fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r118-blw7-149441650100293
Last Updated
June 27, 2017

About the Execution of LoLA for S_NeoElection-PT-8

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
14399.370 2425532.00 2432005.00 267.50 TTF?TF?FTTTT?F?T normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
......
=====================================================================
Generated by BenchKit 2-3254
Executing tool lola
Input is S_NeoElection-PT-8, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r118-blw7-149441650100293
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-8-LTLCardinality-0
FORMULA_NAME NeoElection-COL-8-LTLCardinality-1
FORMULA_NAME NeoElection-COL-8-LTLCardinality-10
FORMULA_NAME NeoElection-COL-8-LTLCardinality-11
FORMULA_NAME NeoElection-COL-8-LTLCardinality-12
FORMULA_NAME NeoElection-COL-8-LTLCardinality-13
FORMULA_NAME NeoElection-COL-8-LTLCardinality-14
FORMULA_NAME NeoElection-COL-8-LTLCardinality-15
FORMULA_NAME NeoElection-COL-8-LTLCardinality-2
FORMULA_NAME NeoElection-COL-8-LTLCardinality-3
FORMULA_NAME NeoElection-COL-8-LTLCardinality-4
FORMULA_NAME NeoElection-COL-8-LTLCardinality-5
FORMULA_NAME NeoElection-COL-8-LTLCardinality-6
FORMULA_NAME NeoElection-COL-8-LTLCardinality-7
FORMULA_NAME NeoElection-COL-8-LTLCardinality-8
FORMULA_NAME NeoElection-COL-8-LTLCardinality-9

=== Now, execution of the tool begins

BK_START 1496373412708


Time: 3600 - MCC
----- Start make prepare stdout -----
===========================================================================================
S_NeoElection-PT-8: translating PT Petri net model.pnml into LoLA format
===========================================================================================
translating PT Petri net complete


checking for too many tokens
===========================================================================================
S_NeoElection-PT-8: translating PT formula LTLCardinality into LoLA format
===========================================================================================
translating formula complete
touch formulae;
----- Start make result stdout -----
LTLCardinality @ S_NeoElection-PT-8 @ 3539 seconds
----- Start make result stdout -----
lola: LoLA will run for 3539 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 32328/65536 symbol table entries, 8032 collisions
lola: preprocessing...
lola: finding significant places
lola: 10062 places, 22266 transitions, 2295 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 5067 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-8-LTLCardinality.task
lola: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 <= P-stage_2_SEC + P-stage_3_NEG + P-stage_1_SEC + P-stage_5_SEC + P-stage_4_PRIM + P-stage_6_SEC + P-stage_3_SEC + P-stage_0_SEC + P-stage_7_PRIM + P-stage_8_SEC + P-stage_1_NEG + P-stage_2_PRIM + P-stage_6_NEG + P-stage_4_NEG + P-stage_5_PRIM + P-stage_7_NEG + P-stage_0_PRIM + P-stage_8_PRIM + P-stage_2_NEG + P-stage_3_PRIM + P-stage_4_SEC + P-stage_5_NEG + P-stage_7_SEC + P-stage_6_PRIM + P-stage_8_NEG + P-stage_0_NEG + P-stage_1_PRIM) U X (F ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8))))) : A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)))))) : A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8)))))) : A ((3 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8)) : A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_8_1_AI_0 + P-network_7_6_AskP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_0 + P-network_4_5_AskP_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_4_5_RP_0 + P-network_8_2_AskP_0 + P-network_7_8_AnnP_0 + P-network_2_7_RI_0 + P-network_2_4_AI_0 + P-network_1_1_AskP_0 + P-network_7_2_RP_0 + P-network_0_7_AnnP_0 + P-network_7_5_AnsP_8 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_0_8_RI_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_0_5_AI_0 + P-network_7_8_AI_0 + P-network_5_3_RP_0 + P-network_3_6_AskP_0 + P-network_8_4_AnsP_0 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_8 + P-network_1_6_AnnP_0 + P-network_8_4_AnnP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_6_4_RP_0 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_1_5_RP_0 + P-network_8_8_RP_0 + P-network_2_0_AskP_0 + P-network_4_2_AskP_0 + P-network_3_8_AnnP_0 + P-network_1_6_AI_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_8_7_AnnP_0 + P-network_3_5_AnsP_0 + P-network_6_7_AskP_0 + P-network_0_0_RI_0 + P-network_7_3_RI_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_4_AnnP_0 + P-network_1_0_RP_0 + P-network_5_4_RI_0 + P-network_4_1_AnsP_8 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_5_1_AI_0 + P-network_7_3_AskP_0 + P-network_3_5_AI_0 + P-network_3_5_RI_0 + P-network_0_7_AnsP_0 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_8 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_6_6_AnsP_8 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_0 + P-network_8_0_RP_0 + P-network_5_0_AnnP_0 + P-network_1_6_RI_0 + P-network_1_3_AI_0 + P-network_8_6_AI_0 + P-network_3_8_RI_0 + P-network_2_7_AskP_0 + P-network_6_1_RP_0 + P-network_7_5_AnnP_0 + P-network_6_2_AnnP_0 + P-network_6_7_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_8_AnsP_0 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_8 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_1_4_AskP_0 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_8_AI_0 + P-network_5_4_AI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_8_1_AnnP_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_5_7_RI_0 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_0_4_RP_0 + P-network_7_7_RP_0 + P-network_1_0_AnnP_0 + P-network_5_8_AskP_0 + P-network_8_5_AskP_0 + P-network_5_8_RP_0 + P-network_8_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_8 + P-network_3_5_AnnP_0 + P-network_7_3_AI_0 + P-network_6_2_RI_0 + P-network_3_2_AnsP_8 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_4 + P-network_0_0_AI_0 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_6_4_AskP_0 + P-network_7_6_RI_0 + P-network_0_3_RI_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_2_1_AI_0 + P-network_1_8_AskP_0 + P-network_7_0_AskP_0 + P-network_6_6_AnnP_0 + P-network_0_5_RI_0 + P-network_7_8_RI_0 + P-network_0_2_AI_0 + P-network_7_5_AI_0 + P-network_6_3_AnsP_8 + P-network_5_6_AnnP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_6_0_AskP_0 + P-network_5_0_RP_0 + P-network_5_6_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_0_8_AskP_0 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_7_2_AnnP_0 + P-network_3_7_AI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_2_2_RI_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_1_2_RP_0 + P-network_8_5_RP_0 + P-network_0_1_AnnP_0 + P-network_1_8_AI_0 + P-network_6_6_RP_0 + P-network_3_0_AskP_0 + P-network_2_6_AnnP_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_4_7_RP_0 + P-network_7_0_RI_0 + P-network_3_1_AnnP_0 + P-network_5_5_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_2_8_RP_0 + P-network_5_1_RI_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_1_RI_0 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_1_8_RP_0 