7 + pb3_13_7 + pb4_13_7 + pb5_13_7 + pb6_13_7 + pbl_13_7 = 12
invariant :pb1_10_8 + pb2_10_8 + pb3_10_8 + pb4_10_8 + pb5_10_8 + pb6_10_8 + pbl_10_8 = 12
invariant :pi3_3_2 + pil3_3_2 = 1
invariant :pi2_11_1 + pil2_11_1 = 1
invariant :pi3_7_7 + pil3_7_7 = 1
invariant :po1_8_13 + pol1_8_13 = 1
invariant :pi2_8_12 + pil2_8_12 = 1
invariant :pi3_11_10 + pil3_11_10 = 1
invariant :po1_12_2 + pol1_12_2 = 1
invariant :po3_11_4 + pol3_11_4 = 1
invariant :pi2_2_8 + pil2_2_8 = 1
invariant :pb1_13_9 + pb2_13_9 + pb3_13_9 + pb4_13_9 + pb5_13_9 + pb6_13_9 + pbl_13_9 = 12
invariant :pi1_9_13 + pil1_9_13 = 1
invariant :pb1_13_4 + pb2_13_4 + pb3_13_4 + pb4_13_4 + pb5_13_4 + pb6_13_4 + pbl_13_4 = 12
invariant :pi3_12_5 + pil3_12_5 = 1
invariant :po2_8_10 + pol2_8_10 = 1
invariant :po3_3_7 + pol3_3_7 = 1
invariant :pi3_3_10 + pil3_3_10 = 1
invariant :pi2_12_5 + pil2_12_5 = 1
invariant :pi1_9_2 + pil1_9_2 = 1
invariant :po3_6_3 + pol3_6_3 = 1
invariant :pi2_3_9 + pil2_3_9 = 1
invariant :po1_1_2 + pol1_1_2 = 1
invariant :po2_9_5 + pol2_9_5 = 1
invariant :po1_15_6 + pol1_15_6 = 1
invariant :pi2_12_6 + pil2_12_6 = 1
invariant :pi1_10_3 + pil1_10_3 = 1
invariant :pi3_1_8 + pil3_1_8 = 1
invariant :pi2_8_7 + pil2_8_7 = 1
invariant :pi3_8_12 + pil3_8_12 = 1
invariant :pi6_1_3 + pil6_1_3 = 1
invariant :po1_11_9 + pol1_11_9 = 1
invariant :po3_11_1 + pol3_11_1 = 1
invariant :po2_7_14 + pol2_7_14 = 1
invariant :pi4_15_1 + pil4_15_1 = 1
invariant :pi4_9_1 + pil4_9_1 = 1
invariant :pb1_7_3 + pb2_7_3 + pb3_7_3 + pb4_7_3 + pb5_7_3 + pb6_7_3 + pbl_7_3 = 12
invariant :pi3_7_11 + pil3_7_11 = 1
invariant :pi3_9_12 + pil3_9_12 = 1
invariant :pi3_12_7 + pil3_12_7 = 1
invariant :po1_8_8 + pol1_8_8 = 1
invariant :pi3_12_2 + pil3_12_2 = 1
invariant :po2_4_6 + pol2_4_6 = 1
invariant :po2_8_3 + pol2_8_3 = 1
invariant :po3_12_9 + pol3_12_9 = 1
invariant :pi3_15_5 + pil3_15_5 = 1
invariant :pb1_11_10 + pb2_11_10 + pb3_11_10 + pb4_11_10 + pb5_11_10 + pb6_11_10 + pbl_11_10 = 12
invariant :po1_6_10 + pol1_6_10 = 1
invariant :pb1_5_11 + pb2_5_11 + pb3_5_11 + pb4_5_11 + pb5_5_11 + pb6_5_11 + pbl_5_11 = 12
invariant :po1_3_3 + pol1_3_3 = 1
invariant :po3_10_10 + pol3_10_10 = 1
invariant :pi1_14_1 + pil1_14_1 = 1
invariant :po2_12_4 + pol2_12_4 = 1
invariant :pi2_14_6 + pil2_14_6 = 1
invariant :pi3_12_8 + pil3_12_8 = 1
invariant :pb1_9_7 + pb2_9_7 + pb3_9_7 + pb4_9_7 + pb5_9_7 + pb6_9_7 + pbl_9_7 = 12
invariant :pi1_12_2 + pil1_12_2 = 1
invariant :po3_11_6 + pol3_11_6 = 1
invariant :po1_11_7 + pol1_11_7 = 1
invariant :pi1_1_8 + pil1_1_8 = 1
invariant :pi2_1_3 + pil2_1_3 = 1
invariant :po2_13_3 + pol2_13_3 = 1
invariant :po2_14_6 + pol2_14_6 = 1
invariant :pi3_1_5 + pil3_1_5 = 1
invariant :pi3_10_13 + pil3_10_13 = 1
invariant :pi3_10_7 + pil3_10_7 = 1
invariant :pi1_8_10 + pil1_8_10 = 1
invariant :pi1_1_5 + pil1_1_5 = 1
invariant :po3_4_5 + pol3_4_5 = 1
invariant :po2_9_3 + pol2_9_3 = 1
invariant :pi3_2_8 + pil3_2_8 = 1
invariant :pi1_3_10 + pil1_3_10 = 1
invariant :po3_3_3 + pol3_3_3 = 1
invariant :po2_4_8 + pol2_4_8 = 1
invariant :pi1_11_8 + pil1_11_8 = 1
invariant :pb1_8_11 + pb2_8_11 + pb3_8_11 + pb4_8_11 + pb5_8_11 + pb6_8_11 + pbl_8_11 = 12
invariant :pb1_11_7 + pb2_11_7 + pb3_11_7 + pb4_11_7 + pb5_11_7 + pb6_11_7 + pbl_11_7 = 12
invariant :pi5_6_1 + pil5_6_1 = 1
invariant :pi1_8_4 + pil1_8_4 = 1
invariant :po2_9_11 + pol2_9_11 = 1
invariant :pi5_4_1 + pil5_4_1 = 1
invariant :po1_3_5 + pol1_3_5 = 1
invariant :pb1_12_8 + pb2_12_8 + pb3_12_8 + pb4_12_8 + pb5_12_8 + pb6_12_8 + pbl_12_8 = 12
invariant :pb1_4_11 + pb2_4_11 + pb3_4_11 + pb4_4_11 + pb5_4_11 + pb6_4_11 + pbl_4_11 = 12
invariant :pi1_6_4 + pil1_6_4 = 1
invariant :po1_14_4 + pol1_14_4 = 1
invariant :pi1_12_1 + pil1_12_1 = 1
invariant :pb1_6_4 + pb2_6_4 + pb3_6_4 + pb4_6_4 + pb5_6_4 + pb6_6_4 + pbl_6_4 = 12
invariant :pi1_8_9 + pil1_8_9 = 1
invariant :pi2_10_9 + pil2_10_9 = 1
invariant :pi4_14_1 + pil4_14_1 = 1
invariant :pi3_10_5 + pil3_10_5 = 1
invariant :pi3_6_5 + pil3_6_5 = 1
invariant :pi1_7_14 + pil1_7_14 = 1
invariant :pi1_5_11 + pil1_5_11 = 1
invariant :pi2_15_5 + pil2_15_5 = 1
invariant :pi6_4_1 + pil6_4_1 = 1
invariant :pi5_8_1 + pil5_8_1 = 1
invariant :pi5_5_1 + pil5_5_1 = 1
invariant :po3_11_5 + pol3_11_5 = 1
invariant :pi3_12_9 + pil3_12_9 = 1
invariant :pb1_13_1 + pb2_13_1 + pb3_13_1 + pb4_13_1 + pb5_13_1 + pb6_13_1 + pbl_13_1 = 12
invariant :po6_7_1 + pol6_7_1 = 1
invariant :pi2_6_2 + pil2_6_2 = 1
invariant :po2_2_2 + pol2_2_2 = 1
invariant :pi2_15_7 + pil2_15_7 = 1
invariant :po1_5_7 + pol1_5_7 = 1
invariant :pi3_2_5 + pil3_2_5 = 1
invariant :po2_10_1 + pol2_10_1 = 1
invariant :po3_3_8 + pol3_3_8 = 1
invariant :pi2_8_2 + pil2_8_2 = 1
invariant :pi1_9_6 + pil1_9_6 = 1
invariant :po2_2_3 + pol2_2_3 = 1
invariant :pi2_14_8 + pil2_14_8 = 1
invariant :pi4_15_5 + pil4_15_5 = 1
invariant :po1_4_11 + pol1_4_11 = 1
invariant :po3_13_5 + pol3_13_5 = 1
invariant :pi3_1_7 + pil3_1_7 = 1
invariant :po2_3_1 + pol2_3_1 = 1
invariant :po1_13_10 + pol1_13_10 = 1
invariant :pi1_13_1 + pil1_13_1 = 1
invariant :po3_8_11 + pol3_8_11 = 1
invariant :pi2_14_2 + pil2_14_2 = 1
invariant :pi2_2_6 + pil2_2_6 = 1
invariant :pi1_5_4 + pil1_5_4 = 1
invariant :pi1_8_3 + pil1_8_3 = 1
invariant :po1_10_7 + pol1_10_7 = 1
invariant :po2_5_10 + pol2_5_10 = 1
invariant :pi3_6_1 + pil3_6_1 = 1
invariant :pi1_11_3 + pil1_11_3 = 1
invariant :pb1_3_6 + pb2_3_6 + pb3_3_6 + pb4_3_6 + pb5_3_6 + pb6_3_6 + pbl_3_6 = 12
invariant :po3_1_1 + pol3_1_1 = 1
invariant :po3_1_3 + pol3_1_3 = 1
invariant :po3_7_7 + pol3_7_7 = 1
invariant :pb1_12_11 + pb2_12_11 + pb3_12_11 + pb4_12_11 + pb5_12_11 + pb6_12_11 + pbl_12_11 = 12
invariant :po1_5_9 + pol1_5_9 = 1
invariant :po4_15_5 + pol4_15_5 = 1
invariant :pi6_1_6 + pil6_1_6 = 1
invariant :pb1_14_3 + pb2_14_3 + pb3_14_3 + pb4_14_3 + pb5_14_3 + pb6_14_3 + pbl_14_3 = 12
invariant :pi1_11_5 + pil1_11_5 = 1
invariant :po1_11_10 + pol1_11_10 = 1
invariant :pb1_9_11 + pb2_9_11 + pb3_9_11 + pb4_9_11 + pb5_9_11 + pb6_9_11 + pbl_9_11 = 12
invariant :po2_15_2 + pol2_15_2 = 1
invariant :po1_2_1 + pol1_2_1 = 1
invariant :po2_9_7 + pol2_9_7 = 1
invariant :pi3_9_10 + pil3_9_10 = 1
invariant :pi1_2_1 + pil1_2_1 = 1
invariant :po2_12_5 + pol2_12_5 = 1
invariant :pi1_12_9 + pil1_12_9 = 1
invariant :pi1_7_2 + pil1_7_2 = 1
invariant :pb1_5_6 + pb2_5_6 + pb3_5_6 + pb4_5_6 + pb5_5_6 + pb6_5_6 + pbl_5_6 = 12
invariant :pi3_1_1 + pil3_1_1 = 1
invariant :po2_9_6 + pol2_9_6 = 1
invariant :pb1_6_11 + pb2_6_11 + pb3_6_11 + pb4_6_11 + pb5_6_11 + pb6_6_11 + pbl_6_11 = 12
invariant :pb1_8_9 + pb2_8_9 + pb3_8_9 + pb4_8_9 + pb5_8_9 + pb6_8_9 + pbl_8_9 = 12
invariant :pi3_5_8 + pil3_5_8 = 1
invariant :po2_10_8 + pol2_10_8 = 1
invariant :pb1_8_4 + pb2_8_4 + pb3_8_4 + pb4_8_4 + pb5_8_4 + pb6_8_4 + pbl_8_4 = 12
invariant :pi3_4_10 + pil3_4_10 = 1
invariant :pi3_5_10 + pil3_5_10 = 1
invariant :pi3_12_3 + pil3_12_3 = 1
invariant :pb1_7_2 + pb2_7_2 + pb3_7_2 + pb4_7_2 + pb5_7_2 + pb6_7_2 + pbl_7_2 = 12
invariant :pi1_11_7 + pil1_11_7 = 1
invariant :pi1_5_1 + pil1_5_1 = 1
invariant :pi3_7_4 + pil3_7_4 = 1
invariant :po3_7_12 + pol3_7_12 = 1
invariant :pb1_6_10 + pb2_6_10 + pb3_6_10 + pb4_6_10 + pb5_6_10 + pb6_6_10 + -1'pbl_1_1 + -1'pbl_1_2 + -1'pbl_1_3 + -1'pbl_1_4 + -1'pbl_1_5 + -1'pbl_1_6 + -1'pbl_1_7 + -1'pbl_1_8 + -1'pbl_10_1 + -1'pbl_10_10 + -1'pbl_10_11 + -1'pbl_10_12 + -1'pbl_10_13 + -1'pbl_10_2 + -1'pbl_10_3 + -1'pbl_10_4 + -1'pbl_10_5 + -1'pbl_10_6 + -1'pbl_10_7 + -1'pbl_10_8 + -1'pbl_10_9 + -1'pbl_11_1 + -1'pbl_11_10 + -1'pbl_11_11 + -1'pbl_11_12 + -1'pbl_11_2 + -1'pbl_11_3 + -1'pbl_11_4 + -1'pbl_11_5 + -1'pbl_11_6 + -1'pbl_11_7 + -1'pbl_11_8 + -1'pbl_11_9 + -1'pbl_12_1 + -1'pbl_12_10 + -1'pbl_12_11 + -1'pbl_12_2 + -1'pbl_12_3 + -1'pbl_12_4 + -1'pbl_12_5 + -1'pbl_12_6 + -1'pbl_12_7 + -1'pbl_12_8 + -1'pbl_12_9 + -1'pbl_13_1 + -1'pbl_13_10 + -1'pbl_13_2 + -1'pbl_13_3 + -1'pbl_13_4 + -1'pbl_13_5 + -1'pbl_13_6 + -1'pbl_13_7 + -1'pbl_13_8 + -1'pbl_13_9 + -1'pbl_14_1 + -1'pbl_14_2 + -1'pbl_14_3 + -1'pbl_14_4 + -1'pbl_14_5 + -1'pbl_14_6 + -1'pbl_14_7 + -1'pbl_14_8 + -1'pbl_14_9 + -1'pbl_15_1 + -1'pbl_15_2 + -1'pbl_15_3 + -1'pbl_15_4 + -1'pbl_15_5 + -1'pbl_15_6 + -1'pbl_15_7 + -1'pbl_15_8 + -1'pbl_2_1 + -1'pbl_2_2 + -1'pbl_2_3 + -1'pbl_2_4 + -1'pbl_2_5 + -1'pbl_2_6 + -1'pbl_2_7 + -1'pbl_2_8 + -1'pbl_2_9 + -1'pbl_3_1 + -1'pbl_3_10 + -1'pbl_3_2 + -1'pbl_3_3 + -1'pbl_3_4 + -1'pbl_3_5 + -1'pbl_3_6 + -1'pbl_3_7 + -1'pbl_3_8 + -1'pbl_3_9 + -1'pbl_4_1 + -1'pbl_4_10 + -1'pbl_4_11 + -1'pbl_4_2 + -1'pbl_4_3 + -1'pbl_4_4 + -1'pbl_4_5 + -1'pbl_4_6 + -1'pbl_4_7 + -1'pbl_4_8 + -1'pbl_4_9 + -1'pbl_5_1 + -1'pbl_5_10 + -1'pbl_5_11 + -1'pbl_5_12 + -1'pbl_5_2 + -1'pbl_5_3 + -1'pbl_5_4 + -1'pbl_5_5 + -1'pbl_5_6 + -1'pbl_5_7 + -1'pbl_5_8 + -1'pbl_5_9 + -1'pbl_6_1 + -1'pbl_6_11 + -1'pbl_6_12 + -1'pbl_6_13 + -1'pbl_6_2 + -1'pbl_6_3 + -1'pbl_6_4 + -1'pbl_6_5 + -1'pbl_6_6 + -1'pbl_6_7 + -1'pbl_6_8 + -1'pbl_6_9 + -1'pbl_7_1 + -1'pbl_7_10 + -1'pbl_7_11 + -1'pbl_7_12 + -1'pbl_7_13 + -1'pbl_7_14 + -1'pbl_7_2 + -1'pbl_7_3 + -1'pbl_7_4 + -1'pbl_7_5 + -1'pbl_7_6 + -1'pbl_7_7 + -1'pbl_7_8 + -1'pbl_7_9 + -1'pbl_8_1 + -1'pbl_8_10 + -1'pbl_8_11 + -1'pbl_8_12 + -1'pbl_8_13 + -1'pbl_8_14 + -1'pbl_8_15 + -1'pbl_8_2 + -1'pbl_8_3 + -1'pbl_8_4 + -1'pbl_8_5 + -1'pbl_8_6 + -1'pbl_8_7 + -1'pbl_8_8 + -1'pbl_8_9 + -1'pbl_9_1 + -1'pbl_9_10 + -1'pbl_9_11 + -1'pbl_9_12 + -1'pbl_9_13 + -1'pbl_9_14 + -1'pbl_9_2 + -1'pbl_9_3 + -1'pbl_9_4 + -1'pbl_9_5 + -1'pbl_9_6 + -1'pbl_9_7 + -1'pbl_9_8 + -1'pbl_9_9 + -1'pil1_1_1 + -1'pil1_1_2 + -1'pil1_1_3 + -1'pil1_1_4 + -1'pil1_1_5 + -1'pil1_1_6 + -1'pil1_1_7 + -1'pil1_1_8 + -1'pil1_10_1 + -1'pil1_10_10 + -1'pil1_10_11 + -1'pil1_10_12 + -1'pil1_10_13 + -1'pil1_10_2 + -1'pil1_10_3 + -1'pil1_10_4 + -1'pil1_10_5 + -1'pil1_10_6 + -1'pil1_10_7 + -1'pil1_10_8 + -1'pil1_10_9 + -1'pil1_11_1 + -1'pil1_11_10 + -1'pil1_11_11 + -1'pil1_11_12 + -1'pil1_11_2 + -1'pil1_11_3 + -1'pil1_11_4 + -1'pil1_11_5 + -1'pil1_11_6 + -1'pil1_11_7 + -1'pil1_11_8 + -1'pil1_11_9 + -1'pil1_12_1 + -1'pil1_12_10 + -1'pil1_12_11 + -1'pil1_12_2 + -1'pil1_12_3 + -1'pil1_12_4 + -1'pil1_12_5 + -1'pil1_12_6 + -1'pil1_12_7 + -1'pil1_12_8 + -1'pil1_12_9 + -1'pil1_13_1 + -1'pil1_13_10 + -1'pil1_13_2 + -1'pil1_13_3 + -1'pil1_13_4 + -1'pil1_13_5 + -1'pil1_13_6 + -1'pil1_13_7 + -1'pil1_13_8 + -1'pil1_13_9 + -1'pil1_14_1 + -1'pil1_14_2 + -1'pil1_14_3 + -1'pil1_14_4 + -1'pil1_14_5 + -1'pil1_14_6 + -1'pil1_14_7 + -1'pil1_14_8 + -1'pil1_14_9 + -1'pil1_15_1 + -1'pil1_15_2 + -1'pil1_15_3 + -1'pil1_15_4 + -1'pil1_15_5 + -1'pil1_15_6 + -1'pil1_15_7 + -1'pil1_15_8 + -1'pil1_2_1 + -1'pil1_2_2 + -1'pil1_2_3 + -1'pil1_2_4 + -1'pil1_2_5 + -1'pil1_2_6 + -1'pil1_2_7 + -1'pil1_2_8 + -1'pil1_2_9 + -1'pil1_3_1 + -1'pil1_3_10 + -1'pil1_3_2 + -1'pil1_3_3 + -1'pil1_3_4 + -1'pil1_3_5 + -1'pil1_3_6 + -1'pil1_3_7 + -1'pil1_3_8 + -1'pil1_3_9 + -1'pil1_4_1 + -1'pil1_4_10 + -1'pil1_4_11 + -1'pil1_4_2 + -1'pil1_4_3 + -1'pil1_4_4 + -1'pil1_4_5 + -1'pil1_4_6 + -1'pil1_4_7 + -1'pil1_4_8 + -1'pil1_4_9 + -1'pil1_5_1 + -1'pil1_5_10 + -1'pil1_5_11 + -1'pil1_5_12 + -1'pil1_5_2 + -1'pil1_5_3 + -1'pil1_5_4 + -1'pil1_5_5 + -1'pil1_5_6 + -1'pil1_5_7 + -1'pil1_5_8 + -1'pil1_5_9 + -1'pil1_6_1 + -1'pil1_6_10 + -1'pil1_6_11 + -1'pil1_6_12 + -1'pil1_6_13 + -1'pil1_6_2 + -1'pil1_6_3 + -1'pil1_6_4 + -1'pil1_6_5 + -1'pil1_6_6 + -1'pil1_6_7 + -1'pil1_6_8 + -1'pil1_6_9 + -1'pil1_7_1 + -1'pil1_7_10 + -1'pil1_7_11 + -1'pil1_7_12 + -1'pil1_7_13 + -1'pil1_7_14 + -1'pil1_7_2 + -1'pil1_7_3 + -1'pil1_7_4 + -1'pil1_7_5 + -1'pil1_7_6 + -1'pil1_7_7 + -1'pil1_7_8 + -1'pil1_7_9 + -1'pil1_8_1 + -1'pil1_8_10 + -1'pil1_8_11 + -1'pil1_8_12 + -1'pil1_8_13 + -1'pil1_8_14 + -1'pil1_8_15 + -1'pil1_8_2 + -1'pil1_8_3 + -1'pil1_8_4 + -1'pil1_8_5 + -1'pil1_8_6 + -1'pil1_8_7 + -1'pil1_8_8 + -1'pil1_8_9 + -1'pil1_9_1 + -1'pil1_9_10 + -1'pil1_9_11 + -1'pil1_9_12 + -1'pil1_9_13 + -1'pil1_9_14 + -1'pil1_9_2 + -1'pil1_9_3 + -1'pil1_9_4 + -1'pil1_9_5 + -1'pil1_9_6 + -1'pil1_9_7 + -1'pil1_9_8 + -1'pil1_9_9 + -1'pil2_1_1 + -1'pil2_1_2 + -1'pil2_1_3 + -1'pil2_1_4 + -1'pil2_1_5 + -1'pil2_1_6 + -1'pil2_1_7 + -1'pil2_1_8 + -1'pil2_10_1 + -1'pil2_10_10 + -1'pil2_10_11 + -1'pil2_10_12 + -1'pil2_10_13 + -1'pil2_10_2 + -1'pil2_10_3 + -1'pil2_10_4 + -1'pil2_10_5 + -1'pil2_10_6 + -1'pil2_10_7 + -1'pil2_10_8 + -1'pil2_10_9 + -1'pil2_11_1 + -1'pil2_11_10 + -1'pil2_11_11 + -1'pil2_11_12 + -1'pil2_11_2 + -1'pil2_11_3 + -1'pil2_11_4 + -1'pil2_11_5 + -1'pil2_11_6 + -1'pil2_11_7 + -1'pil2_11_8 + -1'pil2_11_9 + -1'pil2_12_1 + -1'pil2_12_10 + -1'pil2_12_11 + -1'pil2_12_2 + -1'pil2_12_3 + -1'pil2_12_4 + -1'pil2_12_5 + -1'pil2_12_6 + -1'pil2_12_7 + -1'pil2_12_8 + -1'pil2_12_9 + -1'pil2_13_1 + -1'pil2_13_10 + -1'pil2_13_2 + -1'pil2_13_3 + -1'pil2_13_4 + -1'pil2_13_5 + -1'pil2_13_6 + -1'pil2_13_7 + -1'pil2_13_8 + -1'pil2_13_9 + -1'pil2_14_1 + -1'pil2_14_2 + -1'pil2_14_3 + -1'pil2_14_4 + -1'pil2_14_5 + -1'pil2_14_6 + -1'pil2_14_7 + -1'pil2_14_8 + -1'pil2_14_9 + -1'pil2_15_1 + -1'pil2_15_2 + -1'pil2_15_3 + -1'pil2_15_4 + -1'pil2_15_5 + -1'pil2_15_6 + -1'pil2_15_7 + -1'pil2_15_8 + -1'pil2_2_1 + -1'pil2_2_2 + -1'pil2_2_3 + -1'pil2_2_4 + -1'pil2_2_5 + -1'pil2_2_6 + -1'pil2_2_7 + -1'pil2_2_8 + -1'pil2_2_9 + -1'pil2_3_1 + -1'pil2_3_10 + -1'pil2_3_2 + -1'pil2_3_3 + -1'pil2_3_4 + -1'pil2_3_5 + -1'pil2_3_6 + -1'pil2_3_7 + -1'pil2_3_8 + -1'pil2_3_9 + -1'pil2_4_1 + -1'pil2_4_10 + -1'pil2_4_11 + -1'pil2_4_2 + -1'pil2_4_3 + -1'pil2_4_4 + -1'pil2_4_5 + -1'pil2_4_6 + -1'pil2_4_7 + -1'pil2_4_8 + -1'pil2_4_9 + -1'pil2_5_1 + -1'pil2_5_10 + -1'pil2_5_11 + -1'pil2_5_12 + -1'pil2_5_2 + -1'pil2_5_3 + -1'pil2_5_4 + -1'pil2_5_5 + -1'pil2_5_6 + -1'pil2_5_7 + -1'pil2_5_8 + -1'pil2_5_9 + -1'pil2_6_1 + -1'pil2_6_10 + -1'pil2_6_11 + -1'pil2_6_12 + -1'pil2_6_13 + -1'pil2_6_2 + -1'pil2_6_3 + -1'pil2_6_4 + -1'pil2_6_5 + -1'pil2_6_6 + -1'pil2_6_7 + -1'pil2_6_8 + -1'pil2_6_9 + -1'pil2_7_1 + -1'pil2_7_10 + -1'pil2_7_11 + -1'pil2_7_12 + -1'pil2_7_13 + -1'pil2_7_14 + -1'pil2_7_2 + -1'pil2_7_3 + -1'pil2_7_4 + -1'pil2_7_5 + -1'pil2_7_6 + -1'pil2_7_7 + -1'pil2_7_8 + -1'pil2_7_9 + -1'pil2_8_1 + -1'pil2_8_10 + -1'pil2_8_11 + -1'pil2_8_12 + -1'pil2_8_13 + -1'pil2_8_14 + -1'pil2_8_15 + -1'pil2_8_2 + -1'pil2_8_3 + -1'pil2_8_4 + -1'pil2_8_5 + -1'pil2_8_6 + -1'pil2_8_7 + -1'pil2_8_8 + -1'pil2_8_9 + -1'pil2_9_1 + -1'pil2_9_10 + -1'pil2_9_11 + -1'pil2_9_12 + -1'pil2_9_13 + -1'pil2_9_14 + -1'pil2_9_2 + -1'pil2_9_3 + -1'pil2_9_4 + -1'pil2_9_5 + -1'pil2_9_6 + -1'pil2_9_7 + -1'pil2_9_8 + -1'pil2_9_9 + -1'pil3_1_1 + -1'pil3_1_2 + -1'pil3_1_3 + -1'pil3_1_4 + -1'pil3_1_5 + -1'pil3_1_6 + -1'pil3_1_7 + -1'pil3_1_8 + -1'pil3_10_1 + -1'pil3_10_10 + -1'pil3_10_11 + -1'pil3_10_12 + -1'pil3_10_13 + -1'pil3_10_2 + -1'pil3_10_3 + -1'pil3_10_4 + -1'pil3_10_5 + -1'pil3_10_6 + -1'pil3_10_7 + -1'pil3_10_8 + -1'pil3_10_9 + -1'pil3_11_1 + -1'pil3_11_10 + -1'pil3_11_11 + -1'pil3_11_12 + -1'pil3_11_2 + -1'pil3_11_3 + -1'pil3_11_4 + -1'pil3_11_5 + -1'pil3_11_6 + -1'pil3_11_7 + -1'pil3_11_8 + -1'pil3_11_9 + -1'pil3_12_1 + -1'pil3_12_10 + -1'pil3_12_11 + -1'pil3_12_2 + -1'pil3_12_3 + -1'pil3_12_4 + -1'pil3_12_5 + -1'pil3_12_6 + -1'pil3_12_7 + -1'pil3_12_8 + -1'pil3_12_9 + -1'pil3_13_1 + -1'pil3_13_10 + -1'pil3_13_2 + -1'pil3_13_3 + -1'pil3_13_4 + -1'pil3_13_5 + -1'pil3_13_6 + -1'pil3_13_7 + -1'pil3_13_8 + -1'pil3_13_9 + -1'pil3_14_1 + -1'pil3_14_2 + -1'pil3_14_3 + -1'pil3_14_4 + -1'pil3_14_5 + -1'pil3_14_6 + -1'pil3_14_7 + -1'pil3_14_8 + -1'pil3_14_9 + -1'pil3_15_1 + -1'pil3_15_2 + -1'pil3_15_3 + -1'pil3_15_4 + -1'pil3_15_5 + -1'pil3_15_6 + -1'pil3_15_7 + -1'pil3_15_8 + -1'pil3_2_1 + -1'pil3_2_2 + -1'pil3_2_3 + -1'pil3_2_4 + -1'pil3_2_5 + -1'pil3_2_6 + -1'pil3_2_7 + -1'pil3_2_8 + -1'pil3_2_9 + -1'pil3_3_1 + -1'pil3_3_10 + -1'pil3_3_2 + -1'pil3_3_3 + -1'pil3_3_4 + -1'pil3_3_5 + -1'pil3_3_6 + -1'pil3_3_7 + -1'pil3_3_8 + -1'pil3_3_9 + -1'pil3_4_1 + -1'pil3_4_10 + -1'pil3_4_11 + -1'pil3_4_2 + -1'pil3_4_3 + -1'pil3_4_4 + -1'pil3_4_5 + -1'pil3_4_6 + -1'pil3_4_7 + -1'pil3_4_8 + -1'pil3_4_9 + -1'pil3_5_1 + -1'pil3_5_10 + -1'pil3_5_11 + -1'pil3_5_12 + -1'pil3_5_2 + -1'pil3_5_3 + -1'pil3_5_4 + -1'pil3_5_5 + -1'pil3_5_6 + -1'pil3_5_7 + -1'pil3_5_8 + -1'pil3_5_9 + -1'pil3_6_1 + -1'pil3_6_10 + -1'pil3_6_11 + -1'pil3_6_12 + -1'pil3_6_13 + -1'pil3_6_2 + -1'pil3_6_3 + -1'pil3_6_4 + -1'pil3_6_5 + -1'pil3_6_6 + -1'pil3_6_7 + -1'pil3_6_8 + -1'pil3_6_9 + -1'pil3_7_1 + -1'pil3_7_10 + -1'pil3_7_11 + -1'pil3_7_12 + -1'pil3_7_13 + -1'pil3_7_14 + -1'pil3_7_2 + -1'pil3_7_3 + -1'pil3_7_4 + -1'pil3_7_5 + -1'pil3_7_6 + -1'pil3_7_7 + -1'pil3_7_8 + -1'pil3_7_9 + -1'pil3_8_1 + -1'pil3_8_10 + -1'pil3_8_11 + -1'pil3_8_12 + -1'pil3_8_13 + -1'pil3_8_14 + -1'pil3_8_15 + -1'pil3_8_2 + -1'pil3_8_3 + -1'pil3_8_4 + -1'pil3_8_5 + -1'pil3_8_6 + -1'pil3_8_7 + -1'pil3_8_8 + -1'pil3_8_9 + -1'pil3_9_1 + -1'pil3_9_10 + -1'pil3_9_11 + -1'pil3_9_12 + -1'pil3_9_13 + -1'pil3_9_14 + -1'pil3_9_2 + -1'pil3_9_3 + -1'pil3_9_4 + -1'pil3_9_5 + -1'pil3_9_6 + -1'pil3_9_7 + -1'pil3_9_8 + -1'pil3_9_9 + -1'pil4_10_1 + -1'pil4_11_1 + -1'pil4_12_1 + -1'pil4_13_1 + -1'pil4_14_1 + -1'pil4_15_1 + -1'pil4_15_2 + -1'pil4_15_3 + -1'pil4_15_4 + -1'pil4_15_5 + -1'pil4_15_6 + -1'pil4_15_7 + -1'pil4_15_8 + -1'pil4_8_1 + -1'pil4_9_1 + -1'pil5_1_1 + -1'pil5_10_1 + -1'pil5_11_1 + -1'pil5_12_1 + -1'pil5_13_1 + -1'pil5_14_1 + -1'pil5_15_1 + -1'pil5_2_1 + -1'pil5_3_1 + -1'pil5_4_1 + -1'pil5_5_1 + -1'pil5_6_1 + -1'pil5_7_1 + -1'pil5_8_1 + -1'pil5_9_1 + -1'pil6_1_1 + -1'pil6_1_2 + -1'pil6_1_3 + -1'pil6_1_4 + -1'pil6_1_5 + -1'pil6_1_6 + -1'pil6_1_7 + -1'pil6_1_8 + -1'pil6_2_1 + -1'pil6_3_1 + -1'pil6_4_1 + -1'pil6_5_1 + -1'pil6_6_1 + -1'pil6_7_1 + -1'pil6_8_1 + -1'pol1_1_1 + -1'pol1_1_2 + -1'pol1_1_3 + -1'pol1_1_4 + -1'pol1_1_5 + -1'pol1_1_6 + -1'pol1_1_7 + -1'pol1_1_8 + -1'pol1_10_1 + -1'pol1_10_10 + -1'pol1_10_11 + -1'pol1_10_12 + -1'pol1_10_13 + -1'pol1_10_2 + -1'pol1_10_3 + -1'pol1_10_4 + -1'pol1_10_5 + -1'pol1_10_6 + -1'pol1_10_7 + -1'pol1_10_8 + -1'pol1_10_9 + -1'pol1_11_1 + -1'pol1_11_10 + -1'pol1_11_11 + -1'pol1_11_12 + -1'pol1_11_2 + -1'pol1_11_3 + -1'pol1_11_4 + -1'pol1_11_5 + -1'pol1_11_6 + -1'pol1_11_7 + -1'pol1_11_8 + -1'pol1_11_9 + -1'pol1_12_1 + -1'pol1_12_10 + -1'pol1_12_11 + -1'pol1_12_2 + -1'pol1_12_3 + -1'pol1_12_4 + -1'pol1_12_5 + -1'pol1_12_6 + -1'pol1_12_7 + -1'pol1_12_8 + -1'pol1_12_9 + -1'pol1_13_1 + -1'pol1_13_10 + -1'pol1_13_2 + -1'pol1_13_3 + -1'pol1_13_4 + -1'pol1_13_5 + -1'pol1_13_6 + -1'pol1_13_7 + -1'pol1_13_8 + -1'pol1_13_9 + -1'pol1_14_1 + -1'pol1_14_2 + -1'pol1_14_3 + -1'pol1_14_4 + -1'pol1_14_5 + -1'pol1_14_6 + -1'pol1_14_7 + -1'pol1_14_8 + -1'pol1_14_9 + -1'pol1_15_1 + -1'pol1_15_2 + -1'pol1_15_3 + -1'pol1_15_4 + -1'pol1_15_5 + -1'pol1_15_6 + -1'pol1_15_7 + -1'pol1_15_8 + -1'pol1_2_1 + -1'pol1_2_2 + -1'pol1_2_3 + -1'pol1_2_4 + -1'pol1_2_5 + -1'pol1_2_6 + -1'pol1_2_7 + -1'pol1_2_8 + -1'pol1_2_9 + -1'pol1_3_1 + -1'pol1_3_10 + -1'pol1_3_2 + -1'pol1_3_3 + -1'pol1_3_4 + -1'pol1_3_5 + -1'pol1_3_6 + -1'pol1_3_7 + -1'pol1_3_8 + -1'pol1_3_9 + -1'pol1_4_1 + -1'pol1_4_10 + -1'pol1_4_11 + -1'pol1_4_2 + -1'pol1_4_3 + -1'pol1_4_4 + -1'pol1_4_5 + -1'pol1_4_6 + -1'pol1_4_7 + -1'pol1_4_8 + -1'pol1_4_9 + -1'pol1_5_1 + -1'pol1_5_10 + -1'pol1_5_11 + -1'pol1_5_12 + -1'pol1_5_2 + -1'pol1_5_3 + -1'pol1_5_4 + -1'pol1_5_5 + -1'pol1_5_6 + -1'pol1_5_7 + -1'pol1_5_8 + -1'pol1_5_9 + -1'pol1_6_1 + -1'pol1_6_10 + -1'pol1_6_11 + -1'pol1_6_12 + -1'pol1_6_13 + -1'pol1_6_2 + -1'pol1_6_3 + -1'pol1_6_4 + -1'pol1_6_5 + -1'pol1_6_6 + -1'pol1_6_7 + -1'pol1_6_8 + -1'pol1_6_9 + -1'pol1_7_1 + -1'pol1_7_10 + -1'pol1_7_11 + -1'pol1_7_12 + -1'pol1_7_13 + -1'pol1_7_14 + -1'pol1_7_2 + -1'pol1_7_3 + -1'pol1_7_4 + -1'pol1_7_5 + -1'pol1_7_6 + -1'pol1_7_7 + -1'pol1_7_8 + -1'pol1_7_9 + -1'pol1_8_1 + -1'pol1_8_10 + -1'pol1_8_11 + -1'pol1_8_12 + -1'pol1_8_13 + -1'pol1_8_14 + -1'pol1_8_15 + -1'pol1_8_2 + -1'pol1_8_3 + -1'pol1_8_4 + -1'pol1_8_5 + -1'pol1_8_6 + -1'pol1_8_7 + -1'pol1_8_8 + -1'pol1_8_9 + -1'pol1_9_1 + -1'pol1_9_10 + -1'pol1_9_11 + -1'pol1_9_12 + -1'pol1_9_13 + -1'pol1_9_14 + -1'pol1_9_2 + -1'pol1_9_3 + -1'pol1_9_4 + -1'pol1_9_5 + -1'pol1_9_6 + -1'pol1_9_7 + -1'pol1_9_8 + -1'pol1_9_9 + -1'pol2_1_1 + -1'pol2_1_2 + -1'pol2_1_3 + -1'pol2_1_4 + -1'pol2_1_5 + -1'pol2_1_6 + -1'pol2_1_7 + -1'pol2_1_8 + -1'pol2_10_1 + -1'pol2_10_10 + -1'pol2_10_11 + -1'pol2_10_12 + -1'pol2_10_13 + -1'pol2_10_2 + -1'pol2_10_3 + -1'pol2_10_4 + -1'pol2_10_5 + -1'pol2_10_6 + -1'pol2_10_7 + -1'pol2_10_8 + -1'pol2_10_9 + -1'pol2_11_1 + -1'pol2_11_10 + -1'pol2_11_11 + -1'pol2_11_12 + -1'pol2_11_2 + -1'pol2_11_3 + -1'pol2_11_4 + -1'pol2_11_5 + -1'pol2_11_6 + -1'pol2_11_7 + -1'pol2_11_8 + -1'pol2_11_9 + -1'pol2_12_1 + -1'pol2_12_10 + -1'pol2_12_11 + -1'pol2_12_2 + -1'pol2_12_3 + -1'pol2_12_4 + -1'pol2_12_5 + -1'pol2_12_6 + -1'pol2_12_7 + -1'pol2_12_8 + -1'pol2_12_9 + -1'pol2_13_1 + -1'pol2_13_10 + -1'pol2_13_2 + -1'pol2_13_3 + -1'pol2_13_4 + -1'pol2_13_5 + -1'pol2_13_6 + -1'pol2_13_7 + -1'pol2_13_8 + -1'pol2_13_9 + -1'pol2_14_1 + -1'pol2_14_2 + -1'pol2_14_3 + -1'pol2_14_4 + -1'pol2_14_5 + -1'pol2_14_6 + -1'pol2_14_7 + -1'pol2_14_8 + -1'pol2_14_9 + -1'pol2_15_1 + -1'pol2_15_2 + -1'pol2_15_3 + -1'pol2_15_4 + -1'pol2_15_5 + -1'pol2_15_6 + -1'pol2_15_7 + -1'pol2_15_8 + -1'pol2_2_1 + -1'pol2_2_2 + -1'pol2_2_3 + -1'pol2_2_4 + -1'pol2_2_5 + -1'pol2_2_6 + -1'pol2_2_7 + -1'pol2_2_8 + -1'pol2_2_9 + -1'pol2_3_1 + -1'pol2_3_10 + -1'pol2_3_2 + -1'pol2_3_3 + -1'pol2_3_4 + -1'pol2_3_5 + -1'pol2_3_6 + -1'pol2_3_7 + -1'pol2_3_8 + -1'pol2_3_9 + -1'pol2_4_1 + -1'pol2_4_10 + -1'pol2_4_11 + -1'pol2_4_2 + -1'pol2_4_3 + -1'pol2_4_4 + -1'pol2_4_5 + -1'pol2_4_6 + -1'pol2_4_7 + -1'pol2_4_8 + -1'pol2_4_9 + -1'pol2_5_1 + -1'pol2_5_10 + -1'pol2_5_11 + -1'pol2_5_12 + -1'pol2_5_2 + -1'pol2_5_3 + -1'pol2_5_4 + -1'pol2_5_5 + -1'pol2_5_6 + -1'pol2_5_7 + -1'pol2_5_8 + -1'pol2_5_9 + -1'pol2_6_1 + -1'pol2_6_10 + -1'pol2_6_11 + -1'pol2_6_12 + -1'pol2_6_13 + -1'pol2_6_2 + -1'pol2_6_3 + -1'pol2_6_4 + -1'pol2_6_5 + -1'pol2_6_6 + -1'pol2_6_7 + -1'pol2_6_8 + -1'pol2_6_9 + -1'pol2_7_1 + -1'pol2_7_10 + -1'pol2_7_11 + -1'pol2_7_12 + -1'pol2_7_13 + -1'pol2_7_14 + -1'pol2_7_2 + -1'pol2_7_3 + -1'pol2_7_4 + -1'pol2_7_5 + -1'pol2_7_6 + -1'pol2_7_7 + -1'pol2_7_8 + -1'pol2_7_9 + -1'pol2_8_1 + -1'pol2_8_10 + -1'pol2_8_11 + -1'pol2_8_12 + -1'pol2_8_13 + -1'pol2_8_14 + -1'pol2_8_15 + -1'pol2_8_2 + -1'pol2_8_3 + -1'pol2_8_4 + -1'pol2_8_5 + -1'pol2_8_6 + -1'pol2_8_7 + -1'pol2_8_8 + -1'pol2_8_9 + -1'pol2_9_1 + -1'pol2_9_10 + -1'pol2_9_11 + -1'pol2_9_12 + -1'pol2_9_13 + -1'pol2_9_14 + -1'pol2_9_2 + -1'pol2_9_3 + -1'pol2_9_4 + -1'pol2_9_5 + -1'pol2_9_6 + -1'pol2_9_7 + -1'pol2_9_8 + -1'pol2_9_9 + -1'pol3_1_1 + -1'pol3_1_2 + -1'pol3_1_3 + -1'pol3_1_4 + -1'pol3_1_5 + -1'pol3_1_6 + -1'pol3_1_7 + -1'pol3_1_8 + -1'pol3_10_1 + -1'pol3_10_10 + -1'pol3_10_11 + -1'pol3_10_12 + -1'pol3_10_13 + -1'pol3_10_2 + -1'pol3_10_3 + -1'pol3_10_4 + -1'pol3_10_5 + -1'pol3_10_6 + -1'pol3_10_7 + -1'pol3_10_8 + -1'pol3_10_9 + -1'pol3_11_1 + -1'pol3_11_10 + -1'pol3_11_11 + -1'pol3_11_12 + -1'pol3_11_2 + -1'pol3_11_3 + -1'pol3_11_4 + -1'pol3_11_5 + -1'pol3_11_6 + -1'pol3_11_7 + -1'pol3_11_8 + -1'pol3_11_9 + -1'pol3_12_1 + -1'pol3_12_10 + -1'pol3_12_11 + -1'pol3_12_2 + -1'pol3_12_3 + -1'pol3_12_4 + -1'pol3_12_5 + -1'pol3_12_6 + -1'pol3_12_7 + -1'pol3_12_8 + -1'pol3_12_9 + -1'pol3_13_1 + -1'pol3_13_10 + -1'pol3_13_2 + -1'pol3_13_3 + -1'pol3_13_4 + -1'pol3_13_5 + -1'pol3_13_6 + -1'pol3_13_7 + -1'pol3_13_8 + -1'pol3_13_9 + -1'pol3_14_1 + -1'pol3_14_2 + -1'pol3_14_3 + -1'pol3_14_4 + -1'pol3_14_5 + -1'pol3_14_6 + -1'pol3_14_7 + -1'pol3_14_8 + -1'pol3_14_9 + -1'pol3_15_1 + -1'pol3_15_2 + -1'pol3_15_3 + -1'pol3_15_4 + -1'pol3_15_5 + -1'pol3_15_6 + -1'pol3_15_7 + -1'pol3_15_8 + -1'pol3_2_1 + -1'pol3_2_2 + -1'pol3_2_3 + -1'pol3_2_4 + -1'pol3_2_5 + -1'pol3_2_6 + -1'pol3_2_7 + -1'pol3_2_8 + -1'pol3_2_9 + -1'pol3_3_1 + -1'pol3_3_10 + -1'pol3_3_2 + -1'pol3_3_3 + -1'pol3_3_4 + -1'pol3_3_5 + -1'pol3_3_6 + -1'pol3_3_7 + -1'pol3_3_8 + -1'pol3_3_9 + -1'pol3_4_1 + -1'pol3_4_10 + -1'pol3_4_11 + -1'pol3_4_2 + -1'pol3_4_3 + -1'pol3_4_4 + -1'pol3_4_5 + -1'pol3_4_6 + -1'pol3_4_7 + -1'pol3_4_8 + -1'pol3_4_9 + -1'pol3_5_1 + -1'pol3_5_10 + -1'pol3_5_11 + -1'pol3_5_12 + -1'pol3_5_2 + -1'pol3_5_3 + -1'pol3_5_4 + -1'pol3_5_5 + -1'pol3_5_6 + -1'pol3_5_7 + -1'pol3_5_8 + -1'pol3_5_9 + -1'pol3_6_1 + -1'pol3_6_10 + -1'pol3_6_11 + -1'pol3_6_12 + -1'pol3_6_13 + -1'pol3_6_2 + -1'pol3_6_3 + -1'pol3_6_4 + -1'pol3_6_5 + -1'pol3_6_6 + -1'pol3_6_7 + -1'pol3_6_8 + -1'pol3_6_9 + -1'pol3_7_1 + -1'pol3_7_10 + -1'pol3_7_11 + -1'pol3_7_12 + -1'pol3_7_13 + -1'pol3_7_14 + -1'pol3_7_2 + -1'pol3_7_3 + -1'pol3_7_4 + -1'pol3_7_5 + -1'pol3_7_6 + -1'pol3_7_7 + -1'pol3_7_8 + -1'pol3_7_9 + -1'pol3_8_1 + -1'pol3_8_10 + -1'pol3_8_11 + -1'pol3_8_12 + -1'pol3_8_13 + -1'pol3_8_14 + -1'pol3_8_15 + -1'pol3_8_2 + -1'pol3_8_3 + -1'pol3_8_4 + -1'pol3_8_5 + -1'pol3_8_6 + -1'pol3_8_7 + -1'pol3_8_8 + -1'pol3_8_9 + -1'pol3_9_1 + -1'pol3_9_10 + -1'pol3_9_11 + -1'pol3_9_12 + -1'pol3_9_13 + -1'pol3_9_14 + -1'pol3_9_2 + -1'pol3_9_3 + -1'pol3_9_4 + -1'pol3_9_5 + -1'pol3_9_6 + -1'pol3_9_7 + -1'pol3_9_8 + -1'pol3_9_9 + -1'pol4_10_1 + -1'pol4_11_1 + -1'pol4_12_1 + -1'pol4_13_1 + -1'pol4_14_1 + -1'pol4_15_1 + -1'pol4_15_2 + -1'pol4_15_3 + -1'pol4_15_4 + -1'pol4_15_5 + -1'pol4_15_6 + -1'pol4_15_7 + -1'pol4_15_8 + -1'pol4_8_1 + -1'pol4_9_1 + -1'pol5_1_1 + -1'pol5_10_1 + -1'pol5_11_1 + -1'pol5_12_1 + -1'pol5_13_1 + -1'pol5_14_1 + -1'pol5_15_1 + -1'pol5_2_1 + -1'pol5_3_1 + -1'pol5_4_1 + -1'pol5_5_1 + -1'pol5_6_1 + -1'pol5_7_1 + -1'pol5_8_1 + -1'pol5_9_1 + -1'pol6_1_1 + -1'pol6_1_2 + -1'pol6_1_3 + -1'pol6_1_4 + -1'pol6_1_5 + -1'pol6_1_6 + -1'pol6_1_7 + -1'pol6_1_8 + -1'pol6_2_1 + -1'pol6_3_1 + -1'pol6_4_1 + -1'pol6_5_1 + -1'pol6_6_1 + -1'pol6_7_1 + -1'pol6_8_1 = -2106
invariant :po1_4_5 + pol1_4_5 = 1
invariant :po3_13_1 + pol3_13_1 = 1
invariant :pb1_10_1 + pb2_10_1 + pb3_10_1 + pb4_10_1 + pb5_10_1 + pb6_10_1 + pbl_10_1 = 12
invariant :pi3_5_1 + pil3_5_1 = 1
invariant :po2_8_6 + pol2_8_6 = 1
invariant :pi2_10_7 + pil2_10_7 = 1
invariant :pi3_8_3 + pil3_8_3 = 1
invariant :po1_13_4 + pol1_13_4 = 1
invariant :po4_14_1 + pol4_14_1 = 1
invariant :po2_9_10 + pol2_9_10 = 1
invariant :po1_7_13 + pol1_7_13 = 1
invariant :pb1_9_4 + pb2_9_4 + pb3_9_4 + pb4_9_4 + pb5_9_4 + pb6_9_4 + pbl_9_4 = 12
invariant :pi2_14_7 + pil2_14_7 = 1
invariant :pi1_15_8 + pil1_15_8 = 1
invariant :po3_6_5 + pol3_6_5 = 1
invariant :pi1_9_9 + pil1_9_9 = 1
invariant :pb1_15_7 + pb2_15_7 + pb3_15_7 + pb4_15_7 + pb5_15_7 + pb6_15_7 + pbl_15_7 = 12
invariant :po2_13_1 + pol2_13_1 = 1
invariant :po2_8_1 + pol2_8_1 = 1
invariant :pi4_10_1 + pil4_10_1 = 1
invariant :po2_13_5 + pol2_13_5 = 1
invariant :po4_15_3 + pol4_15_3 = 1
invariant :po1_11_2 + pol1_11_2 = 1
invariant :po2_13_10 + pol2_13_10 = 1
invariant :pb1_9_8 + pb2_9_8 + pb3_9_8 + pb4_9_8 + pb5_9_8 + pb6_9_8 + pbl_9_8 = 12
invariant :po1_7_6 + pol1_7_6 = 1
invariant :pi2_8_8 + pil2_8_8 = 1
invariant :pi3_7_1 + pil3_7_1 = 1
invariant :po1_7_11 + pol1_7_11 = 1
invariant :pi1_12_3 + pil1_12_3 = 1
invariant :pi2_11_3 + pil2_11_3 = 1
invariant :po2_4_10 + pol2_4_10 = 1
invariant :pi2_6_8 + pil2_6_8 = 1
invariant :pi3_13_5 + pil3_13_5 = 1
invariant :po1_12_3 + pol1_12_3 = 1
invariant :po1_12_6 + pol1_12_6 = 1
invariant :po1_11_12 + pol1_11_12 = 1
invariant :po2_1_3 + pol2_1_3 = 1
invariant :pi2_4_4 + pil2_4_4 = 1
invariant :po2_12_1 + pol2_12_1 = 1
invariant :po3_2_7 + pol3_2_7 = 1
invariant :po1_15_3 + pol1_15_3 = 1
invariant :pb1_7_4 + pb2_7_4 + pb3_7_4 + pb4_7_4 + pb5_7_4 + pb6_7_4 + pbl_7_4 = 12
invariant :po6_1_2 + pol6_1_2 = 1
invariant :pi2_5_7 + pil2_5_7 = 1
invariant :po1_12_5 + pol1_12_5 = 1
invariant :pi3_11_4 + pil3_11_4 = 1
invariant :pb1_5_8 + pb2_5_8 + pb3_5_8 + pb4_5_8 + pb5_5_8 + pb6_5_8 + pbl_5_8 = 12
invariant :pi3_9_1 + pil3_9_1 = 1
invariant :po1_7_1 + pol1_7_1 = 1
invariant :po2_3_2 + pol2_3_2 = 1
invariant :pb1_11_4 + pb2_11_4 + pb3_11_4 + pb4_11_4 + pb5_11_4 + pb6_11_4 + pbl_11_4 = 12
invariant :po3_10_12 + pol3_10_12 = 1
invariant :pi6_2_1 + pil6_2_1 = 1
invariant :po2_3_9 + pol2_3_9 = 1
invariant :pb1_7_8 + pb2_7_8 + pb3_7_8 + pb4_7_8 + pb5_7_8 + pb6_7_8 + pbl_7_8 = 12
invariant :pi2_8_10 + pil2_8_10 = 1
invariant :pi2_1_2 + pil2_1_2 = 1
invariant :po3_8_12 + pol3_8_12 = 1
invariant :po1_14_2 + pol1_14_2 = 1
invariant :po1_11_8 + pol1_11_8 = 1
invariant :pi1_11_6 + pil1_11_6 = 1
invariant :po1_13_5 + pol1_13_5 = 1
invariant :po6_6_1 + pol6_6_1 = 1
invariant :pi1_10_5 + pil1_10_5 = 1
invariant :pi2_7_2 + pil2_7_2 = 1
invariant :po3_8_15 + pol3_8_15 = 1
invariant :po1_15_1 + pol1_15_1 = 1
invariant :po2_13_2 + pol2_13_2 = 1
invariant :pb1_7_14 + pb2_7_14 + pb3_7_14 + pb4_7_14 + pb5_7_14 + pb6_7_14 + pbl_7_14 = 12
invariant :po2_3_8 + pol2_3_8 = 1
invariant :po2_1_8 + pol2_1_8 = 1
invariant :po1_2_8 + pol1_2_8 = 1
invariant :po3_12_5 + pol3_12_5 = 1
invariant :pi3_4_3 + pil3_4_3 = 1
invariant :po3_1_7 + pol3_1_7 = 1
invariant :po3_8_14 + pol3_8_14 = 1
invariant :po5_3_1 + pol5_3_1 = 1
invariant :pi1_2_9 + pil1_2_9 = 1
invariant :pb1_9_9 + pb2_9_9 + pb3_9_9 + pb4_9_9 + pb5_9_9 + pb6_9_9 + pbl_9_9 = 12
invariant :pi2_13_4 + pil2_13_4 = 1
invariant :po3_7_3 + pol3_7_3 = 1
invariant :po1_6_13 + pol1_6_13 = 1
invariant :po3_15_5 + pol3_15_5 = 1
invariant :pi1_3_7 + pil1_3_7 = 1
invariant :po2_6_6 + pol2_6_6 = 1
invariant :po3_10_5 + pol3_10_5 = 1
invariant :po1_13_9 + pol1_13_9 = 1
invariant :po3_12_10 + pol3_12_10 = 1
invariant :pi1_7_9 + pil1_7_9 = 1
invariant :pi3_5_7 + pil3_5_7 = 1
invariant :pi2_9_13 + pil2_9_13 = 1
invariant :pi3_11_11 + pil3_11_11 = 1
invariant :po1_6_11 + pol1_6_11 = 1
invariant :pi3_15_1 + pil3_15_1 = 1
invariant :po2_11_7 + pol2_11_7 = 1
invariant :pi1_4_10 + pil1_4_10 = 1
invariant :pb1_14_6 + pb2_14_6 + pb3_14_6 + pb4_14_6 + pb5_14_6 + pb6_14_6 + pbl_14_6 = 12
invariant :po3_11_8 + pol3_11_8 = 1
invariant :pi3_1_4 + pil3_1_4 = 1
invariant :pi3_15_2 + pil3_15_2 = 1
invariant :pi2_9_1 + pil2_9_1 = 1
invariant :po1_7_9 + pol1_7_9 = 1
invariant :pi2_3_10 + pil2_3_10 = 1
invariant :po2_5_12 + pol2_5_12 = 1
invariant :pi1_3_1 + pil1_3_1 = 1
invariant :pb1_4_5 + pb2_4_5 + pb3_4_5 + pb4_4_5 + pb5_4_5 + pb6_4_5 + pbl_4_5 = 12
invariant :pi2_15_8 + pil2_15_8 = 1
invariant :po4_15_1 + pol4_15_1 = 1
invariant :po2_14_2 + pol2_14_2 = 1
invariant :po3_5_6 + pol3_5_6 = 1
invariant :pb1_10_9 + pb2_10_9 + pb3_10_9 + pb4_10_9 + pb5_10_9 + pb6_10_9 + pbl_10_9 = 12
invariant :pi3_13_9 + pil3_13_9 = 1
invariant :po2_1_4 + pol2_1_4 = 1
invariant :po2_6_10 + pol2_6_10 = 1
invariant :po3_9_12 + pol3_9_12 = 1
invariant :pi2_8_13 + pil2_8_13 = 1
invariant :po1_12_10 + pol1_12_10 = 1
invariant :po2_14_7 + pol2_14_7 = 1
invariant :pi1_8_14 + pil1_8_14 = 1
invariant :po2_14_8 + pol2_14_8 = 1
invariant :po2_2_8 + pol2_2_8 = 1
invariant :pi2_4_5 + pil2_4_5 = 1
invariant :po2_13_9 + pol2_13_9 = 1
invariant :po5_1_1 + pol5_1_1 = 1
invariant :po3_7_9 + pol3_7_9 = 1
invariant :po2_10_13 + pol2_10_13 = 1
invariant :pi3_7_8 + pil3_7_8 = 1
invariant :pb1_4_10 + pb2_4_10 + pb3_4_10 + pb4_4_10 + pb5_4_10 + pb6_4_10 + pbl_4_10 = 12
invariant :pi6_1_4 + pil6_1_4 = 1
invariant :pi1_12_8 + pil1_12_8 = 1
invariant :pi6_1_2 + pil6_1_2 = 1
invariant :pi1_8_7 + pil1_8_7 = 1
invariant :po2_6_4 + pol2_6_4 = 1
invariant :pi2_5_1 + pil2_5_1 = 1
invariant :po2_8_12 + pol2_8_12 = 1
invariant :po1_5_6 + pol1_5_6 = 1
invariant :pi2_3_3 + pil2_3_3 = 1
invariant :po2_13_8 + pol2_13_8 = 1
invariant :pi1_10_8 + pil1_10_8 = 1
invariant :pi1_15_5 + pil1_15_5 = 1
invariant :pi1_4_3 + pil1_4_3 = 1
invariant :po1_5_2 + pol1_5_2 = 1
invariant :po1_6_8 + pol1_6_8 = 1
invariant :pi2_7_3 + pil2_7_3 = 1
invariant :po1_6_1 + pol1_6_1 = 1
invariant :po2_2_4 + pol2_2_4 = 1
invariant :po3_13_10 + pol3_13_10 = 1
invariant :pb1_9_13 + pb2_9_13 + pb3_9_13 + pb4_9_13 + pb5_9_13 + pb6_9_13 + pbl_9_13 = 12
invariant :po3_14_2 + pol3_14_2 = 1
