fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r121-smll-149441672100052
Last Updated
June 27, 2017

About the Execution of MARCIE for S_Peterson-PT-2

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
2240.920 3600000.00 3599990.00 39.60 FTTTFTFTF?TFFTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
............
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is S_Peterson-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r121-smll-149441672100052
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-0
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-1
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-10
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-11
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-12
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-13
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-14
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-15
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-2
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-3
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-4
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-5
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-6
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-7
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-8
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1494733436116

timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6

parse successfull
net created successfully

Net: Peterson_PT_2
(NrP: 102 NrTr: 126 NrArc: 384)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.009sec

net check time: 0m 0.000sec

init dd package: 0m 1.274sec


RS generation: 0m 0.108sec


-> reachability set: #nodes 1459 (1.5e+03) #states 20,754 (4)



starting MCC model checker
--------------------------

checking: EF [3<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]
normalized: E [true U 3<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]

abstracting: (3<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 0
-> the formula is FALSE

FORMULA Peterson-COL-2-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.018sec

checking: AG [~ [3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]
normalized: ~ [E [true U 3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]

abstracting: (3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 0
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.016sec

checking: AG [2<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]
normalized: ~ [E [true U ~ [2<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]

abstracting: (2<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.017sec

checking: AG [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]
normalized: ~ [E [true U ~ [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]

abstracting: (sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 20,295 (4)
-> the formula is FALSE

FORMULA Peterson-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.282sec

checking: EF [[3<=sum(CS_2, CS_1, CS_0) & ~ [~ [sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]]]]
normalized: E [true U [3<=sum(CS_2, CS_1, CS_0) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]]

abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,742 (4)
abstracting: (3<=sum(CS_2, CS_1, CS_0))
states: 0
-> the formula is FALSE

FORMULA Peterson-COL-2-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.044sec

checking: EF [~ [sum(CS_2, CS_1, CS_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]
normalized: E [true U ~ [sum(CS_2, CS_1, CS_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]

abstracting: (sum(CS_2, CS_1, CS_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0))
states: 20,427 (4)
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 1.034sec

checking: AG [[~ [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0) | 3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]] | ~ [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]
normalized: ~ [E [true U ~ [[~ [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] | ~ [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0) | 3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]]]]

abstracting: (3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 66
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0))
states: 0
abstracting: (sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 1,239 (3)
-> the formula is FALSE

FORMULA Peterson-COL-2-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.404sec

checking: AG [[~ [[sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0) & sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]] | 1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]
normalized: ~ [E [true U ~ [[1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) | ~ [[sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0) & sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]]]

abstracting: (sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 378
abstracting: (sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 20,754 (4)
abstracting: (1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 4,824 (3)
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.045sec

checking: EF [[[[3<=sum(Idle_1, Idle_2, Idle_0) & sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0)] | [3<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]] & [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & 2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)] | [2<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]]]
normalized: E [true U [[[2<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)] | [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & 2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]] & [[3<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | [3<=sum(Idle_1, Idle_2, Idle_0) & sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0)]]]]

abstracting: (sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0))
states: 20,754 (4)
abstracting: (3<=sum(Idle_1, Idle_2, Idle_0))
states: 3
abstracting: (1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,754 (4)
abstracting: (3<=sum(Idle_1, Idle_2, Idle_0))
states: 3
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 75
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 0
abstracting: (3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 0
abstracting: (2<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 378
-> the formula is FALSE

FORMULA Peterson-COL-2-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.091sec

checking: AG [~ [[3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & [3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & 1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]]
normalized: ~ [E [true U [3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & [3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & 1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]]

abstracting: (1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 8,022 (3)
abstracting: (3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 194
abstracting: (3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0))
states: 194
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.354sec

checking: EF [[[~ [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] & sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(CS_2, CS_1, CS_0)] & [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & ~ [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]
normalized: E [true U [[sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(CS_2, CS_1, CS_0) & ~ [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]] & [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & ~ [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]

abstracting: (sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 20,295 (4)
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 75
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 194
abstracting: (sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(CS_2, CS_1, CS_0))
states: 13,392 (4)
-> the formula is FALSE

FORMULA Peterson-COL-2-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m15.749sec

checking: EF [[[1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & [sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]] & [~ [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & 3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]]]
normalized: E [true U [[~ [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & 3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)] & [[sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] & 1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]]

abstracting: (1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0))
states: 10,596 (4)
abstracting: (1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,754 (4)
abstracting: (sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Idle_1, Idle_2, Idle_0))
states: 15,198 (4)
abstracting: (3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0))
states: 21
abstracting: (sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
-> the formula is FALSE

FORMULA Peterson-COL-2-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m14.176sec

checking: AG [[[~ [3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & ~ [1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]] | [[1<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & [sum(CS_2, CS_1, CS_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]]]
normalized: ~ [E [true U ~ [[[~ [1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] & ~ [3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]] | [[sum(CS_2, CS_1, CS_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)] & [1<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]]]]

abstracting: (sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
abstracting: (1<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 10,596 (4)
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 16,254 (4)
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,754 (4)
abstracting: (3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
abstracting: (1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 8,022 (3)
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.293sec

checking: AG [[[2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] & [sum(CS_2, CS_1, CS_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | [sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]]
normalized: ~ [E [true U ~ [[[sum(CS_2, CS_1, CS_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | [sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]] & [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]]]]]

abstracting: (sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 20,754 (4)
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 75
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
abstracting: (sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 18,636 (4)
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.061sec

checking: AG [[[[sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0)] | [~ [sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | [2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]]]]
normalized: ~ [E [true U ~ [[[[2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] | ~ [sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]] | [sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0) | [sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]]]]]]

abstracting: (sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,733 (4)
abstracting: (sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0))
states: 14,760 (4)
abstracting: (sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0))
states: 10,347 (4)
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,742 (4)
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 17,758 (4)
abstracting: (2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0))
states: 645
-> the formula is TRUE

FORMULA Peterson-COL-2-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 18m16.689sec

checking: EF [[[~ [sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] & [1<=sum(Idle_1, Idle_2, Idle_0) & 2<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]] & [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]]]
normalized: E [true U [[sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]] & [[1<=sum(Idle_1, Idle_2, Idle_0) & 2<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIden
BK_TIME_CONFINEMENT_REACHED

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:10912 (86), effective:662 (5)

initing FirstDep: 0m 0.000sec


iterations count:8085 (64), effective:393 (3)

iterations count:7845 (62), effective:388 (3)

iterations count:6309 (50), effective:295 (2)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_Peterson-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/S_Peterson-PT-2.tgz
mv S_Peterson-PT-2 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is S_Peterson-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r121-smll-149441672100052"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;