fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
M4M.struct compared to other tools («Known» models, ReachabilityFireability)
Last Updated
June 26, 2018

Introduction

This page presents how M4M.struct do cope efficiently with the ReachabilityFireability examination face to the other participating tools. In this page, we consider «Known» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents M4M.struct' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

M4M.struct versus LTSMin

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for LTSMin, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct LTSMin Both tools   M4M.struct LTSMin
All computed OK 87 233 139   Smallest Memory Footprint
M4M.struct = LTSMin 18 Times tool wins 382 325
M4M.struct > LTSMin 201   Shortest Execution Time
M4M.struct < LTSMin 29 Times tool wins 314 393
Do not compete 0 180 0
Error detected 0 8 0  
Cannot Compute + Time-out 334 0 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than LTSMin, denote cases where M4M.struct computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

M4M.struct versus Tapaal

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for Tapaal, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to Tapaal are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct Tapaal Both tools   M4M.struct Tapaal
All computed OK 1 305 294   Smallest Memory Footprint
M4M.struct = Tapaal 10 Times tool wins 63 716
M4M.struct > Tapaal 34   Shortest Execution Time
M4M.struct < Tapaal 135 Times tool wins 135 644
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 305 1 29


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than Tapaal, denote cases where M4M.struct computed less values than Tapaal, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, Tapaal wins when points are above the diagonal.

memory chart time chart

M4M.struct versus LoLA

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for LoLA, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to LoLA are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct LoLA Both tools   M4M.struct LoLA
All computed OK 9 298 266   Smallest Memory Footprint
M4M.struct = LoLA 31 Times tool wins 79 693
M4M.struct > LoLA 62   Shortest Execution Time
M4M.struct < LoLA 106 Times tool wins 189 583
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 298 9 36


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than LoLA, denote cases where M4M.struct computed less values than LoLA, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, LoLA wins when points are above the diagonal.

memory chart time chart

M4M.struct versus M4M.full

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for M4M.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to M4M.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct M4M.full Both tools   M4M.struct M4M.full
All computed OK 12 77 285   Smallest Memory Footprint
M4M.struct = M4M.full 109 Times tool wins 221 330
M4M.struct > M4M.full 48   Shortest Execution Time
M4M.struct < M4M.full 20 Times tool wins 220 331
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 77 12 257


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than M4M.full, denote cases where M4M.struct computed less values than M4M.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, M4M.full wins when points are above the diagonal.

memory chart time chart

M4M.struct versus ITS-Tools

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for ITS-Tools, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct ITS-Tools Both tools   M4M.struct ITS-Tools
All computed OK 68 261 212   Smallest Memory Footprint
M4M.struct = ITS-Tools 59 Times tool wins 398 337
M4M.struct > ITS-Tools 80   Shortest Execution Time
M4M.struct < ITS-Tools 55 Times tool wins 203 532
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 261 68 73


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than ITS-Tools, denote cases where M4M.struct computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

M4M.struct versus ITS-Tools.L

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for ITS-Tools.L, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct ITS-Tools.L Both tools   M4M.struct ITS-Tools.L
All computed OK 74 252 203   Smallest Memory Footprint
M4M.struct = ITS-Tools.L 45 Times tool wins 400 326
M4M.struct > ITS-Tools.L 86   Shortest Execution Time
M4M.struct < ITS-Tools.L 66 Times tool wins 199 527
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 252 74 82


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than ITS-Tools.L, denote cases where M4M.struct computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

M4M.struct versus GreatSPN

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for GreatSPN, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to GreatSPN are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct GreatSPN Both tools   M4M.struct GreatSPN
All computed OK 309 138 133   Smallest Memory Footprint
M4M.struct = GreatSPN 4 Times tool wins 351 261
M4M.struct > GreatSPN 8   Shortest Execution Time
M4M.struct < GreatSPN 20 Times tool wins 340 272
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 138 309 196


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than GreatSPN, denote cases where M4M.struct computed less values than GreatSPN, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, GreatSPN wins when points are above the diagonal.

memory chart time chart

M4M.struct versus Irma.full

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for Irma.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct Irma.full Both tools   M4M.struct Irma.full
All computed OK 1 88 306   Smallest Memory Footprint
M4M.struct = Irma.full 51 Times tool wins 177 385
M4M.struct > Irma.full 69   Shortest Execution Time
M4M.struct < Irma.full 47 Times tool wins 179 383
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 88 1 246


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than Irma.full, denote cases where M4M.struct computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart

M4M.struct versus Irma.struct

Some statistics are displayed below, based on 1616 runs (808 for M4M.struct and 808 for Irma.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.struct to Irma.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.struct Irma.struct Both tools   M4M.struct Irma.struct
All computed OK 4 89 302   Smallest Memory Footprint
M4M.struct = Irma.struct 55 Times tool wins 178 385
M4M.struct > Irma.struct 69   Shortest Execution Time
M4M.struct < Irma.struct 44 Times tool wins 177 386
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 89 4 245


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.struct computed more values than Irma.struct, denote cases where M4M.struct computed less values than Irma.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.struct wins when points are below the diagonal, Irma.struct wins when points are above the diagonal.

memory chart time chart