About the Execution of LoLA for BART-PT-002
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
170.640 | 1154.00 | 1120.00 | 12.60 | TTTTFFTFFFFFFTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.................
/home/mcc/execution
total 1.7M
-rw-r--r-- 1 mcc users 82K May 15 18:54 CTLCardinality.txt
-rw-r--r-- 1 mcc users 201K May 15 18:54 CTLCardinality.xml
-rw-r--r-- 1 mcc users 55K May 15 18:54 CTLFireability.txt
-rw-r--r-- 1 mcc users 148K May 15 18:54 CTLFireability.xml
-rw-r--r-- 1 mcc users 4.0K May 15 18:49 GenericPropertiesDefinition.xml
-rw-r--r-- 1 mcc users 6.1K May 15 18:49 GenericPropertiesVerdict.xml
-rw-r--r-- 1 mcc users 29K May 15 18:54 LTLCardinality.txt
-rw-r--r-- 1 mcc users 73K May 15 18:54 LTLCardinality.xml
-rw-r--r-- 1 mcc users 21K May 15 18:54 LTLFireability.txt
-rw-r--r-- 1 mcc users 52K May 15 18:54 LTLFireability.xml
-rw-r--r-- 1 mcc users 44K May 15 18:54 ReachabilityCardinality.txt
-rw-r--r-- 1 mcc users 110K May 15 18:54 ReachabilityCardinality.xml
-rw-r--r-- 1 mcc users 102 May 15 18:54 ReachabilityDeadlock.txt
-rw-r--r-- 1 mcc users 340 May 15 18:54 ReachabilityDeadlock.xml
-rw-r--r-- 1 mcc users 64K May 15 18:54 ReachabilityFireability.txt
-rw-r--r-- 1 mcc users 169K May 15 18:54 ReachabilityFireability.xml
-rw-r--r-- 1 mcc users 14K May 15 18:54 UpperBounds.txt
-rw-r--r-- 1 mcc users 27K May 15 18:54 UpperBounds.xml
-rw-r--r-- 1 mcc users 5 May 15 18:49 equiv_col
-rw-r--r-- 1 mcc users 4 May 15 18:49 instance
-rw-r--r-- 1 mcc users 6 May 15 18:49 iscolored
-rw-r--r-- 1 mcc users 506K May 15 18:49 model.pnml
=====================================================================
Generated by BenchKit 2-3637
Executing tool lola
Input is BART-PT-002, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r028-ebro-152646306000059
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME BART-PT-002-CTLCardinality-00
FORMULA_NAME BART-PT-002-CTLCardinality-01
FORMULA_NAME BART-PT-002-CTLCardinality-02
FORMULA_NAME BART-PT-002-CTLCardinality-03
FORMULA_NAME BART-PT-002-CTLCardinality-04
FORMULA_NAME BART-PT-002-CTLCardinality-05
FORMULA_NAME BART-PT-002-CTLCardinality-06
FORMULA_NAME BART-PT-002-CTLCardinality-07
FORMULA_NAME BART-PT-002-CTLCardinality-08
FORMULA_NAME BART-PT-002-CTLCardinality-09
FORMULA_NAME BART-PT-002-CTLCardinality-10
FORMULA_NAME BART-PT-002-CTLCardinality-11
FORMULA_NAME BART-PT-002-CTLCardinality-12
FORMULA_NAME BART-PT-002-CTLCardinality-13
FORMULA_NAME BART-PT-002-CTLCardinality-14
FORMULA_NAME BART-PT-002-CTLCardinality-15
=== Now, execution of the tool begins
BK_START 1526514792342
info: Time: 3600 - MCC
===========================================================================================
prep: translating BART-PT-002 Petri net model.pnml into LoLA format
===========================================================================================
prep: translating PT Petri net complete
prep: added safe information to the net based on GenericPropertiesVerdict
prep: check for too many tokens
===========================================================================================
prep: translating BART-PT-002 formula CTLCardinality into LoLA format
===========================================================================================
prep: translating PT formula complete
vrfy: Checking CTLCardinality @ BART-PT-002 @ 3570 seconds
lola: LoLA will run for 3570 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 878/65536 symbol table entries, 5 collisions
lola: preprocessing...
lola: Size of bit vector: 474
lola: finding significant places
lola: 474 places, 404 transitions, 262 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 343 transition conflict sets
lola: TASK
lola: reading formula from BART-PT-002-CTLCardinality.task
lola: place invariant simplifies atomic proposition
lola: before: (1 <= TrainState_2_4_33 + TrainState_2_4_32 + TrainState_2_4_31 + TrainState_2_4_30 + TrainState_2_4_29 + TrainState_2_4_28 + TrainState_2_4_27 + TrainState_2_4_26 + TrainState_2_4_25 + TrainState_2_4_24 + TrainState_2_4_23 + TrainState_2_4_22 + TrainState_2_4_21 + TrainState_2_4_20 + TrainState_2_4_19 + TrainState_2_4_18 + TrainState_2_4_17 + TrainState_2_4_16 + TrainState_2_4_15 + TrainState_2_4_14 + TrainState_2_4_13 + TrainState_2_4_12 + TrainState_2_4_11 + TrainState_1_2_38 + TrainState_1_2_37 + TrainState_1_2_36 + TrainState_1_2_35 + TrainState_1_2_34 + TrainState_1_0_0 + TrainState_1_2_33 + TrainState_1_2_32 + TrainState_1_2_31 + TrainState_1_2_30 + TrainState_1_2_29 + TrainState_1_2_28 + TrainState_1_2_27 + TrainState_1_2_26 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_1_1_40 + TrainState_1_2_25 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_1_2_24 + TrainState_1_2_23 + TrainState_1_2_22 + TrainState_1_2_21 + TrainState_1_2_20 + TrainState_1_2_19 + TrainState_1_2_18 + TrainState_1_2_17 + TrainState_1_2_16 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_1_2_15 + TrainState_1_2_14 + TrainState_1_2_13 + TrainState_1_2_12 + TrainState_1_2_11 + TrainState_1_2_10 + TrainState_1_3_37 + TrainState_1_3_36 + TrainState_1_3_35 + TrainState_1_3_34 + TrainState_1_3_33 + TrainState_1_3_32 + TrainState_1_3_31 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_1_3_30 + TrainState_1_3_29 + TrainState_1_3_28 + TrainState_1_3_27 + TrainState_1_3_26 + TrainState_1_3_25 + TrainState_1_3_24 + TrainState_1_3_23 + TrainState_1_3_22 + TrainState_1_3_21 + TrainState_1_3_20 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_1_3_19 + TrainState_1_3_18 + TrainState_1_3_17 + TrainState_1_3_16 + TrainState_1_3_15 + TrainState_1_3_14 + TrainState_1_3_13 + TrainState_1_3_12 + TrainState_1_3_11 + TrainState_1_3_10 + TrainState_2_3_9 + TrainState_2_3_8 + TrainState_2_3_7 + TrainState_1_4_34 + TrainState_1_4_33 + TrainState_1_4_32 + TrainState_1_4_31 + TrainState_1_4_30 + TrainState_1_4_29 + TrainState_1_4_28 + TrainState_1_4_27 + TrainState_1_4_26 + TrainState_1_4_25 + TrainState_1_4_24 + TrainState_1_4_23 + TrainState_1_4_22 + TrainState_1_4_21 + TrainState_1_4_20 + TrainState_1_4_19 + TrainState_1_4_18 + TrainState_1_4_17 + TrainState_1_4_16 + TrainState_1_4_15 + TrainState_1_4_14 + TrainState_1_4_13 + TrainState_1_4_12 + TrainState_1_4_11 + TrainState_2_2_9 + TrainState_2_2_8 + TrainState_2_2_7 + TrainState_2_2_6 + TrainState_2_2_5 + TrainState_2_2_4 + TrainState_2_1_40 + TrainState_2_1_9 + TrainState_2_1_8 + TrainState_2_1_7 + TrainState_2_1_6 + TrainState_2_1_5 + TrainState_2_1_4 + TrainState_2_1_3 + TrainState_2_1_2 + TrainState_2_1_1 + TrainState_2_1_39 + TrainState_2_0_0 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_2_1_30 + TrainState_2_1_10 + TrainState_2_1_11 + TrainState_2_1_12 + TrainState_2_1_13 + TrainState_2_1_14 + TrainState_2_1_15 + TrainState_2_1_16 + TrainState_2_1_17 + TrainState_2_1_18 + TrainState_2_1_19 + TrainState_2_1_20 + TrainState_2_1_21 + TrainState_2_1_22 + TrainState_2_1_23 + TrainState_2_1_24 + TrainState_2_1_25 + TrainState_2_1_26 + TrainState_2_1_27 + TrainState_2_1_28 + TrainState_2_1_29 + TrainState_1_2_39 + TrainState_2_4_34)
