fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r138-smll-149479231800284
Last Updated
June 27, 2017

About the Execution of LoLA for S_QuasiCertifProtocol-PT-28

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
15952.290 1927260.00 1918354.00 7388.70 ?F?F??TFTTFFT?FT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.............
=====================================================================
Generated by BenchKit 2-3254
Executing tool lola
Input is S_QuasiCertifProtocol-PT-28, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r138-smll-149479231800284
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-28-LTLCardinality-9

=== Now, execution of the tool begins

BK_START 1496394117708


Time: 3600 - MCC
----- Start make prepare stdout -----
===========================================================================================
S_QuasiCertifProtocol-PT-28: translating PT Petri net model.pnml into LoLA format
===========================================================================================
translating PT Petri net complete


checking for too many tokens
===========================================================================================
S_QuasiCertifProtocol-PT-28: translating PT formula LTLCardinality into LoLA format
===========================================================================================
translating formula complete
touch formulae;
----- Start make result stdout -----
LTLCardinality @ S_QuasiCertifProtocol-PT-28 @ 3540 seconds
----- Start make result stdout -----
lola: LoLA will run for 3540 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 3444/65536 symbol table entries, 25 collisions
lola: preprocessing...
lola: finding significant places
lola: 2998 places, 446 transitions, 445 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 591 transition conflict sets
lola: TASK
lola: reading formula from QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: A (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9) U G ((n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9)))) : A (X (X ((2 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9)))) : A (F ((X ((2 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28)) U (n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9)))) : A (F ((F ((2 <= AstopAbort)) U F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= a4))))) : A (F (F ((3 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9)))) : A (G ((F ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28)) U (3 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9)))) : A ((a1 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)) : A ((X ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9)) U X (F ((1 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9))))) : A (X (X (X (F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0)))))) : A (F (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9) U (SstopAbort <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28))))) : A (F (X (((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28) U (malicious_reservoir <= s4_0 + s4_1 + s4_2 + s4_3 + s4_4 + s4_5 + s4_6 + s4_7 + s4_8 + s4_9 + s4_28 + s4_27 + s4_26 + s4_25 + s4_24 + s4_23 + s4_22 + s4_21 + s4_20 + s4_19 + s4_18 + s4_17 + s4_16 + s4_15 + s4_14 + s4_13 + s4_12 + s4_11 + s4_10))))) : A ((3 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9)) : A ((G (F ((a5 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9))) U F (G ((malicious_reservoir <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28))))) : A (G (G ((s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0 <= AstopOK)))) : A (X (F ((n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9)))) : A ((X (X ((3 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28))) U G (X ((1 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28)))))
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + n8_20_19 + n8_20_20 + n8_20_21 + n8_20_22 + n8_20_23 + n8_20_24 + n8_20_25 + n8_20_26 + n8_20_27 + n8_20_28 + n8_19_28 + n8_19_27 + n8_19_26 + n8_19_25 + n8_19_24 + n8_19_23 + n8_19_22 + n8_19_21 + n8_26_1 + n8_26_2 + n8_26_3 + n8_26_4 + n8_26_5 + n8_26_6 + n8_26_7 + n8_26_8 + n8_26_9 + n8_19_20 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_19_19 + n8_19_18 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_27_1 + n8_27_2 + n8_27_3 + n8_27_4 + n8_27_5 + n8_27_6 + n8_27_7 + n8_27_8 + n8_27_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_13_23 + n8_13_24 + n8_13_25 + n8_13_26 + n8_13_27 + n8_13_28 + n8_25_10 + n8_25_11 + n8_25_12 + n8_25_13 + n8_25_14 + n8_25_15 + n8_25_16 + n8_25_17 + n8_25_18 + n8_25_19 + n8_25_20 + n8_25_21 + n8_25_22 + n8_25_23 + n8_25_24 + n8_25_25 + n8_25_26 + n8_25_27 + n8_25_28 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_4_23 + n8_4_24 + n8_4_25 + n8_4_26 + n8_4_27 + n8_4_28 + n8_28_1 + n8_28_2 + n8_28_3 + n8_28_4 + n8_28_5 + n8_28_6 + n8_28_7 + n8_28_8 + n8_28_9 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_18_23 + n8_18_24 + n8_18_25 + n8_18_26 + n8_18_27 + n8_18_28 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_9_23 + n8_9_24 + n8_9_25 + n8_9_26 + n8_9_27 + n8_9_28 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_1_9 + n8_1_8 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_12_23 + n8_12_24 + n8_12_25 + n8_12_26 + n8_12_27 + n8_12_28 + n8_24_10 + n8_24_11 + n8_24_12 + n8_24_13 + n8_24_14 + n8_24_15 + n8_24_16 + n8_24_17 + n8_24_18 + n8_24_19 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_1_2 + n8_1_1 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_24_20 + n8_24_21 + n8_24_22 + n8_24_23 + n8_24_24 + n8_24_25 + n8_24_26 + n8_24_27 + n8_24_28 + n8_12_9 + n8_12_8 + n8_12_7 + n8_12_6 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_3_23 + n8_3_24 + n8_3_25 + n8_3_26 + n8_3_27 + n8_3_28 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_12_5 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_12_4 + n8_12_3 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_17_23 + n8_17_24 + n8_17_25 + n8_17_26 + n8_17_27 + n8_17_28 + n8_12_2 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_8_23 + n8_8_24 + n8_8_25 + n8_8_26 + n8_8_27 + n8_8_28 + n8_12_1 + n8_25_9 + n8_25_8 + n8_25_7 + n8_25_6 + n8_25_5 + n8_25_4 + n8_25_3 + n8_25_2 + n8_25_1 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_11_23 + n8_11_24 + n8_11_25 + n8_11_26 + n8_11_27 + n8_11_28 + n8_23_11 + n8_23_12 + n8_23_13 + n8_23_14 + n8_23_15 + n8_23_16 + n8_23_17 + n8_23_18 + n8_23_19 + n8_23_20 + n8_23_21 + n8_23_22 + n8_23_23 + n8_23_24 + n8_23_25 + n8_23_26 + n8_23_27 + n8_23_28 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_2_23 + n8_2_24 + n8_2_25 + n8_2_26 + n8_2_27 + n8_2_28 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_16_23 + n8_16_24 + n8_16_25 + n8_16_26 + n8_16_27 + n8_16_28 + n8_28_10 + n8_28_11 + n8_28_12 + n8_28_13 + n8_28_14 + n8_28_15 + n8_28_16 + n8_28_17 + n8_28_18 + n8_28_19 + n8_28_20 + n8_28_21 + n8_28_22 + n8_28_23 + n8_28_24 + n8_28_25 + n8_28_26 + n8_28_27 + n8_28_28 + n8_0_9 + n8_0_8 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_7_23 + n8_7_24 + n8_7_25 + n8_7_26 + n8_7_27 + n8_7_28 