invariant :po1_7_5 + pol1_7_5 = 1
invariant :po2_4_9 + pol2_4_9 = 1
invariant :pi2_15_6 + pil2_15_6 = 1
invariant :po1_8_9 + pol1_8_9 = 1
invariant :pi1_10_12 + pil1_10_12 = 1
invariant :pb1_8_1 + pb2_8_1 + pb3_8_1 + pb4_8_1 + pb5_8_1 + pb6_8_1 + pbl_8_1 = 12
invariant :pi2_9_7 + pil2_9_7 = 1
invariant :pi1_10_9 + pil1_10_9 = 1
invariant :po1_8_15 + pol1_8_15 = 1
invariant :pi5_7_1 + pil5_7_1 = 1
invariant :po5_4_1 + pol5_4_1 = 1
invariant :pb1_8_10 + pb2_8_10 + pb3_8_10 + pb4_8_10 + pb5_8_10 + pb6_8_10 + pbl_8_10 = 12
invariant :po3_12_6 + pol3_12_6 = 1
invariant :pi3_6_7 + pil3_6_7 = 1
invariant :po5_15_1 + pol5_15_1 = 1
invariant :po2_7_3 + pol2_7_3 = 1
invariant :po1_7_8 + pol1_7_8 = 1
invariant :pb1_8_2 + pb2_8_2 + pb3_8_2 + pb4_8_2 + pb5_8_2 + pb6_8_2 + pbl_8_2 = 12
invariant :pi3_2_4 + pil3_2_4 = 1
invariant :pi3_4_7 + pil3_4_7 = 1
invariant :po2_7_6 + pol2_7_6 = 1
invariant :pi4_15_4 + pil4_15_4 = 1
invariant :pi3_15_7 + pil3_15_7 = 1
invariant :pi1_13_5 + pil1_13_5 = 1
invariant :pi1_1_7 + pil1_1_7 = 1
invariant :pi3_13_4 + pil3_13_4 = 1
invariant :pi1_15_3 + pil1_15_3 = 1
invariant :pi2_2_4 + pil2_2_4 = 1
invariant :po3_8_6 + pol3_8_6 = 1
invariant :po3_13_7 + pol3_13_7 = 1
invariant :po1_5_12 + pol1_5_12 = 1
invariant :pb1_10_12 + pb2_10_12 + pb3_10_12 + pb4_10_12 + pb5_10_12 + pb6_10_12 + pbl_10_12 = 12
invariant :po2_11_8 + pol2_11_8 = 1
invariant :pb1_11_1 + pb2_11_1 + pb3_11_1 + pb4_11_1 + pb5_11_1 + pb6_11_1 + pbl_11_1 = 12
invariant :pb1_7_5 + pb2_7_5 + pb3_7_5 + pb4_7_5 + pb5_7_5 + pb6_7_5 + pbl_7_5 = 12
invariant :pi3_1_2 + pil3_1_2 = 1
invariant :po2_5_11 + pol2_5_11 = 1
invariant :pi3_4_1 + pil3_4_1 = 1
invariant :po3_5_10 + pol3_5_10 = 1
invariant :pi1_3_4 + pil1_3_4 = 1
invariant :pi3_6_6 + pil3_6_6 = 1
invariant :pi3_2_7 + pil3_2_7 = 1
invariant :pb1_3_7 + pb2_3_7 + pb3_3_7 + pb4_3_7 + pb5_3_7 + pb6_3_7 + pbl_3_7 = 12
invariant :pi1_8_1 + pil1_8_1 = 1
invariant :po1_8_1 + pol1_8_1 = 1
invariant :pi2_9_5 + pil2_9_5 = 1
invariant :po3_7_4 + pol3_7_4 = 1
invariant :po2_2_7 + pol2_2_7 = 1
invariant :pi2_3_5 + pil2_3_5 = 1
invariant :pi2_3_7 + pil2_3_7 = 1
invariant :pi6_8_1 + pil6_8_1 = 1
invariant :pi3_5_12 + pil3_5_12 = 1
invariant :pb1_4_3 + pb2_4_3 + pb3_4_3 + pb4_4_3 + pb5_4_3 + pb6_4_3 + pbl_4_3 = 12
invariant :pb1_7_11 + pb2_7_11 + pb3_7_11 + pb4_7_11 + pb5_7_11 + pb6_7_11 + pbl_7_11 = 12
invariant :pi3_6_11 + pil3_6_11 = 1
invariant :pi2_7_1 + pil2_7_1 = 1
invariant :pi3_10_1 + pil3_10_1 = 1
invariant :pb1_11_11 + pb2_11_11 + pb3_11_11 + pb4_11_11 + pb5_11_11 + pb6_11_11 + pbl_11_11 = 12
invariant :po3_9_6 + pol3_9_6 = 1
invariant :po1_11_5 + pol1_11_5 = 1
invariant :po3_4_10 + pol3_4_10 = 1
invariant :po2_15_4 + pol2_15_4 = 1
invariant :po1_2_7 + pol1_2_7 = 1
invariant :pi1_12_11 + pil1_12_11 = 1
invariant :pi1_13_7 + pil1_13_7 = 1
invariant :po4_15_8 + pol4_15_8 = 1
invariant :pi1_4_2 + pil1_4_2 = 1
invariant :po2_10_7 + pol2_10_7 = 1
invariant :po3_11_12 + pol3_11_12 = 1
invariant :pi3_11_9 + pil3_11_9 = 1
invariant :pi2_2_2 + pil2_2_2 = 1
invariant :po2_2_6 + pol2_2_6 = 1
invariant :po3_9_8 + pol3_9_8 = 1
invariant :pi1_7_7 + pil1_7_7 = 1
invariant :po2_13_7 + pol2_13_7 = 1
invariant :pi1_7_6 + pil1_7_6 = 1
invariant :po1_7_4 + pol1_7_4 = 1
invariant :pi1_3_9 + pil1_3_9 = 1
invariant :pb1_6_12 + pb2_6_12 + pb3_6_12 + pb4_6_12 + pb5_6_12 + pb6_6_12 + pbl_6_12 = 12
invariant :pb1_15_8 + pb2_15_8 + pb3_15_8 + pb4_15_8 + pb5_15_8 + pb6_15_8 + pbl_15_8 = 12
invariant :pi2_5_6 + pil2_5_6 = 1
invariant :pi3_14_9 + pil3_14_9 = 1
invariant :po4_13_1 + pol4_13_1 = 1
invariant :pi2_7_5 + pil2_7_5 = 1
invariant :po3_3_10 + pol3_3_10 = 1
invariant :po2_4_4 + pol2_4_4 = 1
invariant :pb1_13_3 + pb2_13_3 + pb3_13_3 + pb4_13_3 + pb5_13_3 + pb6_13_3 + pbl_13_3 = 12
invariant :pi3_14_5 + pil3_14_5 = 1
invariant :pbl_1_1 + pbl_1_2 + pbl_1_3 + pbl_1_4 + pbl_1_5 + pbl_1_6 + pbl_1_7 + pbl_1_8 + pbl_10_1 + pbl_10_10 + pbl_10_11 + pbl_10_12 + pbl_10_13 + pbl_10_2 + pbl_10_3 + pbl_10_4 + pbl_10_5 + pbl_10_6 + pbl_10_7 + pbl_10_8 + pbl_10_9 + pbl_11_1 + pbl_11_10 + pbl_11_11 + pbl_11_12 + pbl_11_2 + pbl_11_3 + pbl_11_4 + pbl_11_5 + pbl_11_6 + pbl_11_7 + pbl_11_8 + pbl_11_9 + pbl_12_1 + pbl_12_10 + pbl_12_11 + pbl_12_2 + pbl_12_3 + pbl_12_4 + pbl_12_5 + pbl_12_6 + pbl_12_7 + pbl_12_8 + pbl_12_9 + pbl_13_1 + pbl_13_10 + pbl_13_2 + pbl_13_3 + pbl_13_4 + pbl_13_5 + pbl_13_6 + pbl_13_7 + pbl_13_8 + pbl_13_9 + pbl_14_1 + pbl_14_2 + pbl_14_3 + pbl_14_4 + pbl_14_5 + pbl_14_6 + pbl_14_7 + pbl_14_8 + pbl_14_9 + pbl_15_1 + pbl_15_2 + pbl_15_3 + pbl_15_4 + pbl_15_5 + pbl_15_6 + pbl_15_7 + pbl_15_8 + pbl_2_1 + pbl_2_2 + pbl_2_3 + pbl_2_4 + pbl_2_5 + pbl_2_6 + pbl_2_7 + pbl_2_8 + pbl_2_9 + pbl_3_1 + pbl_3_10 + pbl_3_2 + pbl_3_3 + pbl_3_4 + pbl_3_5 + pbl_3_6 + pbl_3_7 + pbl_3_8 + pbl_3_9 + pbl_4_1 + pbl_4_10 + pbl_4_11 + pbl_4_2 + pbl_4_3 + pbl_4_4 + pbl_4_5 + pbl_4_6 + pbl_4_7 + pbl_4_8 + pbl_4_9 + pbl_5_1 + pbl_5_10 + pbl_5_11 + pbl_5_12 + pbl_5_2 + pbl_5_3 + pbl_5_4 + pbl_5_5 + pbl_5_6 + pbl_5_7 + pbl_5_8 + pbl_5_9 + pbl_6_1 + pbl_6_10 + pbl_6_11 + pbl_6_12 + pbl_6_13 + pbl_6_2 + pbl_6_3 + pbl_6_4 + pbl_6_5 + pbl_6_6 + pbl_6_7 + pbl_6_8 + pbl_6_9 + pbl_7_1 + pbl_7_10 + pbl_7_11 + pbl_7_12 + pbl_7_13 + pbl_7_14 + pbl_7_2 + pbl_7_3 + pbl_7_4 + pbl_7_5 + pbl_7_6 + pbl_7_7 + pbl_7_8 + pbl_7_9 + pbl_8_1 + pbl_8_10 + pbl_8_11 + pbl_8_12 + pbl_8_13 + pbl_8_14 + pbl_8_15 + pbl_8_2 + pbl_8_3 + pbl_8_4 + pbl_8_5 + pbl_8_6 + pbl_8_7 + pbl_8_8 + pbl_8_9 + pbl_9_1 + pbl_9_10 + pbl_9_11 + pbl_9_12 + pbl_9_13 + pbl_9_14 + pbl_9_2 + pbl_9_3 + pbl_9_4 + pbl_9_5 + pbl_9_6 + pbl_9_7 + pbl_9_8 + pbl_9_9 + pil1_1_1 + pil1_1_2 + pil1_1_3 + pil1_1_4 + pil1_1_5 + pil1_1_6 + pil1_1_7 + pil1_1_8 + pil1_10_1 + pil1_10_10 + pil1_10_11 + pil1_10_12 + pil1_10_13 + pil1_10_2 + pil1_10_3 + pil1_10_4 + pil1_10_5 + pil1_10_6 + pil1_10_7 + pil1_10_8 + pil1_10_9 + pil1_11_1 + pil1_11_10 + pil1_11_11 + pil1_11_12 + pil1_11_2 + pil1_11_3 + pil1_11_4 + pil1_11_5 + pil1_11_6 + pil1_11_7 + pil1_11_8 + pil1_11_9 + pil1_12_1 + pil1_12_10 + pil1_12_11 + pil1_12_2 + pil1_12_3 + pil1_12_4 + pil1_12_5 + pil1_12_6 + pil1_12_7 + pil1_12_8 + pil1_12_9 + pil1_13_1 + pil1_13_10 + pil1_13_2 + pil1_13_3 + pil1_13_4 + pil1_13_5 + pil1_13_6 + pil1_13_7 + pil1_13_8 + pil1_13_9 + pil1_14_1 + pil1_14_2 + pil1_14_3 + pil1_14_4 + pil1_14_5 + pil1_14_6 + pil1_14_7 + pil1_14_8 + pil1_14_9 + pil1_15_1 + pil1_15_2 + pil1_15_3 + pil1_15_4 + pil1_15_5 + pil1_15_6 + pil1_15_7 + pil1_15_8 + pil1_2_1 + pil1_2_2 + pil1_2_3 + pil1_2_4 + pil1_2_5 + pil1_2_6 + pil1_2_7 + pil1_2_8 + pil1_2_9 + pil1_3_1 + pil1_3_10 + pil1_3_2 + pil1_3_3 + pil1_3_4 + pil1_3_5 + pil1_3_6 + pil1_3_7 + pil1_3_8 + pil1_3_9 + pil1_4_1 + pil1_4_10 + pil1_4_11 + pil1_4_2 + pil1_4_3 + pil1_4_4 + pil1_4_5 + pil1_4_6 + pil1_4_7 + pil1_4_8 + pil1_4_9 + pil1_5_1 + pil1_5_10 + pil1_5_11 + pil1_5_12 + pil1_5_2 + pil1_5_3 + pil1_5_4 + pil1_5_5 + pil1_5_6 + pil1_5_7 + pil1_5_8 + pil1_5_9 + pil1_6_1 + pil1_6_10 + pil1_6_11 + pil1_6_12 + pil1_6_13 + pil1_6_2 + pil1_6_3 + pil1_6_4 + pil1_6_5 + pil1_6_6 + pil1_6_7 + pil1_6_8 + pil1_6_9 + pil1_7_1 + pil1_7_10 + pil1_7_11 + pil1_7_12 + pil1_7_13 + pil1_7_14 + pil1_7_2 + pil1_7_3 + pil1_7_4 + pil1_7_5 + pil1_7_6 + pil1_7_7 + pil1_7_8 + pil1_7_9 + pil1_8_1 + pil1_8_10 + pil1_8_11 + pil1_8_12 + pil1_8_13 + pil1_8_14 + pil1_8_15 + pil1_8_2 + pil1_8_3 + pil1_8_4 + pil1_8_5 + pil1_8_6 + pil1_8_7 + pil1_8_8 + pil1_8_9 + pil1_9_1 + pil1_9_10 + pil1_9_11 + pil1_9_12 + pil1_9_13 + pil1_9_14 + pil1_9_2 + pil1_9_3 + pil1_9_4 + pil1_9_5 + pil1_9_6 + pil1_9_7 + pil1_9_8 + pil1_9_9 + pil2_1_1 + pil2_1_2 + pil2_1_3 + pil2_1_4 + pil2_1_5 + pil2_1_6 + pil2_1_7 + pil2_1_8 + pil2_10_1 + pil2_10_10 + pil2_10_11 + pil2_10_12 + pil2_10_13 + pil2_10_2 + pil2_10_3 + pil2_10_4 + pil2_10_5 + pil2_10_6 + pil2_10_7 + pil2_10_8 + pil2_10_9 + pil2_11_1 + pil2_11_10 + pil2_11_11 + pil2_11_12 + pil2_11_2 + pil2_11_3 + pil2_11_4 + pil2_11_5 + pil2_11_6 + pil2_11_7 + pil2_11_8 + pil2_11_9 + pil2_12_1 + pil2_12_10 + pil2_12_11 + pil2_12_2 + pil2_12_3 + pil2_12_4 + pil2_12_5 + pil2_12_6 + pil2_12_7 + pil2_12_8 + pil2_12_9 + pil2_13_1 + pil2_13_10 + pil2_13_2 + pil2_13_3 + pil2_13_4 + pil2_13_5 + pil2_13_6 + pil2_13_7 + pil2_13_8 + pil2_13_9 + pil2_14_1 + pil2_14_2 + pil2_14_3 + pil2_14_4 + pil2_14_5 + pil2_14_6 + pil2_14_7 + pil2_14_8 + pil2_14_9 + pil2_15_1 + pil2_15_2 + pil2_15_3 + pil2_15_4 + pil2_15_5 + pil2_15_6 + pil2_15_7 + pil2_15_8 + pil2_2_1 + pil2_2_2 + pil2_2_3 + pil2_2_4 + pil2_2_5 + pil2_2_6 + pil2_2_7 + pil2_2_8 + pil2_2_9 + pil2_3_1 + pil2_3_10 + pil2_3_2 + pil2_3_3 + pil2_3_4 + pil2_3_5 + pil2_3_6 + pil2_3_7 + pil2_3_8 + pil2_3_9 + pil2_4_1 + pil2_4_10 + pil2_4_11 + pil2_4_2 + pil2_4_3 + pil2_4_4 + pil2_4_5 + pil2_4_6 + pil2_4_7 + pil2_4_8 + pil2_4_9 + pil2_5_1 + pil2_5_10 + pil2_5_11 + pil2_5_12 + pil2_5_2 + pil2_5_3 + pil2_5_4 + pil2_5_5 + pil2_5_6 + pil2_5_7 + pil2_5_8 + pil2_5_9 + pil2_6_1 + pil2_6_10 + pil2_6_11 + pil2_6_12 + pil2_6_13 + pil2_6_2 + pil2_6_3 + pil2_6_4 + pil2_6_5 + pil2_6_6 + pil2_6_7 + pil2_6_8 + pil2_6_9 + pil2_7_1 + pil2_7_10 + pil2_7_11 + pil2_7_12 + pil2_7_13 + pil2_7_14 + pil2_7_2 + pil2_7_3 + pil2_7_4 + pil2_7_5 + pil2_7_6 + pil2_7_7 + pil2_7_8 + pil2_7_9 + pil2_8_1 + pil2_8_10 + pil2_8_11 + pil2_8_12 + pil2_8_13 + pil2_8_14 + pil2_8_15 + pil2_8_2 + pil2_8_3 + pil2_8_4 + pil2_8_5 + pil2_8_6 + pil2_8_7 + pil2_8_8 + pil2_8_9 + pil2_9_1 + pil2_9_10 + pil2_9_11 + pil2_9_12 + pil2_9_13 + pil2_9_14 + pil2_9_2 + pil2_9_3 + pil2_9_4 + pil2_9_5 + pil2_9_6 + pil2_9_7 + pil2_9_8 + pil2_9_9 + pil3_1_1 + pil3_1_2 + pil3_1_3 + pil3_1_4 + pil3_1_5 + pil3_1_6 + pil3_1_7 + pil3_1_8 + pil3_10_1 + pil3_10_10 + pil3_10_11 + pil3_10_12 + pil3_10_13 + pil3_10_2 + pil3_10_3 + pil3_10_4 + pil3_10_5 + pil3_10_6 + pil3_10_7 + pil3_10_8 + pil3_10_9 + pil3_11_1 + pil3_11_10 + pil3_11_11 + pil3_11_12 + pil3_11_2 + pil3_11_3 + pil3_11_4 + pil3_11_5 + pil3_11_6 + pil3_11_7 + pil3_11_8 + pil3_11_9 + pil3_12_1 + pil3_12_10 + pil3_12_11 + pil3_12_2 + pil3_12_3 + pil3_12_4 + pil3_12_5 + pil3_12_6 + pil3_12_7 + pil3_12_8 + pil3_12_9 + pil3_13_1 + pil3_13_10 + pil3_13_2 + pil3_13_3 + pil3_13_4 + pil3_13_5 + pil3_13_6 + pil3_13_7 + pil3_13_8 + pil3_13_9 + pil3_14_1 + pil3_14_2 + pil3_14_3 + pil3_14_4 + pil3_14_5 + pil3_14_6 + pil3_14_7 + pil3_14_8 + pil3_14_9 + pil3_15_1 + pil3_15_2 + pil3_15_3 + pil3_15_4 + pil3_15_5 + pil3_15_6 + pil3_15_7 + pil3_15_8 + pil3_2_1 + pil3_2_2 + pil3_2_3 + pil3_2_4 + pil3_2_5 + pil3_2_6 + pil3_2_7 + pil3_2_8 + pil3_2_9 + pil3_3_1 + pil3_3_10 + pil3_3_2 + pil3_3_3 + pil3_3_4 + pil3_3_5 + pil3_3_6 + pil3_3_7 + pil3_3_8 + pil3_3_9 + pil3_4_1 + pil3_4_10 + pil3_4_11 + pil3_4_2 + pil3_4_3 + pil3_4_4 + pil3_4_5 + pil3_4_6 + pil3_4_7 + pil3_4_8 + pil3_4_9 + pil3_5_1 + pil3_5_10 + pil3_5_11 + pil3_5_12 + pil3_5_2 + pil3_5_3 + pil3_5_4 + pil3_5_5 + pil3_5_6 + pil3_5_7 + pil3_5_8 + pil3_5_9 + pil3_6_1 + pil3_6_10 + pil3_6_11 + pil3_6_12 + pil3_6_13 + pil3_6_2 + pil3_6_3 + pil3_6_4 + pil3_6_5 + pil3_6_6 + pil3_6_7 + pil3_6_8 + pil3_6_9 + pil3_7_1 + pil3_7_10 + pil3_7_11 + pil3_7_12 + pil3_7_13 + pil3_7_14 + pil3_7_2 + pil3_7_3 + pil3_7_4 + pil3_7_5 + pil3_7_6 + pil3_7_7 + pil3_7_8 + pil3_7_9 + pil3_8_1 + pil3_8_10 + pil3_8_11 + pil3_8_12 + pil3_8_13 + pil3_8_14 + pil3_8_15 + pil3_8_2 + pil3_8_3 + pil3_8_4 + pil3_8_5 + pil3_8_6 + pil3_8_7 + pil3_8_8 + pil3_8_9 + pil3_9_1 + pil3_9_10 + pil3_9_11 + pil3_9_12 + pil3_9_13 + pil3_9_14 + pil3_9_2 + pil3_9_3 + pil3_9_4 + pil3_9_5 + pil3_9_6 + pil3_9_7 + pil3_9_8 + pil3_9_9 + pil4_10_1 + pil4_11_1 + pil4_12_1 + pil4_13_1 + pil4_14_1 + pil4_15_1 + pil4_15_2 + pil4_15_3 + pil4_15_4 + pil4_15_5 + pil4_15_6 + pil4_15_7 + pil4_15_8 + pil4_8_1 + pil4_9_1 + pil5_1_1 + pil5_10_1 + pil5_11_1 + pil5_12_1 + pil5_13_1 + pil5_14_1 + pil5_15_1 + pil5_2_1 + pil5_3_1 + pil5_4_1 + pil5_5_1 + pil5_6_1 + pil5_7_1 + pil5_8_1 + pil5_9_1 + pil6_1_1 + pil6_1_2 + pil6_1_3 + pil6_1_4 + pil6_1_5 + pil6_1_6 + pil6_1_7 + pil6_1_8 + pil6_2_1 + pil6_3_1 + pil6_4_1 + pil6_5_1 + pil6_6_1 + pil6_7_1 + pil6_8_1 + pol1_1_1 + pol1_1_2 + pol1_1_3 + pol1_1_4 + pol1_1_5 + pol1_1_6 + pol1_1_7 + pol1_1_8 + pol1_10_1 + pol1_10_10 + pol1_10_11 + pol1_10_12 + pol1_10_13 + pol1_10_2 + pol1_10_3 + pol1_10_4 + pol1_10_5 + pol1_10_6 + pol1_10_7 + pol1_10_8 + pol1_10_9 + pol1_11_1 + pol1_11_10 + pol1_11_11 + pol1_11_12 + pol1_11_2 + pol1_11_3 + pol1_11_4 + pol1_11_5 + pol1_11_6 + pol1_11_7 + pol1_11_8 + pol1_11_9 + pol1_12_1 + pol1_12_10 + pol1_12_11 + pol1_12_2 + pol1_12_3 + pol1_12_4 + pol1_12_5 + pol1_12_6 + pol1_12_7 + pol1_12_8 + pol1_12_9 + pol1_13_1 + pol1_13_10 + pol1_13_2 + pol1_13_3 + pol1_13_4 + pol1_13_5 + pol1_13_6 + pol1_13_7 + pol1_13_8 + pol1_13_9 + pol1_14_1 + pol1_14_2 + pol1_14_3 + pol1_14_4 + pol1_14_5 + pol1_14_6 + pol1_14_7 + pol1_14_8 + pol1_14_9 + pol1_15_1 + pol1_15_2 + pol1_15_3 + pol1_15_4 + pol1_15_5 + pol1_15_6 + pol1_15_7 + pol1_15_8 + pol1_2_1 + pol1_2_2 + pol1_2_3 + pol1_2_4 + pol1_2_5 + pol1_2_6 + pol1_2_7 + pol1_2_8 + pol1_2_9 + pol1_3_1 + pol1_3_10 + pol1_3_2 + pol1_3_3 + pol1_3_4 + pol1_3_5 + pol1_3_6 + pol1_3_7 + pol1_3_8 + pol1_3_9 + pol1_4_1 + pol1_4_10 + pol1_4_11 + pol1_4_2 + pol1_4_3 + pol1_4_4 + pol1_4_5 + pol1_4_6 + pol1_4_7 + pol1_4_8 + pol1_4_9 + pol1_5_1 + pol1_5_10 + pol1_5_11 + pol1_5_12 + pol1_5_2 + pol1_5_3 + pol1_5_4 + pol1_5_5 + pol1_5_6 + pol1_5_7 + pol1_5_8 + pol1_5_9 + pol1_6_1 + pol1_6_10 + pol1_6_11 + pol1_6_12 + pol1_6_13 + pol1_6_2 + pol1_6_3 + pol1_6_4 + pol1_6_5 + pol1_6_6 + pol1_6_7 + pol1_6_8 + pol1_6_9 + pol1_7_1 + pol1_7_10 + pol1_7_11 + pol1_7_12 + pol1_7_13 + pol1_7_14 + pol1_7_2 + pol1_7_3 + pol1_7_4 + pol1_7_5 + pol1_7_6 + pol1_7_7 + pol1_7_8 + pol1_7_9 + pol1_8_1 + pol1_8_10 + pol1_8_11 + pol1_8_12 + pol1_8_13 + pol1_8_14 + pol1_8_15 + pol1_8_2 + pol1_8_3 + pol1_8_4 + pol1_8_5 + pol1_8_6 + pol1_8_7 + pol1_8_8 + pol1_8_9 + pol1_9_1 + pol1_9_10 + pol1_9_11 + pol1_9_12 + pol1_9_13 + pol1_9_14 + pol1_9_2 + pol1_9_3 + pol1_9_4 + pol1_9_5 + pol1_9_6 + pol1_9_7 + pol1_9_8 + pol1_9_9 + pol2_1_1 + pol2_1_2 + pol2_1_3 + pol2_1_4 + pol2_1_5 + pol2_1_6 + pol2_1_7 + pol2_1_8 + pol2_10_1 + pol2_10_10 + pol2_10_11 + pol2_10_12 + pol2_10_13 + pol2_10_2 + pol2_10_3 + pol2_10_4 + pol2_10_5 + pol2_10_6 + pol2_10_7 + pol2_10_8 + pol2_10_9 + pol2_11_1 + pol2_11_10 + pol2_11_11 + pol2_11_12 + pol2_11_2 + pol2_11_3 + pol2_11_4 + pol2_11_5 + pol2_11_6 + pol2_11_7 + pol2_11_8 + pol2_11_9 + pol2_12_1 + pol2_12_10 + pol2_12_11 + pol2_12_2 + pol2_12_3 + pol2_12_4 + pol2_12_5 + pol2_12_6 + pol2_12_7 + pol2_12_8 + pol2_12_9 + pol2_13_1 + pol2_13_10 + pol2_13_2 + pol2_13_3 + pol2_13_4 + pol2_13_5 + pol2_13_6 + pol2_13_7 + pol2_13_8 + pol2_13_9 + pol2_14_1 + pol2_14_2 + pol2_14_3 + pol2_14_4 + pol2_14_5 + pol2_14_6 + pol2_14_7 + pol2_14_8 + pol2_14_9 + pol2_15_1 + pol2_15_2 + pol2_15_3 + pol2_15_4 + pol2_15_5 + pol2_15_6 + pol2_15_7 + pol2_15_8 + pol2_2_1 + pol2_2_2 + pol2_2_3 + pol2_2_4 + pol2_2_5 + pol2_2_6 + pol2_2_7 + pol2_2_8 + pol2_2_9 + pol2_3_1 + pol2_3_10 + pol2_3_2 + pol2_3_3 + pol2_3_4 + pol2_3_5 + pol2_3_6 + pol2_3_7 + pol2_3_8 + pol2_3_9 + pol2_4_1 + pol2_4_10 + pol2_4_11 + pol2_4_2 + pol2_4_3 + pol2_4_4 + pol2_4_5 + pol2_4_6 + pol2_4_7 + pol2_4_8 + pol2_4_9 + pol2_5_1 + pol2_5_10 + pol2_5_11 + pol2_5_12 + pol2_5_2 + pol2_5_3 + pol2_5_4 + pol2_5_5 + pol2_5_6 + pol2_5_7 + pol2_5_8 + pol2_5_9 + pol2_6_1 + pol2_6_10 + pol2_6_11 + pol2_6_12 + pol2_6_13 + pol2_6_2 + pol2_6_3 + pol2_6_4 + pol2_6_5 + pol2_6_6 + pol2_6_7 + pol2_6_8 + pol2_6_9 + pol2_7_1 + pol2_7_10 + pol2_7_11 + pol2_7_12 + pol2_7_13 + pol2_7_14 + pol2_7_2 + pol2_7_3 + pol2_7_4 + pol2_7_5 + pol2_7_6 + pol2_7_7 + pol2_7_8 + pol2_7_9 + pol2_8_1 + pol2_8_10 + pol2_8_11 + pol2_8_12 + pol2_8_13 + pol2_8_14 + pol2_8_15 + pol2_8_2 + pol2_8_3 + pol2_8_4 + pol2_8_5 + pol2_8_6 + pol2_8_7 + pol2_8_8 + pol2_8_9 + pol2_9_1 + pol2_9_10 + pol2_9_11 + pol2_9_12 + pol2_9_13 + pol2_9_14 + pol2_9_2 + pol2_9_3 + pol2_9_4 + pol2_9_5 + pol2_9_6 + pol2_9_7 + pol2_9_8 + pol2_9_9 + pol3_1_1 + pol3_1_2 + pol3_1_3 + pol3_1_4 + pol3_1_5 + pol3_1_6 + pol3_1_7 + pol3_1_8 + pol3_10_1 + pol3_10_10 + pol3_10_11 + pol3_10_12 + pol3_10_13 + pol3_10_2 + pol3_10_3 + pol3_10_4 + pol3_10_5 + pol3_10_6 + pol3_10_7 + pol3_10_8 + pol3_10_9 + pol3_11_1 + pol3_11_10 + pol3_11_11 + pol3_11_12 + pol3_11_2 + pol3_11_3 + pol3_11_4 + pol3_11_5 + pol3_11_6 + pol3_11_7 + pol3_11_8 + pol3_11_9 + pol3_12_1 + pol3_12_10 + pol3_12_11 + pol3_12_2 + pol3_12_3 + pol3_12_4 + pol3_12_5 + pol3_12_6 + pol3_12_7 + pol3_12_8 + pol3_12_9 + pol3_13_1 + pol3_13_10 + pol3_13_2 + pol3_13_3 + pol3_13_4 + pol3_13_5 + pol3_13_6 + pol3_13_7 + pol3_13_8 + pol3_13_9 + pol3_14_1 + pol3_14_2 + pol3_14_3 + pol3_14_4 + pol3_14_5 + pol3_14_6 + pol3_14_7 + pol3_14_8 + pol3_14_9 + pol3_15_1 + pol3_15_2 + pol3_15_3 + pol3_15_4 + pol3_15_5 + pol3_15_6 + pol3_15_7 + pol3_15_8 + pol3_2_1 + pol3_2_2 + pol3_2_3 + pol3_2_4 + pol3_2_5 + pol3_2_6 + pol3_2_7 + pol3_2_8 + pol3_2_9 + pol3_3_1 + pol3_3_10 + pol3_3_2 + pol3_3_3 + pol3_3_4 + pol3_3_5 + pol3_3_6 + pol3_3_7 + pol3_3_8 + pol3_3_9 + pol3_4_1 + pol3_4_10 + pol3_4_11 + pol3_4_2 + pol3_4_3 + pol3_4_4 + pol3_4_5 + pol3_4_6 + pol3_4_7 + pol3_4_8 + pol3_4_9 + pol3_5_1 + pol3_5_10 + pol3_5_11 + pol3_5_12 + pol3_5_2 + pol3_5_3 + pol3_5_4 + pol3_5_5 + pol3_5_6 + pol3_5_7 + pol3_5_8 + pol3_5_9 + pol3_6_1 + pol3_6_10 + pol3_6_11 + pol3_6_12 + pol3_6_13 + pol3_6_2 + pol3_6_3 + pol3_6_4 + pol3_6_5 + pol3_6_6 + pol3_6_7 + pol3_6_8 + pol3_6_9 + pol3_7_1 + pol3_7_10 + pol3_7_11 + pol3_7_12 + pol3_7_13 + pol3_7_14 + pol3_7_2 + pol3_7_3 + pol3_7_4 + pol3_7_5 + pol3_7_6 + pol3_7_7 + pol3_7_8 + pol3_7_9 + pol3_8_1 + pol3_8_10 + pol3_8_11 + pol3_8_12 + pol3_8_13 + pol3_8_14 + pol3_8_15 + pol3_8_2 + pol3_8_3 + pol3_8_4 + pol3_8_5 + pol3_8_6 + pol3_8_7 + pol3_8_8 + pol3_8_9 + pol3_9_1 + pol3_9_10 + pol3_9_11 + pol3_9_12 + pol3_9_13 + pol3_9_14 + pol3_9_2 + pol3_9_3 + pol3_9_4 + pol3_9_5 + pol3_9_6 + pol3_9_7 + pol3_9_8 + pol3_9_9 + pol4_10_1 + pol4_11_1 + pol4_12_1 + pol4_13_1 + pol4_14_1 + pol4_15_1 + pol4_15_2 + pol4_15_3 + pol4_15_4 + pol4_15_5 + pol4_15_6 + pol4_15_7 + pol4_15_8 + pol4_8_1 + pol4_9_1 + pol5_1_1 + pol5_10_1 + pol5_11_1 + pol5_12_1 + pol5_13_1 + pol5_14_1 + pol5_15_1 + pol5_2_1 + pol5_3_1 + pol5_4_1 + pol5_5_1 + pol5_6_1 + pol5_7_1 + pol5_8_1 + pol5_9_1 + pol6_1_1 + pol6_1_2 + pol6_1_3 + pol6_1_4 + pol6_1_5 + pol6_1_6 + pol6_1_7 + pol6_1_8 + pol6_2_1 + pol6_3_1 + pol6_4_1 + pol6_5_1 + pol6_6_1 + pol6_7_1 + pol6_8_1 = 2118
invariant :pi3_10_11 + pil3_10_11 = 1
invariant :po2_1_7 + pol2_1_7 = 1
invariant :pb1_3_10 + pb2_3_10 + pb3_3_10 + pb4_3_10 + pb5_3_10 + pb6_3_10 + pbl_3_10 = 12
invariant :po1_2_4 + pol1_2_4 = 1
invariant :po1_12_4 + pol1_12_4 = 1
invariant :pi3_4_11 + pil3_4_11 = 1
invariant :po3_7_2 + pol3_7_2 = 1
invariant :po1_14_5 + pol1_14_5 = 1
invariant :pi2_14_9 + pil2_14_9 = 1
invariant :pi3_11_6 + pil3_11_6 = 1
invariant :pi3_5_9 + pil3_5_9 = 1
invariant :pi2_12_7 + pil2_12_7 = 1
invariant :po3_15_4 + pol3_15_4 = 1
invariant :po3_12_7 + pol3_12_7 = 1
invariant :pb1_10_6 + pb2_10_6 + pb3_10_6 + pb4_10_6 + pb5_10_6 + pb6_10_6 + pbl_10_6 = 12
invariant :po5_6_1 + pol5_6_1 = 1
invariant :pi1_6_6 + pil1_6_6 = 1
invariant :po1_13_6 + pol1_13_6 = 1
invariant :pi2_3_1 + pil2_3_1 = 1
invariant :pi3_7_9 + pil3_7_9 = 1
invariant :po2_1_5 + pol2_1_5 = 1
invariant :pb1_1_5 + pb2_1_5 + pb3_1_5 + pb4_1_5 + pb5_1_5 + pb6_1_5 + pbl_1_5 = 12
invariant :pi3_7_13 + pil3_7_13 = 1
invariant :po2_11_1 + pol2_11_1 = 1
invariant :po2_9_8 + pol2_9_8 = 1
invariant :pi3_3_7 + pil3_3_7 = 1
invariant :po3_15_1 + pol3_15_1 = 1
invariant :po4_15_6 + pol4_15_6 = 1
invariant :po3_2_3 + pol3_2_3 = 1
invariant :pb1_5_9 + pb2_5_9 + pb3_5_9 + pb4_5_9 + pb5_5_9 + pb6_5_9 + pbl_5_9 = 12
invariant :pi1_3_5 + pil1_3_5 = 1
invariant :pi2_10_8 + pil2_10_8 = 1
invariant :pi2_4_9 + pil2_4_9 = 1
invariant :pi3_11_3 + pil3_11_3 = 1
invariant :po1_13_3 + pol1_13_3 = 1
invariant :po3_10_1 + pol3_10_1 = 1
invariant :po3_2_9 + pol3_2_9 = 1
invariant :pi1_1_4 + pil1_1_4 = 1
invariant :pb1_4_8 + pb2_4_8 + pb3_4_8 + pb4_4_8 + pb5_4_8 + pb6_4_8 + pbl_4_8 = 12
invariant :pi5_2_1 + pil5_2_1 = 1
invariant :pi3_3_3 + pil3_3_3 = 1
invariant :po1_10_11 + pol1_10_11 = 1
invariant :po2_9_1 + pol2_9_1 = 1
invariant :po1_3_8 + pol1_3_8 = 1
invariant :pi1_1_6 + pil1_1_6 = 1
invariant :po2_13_6 + pol2_13_6 = 1
invariant :pb1_5_5 + pb2_5_5 + pb3_5_5 + pb4_5_5 + pb5_5_5 + pb6_5_5 + pbl_5_5 = 12
invariant :pi3_2_1 + pil3_2_1 = 1
invariant :po3_14_8 + pol3_14_8 = 1
invariant :pi2_10_10 + pil2_10_10 = 1
invariant :pi2_4_10 + pil2_4_10 = 1
invariant :po1_4_9 + pol1_4_9 = 1
invariant :po3_1_8 + pol3_1_8 = 1
invariant :po1_14_8 + pol1_14_8 = 1
invariant :pb1_13_2 + pb2_13_2 + pb3_13_2 + pb4_13_2 + pb5_13_2 + pb6_13_2 + pbl_13_2 = 12
invariant :po2_2_1 + pol2_2_1 = 1
invariant :po3_4_9 + pol3_4_9 = 1
invariant :pb1_5_1 + pb2_5_1 + pb3_5_1 + pb4_5_1 + pb5_5_1 + pb6_5_1 + pbl_5_1 = 12
invariant :pi2_7_13 + pil2_7_13 = 1
invariant :pi1_14_3 + pil1_14_3 = 1
invariant :po3_6_13 + pol3_6_13 = 1
invariant :po3_4_8 + pol3_4_8 = 1
invariant :po4_15_4 + pol4_15_4 = 1
invariant :pb1_6_5 + pb2_6_5 + pb3_6_5 + pb4_6_5 + pb5_6_5 + pb6_6_5 + pbl_6_5 = 12
