fond
Model Checking Contest 2018
8th edition, Bratislava, Slovakia, June 26, 2018
LoLA compared to other tools («All» models, LTLFireability)
Last Updated
June 26, 2018

Introduction

This page presents how LoLA do cope efficiently with the LTLFireability examination face to the other participating tools. In this page, we consider «All» models.

The next sections will show chart comparing performances in terms of both memory and execution time.The x-axis corresponds to the challenging tool where the y-axes represents LoLA' performances. Thus, points below the diagonal of a chart denote comparisons favorables to the tool while others corresponds to situations where the challenging tool performs better.

You might also find plots out of the range that denote the case were at least one tool could not answer appropriately (error, time-out, could not compute or did not competed).

LoLA versus LTSMin

Some statistics are displayed below, based on 1894 runs (947 for LoLA and 947 for LTSMin, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to LTSMin are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA LTSMin Both tools   LoLA LTSMin
All computed OK 148 11 437   Smallest Memory Footprint
LoLA = LTSMin 19 Times tool wins 752 162
LoLA > LTSMin 198   Shortest Execution Time
LoLA < LTSMin 101 Times tool wins 669 245
Do not compete 0 180 0
Error detected 2 0 0  
Cannot Compute + Time-out 42 1 0


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than LTSMin, denote cases where LoLA computed less values than LTSMin, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, LTSMin wins when points are above the diagonal.

memory chart time chart

LoLA versus M4M.full

Some statistics are displayed below, based on 1894 runs (947 for LoLA and 947 for M4M.full, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to M4M.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA M4M.full Both tools   LoLA M4M.full
All computed OK 427 1 292   Smallest Memory Footprint
LoLA = M4M.full 25 Times tool wins 820 84
LoLA > M4M.full 95   Shortest Execution Time
LoLA < M4M.full 64 Times tool wins 724 180
Do not compete 0 75 0
Error detected 2 0 0  
Cannot Compute + Time-out 22 375 20


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than M4M.full, denote cases where LoLA computed less values than M4M.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, M4M.full wins when points are above the diagonal.

memory chart time chart

LoLA versus M4M.struct

Some statistics are displayed below, based on 1894 runs (947 for LoLA and 947 for M4M.struct, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to M4M.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA M4M.struct Both tools   LoLA M4M.struct
All computed OK 391 22 313   Smallest Memory Footprint
LoLA = M4M.struct 23 Times tool wins 811 114
LoLA > M4M.struct 112   Shortest Execution Time
LoLA < M4M.struct 64 Times tool wins 715 210
Do not compete 0 0 0
Error detected 2 0 0  
Cannot Compute + Time-out 22 393 20


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than M4M.struct, denote cases where LoLA computed less values than M4M.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, M4M.struct wins when points are above the diagonal.

memory chart time chart

LoLA versus ITS-Tools

Some statistics are displayed below, based on 1894 runs (947 for LoLA and 947 for ITS-Tools, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to ITS-Tools are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA ITS-Tools Both tools   LoLA ITS-Tools
All computed OK 137 4 456   Smallest Memory Footprint
LoLA = ITS-Tools 19 Times tool wins 819 88
LoLA > ITS-Tools 194   Shortest Execution Time
LoLA < ITS-Tools 97 Times tool wins 730 177
Do not compete 0 0 0
Error detected 2 0 0  
Cannot Compute + Time-out 2 137 40


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than ITS-Tools, denote cases where LoLA computed less values than ITS-Tools, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, ITS-Tools wins when points are above the diagonal.

memory chart time chart

LoLA versus ITS-Tools.L

Some statistics are displayed below, based on 1894 runs (947 for LoLA and 947 for ITS-Tools.L, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to ITS-Tools.L are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA ITS-Tools.L Both tools   LoLA ITS-Tools.L
All computed OK 117 9 451   Smallest Memory Footprint
LoLA = ITS-Tools.L 16 Times tool wins 817 95
LoLA > ITS-Tools.L 222   Shortest Execution Time
LoLA < ITS-Tools.L 97 Times tool wins 716 196
Do not compete 0 0 0
Error detected 2 0 0  
Cannot Compute + Time-out 7 117 35


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than ITS-Tools.L, denote cases where LoLA computed less values than ITS-Tools.L, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, ITS-Tools.L wins when points are above the diagonal.

memory chart time chart

LoLA versus Irma.full

Some statistics are displayed below, based on 1894 runs (947 for LoLA and 947 for Irma.full, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to Irma.full are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA Irma.full Both tools   LoLA Irma.full
All computed OK 383 22 312   Smallest Memory Footprint
LoLA = Irma.full 19 Times tool wins 804 121
LoLA > Irma.full 119   Shortest Execution Time
LoLA < Irma.full 70 Times tool wins 703 222
Do not compete 0 0 0
Error detected 2 0 0  
Cannot Compute + Time-out 22 385 20


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than Irma.full, denote cases where LoLA computed less values than Irma.full, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, Irma.full wins when points are above the diagonal.

memory chart time chart

LoLA versus Irma.struct

Some statistics are displayed below, based on 1894 runs (947 for LoLA and 947 for Irma.struct, so there are 947 plots on each of the two charts). Each execution was allowed 1 hour and 16 GByte of memory. Then performance charts comparing LoLA to Irma.struct are shown (you may click on one graph to enlarge it).

Statistics on the executions
  LoLA Irma.struct Both tools   LoLA Irma.struct
All computed OK 383 22 310   Smallest Memory Footprint
LoLA = Irma.struct 20 Times tool wins 806 119
LoLA > Irma.struct 119   Shortest Execution Time
LoLA < Irma.struct 71 Times tool wins 703 222
Do not compete 0 0 0
Error detected 2 0 0  
Cannot Compute + Time-out 22 385 20


On the chart below, denote cases where the two tools did computed all results without error, denote cases where the two tool did computed the same number of values (but not al values in the examination), denote cases where LoLA computed more values than Irma.struct, denote cases where LoLA computed less values than Irma.struct, denote the cases where at least one tool did not competed, denote the cases where at least one tool computed a bad value and denote the cases where at least one tool stated it could not compute a result or timed-out.

LoLA wins when points are below the diagonal, Irma.struct wins when points are above the diagonal.

memory chart time chart