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_4_8_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_6_1_AskP_0 + P-network_5_7_AnnP_0 + P-network_1_3_RI_0 + P-network_8_6_RI_0 + P-network_1_0_AI_0 + P-network_8_3_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_8_6_AskP_0 + P-network_6_7_RI_0 + P-network_5_4_AskP_0 + P-network_6_4_AI_0 + P-network_1_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_4_8_RI_0 + P-network_0_8_AnsP_8 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_4 + P-network_6_0_RI_0 + P-network_0_8_AnsP_3 + P-network_3_7_RP_0 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_0 + P-network_4_5_AI_0 + P-network_6_0_AnsP_8 + P-network_6_0_AnsP_7 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_0 + P-network_2_0_RP_0 + P-network_8_8_AnnP_0 + P-network_2_6_AI_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_7_4_RP_0 + P-network_1_7_AnnP_0 + P-network_8_5_AnsP_8 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_0 + P-network_0_7_AI_0 + P-network_2_5_AnnP_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_5_RP_0 + P-network_5_6_RP_0 + P-network_4_6_AskP_0 + P-network_3_6_RP_0 + P-network_2_3_AnnP_0 + P-network_0_8_AI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_7_RP_0 + P-network_4_0_RI_0 + P-network_5_2_AskP_0 + P-network_4_8_AnnP_0 + P-network_4_8_AskP_0 + P-network_0_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_7_5_RP_0 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_7_7_AskP_0 + P-network_0_2_RI_0 + P-network_7_5_RI_0 + P-network_0_2_RP_0 + P-network_0_6_AskP_0 + P-network_7_2_AI_0 + P-network_1_6_AnsP_0 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_8 + P-network_5_4_AnnP_0 + P-network_5_6_RI_0 + P-network_5_3_AI_0 + P-network_5_1_AnsP_8 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_5 + P-network_2_7_AI_0 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_0 + P-network_8_3_AskP_0 + P-network_3_7_RI_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_8_2_RP_0 + P-network_0_8_AnnP_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_1_AnnP_0 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_8_7_AnsP_0 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_8 + P-network_6_0_AnnP_0 + P-network_1_8_RI_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_1_5_AI_0 + P-network_8_8_AI_0 + P-network_6_3_RP_0 + P-network_3_7_AskP_0 + P-network_2_1_RP_0 + P-network_8_5_AnnP_0 + P-network_2_3_AskP_0 + P-network_4_4_RP_0 + P-network_4_6_AI_0 + P-network_1_4_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_4_0_RP_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_6_2_AnsP_0 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_8 + P-network_1_1_AnsP_0 + P-network_2_5_RP_0 + P-network_6_5_AI_0 + P-network_4_3_AskP_0 + P-network_0_6_RP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_2_0_AnnP_0 + P-network_6_8_RI_0 + P-network_6_8_AskP_0 + P-network_1_0_RI_0 + P-network_8_3_RI_0 + P-network_6_5_AnnP_0 + P-network_8_0_AI_0 + P-network_4_5_AnnP_0 + P-network_6_4_RI_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_1_7_AskP_0 + P-network_4_2_AnsP_0 + P-network_6_1_AI_0 + P-network_7_4_AskP_0 + P-network_4_5_RI_0 + P-network_8_4_AI_0 + P-network_0_3_AskP_0 + P-network_1_1_AI_0 + P-network_4_2_AI_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_5_1_AnnP_0 + P-network_8_7_RI_0 + P-network_1_4_RI_0 + P-network_2_6_RI_0 + P-network_2_3_AI_0 + P-network_2_8_AskP_0 + P-network_7_1_RP_0 + P-network_8_0_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RI_0 + P-network_0_4_AI_0 + P-network_8_8_AskP_0 + P-network_7_7_AI_0 + P-network_5_2_RP_0 + P-network_0_5_AnnP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_4_0_AnnP_0 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_5_8_AI_0 + P-network_3_0_AI_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_8_2_AnnP_0 + P-network_2_7_AnsP_8 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_0 + P-network_1_4_RP_0 + P-network_8_7_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_RI_0 + P-network_6_8_RP_0 + P-network_4_0_AskP_0 + P-network_3_6_AnnP_0 + P-network_7_2_RI_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_6_5_AskP_0 + P-network_6_3_AskP_0 + P-network_5_3_RI_0 + P-network_5_0_AI_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_8 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_7_1_AskP_0 + P-network_6_7_AnnP_0 + P-network_1_5_RI_0 + P-network_8_8_RI_0 + P-network_5_2_RI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_8_5_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_6_0_RP_0 + P-network_6_6_AI_0 + P-network_3_4_AnnP_0 + P-network_2_5_AskP_0 + P-network_4_1_RP_0 + P-network_7_3_AnnP_0 + P-network_4_7_AI_0 + P-network_7_1_RI_0 + P-network_1_8_AnsP_8 + P-network_4_8_RP_0 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_7_0_AnsP_8 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_0 + P-network_2_8_AI_0 + P-network_0_3_RP_0 + P-network_7_6_RP_0 + P-network_3_1_AskP_0 + P-network_2_7_AnnP_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_5_7_RP_0 + P-network_8_0_RI_0 + P-network_5_6_AskP_0 + P-network_3_8_RP_0 + P-network_5_7_AskP_0 + P-network_6_1_RI_0 + P-network_6_7_RP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_2_5_AnsP_0 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_8 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_6_2_AskP_0 + P-network_5_8_AnnP_0 + P-network_8_0_AnnP_0 + P-network_2_8_AnnP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_8_7_AskP_0 + P-network_0_4_RI_0 + P-network_7_7_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_7_4_AI_0 + P-network_8_6_RP_0 + P-network_1_6_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_8_RI_0 + P-network_1_3_RP_0 + P-network_5_5_AI_0 + P-network_6_1_AnsP_8 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_6 + P-network_3_8_AI_0 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_0 + P-network_3_0_RP_0 + P-network_3_6_AI_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_8 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_8_4_RP_0 + P-network_1_8_AnnP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_7_0_AnnP_0 + P-network_7_1_AnsP_0 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_8 + P-network_0_3_AnnP_0 + P-network_1_7_AI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_5_RP_0 + P-network_4_7_AskP_0 + P-network_3_2_RP_0 + P-network_5_7_AI_0 + P-network_4_6_RP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_2_7_RP_0 + P-network_5_0_RI_0 + P-network_5_3_AskP_0 + P-network_7_4_AnnP_0 + P-network_0_8_RP_0 + P-network_3_1_RI_0 + P-network_4_6_AnsP_8 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_3 + P-network_5_1_RP_0 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_0 + P-network_3_0_AnnP_0 + P-network_7_8_AskP_0 + P-network_1_2_RI_0 + P-network_8_5_RI_0 + P-network_0_7_AskP_0 + P-network_8_2_AI_0 + P-network_2_6_AskP_0 + P-network_5_5_AnnP_0 + P-network_7_6_AI_0 + P-network_6_6_RI_0 + P-network_6_3_AI_0 + P-network_0_3_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_8_4_AskP_0 + P-network_4_7_RI_0 + P-network_0_6_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_6_1_AnnP_0 + P-network_2_8_RI_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_7_0_RP_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_2_5_AI_0 + P-network_6_5_AnsP_0 + P-network_0_0_RP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_8 + P-network_7_3_RP_0 + P-network_3_8_AskP_0 + P-network_2_2_AI_0 + P-network_8_6_AnnP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_5_4_RP_0 + P-network_1_5_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_2_5_RI_0 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_3_5_RP_0 + P-network_4_4_AskP_0 + P-network_6_8_AnnP_0 + P-network_1_6_RP_0 + P-network_3_7_AnsP_8 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_3 + P-network_7_2_AskP_0 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_4_1_AI_0 + P-network_5_0_AskP_0 + P-network_4_6_AnnP_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_8 + P-network_0_1_RI_0 + P-network_7_4_RI_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_7_1_AI_0 + P-network_7_5_AskP_0 + P-network_4_4_RI_0 + P-network_5_5_RI_0 + P-network_0_4_AskP_0 + P-network_5_2_AI_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_5_2_AnnP_0 + P-network_3_6_RI_0 + P-network_3_3_AI_0 + P-network_4_3_AnnP_0 + P-network_6_0_AI_0 + P-network_8_1_RP_0 + P-network_8_1_AskP_0 + P-network_7_7_AnnP_0 + P-network_1_7_RI_0 + P-network_6_3_RI_0 + P-network_1_4_AI_0 + P-network_8_7_AI_0 + P-network_1_0_AskP_0 + P-network_6_2_RP_0 + P-network_0_6_AnnP_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_0_3_AnsP_8 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_0 + P-network_6_8_AI_0 + P-network_4_3_RP_0 + P-network_3_5_AskP_0 + P-network_8_3_AnnP_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_6_6_AskP_0 + P-network_2_8_AnsP_4 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_2_4_RP_0 + P-network_1_2_AnnP_0 + P-network_8_0_AnsP_8 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_8 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_0 + P-network_8_2_RI_0 + P-network_0_5_RP_0 + P-network_7_8_RP_0 + P-network_4_1_AskP_0 + P-network_3_7_AnnP_0 + P-network_3_7_AnnP_1 + P-network_3_7_AnnP_2 + P-network_3_7_AnnP_3 + P-network_3_7_AnnP_4 + P-network_3_7_AnnP_5 + P-network_3_7_AnnP_6 + P-network_3_7_AnnP_7 + P-network_3_7_AnnP_8 + P-network_4_1_AskP_1 + P-network_4_1_AskP_2 + P-network_4_1_AskP_3 + P-network_4_1_AskP_4 + P-network_4_1_AskP_5 + P-network_4_1_AskP_6 + P-network_4_1_AskP_7 + P-network_4_1_AskP_8 + P-network_8_2_RI_8 + P-network_8_2_RI_7 + P-network_8_2_RI_6 + P-network_8_2_RI_5 + P-network_8_2_RI_4 + P-network_7_8_RP_1 + P-network_7_8_RP_2 + P-network_7_8_RP_3 + P-network_7_8_RP_4 + P-network_7_8_RP_5 + P-network_7_8_RP_6 + P-network_7_8_RP_7 + P-network_7_8_RP_8 + P-network_8_2_RI_3 + P-network_0_5_RP_1 + P-network_0_5_RP_2 + P-network_0_5_RP_3 + P-network_0_5_RP_4 + P-network_0_5_RP_5 + P-network_0_5_RP_6 + P-network_0_5_RP_7 + P-network_0_5_RP_8 + P-network_8_2_RI_2 + P-network_8_2_RI_1 + P-network_6_6_AskP_8 + P-network_6_6_AskP_7 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_7 + P-network_1_2_AnnP_8 + P-network_6_6_AskP_6 + P-network_2_4_RP_1 + P-network_2_4_RP_2 + P-network_2_4_RP_3 + P-network_2_4_RP_4 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_7 + P-network_2_4_RP_8 + P-network_6_6_AskP_5 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_8_3_AnnP_1 + P-network_8_3_AnnP_2 + P-network_8_3_AnnP_3 + P-network_8_3_AnnP_4 + P-network_8_3_AnnP_5 + P-network_8_3_AnnP_6 + P-network_8_3_AnnP_7 + P-network_8_3_AnnP_8 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_3_5_AskP_7 + P-network_3_5_AskP_8 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_4_3_RP_7 + P-network_4_3_RP_8 + P-network_6_8_AI_1 + P-network_6_8_AI_2 + P-network_6_8_AI_3 + P-network_6_8_AI_4 + P-network_6_8_AI_5 + P-network_6_8_AI_6 + P-network_6_8_AI_7 + P-network_6_8_AI_8 + P-network_6_3_RI_8 + P-network_6_3_RI_7 + P-network_6_3_RI_6 + P-network_0_6_AnnP_1 + P-network_0_6_AnnP_2 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_6 + P-network_0_6_AnnP_7 + P-network_0_6_AnnP_8 + P-network_6_3_RI_5 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_6_2_RP_7 + P-network_6_2_RP_8 + P-network_6_3_RI_4 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_0_AskP_7 + P-network_1_0_AskP_8 + P-network_6_3_RI_3 + P-network_8_7_AI_1 + P-network_8_7_AI_2 + P-network_8_7_AI_3 + P-network_8_7_AI_4 + P-network_8_7_AI_5 + P-network_8_7_AI_6 + P-network_8_7_AI_7 + P-network_8_7_AI_8 + P-network_6_3_RI_2 + P-network_6_3_RI_1 + P-network_1_4_AI_1 + P-network_1_4_AI_2 + P-network_1_4_AI_3 + P-network_1_4_AI_4 + P-network_1_4_AI_5 + P-network_1_4_AI_6 + P-network_1_4_AI_7 + P-network_1_4_AI_8 + P-network_1_7_RI_1 + P-network_1_7_RI_2 + P-network_1_7_RI_3 + P-network_1_7_RI_4 + P-network_1_7_RI_5 + P-network_1_7_RI_6 + P-network_1_7_RI_7 + P-network_1_7_RI_8 + P-network_7_7_AnnP_1 + P-network_7_7_AnnP_2 + P-network_7_7_AnnP_3 + P-network_7_7_AnnP_4 + P-network_7_7_AnnP_5 + P-network_7_7_AnnP_6 + P-network_7_7_AnnP_7 + P-network_7_7_AnnP_8 + P-network_6_0_AI_8 + P-network_6_0_AI_7 + P-network_8_1_AskP_1 + P-network_8_1_AskP_2 + P-network_8_1_AskP_3 + P-network_8_1_AskP_4 + P-network_8_1_AskP_5 + P-network_8_1_AskP_6 + P-network_8_1_AskP_7 + P-network_8_1_AskP_8 + P-network_6_0_AI_6 + P-network_8_1_RP_1 + P-network_8_1_RP_2 + P-network_8_1_RP_3 + P-network_8_1_RP_4 + P-network_8_1_RP_5 + P-network_8_1_RP_6 + P-network_8_1_RP_7 + P-network_8_1_RP_8 + P-network_6_0_AI_5 + P-network_6_0_AI_4 + P-network_6_0_AI_3 + P-network_6_0_AI_2 + P-network_6_0_AI_1 + P-network_4_3_AnnP_8 + P-network_4_3_AnnP_7 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_3_3_AI_1 + P-network_3_3_AI_2 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_5 + P-network_3_3_AI_6 + P-network_3_3_AI_7 + P-network_3_3_AI_8 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_3_6_RI_7 + P-network_3_6_RI_8 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AnnP_7 + P-network_5_2_AnnP_8 + P-network_5_2_AI_1 + P-network_5_2_AI_2 + P-network_5_2_AI_3 + P-network_5_2_AI_4 + P-network_5_2_AI_5 + P-network_5_2_AI_6 + P-network_5_2_AI_7 + P-network_5_2_AI_8 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_0_4_AskP_7 + P-network_0_4_AskP_8 + P-network_4_4_RI_8 + P-network_4_4_RI_7 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_5_5_RI_7 + P-network_5_5_RI_8 + P-network_4_4_RI_1 + P-network_7_5_AskP_1 + P-network_7_5_AskP_2 + P-network_7_5_AskP_3 + P-network_7_5_AskP_4 + P-network_7_5_AskP_5 + P-network_7_5_AskP_6 + P-network_7_5_AskP_7 + P-network_7_5_AskP_8 + P-network_7_1_AI_1 + P-network_7_1_AI_2 + P-network_7_1_AI_3 + P-network_7_1_AI_4 + P-network_7_1_AI_5 + P-network_7_1_AI_6 + P-network_7_1_AI_7 + P-network_7_1_AI_8 + P-network_7_4_RI_1 + P-network_7_4_RI_2 + P-network_7_4_RI_3 + P-network_7_4_RI_4 + P-network_7_4_RI_5 + P-network_7_4_RI_6 + P-network_7_4_RI_7 + P-network_7_4_RI_8 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_0_1_RI_5 + P-network_0_1_RI_6 + P-network_0_1_RI_7 + P-network_0_1_RI_8 + P-network_4_1_AI_8 + P-network_4_1_AI_7 + P-network_4_1_AI_6 + P-network_4_1_AI_5 + P-network_4_1_AI_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_4_6_AnnP_7 + P-network_4_6_AnnP_8 + P-network_4_1_AI_1 