invariant :po3_12_3 + pol3_12_3 = 1
invariant :po4_8_1 + pol4_8_1 = 1
invariant :po1_8_5 + pol1_8_5 = 1
invariant :po6_8_1 + pol6_8_1 = 1
invariant :po2_9_13 + pol2_9_13 = 1
invariant :po3_13_8 + pol3_13_8 = 1
invariant :po1_7_2 + pol1_7_2 = 1
invariant :pb1_11_9 + pb2_11_9 + pb3_11_9 + pb4_11_9 + pb5_11_9 + pb6_11_9 + pbl_11_9 = 12
invariant :pb1_12_5 + pb2_12_5 + pb3_12_5 + pb4_12_5 + pb5_12_5 + pb6_12_5 + pbl_12_5 = 12
invariant :pi2_2_9 + pil2_2_9 = 1
invariant :pi1_8_15 + pil1_8_15 = 1
invariant :po2_4_3 + pol2_4_3 = 1
invariant :pi1_13_9 + pil1_13_9 = 1
invariant :pi1_9_11 + pil1_9_11 = 1
invariant :po3_1_6 + pol3_1_6 = 1
invariant :pi3_2_6 + pil3_2_6 = 1
invariant :po1_13_2 + pol1_13_2 = 1
invariant :pi3_6_10 + pil3_6_10 = 1
invariant :po1_8_14 + pol1_8_14 = 1
invariant :po5_12_1 + pol5_12_1 = 1
invariant :pb1_2_8 + pb2_2_8 + pb3_2_8 + pb4_2_8 + pb5_2_8 + pb6_2_8 + pbl_2_8 = 12
invariant :pi1_6_11 + pil1_6_11 = 1
invariant :pb1_15_3 + pb2_15_3 + pb3_15_3 + pb4_15_3 + pb5_15_3 + pb6_15_3 + pbl_15_3 = 12
invariant :po2_7_13 + pol2_7_13 = 1
invariant :pi2_12_1 + pil2_12_1 = 1
invariant :po2_5_1 + pol2_5_1 = 1
invariant :pb1_14_8 + pb2_14_8 + pb3_14_8 + pb4_14_8 + pb5_14_8 + pb6_14_8 + pbl_14_8 = 12
invariant :po3_13_3 + pol3_13_3 = 1
invariant :po3_12_8 + pol3_12_8 = 1
invariant :pb1_12_4 + pb2_12_4 + pb3_12_4 + pb4_12_4 + pb5_12_4 + pb6_12_4 + pbl_12_4 = 12
invariant :pi3_13_7 + pil3_13_7 = 1
invariant :pi1_10_7 + pil1_10_7 = 1
invariant :po2_9_12 + pol2_9_12 = 1
invariant :pb1_8_5 + pb2_8_5 + pb3_8_5 + pb4_8_5 + pb5_8_5 + pb6_8_5 + pbl_8_5 = 12
invariant :po2_10_12 + pol2_10_12 = 1
invariant :pb1_12_2 + pb2_12_2 + pb3_12_2 + pb4_12_2 + pb5_12_2 + pb6_12_2 + pbl_12_2 = 12
invariant :po6_1_1 + pol6_1_1 = 1
invariant :po3_12_1 + pol3_12_1 = 1
invariant :po3_2_1 + pol3_2_1 = 1
invariant :pi1_12_7 + pil1_12_7 = 1
invariant :po3_5_3 + pol3_5_3 = 1
invariant :pi2_11_7 + pil2_11_7 = 1
invariant :pb1_12_1 + pb2_12_1 + pb3_12_1 + pb4_12_1 + pb5_12_1 + pb6_12_1 + pbl_12_1 = 12
invariant :po3_13_9 + pol3_13_9 = 1
invariant :pi1_6_10 + pil1_6_10 = 1
invariant :pi2_6_11 + pil2_6_11 = 1
invariant :pi1_13_6 + pil1_13_6 = 1
invariant :po1_15_7 + pol1_15_7 = 1
invariant :pi2_6_7 + pil2_6_7 = 1
invariant :po3_6_11 + pol3_6_11 = 1
invariant :pi1_9_1 + pil1_9_1 = 1
invariant :pi1_3_2 + pil1_3_2 = 1
invariant :po1_9_8 + pol1_9_8 = 1
invariant :pi4_13_1 + pil4_13_1 = 1
invariant :pi1_6_1 + pil1_6_1 = 1
invariant :pi2_8_1 + pil2_8_1 = 1
invariant :pi2_8_3 + pil2_8_3 = 1
invariant :po3_4_4 + pol3_4_4 = 1
invariant :pi3_9_5 + pil3_9_5 = 1
invariant :pi3_7_12 + pil3_7_12 = 1
invariant :po3_7_5 + pol3_7_5 = 1
invariant :pi3_3_1 + pil3_3_1 = 1
invariant :pi2_10_5 + pil2_10_5 = 1
invariant :pb1_2_7 + pb2_2_7 + pb3_2_7 + pb4_2_7 + pb5_2_7 + pb6_2_7 + pbl_2_7 = 12
invariant :pb1_2_3 + pb2_2_3 + pb3_2_3 + pb4_2_3 + pb5_2_3 + pb6_2_3 + pbl_2_3 = 12
invariant :pi2_1_6 + pil2_1_6 = 1
invariant :pi3_8_14 + pil3_8_14 = 1
invariant :pi2_7_7 + pil2_7_7 = 1
invariant :pi2_8_4 + pil2_8_4 = 1
invariant :pi2_8_15 + pil2_8_15 = 1
invariant :po2_7_4 + pol2_7_4 = 1
invariant :pb1_14_7 + pb2_14_7 + pb3_14_7 + pb4_14_7 + pb5_14_7 + pb6_14_7 + pbl_14_7 = 12
invariant :po1_9_10 + pol1_9_10 = 1
invariant :pi2_5_10 + pil2_5_10 = 1
invariant :po1_7_10 + pol1_7_10 = 1
invariant :pi1_6_7 + pil1_6_7 = 1
invariant :pi1_6_9 + pil1_6_9 = 1
invariant :po5_7_1 + pol5_7_1 = 1
invariant :po2_9_14 + pol2_9_14 = 1
invariant :pi1_14_4 + pil1_14_4 = 1
invariant :po1_7_14 + pol1_7_14 = 1
invariant :pi3_13_3 + pil3_13_3 = 1
invariant :pi2_12_3 + pil2_12_3 = 1
invariant :pb1_2_5 + pb2_2_5 + pb3_2_5 + pb4_2_5 + pb5_2_5 + pb6_2_5 + pbl_2_5 = 12
invariant :pi2_5_8 + pil2_5_8 = 1
invariant :po3_6_9 + pol3_6_9 = 1
invariant :po3_9_2 + pol3_9_2 = 1
invariant :po4_11_1 + pol4_11_1 = 1
invariant :po2_14_3 + pol2_14_3 = 1
invariant :pb1_15_2 + pb2_15_2 + pb3_15_2 + pb4_15_2 + pb5_15_2 + pb6_15_2 + pbl_15_2 = 12
invariant :pi1_10_6 + pil1_10_6 = 1
invariant :po2_6_13 + pol2_6_13 = 1
invariant :pi1_9_5 + pil1_9_5 = 1
invariant :pi2_3_8 + pil2_3_8 = 1
invariant :pi2_15_2 + pil2_15_2 = 1
invariant :po2_10_10 + pol2_10_10 = 1
invariant :po3_4_7 + pol3_4_7 = 1
invariant :po2_6_9 + pol2_6_9 = 1
invariant :po3_7_11 + pol3_7_11 = 1
invariant :pi3_7_2 + pil3_7_2 = 1
invariant :po3_6_6 + pol3_6_6 = 1
invariant :po2_14_5 + pol2_14_5 = 1
invariant :pi1_9_12 + pil1_9_12 = 1
invariant :pi3_8_4 + pil3_8_4 = 1
invariant :pb1_6_8 + pb2_6_8 + pb3_6_8 + pb4_6_8 + pb5_6_8 + pb6_6_8 + pbl_6_8 = 12
invariant :pi2_13_2 + pil2_13_2 = 1
invariant :pi1_7_3 + pil1_7_3 = 1
invariant :pi1_2_6 + pil1_2_6 = 1
invariant :pb1_9_12 + pb2_9_12 + pb3_9_12 + pb4_9_12 + pb5_9_12 + pb6_9_12 + pbl_9_12 = 12
invariant :po6_5_1 + pol6_5_1 = 1
invariant :pi3_10_8 + pil3_10_8 = 1
invariant :po1_1_5 + pol1_1_5 = 1
invariant :pi3_11_7 + pil3_11_7 = 1
invariant :po2_7_11 + pol2_7_11 = 1
invariant :pi6_5_1 + pil6_5_1 = 1
invariant :pi3_13_8 + pil3_13_8 = 1
invariant :po3_5_1 + pol3_5_1 = 1
invariant :po3_11_2 + pol3_11_2 = 1
invariant :po3_6_2 + pol3_6_2 = 1
invariant :po3_14_1 + pol3_14_1 = 1
invariant :po1_9_9 + pol1_9_9 = 1
invariant :pb1_5_12 + pb2_5_12 + pb3_5_12 + pb4_5_12 + pb5_5_12 + pb6_5_12 + pbl_5_12 = 12
invariant :pi3_12_11 + pil3_12_11 = 1
invariant :po2_7_12 + pol2_7_12 = 1
invariant :po2_8_7 + pol2_8_7 = 1
invariant :po1_1_3 + pol1_1_3 = 1
invariant :po3_6_4 + pol3_6_4 = 1
invariant :po2_4_7 + pol2_4_7 = 1
invariant :pi1_2_4 + pil1_2_4 = 1
invariant :pi2_15_4 + pil2_15_4 = 1
invariant :pi1_6_5 + pil1_6_5 = 1
invariant :po3_9_11 + pol3_9_11 = 1
invariant :pb1_11_12 + pb2_11_12 + pb3_11_12 + pb4_11_12 + pb5_11_12 + pb6_11_12 + pbl_11_12 = 12
invariant :pi3_13_2 + pil3_13_2 = 1
invariant :pi3_6_13 + pil3_6_13 = 1
invariant :pi2_5_2 + pil2_5_2 = 1
invariant :po2_5_7 + pol2_5_7 = 1
invariant :po2_8_2 + pol2_8_2 = 1
invariant :pi1_14_2 + pil1_14_2 = 1
invariant :pb1_12_9 + pb2_12_9 + pb3_12_9 + pb4_12_9 + pb5_12_9 + pb6_12_9 + pbl_12_9 = 12
invariant :po1_13_8 + pol1_13_8 = 1
invariant :pi3_8_13 + pil3_8_13 = 1
invariant :pb1_10_4 + pb2_10_4 + pb3_10_4 + pb4_10_4 + pb5_10_4 + pb6_10_4 + pbl_10_4 = 12
invariant :pi1_7_4 + pil1_7_4 = 1
invariant :po3_3_1 + pol3_3_1 = 1
invariant :pi2_7_6 + pil2_7_6 = 1
invariant :po5_8_1 + pol5_8_1 = 1
invariant :pi2_6_9 + pil2_6_9 = 1
invariant :po3_9_13 + pol3_9_13 = 1
invariant :pi3_10_3 + pil3_10_3 = 1
invariant :po2_14_1 + pol2_14_1 = 1
invariant :po2_10_4 + pol2_10_4 = 1
invariant :pi2_14_1 + pil2_14_1 = 1
invariant :po6_1_8 + pol6_1_8 = 1
invariant :pi2_4_11 + pil2_4_11 = 1
invariant :po2_9_4 + pol2_9_4 = 1
invariant :po2_14_4 + pol2_14_4 = 1
invariant :pi2_13_8 + pil2_13_8 = 1
invariant :pi2_11_9 + pil2_11_9 = 1
invariant :pi1_10_4 + pil1_10_4 = 1
invariant :pb1_1_8 + pb2_1_8 + pb3_1_8 + pb4_1_8 + pb5_1_8 + pb6_1_8 + pbl_1_8 = 12
invariant :pb1_11_6 + pb2_11_6 + pb3_11_6 + pb4_11_6 + pb5_11_6 + pb6_11_6 + pbl_11_6 = 12
invariant :po2_6_7 + pol2_6_7 = 1
invariant :po3_3_9 + pol3_3_9 = 1
invariant :pi2_7_12 + pil2_7_12 = 1
invariant :po3_6_1 + pol3_6_1 = 1
invariant :po1_10_6 + pol1_10_6 = 1
invariant :pi2_13_5 + pil2_13_5 = 1
invariant :po3_9_5 + pol3_9_5 = 1
invariant :po2_6_1 + pol2_6_1 = 1
invariant :pb1_8_3 + pb2_8_3 + pb3_8_3 + pb4_8_3 + pb5_8_3 + pb6_8_3 + pbl_8_3 = 12
invariant :po3_12_11 + pol3_12_11 = 1
invariant :po2_10_2 + pol2_10_2 = 1
invariant :pi3_8_7 + pil3_8_7 = 1
invariant :pb1_12_7 + pb2_12_7 + pb3_12_7 + pb4_12_7 + pb5_12_7 + pb6_12_7 + pbl_12_7 = 12
invariant :po2_15_1 + pol2_15_1 = 1
invariant :po3_8_8 + pol3_8_8 = 1
invariant :po3_11_3 + pol3_11_3 = 1
invariant :pb1_6_6 + pb2_6_6 + pb3_6_6 + pb4_6_6 + pb5_6_6 + pb6_6_6 + pbl_6_6 = 12
invariant :po3_8_9 + pol3_8_9 = 1
invariant :pi2_4_8 + pil2_4_8 = 1
invariant :po2_8_15 + pol2_8_15 = 1
invariant :po3_3_5 + pol3_3_5 = 1
invariant :pb1_6_2 + pb2_6_2 + pb3_6_2 + pb4_6_2 + pb5_6_2 + pb6_6_2 + pbl_6_2 = 12
invariant :pb1_13_5 + pb2_13_5 + pb3_13_5 + pb4_13_5 + pb5_13_5 + pb6_13_5 + pbl_13_5 = 12
invariant :po2_10_3 + pol2_10_3 = 1
invariant :pi3_6_9 + pil3_6_9 = 1
invariant :pb1_1_2 + pb2_1_2 + pb3_1_2 + pb4_1_2 + pb5_1_2 + pb6_1_2 + pbl_1_2 = 12
invariant :po3_6_7 + pol3_6_7 = 1
invariant :po2_7_1 + pol2_7_1 = 1
invariant :po2_5_2 + pol2_5_2 = 1
invariant :pi1_5_12 + pil1_5_12 = 1
invariant :po1_6_12 + pol1_6_12 = 1
invariant :pb1_4_6 + pb2_4_6 + pb3_4_6 + pb4_4_6 + pb5_4_6 + pb6_4_6 + pbl_4_6 = 12
invariant :pi3_12_10 + pil3_12_10 = 1
invariant :po3_11_9 + pol3_11_9 = 1
invariant :po3_1_4 + pol3_1_4 = 1
invariant :po1_11_6 + pol1_11_6 = 1
invariant :pb1_8_7 + pb2_8_7 + pb3_8_7 + pb4_8_7 + pb5_8_7 + pb6_8_7 + pbl_8_7 = 12
invariant :pi1_15_2 + pil1_15_2 = 1
invariant :po1_2_5 + pol1_2_5 = 1
invariant :pi2_11_8 + pil2_11_8 = 1
invariant :pb1_13_10 + pb2_13_10 + pb3_13_10 + pb4_13_10 + pb5_13_10 + pb6_13_10 + pbl_13_10 = 12
invariant :po3_6_12 + pol3_6_12 = 1
invariant :po2_8_8 + pol2_8_8 = 1
invariant :pb1_6_7 + pb2_6_7 + pb3_6_7 + pb4_6_7 + pb5_6_7 + pb6_6_7 + pbl_6_7 = 12
invariant :pi2_7_8 + pil2_7_8 = 1
invariant :po2_15_7 + pol2_15_7 = 1
invariant :po2_15_6 + pol2_15_6 = 1
invariant :pi1_7_5 + pil1_7_5 = 1
invariant :pb1_6_13 + pb2_6_13 + pb3_6_13 + pb4_6_13 + pb5_6_13 + pb6_6_13 + pbl_6_13 = 12
invariant :pi2_5_3 + pil2_5_3 = 1
invariant :pi2_13_7 + pil2_13_7 = 1
invariant :pi2_14_5 + pil2_14_5 = 1
invariant :pb1_3_9 + pb2_3_9 + pb3_3_9 + pb4_3_9 + pb5_3_9 + pb6_3_9 + pbl_3_9 = 12
invariant :po2_3_3 + pol2_3_3 = 1
invariant :po2_6_3 + pol2_6_3 = 1
invariant :pi2_2_7 + pil2_2_7 = 1
invariant :pi2_2_3 + pil2_2_3 = 1
invariant :po3_5_12 + pol3_5_12 = 1
invariant :po6_1_7 + pol6_1_7 = 1
invariant :pi1_3_8 + pil1_3_8 = 1
invariant :pi2_7_4 + pil2_7_4 = 1
invariant :pi3_6_8 + pil3_6_8 = 1
invariant :po1_13_1 + pol1_13_1 = 1
invariant :pi2_9_9 + pil2_9_9 = 1
invariant :pi2_4_7 + pil2_4_7 = 1
invariant :po1_4_10 + pol1_4_10 = 1
invariant :pi3_10_6 + pil3_10_6 = 1
invariant :pi1_11_9 + pil1_11_9 = 1
invariant :pi1_6_8 + pil1_6_8 = 1
invariant :pi3_14_3 + pil3_14_3 = 1
invariant :pi1_13_3 + pil1_13_3 = 1
invariant :po3_5_5 + pol3_5_5 = 1
invariant :po1_1_1 + pol1_1_1 = 1
invariant :pb1_11_5 + pb2_11_5 + pb3_11_5 + pb4_11_5 + pb5_11_5 + pb6_11_5 + pbl_11_5 = 12
invariant :po1_6_3 + pol1_6_3 = 1
invariant :po3_9_1 + pol3_9_1 = 1
invariant :po2_11_2 + pol2_11_2 = 1
invariant :po3_9_4 + pol3_9_4 = 1
invariant :pi3_3_9 + pil3_3_9 = 1
invariant :po1_11_1 + pol1_11_1 = 1
invariant :pb1_9_14 + pb2_9_14 + pb3_9_14 + pb4_9_14 + pb5_9_14 + pb6_9_14 + pbl_9_14 = 12
invariant :pi2_1_8 + pil2_1_8 = 1
invariant :pi3_3_6 + pil3_3_6 = 1
