fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r131-smll-149479223600192
Last Updated
June 27, 2017

About the Execution of MARCIE for S_QuasiCertifProtocol-COL-02

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
2228.890 4792.00 3999.00 40.80 FFFFTFTTFTFTTTFF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.............
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is S_QuasiCertifProtocol-COL-02, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r131-smll-149479223600192
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-9

=== Now, execution of the tool begins

BK_START 1494965114876

timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6

parse successfull
net created successfully

Unfolding complete |P|=86|T|=56|A|=223
Time for unfolding: 0m 2.320sec

Net: QuasiCertifProtocol_COL_02
(NrP: 86 NrTr: 56 NrArc: 223)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.003sec

net check time: 0m 0.000sec

init dd package: 0m 1.148sec


RS generation: 0m 0.006sec


-> reachability set: #nodes 900 (9.0e+02) #states 1,029 (3)



starting MCC model checker
--------------------------

checking: AF [AG [3<=AstopOK_dot]]
normalized: ~ [EG [E [true U ~ [3<=AstopOK_dot]]]]

abstracting: (3<=AstopOK_dot)
states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.011sec

checking: AF [3<=a3_dot]
normalized: ~ [EG [~ [3<=a3_dot]]]

abstracting: (3<=a3_dot)
states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: ~ [EF [AG [3<=a3_dot]]]
normalized: ~ [E [true U ~ [E [true U ~ [3<=a3_dot]]]]]

abstracting: (3<=a3_dot)
states: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: AG [AF [[3<=AstopAbort_dot | 2<=sum(n2_tsid2, n2_tsid1, n2_tsid0)]]]
normalized: ~ [E [true U EG [~ [[3<=AstopAbort_dot | 2<=sum(n2_tsid2, n2_tsid1, n2_tsid0)]]]]]

abstracting: (2<=sum(n2_tsid2, n2_tsid1, n2_tsid0))
states: 32
abstracting: (3<=AstopAbort_dot)
states: 0
......
EG iterations: 6
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.037sec

checking: EX [A [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=a5_dot U 3<=CstopAbort_dot]]
normalized: EX [[~ [EG [~ [3<=CstopAbort_dot]]] & ~ [E [~ [3<=CstopAbort_dot] U [~ [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=a5_dot] & ~ [3<=CstopAbort_dot]]]]]]

abstracting: (3<=CstopAbort_dot)
states: 0
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=a5_dot)
states: 423
abstracting: (3<=CstopAbort_dot)
states: 0
abstracting: (3<=CstopAbort_dot)
states: 0

EG iterations: 0
.-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.031sec

checking: AG [AF [sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]]
normalized: ~ [E [true U EG [~ [sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)]]]]

abstracting: (sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 1,029 (3)
.
EG iterations: 1
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.017sec

checking: [1<=sum(s5_tsid2, s5_tsid1, s5_tsid0) | ~ [[AF [2<=SstopAbort_dot] & EF [sum(n4_tsid2, n4_tsid1, n4_tsid0)<=a5_dot]]]]
normalized: [~ [[E [true U sum(n4_tsid2, n4_tsid1, n4_tsid0)<=a5_dot] & ~ [EG [~ [2<=SstopAbort_dot]]]]] | 1<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]

abstracting: (1<=sum(s5_tsid2, s5_tsid1, s5_tsid0))
states: 570
abstracting: (2<=SstopAbort_dot)
states: 0

EG iterations: 0
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=a5_dot)
states: 973
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.039sec

checking: EG [[EF [1<=sum(s3_tsid2, s3_tsid1, s3_tsid0)] | [[2<=sum(s6_tsid2, s6_tsid1, s6_tsid0) & Astart_dot<=SstopAbort_dot] | a4_dot<=a3_dot]]]
normalized: EG [[[a4_dot<=a3_dot | [2<=sum(s6_tsid2, s6_tsid1, s6_tsid0) & Astart_dot<=SstopAbort_dot]] | E [true U 1<=sum(s3_tsid2, s3_tsid1, s3_tsid0)]]]

abstracting: (1<=sum(s3_tsid2, s3_tsid1, s3_tsid0))
states: 186
abstracting: (Astart_dot<=SstopAbort_dot)
states: 1,028 (3)
abstracting: (2<=sum(s6_tsid2, s6_tsid1, s6_tsid0))
states: 102
abstracting: (a4_dot<=a3_dot)
states: 1,025 (3)