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_0_1 + n8_5_28 + n8_5_27 + n8_5_26 + n8_5_25 + n8_5_24 + n8_5_23 + n8_5_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_26_28 + n8_26_27 + n8_26_26 + n8_26_25 + n8_26_24 + n8_26_23 + n8_26_22 + n8_26_21 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_10_23 + n8_10_24 + n8_10_25 + n8_10_26 + n8_10_27 + n8_10_28 + n8_26_20 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_22_23 + n8_22_24 + n8_22_25 + n8_22_26 + n8_22_27 + n8_22_28 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_1_23 + n8_1_24 + n8_1_25 + n8_1_26 + n8_1_27 + n8_1_28 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_26_19 + n8_26_18 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_15_23 + n8_15_24 + n8_15_25 + n8_15_26 + n8_15_27 + n8_15_28 + n8_27_10 + n8_27_11 + n8_27_12 + n8_27_13 + n8_27_14 + n8_27_15 + n8_27_16 + n8_27_17 + n8_27_18 + n8_27_19 + n8_26_17 + n8_26_16 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_27_20 + n8_27_21 + n8_27_22 + n8_27_23 + n8_27_24 + n8_27_25 + n8_27_26 + n8_27_27 + n8_27_28 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_6_23 + n8_6_24 + n8_6_25 + n8_6_26 + n8_6_27 + n8_6_28 + n8_26_15 + n8_26_14 + n8_26_13 + n8_26_12 + n8_26_11 + n8_14_28 + n8_14_27 + n8_14_26 + n8_14_25 + n8_14_24 + n8_14_23 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_24_9 + n8_24_8 + n8_24_7 + n8_24_6 + n8_24_5 + n8_24_4 + n8_24_3 + n8_24_2 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_24_1 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_21_23 + n8_21_24 + n8_21_25 + n8_21_26 + n8_21_27 + n8_21_28 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_0_23 + n8_0_24 + n8_0_25 + n8_0_26 + n8_0_27 + n8_0_28 + n8_23_0 + n8_23_1 + n8_23_2 + n8_23_3 + n8_23_4 + n8_23_5 + n8_23_6 + n8_23_7 + n8_23_8 + n8_23_9 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9) U G ((n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9))))
lola: processed formula: A (((1 <= n8_24_0 + n8_14_10 + n8_26_10 + n8_21_0 + n8_11_0 + n8_22_10 + n8_10_10 + n8_5_10 + n8_0_0 + n8_23_10 + n8_25_0 + n8_12_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_1_0 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_28_0 + n8_4_10 + n8_3_0 + n8_27_0 + n8_19_10 + n8_2_0 + n8_13_0 + n8_26_0 + n8_20_10 + n8_20_11 + n8_20_12 + n8_20_13 + n8_20_14 + n8_20_15 + n8_20_16 + n8_20_17 + n8_20_18 + ... (shortened)
lola: processed formula length: 17581
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 613861 markings, 1171876 edges, 122772 markings/sec, 0 secs
lola: 1010868 markings, 2351191 edges, 79401 markings/sec, 5 secs
lola: 1403509 markings, 3522889 edges, 78528 markings/sec, 10 secs
lola: 1831991 markings, 4674091 edges, 85696 markings/sec, 15 secs
lola: 2207920 markings, 5839998 edges, 75186 markings/sec, 20 secs
lola: 2600124 markings, 6991940 edges, 78441 markings/sec, 25 secs
lola: 2992302 markings, 8152270 edges, 78436 markings/sec, 30 secs
lola: 3472581 markings, 9289185 edges, 96056 markings/sec, 35 secs
lola: 3865513 markings, 10437421 edges, 78586 markings/sec, 40 secs
lola: 4246485 markings, 11581427 edges, 76194 markings/sec, 45 secs
lola: 4673915 markings, 12721174 edges, 85486 markings/sec, 50 secs
lola: 5053371 markings, 13862036 edges, 75891 markings/sec, 55 secs
lola: 5450919 markings, 15001614 edges, 79510 markings/sec, 60 secs
lola: 5836970 markings, 16144198 edges, 77210 markings/sec, 65 secs
lola: 6280626 markings, 17164075 edges, 88731 markings/sec, 70 secs
lola: 6621577 markings, 18245688 edges, 68190 markings/sec, 75 secs
lola: 6982296 markings, 19308944 edges, 72144 markings/sec, 80 secs
lola: 7363540 markings, 20358398 edges, 76249 markings/sec, 85 secs
lola: 7716685 markings, 21414188 edges, 70629 markings/sec, 90 secs
lola: 8078305 markings, 22473757 edges, 72324 markings/sec, 95 secs
lola: 8435451 markings, 23541161 edges, 71429 markings/sec, 100 secs
lola: 8812780 markings, 24581784 edges, 75466 markings/sec, 105 secs
lola: 9163710 markings, 25630575 edges, 70186 markings/sec, 110 secs
lola: 9508177 markings, 26681460 edges, 68893 markings/sec, 115 secs
lola: 9861685 markings, 27739241 edges, 70702 markings/sec, 120 secs
lola: 10206127 markings, 28797523 edges, 68888 markings/sec, 125 secs
lola: 10524004 markings, 29886140 edges, 63575 markings/sec, 130 secs
lola: 10768982 markings, 31030153 edges, 48996 markings/sec, 135 secs
lola: 11017370 markings, 32167108 edges, 49678 markings/sec, 140 secs
lola: 11296093 markings, 33275961 edges, 55745 markings/sec, 145 secs
lola: 11538766 markings, 34407128 edges, 48535 markings/sec, 150 secs
lola: 11803734 markings, 35522486 edges, 52994 markings/sec, 155 secs
lola: 12073345 markings, 36643716 edges, 53922 markings/sec, 160 secs
lola: 12402807 markings, 37707667 edges, 65892 markings/sec, 165 secs
lola: 12645461 markings, 38838701 edges, 48531 markings/sec, 170 secs
lola: 12903911 markings, 39959091 edges, 51690 markings/sec, 175 secs
lola: 13156031 markings, 41090931 edges, 50424 markings/sec, 180 secs
lola: 13450027 markings, 42180994 edges, 58799 markings/sec, 185 secs
lola: 13700756 markings, 43305798 edges, 50146 markings/sec, 190 secs
lola: 13968311 markings, 44421724 edges, 53511 markings/sec, 195 secs
lola: 14229771 markings, 45551824 edges, 52292 markings/sec, 200 secs
lola: 14547487 markings, 46626446 edges, 63543 markings/sec, 205 secs
lola: 14889368 markings, 47672884 edges, 68376 markings/sec, 210 secs
lola: 15224043 markings, 48717318 edges, 66935 markings/sec, 215 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 1 will run for 221 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X ((2 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X ((2 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9))))
lola: processed formula: A (X (X ((2 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_... (shortened)
lola: processed formula length: 8687
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 2 will run for 237 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F ((X ((2 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28)) U (n1_9 + n1_8 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((X ((2 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28)) U (n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9))))
lola: processed formula: A (F ((X ((2 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28)) U (n1_9 + n1_8 + ... (shortened)
lola: processed formula length: 832
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 1 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 31 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 3 will run for 255 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F ((F ((2 <= AstopAbort)) U F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= a4)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((F ((2 <= AstopAbort)) U F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= a4)))))
lola: processed formula: A (F ((F ((2 <= AstopAbort)) U F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= a4)))))
lola: processed formula length: 265
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 1 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 31 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 4 will run for 276 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (F ((3 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((3 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9)))
lola: processed formula: A (F ((3 <= n5_10 + n5_11 + n5_12 + n5_13 + n5_14 + n5_15 + n5_16 + n5_17 + n5_18 + n5_19 + n5_20 + n5_21 + n5_22 + n5_23 + n5_24 + n5_25 + n5_26 + n5_27 + n5_28 + n5_0 + n5_1 + n5_2 + n5_3 + n5_4 + n5_5 + n5_6 + n5_7 + n5_8 + n5_9)))
lola: processed formula length: 234
lola: 1 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 1 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 31 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 5 will run for 301 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G ((F ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G ((F ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28)) U (3 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_28 + c1_27 + c1_26 + c1_25 + c1_24 + c1_23 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9))))
lola: processed formula: A (G ((F ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + ... (shortened)
lola: processed formula length: 687
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 6 will run for 331 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((a1 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (a1 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)
lola: processed formula length: 227
lola: 1 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: ========================================
lola: subprocess 7 will run for 368 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((X ((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9) U F ((1 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9)))))
lola: processed formula: A (X (((s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_28 + s2_27 + s2_26 + s2_25 + s2_24 + s2_23 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_... (shortened)
lola: processed formula length: 687
lola: 1 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 1154469 markings, 1701198 edges, 230894 markings/sec, 0 secs
lola: 2170978 markings, 3282960 edges, 203302 markings/sec, 5 secs
lola: 3146644 markings, 4840959 edges, 195133 markings/sec, 10 secs
lola: 4083027 markings, 6466016 edges, 187277 markings/sec, 15 secs
lola: 5014393 markings, 7928125 edges, 186273 markings/sec, 20 secs
lola: 5923654 markings, 9383258 edges, 181852 markings/sec, 25 secs
lola: 6812668 markings, 10887723 edges, 177803 markings/sec, 30 secs
lola: 7691252 markings, 12361375 edges, 175717 markings/sec, 35 secs
lola: 8567099 markings, 13810668 edges, 175169 markings/sec, 40 secs
lola: 9408362 markings, 15276382 edges, 168253 markings/sec, 45 secs
lola: 10239870 markings, 16758940 edges, 166302 markings/sec, 50 secs
lola: 11078793 markings, 18240057 edges, 167785 markings/sec, 55 secs
lola: 11895568 markings, 19759070 edges, 163355 markings/sec, 60 secs
lola: 12723454 markings, 21205405 edges, 165577 markings/sec, 65 secs
lola: 13568208 markings, 22537497 edges, 168951 markings/sec, 70 secs
lola: 14385737 markings, 23879505 edges, 163506 markings/sec, 75 secs
lola: 15157096 markings, 25262391 edges, 154272 markings/sec, 80 secs
lola: 16015285 markings, 26606976 edges, 171638 markings/sec, 85 secs
lola: 16837734 markings, 28007698 edges, 164490 markings/sec, 90 secs
lola: 17662960 markings, 29424400 edges, 165045 markings/sec, 95 secs
lola: 18473576 markings, 30861118 edges, 162123 markings/sec, 100 secs
lola: 19284393 markings, 32312280 edges, 162163 markings/sec, 105 secs
lola: 19951898 markings, 33566162 edges, 133501 markings/sec, 110 secs
lola: 19966354 markings, 33591691 edges, 2891 markings/sec, 115 secs
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 8 will run for 399 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X (X (F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (X (F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0))))))
lola: processed formula: A (X (X (X (F ((n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28 <= s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6... (shortened)
lola: processed formula length: 464
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 9 will run for 456 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9) U (SstopAbort <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22 + n1_23 + n1_24 + n1_25 + n1_26 + n1_27 + n1_28))))
lola: processed formula: A (F (((n3_9 + n3_8 + n3_7 + n3_6 + n3_5 + n3_4 + n3_3 + n3_2 + n3_1 + n3_0 + n3_10 + n3_11 + n3_12 + n3_13 + n3_14 + n3_15 + n3_16 + n3_17 + n3_18 + n3_19 + n3_20 + n3_21 + n3_22 + n3_23 + n3_24 + n3_25 + n3_26 + n3_27 + n3_28 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_... (shortened)
lola: processed formula length: 692
lola: 1 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 1 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 31 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 10 will run for 532 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (X (((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28) U (malicious_reser... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (X (((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28) U (malicious_reservoir <= s4_0 + s4_1 + s4_2 + s4_3 + s4_4 + s4_5 + s4_6 + s4_7 + s4_8 + s4_9 + s4_28 + s4_27 + s4_26 + s4_25 + s4_24 + s4_23 + s4_22 + s4_21 + s4_20 + s4_19 + s4_18 + s4_17 + s4_16 + s4_15 + s4_14 + s4_13 + s4_12 + s4_11 + s4_10)))))
lola: processed formula: A (F (X (((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28) U (malicious_reser... (shortened)
lola: processed formula length: 632
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 848827 markings, 1219237 edges, 169765 markings/sec, 0 secs
lola: 1598374 markings, 2362213 edges, 149909 markings/sec, 5 secs
lola: 2294188 markings, 3523032 edges, 139163 markings/sec, 10 secs
lola: 2786375 markings, 4815295 edges, 98437 markings/sec, 15 secs
lola: 3221498 markings, 6091829 edges, 87025 markings/sec, 20 secs
lola: 3642799 markings, 7365294 edges, 84260 markings/sec, 25 secs
lola: 4054556 markings, 8669561 edges, 82351 markings/sec, 30 secs
lola: 4464435 markings, 9959468 edges, 81976 markings/sec, 35 secs
lola: 4842096 markings, 11297063 edges, 75532 markings/sec, 40 secs
lola: 5198842 markings, 12675978 edges, 71349 markings/sec, 45 secs
lola: 5612381 markings, 13968711 edges, 82708 markings/sec, 50 secs
lola: 6009004 markings, 15256006 edges, 79325 markings/sec, 55 secs
lola: 6391188 markings, 16558588 edges, 76437 markings/sec, 60 secs
lola: 6722922 markings, 17944018 edges, 66347 markings/sec, 65 secs
lola: 7108874 markings, 19263639 edges, 77190 markings/sec, 70 secs
lola: 7488685 markings, 20624105 edges, 75962 markings/sec, 75 secs
lola: 7812076 markings, 22065477 edges, 64678 markings/sec, 80 secs
lola: 8385284 markings, 23313487 edges, 114642 markings/sec, 85 secs
lola: 9082196 markings, 24376186 edges, 139382 markings/sec, 90 secs
lola: 9724191 markings, 25443101 edges, 128399 markings/sec, 95 secs
lola: 10179209 markings, 26581645 edges, 91004 markings/sec, 100 secs
lola: 10577252 markings, 27745112 edges, 79609 markings/sec, 105 secs
lola: 10973572 markings, 28914036 edges, 79264 markings/sec, 110 secs
lola: 11330410 markings, 30142485 edges, 71368 markings/sec, 115 secs
lola: 11726152 markings, 31331002 edges, 79148 markings/sec, 120 secs
lola: 12084650 markings, 32557600 edges, 71700 markings/sec, 125 secs
lola: 12439056 markings, 33795273 edges, 70881 markings/sec, 130 secs
lola: 12757071 markings, 35097429 edges, 63603 markings/sec, 135 secs
lola: 13156710 markings, 36282770 edges, 79928 markings/sec, 140 secs
lola: 13515798 markings, 37556354 edges, 71818 markings/sec, 145 secs
lola: 13886626 markings, 38820383 edges, 74166 markings/sec, 150 secs
lola: 14242501 markings, 40081693 edges, 71175 markings/sec, 155 secs
lola: 14606350 markings, 41337207 edges, 72770 markings/sec, 160 secs
lola: 14945894 markings, 42632300 edges, 67909 markings/sec, 165 secs
lola: 15250291 markings, 44000653 edges, 60879 markings/sec, 170 secs
lola: 15784615 markings, 45209443 edges, 106865 markings/sec, 175 secs
lola: 16450744 markings, 46262167 edges, 133226 markings/sec, 180 secs
lola: 16981178 markings, 47381413 edges, 106087 markings/sec, 185 secs
lola: 17367137 markings, 48482637 edges, 77192 markings/sec, 190 secs
lola: 17753794 markings, 49578248 edges, 77331 markings/sec, 195 secs
lola: 18110654 markings, 50703342 edges, 71372 markings/sec, 200 secs
lola: 18461893 markings, 51855636 edges, 70248 markings/sec, 205 secs
lola: 18831805 markings, 53036059 edges, 73982 markings/sec, 210 secs
lola: 19185978 markings, 54244932 edges, 70835 markings/sec, 215 secs
lola: 19530844 markings, 55468042 edges, 68973 markings/sec, 220 secs
lola: 19888679 markings, 56701231 edges, 71567 markings/sec, 225 secs
lola: 20253223 markings, 57866692 edges, 72909 markings/sec, 230 secs
lola: 20601684 markings, 59061236 edges, 69692 markings/sec, 235 secs
lola: 20938720 markings, 60265571 edges, 67407 markings/sec, 240 secs
lola: 21277101 markings, 61500609 edges, 67676 markings/sec, 245 secs
lola: 21620774 markings, 62781209 edges, 68735 markings/sec, 250 secs
lola: 21940707 markings, 64110829 edges, 63987 markings/sec, 255 secs
lola: 22279698 markings, 65449224 edges, 67798 markings/sec, 260 secs
lola: 22826251 markings, 66590537 edges, 109311 markings/sec, 265 secs
lola: 23408180 markings, 67602565 edges, 116386 markings/sec, 270 secs
lola: 23787107 markings, 68684893 edges, 75785 markings/sec, 275 secs
lola: 24126092 markings, 69790859 edges, 67797 markings/sec, 280 secs
lola: 24475400 markings, 70928284 edges, 69862 markings/sec, 285 secs
lola: 24821327 markings, 72084509 edges, 69185 markings/sec, 290 secs
lola: 25210787 markings, 73201072 edges, 77892 markings/sec, 295 secs
lola: 25556572 markings, 74358029 edges, 69157 markings/sec, 300 secs
lola: 25908297 markings, 75566341 edges, 70345 markings/sec, 305 secs
lola: 26224110 markings, 76856832 edges, 63163 markings/sec, 310 secs
lola: 26614800 markings, 77980282 edges, 78138 markings/sec, 315 secs
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 11 will run for 574 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((3 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= n2_28 + n2_27 + n2_26 + n2_25 + n2_24 + n2_23 + n2_22 + n2_21 + n2_20 + n2_19 + n2_18 + n2_17 + n2_16 + n2_15 + n2_14 + n2_13 + n2_12 + n2_11 + n2_10 + n2_0 + n2_1 + n2_2 + n2_3 + n2_4 + n2_5 + n2_6 + n2_7 + n2_8 + n2_9)
lola: processed formula length: 226
lola: 1 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: subprocess 12 will run for 717 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ========================================
lola: ...considering subproblem: A ((G (F ((a5 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9))) U F (G ((malicious_reservoir <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((G (F ((a5 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9))) U F (G ((malicious_reservoir <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28)))))
lola: processed formula: A ((G (F ((a5 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_23 + n4_24 + n4_25 + n4_26 + n4_27 + n4_28 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9))) U F (G ((malicious_reservoir <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_... (shortened)
lola: processed formula length: 641
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 556440 markings, 2070917 edges, 111288 markings/sec, 0 secs
lola: 1070858 markings, 4045546 edges, 102884 markings/sec, 5 secs
lola: 1568374 markings, 5934450 edges, 99503 markings/sec, 10 secs
lola: 2049717 markings, 7854814 edges, 96269 markings/sec, 15 secs
lola: 2521805 markings, 9701116 edges, 94418 markings/sec, 20 secs
lola: 2984947 markings, 11590511 edges, 92628 markings/sec, 25 secs
lola: 3438588 markings, 13417960 edges, 90728 markings/sec, 30 secs
lola: 3889457 markings, 15315958 edges, 90174 markings/sec, 35 secs
lola: 4329094 markings, 17146660 edges, 87927 markings/sec, 40 secs
lola: 4750059 markings, 18948688 edges, 84193 markings/sec, 45 secs
lola: 5072489 markings, 21090959 edges, 64486 markings/sec, 50 secs
lola: 5428880 markings, 22888610 edges, 71278 markings/sec, 55 secs
lola: 5716214 markings, 24840628 edges, 57467 markings/sec, 60 secs
lola: 5991725 markings, 26958484 edges, 55102 markings/sec, 65 secs
lola: 6285942 markings, 28906080 edges, 58843 markings/sec, 70 secs
lola: 6619595 markings, 30762858 edges, 66731 markings/sec, 75 secs
lola: 6886549 markings, 32790781 edges, 53391 markings/sec, 80 secs
lola: 7134678 markings, 34844122 edges, 49626 markings/sec, 85 secs
lola: 7461121 markings, 36806622 edges, 65289 markings/sec, 90 secs
lola: 7737812 markings, 38799061 edges, 55338 markings/sec, 95 secs
lola: 8002670 markings, 40795263 edges, 52972 markings/sec, 100 secs
lola: 8271900 markings, 42883202 edges, 53846 markings/sec, 105 secs
lola: 8591178 markings, 44756052 edges, 63856 markings/sec, 110 secs
lola: 8885702 markings, 46713769 edges, 58905 markings/sec, 115 secs
lola: 9135180 markings, 48777013 edges, 49896 markings/sec, 120 secs
lola: 9367427 markings, 50866910 edges, 46449 markings/sec, 125 secs
lola: 9681895 markings, 52859744 edges, 62894 markings/sec, 130 secs
lola: 9966656 markings, 54825097 edges, 56952 markings/sec, 135 secs
lola: 10223270 markings, 56894233 edges, 51323 markings/sec, 140 secs
lola: 10464945 markings, 59037646 edges, 48335 markings/sec, 145 secs
lola: 10695561 markings, 61155194 edges, 46123 markings/sec, 150 secs
lola: 11027128 markings, 63001516 edges, 66313 markings/sec, 155 secs
lola: 11328528 markings, 64950353 edges, 60280 markings/sec, 160 secs
lola: 11589853 markings, 67005009 edges, 52265 markings/sec, 165 secs
lola: 11846242 markings, 69140773 edges, 51278 markings/sec, 170 secs
lola: 12128166 markings, 71155491 edges, 56385 markings/sec, 175 secs
lola: 12446140 markings, 73122483 edges, 63595 markings/sec, 180 secs
lola: 12711226 markings, 75205982 edges, 53017 markings/sec, 185 secs
lola: 12953309 markings, 77310766 edges, 48417 markings/sec, 190 secs
lola: 13198194 markings, 79481306 edges, 48977 markings/sec, 195 secs
