fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
Irma.struct compared to other tools («Known» models, LTLFireability)
Last Updated
June 26, 2018

Introduction

This page presents how Irma.struct do cope efficiently with the LTLFireability examination face to the other participating tools. In this page, we consider «Known» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents Irma.struct' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

Irma.struct versus LTSMin

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for LTSMin, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct LTSMin Both tools   Irma.struct LTSMin
All computed OK 117 202 250   Smallest Memory Footprint
Irma.struct = LTSMin 8 Times tool wins 295 449
Irma.struct > LTSMin 79   Shortest Execution Time
Irma.struct < LTSMin 88 Times tool wins 271 473
Do not compete 0 180 0
Error detected 0 0 0  
Cannot Compute + Time-out 265 0 1


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than LTSMin, denote cases where Irma.struct computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

Irma.struct versus LoLA

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for LoLA, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to LoLA are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct LoLA Both tools   Irma.struct LoLA
All computed OK 22 246 310   Smallest Memory Footprint
Irma.struct = LoLA 20 Times tool wins 119 669
Irma.struct > LoLA 71   Shortest Execution Time
Irma.struct < LoLA 119 Times tool wins 222 566
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 246 22 20


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than LoLA, denote cases where Irma.struct computed less values than LoLA, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, LoLA wins when points are above the diagonal.

memory chart time chart

Irma.struct versus M4M.full

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for M4M.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to M4M.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct M4M.full Both tools   Irma.struct M4M.full
All computed OK 82 17 328   Smallest Memory Footprint
Irma.struct = M4M.full 112 Times tool wins 341 218
Irma.struct > M4M.full 8   Shortest Execution Time
Irma.struct < M4M.full 12 Times tool wins 339 220
Do not compete 0 75 0
Error detected 0 0 0  
Cannot Compute + Time-out 21 11 245


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than M4M.full, denote cases where Irma.struct computed less values than M4M.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, M4M.full wins when points are above the diagonal.

memory chart time chart

Irma.struct versus M4M.struct

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for M4M.struct, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct M4M.struct Both tools   Irma.struct M4M.struct
All computed OK 28 20 351   Smallest Memory Footprint
Irma.struct = M4M.struct 148 Times tool wins 302 260
Irma.struct > M4M.struct 8   Shortest Execution Time
Irma.struct < M4M.struct 7 Times tool wins 293 269
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 20 28 246


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than M4M.struct, denote cases where Irma.struct computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

Irma.struct versus ITS-Tools

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for ITS-Tools, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct ITS-Tools Both tools   Irma.struct ITS-Tools
All computed OK 105 232 258   Smallest Memory Footprint
Irma.struct = ITS-Tools 9 Times tool wins 494 280
Irma.struct > ITS-Tools 89   Shortest Execution Time
Irma.struct < ITS-Tools 81 Times tool wins 350 424
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 232 105 34


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than ITS-Tools, denote cases where Irma.struct computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

Irma.struct versus ITS-Tools.L

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for ITS-Tools.L, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct ITS-Tools.L Both tools   Irma.struct ITS-Tools.L
All computed OK 81 231 250   Smallest Memory Footprint
Irma.struct = ITS-Tools.L 10 Times tool wins 490 283
Irma.struct > ITS-Tools.L 105   Shortest Execution Time
Irma.struct < ITS-Tools.L 96 Times tool wins 346 427
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 231 81 35


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than ITS-Tools.L, denote cases where Irma.struct computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

Irma.struct versus Irma.full

Some statistics are displayed below, based on 1616 runs (808 for Irma.struct and 808 for Irma.full, so there are 808 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing Irma.struct to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  Irma.struct Irma.full Both tools   Irma.struct Irma.full
All computed OK 0 0 365   Smallest Memory Footprint
Irma.struct = Irma.full 165 Times tool wins 289 253
Irma.struct > Irma.full 6   Shortest Execution Time
Irma.struct < Irma.full 6 Times tool wins 260 282
Do not compete 0 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 0 0 266


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where Irma.struct computed more values than Irma.full, denote cases where Irma.struct computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

Irma.struct wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart