fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r191-blw7-149581061600030
Last Updated
June 27, 2017

About the Execution of MARCIE for JoinFreeModules-PT-0010

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
11528.140 89836.00 89029.00 20.10 TFFTTFFTFFTFTTTT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
............
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is JoinFreeModules-PT-0010, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r191-blw7-149581061600030
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-0
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-1
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-10
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-11
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-12
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-13
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-14
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-15
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-2
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-3
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-4
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-5
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-6
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-7
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-8
FORMULA_NAME JoinFreeModules-PT-0010-CTLCardinality-9

=== Now, execution of the tool begins

BK_START 1496737800819

timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6

parse successfull
net created successfully

Net: JoinFreeModules_PT_0010
(NrP: 51 NrTr: 81 NrArc: 232)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 1.021sec

parse successfull
net created successfully

Net: JoinFreeModules_PT_0010
(NrP: 51 NrTr: 81 NrArc: 232)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

net check time: 0m 0.000sec

init dd package: 0m 3.223sec


RS generation: 0m 0.087sec


-> reachability set: #nodes 1422 (1.4e+03) #states 1,590,240,687,854,486,655,624,010,000,000,000 (33)



starting MCC model checker
--------------------------

checking: ~ [EF [AX [3<=p29]]]
normalized: ~ [E [true U ~ [EX [~ [3<=p29]]]]]

abstracting: (3<=p29)
states: 753,271,904,773,177,889,506,110,000,000,000 (32)
.-> the formula is FALSE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.338sec

checking: ~ [~ [EG [1<=p33]]]
normalized: EG [1<=p33]

abstracting: (1<=p33)
states: 1,193,060,956,246,811,041,157,152,000,000,000 (33)
.
EG iterations: 1
-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.132sec

checking: ~ [~ [~ [AF [p1<=p25]]]]
normalized: EG [~ [p1<=p25]]

abstracting: (p1<=p25)
states: 880,863,226,829,074,489,445,797,000,000,000 (32)
.
EG iterations: 1
-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.176sec

checking: AG [AF [[1<=p25 | 2<=p8]]]
normalized: ~ [E [true U EG [~ [[1<=p25 | 2<=p8]]]]]

abstracting: (2<=p8)
states: 865,121,369,421,316,424,614,593,000,000,000 (32)
abstracting: (1<=p25)
states: 1,234,148,514,688,984,380,584,758,000,000,000 (33)
.
EG iterations: 1
-> the formula is FALSE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.388sec

checking: AX [EG [p39<=p22]]
normalized: ~ [EX [~ [EG [p39<=p22]]]]

abstracting: (p39<=p22)
states: 836,612,734,595,074,090,183,466,200,000,000 (32)
.
EG iterations: 1
.-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.410sec

checking: AG [AF [[p49<=p14 | 2<=p2]]]
normalized: ~ [E [true U EG [~ [[p49<=p14 | 2<=p2]]]]]

abstracting: (2<=p2)
states: 874,251,937,964,021,611,154,061,000,000,000 (32)
abstracting: (p49<=p14)
states: 904,579,769,401,424,145,630,551,500,000,000 (32)
.
EG iterations: 1
-> the formula is FALSE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.813sec

checking: EX [E [p7<=p25 U 3<=p4]]
normalized: EX [E [p7<=p25 U 3<=p4]]

abstracting: (3<=p4)
states: 753,271,904,773,177,889,506,110,000,000,000 (32)
abstracting: (p7<=p25)
states: 980,188,012,467,058,059,142,903,700,000,000 (32)
.-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.603sec

checking: AF [[AG [1<=p5] & ~ [[1<=p9 | p25<=p49]]]]
normalized: ~ [EG [~ [[~ [[1<=p9 | p25<=p49]] & ~ [E [true U ~ [1<=p5]]]]]]]

abstracting: (1<=p5)
states: 1,234,148,514,688,984,380,584,758,000,000,000 (33)
abstracting: (p25<=p49)
states: 912,119,041,488,779,875,616,430,400,000,000 (32)
abstracting: (1<=p9)
states: 1,240,996,441,096,013,270,489,359,000,000,000 (33)

