This form is a summary description of the model entitled “A hot drink vending machine” proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

A Symmetric net modeling a simple hot drink vending machine. This model handles cycles of elaborations of a hot drink (Products). Each type of elaboration (modelled by the elaborateX transitions) carries a set of options (Options) for the product. For elaborate0 the set of options is empty. Products and options are restored from the places productSlots and optionSlots.

Each type of elaboration has an intrinsic quality level range (Quality), which is associated with the service. The cardinal of the set of quality levels is $M = 4 \times N$, $N$ being the number of products.

References

Scaling parameter

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter description</th>
<th>Chosen parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N )</td>
<td>Number of products</td>
<td>2, 10</td>
</tr>
</tbody>
</table>

Size of the colored net model

number of places: 6
number of transitions: 7
number of arcs: 28

Size of the derived P/T model instances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of places</th>
<th>Number of transitions</th>
<th>Number of arcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N = 2 )</td>
<td>24</td>
<td>72</td>
<td>440</td>
</tr>
<tr>
<td>( N = 10 )</td>
<td>120</td>
<td>111160</td>
<td>1026520</td>
</tr>
</tbody>
</table>

Structural properties

*ordinary* — all arcs have multiplicity one

*simple free choice* — all transitions sharing a common input place have no other input place

*extended free choice* — all transitions sharing a common input place have the same input places

*state machine* — every transition has exactly one input place and exactly one output place

*marked graph* — every place has exactly one input transition and exactly one output transition

*connected* — there is an undirected path between every two nodes (places or transitions)

*strongly connected* — there is a directed path between every two nodes (places or transitions)

*source place(s)* — one or more places have no input transitions

*sink place(s)* — one or more places have no output transitions

*source transition(s)* — one or more transitions have no input places

*sink transition(s)* — one or more transitions have no output places

*loop-free* — no transition has an input place that is also an input place

*conservative* — for each transition, the number of input arcs equals the number of output arcs

*subconservative* — for each transition, the number of input arcs equals or exceeds the number of output arcs

*nested units* — places are structured into hierarchically nested sequential units

---

(a) the net is not ordinary in all its 2 instances (2 and 10).
(b) the net is not ordinary in all its 2 instances (2 and 10).
(c) the net is not ordinary in all its 2 instances (2 and 10).
(d) the net is not ordinary in all its 2 instances (2 and 10).
(e) stated by CESAR.BDD version 1.7 on all 2 instances (2 and 10).
(f) stated by CESAR.BDD version 1.7 on all 2 instances (2 and 10).
(g) stated by CESAR.BDD version 1.7 on all 2 instances (2 and 10).
(h) stated by CESAR.BDD version 1.7 on all 2 instances (2 and 10).
(i) stated by CESAR.BDD version 1.7 on all 2 instances (2 and 10).
(j) stated by CESAR.BDD version 1.7 on all 2 instances (2 and 10).
(k) stated by PNML2NUPN 1.3.0 on all 2 instances (2 and 10).
(l) stated by PNML2NUPN 1.3.0 on all 2 instances (2 and 10).
(m) the definition of Nested-Unit Petri Nets (NUPN) is available from [http://mcc.lip6.fr/nupn.php](http://mcc.lip6.fr/nupn.php)
Behavourial properties

- **Safe** — in every reachable marking, there is no more than one token on a place
- **Deadlock** — there exists a reachable marking from which no transition can be fired
- **Reversible** — from every reachable marking, there is a transition path going back to the initial marking
- **Quasi-live** — for every transition \( t \), there exists a reachable marking in which \( t \) can fire
- **Live** — for every transition \( t \), from every reachable marking, one can reach a marking in which \( t \) can fire

Size of the marking graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of reachable markings</th>
<th>Number of transition firings</th>
<th>Max. number of tokens per place</th>
<th>Max. number of tokens per marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N = 2 )</td>
<td>1024 (^{(q)})</td>
<td>7680 (^{(r)})</td>
<td>1 (^{(s)})</td>
<td>12 (^{(t)})</td>
</tr>
<tr>
<td>( N = 10 )</td>
<td>( 1.153 \times 10^{18} ) (^{(u)})</td>
<td>?</td>
<td>?</td>
<td>60 (^{(v)})</td>
</tr>
</tbody>
</table>

\(^{(o)}\) the colored nets are safe; the unfolded place-transition nets are deemed to be safe too, although they contain many arcs whose valuation ("inscription" in PNML) is greater than one.

\(^{(p)}\) confirmed at MCC’2014 by Helena on one colored instance \((N = 2)\), and by Cunf, GreatSPN, Lola, PNXDD, and Tapaal on the corresponding P/T instance.

\(^{(q)}\) computed at MCC’2013 by Alpina, ITS-Tools, Marcie and PNXDD; confirmed at MCC’2014 by GreatSPN and Helena on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal on the P/T net instance.

\(^{(r)}\) computed at MCC’2014 by Helena on the colored net instance, and by Marcie on the P/T net instance.

\(^{(s)}\) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.

\(^{(t)}\) number of initial tokens, because the net is conservative.

\(^{(u)}\) computed at MCC’2013 by Marcie.

\(^{(v)}\) number of initial tokens, because the net is conservative.