fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r138-smll-149479231800286
Last Updated
June 27, 2017

About the Execution of LoLA for S_QuasiCertifProtocol-PT-28

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15619.670 601894.00 1202268.00 1370.50 TF?FFFTTFFTFFTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
............
=====================================================================
Generated by BenchKit 2-3254
Executing tool lola
Input is S_QuasiCertifProtocol-PT-28, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r138-smll-149479231800286
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1496395090714


Time: 3600 - MCC
----- Start make prepare stdout -----
===========================================================================================
S_QuasiCertifProtocol-PT-28: translating PT Petri net model.pnml into LoLA format
===========================================================================================
translating PT Petri net complete


checking for too many tokens
===========================================================================================
S_QuasiCertifProtocol-PT-28: translating PT formula ReachabilityCardinality into LoLA format
===========================================================================================
translating formula complete
touch formulae;
----- Start make result stdout -----
ReachabilityCardinality @ S_QuasiCertifProtocol-PT-28 @ 3540 seconds
----- Start make result stdout -----
lola: LoLA will run for 3540 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 3444/65536 symbol table entries, 25 collisions
lola: preprocessing...
lola: finding significant places
lola: 2998 places, 446 transitions, 445 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 591 transition conflict sets
lola: TASK
lola: reading formula from QuasiCertifProtocol-COL-28-ReachabilityCardinality.task
lola: E (F ((((1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR (2 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9) OR ((n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) AND (1 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))) AND (3 <= s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0)))) : A (G ((a3 <= a1))) : A (G ((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= AstopOK))) : E (F (((2 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28) AND (CstopAbort <= a5) AND ((3 <= AstopAbort) OR (1 <= a5)) AND (AstopOK <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28)))) : E (F ((((Astart <= 0) AND (n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9 + 1 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28)) OR (((Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9 <= AstopAbort) OR (3 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)) AND (n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9 <= malicious_reservoir))))) : E (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 + 1 <= a2) AND (((2 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9)) OR ((s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9) AND (2 <= SstopOK_9 + SstopOK_8 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_21 + SstopOK_22 + SstopOK_23 + SstopOK_24 + SstopOK_25 + SstopOK_26 + SstopOK_27 + SstopOK_28 + SstopOK_20 + SstopOK_1 + SstopOK_6 + SstopOK_7)))))) : E (F ((3 <= a3))) : E (F ((((1 <= CstopAbort) OR (1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR ((a3 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9))) AND (n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28 + 1 <= a5)))) : E (F ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9) AND (2 <= SstopOK_9 + SstopOK_8 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_21 + SstopOK_22 + SstopOK_23 + SstopOK_24 + SstopOK_25 + SstopOK_26 + SstopOK_27 + SstopOK_28 + SstopOK_20 + SstopOK_1 + SstopOK_6 + SstopOK_7)) OR ((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28 <= AstopOK) AND (1 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9)) OR ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 + 1 <= a5) AND (malicious_reservoir <= 1))))) : A (G (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9) OR (1 <= CstopAbort) OR (s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0 <= 1) OR (SstopOK_9 + SstopOK_8 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_21 + SstopOK_22 + SstopOK_23 + SstopOK_24 + SstopOK_25 + SstopOK_26 + SstopOK_27 + SstopOK_28 + SstopOK_20 + SstopOK_1 + SstopOK_6 + SstopOK_7 <= 0) OR (n6_28 + n6_27 + n6_26 + n6_25 + n6_24 + n6_23 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 + n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9 + 1 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)))) : A (G (((n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9 <= 2) OR (Sstart_9 + Sstart_8 + Sstart_7 + Sstart_6 + Sstart_5 + Sstart_4 + Sstart_3 + Sstart_2 + Sstart_1 + Sstart_0 + Sstart_10 + Sstart_11 + Sstart_12 + Sstart_13 + Sstart_14 + Sstart_15 + Sstart_16 + Sstart_17 + Sstart_18 + Sstart_19 + Sstart_20 + Sstart_21 + Sstart_22 + Sstart_23 + Sstart_24 + Sstart_25 + Sstart_26 + Sstart_27 + Sstart_28 <= 2) OR ((AstopAbort <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28) AND (n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9) AND (a1 <= 2))))) : A (G (((Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9 + 1 <= n6_28 + n6_27 + n6_26 + n6_25 + n6_24 + n6_23 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 + n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9) OR (n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28 <= 0) OR (CstopAbort <= 1) OR ((1 <= a4) AND (1 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9))))) : A (G (((s4_0 + s4_1 + s4_2 + s4_3 + s4_4 + s4_5 + s4_6 + s4_7 + s4_8 + s4_9 + s4_28 + s4_27 + s4_26 + s4_25 + s4_24 + s4_23 + s4_22 + s4_21 + s4_20 + s4_19 + s4_18 + s4_17 + s4_16 + s4_15 + s4_14 + s4_13 + s4_12 + s4_11 + s4_10 <= 1) OR (SstopAbort + 1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28) OR ((Sstart_9 + Sstart_8 + Sstart_7 + Sstart_6 + Sstart_5 + Sstart_4 + Sstart_3 + Sstart_2 + Sstart_1 + Sstart_0 + Sstart_10 + Sstart_11 + Sstart_12 + Sstart_13 + Sstart_14 + Sstart_15 + Sstart_16 + Sstart_17 + Sstart_18 + Sstart_19 + Sstart_20 + Sstart_21 + Sstart_22 + Sstart_23 + Sstart_24 + Sstart_25 + Sstart_26 + Sstart_27 + Sstart_28 + 1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) AND (n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= 2))))) : A (G ((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= a1))) : E (F ((3 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10))) : E (F (((a4 + 1 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9) AND (a1 + 1 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9) AND (a3 <= CstopAbort))))
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR (2 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 7 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality.sara
lola: state equation: calling and running sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 1 will run for 235 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G ((a3 <= a1)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 2 will run for 252 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G ((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= AstopOK)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-2.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F (((2 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28) AND (CstopAbort <= a5) AND ((3 <= AstopAbort) OR (1 <= a5)) AND (AstopOK <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 8 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-3.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-3.sara.
sara: place or transition ordering is non-deterministic