lola: 13444063 markings, 81587178 edges, 49174 markings/sec, 200 secs
lola: 13772521 markings, 83586726 edges, 65692 markings/sec, 205 secs
lola: 14047821 markings, 85642763 edges, 55060 markings/sec, 210 secs
lola: 14301669 markings, 87744607 edges, 50770 markings/sec, 215 secs
lola: 14545804 markings, 89922100 edges, 48827 markings/sec, 220 secs
lola: 14774424 markings, 92081303 edges, 45724 markings/sec, 225 secs
lola: 15057119 markings, 94202077 edges, 56539 markings/sec, 230 secs
lola: 15310729 markings, 96323437 edges, 50722 markings/sec, 235 secs
lola: 15572159 markings, 98498989 edges, 52286 markings/sec, 240 secs
lola: 15803508 markings, 100750109 edges, 46270 markings/sec, 245 secs
lola: 16176721 markings, 102806049 edges, 74643 markings/sec, 250 secs
lola: 16649643 markings, 104672608 edges, 94584 markings/sec, 255 secs
lola: 17107883 markings, 106448804 edges, 91648 markings/sec, 260 secs
lola: 17550809 markings, 108235225 edges, 88585 markings/sec, 265 secs
lola: 17992651 markings, 110014719 edges, 88368 markings/sec, 270 secs
lola: 18418677 markings, 111774225 edges, 85205 markings/sec, 275 secs
lola: 18839015 markings, 113528215 edges, 84068 markings/sec, 280 secs
lola: 19248732 markings, 115251691 edges, 81943 markings/sec, 285 secs
lola: 19654172 markings, 116970069 edges, 81088 markings/sec, 290 secs
lola: 19941403 markings, 118910724 edges, 57446 markings/sec, 295 secs
lola: 20283581 markings, 120644556 edges, 68436 markings/sec, 300 secs
lola: 20548403 markings, 122546365 edges, 52964 markings/sec, 305 secs
lola: 20814072 markings, 124509132 edges, 53134 markings/sec, 310 secs
lola: 21127096 markings, 126282530 edges, 62605 markings/sec, 315 secs
lola: 21394179 markings, 128156640 edges, 53417 markings/sec, 320 secs
lola: 21640864 markings, 130157850 edges, 49337 markings/sec, 325 secs
lola: 21953808 markings, 131945815 edges, 62589 markings/sec, 330 secs
lola: 22232212 markings, 133839737 edges, 55681 markings/sec, 335 secs
lola: 22467167 markings, 135846761 edges, 46991 markings/sec, 340 secs
lola: 22699817 markings, 137798829 edges, 46530 markings/sec, 345 secs
lola: 23046545 markings, 139589492 edges, 69346 markings/sec, 350 secs
lola: 23303802 markings, 141514382 edges, 51451 markings/sec, 355 secs
lola: 23526504 markings, 143481952 edges, 44540 markings/sec, 360 secs
lola: 23846019 markings, 145354448 edges, 63903 markings/sec, 365 secs
lola: 24109694 markings, 147261454 edges, 52735 markings/sec, 370 secs
lola: 24344149 markings, 149222295 edges, 46891 markings/sec, 375 secs
lola: 24593841 markings, 151228576 edges, 49938 markings/sec, 380 secs
lola: 24872769 markings, 153113774 edges, 55786 markings/sec, 385 secs
lola: 25139254 markings, 155069086 edges, 53297 markings/sec, 390 secs
lola: 25369953 markings, 157119723 edges, 46140 markings/sec, 395 secs
lola: 25590886 markings, 159138375 edges, 44187 markings/sec, 400 secs
lola: 25913368 markings, 161072240 edges, 64496 markings/sec, 405 secs
lola: 26216298 markings, 162933780 edges, 60586 markings/sec, 410 secs
lola: 26466792 markings, 164916295 edges, 50099 markings/sec, 415 secs
lola: 26711522 markings, 166972940 edges, 48946 markings/sec, 420 secs
lola: 26990191 markings, 168895161 edges, 55734 markings/sec, 425 secs
lola: 27289908 markings, 170799671 edges, 59943 markings/sec, 430 secs
lola: 27537263 markings, 172826386 edges, 49471 markings/sec, 435 secs
lola: 27760711 markings, 174881075 edges, 44690 markings/sec, 440 secs
lola: 28032357 markings, 176897665 edges, 54329 markings/sec, 445 secs
lola: 28280902 markings, 178890822 edges, 49709 markings/sec, 450 secs
lola: 28555045 markings, 180772539 edges, 54829 markings/sec, 455 secs
lola: 28799169 markings, 182822122 edges, 48825 markings/sec, 460 secs
lola: 29030349 markings, 184858472 edges, 46236 markings/sec, 465 secs
lola: 29310062 markings, 186795207 edges, 55943 markings/sec, 470 secs
lola: 29564322 markings, 188805635 edges, 50852 markings/sec, 475 secs
lola: 29815874 markings, 190854825 edges, 50310 markings/sec, 480 secs
lola: 30051965 markings, 192957447 edges, 47218 markings/sec, 485 secs
lola: 30267653 markings, 195057299 edges, 43138 markings/sec, 490 secs
lola: 30503047 markings, 197227370 edges, 47079 markings/sec, 495 secs
lola: 30725755 markings, 199384451 edges, 44542 markings/sec, 500 secs
lola: 31170884 markings, 201201892 edges, 89026 markings/sec, 505 secs
lola: 31615144 markings, 203045966 edges, 88852 markings/sec, 510 secs
lola: 32061788 markings, 204802391 edges, 89329 markings/sec, 515 secs
lola: 32487413 markings, 206614601 edges, 85125 markings/sec, 520 secs
lola: 32909271 markings, 208320392 edges, 84372 markings/sec, 525 secs
lola: 33307551 markings, 210053242 edges, 79656 markings/sec, 530 secs
lola: 33706546 markings, 211737642 edges, 79799 markings/sec, 535 secs
lola: 33968731 markings, 213666479 edges, 52437 markings/sec, 540 secs
lola: 34265980 markings, 215400918 edges, 59450 markings/sec, 545 secs
lola: 34567334 markings, 217183935 edges, 60271 markings/sec, 550 secs
lola: 34805917 markings, 219124630 edges, 47717 markings/sec, 555 secs
lola: 35082753 markings, 220921405 edges, 55367 markings/sec, 560 secs
lola: 35388581 markings, 222690269 edges, 61166 markings/sec, 565 secs
lola: 35626871 markings, 224618383 edges, 47658 markings/sec, 570 secs
lola: 35896040 markings, 226417776 edges, 53834 markings/sec, 575 secs
lola: 36188716 markings, 228230438 edges, 58535 markings/sec, 580 secs
lola: 36416383 markings, 230170209 edges, 45533 markings/sec, 585 secs
lola: 36631081 markings, 232075366 edges, 42940 markings/sec, 590 secs
lola: 36981048 markings, 233854978 edges, 69993 markings/sec, 595 secs
lola: 37239686 markings, 235768584 edges, 51728 markings/sec, 600 secs
lola: 37460673 markings, 237725941 edges, 44197 markings/sec, 605 secs
lola: 37775821 markings, 239600703 edges, 63030 markings/sec, 610 secs
lola: 38040519 markings, 241500969 edges, 52940 markings/sec, 615 secs
lola: 38275627 markings, 243453477 edges, 47022 markings/sec, 620 secs
lola: 38520590 markings, 245442544 edges, 48993 markings/sec, 625 secs
lola: 38792121 markings, 247215288 edges, 54306 markings/sec, 630 secs
lola: 39036336 markings, 249076841 edges, 48843 markings/sec, 635 secs
lola: 39244558 markings, 251032956 edges, 41644 markings/sec, 640 secs
lola: 39442587 markings, 252945619 edges, 39606 markings/sec, 645 secs
lola: 39779867 markings, 254625165 edges, 67456 markings/sec, 650 secs
lola: 40016717 markings, 256454131 edges, 47370 markings/sec, 655 secs
lola: 40241947 markings, 258265561 edges, 45046 markings/sec, 660 secs
lola: 40544989 markings, 259993015 edges, 60608 markings/sec, 665 secs
lola: 40771266 markings, 261861237 edges, 45255 markings/sec, 670 secs
lola: 40961622 markings, 263731157 edges, 38071 markings/sec, 675 secs
lola: 41273366 markings, 265466801 edges, 62349 markings/sec, 680 secs
lola: 41510759 markings, 267300777 edges, 47479 markings/sec, 685 secs
lola: 41706219 markings, 269177816 edges, 39092 markings/sec, 690 secs
lola: 41818023 markings, 269750002 edges, 22361 markings/sec, 695 secs
lola: 41838778 markings, 269875772 edges, 4151 markings/sec, 700 secs