lola: after: (0 <= 1)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (TrainState_2_4_33 + TrainState_2_4_32 + TrainState_2_4_31 + TrainState_2_4_30 + TrainState_2_4_29 + TrainState_2_4_28 + TrainState_2_4_27 + TrainState_2_4_26 + TrainState_2_4_25 + TrainState_2_4_24 + TrainState_2_4_23 + TrainState_2_4_22 + TrainState_2_4_21 + TrainState_2_4_20 + TrainState_2_4_19 + TrainState_2_4_18 + TrainState_2_4_17 + TrainState_2_4_16 + TrainState_2_4_15 + TrainState_2_4_14 + TrainState_2_4_13 + TrainState_2_4_12 + TrainState_2_4_11 + TrainState_1_2_38 + TrainState_1_2_37 + TrainState_1_2_36 + TrainState_1_2_35 + TrainState_1_2_34 + TrainState_1_0_0 + TrainState_1_2_33 + TrainState_1_2_32 + TrainState_1_2_31 + TrainState_1_2_30 + TrainState_1_2_29 + TrainState_1_2_28 + TrainState_1_2_27 + TrainState_1_2_26 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_1_1_40 + TrainState_1_2_25 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_1_2_24 + TrainState_1_2_23 + TrainState_1_2_22 + TrainState_1_2_21 + TrainState_1_2_20 + TrainState_1_2_19 + TrainState_1_2_18 + TrainState_1_2_17 + TrainState_1_2_16 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_1_2_15 + TrainState_1_2_14 + TrainState_1_2_13 + TrainState_1_2_12 + TrainState_1_2_11 + TrainState_1_2_10 + TrainState_1_3_37 + TrainState_1_3_36 + TrainState_1_3_35 + TrainState_1_3_34 + TrainState_1_3_33 + TrainState_1_3_32 + TrainState_1_3_31 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_1_3_30 + TrainState_1_3_29 + TrainState_1_3_28 + TrainState_1_3_27 + TrainState_1_3_26 + TrainState_1_3_25 + TrainState_1_3_24 + TrainState_1_3_23 + TrainState_1_3_22 + TrainState_1_3_21 + TrainState_1_3_20 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_1_3_19 + TrainState_1_3_18 + TrainState_1_3_17 + TrainState_1_3_16 + TrainState_1_3_15 + TrainState_1_3_14 + TrainState_1_3_13 + TrainState_1_3_12 + TrainState_1_3_11 + TrainState_1_3_10 + TrainState_2_3_9 + TrainState_2_3_8 + TrainState_2_3_7 + TrainState_1_4_34 + TrainState_1_4_33 + TrainState_1_4_32 + TrainState_1_4_31 + TrainState_1_4_30 + TrainState_1_4_29 + TrainState_1_4_28 + TrainState_1_4_27 + TrainState_1_4_26 + TrainState_1_4_25 + TrainState_1_4_24 + TrainState_1_4_23 + TrainState_1_4_22 + TrainState_1_4_21 + TrainState_1_4_20 + TrainState_1_4_19 + TrainState_1_4_18 + TrainState_1_4_17 + TrainState_1_4_16 + TrainState_1_4_15 + TrainState_1_4_14 + TrainState_1_4_13 + TrainState_1_4_12 + TrainState_1_4_11 + TrainState_2_2_9 + TrainState_2_2_8 + TrainState_2_2_7 + TrainState_2_2_6 + TrainState_2_2_5 + TrainState_2_2_4 + TrainState_2_1_40 + TrainState_2_1_9 + TrainState_2_1_8 + TrainState_2_1_7 + TrainState_2_1_6 + TrainState_2_1_5 + TrainState_2_1_4 + TrainState_2_1_3 + TrainState_2_1_2 + TrainState_2_1_1 + TrainState_2_1_39 + TrainState_2_0_0 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_2_1_30 + TrainState_2_1_10 + TrainState_2_1_11 + TrainState_2_1_12 + TrainState_2_1_13 + TrainState_2_1_14 + TrainState_2_1_15 + TrainState_2_1_16 + TrainState_2_1_17 + TrainState_2_1_18 + TrainState_2_1_19 + TrainState_2_1_20 + TrainState_2_1_21 + TrainState_2_1_22 + TrainState_2_1_23 + TrainState_2_1_24 + TrainState_2_1_25 + TrainState_2_1_26 + TrainState_2_1_27 + TrainState_2_1_28 + TrainState_2_1_29 + TrainState_1_2_39 + TrainState_2_4_34 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 3)
lola: always true
lola: always true
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 2)
lola: always true
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (2 <= TrainState_2_4_33 + TrainState_2_4_32 + TrainState_2_4_31 + TrainState_2_4_30 + TrainState_2_4_29 + TrainState_2_4_28 + TrainState_2_4_27 + TrainState_2_4_26 + TrainState_2_4_25 + TrainState_2_4_24 + TrainState_2_4_23 + TrainState_2_4_22 + TrainState_2_4_21 + TrainState_2_4_20 + TrainState_2_4_19 + TrainState_2_4_18 + TrainState_2_4_17 + TrainState_2_4_16 + TrainState_2_4_15 + TrainState_2_4_14 + TrainState_2_4_13 + TrainState_2_4_12 + TrainState_2_4_11 + TrainState_1_2_38 + TrainState_1_2_37 + TrainState_1_2_36 + TrainState_1_2_35 + TrainState_1_2_34 + TrainState_1_0_0 + TrainState_1_2_33 + TrainState_1_2_32 + TrainState_1_2_31 + TrainState_1_2_30 + TrainState_1_2_29 + TrainState_1_2_28 + TrainState_1_2_27 + TrainState_1_2_26 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_1_1_40 + TrainState_1_2_25 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_1_2_24 + TrainState_1_2_23 + TrainState_1_2_22 + TrainState_1_2_21 + TrainState_1_2_20 + TrainState_1_2_19 + TrainState_1_2_18 + TrainState_1_2_17 + TrainState_1_2_16 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_1_2_15 + TrainState_1_2_14 + TrainState_1_2_13 + TrainState_1_2_12 + TrainState_1_2_11 + TrainState_1_2_10 + TrainState_1_3_37 + TrainState_1_3_36 + TrainState_1_3_35 + TrainState_1_3_34 + TrainState_1_3_33 + TrainState_1_3_32 + TrainState_1_3_31 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_1_3_30 + TrainState_1_3_29 + TrainState_1_3_28 + TrainState_1_3_27 + TrainState_1_3_26 + TrainState_1_3_25 + TrainState_1_3_24 + TrainState_1_3_23 + TrainState_1_3_22 + TrainState_1_3_21 + TrainState_1_3_20 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_1_3_19 + TrainState_1_3_18 + TrainState_1_3_17 + TrainState_1_3_16 + TrainState_1_3_15 + TrainState_1_3_14 + TrainState_1_3_13 + TrainState_1_3_12 + TrainState_1_3_11 + TrainState_1_3_10 + TrainState_2_3_9 + TrainState_2_3_8 + TrainState_2_3_7 + TrainState_1_4_34 + TrainState_1_4_33 + TrainState_1_4_32 + TrainState_1_4_31 + TrainState_1_4_30 + TrainState_1_4_29 + TrainState_1_4_28 + TrainState_1_4_27 + TrainState_1_4_26 + TrainState_1_4_25 + TrainState_1_4_24 + TrainState_1_4_23 + TrainState_1_4_22 + TrainState_1_4_21 + TrainState_1_4_20 + TrainState_1_4_19 + TrainState_1_4_18 + TrainState_1_4_17 + TrainState_1_4_16 + TrainState_1_4_15 + TrainState_1_4_14 + TrainState_1_4_13 + TrainState_1_4_12 + TrainState_1_4_11 + TrainState_2_2_9 + TrainState_2_2_8 + TrainState_2_2_7 + TrainState_2_2_6 + TrainState_2_2_5 + TrainState_2_2_4 + TrainState_2_1_40 + TrainState_2_1_9 + TrainState_2_1_8 + TrainState_2_1_7 + TrainState_2_1_6 + TrainState_2_1_5 + TrainState_2_1_4 + TrainState_2_1_3 + TrainState_2_1_2 + TrainState_2_1_1 + TrainState_2_1_39 + TrainState_2_0_0 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_2_1_30 + TrainState_2_1_10 + TrainState_2_1_11 + TrainState_2_1_12 + TrainState_2_1_13 + TrainState_2_1_14 + TrainState_2_1_15 + TrainState_2_1_16 + TrainState_2_1_17 + TrainState_2_1_18 + TrainState_2_1_19 + TrainState_2_1_20 + TrainState_2_1_21 + TrainState_2_1_22 + TrainState_2_1_23 + TrainState_2_1_24 + TrainState_2_1_25 + TrainState_2_1_26 + TrainState_2_1_27 + TrainState_2_1_28 + TrainState_2_1_29 + TrainState_1_2_39 + TrainState_2_4_34)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 2)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10 + DistStation_9 + DistStation_8 + DistStation_7 + DistStation_6 + DistStation_5)
lola: after: (0 <= 35)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 2)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_36_3_33 + NewDistTable_13_3_10 + NewDistTable_11_5_6 + NewDistTable_35_1_34 + NewDistTable_12_1_11 + NewDistTable_21_4_17 + NewDistTable_20_2_18 + NewDistTable_9_2_7 + NewDistTable_16_4_12 + NewDistTable_38_2_36 + NewDistTable_15_2_13 + NewDistTable_24_5_19 + NewDistTable_11_4_7 + NewDistTable_23_3_20 + NewDistTable_22_1_21 + NewDistTable_31_4_27 + NewDistTable_6_3_3 + NewDistTable_19_5_14 + NewDistTable_30_2_28 + NewDistTable_9_1_8 + NewDistTable_28_2_26 + NewDistTable_9_3_6 + NewDistTable_40_1_39 + NewDistTable_29_4_25 + NewDistTable_4_1_3 + NewDistTable_33_2_31 + NewDistTable_34_4_30 + NewDistTable_25_1_24 + NewDistTable_26_3_23 + NewDistTable_18_3_15 + NewDistTable_17_1_16 + NewDistTable_26_4_22 + NewDistTable_25_2_23 + NewDistTable_34_5_29 + NewDistTable_11_3_8 + NewDistTable_33_3_30 + NewDistTable_32_1_31 + NewDistTable_6_2_4 + NewDistTable_29_5_24 + NewDistTable_40_2_38 + NewDistTable_27_5_22 + NewDistTable_18_2_16 + NewDistTable_9_4_5 + NewDistTable_30_1_29 + NewDistTable_19_4_15 + NewDistTable_31_3_28 + NewDistTable_4_2_2 + NewDistTable_14_5_9 + NewDistTable_32_5_27 + NewDistTable_23_2_21 + NewDistTable_24_4_20 + NewDistTable_15_1_14 + NewDistTable_38_1_37 + NewDistTable_16_3_13 + NewDistTable_39_3_36 + NewDistTable_17_5_12 + NewDistTable_7_1_6 + NewDistTable_20_1_19 + NewDistTable_4_3_1 + NewDistTable_21_3_18 + NewDistTable_22_5_17 + NewDistTable_13_2_11 + NewDistTable_36_2_34 + NewDistTable_14_4_10 + NewDistTable_37_4_33 + NewDistTable_28_1_27 + NewDistTable_29_3_26 + NewDistTable_7_2_5 + NewDistTable_33_1_32 + NewDistTable_12_3_9 + NewDistTable_34_3_31 + NewDistTable_26_2_24 + NewDistTable_28_3_25 + NewDistTable_27_1_26 + NewDistTable_36_4_32 + NewDistTable_11_2_9 + NewDistTable_35_2_33 + NewDistTable_12_2_10 + NewDistTable_21_5_16 + NewDistTable_20_3_17 + NewDistTable_6_1_5 + NewDistTable_16_5_11 + NewDistTable_38_3_35 + NewDistTable_15_3_12 + NewDistTable_37_1_36 + NewDistTable_14_1_13 + NewDistTable_23_4_19 + NewDistTable_22_2_20 + NewDistTable_13_5_8 + NewDistTable_3_2_1 + NewDistTable_27_4_23 + NewDistTable_18_1_17 + NewDistTable_19_3_16 + NewDistTable_7_3_4 + NewDistTable_31_2_29 + NewDistTable_32_4_28 + NewDistTable_23_1_22 + NewDistTable_2_1_1 + NewDistTable_12_4_8 + NewDistTable_24_3_21 + NewDistTable_25_5_20 + NewDistTable_16_2_14 + NewDistTable_39_2_37 + NewDistTable_17_4_13 + NewDistTable_7_4_3 + NewDistTable_30_5_25 + NewDistTable_21_2_19 + NewDistTable_2_2_0 + NewDistTable_12_5_7 + NewDistTable_22_4_18 + NewDistTable_13_1_12 + NewDistTable_36_1_35 + NewDistTable_14_3_11 + NewDistTable_10_1_9 + NewDistTable_37_3_34 + NewDistTable_15_5_10 + NewDistTable_29_2_27 + NewDistTable_5_1_4 + NewDistTable_20_5_15 + NewDistTable_34_2_32 + NewDistTable_35_4_31 + NewDistTable_26_1_25 + NewDistTable_10_2_8 + NewDistTable_31_5_26 + NewDistTable_30_3_27 + NewDistTable_18_4_14 + NewDistTable_8_4_4 + NewDistTable_17_2_15 + NewDistTable_26_5_21 + NewDistTable_25_3_22 + NewDistTable_24_1_23 + NewDistTable_33_4_29 + NewDistTable_13_4_9 + NewDistTable_3_1_2 + NewDistTable_32_2_30 + NewDistTable_8_3_5 + NewDistTable_19_1_18 + NewDistTable_28_4_24 + NewDistTable_27_2_25 + NewDistTable_35_3_32 + NewDistTable_34_1_33 + NewDistTable_11_1_10 + NewDistTable_20_4_16 + NewDistTable_8_2_6 + NewDistTable_29_1_28 + NewDistTable_15_4_11 + NewDistTable_37_2_35 + NewDistTable_14_2_12 + NewDistTable_10_4_6 + NewDistTable_23_5_18 + NewDistTable_27_3_24 + NewDistTable_22_3_19 + NewDistTable_21_1_20 + NewDistTable_30_4_26 + NewDistTable_5_3_2 + NewDistTable_8_1_7 + NewDistTable_18_5_13 + NewDistTable_17_3_14 + NewDistTable_39_1_38 + NewDistTable_16_1_15 + NewDistTable_25_4_21 + NewDistTable_10_3_7 + NewDistTable_24_2_22 + NewDistTable_33_5_28 + NewDistTable_32_3_29 + NewDistTable_5_2_3 + NewDistTable_31_1_30 + NewDistTable_28_5_23 + NewDistTable_19_2_17 <= TrainState_2_4_33 + TrainState_2_4_32 + TrainState_2_4_31 + TrainState_2_4_30 + TrainState_2_4_29 + TrainState_2_4_28 + TrainState_2_4_27 + TrainState_2_4_26 + TrainState_2_4_25 + TrainState_2_4_24 + TrainState_2_4_23 + TrainState_2_4_22 + TrainState_2_4_21 + TrainState_2_4_20 + TrainState_2_4_19 + TrainState_2_4_18 + TrainState_2_4_17 + TrainState_2_4_16 + TrainState_2_4_15 + TrainState_2_4_14 + TrainState_2_4_13 + TrainState_2_4_12 + TrainState_2_4_11 + TrainState_1_2_38 + TrainState_1_2_37 + TrainState_1_2_36 + TrainState_1_2_35 + TrainState_1_2_34 + TrainState_1_0_0 + TrainState_1_2_33 + TrainState_1_2_32 + TrainState_1_2_31 + TrainState_1_2_30 + TrainState_1_2_29 + TrainState_1_2_28 + TrainState_1_2_27 + TrainState_1_2_26 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_1_1_40 + TrainState_1_2_25 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_1_2_24 + TrainState_1_2_23 + TrainState_1_2_22 + TrainState_1_2_21 + TrainState_1_2_20 + TrainState_1_2_19 + TrainState_1_2_18 + TrainState_1_2_17 + TrainState_1_2_16 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_1_2_15 + TrainState_1_2_14 + TrainState_1_2_13 + TrainState_1_2_12 + TrainState_1_2_11 + TrainState_1_2_10 + TrainState_1_3_37 + TrainState_1_3_36 + TrainState_1_3_35 + TrainState_1_3_34 + TrainState_1_3_33 + TrainState_1_3_32 + TrainState_1_3_31 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_1_3_30 + TrainState_1_3_29 + TrainState_1_3_28 + TrainState_1_3_27 + TrainState_1_3_26 + TrainState_1_3_25 + TrainState_1_3_24 + TrainState_1_3_23 + TrainState_1_3_22 + TrainState_1_3_21 + TrainState_1_3_20 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_1_3_19 + TrainState_1_3_18 + TrainState_1_3_17 + TrainState_1_3_16 + TrainState_1_3_15 + TrainState_1_3_14 + TrainState_1_3_13 + TrainState_1_3_12 + TrainState_1_3_11 + TrainState_1_3_10 + TrainState_2_3_9 + TrainState_2_3_8 + TrainState_2_3_7 + TrainState_1_4_34 + TrainState_1_4_33 + TrainState_1_4_32 + TrainState_1_4_31 + TrainState_1_4_30 + TrainState_1_4_29 + TrainState_1_4_28 + TrainState_1_4_27 + TrainState_1_4_26 + TrainState_1_4_25 + TrainState_1_4_24 + TrainState_1_4_23 + TrainState_1_4_22 + TrainState_1_4_21 + TrainState_1_4_20 + TrainState_1_4_19 + TrainState_1_4_18 + TrainState_1_4_17 + TrainState_1_4_16 + TrainState_1_4_15 + TrainState_1_4_14 + TrainState_1_4_13 + TrainState_1_4_12 + TrainState_1_4_11 + TrainState_2_2_9 + TrainState_2_2_8 + TrainState_2_2_7 + TrainState_2_2_6 + TrainState_2_2_5 + TrainState_2_2_4 + TrainState_2_1_40 + TrainState_2_1_9 + TrainState_2_1_8 + TrainState_2_1_7 + TrainState_2_1_6 + TrainState_2_1_5 + TrainState_2_1_4 + TrainState_2_1_3 + TrainState_2_1_2 + TrainState_2_1_1 + TrainState_2_1_39 + TrainState_2_0_0 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_2_1_30 + TrainState_2_1_10 + TrainState_2_1_11 + TrainState_2_1_12 + TrainState_2_1_13 + TrainState_2_1_14 + TrainState_2_1_15 + TrainState_2_1_16 + TrainState_2_1_17 + TrainState_2_1_18 + TrainState_2_1_19 + TrainState_2_1_20 + TrainState_2_1_21 + TrainState_2_1_22 + TrainState_2_1_23 + TrainState_2_1_24 + TrainState_2_1_25 + TrainState_2_1_26 + TrainState_2_1_27 + TrainState_2_1_28 + TrainState_2_1_29 + TrainState_1_2_39 + TrainState_2_4_34)
lola: after: (167 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= TrainState_2_4_33 + TrainState_2_4_32 + TrainState_2_4_31 + TrainState_2_4_30 + TrainState_2_4_29 + TrainState_2_4_28 + TrainState_2_4_27 + TrainState_2_4_26 + TrainState_2_4_25 + TrainState_2_4_24 + TrainState_2_4_23 + TrainState_2_4_22 + TrainState_2_4_21 + TrainState_2_4_20 + TrainState_2_4_19 + TrainState_2_4_18 + TrainState_2_4_17 + TrainState_2_4_16 + TrainState_2_4_15 + TrainState_2_4_14 + TrainState_2_4_13 + TrainState_2_4_12 + TrainState_2_4_11 + TrainState_1_2_38 + TrainState_1_2_37 + TrainState_1_2_36 + TrainState_1_2_35 + TrainState_1_2_34 + TrainState_1_0_0 + TrainState_1_2_33 + TrainState_1_2_32 + TrainState_1_2_31 + TrainState_1_2_30 + TrainState_1_2_29 + TrainState_1_2_28 + TrainState_1_2_27 + TrainState_1_2_26 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_1_1_40 + TrainState_1_2_25 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_1_2_24 + TrainState_1_2_23 + TrainState_1_2_22 + TrainState_1_2_21 + TrainState_1_2_20 + TrainState_1_2_19 + TrainState_1_2_18 + TrainState_1_2_17 + TrainState_1_2_16 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_1_2_15 + TrainState_1_2_14 + TrainState_1_2_13 + TrainState_1_2_12 + TrainState_1_2_11 + TrainState_1_2_10 + TrainState_1_3_37 + TrainState_1_3_36 + TrainState_1_3_35 + TrainState_1_3_34 + TrainState_1_3_33 + TrainState_1_3_32 + TrainState_1_3_31 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_1_3_30 + TrainState_1_3_29 + TrainState_1_3_28 + TrainState_1_3_27 + TrainState_1_3_26 + TrainState_1_3_25 + TrainState_1_3_24 + TrainState_1_3_23 + TrainState_1_3_22 + TrainState_1_3_21 + TrainState_1_3_20 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_1_3_19 + TrainState_1_3_18 + TrainState_1_3_17 + TrainState_1_3_16 + TrainState_1_3_15 + TrainState_1_3_14 + TrainState_1_3_13 + TrainState_1_3_12 + TrainState_1_3_11 + TrainState_1_3_10 + TrainState_2_3_9 + TrainState_2_3_8 + TrainState_2_3_7 + TrainState_1_4_34 + TrainState_1_4_33 + TrainState_1_4_32 + TrainState_1_4_31 + TrainState_1_4_30 + TrainState_1_4_29 + TrainState_1_4_28 + TrainState_1_4_27 + TrainState_1_4_26 + TrainState_1_4_25 + TrainState_1_4_24 + TrainState_1_4_23 + TrainState_1_4_22 + TrainState_1_4_21 + TrainState_1_4_20 + TrainState_1_4_19 + TrainState_1_4_18 + TrainState_1_4_17 + TrainState_1_4_16 + TrainState_1_4_15 + TrainState_1_4_14 + TrainState_1_4_13 + TrainState_1_4_12 + TrainState_1_4_11 + TrainState_2_2_9 + TrainState_2_2_8 + TrainState_2_2_7 + TrainState_2_2_6 + TrainState_2_2_5 + TrainState_2_2_4 + TrainState_2_1_40 + TrainState_2_1_9 + TrainState_2_1_8 + TrainState_2_1_7 + TrainState_2_1_6 + TrainState_2_1_5 + TrainState_2_1_4 + TrainState_2_1_3 + TrainState_2_1_2 + TrainState_2_1_1 + TrainState_2_1_39 + TrainState_2_0_0 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_2_1_30 + TrainState_2_1_10 + TrainState_2_1_11 + TrainState_2_1_12 + TrainState_2_1_13 + TrainState_2_1_14 + TrainState_2_1_15 + TrainState_2_1_16 + TrainState_2_1_17 + TrainState_2_1_18 + TrainState_2_1_19 + TrainState_2_1_20 + TrainState_2_1_21 + TrainState_2_1_22 + TrainState_2_1_23 + TrainState_2_1_24 + TrainState_2_1_25 + TrainState_2_1_26 + TrainState_2_1_27 + TrainState_2_1_28 + TrainState_2_1_29 + TrainState_1_2_39 + TrainState_2_4_34)
