About the Execution of LoLA for S_QuasiCertifProtocol-PT-28
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
15619.670 | 601894.00 | 1202268.00 | 1370.50 | TF?FFFTTFFTFFTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
............
=====================================================================
Generated by BenchKit 2-3254
Executing tool lola
Input is S_QuasiCertifProtocol-PT-28, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r138-smll-149479231800286
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-28-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1496395090714
Time: 3600 - MCC
----- Start make prepare stdout -----
===========================================================================================
S_QuasiCertifProtocol-PT-28: translating PT Petri net model.pnml into LoLA format
===========================================================================================
translating PT Petri net complete
checking for too many tokens
===========================================================================================
S_QuasiCertifProtocol-PT-28: translating PT formula ReachabilityCardinality into LoLA format
===========================================================================================
translating formula complete
touch formulae;
----- Start make result stdout -----
ReachabilityCardinality @ S_QuasiCertifProtocol-PT-28 @ 3540 seconds
----- Start make result stdout -----
lola: LoLA will run for 3540 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 3444/65536 symbol table entries, 25 collisions
lola: preprocessing...
lola: finding significant places
lola: 2998 places, 446 transitions, 445 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 591 transition conflict sets
lola: TASK
lola: reading formula from QuasiCertifProtocol-COL-28-ReachabilityCardinality.task
lola: E (F ((((1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR (2 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9) OR ((n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) AND (1 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))) AND (3 <= s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0)))) : A (G ((a3 <= a1))) : A (G ((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= AstopOK))) : E (F (((2 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28) AND (CstopAbort <= a5) AND ((3 <= AstopAbort) OR (1 <= a5)) AND (AstopOK <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28)))) : E (F ((((Astart <= 0) AND (n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9 + 1 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28)) OR (((Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9 <= AstopAbort) OR (3 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)) AND (n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9 <= malicious_reservoir))))) : E (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 + 1 <= a2) AND (((2 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9)) OR ((s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9) AND (2 <= SstopOK_9 + SstopOK_8 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_21 + SstopOK_22 + SstopOK_23 + SstopOK_24 + SstopOK_25 + SstopOK_26 + SstopOK_27 + SstopOK_28 + SstopOK_20 + SstopOK_1 + SstopOK_6 + SstopOK_7)))))) : E (F ((3 <= a3))) : E (F ((((1 <= CstopAbort) OR (1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR ((a3 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9))) AND (n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28 + 1 <= a5)))) : E (F ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9) AND (2 <= SstopOK_9 + SstopOK_8 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_21 + SstopOK_22 + SstopOK_23 + SstopOK_24 + SstopOK_25 + SstopOK_26 + SstopOK_27 + SstopOK_28 + SstopOK_20 + SstopOK_1 + SstopOK_6 + SstopOK_7)) OR ((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28 <= AstopOK) AND (1 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9)) OR ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 + 1 <= a5) AND (malicious_reservoir <= 1))))) : A (G (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9) OR (1 <= CstopAbort) OR (s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0 <= 1) OR (SstopOK_9 + SstopOK_8 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_21 + SstopOK_22 + SstopOK_23 + SstopOK_24 + SstopOK_25 + SstopOK_26 + SstopOK_27 + SstopOK_28 + SstopOK_20 + SstopOK_1 + SstopOK_6 + SstopOK_7 <= 0) OR (n6_28 + n6_27 + n6_26 + n6_25 + n6_24 + n6_23 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 + n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9 + 1 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)))) : A (G (((n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9 <= 2) OR (Sstart_9 + Sstart_8 + Sstart_7 + Sstart_6 + Sstart_5 + Sstart_4 + Sstart_3 + Sstart_2 + Sstart_1 + Sstart_0 + Sstart_10 + Sstart_11 + Sstart_12 + Sstart_13 + Sstart_14 + Sstart_15 + Sstart_16 + Sstart_17 + Sstart_18 + Sstart_19 + Sstart_20 + Sstart_21 + Sstart_22 + Sstart_23 + Sstart_24 + Sstart_25 + Sstart_26 + Sstart_27 + Sstart_28 <= 2) OR ((AstopAbort <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28) AND (n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9) AND (a1 <= 2))))) : A (G (((Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9 + 1 <= n6_28 + n6_27 + n6_26 + n6_25 + n6_24 + n6_23 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 + n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9) OR (n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28 <= 0) OR (CstopAbort <= 1) OR ((1 <= a4) AND (1 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9))))) : A (G (((s4_0 + s4_1 + s4_2 + s4_3 + s4_4 + s4_5 + s4_6 + s4_7 + s4_8 + s4_9 + s4_28 + s4_27 + s4_26 + s4_25 + s4_24 + s4_23 + s4_22 + s4_21 + s4_20 + s4_19 + s4_18 + s4_17 + s4_16 + s4_15 + s4_14 + s4_13 + s4_12 + s4_11 + s4_10 <= 1) OR (SstopAbort + 1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28) OR ((Sstart_9 + Sstart_8 + Sstart_7 + Sstart_6 + Sstart_5 + Sstart_4 + Sstart_3 + Sstart_2 + Sstart_1 + Sstart_0 + Sstart_10 + Sstart_11 + Sstart_12 + Sstart_13 + Sstart_14 + Sstart_15 + Sstart_16 + Sstart_17 + Sstart_18 + Sstart_19 + Sstart_20 + Sstart_21 + Sstart_22 + Sstart_23 + Sstart_24 + Sstart_25 + Sstart_26 + Sstart_27 + Sstart_28 + 1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) AND (n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= 2))))) : A (G ((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= a1))) : E (F ((3 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10))) : E (F (((a4 + 1 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9) AND (a1 + 1 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9) AND (a3 <= CstopAbort))))
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR (2 <= s5_28 + s5_27 + s5_26 + s5_25 + s5_24 + s5_23 + s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 7 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality.sara
lola: state equation: calling and running sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 1 will run for 235 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G ((a3 <= a1)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 2 will run for 252 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G ((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= AstopOK)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-2.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F (((2 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28) AND (CstopAbort <= a5) AND ((3 <= AstopAbort) OR (1 <= a5)) AND (AstopOK <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 8 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-3.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-3.sara.
sara: place or transition ordering is non-deterministic
lola: state equation: solution impossible
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is unreachable.
lola: ========================================
lola: subprocess 4 will run for 294 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((Astart <= 0) AND (n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-4.sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 5 will run for 321 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 + 1 <= a2) AND (((2 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 5 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-5.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-5.sara.
sara: place or transition ordering is non-deterministic
lola: state equation: solution impossible
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is unreachable.
lola: ========================================
lola: subprocess 6 will run for 353 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((3 <= a3)))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-6.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-6.sara.
sara: place or transition ordering is non-deterministic
lola: state equation: solution impossible
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is unreachable.
lola: ========================================
lola: subprocess 7 will run for 392 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((1 <= CstopAbort) OR (1 <= s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_23 + s3_24 + s3_25 + s3_26 + s3_27 + s3_28 + s3_9) OR ((a3 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-7.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-7.sara.
sara: place or transition ordering is non-deterministic
lola: state equation: solution produced
lola: SUBRESULT
lola: result: yes
lola: produced by: state equation
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 8 will run for 441 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28 <= c1_8 + c1_7 + c1_6 + c1... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-8.sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 9 will run for 504 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 5 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-9.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-9.sara.
sara: place or transition ordering is non-deterministic
lola: state equation: solution produced
lola: SUBRESULT
lola: result: no
lola: produced by: state equation
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 10 will run for 588 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 9 literals and 3 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-10.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-10.sara.
sara: place or transition ordering is non-deterministic
lola: sara is running 0 secs || 617088 markings, 1347907 edges, 123418 markings/sec, 0 secs
lola: sara is running 5 secs || 1180652 markings, 2653657 edges, 112713 markings/sec, 5 secs
lola: sara is running 10 secs || 1726312 markings, 3931706 edges, 109132 markings/sec, 10 secs
lola: sara is running 15 secs || 2261475 markings, 5207113 edges, 107033 markings/sec, 15 secs
lola: sara is running 20 secs || 2787006 markings, 6470231 edges, 105106 markings/sec, 20 secs
lola: sara is running 25 secs || 3282941 markings, 7719275 edges, 99187 markings/sec, 25 secs
lola: sara is running 30 secs || 3828440 markings, 8996147 edges, 109100 markings/sec, 30 secs
lola: sara is running 35 secs || 4358260 markings, 10262333 edges, 105964 markings/sec, 35 secs
lola: sara is running 40 secs || 4876674 markings, 11521097 edges, 103683 markings/sec, 40 secs
lola: sara is running 45 secs || 5360648 markings, 12752645 edges, 96795 markings/sec, 45 secs
lola: sara is running 50 secs || 5881349 markings, 14009251 edges, 104140 markings/sec, 50 secs
lola: sara is running 55 secs || 6383814 markings, 15260378 edges, 100493 markings/sec, 55 secs
lola: sara is running 60 secs || 6867887 markings, 16483983 edges, 96815 markings/sec, 60 secs
lola: sara is running 65 secs || 7348683 markings, 17717321 edges, 96159 markings/sec, 65 secs
lola: sara is running 70 secs || 7813295 markings, 18943923 edges, 92922 markings/sec, 70 secs
lola: sara is running 75 secs || 8314259 markings, 20185929 edges, 100193 markings/sec, 75 secs
lola: sara is running 80 secs || 8844901 markings, 21448676 edges, 106128 markings/sec, 80 secs
lola: sara is running 85 secs || 9366705 markings, 22701113 edges, 104361 markings/sec, 85 secs
lola: sara is running 90 secs || 9870664 markings, 23954918 edges, 100792 markings/sec, 90 secs
lola: sara is running 95 secs || 10379219 markings, 25200971 edges, 101711 markings/sec, 95 secs
lola: sara is running 100 secs || 10877310 markings, 26433945 edges, 99618 markings/sec, 100 secs
lola: sara is running 105 secs || 11365140 markings, 27672266 edges, 97566 markings/sec, 105 secs
lola: sara is running 110 secs || 11843799 markings, 28886492 edges, 95732 markings/sec, 110 secs
lola: sara is running 115 secs || 12309991 markings, 30102494 edges, 93238 markings/sec, 115 secs
lola: sara is running 120 secs || 12765165 markings, 31314295 edges, 91035 markings/sec, 120 secs
lola: sara is running 125 secs || 13284261 markings, 32564395 edges, 103819 markings/sec, 125 secs
lola: sara is running 130 secs || 13764443 markings, 33776662 edges, 96036 markings/sec, 130 secs
lola: sara is running 135 secs || 14244007 markings, 34980597 edges, 95913 markings/sec, 135 secs
lola: sara is running 140 secs || 14703567 markings, 36168363 edges, 91912 markings/sec, 140 secs
lola: sara is running 145 secs || 15156443 markings, 37369774 edges, 90575 markings/sec, 145 secs
lola: sara is running 150 secs || 15619092 markings, 38568007 edges, 92530 markings/sec, 150 secs
lola: sara is running 155 secs || 16078149 markings, 39746029 edges, 91811 markings/sec, 155 secs
lola: sara is running 160 secs || 16533819 markings, 40942591 edges, 91134 markings/sec, 160 secs
lola: sara is running 165 secs || 16981502 markings, 42138711 edges, 89537 markings/sec, 165 secs
lola: sara is running 170 secs || 17433398 markings, 43343685 edges, 90379 markings/sec, 170 secs
lola: sara is running 175 secs || 17870849 markings, 44537554 edges, 87490 markings/sec, 175 secs
lola: sara is running 180 secs || 18301936 markings, 45752195 edges, 86217 markings/sec, 180 secs
lola: sara is running 185 secs || 18812724 markings, 47004255 edges, 102158 markings/sec, 185 secs
lola: sara is running 190 secs || 19341306 markings, 48265794 edges, 105716 markings/sec, 190 secs
lola: sara is running 195 secs || 19861043 markings, 49516249 edges, 103947 markings/sec, 195 secs
lola: sara is running 200 secs || 20350442 markings, 50749125 edges, 97880 markings/sec, 200 secs
lola: sara is running 205 secs || 20865905 markings, 52000533 edges, 103093 markings/sec, 205 secs
lola: sara is running 210 secs || 21367212 markings, 53241989 edges, 100261 markings/sec, 210 secs
lola: sara is running 215 secs || 21847725 markings, 54460973 edges, 96103 markings/sec, 215 secs
lola: sara is running 220 secs || 22318116 markings, 55676035 edges, 94078 markings/sec, 220 secs
lola: sara is running 225 secs || 22790191 markings, 56900809 edges, 94415 markings/sec, 225 secs
lola: sara is running 230 secs || 23256674 markings, 58113535 edges, 93297 markings/sec, 230 secs
lola: sara is running 235 secs || 23770123 markings, 59361004 edges, 102690 markings/sec, 235 secs
lola: sara is running 240 secs || 24244368 markings, 60578993 edges, 94849 markings/sec, 240 secs
lola: sara is running 245 secs || 24740403 markings, 61816646 edges, 99207 markings/sec, 245 secs
lola: sara is running 250 secs || 25204258 markings, 63017551 edges, 92771 markings/sec, 250 secs
lola: sara is running 255 secs || 25651365 markings, 64221022 edges, 89421 markings/sec, 255 secs
lola: sara is running 260 secs || 26139034 markings, 65452720 edges, 97534 markings/sec, 260 secs
lola: sara is running 265 secs || 26604721 markings, 66657908 edges, 93137 markings/sec, 265 secs
lola: sara is running 270 secs || 27053862 markings, 67858680 edges, 89828 markings/sec, 270 secs
lola: sara is running 275 secs || 27504510 markings, 69051192 edges, 90130 markings/sec, 275 secs
lola: sara is running 280 secs || 27942798 markings, 70240929 edges, 87658 markings/sec, 280 secs
lola: sara is running 285 secs || 28377154 markings, 71427841 edges, 86871 markings/sec, 285 secs
lola: sara is running 290 secs || 28799359 markings, 72629180 edges, 84441 markings/sec, 290 secs
lola: sara is running 295 secs || 29310120 markings, 73870344 edges, 102152 markings/sec, 295 secs
lola: sara is running 300 secs || 29808469 markings, 75110428 edges, 99670 markings/sec, 300 secs
lola: sara is running 305 secs || 30288466 markings, 76323601 edges, 95999 markings/sec, 305 secs
lola: sara is running 310 secs || 30767144 markings, 77552681 edges, 95736 markings/sec, 310 secs
lola: sara is running 315 secs || 31241937 markings, 78805167 edges, 94959 markings/sec, 315 secs
lola: sara is running 320 secs || 31720550 markings, 80049062 edges, 95723 markings/sec, 320 secs
lola: sara is running 325 secs || 32212611 markings, 81314672 edges, 98412 markings/sec, 325 secs
lola: sara is running 330 secs || 32688567 markings, 82565400 edges, 95191 markings/sec, 330 secs
lola: sara is running 335 secs || 33154636 markings, 83805600 edges, 93214 markings/sec, 335 secs
lola: sara is running 340 secs || 33614737 markings, 85041576 edges, 92020 markings/sec, 340 secs
lola: sara is running 345 secs || 34064764 markings, 86269239 edges, 90005 markings/sec, 345 secs
lola: sara is running 350 secs || 34501281 markings, 87507600 edges, 87303 markings/sec, 350 secs
lola: sara is running 355 secs || 34998501 markings, 88777387 edges, 99444 markings/sec, 355 secs
lola: sara is running 360 secs || 35481270 markings, 90025606 edges, 96554 markings/sec, 360 secs
lola: sara is running 365 secs || 35944591 markings, 91270884 edges, 92664 markings/sec, 365 secs
lola: sara is running 370 secs || 36412651 markings, 92512228 edges, 93612 markings/sec, 370 secs
lola: sara is running 375 secs || 36868629 markings, 93745704 edges, 91196 markings/sec, 375 secs
lola: sara is running 380 secs || 37272467 markings, 94852215 edges, 80768 markings/sec, 380 secs
lola: sara is running 385 secs || 37645740 markings, 95915676 edges, 74655 markings/sec, 385 secs
lola: sara is running 390 secs || 38105912 markings, 97128450 edges, 92034 markings/sec, 390 secs
lola: sara is running 395 secs || 38550270 markings, 98335761 edges, 88872 markings/sec, 395 secs
lola: sara is running 400 secs || 38982152 markings, 99522190 edges, 86376 markings/sec, 400 secs
lola: sara is running 405 secs || 39397288 markings, 100707518 edges, 83027 markings/sec, 405 secs
lola: sara is running 410 secs || 39838347 markings, 101915574 edges, 88212 markings/sec, 410 secs
lola: sara is running 415 secs || 40252859 markings, 103106446 edges, 82902 markings/sec, 415 secs
lola: sara is running 420 secs || 40664482 markings, 104293314 edges, 82325 markings/sec, 420 secs
lola: sara is running 425 secs || 41077362 markings, 105525571 edges, 82576 markings/sec, 425 secs
lola: sara is running 430 secs || 41628755 markings, 106807887 edges, 110279 markings/sec, 430 secs
lola: sara is running 435 secs || 42157099 markings, 108075579 edges, 105669 markings/sec, 435 secs
lola: sara is running 440 secs || 42665408 markings, 109312263 edges, 101662 markings/sec, 440 secs
lola: sara is running 445 secs || 43118366 markings, 110480165 edges, 90592 markings/sec, 445 secs
lola: sara is running 450 secs || 43643827 markings, 111744301 edges, 105092 markings/sec, 450 secs
lola: sara is running 455 secs || 44148789 markings, 112996984 edges, 100992 markings/sec, 455 secs
lola: sara is running 460 secs || 44638156 markings, 114232473 edges, 97873 markings/sec, 460 secs
lola: sara is running 465 secs || 45115700 markings, 115460952 edges, 95509 markings/sec, 465 secs
lola: sara is running 470 secs || 45578316 markings, 116687827 edges, 92523 markings/sec, 470 secs
lola: sara is running 475 secs || 46076536 markings, 117937047 edges, 99644 markings/sec, 475 secs
lola: sara is running 480 secs || 46580239 markings, 119183832 edges, 100741 markings/sec, 480 secs
lola: sara is running 485 secs || 47074011 markings, 120436110 edges, 98754 markings/sec, 485 secs
lola: sara is running 490 secs || 47551618 markings, 121651543 edges, 95521 markings/sec, 490 secs
lola: sara is running 495 secs || 47992884 markings, 122802569 edges, 88253 markings/sec, 495 secs
lola: sara is running 500 secs || 48414041 markings, 123945981 edges, 84231 markings/sec, 500 secs
lola: sara is running 505 secs || 48886028 markings, 125118679 edges, 94397 markings/sec, 505 secs
lola: sara is running 510 secs || 49327291 markings, 126263367 edges, 88253 markings/sec, 510 secs
lola: sara is running 515 secs || 49752882 markings, 127406968 edges, 85118 markings/sec, 515 secs
lola: sara is running 520 secs || 50186167 markings, 128549173 edges, 86657 markings/sec, 520 secs
lola: sara is running 525 secs || 50604827 markings, 129684339 edges, 83732 markings/sec, 525 secs
lola: sara is running 530 secs || 51019741 markings, 130814550 edges, 82983 markings/sec, 530 secs
lola: sara is running 535 secs || 51425154 markings, 131964048 edges, 81083 markings/sec, 535 secs
lola: sara is running 540 secs || 51901402 markings, 133138372 edges, 95250 markings/sec, 540 secs
lola: sara is running 545 secs || 52374089 markings, 134308673 edges, 94537 markings/sec, 545 secs
lola: sara is running 550 secs || 52833042 markings, 135475361 edges, 91791 markings/sec, 550 secs
lola: sara is running 555 secs || 53284853 markings, 136625756 edges, 90362 markings/sec, 555 secs
lola: sara is running 560 secs || 53720902 markings, 137767568 edges, 87210 markings/sec, 560 secs
lola: sara is running 565 secs || 54141599 markings, 138914519 edges, 84139 markings/sec, 565 secs
lola: sara is running 570 secs || 54619475 markings, 140096696 edges, 95575 markings/sec, 570 secs
lola: sara is running 575 secs || 55062293 markings, 141242590 edges, 88564 markings/sec, 575 secs
lola: sara is running 580 secs || 55487198 markings, 142385721 edges, 84981 markings/sec, 580 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 587 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9 + 1 <= n6_28 + n6_27 + n6_26 + n6_25 + n6_24 + n6_23 + n... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 8 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-11.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-11.sara.
