fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
M4M.full compared to other tools («All» models, LTLFireability)
Last Updated
June 26, 2018

Introduction

This page presents how M4M.full do cope efficiently with the LTLFireability examination face to the other participating tools. In this page, we consider «All» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents M4M.full' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

M4M.full versus LTSMin

Some statistics are displayed below, based on 1894 runs (947 for M4M.full and 947 for LTSMin, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full LTSMin Both tools   M4M.full LTSMin
All computed OK 73 362 252   Smallest Memory Footprint
M4M.full = LTSMin 11 Times tool wins 229 610
M4M.full > LTSMin 63   Shortest Execution Time
M4M.full < LTSMin 78 Times tool wins 189 650
Do not compete 34 139 41
Error detected 0 0 0  
Cannot Compute + Time-out 395 1 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than LTSMin, denote cases where M4M.full computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

M4M.full versus LoLA

Some statistics are displayed below, based on 1894 runs (947 for M4M.full and 947 for LoLA, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to LoLA are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full LoLA Both tools   M4M.full LoLA
All computed OK 1 427 292   Smallest Memory Footprint
M4M.full = LoLA 25 Times tool wins 84 820
M4M.full > LoLA 64   Shortest Execution Time
M4M.full < LoLA 95 Times tool wins 180 724
Do not compete 75 0 0
Error detected 0 2 0  
Cannot Compute + Time-out 375 22 20


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than LoLA, denote cases where M4M.full computed less values than LoLA, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, LoLA wins when points are above the diagonal.

memory chart time chart

M4M.full versus M4M.struct

Some statistics are displayed below, based on 1894 runs (947 for M4M.full and 947 for M4M.struct, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full M4M.struct Both tools   M4M.full M4M.struct
All computed OK 27 84 325   Smallest Memory Footprint
M4M.full = M4M.struct 113 Times tool wins 246 315
M4M.full > M4M.struct 7   Shortest Execution Time
M4M.full < M4M.struct 5 Times tool wins 235 326
Do not compete 75 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 13 31 382


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than M4M.struct, denote cases where M4M.full computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

M4M.full versus ITS-Tools

Some statistics are displayed below, based on 1894 runs (947 for M4M.full and 947 for ITS-Tools, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full ITS-Tools Both tools   M4M.full ITS-Tools
All computed OK 61 354 244   Smallest Memory Footprint
M4M.full = ITS-Tools 9 Times tool wins 427 404
M4M.full > ITS-Tools 88   Shortest Execution Time
M4M.full < ITS-Tools 75 Times tool wins 284 547
Do not compete 75 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 321 103 74


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than ITS-Tools, denote cases where M4M.full computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

M4M.full versus ITS-Tools.L

Some statistics are displayed below, based on 1894 runs (947 for M4M.full and 947 for ITS-Tools.L, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full ITS-Tools.L Both tools   M4M.full ITS-Tools.L
All computed OK 42 360 239   Smallest Memory Footprint
M4M.full = ITS-Tools.L 7 Times tool wins 423 414
M4M.full > ITS-Tools.L 105   Shortest Execution Time
M4M.full < ITS-Tools.L 84 Times tool wins 285 552
Do not compete 75 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 323 80 72


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than ITS-Tools.L, denote cases where M4M.full computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

M4M.full versus Irma.full

Some statistics are displayed below, based on 1894 runs (947 for M4M.full and 947 for Irma.full, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full Irma.full Both tools   M4M.full Irma.full
All computed OK 17 82 329   Smallest Memory Footprint
M4M.full = Irma.full 111 Times tool wins 232 327
M4M.full > Irma.full 13   Shortest Execution Time
M4M.full < Irma.full 7 Times tool wins 212 347
Do not compete 75 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 11 21 384


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than Irma.full, denote cases where M4M.full computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart

M4M.full versus Irma.struct

Some statistics are displayed below, based on 1894 runs (947 for M4M.full and 947 for Irma.struct, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing M4M.full to Irma.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  M4M.full Irma.struct Both tools   M4M.full Irma.struct
All computed OK 17 82 328   Smallest Memory Footprint
M4M.full = Irma.struct 112 Times tool wins 218 341
M4M.full > Irma.struct 12   Shortest Execution Time
M4M.full < Irma.struct 8 Times tool wins 218 341
Do not compete 75 0 0
Error detected 0 0 0  
Cannot Compute + Time-out 11 21 384


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where M4M.full computed more values than Irma.struct, denote cases where M4M.full computed less values than Irma.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

M4M.full wins when points are below the diagonal, Irma.struct wins when points are above the diagonal.

memory chart time chart