lola: state equation: solution impossible
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is unreachable.
lola: ========================================
lola: subprocess 4 will run for 294 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((Astart <= 0) AND (n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-4.sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 5 will run for 321 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 + 1 <= a2) AND (((2 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 5 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-5.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-5.sara.
sara: place or transition ordering is non-deterministic

lola: state equation: solution impossible
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is unreachable.
lola: ========================================
lola: subprocess 6 will run for 353 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((3 <= a3)))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-6.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-6.sara.
sara: place or transition ordering is non-deterministic

lola: state equation: solution impossible
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is unreachable.
lola: ========================================
lola: subprocess 7 will run for 392 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((1 <= CstopAbort) OR (1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR ((a3 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-7.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-7.sara.
sara: place or transition ordering is non-deterministic

lola: state equation: solution produced
lola: SUBRESULT
lola: result: yes
lola: produced by: state equation
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 8 will run for 441 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28 <= c1_8 + c1_7 + c1_6 + c1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-8.sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 9 will run for 504 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 5 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-9.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-9.sara.
sara: place or transition ordering is non-deterministic

lola: state equation: solution produced
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 10 will run for 588 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 9 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-10.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-10.sara.
sara: place or transition ordering is non-deterministic
lola: sara is running 0 secs || 617088 markings, 1347907 edges, 123418 markings/sec, 0 secs
lola: sara is running 5 secs || 1180652 markings, 2653657 edges, 112713 markings/sec, 5 secs
lola: sara is running 10 secs || 1726312 markings, 3931706 edges, 109132 markings/sec, 10 secs
lola: sara is running 15 secs || 2261475 markings, 5207113 edges, 107033 markings/sec, 15 secs
lola: sara is running 20 secs || 2787006 markings, 6470231 edges, 105106 markings/sec, 20 secs
lola: sara is running 25 secs || 3282941 markings, 7719275 edges, 99187 markings/sec, 25 secs
lola: sara is running 30 secs || 3828440 markings, 8996147 edges, 109100 markings/sec, 30 secs
lola: sara is running 35 secs || 4358260 markings, 10262333 edges, 105964 markings/sec, 35 secs
lola: sara is running 40 secs || 4876674 markings, 11521097 edges, 103683 markings/sec, 40 secs
lola: sara is running 45 secs || 5360648 markings, 12752645 edges, 96795 markings/sec, 45 secs
lola: sara is running 50 secs || 5881349 markings, 14009251 edges, 104140 markings/sec, 50 secs
lola: sara is running 55 secs || 6383814 markings, 15260378 edges, 100493 markings/sec, 55 secs
lola: sara is running 60 secs || 6867887 markings, 16483983 edges, 96815 markings/sec, 60 secs
lola: sara is running 65 secs || 7348683 markings, 17717321 edges, 96159 markings/sec, 65 secs
lola: sara is running 70 secs || 7813295 markings, 18943923 edges, 92922 markings/sec, 70 secs
lola: sara is running 75 secs || 8314259 markings, 20185929 edges, 100193 markings/sec, 75 secs
lola: sara is running 80 secs || 8844901 markings, 21448676 edges, 106128 markings/sec, 80 secs