invariant :po6_4_1 + pol6_4_1 = 1
invariant :pb1_5_4 + pb2_5_4 + pb3_5_4 + pb4_5_4 + pb5_5_4 + pb6_5_4 + pbl_5_4 = 12
invariant :po1_3_2 + pol1_3_2 = 1
invariant :pb1_9_6 + pb2_9_6 + pb3_9_6 + pb4_9_6 + pb5_9_6 + pb6_9_6 + pbl_9_6 = 12
invariant :pb1_1_1 + pb2_1_1 + pb3_1_1 + pb4_1_1 + pb5_1_1 + pb6_1_1 + pbl_1_1 = 12
invariant :po2_12_2 + pol2_12_2 = 1
invariant :po1_8_4 + pol1_8_4 = 1
invariant :po2_3_4 + pol2_3_4 = 1
invariant :po3_13_6 + pol3_13_6 = 1
invariant :po3_7_13 + pol3_7_13 = 1
invariant :pb1_5_2 + pb2_5_2 + pb3_5_2 + pb4_5_2 + pb5_5_2 + pb6_5_2 + pbl_5_2 = 12
invariant :po3_5_4 + pol3_5_4 = 1
invariant :pi5_3_1 + pil5_3_1 = 1
invariant :pb1_7_1 + pb2_7_1 + pb3_7_1 + pb4_7_1 + pb5_7_1 + pb6_7_1 + pbl_7_1 = 12
invariant :po3_12_2 + pol3_12_2 = 1
invariant :pi1_12_4 + pil1_12_4 = 1
invariant :pi3_8_5 + pil3_8_5 = 1
invariant :pi1_5_2 + pil1_5_2 = 1
invariant :po2_2_5 + pol2_2_5 = 1
invariant :pi3_9_11 + pil3_9_11 = 1
invariant :pb1_10_13 + pb2_10_13 + pb3_10_13 + pb4_10_13 + pb5_10_13 + pb6_10_13 + pbl_10_13 = 12
invariant :pi3_12_4 + pil3_12_4 = 1
invariant :po2_3_10 + pol2_3_10 = 1
invariant :po2_3_6 + pol2_3_6 = 1
invariant :po2_3_5 + pol2_3_5 = 1
invariant :pi3_9_9 + pil3_9_9 = 1
invariant :po3_7_14 + pol3_7_14 = 1
invariant :po2_11_6 + pol2_11_6 = 1
invariant :pi1_4_9 + pil1_4_9 = 1
invariant :po1_11_4 + pol1_11_4 = 1
invariant :po3_13_4 + pol3_13_4 = 1
invariant :po1_8_3 + pol1_8_3 = 1
invariant :pi1_13_2 + pil1_13_2 = 1
invariant :po1_10_3 + pol1_10_3 = 1
invariant :po3_2_6 + pol3_2_6 = 1
invariant :po3_10_3 + pol3_10_3 = 1
invariant :po1_9_14 + pol1_9_14 = 1
invariant :pi2_13_6 + pil2_13_6 = 1
invariant :po1_11_11 + pol1_11_11 = 1
invariant :pi6_1_7 + pil6_1_7 = 1
invariant :pi2_8_14 + pil2_8_14 = 1
invariant :pi3_4_8 + pil3_4_8 = 1
invariant :po1_6_2 + pol1_6_2 = 1
invariant :pb1_9_10 + pb2_9_10 + pb3_9_10 + pb4_9_10 + pb5_9_10 + pb6_9_10 + pbl_9_10 = 12
invariant :pi4_15_2 + pil4_15_2 = 1
invariant :pi3_5_2 + pil3_5_2 = 1
invariant :po6_2_1 + pol6_2_1 = 1
invariant :pi1_4_1 + pil1_4_1 = 1
invariant :pb1_3_4 + pb2_3_4 + pb3_3_4 + pb4_3_4 + pb5_3_4 + pb6_3_4 + pbl_3_4 = 12
invariant :pi1_4_4 + pil1_4_4 = 1
invariant :pi3_10_9 + pil3_10_9 = 1
invariant :pi1_6_13 + pil1_6_13 = 1
invariant :po2_6_5 + pol2_6_5 = 1
invariant :po3_14_9 + pol3_14_9 = 1
invariant :pi2_15_3 + pil2_15_3 = 1
invariant :pb1_11_2 + pb2_11_2 + pb3_11_2 + pb4_11_2 + pb5_11_2 + pb6_11_2 + pbl_11_2 = 12
invariant :pi3_11_5 + pil3_11_5 = 1
invariant :pb1_10_10 + pb2_10_10 + pb3_10_10 + pb4_10_10 + pb5_10_10 + pb6_10_10 + pbl_10_10 = 12
invariant :pi1_15_6 + pil1_15_6 = 1
invariant :po2_15_3 + pol2_15_3 = 1
invariant :po3_5_2 + pol3_5_2 = 1
invariant :pi3_1_6 + pil3_1_6 = 1
invariant :po5_2_1 + pol5_2_1 = 1
invariant :pi3_9_8 + pil3_9_8 = 1
invariant :po3_14_4 + pol3_14_4 = 1
invariant :po2_7_5 + pol2_7_5 = 1
invariant :po3_15_7 + pol3_15_7 = 1
invariant :pb1_15_1 + pb2_15_1 + pb3_15_1 + pb4_15_1 + pb5_15_1 + pb6_15_1 + pbl_15_1 = 12
invariant :pi1_7_10 + pil1_7_10 = 1
invariant :pi2_7_9 + pil2_7_9 = 1
invariant :po1_10_13 + pol1_10_13 = 1
invariant :pi1_5_9 + pil1_5_9 = 1
invariant :po2_8_11 + pol2_8_11 = 1
invariant :po3_10_4 + pol3_10_4 = 1
invariant :pi4_15_3 + pil4_15_3 = 1
invariant :pb1_9_2 + pb2_9_2 + pb3_9_2 + pb4_9_2 + pb5_9_2 + pb6_9_2 + pbl_9_2 = 12
invariant :po1_3_7 + pol1_3_7 = 1
invariant :po5_14_1 + pol5_14_1 = 1
invariant :pi1_9_14 + pil1_9_14 = 1
invariant :po1_4_6 + pol1_4_6 = 1
invariant :po2_10_9 + pol2_10_9 = 1
invariant :pi3_10_2 + pil3_10_2 = 1
invariant :po2_8_13 + pol2_8_13 = 1
invariant :pi2_5_11 + pil2_5_11 = 1
invariant :po5_10_1 + pol5_10_1 = 1
invariant :pb1_11_3 + pb2_11_3 + pb3_11_3 + pb4_11_3 + pb5_11_3 + pb6_11_3 + pbl_11_3 = 12
invariant :pi2_11_10 + pil2_11_10 = 1
invariant :pi2_12_11 + pil2_12_11 = 1
invariant :pi3_2_2 + pil3_2_2 = 1
invariant :pi4_12_1 + pil4_12_1 = 1
invariant :po4_12_1 + pol4_12_1 = 1
invariant :pb1_12_6 + pb2_12_6 + pb3_12_6 + pb4_12_6 + pb5_12_6 + pb6_12_6 + pbl_12_6 = 12
invariant :pi2_12_10 + pil2_12_10 = 1
invariant :pi2_13_10 + pil2_13_10 = 1
invariant :po2_15_5 + pol2_15_5 = 1
invariant :po3_11_10 + pol3_11_10 = 1
invariant :pi2_5_5 + pil2_5_5 = 1
invariant :po3_10_6 + pol3_10_6 = 1
invariant :pi3_9_7 + pil3_9_7 = 1
invariant :po2_5_8 + pol2_5_8 = 1
invariant :pi3_7_10 + pil3_7_10 = 1
invariant :pi1_11_11 + pil1_11_11 = 1
invariant :pi5_9_1 + pil5_9_1 = 1
invariant :po3_2_5 + pol3_2_5 = 1
invariant :po2_12_3 + pol2_12_3 = 1
invariant :pi1_2_3 + pil1_2_3 = 1
invariant :pi6_1_8 + pil6_1_8 = 1
invariant :po1_10_2 + pol1_10_2 = 1
invariant :pi2_13_9 + pil2_13_9 = 1
invariant :po3_7_8 + pol3_7_8 = 1
invariant :po3_2_2 + pol3_2_2 = 1
invariant :po1_9_6 + pol1_9_6 = 1
invariant :po3_10_8 + pol3_10_8 = 1
invariant :pi1_4_8 + pil1_4_8 = 1
invariant :po4_15_7 + pol4_15_7 = 1
invariant :po1_4_8 + pol1_4_8 = 1
invariant :po1_7_3 + pol1_7_3 = 1
invariant :pi2_7_11 + pil2_7_11 = 1
invariant :pi5_1_1 + pil5_1_1 = 1
invariant :pi3_7_14 + pil3_7_14 = 1
invariant :po2_7_10 + pol2_7_10 = 1
invariant :pi2_5_9 + pil2_5_9 = 1
invariant :pi1_2_8 + pil1_2_8 = 1
invariant :po3_2_4 + pol3_2_4 = 1
invariant :pi2_11_11 + pil2_11_11 = 1
invariant :pb1_13_8 + pb2_13_8 + pb3_13_8 + pb4_13_8 + pb5_13_8 + pb6_13_8 + pbl_13_8 = 12
invariant :po2_12_11 + pol2_12_11 = 1
invariant :po2_6_12 + pol2_6_12 = 1
invariant :pi3_14_8 + pil3_14_8 = 1
invariant :pi3_7_5 + pil3_7_5 = 1
invariant :pi3_15_8 + pil3_15_8 = 1
invariant :pi1_7_12 + pil1_7_12 = 1
invariant :po2_2_9 + pol2_2_9 = 1
invariant :pi1_11_1 + pil1_11_1 = 1
invariant :pi3_13_6 + pil3_13_6 = 1
invariant :po2_4_5 + pol2_4_5 = 1
invariant :pi3_15_4 + pil3_15_4 = 1
invariant :po4_15_2 + pol4_15_2 = 1
invariant :pb1_1_4 + pb2_1_4 + pb3_1_4 + pb4_1_4 + pb5_1_4 + pb6_1_4 + pbl_1_4 = 12
invariant :pb1_15_5 + pb2_15_5 + pb3_15_5 + pb4_15_5 + pb5_15_5 + pb6_15_5 + pbl_15_5 = 12
invariant :pi1_2_2 + pil1_2_2 = 1
invariant :pi6_6_1 + pil6_6_1 = 1
invariant :pi6_1_5 + pil6_1_5 = 1
invariant :po2_13_4 + pol2_13_4 = 1
invariant :po3_9_3 + pol3_9_3 = 1
invariant :po1_9_2 + pol1_9_2 = 1
invariant :pi2_1_4 + pil2_1_4 = 1
invariant :po5_9_1 + pol5_9_1 = 1
invariant :po1_4_7 + pol1_4_7 = 1
invariant :po1_9_5 + pol1_9_5 = 1
invariant :pi1_14_9 + pil1_14_9 = 1
invariant :po2_11_5 + pol2_11_5 = 1
invariant :po1_5_11 + pol1_5_11 = 1
invariant :po3_10_2 + pol3_10_2 = 1
invariant :po3_10_7 + pol3_10_7 = 1
invariant :pi2_2_1 + pil2_2_1 = 1
invariant :po3_14_3 + pol3_14_3 = 1
invariant :po1_10_9 + pol1_10_9 = 1
invariant :pb1_8_6 + pb2_8_6 + pb3_8_6 + pb4_8_6 + pb5_8_6 + pb6_8_6 + pbl_8_6 = 12
invariant :po2_7_7 + pol2_7_7 = 1
invariant :pi1_13_10 + pil1_13_10 = 1
invariant :po3_10_11 + pol3_10_11 = 1
invariant :pi2_9_2 + pil2_9_2 = 1
invariant :pi4_15_8 + pil4_15_8 = 1
invariant :pb1_10_11 + pb2_10_11 + pb3_10_11 + pb4_10_11 + pb5_10_11 + pb6_10_11 + pbl_10_11 = 12
invariant :pb1_14_1 + pb2_14_1 + pb3_14_1 + pb4_14_1 + pb5_14_1 + pb6_14_1 + pbl_14_1 = 12
invariant :po2_10_6 + pol2_10_6 = 1
invariant :pi2_11_6 + pil2_11_6 = 1
invariant :pi2_6_12 + pil2_6_12 = 1
invariant :pb1_9_1 + pb2_9_1 + pb3_9_1 + pb4_9_1 + pb5_9_1 + pb6_9_1 + pbl_9_1 = 12
invariant :po5_13_1 + pol5_13_1 = 1
invariant :pi3_8_1 + pil3_8_1 = 1
invariant :pi1_8_5 + pil1_8_5 = 1
invariant :pb1_14_4 + pb2_14_4 + pb3_14_4 + pb4_14_4 + pb5_14_4 + pb6_14_4 + pbl_14_4 = 12
invariant :pb1_3_1 + pb2_3_1 + pb3_3_1 + pb4_3_1 + pb5_3_1 + pb6_3_1 + pbl_3_1 = 12
invariant :po1_9_4 + pol1_9_4 = 1
invariant :po1_14_3 + pol1_14_3 = 1
invariant :pi1_9_10 + pil1_9_10 = 1
invariant :po3_9_7 + pol3_9_7 = 1
invariant :pi3_8_2 + pil3_8_2 = 1
invariant :pi1_5_8 + pil1_5_8 = 1
invariant :pi3_8_15 + pil3_8_15 = 1
invariant :pi3_3_8 + pil3_3_8 = 1
invariant :pb1_9_5 + pb2_9_5 + pb3_9_5 + pb4_9_5 + pb5_9_5 + pb6_9_5 + pbl_9_5 = 12
invariant :po2_11_3 + pol2_11_3 = 1
invariant :pi1_14_6 + pil1_14_6 = 1
invariant :pi1_5_7 + pil1_5_7 = 1
invariant :pb1_8_8 + pb2_8_8 + pb3_8_8 + pb4_8_8 + pb5_8_8 + pb6_8_8 + pbl_8_8 = 12
invariant :po3_8_5 + pol3_8_5 = 1
invariant :po2_1_1 + pol2_1_1 = 1
invariant :pi1_2_7 + pil1_2_7 = 1
invariant :pb1_12_3 + pb2_12_3 + pb3_12_3 + pb4_12_3 + pb5_12_3 + pb6_12_3 + pbl_12_3 = 12
invariant :po1_10_5 + pol1_10_5 = 1
invariant :pi1_14_7 + pil1_14_7 = 1
invariant :pb1_5_10 + pb2_5_10 + pb3_5_10 + pb4_5_10 + pb5_5_10 + pb6_5_10 + pbl_5_10 = 12
invariant :pi3_4_2 + pil3_4_2 = 1
invariant :pi1_5_3 + pil1_5_3 = 1
invariant :pi3_14_7 + pil3_14_7 = 1
invariant :po2_1_2 + pol2_1_2 = 1
invariant :pb1_7_7 + pb2_7_7 + pb3_7_7 + pb4_7_7 + pb5_7_7 + pb6_7_7 + pbl_7_7 = 12
invariant :po2_7_8 + pol2_7_8 = 1
invariant :pi1_15_1 + pil1_15_1 = 1
invariant :pi2_3_4 + pil2_3_4 = 1
invariant :pb1_15_6 + pb2_15_6 + pb3_15_6 + pb4_15_6 + pb5_15_6 + pb6_15_6 + pbl_15_6 = 12
invariant :pi3_3_5 + pil3_3_5 = 1
invariant :pi3_11_2 + pil3_11_2 = 1
invariant :po1_7_12 + pol1_7_12 = 1
invariant :po3_11_7 + pol3_11_7 = 1
invariant :pi2_6_3 + pil2_6_3 = 1
invariant :po2_12_6 + pol2_12_6 = 1
invariant :po3_3_6 + pol3_3_6 = 1
invariant :pi2_12_4 + pil2_12_4 = 1
invariant :pi1_2_5 + pil1_2_5 = 1
invariant :pi1_10_13 + pil1_10_13 = 1
invariant :pi3_1_3 + pil3_1_3 = 1
invariant :pb1_1_6 + pb2_1_6 + pb3_1_6 + pb4_1_6 + pb5_1_6 + pb6_1_6 + pbl_1_6 = 12
invariant :pi2_3_6 + pil2_3_6 = 1
invariant :po3_13_2 + pol3_13_2 = 1
invariant :po1_6_9 + pol1_6_9 = 1
invariant :po6_1_4 + pol6_1_4 = 1
invariant :pb1_7_6 + pb2_7_6 + pb3_7_6 + pb4_7_6 + pb5_7_6 + pb6_7_6 + pbl_7_6 = 12
invariant :pi2_10_4 + pil2_10_4 = 1
invariant :po1_10_1 + pol1_10_1 = 1
invariant :pi2_5_12 + pil2_5_12 = 1
invariant :pi2_6_10 + pil2_6_10 = 1
invariant :po3_5_8 + pol3_5_8 = 1
invariant :pi2_10_2 + pil2_10_2 = 1
invariant :po2_10_11 + pol2_10_11 = 1
invariant :pi1_11_12 + pil1_11_12 = 1
invariant :po3_14_6 + pol3_14_6 = 1
invariant :pb1_6_1 + pb2_6_1 + pb3_6_1 + pb4_6_1 + pb5_6_1 + pb6_6_1 + pbl_6_1 = 12
invariant :pi2_12_8 + pil2_12_8 = 1
invariant :pi3_7_3 + pil3_7_3 = 1
invariant :pi2_4_3 + pil2_4_3 = 1
invariant :po2_11_4 + pol2_11_4 = 1
invariant :pi1_12_6 + pil1_12_6 = 1
invariant :pi3_4_9 + pil3_4_9 = 1
invariant :pi3_14_6 + pil3_14_6 = 1
invariant :pb1_7_12 + pb2_7_12 + pb3_7_12 + pb4_7_12 + pb5_7_12 + pb6_7_12 + pbl_7_12 = 12
invariant :pi3_12_1 + pil3_12_1 = 1
invariant :pb1_14_5 + pb2_14_5 + pb3_14_5 + pb4_14_5 + pb5_14_5 + pb6_14_5 + pbl_14_5 = 12
invariant :po3_8_2 + pol3_8_2 = 1
invariant :pi6_3_1 + pil6_3_1 = 1
invariant :po1_6_5 + pol1_6_5 = 1
invariant :po4_9_1 + pol4_9_1 = 1
invariant :pi1_8_11 + pil1_8_11 = 1
invariant :po1_3_4 + pol1_3_4 = 1