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 13 will run for 721 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (G ((s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0 <= AstopOK))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (G ((s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0 <= AstopOK))))
lola: processed formula: A (G (G ((s6_28 + s6_27 + s6_26 + s6_25 + s6_24 + s6_23 + s6_22 + s6_21 + s6_20 + s6_19 + s6_18 + s6_17 + s6_16 + s6_15 + s6_14 + s6_13 + s6_12 + s6_11 + s6_10 + s6_9 + s6_8 + s6_7 + s6_6 + s6_5 + s6_4 + s6_3 + s6_2 + s6_1 + s6_0 <= AstopOK))))
lola: processed formula length: 244
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 696032 markings, 1358874 edges, 139206 markings/sec, 0 secs
lola: 1109003 markings, 2668196 edges, 82594 markings/sec, 5 secs
lola: 1550974 markings, 3964176 edges, 88394 markings/sec, 10 secs
lola: 2008542 markings, 5246474 edges, 91514 markings/sec, 15 secs
lola: 2447600 markings, 6521645 edges, 87812 markings/sec, 20 secs
lola: 2869687 markings, 7794322 edges, 84417 markings/sec, 25 secs
lola: 3405811 markings, 9088433 edges, 107225 markings/sec, 30 secs
lola: 3828426 markings, 10363181 edges, 84523 markings/sec, 35 secs
lola: 4260519 markings, 11627582 edges, 86419 markings/sec, 40 secs
lola: 4731410 markings, 12904371 edges, 94178 markings/sec, 45 secs
lola: 5155592 markings, 14176877 edges, 84836 markings/sec, 50 secs
lola: 5611228 markings, 15461621 edges, 91127 markings/sec, 55 secs
lola: 6058081 markings, 16692992 edges, 89371 markings/sec, 60 secs
lola: 6494283 markings, 17834990 edges, 87240 markings/sec, 65 secs
lola: 6883530 markings, 19005210 edges, 77849 markings/sec, 70 secs
lola: 7277013 markings, 20187459 edges, 78697 markings/sec, 75 secs
lola: 7690370 markings, 21331326 edges, 82671 markings/sec, 80 secs
lola: 8085702 markings, 22498647 edges, 79066 markings/sec, 85 secs
lola: 8479742 markings, 23672455 edges, 78808 markings/sec, 90 secs
lola: 8890993 markings, 24820596 edges, 82250 markings/sec, 95 secs
lola: 9268143 markings, 25948945 edges, 75430 markings/sec, 100 secs
lola: 9628813 markings, 27051095 edges, 72134 markings/sec, 105 secs
lola: 9995790 markings, 28153368 edges, 73395 markings/sec, 110 secs
lola: 10347034 markings, 29263140 edges, 70249 markings/sec, 115 secs
lola: 10632965 markings, 30416721 edges, 57186 markings/sec, 120 secs
lola: 10886123 markings, 31574635 edges, 50632 markings/sec, 125 secs
lola: 11156244 markings, 32725258 edges, 54024 markings/sec, 130 secs
lola: 11424152 markings, 33864888 edges, 53582 markings/sec, 135 secs
lola: 11685615 markings, 35008888 edges, 52293 markings/sec, 140 secs
lola: 11942219 markings, 36157477 edges, 51321 markings/sec, 145 secs
lola: 12272934 markings, 37270840 edges, 66143 markings/sec, 150 secs
lola: 12553474 markings, 38403565 edges, 56108 markings/sec, 155 secs
lola: 12815078 markings, 39543845 edges, 52321 markings/sec, 160 secs
lola: 13070640 markings, 40689414 edges, 51112 markings/sec, 165 secs
lola: 13374224 markings, 41816269 edges, 60717 markings/sec, 170 secs
lola: 13622382 markings, 42961050 edges, 49632 markings/sec, 175 secs
lola: 13897494 markings, 44101814 edges, 55022 markings/sec, 180 secs
lola: 14159864 markings, 45249517 edges, 52474 markings/sec, 185 secs
lola: 14468667 markings, 46376284 edges, 61761 markings/sec, 190 secs
lola: 14825246 markings, 47470516 edges, 71316 markings/sec, 195 secs
lola: 15189163 markings, 48603198 edges, 72783 markings/sec, 200 secs
lola: 15470305 markings, 49780160 edges, 56228 markings/sec, 205 secs
lola: 15741195 markings, 50962035 edges, 54178 markings/sec, 210 secs
lola: 16007104 markings, 52151045 edges, 53182 markings/sec, 215 secs
lola: 16313549 markings, 53315539 edges, 61289 markings/sec, 220 secs
lola: 16576676 markings, 54497385 edges, 52625 markings/sec, 225 secs
lola: 16859053 markings, 55670606 edges, 56475 markings/sec, 230 secs
lola: 17136533 markings, 56877942 edges, 55496 markings/sec, 235 secs
lola: 17475359 markings, 58015818 edges, 67765 markings/sec, 240 secs
lola: 17787009 markings, 59157402 edges, 62330 markings/sec, 245 secs
lola: 18045615 markings, 60320213 edges, 51721 markings/sec, 250 secs
lola: 18323997 markings, 61474861 edges, 55676 markings/sec, 255 secs
lola: 18592353 markings, 62640001 edges, 53671 markings/sec, 260 secs
lola: 18915976 markings, 63783890 edges, 64725 markings/sec, 265 secs
lola: 19177413 markings, 64940734 edges, 52287 markings/sec, 270 secs
lola: 19462098 markings, 66099794 edges, 56937 markings/sec, 275 secs
lola: 19728138 markings, 67255930 edges, 53208 markings/sec, 280 secs
lola: 20005917 markings, 68419136 edges, 55556 markings/sec, 285 secs
lola: 20381508 markings, 69550073 edges, 75118 markings/sec, 290 secs
lola: 20751375 markings, 70690547 edges, 73973 markings/sec, 295 secs
lola: 21146451 markings, 71812799 edges, 79015 markings/sec, 300 secs
lola: 21532991 markings, 72947033 edges, 77308 markings/sec, 305 secs
lola: 21895731 markings, 74064849 edges, 72548 markings/sec, 310 secs
lola: 22257576 markings, 75187699 edges, 72369 markings/sec, 315 secs
lola: 22539559 markings, 76348631 edges, 56397 markings/sec, 320 secs
lola: 22804628 markings, 77513429 edges, 53014 markings/sec, 325 secs
lola: 23064884 markings, 78680757 edges, 52051 markings/sec, 330 secs
lola: 23371252 markings, 79828660 edges, 61274 markings/sec, 335 secs
lola: 23629634 markings, 80991307 edges, 51676 markings/sec, 340 secs
lola: 23909062 markings, 82148696 edges, 55886 markings/sec, 345 secs
lola: 24176689 markings, 83314435 edges, 53525 markings/sec, 350 secs
lola: 24496559 markings, 84455485 edges, 63974 markings/sec, 355 secs
lola: 24824845 markings, 85588473 edges, 65657 markings/sec, 360 secs
lola: 25082282 markings, 86744196 edges, 51487 markings/sec, 365 secs
lola: 25359391 markings, 87894934 edges, 55422 markings/sec, 370 secs
lola: 25625983 markings, 89053072 edges, 53318 markings/sec, 375 secs
lola: 25943036 markings, 90198793 edges, 63411 markings/sec, 380 secs
lola: 26211247 markings, 91349009 edges, 53642 markings/sec, 385 secs
lola: 26474765 markings, 92506881 edges, 52704 markings/sec, 390 secs
lola: 26758796 markings, 93653743 edges, 56806 markings/sec, 395 secs
lola: 27035302 markings, 94811416 edges, 55301 markings/sec, 400 secs
lola: 27362368 markings, 95957637 edges, 65413 markings/sec, 405 secs
lola: 27740607 markings, 97090175 edges, 75648 markings/sec, 410 secs
lola: 28110443 markings, 98216198 edges, 73967 markings/sec, 415 secs
lola: 28414744 markings, 99350870 edges, 60860 markings/sec, 420 secs
lola: 28672397 markings, 100504496 edges, 51531 markings/sec, 425 secs
lola: 28947890 markings, 101650208 edges, 55099 markings/sec, 430 secs
lola: 29216181 markings, 102805685 edges, 53658 markings/sec, 435 secs
lola: 29536237 markings, 103940872 edges, 64011 markings/sec, 440 secs
lola: 29795435 markings, 105087420 edges, 51840 markings/sec, 445 secs
lola: 30077593 markings, 106236676 edges, 56432 markings/sec, 450 secs
lola: 30341281 markings, 107381797 edges, 52738 markings/sec, 455 secs
lola: 30627215 markings, 108581009 edges, 57187 markings/sec, 460 secs