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.040sec

checking: A [[~ [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=CstopAbort_dot] & [3<=a2_dot & sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n2_tsid2, n2_tsid1, n2_tsid0)]] U AF [2<=CstopAbort_dot]]
normalized: [~ [E [EG [~ [2<=CstopAbort_dot]] U [~ [[[3<=a2_dot & sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n2_tsid2, n2_tsid1, n2_tsid0)] & ~ [sum(s4_tsid2, s4_tsid1, s4_tsid0)<=CstopAbort_dot]]] & EG [~ [2<=CstopAbort_dot]]]]] & ~ [EG [EG [~ [2<=CstopAbort_dot]]]]]

abstracting: (2<=CstopAbort_dot)
states: 0

EG iterations: 0

EG iterations: 0
abstracting: (2<=CstopAbort_dot)
states: 0

EG iterations: 0
abstracting: (sum(s4_tsid2, s4_tsid1, s4_tsid0)<=CstopAbort_dot)
states: 876
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n2_tsid2, n2_tsid1, n2_tsid0))
states: 877
abstracting: (3<=a2_dot)
states: 0
abstracting: (2<=CstopAbort_dot)
states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.036sec

checking: ~ [AF [EG [sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]]]
normalized: EG [~ [EG [sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]]]

abstracting: (sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0))
states: 1,029 (3)

EG iterations: 0
.
EG iterations: 1
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: AG [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)]
normalized: ~ [E [true U ~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)]]]

abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0))
states: 1,029 (3)
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: E [EF [1<=sum(n5_tsid2, n5_tsid1, n5_tsid0)] U [[sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0) & 1<=sum(n2_tsid2, n2_tsid1, n2_tsid0)] & ~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(s4_tsid2, s4_tsid1, s4_tsid0)]]]
normalized: E [E [true U 1<=sum(n5_tsid2, n5_tsid1, n5_tsid0)] U [~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(s4_tsid2, s4_tsid1, s4_tsid0)] & [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0) & 1<=sum(n2_tsid2, n2_tsid1, n2_tsid0)]]]

abstracting: (1<=sum(n2_tsid2, n2_tsid1, n2_tsid0))
states: 56
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n4_tsid2, n4_tsid1, n4_tsid0))
states: 399
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(s4_tsid2, s4_tsid1, s4_tsid0))
states: 937
abstracting: (1<=sum(n5_tsid2, n5_tsid1, n5_tsid0))
states: 152
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.074sec

checking: EG [[[1<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0) | a5_dot<=sum(s5_tsid2, s5_tsid1, s5_tsid0)] | ~ [[3<=SstopAbort_dot & sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(n6_tsid2, n6_tsid1, n6_tsid0)]]]]
normalized: EG [[~ [[3<=SstopAbort_dot & sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(n6_tsid2, n6_tsid1, n6_tsid0)]] | [1<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0) | a5_dot<=sum(s5_tsid2, s5_tsid1, s5_tsid0)]]]

abstracting: (a5_dot<=sum(s5_tsid2, s5_tsid1, s5_tsid0))
states: 913
abstracting: (1<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0))
states: 453
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(n6_tsid2, n6_tsid1, n6_tsid0))
states: 973
abstracting: (3<=SstopAbort_dot)
states: 0

EG iterations: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.054sec

checking: [[[~ [[sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(s4_tsid2, s4_tsid1, s4_tsid0)]] | [~ [a3_dot<=Astart_dot] | [1<=CstopAbort_dot & sum(n2_tsid2, n2_tsid1, n2_tsid0)<=a3_dot]]] | AF [3<=a2_dot]] & EG [~ [2<=a1_dot]]]
normalized: [[~ [EG [~ [3<=a2_dot]]] | [[[1<=CstopAbort_dot & sum(n2_tsid2, n2_tsid1, n2_tsid0)<=a3_dot] | ~ [a3_dot<=Astart_dot]] | ~ [[sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(s4_tsid2, s4_tsid1, s4_tsid0)]]]] & EG [~ [2<=a1_dot]]]

abstracting: (2<=a1_dot)
states: 0

EG iterations: 0
abstracting: (sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(s4_tsid2, s4_tsid1, s4_tsid0))
states: 973
abstracting: (sum(n4_tsid2, n4_tsid1, n4_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0))
states: 1,029 (3)
abstracting: (a3_dot<=Astart_dot)
states: 997
abstracting: (sum(n2_tsid2, n2_tsid1, n2_tsid0)<=a3_dot)
states: 973
abstracting: (1<=CstopAbort_dot)
states: 297
abstracting: (3<=a2_dot)
states: 0