lola: after: (1 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (2 <= TrainState_2_4_33 + TrainState_2_4_32 + TrainState_2_4_31 + TrainState_2_4_30 + TrainState_2_4_29 + TrainState_2_4_28 + TrainState_2_4_27 + TrainState_2_4_26 + TrainState_2_4_25 + TrainState_2_4_24 + TrainState_2_4_23 + TrainState_2_4_22 + TrainState_2_4_21 + TrainState_2_4_20 + TrainState_2_4_19 + TrainState_2_4_18 + TrainState_2_4_17 + TrainState_2_4_16 + TrainState_2_4_15 + TrainState_2_4_14 + TrainState_2_4_13 + TrainState_2_4_12 + TrainState_2_4_11 + TrainState_1_2_38 + TrainState_1_2_37 + TrainState_1_2_36 + TrainState_1_2_35 + TrainState_1_2_34 + TrainState_1_0_0 + TrainState_1_2_33 + TrainState_1_2_32 + TrainState_1_2_31 + TrainState_1_2_30 + TrainState_1_2_29 + TrainState_1_2_28 + TrainState_1_2_27 + TrainState_1_2_26 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_1_1_40 + TrainState_1_2_25 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_1_2_24 + TrainState_1_2_23 + TrainState_1_2_22 + TrainState_1_2_21 + TrainState_1_2_20 + TrainState_1_2_19 + TrainState_1_2_18 + TrainState_1_2_17 + TrainState_1_2_16 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_1_2_15 + TrainState_1_2_14 + TrainState_1_2_13 + TrainState_1_2_12 + TrainState_1_2_11 + TrainState_1_2_10 + TrainState_1_3_37 + TrainState_1_3_36 + TrainState_1_3_35 + TrainState_1_3_34 + TrainState_1_3_33 + TrainState_1_3_32 + TrainState_1_3_31 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_1_3_30 + TrainState_1_3_29 + TrainState_1_3_28 + TrainState_1_3_27 + TrainState_1_3_26 + TrainState_1_3_25 + TrainState_1_3_24 + TrainState_1_3_23 + TrainState_1_3_22 + TrainState_1_3_21 + TrainState_1_3_20 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_1_3_19 + TrainState_1_3_18 + TrainState_1_3_17 + TrainState_1_3_16 + TrainState_1_3_15 + TrainState_1_3_14 + TrainState_1_3_13 + TrainState_1_3_12 + TrainState_1_3_11 + TrainState_1_3_10 + TrainState_2_3_9 + TrainState_2_3_8 + TrainState_2_3_7 + TrainState_1_4_34 + TrainState_1_4_33 + TrainState_1_4_32 + TrainState_1_4_31 + TrainState_1_4_30 + TrainState_1_4_29 + TrainState_1_4_28 + TrainState_1_4_27 + TrainState_1_4_26 + TrainState_1_4_25 + TrainState_1_4_24 + TrainState_1_4_23 + TrainState_1_4_22 + TrainState_1_4_21 + TrainState_1_4_20 + TrainState_1_4_19 + TrainState_1_4_18 + TrainState_1_4_17 + TrainState_1_4_16 + TrainState_1_4_15 + TrainState_1_4_14 + TrainState_1_4_13 + TrainState_1_4_12 + TrainState_1_4_11 + TrainState_2_2_9 + TrainState_2_2_8 + TrainState_2_2_7 + TrainState_2_2_6 + TrainState_2_2_5 + TrainState_2_2_4 + TrainState_2_1_40 + TrainState_2_1_9 + TrainState_2_1_8 + TrainState_2_1_7 + TrainState_2_1_6 + TrainState_2_1_5 + TrainState_2_1_4 + TrainState_2_1_3 + TrainState_2_1_2 + TrainState_2_1_1 + TrainState_2_1_39 + TrainState_2_0_0 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_2_1_30 + TrainState_2_1_10 + TrainState_2_1_11 + TrainState_2_1_12 + TrainState_2_1_13 + TrainState_2_1_14 + TrainState_2_1_15 + TrainState_2_1_16 + TrainState_2_1_17 + TrainState_2_1_18 + TrainState_2_1_19 + TrainState_2_1_20 + TrainState_2_1_21 + TrainState_2_1_22 + TrainState_2_1_23 + TrainState_2_1_24 + TrainState_2_1_25 + TrainState_2_1_26 + TrainState_2_1_27 + TrainState_2_1_28 + TrainState_2_1_29 + TrainState_1_2_39 + TrainState_2_4_34)
lola: after: (0 <= 0)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_36_3_33 + NewDistTable_13_3_10 + NewDistTable_11_5_6 + NewDistTable_35_1_34 + NewDistTable_12_1_11 + NewDistTable_21_4_17 + NewDistTable_20_2_18 + NewDistTable_9_2_7 + NewDistTable_16_4_12 + NewDistTable_38_2_36 + NewDistTable_15_2_13 + NewDistTable_24_5_19 + NewDistTable_11_4_7 + NewDistTable_23_3_20 + NewDistTable_22_1_21 + NewDistTable_31_4_27 + NewDistTable_6_3_3 + NewDistTable_19_5_14 + NewDistTable_30_2_28 + NewDistTable_9_1_8 + NewDistTable_28_2_26 + NewDistTable_9_3_6 + NewDistTable_40_1_39 + NewDistTable_29_4_25 + NewDistTable_4_1_3 + NewDistTable_33_2_31 + NewDistTable_34_4_30 + NewDistTable_25_1_24 + NewDistTable_26_3_23 + NewDistTable_18_3_15 + NewDistTable_17_1_16 + NewDistTable_26_4_22 + NewDistTable_25_2_23 + NewDistTable_34_5_29 + NewDistTable_11_3_8 + NewDistTable_33_3_30 + NewDistTable_32_1_31 + NewDistTable_6_2_4 + NewDistTable_29_5_24 + NewDistTable_40_2_38 + NewDistTable_27_5_22 + NewDistTable_18_2_16 + NewDistTable_9_4_5 + NewDistTable_30_1_29 + NewDistTable_19_4_15 + NewDistTable_31_3_28 + NewDistTable_4_2_2 + NewDistTable_14_5_9 + NewDistTable_32_5_27 + NewDistTable_23_2_21 + NewDistTable_24_4_20 + NewDistTable_15_1_14 + NewDistTable_38_1_37 + NewDistTable_16_3_13 + NewDistTable_39_3_36 + NewDistTable_17_5_12 + NewDistTable_7_1_6 + NewDistTable_20_1_19 + NewDistTable_4_3_1 + NewDistTable_21_3_18 + NewDistTable_22_5_17 + NewDistTable_13_2_11 + NewDistTable_36_2_34 + NewDistTable_14_4_10 + NewDistTable_37_4_33 + NewDistTable_28_1_27 + NewDistTable_29_3_26 + NewDistTable_7_2_5 + NewDistTable_33_1_32 + NewDistTable_12_3_9 + NewDistTable_34_3_31 + NewDistTable_26_2_24 + NewDistTable_28_3_25 + NewDistTable_27_1_26 + NewDistTable_36_4_32 + NewDistTable_11_2_9 + NewDistTable_35_2_33 + NewDistTable_12_2_10 + NewDistTable_21_5_16 + NewDistTable_20_3_17 + NewDistTable_6_1_5 + NewDistTable_16_5_11 + NewDistTable_38_3_35 + NewDistTable_15_3_12 + NewDistTable_37_1_36 + NewDistTable_14_1_13 + NewDistTable_23_4_19 + NewDistTable_22_2_20 + NewDistTable_13_5_8 + NewDistTable_3_2_1 + NewDistTable_27_4_23 + NewDistTable_18_1_17 + NewDistTable_19_3_16 + NewDistTable_7_3_4 + NewDistTable_31_2_29 + NewDistTable_32_4_28 + NewDistTable_23_1_22 + NewDistTable_2_1_1 + NewDistTable_12_4_8 + NewDistTable_24_3_21 + NewDistTable_25_5_20 + NewDistTable_16_2_14 + NewDistTable_39_2_37 + NewDistTable_17_4_13 + NewDistTable_7_4_3 + NewDistTable_30_5_25 + NewDistTable_21_2_19 + NewDistTable_2_2_0 + NewDistTable_12_5_7 + NewDistTable_22_4_18 + NewDistTable_13_1_12 + NewDistTable_36_1_35 + NewDistTable_14_3_11 + NewDistTable_10_1_9 + NewDistTable_37_3_34 + NewDistTable_15_5_10 + NewDistTable_29_2_27 + NewDistTable_5_1_4 + NewDistTable_20_5_15 + NewDistTable_34_2_32 + NewDistTable_35_4_31 + NewDistTable_26_1_25 + NewDistTable_10_2_8 + NewDistTable_31_5_26 + NewDistTable_30_3_27 + NewDistTable_18_4_14 + NewDistTable_8_4_4 + NewDistTable_17_2_15 + NewDistTable_26_5_21 + NewDistTable_25_3_22 + NewDistTable_24_1_23 + NewDistTable_33_4_29 + NewDistTable_13_4_9 + NewDistTable_3_1_2 + NewDistTable_32_2_30 + NewDistTable_8_3_5 + NewDistTable_19_1_18 + NewDistTable_28_4_24 + NewDistTable_27_2_25 + NewDistTable_35_3_32 + NewDistTable_34_1_33 + NewDistTable_11_1_10 + NewDistTable_20_4_16 + NewDistTable_8_2_6 + NewDistTable_29_1_28 + NewDistTable_15_4_11 + NewDistTable_37_2_35 + NewDistTable_14_2_12 + NewDistTable_10_4_6 + NewDistTable_23_5_18 + NewDistTable_27_3_24 + NewDistTable_22_3_19 + NewDistTable_21_1_20 + NewDistTable_30_4_26 + NewDistTable_5_3_2 + NewDistTable_8_1_7 + NewDistTable_18_5_13 + NewDistTable_17_3_14 + NewDistTable_39_1_38 + NewDistTable_16_1_15 + NewDistTable_25_4_21 + NewDistTable_10_3_7 + NewDistTable_24_2_22 + NewDistTable_33_5_28 + NewDistTable_32_3_29 + NewDistTable_5_2_3 + NewDistTable_31_1_30 + NewDistTable_28_5_23 + NewDistTable_19_2_17 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (164 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_36_3_33 + NewDistTable_13_3_10 + NewDistTable_11_5_6 + NewDistTable_35_1_34 + NewDistTable_12_1_11 + NewDistTable_21_4_17 + NewDistTable_20_2_18 + NewDistTable_9_2_7 + NewDistTable_16_4_12 + NewDistTable_38_2_36 + NewDistTable_15_2_13 + NewDistTable_24_5_19 + NewDistTable_11_4_7 + NewDistTable_23_3_20 + NewDistTable_22_1_21 + NewDistTable_31_4_27 + NewDistTable_6_3_3 + NewDistTable_19_5_14 + NewDistTable_30_2_28 + NewDistTable_9_1_8 + NewDistTable_28_2_26 + NewDistTable_9_3_6 + NewDistTable_40_1_39 + NewDistTable_29_4_25 + NewDistTable_4_1_3 + NewDistTable_33_2_31 + NewDistTable_34_4_30 + NewDistTable_25_1_24 + NewDistTable_26_3_23 + NewDistTable_18_3_15 + NewDistTable_17_1_16 + NewDistTable_26_4_22 + NewDistTable_25_2_23 + NewDistTable_34_5_29 + NewDistTable_11_3_8 + NewDistTable_33_3_30 + NewDistTable_32_1_31 + NewDistTable_6_2_4 + NewDistTable_29_5_24 + NewDistTable_40_2_38 + NewDistTable_27_5_22 + NewDistTable_18_2_16 + NewDistTable_9_4_5 + NewDistTable_30_1_29 + NewDistTable_19_4_15 + NewDistTable_31_3_28 + NewDistTable_4_2_2 + NewDistTable_14_5_9 + NewDistTable_32_5_27 + NewDistTable_23_2_21 + NewDistTable_24_4_20 + NewDistTable_15_1_14 + NewDistTable_38_1_37 + NewDistTable_16_3_13 + NewDistTable_39_3_36 + NewDistTable_17_5_12 + NewDistTable_7_1_6 + NewDistTable_20_1_19 + NewDistTable_4_3_1 + NewDistTable_21_3_18 + NewDistTable_22_5_17 + NewDistTable_13_2_11 + NewDistTable_36_2_34 + NewDistTable_14_4_10 + NewDistTable_37_4_33 + NewDistTable_28_1_27 + NewDistTable_29_3_26 + NewDistTable_7_2_5 + NewDistTable_33_1_32 + NewDistTable_12_3_9 + NewDistTable_34_3_31 + NewDistTable_26_2_24 + NewDistTable_28_3_25 + NewDistTable_27_1_26 + NewDistTable_36_4_32 + NewDistTable_11_2_9 + NewDistTable_35_2_33 + NewDistTable_12_2_10 + NewDistTable_21_5_16 + NewDistTable_20_3_17 + NewDistTable_6_1_5 + NewDistTable_16_5_11 + NewDistTable_38_3_35 + NewDistTable_15_3_12 + NewDistTable_37_1_36 + NewDistTable_14_1_13 + NewDistTable_23_4_19 + NewDistTable_22_2_20 + NewDistTable_13_5_8 + NewDistTable_3_2_1 + NewDistTable_27_4_23 + NewDistTable_18_1_17 + NewDistTable_19_3_16 + NewDistTable_7_3_4 + NewDistTable_31_2_29 + NewDistTable_32_4_28 + NewDistTable_23_1_22 + NewDistTable_2_1_1 + NewDistTable_12_4_8 + NewDistTable_24_3_21 + NewDistTable_25_5_20 + NewDistTable_16_2_14 + NewDistTable_39_2_37 + NewDistTable_17_4_13 + NewDistTable_7_4_3 + NewDistTable_30_5_25 + NewDistTable_21_2_19 + NewDistTable_2_2_0 + NewDistTable_12_5_7 + NewDistTable_22_4_18 + NewDistTable_13_1_12 + NewDistTable_36_1_35 + NewDistTable_14_3_11 + NewDistTable_10_1_9 + NewDistTable_37_3_34 + NewDistTable_15_5_10 + NewDistTable_29_2_27 + NewDistTable_5_1_4 + NewDistTable_20_5_15 + NewDistTable_34_2_32 + NewDistTable_35_4_31 + NewDistTable_26_1_25 + NewDistTable_10_2_8 + NewDistTable_31_5_26 + NewDistTable_30_3_27 + NewDistTable_18_4_14 + NewDistTable_8_4_4 + NewDistTable_17_2_15 + NewDistTable_26_5_21 + NewDistTable_25_3_22 + NewDistTable_24_1_23 + NewDistTable_33_4_29 + NewDistTable_13_4_9 + NewDistTable_3_1_2 + NewDistTable_32_2_30 + NewDistTable_8_3_5 + NewDistTable_19_1_18 + NewDistTable_28_4_24 + NewDistTable_27_2_25 + NewDistTable_35_3_32 + NewDistTable_34_1_33 + NewDistTable_11_1_10 + NewDistTable_20_4_16 + NewDistTable_8_2_6 + NewDistTable_29_1_28 + NewDistTable_15_4_11 + NewDistTable_37_2_35 + NewDistTable_14_2_12 + NewDistTable_10_4_6 + NewDistTable_23_5_18 + NewDistTable_27_3_24 + NewDistTable_22_3_19 + NewDistTable_21_1_20 + NewDistTable_30_4_26 + NewDistTable_5_3_2 + NewDistTable_8_1_7 + NewDistTable_18_5_13 + NewDistTable_17_3_14 + NewDistTable_39_1_38 + NewDistTable_16_1_15 + NewDistTable_25_4_21 + NewDistTable_10_3_7 + NewDistTable_24_2_22 + NewDistTable_33_5_28 + NewDistTable_32_3_29 + NewDistTable_5_2_3 + NewDistTable_31_1_30 + NewDistTable_28_5_23 + NewDistTable_19_2_17 <= DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10 + DistStation_9 + DistStation_8 + DistStation_7 + DistStation_6 + DistStation_5)
lola: after: (133 <= 0)
lola: always false
lola: place invariant simplifies atomic proposition
lola: before: (3 <= DistStation_40 + DistStation_39 + DistStation_38 + DistStation_37 + DistStation_36 + DistStation_35 + DistStation_34 + DistStation_33 + DistStation_32 + DistStation_31 + DistStation_30 + DistStation_29 + DistStation_28 + DistStation_27 + DistStation_26 + DistStation_25 + DistStation_24 + DistStation_23 + DistStation_22 + DistStation_21 + DistStation_20 + DistStation_19 + DistStation_18 + DistStation_17 + DistStation_16 + DistStation_15 + DistStation_14 + DistStation_13 + DistStation_12 + DistStation_11 + DistStation_10 + DistStation_9 + DistStation_8 + DistStation_7 + DistStation_6 + DistStation_5)
lola: after: (0 <= 33)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= NewDistTable_36_3_33 + NewDistTable_13_3_10 + NewDistTable_11_5_6 + NewDistTable_35_1_34 + NewDistTable_12_1_11 + NewDistTable_21_4_17 + NewDistTable_20_2_18 + NewDistTable_9_2_7 + NewDistTable_16_4_12 + NewDistTable_38_2_36 + NewDistTable_15_2_13 + NewDistTable_24_5_19 + NewDistTable_11_4_7 + NewDistTable_23_3_20 + NewDistTable_22_1_21 + NewDistTable_31_4_27 + NewDistTable_6_3_3 + NewDistTable_19_5_14 + NewDistTable_30_2_28 + NewDistTable_9_1_8 + NewDistTable_28_2_26 + NewDistTable_9_3_6 + NewDistTable_40_1_39 + NewDistTable_29_4_25 + NewDistTable_4_1_3 + NewDistTable_33_2_31 + NewDistTable_34_4_30 + NewDistTable_25_1_24 + NewDistTable_26_3_23 + NewDistTable_18_3_15 + NewDistTable_17_1_16 + NewDistTable_26_4_22 + NewDistTable_25_2_23 + NewDistTable_34_5_29 + NewDistTable_11_3_8 + NewDistTable_33_3_30 + NewDistTable_32_1_31 + NewDistTable_6_2_4 + NewDistTable_29_5_24 + NewDistTable_40_2_38 + NewDistTable_27_5_22 + NewDistTable_18_2_16 + NewDistTable_9_4_5 + NewDistTable_30_1_29 + NewDistTable_19_4_15 + NewDistTable_31_3_28 + NewDistTable_4_2_2 + NewDistTable_14_5_9 + NewDistTable_32_5_27 + NewDistTable_23_2_21 + NewDistTable_24_4_20 + NewDistTable_15_1_14 + NewDistTable_38_1_37 + NewDistTable_16_3_13 + NewDistTable_39_3_36 + NewDistTable_17_5_12 + NewDistTable_7_1_6 + NewDistTable_20_1_19 + NewDistTable_4_3_1 + NewDistTable_21_3_18 + NewDistTable_22_5_17 + NewDistTable_13_2_11 + NewDistTable_36_2_34 + NewDistTable_14_4_10 + NewDistTable_37_4_33 + NewDistTable_28_1_27 + NewDistTable_29_3_26 + NewDistTable_7_2_5 + NewDistTable_33_1_32 + NewDistTable_12_3_9 + NewDistTable_34_3_31 + NewDistTable_26_2_24 + NewDistTable_28_3_25 + NewDistTable_27_1_26 + NewDistTable_36_4_32 + NewDistTable_11_2_9 + NewDistTable_35_2_33 + NewDistTable_12_2_10 + NewDistTable_21_5_16 + NewDistTable_20_3_17 + NewDistTable_6_1_5 + NewDistTable_16_5_11 + NewDistTable_38_3_35 + NewDistTable_15_3_12 + NewDistTable_37_1_36 + NewDistTable_14_1_13 + NewDistTable_23_4_19 + NewDistTable_22_2_20 + NewDistTable_13_5_8 + NewDistTable_3_2_1 + NewDistTable_27_4_23 + NewDistTable_18_1_17 + NewDistTable_19_3_16 + NewDistTable_7_3_4 + NewDistTable_31_2_29 + NewDistTable_32_4_28 + NewDistTable_23_1_22 + NewDistTable_2_1_1 + NewDistTable_12_4_8 + NewDistTable_24_3_21 + NewDistTable_25_5_20 + NewDistTable_16_2_14 + NewDistTable_39_2_37 + NewDistTable_17_4_13 + NewDistTable_7_4_3 + NewDistTable_30_5_25 + NewDistTable_21_2_19 + NewDistTable_2_2_0 + NewDistTable_12_5_7 + NewDistTable_22_4_18 + NewDistTable_13_1_12 + NewDistTable_36_1_35 + NewDistTable_14_3_11 + NewDistTable_10_1_9 + NewDistTable_37_3_34 + NewDistTable_15_5_10 + NewDistTable_29_2_27 + NewDistTable_5_1_4 + NewDistTable_20_5_15 + NewDistTable_34_2_32 + NewDistTable_35_4_31 + NewDistTable_26_1_25 + NewDistTable_10_2_8 + NewDistTable_31_5_26 + NewDistTable_30_3_27 + NewDistTable_18_4_14 + NewDistTable_8_4_4 + NewDistTable_17_2_15 + NewDistTable_26_5_21 + NewDistTable_25_3_22 + NewDistTable_24_1_23 + NewDistTable_33_4_29 + NewDistTable_13_4_9 + NewDistTable_3_1_2 + NewDistTable_32_2_30 + NewDistTable_8_3_5 + NewDistTable_19_1_18 + NewDistTable_28_4_24 + NewDistTable_27_2_25 + NewDistTable_35_3_32 + NewDistTable_34_1_33 + NewDistTable_11_1_10 + NewDistTable_20_4_16 + NewDistTable_8_2_6 + NewDistTable_29_1_28 + NewDistTable_15_4_11 + NewDistTable_37_2_35 + NewDistTable_14_2_12 + NewDistTable_10_4_6 + NewDistTable_23_5_18 + NewDistTable_27_3_24 + NewDistTable_22_3_19 + NewDistTable_21_1_20 + NewDistTable_30_4_26 + NewDistTable_5_3_2 + NewDistTable_8_1_7 + NewDistTable_18_5_13 + NewDistTable_17_3_14 + NewDistTable_39_1_38 + NewDistTable_16_1_15 + NewDistTable_25_4_21 + NewDistTable_10_3_7 + NewDistTable_24_2_22 + NewDistTable_33_5_28 + NewDistTable_32_3_29 + NewDistTable_5_2_3 + NewDistTable_31_1_30 + NewDistTable_28_5_23 + NewDistTable_19_2_17)
lola: after: (0 <= 168)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (2 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 3)
lola: always true
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= StopTable_4_10 + StopTable_5_15 + StopTable_3_6 + StopTable_2_3 + StopTable_1_1)