lola: sara is running 85 secs || 9366705 markings, 22701113 edges, 104361 markings/sec, 85 secs
lola: sara is running 90 secs || 9870664 markings, 23954918 edges, 100792 markings/sec, 90 secs
lola: sara is running 95 secs || 10379219 markings, 25200971 edges, 101711 markings/sec, 95 secs
lola: sara is running 100 secs || 10877310 markings, 26433945 edges, 99618 markings/sec, 100 secs
lola: sara is running 105 secs || 11365140 markings, 27672266 edges, 97566 markings/sec, 105 secs
lola: sara is running 110 secs || 11843799 markings, 28886492 edges, 95732 markings/sec, 110 secs
lola: sara is running 115 secs || 12309991 markings, 30102494 edges, 93238 markings/sec, 115 secs
lola: sara is running 120 secs || 12765165 markings, 31314295 edges, 91035 markings/sec, 120 secs
lola: sara is running 125 secs || 13284261 markings, 32564395 edges, 103819 markings/sec, 125 secs
lola: sara is running 130 secs || 13764443 markings, 33776662 edges, 96036 markings/sec, 130 secs
lola: sara is running 135 secs || 14244007 markings, 34980597 edges, 95913 markings/sec, 135 secs
lola: sara is running 140 secs || 14703567 markings, 36168363 edges, 91912 markings/sec, 140 secs
lola: sara is running 145 secs || 15156443 markings, 37369774 edges, 90575 markings/sec, 145 secs
lola: sara is running 150 secs || 15619092 markings, 38568007 edges, 92530 markings/sec, 150 secs
lola: sara is running 155 secs || 16078149 markings, 39746029 edges, 91811 markings/sec, 155 secs
lola: sara is running 160 secs || 16533819 markings, 40942591 edges, 91134 markings/sec, 160 secs
lola: sara is running 165 secs || 16981502 markings, 42138711 edges, 89537 markings/sec, 165 secs
lola: sara is running 170 secs || 17433398 markings, 43343685 edges, 90379 markings/sec, 170 secs
lola: sara is running 175 secs || 17870849 markings, 44537554 edges, 87490 markings/sec, 175 secs
lola: sara is running 180 secs || 18301936 markings, 45752195 edges, 86217 markings/sec, 180 secs
lola: sara is running 185 secs || 18812724 markings, 47004255 edges, 102158 markings/sec, 185 secs
lola: sara is running 190 secs || 19341306 markings, 48265794 edges, 105716 markings/sec, 190 secs
lola: sara is running 195 secs || 19861043 markings, 49516249 edges, 103947 markings/sec, 195 secs
lola: sara is running 200 secs || 20350442 markings, 50749125 edges, 97880 markings/sec, 200 secs
lola: sara is running 205 secs || 20865905 markings, 52000533 edges, 103093 markings/sec, 205 secs
lola: sara is running 210 secs || 21367212 markings, 53241989 edges, 100261 markings/sec, 210 secs
lola: sara is running 215 secs || 21847725 markings, 54460973 edges, 96103 markings/sec, 215 secs
lola: sara is running 220 secs || 22318116 markings, 55676035 edges, 94078 markings/sec, 220 secs
lola: sara is running 225 secs || 22790191 markings, 56900809 edges, 94415 markings/sec, 225 secs
lola: sara is running 230 secs || 23256674 markings, 58113535 edges, 93297 markings/sec, 230 secs
lola: sara is running 235 secs || 23770123 markings, 59361004 edges, 102690 markings/sec, 235 secs
lola: sara is running 240 secs || 24244368 markings, 60578993 edges, 94849 markings/sec, 240 secs
lola: sara is running 245 secs || 24740403 markings, 61816646 edges, 99207 markings/sec, 245 secs
lola: sara is running 250 secs || 25204258 markings, 63017551 edges, 92771 markings/sec, 250 secs
lola: sara is running 255 secs || 25651365 markings, 64221022 edges, 89421 markings/sec, 255 secs
lola: sara is running 260 secs || 26139034 markings, 65452720 edges, 97534 markings/sec, 260 secs
lola: sara is running 265 secs || 26604721 markings, 66657908 edges, 93137 markings/sec, 265 secs
lola: sara is running 270 secs || 27053862 markings, 67858680 edges, 89828 markings/sec, 270 secs
lola: sara is running 275 secs || 27504510 markings, 69051192 edges, 90130 markings/sec, 275 secs
lola: sara is running 280 secs || 27942798 markings, 70240929 edges, 87658 markings/sec, 280 secs
lola: sara is running 285 secs || 28377154 markings, 71427841 edges, 86871 markings/sec, 285 secs
lola: sara is running 290 secs || 28799359 markings, 72629180 edges, 84441 markings/sec, 290 secs
lola: sara is running 295 secs || 29310120 markings, 73870344 edges, 102152 markings/sec, 295 secs