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 12 will run for 734 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((s4_0 + s4_1 + s4_2 + s4_3 + s4_4 + s4_5 + s4_6 + s4_7 + s4_8 + s4_9 + s4_28 + s4_27 + s4_26 + s4_25 + s4_24 + s4_23 + s4_22 + s4_21 + s4_20 + s4_19 + s4_18 + s4_17 + s4_16 + s4_15 + s4_14 + s4_13 + s4_12 + s4_11 + s4_10 <= 1) OR (SstopAbort + 1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 6 literals and 2 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-12.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 13 will run for 979 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G ((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= a1)))
lola: ========================================
lola: SUBTASK
lola: checking invariance
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-13.sara
lola: SUBRESULT
lola: result: no
lola: produced by: state space
lola: The predicate is not invariant.
lola: ========================================
lola: subprocess 14 will run for 1469 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F ((3 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)))
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 1 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-14.sara
lola: SUBRESULT
lola: result: yes
lola: produced by: state space
lola: The predicate is reachable.
lola: ========================================
lola: subprocess 15 will run for 2939 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: E (F (((a4 + 1 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9) AND (a1 + 1 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cs... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking reachability
lola: Planning: workflow for reachability check: stateequation||search (--findpath=off)
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1780 bytes per marking, with 0 unused bits
lola: using a prefix tree store (--store=prefix)
lola: SEARCH (state space)
lola: state space: using reachability graph (--search=depth)
lola: state space: using reachability preserving stubborn set method with insertion algorithm (--stubborn=tarjan)
lola: RUNNING
lola: state equation: Generated DNF with 3 literals and 1 conjunctive subformulas
lola: state equation: write sara problem file to QuasiCertifProtocol-COL-28-ReachabilityCardinality-15.sara
lola: state equation: calling and running sara
sara: try reading problem file QuasiCertifProtocol-COL-28-ReachabilityCardinality-15.sara.
sara: place or transition ordering is non-deterministic
lola: state equation: solution produced
lola: SUBRESULT
lola: result: yes
lola: produced by: state equation
lola: The predicate is reachable.
lola: RESULT
lola:
SUMMARY: yes no no no yes no no yes yes no unknown no no no yes yes
lola: ========================================
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-3 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-4 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-6 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-7 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-8 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-10 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-12 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-ReachabilityCardinality-15 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
----- Kill lola and sara stdout -----
----- Finished stdout -----
BK_STOP 1496395692608
--------------------
content from stderr:
----- Start make prepare stderr -----
----- Start make result stderr -----
----- Start make result stderr -----
----- Kill lola and sara stderr -----
----- Finished stderr -----
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_QuasiCertifProtocol-PT-28"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_QuasiCertifProtocol-PT-28.tgz
mv S_QuasiCertifProtocol-PT-28 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool lola"
echo " Input is S_QuasiCertifProtocol-PT-28, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r138-smll-149479231800286"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;