EG iterations: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.054sec

checking: A [[~ [3<=sum(n6_tsid2, n6_tsid1, n6_tsid0)] & ~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)]] U EG [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]]
normalized: [~ [EG [~ [EG [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]]]] & ~ [E [~ [EG [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]] U [~ [EG [sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)]] & ~ [[~ [sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)] & ~ [3<=sum(n6_tsid2, n6_tsid1, n6_tsid0)]]]]]]]

abstracting: (3<=sum(n6_tsid2, n6_tsid1, n6_tsid0))
states: 486
abstracting: (sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0)<=sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0))
states: 666
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0))
states: 701
........
EG iterations: 8
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0))
states: 701
........
EG iterations: 8
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0))
states: 701
........
EG iterations: 8
.......
EG iterations: 7
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.096sec

checking: [E [[sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0) | CstopAbort_dot<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)] U ~ [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]] | [[AF [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n6_tsid2, n6_tsid1, n6_tsid0)] | ~ [[sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=a5_dot & a5_dot<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)]]] & ~ [[a5_dot<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]]]]
normalized: [[~ [[a5_dot<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0) | sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0)]] & [~ [[sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=a5_dot & a5_dot<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0)]] | ~ [EG [~ [sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n6_tsid2, n6_tsid1, n6_tsid0)]]]]] | E [[sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0) | CstopAbort_dot<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0)] U ~ [sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0)]]]

abstracting: (sum(n1_tsid2, n1_tsid1, n1_tsid0)<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0))
states: 1,029 (3)
abstracting: (CstopAbort_dot<=sum(SstopOK_tsid2, SstopOK_tsid1, SstopOK_tsid0))
states: 930
abstracting: (sum(n6_tsid2, n6_tsid1, n6_tsid0)<=sum(n9_tsid2_tsid2, n9_tsid2_tsid1, n9_tsid2_tsid0, n9_tsid1_tsid2, n9_tsid1_tsid1, n9_tsid1_tsid0, n9_tsid0_tsid2, n9_tsid0_tsid1, n9_tsid0_tsid0))
states: 641
abstracting: (sum(n5_tsid2, n5_tsid1, n5_tsid0)<=sum(n6_tsid2, n6_tsid1, n6_tsid0))
states: 973
......
EG iterations: 6
abstracting: (a5_dot<=sum(Sstart_tsid2, Sstart_tsid1, Sstart_tsid0))
states: 710
abstracting: (sum(CstopOK_tsid2, CstopOK_tsid1, CstopOK_tsid0)<=a5_dot)
states: 990
abstracting: (sum(n8_tsid2_tsid2, n8_tsid2_tsid1, n8_tsid2_tsid0, n8_tsid1_tsid2, n8_tsid1_tsid1, n8_tsid1_tsid0, n8_tsid0_tsid2, n8_tsid0_tsid1, n8_tsid0_tsid0)<=sum(n5_tsid2, n5_tsid1, n5_tsid0))
states: 576
abstracting: (a5_dot<=sum(Cstart_tsid2, Cstart_tsid1, Cstart_tsid0))
states: 851
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.148sec

totally nodes used: 157830(1.6e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 56261 148625 204886
used/not used/entry size/cache size: 141216 66967648 16 1024MB
basic ops cache: hits/miss/sum: 59307 220388 279695
used/not used/entry size/cache size: 484905 16292311 12 192MB
unary ops cache: hits/miss/sum: 0 28 28
used/not used/entry size/cache size: 28 8388580 8 64MB
abstract ops cache: hits/miss/sum: 0 64985 64985
used/not used/entry size/cache size: 25 8388583 12 96MB
state nr cache: hits/miss/sum: 1815 4242 6057
used/not used/entry size/cache size: 4234 2092918 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66951202
1 157494
2 168
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0

Total processing time: 0m 4.758sec


BK_STOP 1494965119668

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.001sec


iterations count:899 (16), effective:56 (1)

initing FirstDep: 0m 0.000sec


iterations count:56 (1), effective:0 (0)

iterations count:56 (1), effective:0 (0)

iterations count:71 (1), effective:5 (0)

iterations count:173 (3), effective:18 (0)

iterations count:98 (1), effective:4 (0)

iterations count:116 (2), effective:12 (0)

iterations count:56 (1), effective:0 (0)

iterations count:122 (2), effective:11 (0)

iterations count:56 (1), effective:0 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_QuasiCertifProtocol-COL-02"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/S_QuasiCertifProtocol-COL-02.tgz
mv S_QuasiCertifProtocol-COL-02 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is S_QuasiCertifProtocol-COL-02, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r131-smll-149479223600192"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;