EG iterations: 0
-> the formula is FALSE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.403sec

checking: E [[~ [1<=p41] | [p32<=p12 | p48<=p8]] U 3<=p25]
normalized: E [[[p32<=p12 | p48<=p8] | ~ [1<=p41]] U 3<=p25]

abstracting: (3<=p25)
states: 715,988,749,890,465,044,469,949,000,000,000 (32)
abstracting: (1<=p41)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
abstracting: (p48<=p8)
states: 925,130,465,719,891,652,606,884,400,000,000 (32)
abstracting: (p32<=p12)
states: 923,006,188,708,460,840,666,780,900,000,000 (32)
-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.578sec

checking: A [EX [p15<=p37] U [3<=p26 & [p44<=p34 | 3<=p18]]]
normalized: [~ [EG [~ [[3<=p26 & [p44<=p34 | 3<=p18]]]]] & ~ [E [~ [[3<=p26 & [p44<=p34 | 3<=p18]]] U [~ [EX [p15<=p37]] & ~ [[3<=p26 & [p44<=p34 | 3<=p18]]]]]]]

abstracting: (3<=p18)
states: 606,421,927,378,002,805,996,333,000,000,000 (32)
abstracting: (p44<=p34)
states: 904,579,769,401,424,145,630,551,500,000,000 (32)
abstracting: (3<=p26)
states: 753,271,904,773,177,889,506,110,000,000,000 (32)
abstracting: (p15<=p37)
states: 846,585,732,787,213,878,064,733,600,000,000 (32)
.abstracting: (3<=p18)
states: 606,421,927,378,002,805,996,333,000,000,000 (32)
abstracting: (p44<=p34)
states: 904,579,769,401,424,145,630,551,500,000,000 (32)
abstracting: (3<=p26)
states: 753,271,904,773,177,889,506,110,000,000,000 (32)
abstracting: (3<=p18)
states: 606,421,927,378,002,805,996,333,000,000,000 (32)
abstracting: (p44<=p34)
states: 904,579,769,401,424,145,630,551,500,000,000 (32)
abstracting: (3<=p26)
states: 753,271,904,773,177,889,506,110,000,000,000 (32)
.
EG iterations: 1
-> the formula is FALSE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m20.460sec

checking: [[EX [[2<=p1 | 1<=p43]] & [AG [2<=p23] & 1<=p48]] | A [~ [p2<=p12] U ~ [1<=p41]]]
normalized: [[~ [EG [1<=p41]] & ~ [E [1<=p41 U [p2<=p12 & 1<=p41]]]] | [[1<=p48 & ~ [E [true U ~ [2<=p23]]]] & EX [[2<=p1 | 1<=p43]]]]

abstracting: (1<=p43)
states: 1,193,060,956,246,811,041,157,152,000,000,000 (33)
abstracting: (2<=p1)
states: 1,020,341,034,647,304,595,785,549,000,000,000 (33)
.abstracting: (2<=p23)
states: 865,121,369,421,316,424,614,593,000,000,000 (32)
abstracting: (1<=p48)
states: 1,193,060,956,246,811,041,157,152,000,000,000 (33)
abstracting: (1<=p41)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
abstracting: (p2<=p12)
states: 923,006,188,708,460,840,666,780,900,000,000 (32)
abstracting: (1<=p41)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
abstracting: (1<=p41)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
.
EG iterations: 1
-> the formula is FALSE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.526sec

checking: [p3<=p1 | [~ [~ [p6<=p17]] | EG [[p24<=p4 | 1<=p45]]]]
normalized: [p3<=p1 | [p6<=p17 | EG [[p24<=p4 | 1<=p45]]]]

abstracting: (1<=p45)
states: 1,234,148,514,688,984,380,584,758,000,000,000 (33)
abstracting: (p24<=p4)
states: 904,579,769,401,424,145,630,551,500,000,000 (32)
.
EG iterations: 1
abstracting: (p6<=p17)
states: 818,259,854,954,928,401,833,081,000,000,000 (32)
abstracting: (p3<=p1)
states: 984,579,641,188,375,948,505,966,000,000,000 (32)
-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.316sec

