This form is a summary description of the model entitled “Kanban” proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

This Petri net is extracted a benchmark used for SMART. It models a kanban system.

References

http://www.cs.ucr.edu/~ciardo/SMART/

Scaling parameter

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter description</th>
<th>Chosen parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>The scale factor is a value that changes the initial marking of places P1, P2, P3 and P4 (M(P1)=M(P2)=M(P3)=M(P4)=N)</td>
<td>5, 10, 20, 50, 100, 200, 500, 1000</td>
</tr>
</tbody>
</table>
Size of the model

Although the model is parameterized, its size does not depend on parameter values.

- Number of places: 16
- Number of transitions: 16
- Number of arcs: 40

Structural properties

- **ordinary** — all arcs have multiplicity one
- **simple free choice** — all transitions sharing a common input place have no other input place
- **extended free choice** — all transitions sharing a common input place have the same input places
- **state machine** — every transition has exactly one input place and exactly one output place
- **marked graph** — every place has exactly one input transition and exactly one output transition
- **connected** — there is an undirected path between every two nodes (places or transitions)
- **strongly connected** — there is a directed path between every two nodes (places or transitions)
- **source place(s)** — one or more places have no input transitions
- **sink place(s)** — one or more places have no output transitions
- **source transition(s)** — one or more transitions have no input places
- **sink transition(s)** — one or more transitions have no output places
- **loop-free** — no transition has an input place that is also an output place
- **conservative** — for each transition, the number of input arcs equals the number of output arcs
- **subconservative** — for each transition, the number of input arcs equals the number of output arcs
- **nested units** — places are structured into hierarchically nested sequential units

Behavioural properties

- **safe** — in every reachable marking, there is no more than one token on a place
- **deadlock** — there exists a reachable marking from which no transition can be fired
- **reversible** — from every reachable marking, there is a transition path going back to the initial marking
- **quasi-live** — for every transition \(t \), there exists a reachable marking in which \(t \) can fire
- **live** — for every transition \(t \), from every reachable marking, one can reach a marking in which \(t \) can fire

\(\text{(a)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(b)} \) stated by CÆSAR.BDD version 2.6 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(c)} \) 2 transitions are not of a state machine, e.g., transition “tSynch1_23”.
\(\text{(d)} \) 4 places are not of a marked graph, e.g., place “Pm3”.
\(\text{(e)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(f)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(g)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(h)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(i)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(j)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(k)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(l)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(m)} \) stated by CÆSAR.BDD version 1.7 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
\(\text{(n)} \) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
\(\text{(o)} \) in the initial marking, some places have several tokens (the number of which depends on \(N \)).
\(\text{(p)} \) confirmed at MCC 2014 by GreatSPN on 6 instances, by Lola on 4 instances, and by Tapaal on 3 instances.
\(\text{(q)} \) stated by CÆSAR.BDD version 2.0 on all 8 instances (5, 10, 20, 50, 100, 200, 500, and 1000).
Size of the marking graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of reachable markings</th>
<th>Number of transition firings</th>
<th>Max. number of tokens per place</th>
<th>Max. number of tokens per marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 5$</td>
<td>$2.5464E+6$ (r)</td>
<td>$2.4460E+7$ (s)</td>
<td>5 (t)</td>
<td>20 (u)</td>
</tr>
<tr>
<td>$N = 10$</td>
<td>$1.006E+9$ (v)</td>
<td>$1.2032E+10$ (w)</td>
<td>10 (x)</td>
<td>40 (y)</td>
</tr>
<tr>
<td>$N = 20$</td>
<td>$8.0542E+11$ (z)</td>
<td>$1.1012E+13$ (aa)</td>
<td>20 (ab)</td>
<td>80 (ac)</td>
</tr>
<tr>
<td>$N = 50$</td>
<td>$1.0426E+16$ (ad)</td>
<td>$1.5612E+17$ (ae)</td>
<td>50 (af)</td>
<td>200 (ag)</td>
</tr>
<tr>
<td>$N = 100$</td>
<td>$1.7263E+19$ (ah)</td>
<td>$2.6705E+20$ (ai)</td>
<td>100 (aj)</td>
<td>400 (ak)</td>
</tr>
<tr>
<td>$N = 200$</td>
<td>3.1732E+22 (ai)</td>
<td>?</td>
<td>200 (am)</td>
<td>800 (an)</td>
</tr>
<tr>
<td>$N = 500$</td>
<td>7.0860E+26 (ao)</td>
<td>?</td>
<td>500 (ap)</td>
<td>2000 (aq)</td>
</tr>
<tr>
<td>$N = 1000$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>4000 (ar)</td>
</tr>
</tbody>
</table>

(r) computed at MCC’2013 by Alpina, GreatSPN, ITS-Tools, Marcie, Neco, and PNXDD; confirmed at MCC’2014 by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal.
(s) computed at MCC’2014 by Marcie.
(t) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.
(u) number of initial tokens, because the net is conservative.
(v) computed at MCC’2013 by Alpina, GreatSPN, ITS-Tools, Marcie, and PNXDD; confirmed at MCC’2014 by GreatSPN, Marcie, PNMC, PNXDD, and Stratagem.
(w) computed at MCC’2014 by Marcie.
(x) computed at MCC’2014 by GreatSPN, Marcie, and PNMC.
(y) number of initial tokens, because the net is conservative.
(z) computed at MCC’2013 by GreatSPN, ITS-Tools, Marcie, and PNXDD; confirmed at MCC’2014 by GreatSPN, Marcie, PNMC, PNXDD, and Stratagem.
(aa) computed at MCC’2014 by Marcie.
(ab) computed at MCC’2014 by GreatSPN, Marcie, and PNMC.
(ac) number of initial tokens, because the net is conservative.
(ad) computed at MCC’2013 by GreatSPN, ITS-Tools, and Marcie; confirmed at MCC’2014 by GreatSPN, Marcie, PNMC, and Stratagem.
(ad) computed at MCC’2014 by Marcie.
(af) computed at MCC’2014 by GreatSPN, Marcie, and PNMC.
(ag) number of initial tokens, because the net is conservative.
(ah) computed at MCC’2013 by GreatSPN, ITS-Tools, and Marcie; computed at MCC’2014 by GreatSPN, Marcie, and PNMC.
(ai) computed at MCC’2014 by Marcie.
(aj) computed at MCC’2014 by GreatSPN, Marcie, and PNMC.
(ak) number of initial tokens, because the net is conservative.
(al) computed at MCC’2013 by ITS-Tools.
(am) computed at MCC’2014 by GreatSPN and Marcie.
(an) number of initial tokens, because the net is conservative.
(ao) computed at MCC’2014 by PNMC.
(ap) computed at MCC’2014 by PNMC.
(aq) number of initial tokens, because the net is conservative.
(ar) number of initial tokens, because the net is conservative.