lola: after: (0 <= 4)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (TrainState_2_4_33 + TrainState_2_4_32 + TrainState_2_4_31 + TrainState_2_4_30 + TrainState_2_4_29 + TrainState_2_4_28 + TrainState_2_4_27 + TrainState_2_4_26 + TrainState_2_4_25 + TrainState_2_4_24 + TrainState_2_4_23 + TrainState_2_4_22 + TrainState_2_4_21 + TrainState_2_4_20 + TrainState_2_4_19 + TrainState_2_4_18 + TrainState_2_4_17 + TrainState_2_4_16 + TrainState_2_4_15 + TrainState_2_4_14 + TrainState_2_4_13 + TrainState_2_4_12 + TrainState_2_4_11 + TrainState_1_2_38 + TrainState_1_2_37 + TrainState_1_2_36 + TrainState_1_2_35 + TrainState_1_2_34 + TrainState_1_0_0 + TrainState_1_2_33 + TrainState_1_2_32 + TrainState_1_2_31 + TrainState_1_2_30 + TrainState_1_2_29 + TrainState_1_2_28 + TrainState_1_2_27 + TrainState_1_2_26 + TrainState_1_1_10 + TrainState_1_1_11 + TrainState_1_1_12 + TrainState_1_1_13 + TrainState_1_1_14 + TrainState_1_1_15 + TrainState_1_1_16 + TrainState_1_1_17 + TrainState_1_1_18 + TrainState_1_1_19 + TrainState_1_1_20 + TrainState_1_1_21 + TrainState_1_1_22 + TrainState_1_1_23 + TrainState_1_1_24 + TrainState_1_1_25 + TrainState_1_1_26 + TrainState_1_1_27 + TrainState_1_1_28 + TrainState_1_1_29 + TrainState_1_1_30 + TrainState_1_1_31 + TrainState_1_1_32 + TrainState_1_1_33 + TrainState_1_1_34 + TrainState_1_1_35 + TrainState_1_1_36 + TrainState_1_1_37 + TrainState_1_1_38 + TrainState_1_1_39 + TrainState_1_1_40 + TrainState_1_2_25 + TrainState_2_3_10 + TrainState_2_3_11 + TrainState_2_3_12 + TrainState_2_3_13 + TrainState_2_3_14 + TrainState_2_3_15 + TrainState_2_3_16 + TrainState_2_3_17 + TrainState_2_3_18 + TrainState_2_3_19 + TrainState_1_1_1 + TrainState_1_1_2 + TrainState_1_1_3 + TrainState_1_1_4 + TrainState_1_1_5 + TrainState_1_1_6 + TrainState_1_1_7 + TrainState_1_1_8 + TrainState_1_1_9 + TrainState_2_3_20 + TrainState_2_3_21 + TrainState_2_3_22 + TrainState_2_3_23 + TrainState_2_3_24 + TrainState_2_3_25 + TrainState_2_3_26 + TrainState_2_3_27 + TrainState_2_3_28 + TrainState_2_3_29 + TrainState_2_3_30 + TrainState_2_3_31 + TrainState_2_3_32 + TrainState_2_3_33 + TrainState_2_3_34 + TrainState_2_3_35 + TrainState_2_3_36 + TrainState_2_3_37 + TrainState_1_2_24 + TrainState_1_2_23 + TrainState_1_2_22 + TrainState_1_2_21 + TrainState_1_2_20 + TrainState_1_2_19 + TrainState_1_2_18 + TrainState_1_2_17 + TrainState_1_2_16 + TrainState_1_2_4 + TrainState_1_2_5 + TrainState_1_2_6 + TrainState_1_2_7 + TrainState_1_2_8 + TrainState_1_2_9 + TrainState_1_2_15 + TrainState_1_2_14 + TrainState_1_2_13 + TrainState_1_2_12 + TrainState_1_2_11 + TrainState_1_2_10 + TrainState_1_3_37 + TrainState_1_3_36 + TrainState_1_3_35 + TrainState_1_3_34 + TrainState_1_3_33 + TrainState_1_3_32 + TrainState_1_3_31 + TrainState_1_3_7 + TrainState_1_3_8 + TrainState_1_3_9 + TrainState_1_3_30 + TrainState_1_3_29 + TrainState_1_3_28 + TrainState_1_3_27 + TrainState_1_3_26 + TrainState_1_3_25 + TrainState_1_3_24 + TrainState_1_3_23 + TrainState_1_3_22 + TrainState_1_3_21 + TrainState_1_3_20 + TrainState_2_2_10 + TrainState_2_2_11 + TrainState_2_2_12 + TrainState_2_2_13 + TrainState_2_2_14 + TrainState_2_2_15 + TrainState_2_2_16 + TrainState_2_2_17 + TrainState_2_2_18 + TrainState_2_2_19 + TrainState_2_2_20 + TrainState_2_2_21 + TrainState_2_2_22 + TrainState_2_2_23 + TrainState_2_2_24 + TrainState_2_2_25 + TrainState_2_2_26 + TrainState_2_2_27 + TrainState_2_2_28 + TrainState_2_2_29 + TrainState_2_2_30 + TrainState_2_2_31 + TrainState_2_2_32 + TrainState_2_2_33 + TrainState_2_2_34 + TrainState_2_2_35 + TrainState_2_2_36 + TrainState_2_2_37 + TrainState_2_2_38 + TrainState_2_2_39 + TrainState_1_3_19 + TrainState_1_3_18 + TrainState_1_3_17 + TrainState_1_3_16 + TrainState_1_3_15 + TrainState_1_3_14 + TrainState_1_3_13 + TrainState_1_3_12 + TrainState_1_3_11 + TrainState_1_3_10 + TrainState_2_3_9 + TrainState_2_3_8 + TrainState_2_3_7 + TrainState_1_4_34 + TrainState_1_4_33 + TrainState_1_4_32 + TrainState_1_4_31 + TrainState_1_4_30 + TrainState_1_4_29 + TrainState_1_4_28 + TrainState_1_4_27 + TrainState_1_4_26 + TrainState_1_4_25 + TrainState_1_4_24 + TrainState_1_4_23 + TrainState_1_4_22 + TrainState_1_4_21 + TrainState_1_4_20 + TrainState_1_4_19 + TrainState_1_4_18 + TrainState_1_4_17 + TrainState_1_4_16 + TrainState_1_4_15 + TrainState_1_4_14 + TrainState_1_4_13 + TrainState_1_4_12 + TrainState_1_4_11 + TrainState_2_2_9 + TrainState_2_2_8 + TrainState_2_2_7 + TrainState_2_2_6 + TrainState_2_2_5 + TrainState_2_2_4 + TrainState_2_1_40 + TrainState_2_1_9 + TrainState_2_1_8 + TrainState_2_1_7 + TrainState_2_1_6 + TrainState_2_1_5 + TrainState_2_1_4 + TrainState_2_1_3 + TrainState_2_1_2 + TrainState_2_1_1 + TrainState_2_1_39 + TrainState_2_0_0 + TrainState_2_1_38 + TrainState_2_1_37 + TrainState_2_1_36 + TrainState_2_1_35 + TrainState_2_1_34 + TrainState_2_1_33 + TrainState_2_1_32 + TrainState_2_1_31 + TrainState_2_1_30 + TrainState_2_1_10 + TrainState_2_1_11 + TrainState_2_1_12 + TrainState_2_1_13 + TrainState_2_1_14 + TrainState_2_1_15 + TrainState_2_1_16 + TrainState_2_1_17 + TrainState_2_1_18 + TrainState_2_1_19 + TrainState_2_1_20 + TrainState_2_1_21 + TrainState_2_1_22 + TrainState_2_1_23 + TrainState_2_1_24 + TrainState_2_1_25 + TrainState_2_1_26 + TrainState_2_1_27 + TrainState_2_1_28 + TrainState_2_1_29 + TrainState_1_2_39 + TrainState_2_4_34 <= NewDistTable_36_3_33 + NewDistTable_13_3_10 + NewDistTable_11_5_6 + NewDistTable_35_1_34 + NewDistTable_12_1_11 + NewDistTable_21_4_17 + NewDistTable_20_2_18 + NewDistTable_9_2_7 + NewDistTable_16_4_12 + NewDistTable_38_2_36 + NewDistTable_15_2_13 + NewDistTable_24_5_19 + NewDistTable_11_4_7 + NewDistTable_23_3_20 + NewDistTable_22_1_21 + NewDistTable_31_4_27 + NewDistTable_6_3_3 + NewDistTable_19_5_14 + NewDistTable_30_2_28 + NewDistTable_9_1_8 + NewDistTable_28_2_26 + NewDistTable_9_3_6 + NewDistTable_40_1_39 + NewDistTable_29_4_25 + NewDistTable_4_1_3 + NewDistTable_33_2_31 + NewDistTable_34_4_30 + NewDistTable_25_1_24 + NewDistTable_26_3_23 + NewDistTable_18_3_15 + NewDistTable_17_1_16 + NewDistTable_26_4_22 + NewDistTable_25_2_23 + NewDistTable_34_5_29 + NewDistTable_11_3_8 + NewDistTable_33_3_30 + NewDistTable_32_1_31 + NewDistTable_6_2_4 + NewDistTable_29_5_24 + NewDistTable_40_2_38 + NewDistTable_27_5_22 + NewDistTable_18_2_16 + NewDistTable_9_4_5 + NewDistTable_30_1_29 + NewDistTable_19_4_15 + NewDistTable_31_3_28 + NewDistTable_4_2_2 + NewDistTable_14_5_9 + NewDistTable_32_5_27 + NewDistTable_23_2_21 + NewDistTable_24_4_20 + NewDistTable_15_1_14 + NewDistTable_38_1_37 + NewDistTable_16_3_13 + NewDistTable_39_3_36 + NewDistTable_17_5_12 + NewDistTable_7_1_6 + NewDistTable_20_1_19 + NewDistTable_4_3_1 + NewDistTable_21_3_18 + NewDistTable_22_5_17 + NewDistTable_13_2_11 + NewDistTable_36_2_34 + NewDistTable_14_4_10 + NewDistTable_37_4_33 + NewDistTable_28_1_27 + NewDistTable_29_3_26 + NewDistTable_7_2_5 + NewDistTable_33_1_32 + NewDistTable_12_3_9 + NewDistTable_34_3_31 + NewDistTable_26_2_24 + NewDistTable_28_3_25 + NewDistTable_27_1_26 + NewDistTable_36_4_32 + NewDistTable_11_2_9 + NewDistTable_35_2_33 + NewDistTable_12_2_10 + NewDistTable_21_5_16 + NewDistTable_20_3_17 + NewDistTable_6_1_5 + NewDistTable_16_5_11 + NewDistTable_38_3_35 + NewDistTable_15_3_12 + NewDistTable_37_1_36 + NewDistTable_14_1_13 + NewDistTable_23_4_19 + NewDistTable_22_2_20 + NewDistTable_13_5_8 + NewDistTable_3_2_1 + NewDistTable_27_4_23 + NewDistTable_18_1_17 + NewDistTable_19_3_16 + NewDistTable_7_3_4 + NewDistTable_31_2_29 + NewDistTable_32_4_28 + NewDistTable_23_1_22 + NewDistTable_2_1_1 + NewDistTable_12_4_8 + NewDistTable_24_3_21 + NewDistTable_25_5_20 + NewDistTable_16_2_14 + NewDistTable_39_2_37 + NewDistTable_17_4_13 + NewDistTable_7_4_3 + NewDistTable_30_5_25 + NewDistTable_21_2_19 + NewDistTable_2_2_0 + NewDistTable_12_5_7 + NewDistTable_22_4_18 + NewDistTable_13_1_12 + NewDistTable_36_1_35 + NewDistTable_14_3_11 + NewDistTable_10_1_9 + NewDistTable_37_3_34 + NewDistTable_15_5_10 + NewDistTable_29_2_27 + NewDistTable_5_1_4 + NewDistTable_20_5_15 + NewDistTable_34_2_32 + NewDistTable_35_4_31 + NewDistTable_26_1_25 + NewDistTable_10_2_8 + NewDistTable_31_5_26 + NewDistTable_30_3_27 + NewDistTable_18_4_14 + NewDistTable_8_4_4 + NewDistTable_17_2_15 + NewDistTable_26_5_21 + NewDistTable_25_3_22 + NewDistTable_24_1_23 + NewDistTable_33_4_29 + NewDistTable_13_4_9 + NewDistTable_3_1_2 + NewDistTable_32_2_30 + NewDistTable_8_3_5 + NewDistTable_19_1_18 + NewDistTable_28_4_24 + NewDistTable_27_2_25 + NewDistTable_35_3_32 + NewDistTable_34_1_33 + NewDistTable_11_1_10 + NewDistTable_20_4_16 + NewDistTable_8_2_6 + NewDistTable_29_1_28 + NewDistTable_15_4_11 + NewDistTable_37_2_35 + NewDistTable_14_2_12 + NewDistTable_10_4_6 + NewDistTable_23_5_18 + NewDistTable_27_3_24 + NewDistTable_22_3_19 + NewDistTable_21_1_20 + NewDistTable_30_4_26 + NewDistTable_5_3_2 + NewDistTable_8_1_7 + NewDistTable_18_5_13 + NewDistTable_17_3_14 + NewDistTable_39_1_38 + NewDistTable_16_1_15 + NewDistTable_25_4_21 + NewDistTable_10_3_7 + NewDistTable_24_2_22 + NewDistTable_33_5_28 + NewDistTable_32_3_29 + NewDistTable_5_2_3 + NewDistTable_31_1_30 + NewDistTable_28_5_23 + NewDistTable_19_2_17)