checking: [[AF [~ [2<=p27]] & ~ [EG [1<=p6]]] | [[1<=p50 | 3<=p40] | [EF [p48<=p3] & EG [p48<=p28]]]]
normalized: [[[EG [p48<=p28] & E [true U p48<=p3]] | [1<=p50 | 3<=p40]] | [~ [EG [1<=p6]] & ~ [EG [2<=p27]]]]

abstracting: (2<=p27)
states: 874,251,937,964,021,611,154,061,000,000,000 (32)
.
EG iterations: 1
abstracting: (1<=p6)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
.
EG iterations: 1
abstracting: (3<=p40)
states: 715,988,749,890,465,044,469,949,000,000,000 (32)
abstracting: (1<=p50)
states: 1,234,148,514,688,984,380,584,758,000,000,000 (33)
abstracting: (p48<=p3)
states: 925,130,465,719,891,652,606,884,400,000,000 (32)
abstracting: (p48<=p28)
states: 925,130,465,719,891,652,606,884,400,000,000 (32)
.
EG iterations: 1
-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 3.546sec

checking: [E [p7<=p48 U ~ [p37<=p28]] | [AG [[p14<=p | 1<=p38]] | A [p38<=p24 U 2<=p40]]]
normalized: [[[~ [E [~ [2<=p40] U [~ [2<=p40] & ~ [p38<=p24]]]] & ~ [EG [~ [2<=p40]]]] | ~ [E [true U ~ [[p14<=p | 1<=p38]]]]] | E [p7<=p48 U ~ [p37<=p28]]]

abstracting: (p37<=p28)
states: 916,214,691,253,749,307,377,555,400,000,000 (32)
abstracting: (p7<=p48)
states: 916,214,691,253,749,307,377,555,400,000,000 (32)
abstracting: (1<=p38)
states: 1,193,060,956,246,811,041,157,152,000,000,000 (33)
abstracting: (p14<=p)
states: 624,683,064,463,413,179,075,269,000,000,000 (32)
abstracting: (2<=p40)
states: 942,731,202,034,310,510,200,071,000,000,000 (32)
.
EG iterations: 1
abstracting: (p38<=p24)
states: 996,908,093,067,569,267,364,520,400,000,000 (32)
abstracting: (2<=p40)
states: 942,731,202,034,310,510,200,071,000,000,000 (32)
abstracting: (2<=p40)
states: 942,731,202,034,310,510,200,071,000,000,000 (32)
-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 2.473sec

checking: [EF [[p40<=p10 & [p17<=p46 | 2<=p32]]] & [A [2<=p36 U 1<=p36] & [[2<=p27 | [1<=p45 & 2<=p14]] | AG [p37<=p33]]]]
normalized: [[[~ [E [true U ~ [p37<=p33]]] | [2<=p27 | [1<=p45 & 2<=p14]]] & [~ [EG [~ [1<=p36]]] & ~ [E [~ [1<=p36] U [~ [2<=p36] & ~ [1<=p36]]]]]] & E [true U [p40<=p10 & [p17<=p46 | 2<=p32]]]]

abstracting: (2<=p32)
states: 874,251,937,964,021,611,154,061,000,000,000 (32)
abstracting: (p17<=p46)
states: 1,003,146,222,731,813,819,651,353,900,000,000 (33)
abstracting: (p40<=p10)
states: 905,712,353,083,097,025,826,894,600,000,000 (32)
abstracting: (1<=p36)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
abstracting: (2<=p36)
states: 1,020,341,034,647,304,595,785,549,000,000,000 (33)
abstracting: (1<=p36)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
abstracting: (1<=p36)
states: 1,269,909,908,147,913,027,864,341,000,000,000 (33)
.
EG iterations: 1
abstracting: (2<=p14)
states: 965,557,623,391,073,476,548,741,000,000,000 (32)
abstracting: (1<=p45)
states: 1,234,148,514,688,984,380,584,758,000,000,000 (33)
abstracting: (2<=p27)
states: 874,251,937,964,021,611,154,061,000,000,000 (32)
abstracting: (p37<=p33)
states: 916,214,691,253,749,307,377,555,400,000,000 (32)
-> the formula is FALSE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m44.122sec