lola: sara is running 300 secs || 29808469 markings, 75110428 edges, 99670 markings/sec, 300 secs
lola: sara is running 305 secs || 30288466 markings, 76323601 edges, 95999 markings/sec, 305 secs
lola: sara is running 310 secs || 30767144 markings, 77552681 edges, 95736 markings/sec, 310 secs
lola: sara is running 315 secs || 31241937 markings, 78805167 edges, 94959 markings/sec, 315 secs
lola: sara is running 320 secs || 31720550 markings, 80049062 edges, 95723 markings/sec, 320 secs
lola: sara is running 325 secs || 32212611 markings, 81314672 edges, 98412 markings/sec, 325 secs
lola: sara is running 330 secs || 32688567 markings, 82565400 edges, 95191 markings/sec, 330 secs
lola: sara is running 335 secs || 33154636 markings, 83805600 edges, 93214 markings/sec, 335 secs
lola: sara is running 340 secs || 33614737 markings, 85041576 edges, 92020 markings/sec, 340 secs
lola: sara is running 345 secs || 34064764 markings, 86269239 edges, 90005 markings/sec, 345 secs
lola: sara is running 350 secs || 34501281 markings, 87507600 edges, 87303 markings/sec, 350 secs
lola: sara is running 355 secs || 34998501 markings, 88777387 edges, 99444 markings/sec, 355 secs
lola: sara is running 360 secs || 35481270 markings, 90025606 edges, 96554 markings/sec, 360 secs
lola: sara is running 365 secs || 35944591 markings, 91270884 edges, 92664 markings/sec, 365 secs
lola: sara is running 370 secs || 36412651 markings, 92512228 edges, 93612 markings/sec, 370 secs
lola: sara is running 375 secs || 36868629 markings, 93745704 edges, 91196 markings/sec, 375 secs
lola: sara is running 380 secs || 37272467 markings, 94852215 edges, 80768 markings/sec, 380 secs
lola: sara is running 385 secs || 37645740 markings, 95915676 edges, 74655 markings/sec, 385 secs
lola: sara is running 390 secs || 38105912 markings, 97128450 edges, 92034 markings/sec, 390 secs
lola: sara is running 395 secs || 38550270 markings, 98335761 edges, 88872 markings/sec, 395 secs
lola: sara is running 400 secs || 38982152 markings, 99522190 edges, 86376 markings/sec, 400 secs
lola: sara is running 405 secs || 39397288 markings, 100707518 edges, 83027 markings/sec, 405 secs
lola: sara is running 410 secs || 39838347 markings, 101915574 edges, 88212 markings/sec, 410 secs
lola: sara is running 415 secs || 40252859 markings, 103106446 edges, 82902 markings/sec, 415 secs
lola: sara is running 420 secs || 40664482 markings, 104293314 edges, 82325 markings/sec, 420 secs
lola: sara is running 425 secs || 41077362 markings, 105525571 edges, 82576 markings/sec, 425 secs
lola: sara is running 430 secs || 41628755 markings, 106807887 edges, 110279 markings/sec, 430 secs
lola: sara is running 435 secs || 42157099 markings, 108075579 edges, 105669 markings/sec, 435 secs
lola: sara is running 440 secs || 42665408 markings, 109312263 edges, 101662 markings/sec, 440 secs
lola: sara is running 445 secs || 43118366 markings, 110480165 edges, 90592 markings/sec, 445 secs
lola: sara is running 450 secs || 43643827 markings, 111744301 edges, 105092 markings/sec, 450 secs
lola: sara is running 455 secs || 44148789 markings, 112996984 edges, 100992 markings/sec, 455 secs
lola: sara is running 460 secs || 44638156 markings, 114232473 edges, 97873 markings/sec, 460 secs
lola: sara is running 465 secs || 45115700 markings, 115460952 edges, 95509 markings/sec, 465 secs
lola: sara is running 470 secs || 45578316 markings, 116687827 edges, 92523 markings/sec, 470 secs
lola: sara is running 475 secs || 46076536 markings, 117937047 edges, 99644 markings/sec, 475 secs
lola: sara is running 480 secs || 46580239 markings, 119183832 edges, 100741 markings/sec, 480 secs
lola: sara is running 485 secs || 47074011 markings, 120436110 edges, 98754 markings/sec, 485 secs
lola: sara is running 490 secs || 47551618 markings, 121651543 edges, 95521 markings/sec, 490 secs
lola: sara is running 495 secs || 47992884 markings, 122802569 edges, 88253 markings/sec, 495 secs
lola: sara is running 500 secs || 48414041 markings, 123945981 edges, 84231 markings/sec, 500 secs
lola: sara is running 505 secs || 48886028 markings, 125118679 edges, 94397 markings/sec, 505 secs
lola: sara is running 510 secs || 49327291 markings, 126263367 edges, 88253 markings/sec, 510 secs