lola: 30987066 markings, 109772741 edges, 71970 markings/sec, 465 secs
lola: 31333930 markings, 110946457 edges, 69373 markings/sec, 470 secs
lola: 31605844 markings, 112143004 edges, 54383 markings/sec, 475 secs
lola: 31907155 markings, 113339538 edges, 60262 markings/sec, 480 secs
lola: 32190788 markings, 114541432 edges, 56727 markings/sec, 485 secs
lola: 32467840 markings, 115759350 edges, 55410 markings/sec, 490 secs
lola: 32816407 markings, 116943731 edges, 69713 markings/sec, 495 secs
lola: 33098756 markings, 118141577 edges, 56470 markings/sec, 500 secs
lola: 33379937 markings, 119358944 edges, 56236 markings/sec, 505 secs
lola: 33688031 markings, 120551927 edges, 61619 markings/sec, 510 secs
lola: 33981264 markings, 121765442 edges, 58647 markings/sec, 515 secs
lola: 34295236 markings, 123012657 edges, 62794 markings/sec, 520 secs
lola: 34809445 markings, 124287440 edges, 102842 markings/sec, 525 secs
lola: 35243714 markings, 125544581 edges, 86854 markings/sec, 530 secs
lola: 35660148 markings, 126801990 edges, 83287 markings/sec, 535 secs
lola: 36125024 markings, 128062685 edges, 92975 markings/sec, 540 secs
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 14 will run for 806 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (F ((n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F ((n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + n7_11_10 + n7_10_0 + n7_23_0 + n7_0_10 + n7_22_0 + n7_18_0 + n7_7_0 + n7_24_10 + n7_12_10 + n7_14_10 + n7_1_10 + n7_26_10 + n7_25_10 + n7_13_10 + n7_8_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_19_0 + n7_19_4 + n7_19_5 + n7_19_6 + n7_19_7 + n7_19_8 + n7_19_9 + n7_19_3 + n7_19_2 + n7_19_1 + n7_8_0 + n7_8_1 + n7_8_2 + n7_8_3 + n7_8_4 + n7_8_5 + n7_8_6 + n7_8_7 + n7_8_8 + n7_8_9 + n7_8_28 + n7_8_27 + n7_8_26 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_19_23 + n7_19_24 + n7_19_25 + n7_19_26 + n7_19_27 + n7_19_28 + n7_8_25 + n7_8_24 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_20_23 + n7_20_24 + n7_20_25 + n7_20_26 + n7_20_27 + n7_20_28 + n7_8_23 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_2_23 + n7_2_24 + n7_2_25 + n7_2_26 + n7_2_27 + n7_2_28 + n7_8_22 + n7_8_21 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_8_16 + n7_8_15 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_26_28 + n7_26_27 + n7_26_26 + n7_26_25 + n7_26_24 + n7_26_23 + n7_26_22 + n7_26_21 + n7_26_20 + n7_26_19 + n7_26_18 + n7_26_17 + n7_26_16 + n7_26_15 + n7_26_14 + n7_26_13 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_13_23 + n7_13_24 + n7_13_25 + n7_13_26 + n7_13_27 + n7_13_28 + n7_26_12 + n7_25_11 + n7_25_12 + n7_25_13 + n7_25_14 + n7_25_15 + n7_25_16 + n7_25_17 + n7_25_18 + n7_25_19 + n7_25_20 + n7_25_21 + n7_25_22 + n7_25_23 + n7_25_24 + n7_25_25 + n7_25_26 + n7_25_27 + n7_25_28 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_7_23 + n7_7_24 + n7_7_25 + n7_7_26 + n7_7_27 + n7_7_28 + n7_26_11 + n7_14_28 + n7_14_27 + n7_14_26 + n7_14_25 + n7_14_24 + n7_14_23 + n7_14_22 + n7_14_21 + n7_14_20 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_18_23 + n7_18_24 + n7_18_25 + n7_18_26 + n7_18_27 + n7_18_28 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_1_23 + n7_1_24 + n7_1_25 + n7_1_26 + n7_1_27 + n7_1_28 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_12_23 + n7_12_24 + n7_12_25 + n7_12_26 + n7_12_27 + n7_12_28 + n7_24_11 + n7_24_12 + n7_24_13 + n7_24_14 + n7_24_15 + n7_24_16 + n7_24_17 + n7_24_18 + n7_24_19 + n7_24_20 + n7_24_21 + n7_24_22 + n7_24_23 + n7_24_24 + n7_24_25 + n7_24_26 + n7_24_27 + n7_24_28 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_6_23 + n7_6_24 + n7_6_25 + n7_6_26 + n7_6_27 + n7_6_28 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_17_23 + n7_17_24 + n7_17_25 + n7_17_26 + n7_17_27 + n7_17_28 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_0_23 + n7_0_24 + n7_0_25 + n7_0_26 + n7_0_27 + n7_0_28 + n7_23_1 + n7_23_2 + n7_23_3 + n7_23_4 + n7_23_5 + n7_23_6 + n7_23_7 + n7_23_8 + n7_23_9 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_24_0 + n7_24_1 + n7_24_2 + n7_24_3 + n7_24_4 + n7_24_5 + n7_24_6 + n7_24_7 + n7_24_8 + n7_24_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_11_23 + n7_11_24 + n7_11_25 + n7_11_26 + n7_11_27 + n7_11_28 + n7_23_10 + n7_23_11 + n7_23_12 + n7_23_13 + n7_23_14 + n7_23_15 + n7_23_16 + n7_23_17 + n7_23_18 + n7_23_19 + n7_23_20 + n7_23_21 + n7_23_22 + n7_23_23 + n7_23_24 + n7_23_25 + n7_23_26 + n7_23_27 + n7_23_28 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_5_23 + n7_5_24 + n7_5_25 + n7_5_26 + n7_5_27 + n7_5_28 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_25_0 + n7_25_1 + n7_25_2 + n7_25_3 + n7_25_4 + n7_25_5 + n7_25_6 + n7_25_7 + n7_25_8 + n7_25_9 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_16_23 + n7_16_24 + n7_16_25 + n7_16_26 + n7_16_27 + n7_16_28 + n7_28_11 + n7_28_12 + n7_28_13 + n7_28_14 + n7_28_15 + n7_28_16 + n7_28_17 + n7_28_18 + n7_28_19 + n7_28_20 + n7_28_21 + n7_28_22 + n7_28_23 + n7_28_24 + n7_28_25 + n7_28_26 + n7_28_27 + n7_28_28 + n7_26_0 + n7_26_1 + n7_26_2 + n7_26_3 + n7_26_4 + n7_26_5 + n7_26_6 + n7_26_7 + n7_26_8 + n7_26_9 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_27_1 + n7_27_2 + n7_27_3 + n7_27_4 + n7_27_5 + n7_27_6 + n7_27_7 + n7_27_8 + n7_27_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_10_23 + n7_10_24 + n7_10_25 + n7_10_26 + n7_10_27 + n7_10_28 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_22_23 + n7_22_24 + n7_22_25 + n7_22_26 + n7_22_27 + n7_22_28 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_4_23 + n7_4_24 + n7_4_25 + n7_4_26 + n7_4_27 + n7_4_28 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_28_0 + n7_28_1 + n7_28_2 + n7_28_3 + n7_28_4 + n7_28_5 + n7_28_6 + n7_28_7 + n7_28_8 + n7_28_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_28 + n7_3_27 + n7_3_26 + n7_3_25 + n7_3_24 + n7_3_23 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_15_23 + n7_15_24 + n7_15_25 + n7_15_26 + n7_15_27 + n7_15_28 + n7_27_10 + n7_27_11 + n7_27_12 + n7_27_13 + n7_27_14 + n7_27_15 + n7_27_16 + n7_27_17 + n7_27_18 + n7_27_19 + n7_27_20 + n7_27_21 + n7_27_22 + n7_27_23 + n7_27_24 + n7_27_25 + n7_27_26 + n7_27_27 + n7_27_28 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_9_23 + n7_9_24 + n7_9_25 + n7_9_26 + n7_9_27 + n7_9_28 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_23 + Cstart_24 + Cstart_25 + Cstart_26 + Cstart_27 + Cstart_28 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))))
lola: processed formula: A (X (F ((n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_21_23 + n7_21_24 + n7_21_25 + n7_21_26 + n7_21_27 + n7_21_28 + n7_3_10 + n7_15_0 + n7_6_0 + n7_4_10 + n7_27_0 + n7_28_10 + n7_16_10 + n7_5_10 + ... (shortened)
lola: processed formula length: 9021