lola: after: (0 <= 167)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= NewDistTable_36_3_33 + NewDistTable_13_3_10 + NewDistTable_11_5_6 + NewDistTable_35_1_34 + NewDistTable_12_1_11 + NewDistTable_21_4_17 + NewDistTable_20_2_18 + NewDistTable_9_2_7 + NewDistTable_16_4_12 + NewDistTable_38_2_36 + NewDistTable_15_2_13 + NewDistTable_24_5_19 + NewDistTable_11_4_7 + NewDistTable_23_3_20 + NewDistTable_22_1_21 + NewDistTable_31_4_27 + NewDistTable_6_3_3 + NewDistTable_19_5_14 + NewDistTable_30_2_28 + NewDistTable_9_1_8 + NewDistTable_28_2_26 + NewDistTable_9_3_6 + NewDistTable_40_1_39 + NewDistTable_29_4_25 + NewDistTable_4_1_3 + NewDistTable_33_2_31 + NewDistTable_34_4_30 + NewDistTable_25_1_24 + NewDistTable_26_3_23 + NewDistTable_18_3_15 + NewDistTable_17_1_16 + NewDistTable_26_4_22 + NewDistTable_25_2_23 + NewDistTable_34_5_29 + NewDistTable_11_3_8 + NewDistTable_33_3_30 + NewDistTable_32_1_31 + NewDistTable_6_2_4 + NewDistTable_29_5_24 + NewDistTable_40_2_38 + NewDistTable_27_5_22 + NewDistTable_18_2_16 + NewDistTable_9_4_5 + NewDistTable_30_1_29 + NewDistTable_19_4_15 + NewDistTable_31_3_28 + NewDistTable_4_2_2 + NewDistTable_14_5_9 + NewDistTable_32_5_27 + NewDistTable_23_2_21 + NewDistTable_24_4_20 + NewDistTable_15_1_14 + NewDistTable_38_1_37 + NewDistTable_16_3_13 + NewDistTable_39_3_36 + NewDistTable_17_5_12 + NewDistTable_7_1_6 + NewDistTable_20_1_19 + NewDistTable_4_3_1 + NewDistTable_21_3_18 + NewDistTable_22_5_17 + NewDistTable_13_2_11 + NewDistTable_36_2_34 + NewDistTable_14_4_10 + NewDistTable_37_4_33 + NewDistTable_28_1_27 + NewDistTable_29_3_26 + NewDistTable_7_2_5 + NewDistTable_33_1_32 + NewDistTable_12_3_9 + NewDistTable_34_3_31 + NewDistTable_26_2_24 + NewDistTable_28_3_25 + NewDistTable_27_1_26 + NewDistTable_36_4_32 + NewDistTable_11_2_9 + NewDistTable_35_2_33 + NewDistTable_12_2_10 + NewDistTable_21_5_16 + NewDistTable_20_3_17 + NewDistTable_6_1_5 + NewDistTable_16_5_11 + NewDistTable_38_3_35 + NewDistTable_15_3_12 + NewDistTable_37_1_36 + NewDistTable_14_1_13 + NewDistTable_23_4_19 + NewDistTable_22_2_20 + NewDistTable_13_5_8 + NewDistTable_3_2_1 + NewDistTable_27_4_23 + NewDistTable_18_1_17 + NewDistTable_19_3_16 + NewDistTable_7_3_4 + NewDistTable_31_2_29 + NewDistTable_32_4_28 + NewDistTable_23_1_22 + NewDistTable_2_1_1 + NewDistTable_12_4_8 + NewDistTable_24_3_21 + NewDistTable_25_5_20 + NewDistTable_16_2_14 + NewDistTable_39_2_37 + NewDistTable_17_4_13 + NewDistTable_7_4_3 + NewDistTable_30_5_25 + NewDistTable_21_2_19 + NewDistTable_2_2_0 + NewDistTable_12_5_7 + NewDistTable_22_4_18 + NewDistTable_13_1_12 + NewDistTable_36_1_35 + NewDistTable_14_3_11 + NewDistTable_10_1_9 + NewDistTable_37_3_34 + NewDistTable_15_5_10 + NewDistTable_29_2_27 + NewDistTable_5_1_4 + NewDistTable_20_5_15 + NewDistTable_34_2_32 + NewDistTable_35_4_31 + NewDistTable_26_1_25 + NewDistTable_10_2_8 + NewDistTable_31_5_26 + NewDistTable_30_3_27 + NewDistTable_18_4_14 + NewDistTable_8_4_4 + NewDistTable_17_2_15 + NewDistTable_26_5_21 + NewDistTable_25_3_22 + NewDistTable_24_1_23 + NewDistTable_33_4_29 + NewDistTable_13_4_9 + NewDistTable_3_1_2 + NewDistTable_32_2_30 + NewDistTable_8_3_5 + NewDistTable_19_1_18 + NewDistTable_28_4_24 + NewDistTable_27_2_25 + NewDistTable_35_3_32 + NewDistTable_34_1_33 + NewDistTable_11_1_10 + NewDistTable_20_4_16 + NewDistTable_8_2_6 + NewDistTable_29_1_28 + NewDistTable_15_4_11 + NewDistTable_37_2_35 + NewDistTable_14_2_12 + NewDistTable_10_4_6 + NewDistTable_23_5_18 + NewDistTable_27_3_24 + NewDistTable_22_3_19 + NewDistTable_21_1_20 + NewDistTable_30_4_26 + NewDistTable_5_3_2 + NewDistTable_8_1_7 + NewDistTable_18_5_13 + NewDistTable_17_3_14 + NewDistTable_39_1_38 + NewDistTable_16_1_15 + NewDistTable_25_4_21 + NewDistTable_10_3_7 + NewDistTable_24_2_22 + NewDistTable_33_5_28 + NewDistTable_32_3_29 + NewDistTable_5_2_3 + NewDistTable_31_1_30 + NewDistTable_28_5_23 + NewDistTable_19_2_17)
lola: after: (0 <= 166)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (3 <= NewDistTable_36_3_33 + NewDistTable_13_3_10 + NewDistTable_11_5_6 + NewDistTable_35_1_34 + NewDistTable_12_1_11 + NewDistTable_21_4_17 + NewDistTable_20_2_18 + NewDistTable_9_2_7 + NewDistTable_16_4_12 + NewDistTable_38_2_36 + NewDistTable_15_2_13 + NewDistTable_24_5_19 + NewDistTable_11_4_7 + NewDistTable_23_3_20 + NewDistTable_22_1_21 + NewDistTable_31_4_27 + NewDistTable_6_3_3 + NewDistTable_19_5_14 + NewDistTable_30_2_28 + NewDistTable_9_1_8 + NewDistTable_28_2_26 + NewDistTable_9_3_6 + NewDistTable_40_1_39 + NewDistTable_29_4_25 + NewDistTable_4_1_3 + NewDistTable_33_2_31 + NewDistTable_34_4_30 + NewDistTable_25_1_24 + NewDistTable_26_3_23 + NewDistTable_18_3_15 + NewDistTable_17_1_16 + NewDistTable_26_4_22 + NewDistTable_25_2_23 + NewDistTable_34_5_29 + NewDistTable_11_3_8 + NewDistTable_33_3_30 + NewDistTable_32_1_31 + NewDistTable_6_2_4 + NewDistTable_29_5_24 + NewDistTable_40_2_38 + NewDistTable_27_5_22 + NewDistTable_18_2_16 + NewDistTable_9_4_5 + NewDistTable_30_1_29 + NewDistTable_19_4_15 + NewDistTable_31_3_28 + NewDistTable_4_2_2 + NewDistTable_14_5_9 + NewDistTable_32_5_27 + NewDistTable_23_2_21 + NewDistTable_24_4_20 + NewDistTable_15_1_14 + NewDistTable_38_1_37 + NewDistTable_16_3_13 + NewDistTable_39_3_36 + NewDistTable_17_5_12 + NewDistTable_7_1_6 + NewDistTable_20_1_19 + NewDistTable_4_3_1 + NewDistTable_21_3_18 + NewDistTable_22_5_17 + NewDistTable_13_2_11 + NewDistTable_36_2_34 + NewDistTable_14_4_10 + NewDistTable_37_4_33 + NewDistTable_28_1_27 + NewDistTable_29_3_26 + NewDistTable_7_2_5 + NewDistTable_33_1_32 + NewDistTable_12_3_9 + NewDistTable_34_3_31 + NewDistTable_26_2_24 + NewDistTable_28_3_25 + NewDistTable_27_1_26 + NewDistTable_36_4_32 + NewDistTable_11_2_9 + NewDistTable_35_2_33 + NewDistTable_12_2_10 + NewDistTable_21_5_16 + NewDistTable_20_3_17 + NewDistTable_6_1_5 + NewDistTable_16_5_11 + NewDistTable_38_3_35 + NewDistTable_15_3_12 + NewDistTable_37_1_36 + NewDistTable_14_1_13 + NewDistTable_23_4_19 + NewDistTable_22_2_20 + NewDistTable_13_5_8 + NewDistTable_3_2_1 + NewDistTable_27_4_23 + NewDistTable_18_1_17 + NewDistTable_19_3_16 + NewDistTable_7_3_4 + NewDistTable_31_2_29 + NewDistTable_32_4_28 + NewDistTable_23_1_22 + NewDistTable_2_1_1 + NewDistTable_12_4_8 + NewDistTable_24_3_21 + NewDistTable_25_5_20 + NewDistTable_16_2_14 + NewDistTable_39_2_37 + NewDistTable_17_4_13 + NewDistTable_7_4_3 + NewDistTable_30_5_25 + NewDistTable_21_2_19 + NewDistTable_2_2_0 + NewDistTable_12_5_7 + NewDistTable_22_4_18 + NewDistTable_13_1_12 + NewDistTable_36_1_35 + NewDistTable_14_3_11 + NewDistTable_10_1_9 + NewDistTable_37_3_34 + NewDistTable_15_5_10 + NewDistTable_29_2_27 + NewDistTable_5_1_4 + NewDistTable_20_5_15 + NewDistTable_34_2_32 + NewDistTable_35_4_31 + NewDistTable_26_1_25 + NewDistTable_10_2_8 + NewDistTable_31_5_26 + NewDistTable_30_3_27 + NewDistTable_18_4_14 + NewDistTable_8_4_4 + NewDistTable_17_2_15 + NewDistTable_26_5_21 + NewDistTable_25_3_22 + NewDistTable_24_1_23 + NewDistTable_33_4_29 + NewDistTable_13_4_9 + NewDistTable_3_1_2 + NewDistTable_32_2_30 + NewDistTable_8_3_5 + NewDistTable_19_1_18 + NewDistTable_28_4_24 + NewDistTable_27_2_25 + NewDistTable_35_3_32 + NewDistTable_34_1_33 + NewDistTable_11_1_10 + NewDistTable_20_4_16 + NewDistTable_8_2_6 + NewDistTable_29_1_28 + NewDistTable_15_4_11 + NewDistTable_37_2_35 + NewDistTable_14_2_12 + NewDistTable_10_4_6 + NewDistTable_23_5_18 + NewDistTable_27_3_24 + NewDistTable_22_3_19 + NewDistTable_21_1_20 + NewDistTable_30_4_26 + NewDistTable_5_3_2 + NewDistTable_8_1_7 + NewDistTable_18_5_13 + NewDistTable_17_3_14 + NewDistTable_39_1_38 + NewDistTable_16_1_15 + NewDistTable_25_4_21 + NewDistTable_10_3_7 + NewDistTable_24_2_22 + NewDistTable_33_5_28 + NewDistTable_32_3_29 + NewDistTable_5_2_3 + NewDistTable_31_1_30 + NewDistTable_28_5_23 + NewDistTable_19_2_17)