checking: [[[[[3<=p32 & p48<=p25] & p16<=p3] & AX [p27<=p32]] | A [1<=p40 U p8<=p2]] | [[EF [p13<=p12] & AX [2<=p23]] | AX [p13<=p6]]]
normalized: [[~ [EX [~ [p13<=p6]]] | [~ [EX [~ [2<=p23]]] & E [true U p13<=p12]]] | [[~ [EG [~ [p8<=p2]]] & ~ [E [~ [p8<=p2] U [~ [1<=p40] & ~ [p8<=p2]]]]] | [~ [EX [~ [p27<=p32]]] & [p16<=p3 & [3<=p32 & p48<=p25]]]]]

abstracting: (p48<=p25)
states: 988,800,526,821,714,223,336,053,400,000,000 (32)
abstracting: (3<=p32)
states: 615,552,495,920,707,992,535,801,000,000,000 (32)
abstracting: (p16<=p3)
states: 811,244,461,979,731,872,940,914,000,000,000 (32)
abstracting: (p27<=p32)
states: 923,006,188,708,460,840,666,780,900,000,000 (32)
.abstracting: (p8<=p2)
states: 931,890,654,207,510,975,128,869,300,000,000 (32)
abstracting: (1<=p40)
states: 1,234,148,514,688,984,380,584,758,000,000,000 (33)
abstracting: (p8<=p2)
states: 931,890,654,207,510,975,128,869,300,000,000 (32)
abstracting: (p8<=p2)
states: 931,890,654,207,510,975,128,869,300,000,000 (32)
.
EG iterations: 1
abstracting: (p13<=p12)
states: 906,969,808,575,381,862,920,488,000,000,000 (32)
abstracting: (2<=p23)
states: 865,121,369,421,316,424,614,593,000,000,000 (32)
.abstracting: (p13<=p6)
states: 1,011,782,764,898,424,471,177,502,200,000,000 (33)
.-> the formula is TRUE

FORMULA JoinFreeModules-PT-0010-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.225sec

totally nodes used: 29119937 (2.9e+07)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 147469763 31846602 179316365
used/not used/entry size/cache size: 38228278 28880586 16 1024MB
basic ops cache: hits/miss/sum: 105295931 22355086 127651017
used/not used/entry size/cache size: 15689709 1087507 12 192MB
unary ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 8 128MB
abstract ops cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 16777216 12 192MB
state nr cache: hits/miss/sum: 638825 128972 767797
used/not used/entry size/cache size: 127994 8260614 32 256MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 43783517
1 18663451
2 3986627
3 573296
4 65452
5 8890
6 3575
7 3264
8 2953
9 2846
>= 10 14993

Total processing time: 1m29.610sec


BK_STOP 1496737890655

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check for constant places
p
found 1 constant places
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok

ptnet_zbdd.cc:255: Boundedness exception: net is not 1-bounded!

check for maximal unmarked siphon
ok
check for constant places
p
found 1 constant places
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:4865 (60), effective:1313 (16)

initing FirstDep: 0m 0.000sec


iterations count:181 (2), effective:51 (0)

iterations count:219 (2), effective:52 (0)

iterations count:315 (3), effective:44 (0)

iterations count:106 (1), effective:11 (0)

iterations count:233 (2), effective:46 (0)

iterations count:159 (1), effective:29 (0)

iterations count:1262 (15), effective:433 (5)

iterations count:90 (1), effective:9 (0)

iterations count:114 (1), effective:11 (0)

iterations count:1144 (14), effective:331 (4)

iterations count:108 (1), effective:15 (0)

iterations count:122 (1), effective:23 (0)

iterations count:172 (2), effective:30 (0)

iterations count:1290 (15), effective:444 (5)

iterations count:81 (1), effective:0 (0)

iterations count:108 (1), effective:15 (0)

iterations count:210 (2), effective:43 (0)

iterations count:86 (1), effective:5 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="JoinFreeModules-PT-0010"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/JoinFreeModules-PT-0010.tgz
mv JoinFreeModules-PT-0010 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is JoinFreeModules-PT-0010, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r191-blw7-149581061600030"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;