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 15 will run for 1613 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((X (X ((3 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28))) U G (X ((1 <= n9... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X (X ((3 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28))) U G (X ((1 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_19_23 + n9_19_24 + n9_19_25 + n9_19_26 + n9_19_27 + n9_19_28 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_13_10 + n9_13_11 + n9_13_12 + n9_13_13 + n9_13_14 + n9_13_15 + n9_13_16 + n9_13_17 + n9_13_18 + n9_13_19 + n9_13_20 + n9_13_21 + n9_13_22 + n9_13_23 + n9_13_24 + n9_13_25 + n9_13_26 + n9_13_27 + n9_13_28 + n9_25_10 + n9_25_11 + n9_25_12 + n9_25_13 + n9_25_14 + n9_25_15 + n9_25_16 + n9_25_17 + n9_25_18 + n9_25_19 + n9_25_20 + n9_25_21 + n9_25_22 + n9_25_23 + n9_25_24 + n9_25_25 + n9_25_26 + n9_25_27 + n9_25_28 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_1_23 + n9_1_24 + n9_1_25 + n9_1_26 + n9_1_27 + n9_1_28 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_18_23 + n9_18_24 + n9_18_25 + n9_18_26 + n9_18_27 + n9_18_28 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_6_23 + n9_6_24 + n9_6_25 + n9_6_26 + n9_6_27 + n9_6_28 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_12_23 + n9_12_24 + n9_12_25 + n9_12_26 + n9_12_27 + n9_12_28 + n9_24_10 + n9_24_11 + n9_24_12 + n9_24_13 + n9_24_14 + n9_24_15 + n9_24_16 + n9_24_17 + n9_24_18 + n9_24_19 + n9_24_20 + n9_24_21 + n9_24_22 + n9_24_23 + n9_24_24 + n9_24_25 + n9_24_26 + n9_24_27 + n9_24_28 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_0_23 + n9_0_24 + n9_0_25 + n9_0_26 + n9_0_27 + n9_0_28 + n9_23_0 + n9_23_1 + n9_23_2 + n9_23_3 + n9_23_4 + n9_23_5 + n9_23_6 + n9_23_7 + n9_23_8 + n9_23_9 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_17_23 + n9_17_24 + n9_17_25 + n9_17_26 + n9_17_27 + n9_17_28 + n9_24_0 + n9_24_1 + n9_24_2 + n9_24_3 + n9_24_4 + n9_24_5 + n9_0_0 + n9_24_6 + n9_0_1 + n9_24_7 + n9_0_2 + n9_24_8 + n9_0_3 + n9_24_9 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_5_23 + n9_5_24 + n9_5_25 + n9_5_26 + n9_5_27 + n9_5_28 + n9_25_0 + n9_25_1 + n9_25_2 + n9_25_3 + n9_25_4 + n9_25_5 + n9_1_0 + n9_25_6 + n9_1_1 + n9_25_7 + n9_1_2 + n9_25_8 + n9_1_3 + n9_25_9 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_11_23 + n9_11_24 + n9_11_25 + n9_11_26 + n9_11_27 + n9_11_28 + n9_23_10 + n9_23_11 + n9_23_12 + n9_23_13 + n9_23_14 + n9_23_15 + n9_23_16 + n9_23_17 + n9_23_18 + n9_23_19 + n9_23_20 + n9_23_21 + n9_23_22 + n9_23_23 + n9_23_24 + n9_23_25 + n9_23_26 + n9_23_27 + n9_23_28 + n9_20_28 + n9_20_27 + n9_20_26 + n9_20_25 + n9_20_24 + n9_20_23 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_26_0 + n9_26_1 + n9_26_2 + n9_26_3 + n9_26_4 + n9_26_5 + n9_2_0 + n9_26_6 + n9_2_1 + n9_26_7 + n9_2_2 + n9_26_8 + n9_2_3 + n9_26_9 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_20_13 + n9_27_0 + n9_27_1 + n9_27_2 + n9_27_3 + n9_27_4 + n9_27_5 + n9_3_0 + n9_27_6 + n9_3_1 + n9_27_7 + n9_3_2 + n9_27_8 + n9_3_3 + n9_27_9 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_20_12 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_16_23 + n9_16_24 + n9_16_25 + n9_16_26 + n9_16_27 + n9_16_28 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_28_10 + n9_28_11 + n9_28_12 + n9_28_13 + n9_28_14 + n9_28_15 + n9_28_16 + n9_28_17 + n9_28_18 + n9_28_19 + n9_28_20 + n9_28_21 + n9_28_22 + n9_28_23 + n9_28_24 + n9_28_25 + n9_28_26 + n9_28_27 + n9_28_28 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_23 + n9_4_24 + n9_4_25 + n9_4_26 + n9_4_27 + n9_4_28 + n9_28_0 + n9_28_1 + n9_28_2 + n9_28_3 + n9_28_4 + n9_28_5 + n9_4_0 + n9_28_6 + n9_4_1 + n9_28_7 + n9_4_2 + n9_28_8 + n9_4_3 + n9_28_9 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_20_11 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_7_28 + n9_7_27 + n9_7_26 + n9_7_25 + n9_7_24 + n9_7_23 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_7_12 + n9_7_11 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_9_23 + n9_9_24 + n9_9_25 + n9_9_26 + n9_9_27 + n9_9_28 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_10_23 + n9_10_24 + n9_10_25 + n9_10_26 + n9_10_27 + n9_10_28 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_22_23 + n9_22_24 + n9_22_25 + n9_22_26 + n9_22_27 + n9_22_28 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_15_23 + n9_15_24 + n9_15_25 + n9_15_26 + n9_15_27 + n9_15_28 + n9_27_10 + n9_27_11 + n9_27_12 + n9_27_13 + n9_27_14 + n9_27_15 + n9_27_16 + n9_27_17 + n9_27_18 + n9_27_19 + n9_27_20 + n9_27_21 + n9_27_22 + n9_27_23 + n9_27_24 + n9_27_25 + n9_27_26 + n9_27_27 + n9_27_28 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_3_23 + n9_3_24 + n9_3_25 + n9_3_26 + n9_3_27 + n9_3_28 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_8_23 + n9_8_24 + n9_8_25 + n9_8_26 + n9_8_27 + n9_8_28 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_21_23 + n9_21_24 + n9_21_25 + n9_21_26 + n9_21_27 + n9_21_28 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_14_23 + n9_14_24 + n9_14_25 + n9_14_26 + n9_14_27 + n9_14_28 + n9_26_10 + n9_26_11 + n9_26_12 + n9_26_13 + n9_26_14 + n9_26_15 + n9_26_16 + n9_26_17 + n9_26_18 + n9_26_19 + n9_26_20 + n9_26_21 + n9_26_22 + n9_26_23 + n9_26_24 + n9_26_25 + n9_26_26 + n9_26_27 + n9_26_28 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22 + n9_2_23 + n9_2_24 + n9_2_25 + n9_2_26 + n9_2_27 + n9_2_28)))))
lola: processed formula: A ((X (X ((3 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 + CstopOK_23 + CstopOK_24 + CstopOK_25 + CstopOK_26 + CstopOK_27 + CstopOK_28))) U G (X ((1 <= n9... (shortened)
lola: processed formula length: 9071
lola: 0 rewrites
lola: formula mentions 0 of 2998 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-28-LTLCardinality.task
lola: the resulting Büchi automaton has 10 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1784 bytes per marking, with 28 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: RESULT
lola:
SUMMARY: unknown no yes yes no no yes unknown no yes unknown no unknown unknown yes no
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-0 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-2 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-4 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-5 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-6 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-7 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-10 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-11 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-12 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-13 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-14 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-28-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
----- Kill lola and sara stdout -----
----- Finished stdout -----

BK_STOP 1496396044968

--------------------
content from stderr:

----- Start make prepare stderr -----
----- Start make result stderr -----
----- Start make result stderr -----
----- Kill lola and sara stderr -----
----- Finished stderr -----

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_QuasiCertifProtocol-PT-28"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/S_QuasiCertifProtocol-PT-28.tgz
mv S_QuasiCertifProtocol-PT-28 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool lola"
echo " Input is S_QuasiCertifProtocol-PT-28, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r138-smll-149479231800284"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;