lola: after: (0 <= 166)
lola: always true
lola: place invariant simplifies atomic proposition
lola: before: (1 <= NewDistTable_34_5_29)
lola: after: (0 <= 0)
lola: always true
lola: LP says that atomic proposition is always false: (3 <= TrainState_2_4_14)
lola: LP says that atomic proposition is always false: (3 <= TrainState_1_2_36)
lola: LP says that atomic proposition is always false: (2 <= TrainState_2_2_31)
lola: place invariant simplifies atomic proposition
lola: before: (2 <= NewDistTable_10_2_8)
lola: after: (1 <= 0)
lola: always false
lola: LP says that atomic proposition is always false: (3 <= TrainState_1_3_15)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_6_1_5 <= TrainState_2_1_20)
lola: after: (1 <= TrainState_2_1_20)
lola: LP says that atomic proposition is always false: (3 <= TrainState_2_4_20)
lola: LP says that atomic proposition is always false: (3 <= TrainState_1_3_25)
lola: LP says that atomic proposition is always false: (2 <= TrainState_1_4_18)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_27_2_25 <= TrainState_2_3_33)
lola: after: (1 <= TrainState_2_3_33)
lola: place invariant simplifies atomic proposition
lola: before: (TrainState_1_2_16 <= NewDistTable_5_2_3)
lola: after: (TrainState_1_2_16 <= 1)
lola: LP says that atomic proposition is always true: (TrainState_1_2_16 <= 1)
lola: place invariant simplifies atomic proposition
lola: before: (NewDistTable_26_5_21 <= TrainState_1_4_31)
lola: after: (1 <= TrainState_1_4_31)
lola: A (G (E ((TRUE U TRUE)))) : (A (G (A (X (TRUE)))) AND TRUE) : (TRUE AND NOT(NOT(E (G (TRUE))))) : (TRUE AND (TRUE AND A (G (())))) : (A (F (())) AND ((E (X (FALSE)) OR FALSE) OR (A (F (TRUE)) AND ()))) : A (G (NOT(A (G (TRUE))))) : E (G ((TRUE AND A (G (TRUE))))) : NOT(A (F (A (G (TRUE))))) : E (G ((A (F (TRUE)) AND A (F (FALSE))))) : A (F (FALSE)) : E (G (E (F (())))) : A (((((1 <= TrainState_1_1_21)) AND (TrainState_2_1_20 <= 0)) U A (F (FALSE)))) : (E (F (A (G (FALSE)))) AND A (G ((TrainState_1_4_27 <= TrainState_2_2_10)))) : E (G (A (F (TRUE)))) : E (F (A (((1 <= TrainState_2_3_22) U (1 <= TrainState_2_3_33))))) : A (F (((1 <= TrainState_1_4_31))))
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:169
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:136
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:282
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:133
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:122
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:279
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:116
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:180
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:98
lola: rewrite Frontend/Parser/formula_rewrite.k:163
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:157
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: rewrite Frontend/Parser/formula_rewrite.k:118
lola: rewrite Frontend/Parser/formula_rewrite.k:100
lola: rewrite Frontend/Parser/formula_rewrite.k:154
lola: rewrite Frontend/Parser/formula_rewrite.k:151
lola: rewrite Frontend/Parser/formula_rewrite.k:160
lola: rewrite Frontend/Parser/formula_rewrite.k:148
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 223 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 1 will run for 237 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 2 will run for 254 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-2 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 3 will run for 274 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 4 will run for 297 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 5 will run for 324 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 6 will run for 356 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 7 will run for 396 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 8 will run for 446 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 9 will run for 509 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 10 will run for 594 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 11 will run for 713 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 12 will run for 892 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: FALSE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: FALSE
lola: processed formula length: 5
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 13 will run for 1189 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: TRUE
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: TRUE
lola: processed formula length: 4
lola: 93 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: processed formula with 0 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: 0 markings, 0 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-13 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 14 will run for 1784 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: A (F (((1 <= TrainState_1_4_31))))
lola: ========================================
lola: SUBTASK
lola: checking eventual occurrence
lola: rewrite Frontend/Parser/formula_rewrite.k:659
lola: rewrite Frontend/Parser/formula_rewrite.k:694
lola: processed formula: ((TrainState_1_4_31 <= 0))
lola: processed formula length: 26
lola: 95 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space / EG)
lola: state space: using search routine for EG formula (--search=depth)
lola: state space: using EG preserving stubborn set method (--stubborn=tarjan)
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: state space / EG
lola: The predicate does not eventually occur.
lola: 12 markings, 12 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: subprocess 15 will run for 3569 seconds at most (--localtimelimit=0)
lola: ========================================
lola: ...considering subproblem: E (F (A (((1 <= TrainState_2_3_22) U (1 <= TrainState_2_3_33)))))
lola: ========================================
lola: SUBTASK
lola: checking CTL
lola: rewrite Frontend/Parser/formula_rewrite.k:739
lola: rewrite Frontend/Parser/formula_rewrite.k:719
lola: processed formula: E(TRUE U A((1 <= TrainState_2_3_22) U (1 <= TrainState_2_3_33)))
lola: processed formula length: 64
lola: 95 rewrites
lola: closed formula file BART-PT-002-CTLCardinality.task
lola: STORE
lola: using a simple compression encoder (--encoder=simplecompressed)
lola: using a prefix tree store (--store=prefix)
lola: Using CTL preserving stubborn sets
lola: RUNNING
lola: CTL formula contains 2 significant temporal operators and needs 9 bytes of payload
lola: Ignoring fairness constraints (--fair).
lola: SUBRESULT
lola: result: yes
lola: produced by: CTL model checker
lola: The net satisfies the given formula.
lola: 368 markings, 933 edges
lola: ========================================
FORMULA BART-PT-002-CTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT TOPOLOGICAL STATE_COMPRESSION STUBBORN_SETS USE_NUPN UNFOLDING_TO_PT
lola: RESULT
lola:
SUMMARY: yes yes yes yes no no yes no no no no no no yes yes no
lola:
preliminary result: yes yes yes yes no no yes no no no no no no yes yes no
lola: memory consumption: 18900 KB
lola: time consumption: 1 seconds
BK_STOP 1526514793496
--------------------
content from stderr:
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="BART-PT-002"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/BART-PT-002.tgz
mv BART-PT-002 execution
cd execution
pwd
ls -lh
# this is for BenchKit: explicit launching of the test
echo "====================================================================="
echo " Generated by BenchKit 2-3637"
echo " Executing tool lola"
echo " Input is BART-PT-002, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r028-ebro-152646306000059"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;