invariant :po2_7_2 + pol2_7_2 = 1
invariant :pi3_9_4 + pil3_9_4 = 1
invariant :pi3_14_4 + pil3_14_4 = 1
invariant :po1_1_7 + pol1_1_7 = 1
invariant :po1_4_3 + pol1_4_3 = 1
invariant :po2_6_11 + pol2_6_11 = 1
invariant :pi2_2_5 + pil2_2_5 = 1
invariant :po2_1_6 + pol2_1_6 = 1
invariant :pi1_8_8 + pil1_8_8 = 1
invariant :po3_8_13 + pol3_8_13 = 1
invariant :pi5_12_1 + pil5_12_1 = 1
invariant :po3_12_4 + pol3_12_4 = 1
invariant :po6_1_5 + pol6_1_5 = 1
invariant :po1_5_10 + pol1_5_10 = 1
invariant :pi1_6_3 + pil1_6_3 = 1
invariant :pb1_5_7 + pb2_5_7 + pb3_5_7 + pb4_5_7 + pb5_5_7 + pb6_5_7 + pbl_5_7 = 12
invariant :po3_9_10 + pol3_9_10 = 1
invariant :po3_15_8 + pol3_15_8 = 1
invariant :po3_10_9 + pol3_10_9 = 1
invariant :po1_9_11 + pol1_9_11 = 1
invariant :pi6_7_1 + pil6_7_1 = 1
invariant :po3_4_2 + pol3_4_2 = 1
invariant :pi1_12_5 + pil1_12_5 = 1
invariant :po2_5_9 + pol2_5_9 = 1
invariant :po2_11_11 + pol2_11_11 = 1
invariant :po2_11_10 + pol2_11_10 = 1
invariant :po3_11_11 + pol3_11_11 = 1
invariant :po1_6_6 + pol1_6_6 = 1
invariant :pi5_11_1 + pil5_11_1 = 1
invariant :po3_5_11 + pol3_5_11 = 1
invariant :pi3_8_9 + pil3_8_9 = 1
invariant :po3_15_6 + pol3_15_6 = 1
invariant :po3_10_13 + pol3_10_13 = 1
invariant :pi2_10_6 + pil2_10_6 = 1
invariant :pi3_13_1 + pil3_13_1 = 1
invariant :pi3_11_8 + pil3_11_8 = 1
invariant :po1_1_4 + pol1_1_4 = 1
invariant :pi2_8_5 + pil2_8_5 = 1
invariant :po1_9_13 + pol1_9_13 = 1
invariant :pb1_8_13 + pb2_8_13 + pb3_8_13 + pb4_8_13 + pb5_8_13 + pb6_8_13 + pbl_8_13 = 12
invariant :pi2_9_8 + pil2_9_8 = 1
invariant :pi2_3_2 + pil2_3_2 = 1
invariant :po3_9_9 + pol3_9_9 = 1
invariant :pb1_4_9 + pb2_4_9 + pb3_4_9 + pb4_4_9 + pb5_4_9 + pb6_4_9 + pbl_4_9 = 12
invariant :pi3_6_12 + pil3_6_12 = 1
invariant :po1_5_3 + pol1_5_3 = 1
invariant :po2_11_9 + pol2_11_9 = 1
Compilation finished in 113375 ms.
Running link step : CommandLine [args=[gcc, -shared, -o, gal.so, model.o], workingDir=/home/mcc/execution]
Link finished in 105 ms.
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality00==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality00==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality01==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality01==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality02==true], workingDir=/home/mcc/execution]
WARNING : LTSmin timed out (>225 s) on command CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality02==true], workingDir=/home/mcc/execution]
Running LTSmin : CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
WARNING : LTS min runner thread failed on error :java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
255

BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

+ export BINDIR=/home/mcc/BenchKit/
+ BINDIR=/home/mcc/BenchKit/
++ pwd
+ export MODEL=/home/mcc/execution
+ MODEL=/home/mcc/execution
+ /home/mcc/BenchKit//runeclipse.sh /home/mcc/execution ReachabilityCardinality -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt
+ ulimit -s 65536
+ [[ -z '' ]]
+ export LTSMIN_MEM_SIZE=8589934592
+ LTSMIN_MEM_SIZE=8589934592
+ /home/mcc/BenchKit//itstools/its-tools -consoleLog -data /home/mcc/execution/workspace -pnfolder /home/mcc/execution -examination ReachabilityCardinality -z3path /home/mcc/BenchKit//z3/bin/z3 -yices2path /home/mcc/BenchKit//yices/bin/yices -its -ltsminpath /home/mcc/BenchKit//lts_install_dir/ -louvain -smt -vmargs -Dosgi.locking=none -Declipse.stateSaveDelayInterval=-1 -Dosgi.configuration.area=/tmp/.eclipse -Xss8m -Xms40m -Xmx8192m -Dfile.encoding=UTF-8 -Dosgi.requiredJavaVersion=1.6
May 26, 2018 12:14:04 AM fr.lip6.move.gal.application.Application start
INFO: Running its-tools with arguments : [-pnfolder, /home/mcc/execution, -examination, ReachabilityCardinality, -z3path, /home/mcc/BenchKit//z3/bin/z3, -yices2path, /home/mcc/BenchKit//yices/bin/yices, -its, -ltsminpath, /home/mcc/BenchKit//lts_install_dir/, -louvain, -smt]
May 26, 2018 12:14:05 AM fr.lip6.move.gal.application.MccTranslator transformPNML
INFO: Parsing pnml file : /home/mcc/execution/model.pnml
May 26, 2018 12:14:05 AM fr.lip6.move.gal.nupn.PTNetReader loadFromXML
INFO: Load time of PNML (sax parser for PT used): 481 ms
May 26, 2018 12:14:05 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 3391 places.
May 26, 2018 12:14:05 AM fr.lip6.move.gal.pnml.togal.PTGALTransformer handlePage
INFO: Transformed 6174 transitions.
May 26, 2018 12:14:07 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1610 ms
May 26, 2018 12:14:09 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1533 ms
May 26, 2018 12:14:09 AM fr.lip6.move.gal.instantiate.GALRewriter flatten
INFO: Flatten gal took : 1611 ms
May 26, 2018 12:14:09 AM fr.lip6.move.serialization.SerializationUtil systemToFile
INFO: Time to serialize gal into /home/mcc/execution/ReachabilityCardinality.pnml.gal : 134 ms
May 26, 2018 12:14:09 AM fr.lip6.move.serialization.SerializationUtil serializePropertiesForITSTools
INFO: Time to serialize properties into /home/mcc/execution/ReachabilityCardinality.prop : 1 ms
May 26, 2018 12:14:10 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 6174 transitions.
May 26, 2018 12:14:10 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Too many transitions (6174) to apply POR reductions. Disabling POR matrices.
May 26, 2018 12:14:10 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 6174 transitions.
May 26, 2018 12:14:11 AM fr.lip6.move.gal.gal2pins.Gal2PinsTransformerNext transform
INFO: Built C files in 3160ms conformant to PINS in folder :/home/mcc/execution
May 26, 2018 12:14:13 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd checkProperties
INFO: Ran tautology test, simplified 0 / 16 in 4324 ms.
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-00(UNSAT) depth K=0 took 116 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-01(UNSAT) depth K=0 took 9 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-02(UNSAT) depth K=0 took 17 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-03(UNSAT) depth K=0 took 10 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-04(UNSAT) depth K=0 took 7 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-05(UNSAT) depth K=0 took 12 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-06(UNSAT) depth K=0 took 6 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-07(UNSAT) depth K=0 took 8 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-08(UNSAT) depth K=0 took 6 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-09(UNSAT) depth K=0 took 54 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-10(UNSAT) depth K=0 took 15 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-11(UNSAT) depth K=0 took 10 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-12(UNSAT) depth K=0 took 6 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-13(UNSAT) depth K=0 took 17 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-14(UNSAT) depth K=0 took 6 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-15(UNSAT) depth K=0 took 13 ms
May 26, 2018 12:14:14 AM fr.lip6.move.gal.semantics.DeterministicNextBuilder getDeterministicNext
INFO: Input system was already deterministic with 6174 transitions.
May 26, 2018 12:14:18 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-00(UNSAT) depth K=1 took 4172 ms
May 26, 2018 12:14:22 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver computeAndDeclareInvariants
INFO: Computed 1274 place invariants in 5972 ms
May 26, 2018 12:14:24 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-01(UNSAT) depth K=1 took 5834 ms
May 26, 2018 12:14:27 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-02(UNSAT) depth K=1 took 3287 ms
May 26, 2018 12:14:31 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-03(UNSAT) depth K=1 took 3547 ms
May 26, 2018 12:14:34 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-04(UNSAT) depth K=1 took 3686 ms
May 26, 2018 12:14:38 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-05(UNSAT) depth K=1 took 3712 ms
May 26, 2018 12:14:42 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-06(UNSAT) depth K=1 took 3687 ms
May 26, 2018 12:14:50 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-07(UNSAT) depth K=1 took 8513 ms
May 26, 2018 12:14:54 AM fr.lip6.move.gal.gal2smt.bmc.KInductionSolver init
INFO: Proved 3391 variables to be positive in 37975 ms
May 26, 2018 12:14:55 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-08(UNSAT) depth K=1 took 4348 ms
May 26, 2018 12:14:59 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-09(UNSAT) depth K=1 took 3975 ms
May 26, 2018 12:15:03 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-10(UNSAT) depth K=1 took 3943 ms
May 26, 2018 12:15:07 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-11(UNSAT) depth K=1 took 4033 ms
May 26, 2018 12:15:15 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-12(UNSAT) depth K=1 took 8242 ms
May 26, 2018 12:15:19 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-13(UNSAT) depth K=1 took 4228 ms
May 26, 2018 12:15:23 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-14(UNSAT) depth K=1 took 4140 ms
May 26, 2018 12:15:27 AM fr.lip6.move.gal.gal2smt.Gal2SMTFrontEnd runBMC
INFO: BMC solution for property HexagonalGrid-PT-816-ReachabilityCardinality-15(UNSAT) depth K=1 took 4057 ms
pins2lts-mc, 0.000: Registering PINS so language module
pins2lts-mc, 0.000, ** error **: out of memory trying to get 4294967296
java.lang.RuntimeException: Unexpected exception when executing ltsmin :CommandLine [args=[/home/mcc/BenchKit//lts_install_dir//bin/pins2lts-mc, ./gal.so, --threads=1, -p, --pins-guards, --when, -i, HexagonalGridPT816ReachabilityCardinality03==true], workingDir=/home/mcc/execution]
255
at fr.lip6.move.gal.application.LTSminRunner.checkProperty(LTSminRunner.java:167)
at fr.lip6.move.gal.application.LTSminRunner.access$9(LTSminRunner.java:122)
at fr.lip6.move.gal.application.LTSminRunner$1.run(LTSminRunner.java:91)
at java.lang.Thread.run(Thread.java:748)
ITS-tools command line returned an error code 137

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="HexagonalGrid-PT-816"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="itstoolsl"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/HexagonalGrid-PT-816.tgz
mv HexagonalGrid-PT-816 execution
cd execution
pwd
ls -lh

# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool itstoolsl"
echo " Input is HexagonalGrid-PT-816, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r105-smll-152658635200047"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;