lola: sara is running 515 secs || 49752882 markings, 127406968 edges, 85118 markings/sec, 515 secs
lola: sara is running 520 secs || 50186167 markings, 128549173 edges, 86657 markings/sec, 520 secs
lola: sara is running 525 secs || 50604827 markings, 129684339 edges, 83732 markings/sec, 525 secs
lola: sara is running 530 secs || 51019741 markings, 130814550 edges, 82983 markings/sec, 530 secs
lola: sara is running 535 secs || 51425154 markings, 131964048 edges, 81083 markings/sec, 535 secs
lola: sara is running 540 secs || 51901402 markings, 133138372 edges, 95250 markings/sec, 540 secs
lola: sara is running 545 secs || 52374089 markings, 134308673 edges, 94537 markings/sec, 545 secs
lola: sara is running 550 secs || 52833042 markings, 135475361 edges, 91791 markings/sec, 550 secs
lola: sara is running 555 secs || 53284853 markings, 136625756 edges, 90362 markings/sec, 555 secs
lola: sara is running 560 secs || 53720902 markings, 137767568 edges, 87210 markings/sec, 560 secs
lola: sara is running 565 secs || 54141599 markings, 138914519 edges, 84139 markings/sec, 565 secs
lola: sara is running 570 secs || 54619475 markings, 140096696 edges, 95575 markings/sec, 570 secs
lola: sara is running 575 secs || 55062293 markings, 141242590 edges, 88564 markings/sec, 575 secs
lola: sara is running 580 secs || 55487198 markings, 142385721 edges, 84981 markings/sec, 580 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 587 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9 + 1 <= n6_28 + n6_27 + n6_26 + n6_25 + n6_24 + n6_23 + n... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 8 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-11.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-11.sara.
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 12 will run for 734 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((s4_0 + s4_1 + s4_2 + s4_3 + s4_4 + s4_5 + s4_6 + s4_7 + s4_8 + s4_9 + s4_28 + s4_27 + s4_26 + s4_25 + s4_24 + s4_23 + s4_22 + s4_21 + s4_20 + s4_19 + s4_18 + s4_17 + s4_16 + s4_15 + s4_14 + s4_13 + s4_12 + s4_11 + s4_10 <= 1) OR (SstopAbort + 1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-12.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 13 will run for 979 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G ((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= a1)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-13.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 14 will run for 1469 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((3 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-14.sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 15 will run for 2939 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F (((a4 + 1 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9) AND (a1 + 1 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cs... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 3 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-15.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-15.sara.
sara: place or transition ordering is non-deterministic

lola: state equation: solution produced
lola: SUBRESULT
lola: result: yes
lola: produced by: state equation
lola: The predicate is reachable.
lola: RESULT
lola:
SUMMARY: yes no no no yes no no yes yes no unknown no no no yes yes
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-3 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-4 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-10 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
----- Kill lola and sara stdout -----
----- Finished stdout -----

BK_STOP 1496395692608

--------------------
content from stderr:

----- Start make prepare stderr -----
----- Start make result stderr -----
----- Start make result stderr -----
----- Kill lola and sara stderr -----
----- Finished stderr -----

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_QuasiCertifProtocol-PT-28"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/S_QuasiCertifProtocol-PT-28.tgz
mv S_QuasiCertifProtocol-PT-28 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool lola"
echo " Input is S_QuasiCertifProtocol-PT-28, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r138-smll-149479231800286"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;