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_5_0_AskP_7 + P-network_5_0_AskP_8 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_2_0_RI_5 + P-network_2_0_RI_6 + P-network_2_0_RI_7 + P-network_2_0_RI_8 + P-network_7_2_AskP_8 + P-network_7_2_AskP_7 + P-network_7_2_AskP_6 + P-network_7_2_AskP_5 + P-network_7_2_AskP_4 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_2_1_AnnP_7 + P-network_2_1_AnnP_8 + P-network_7_2_AskP_3 + P-network_7_2_AskP_2 + P-network_7_2_AskP_1 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_1_6_RP_7 + P-network_1_6_RP_8 + P-network_6_8_AnnP_8 + P-network_6_8_AnnP_7 + P-network_6_8_AnnP_6 + P-network_6_8_AnnP_5 + P-network_6_8_AnnP_4 + P-network_6_8_AnnP_3 + P-network_6_8_AnnP_2 + P-network_6_8_AnnP_1 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_4_4_AskP_7 + P-network_4_4_AskP_8 + P-network_2_5_RI_8 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_3_5_RP_7 + P-network_3_5_RP_8 + P-network_2_5_RI_7 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_2_5_RI_3 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_0_1_AskP_8 + P-network_0_1_AskP_7 + P-network_0_1_AskP_6 + P-network_1_5_AnnP_1 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_3 + P-network_1_5_AnnP_4 + P-network_1_5_AnnP_5 + P-network_1_5_AnnP_6 + P-network_1_5_AnnP_7 + P-network_1_5_AnnP_8 + P-network_0_1_AskP_5 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_5_4_RP_7 + P-network_5_4_RP_8 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_8 + P-network_2_2_AI_7 + P-network_2_2_AI_6 + P-network_2_2_AI_5 + P-network_2_2_AI_4 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_6_AI_7 + P-network_0_6_AI_8 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_8_6_AnnP_1 + P-network_8_6_AnnP_2 + P-network_8_6_AnnP_3 + P-network_8_6_AnnP_4 + P-network_8_6_AnnP_5 + P-network_8_6_AnnP_6 + P-network_8_6_AnnP_7 + P-network_8_6_AnnP_8 + P-network_2_2_AI_1 + P-network_3_8_AskP_1 + P-network_3_8_AskP_2 + P-network_3_8_AskP_3 + P-network_3_8_AskP_4 + P-network_3_8_AskP_5 + P-network_3_8_AskP_6 + P-network_3_8_AskP_7 + P-network_3_8_AskP_8 + P-network_7_3_RP_1 + P-network_7_3_RP_2 + P-network_7_3_RP_3 + P-network_7_3_RP_4 + P-network_7_3_RP_5 + P-network_7_3_RP_6 + P-network_7_3_RP_7 + P-network_7_3_RP_8 + P-network_7_0_RP_8 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_0_0_RP_5 + P-network_0_0_RP_6 + P-network_0_0_RP_7 + P-network_0_0_RP_8 + P-network_7_0_RP_7 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_7_0_RP_6 + P-network_2_5_AI_3 + P-network_7_0_RP_5 + P-network_2_5_AI_4 + P-network_7_0_RP_4 + P-network_2_5_AI_5 + P-network_7_0_RP_3 + P-network_2_5_AI_6 + P-network_7_0_RP_2 + P-network_2_5_AI_7 + P-network_7_0_RP_1 + P-network_2_5_AI_8 + P-network_2_8_RI_1 + P-network_2_8_RI_2 + P-network_2_8_RI_3 + P-network_2_8_RI_4 + P-network_2_8_RI_5 + P-network_2_8_RI_6 + P-network_2_8_RI_7 + P-network_2_8_RI_8 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_1_AnnP_7 + P-network_6_1_AnnP_8 + P-network_0_6_RI_8 + P-network_0_6_RI_7 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_1_3_AskP_5 + P-network_1_3_AskP_6 + P-network_1_3_AskP_7 + P-network_1_3_AskP_8 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_4_4_AI_1 + P-network_0_6_RI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_4_4_AI_7 + P-network_4_4_AI_8 + P-network_4_7_RI_1 + P-network_4_7_RI_2 + P-network_4_7_RI_3 + P-network_4_7_RI_4 + P-network_4_7_RI_5 + P-network_4_7_RI_6 + P-network_4_7_RI_7 + P-network_4_7_RI_8 + P-network_8_4_AskP_1 + P-network_8_4_AskP_2 + P-network_8_4_AskP_3 + P-network_8_4_AskP_4 + P-network_8_4_AskP_5 + P-network_8_4_AskP_6 + P-network_8_4_AskP_7 + P-network_8_4_AskP_8 + P-network_0_3_AI_8 + P-network_0_3_AI_7 + P-network_0_3_AI_6 + P-network_0_3_AI_5 + P-network_0_3_AI_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_7_6_AI_8 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_3_AI_7 + P-network_6_3_AI_8 + P-network_7_6_AI_7 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_6_6_RI_7 + P-network_6_6_RI_8 + P-network_7_6_AI_6 + P-network_7_6_AI_5 + P-network_7_6_AI_4 + P-network_7_6_AI_3 + P-network_7_6_AI_2 + P-network_7_6_AI_1 + P-network_2_6_AskP_8 + P-network_2_6_AskP_7 + P-network_2_6_AskP_6 + P-network_2_6_AskP_5 + P-network_2_6_AskP_4 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_5_5_AnnP_7 + P-network_5_5_AnnP_8 + P-network_2_6_AskP_3 + P-network_2_6_AskP_2 + P-network_2_6_AskP_1 + P-network_8_2_AI_1 + P-network_8_2_AI_2 + P-network_8_2_AI_3 + P-network_8_2_AI_4 + P-network_8_2_AI_5 + P-network_8_2_AI_6 + P-network_8_2_AI_7 + P-network_8_2_AI_8 + P-network_5_1_RP_8 + P-network_0_7_AskP_1 + P-network_0_7_AskP_2 + P-network_0_7_AskP_3 + P-network_0_7_AskP_4 + P-network_0_7_AskP_5 + P-network_0_7_AskP_6 + P-network_0_7_AskP_7 + P-network_0_7_AskP_8 + P-network_8_5_RI_1 + P-network_8_5_RI_2 + P-network_8_5_RI_3 + P-network_8_5_RI_4 + P-network_8_5_RI_5 + P-network_8_5_RI_6 + P-network_8_5_RI_7 + P-network_8_5_RI_8 + P-network_5_1_RP_7 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_1_2_RI_7 + P-network_1_2_RI_8 + P-network_5_1_RP_6 + P-network_7_8_AskP_1 + P-network_7_8_AskP_2 + P-network_7_8_AskP_3 + P-network_7_8_AskP_4 + P-network_7_8_AskP_5 + P-network_7_8_AskP_6 + P-network_7_8_AskP_7 + P-network_7_8_AskP_8 + P-network_5_1_RP_5 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_0_AnnP_7 + P-network_3_0_AnnP_8 + P-network_5_1_RP_4 + P-network_5_1_RP_3 + P-network_5_1_RP_2 + P-network_5_1_RP_1 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_0_8_RP_1 + P-network_3_1_RI_4 + P-network_0_8_RP_2 + P-network_3_1_RI_5 + P-network_0_8_RP_3 + P-network_3_1_RI_6 + P-network_0_8_RP_4 + P-network_3_1_RI_7 + P-network_0_8_RP_5 + P-network_3_1_RI_8 + P-network_0_8_RP_6 + P-network_0_8_RP_7 + P-network_0_8_RP_8 + P-network_7_4_AnnP_8 + P-network_7_4_AnnP_7 + P-network_7_4_AnnP_6 + P-network_7_4_AnnP_5 + P-network_7_4_AnnP_4 + P-network_7_4_AnnP_3 + P-network_7_4_AnnP_2 + P-network_7_4_AnnP_1 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_5_3_AskP_7 + P-network_5_3_AskP_8 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_2_7_RP_1 + P-network_5_0_RI_4 + P-network_2_7_RP_2 + P-network_5_0_RI_5 + P-network_2_7_RP_3 + P-network_5_0_RI_6 + P-network_2_7_RP_4 + P-network_5_0_RI_7 + P-network_2_7_RP_5 + P-network_5_0_RI_8 + P-network_2_7_RP_6 + P-network_2_7_RP_7 + P-network_2_7_RP_8 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_2_4_AnnP_7 + P-network_2_4_AnnP_8 + P-network_4_6_RP_1 + P-network_4_6_RP_2 + P-network_4_6_RP_3 + P-network_4_6_RP_4 + P-network_4_6_RP_5 + P-network_4_6_RP_6 + P-network_4_6_RP_7 + P-network_4_6_RP_8 + P-network_5_7_AI_8 + P-network_5_7_AI_7 + P-network_5_7_AI_6 + P-network_5_7_AI_5 + P-network_5_7_AI_4 + P-network_5_7_AI_3 + P-network_5_7_AI_2 + P-network_5_7_AI_1 + P-network_3_2_RP_8 + P-network_3_2_RP_7 + P-network_3_2_RP_6 + P-network_3_2_RP_5 + P-network_3_2_RP_4 + P-network_3_2_RP_3 + P-network_3_2_RP_2 + P-network_3_2_RP_1 + P-network_0_3_AnnP_8 + P-network_4_7_AskP_1 + P-network_4_7_AskP_2 + P-network_4_7_AskP_3 + P-network_4_7_AskP_4 + P-network_4_7_AskP_5 + P-network_4_7_AskP_6 + P-network_4_7_AskP_7 + P-network_4_7_AskP_8 + P-network_6_5_RP_1 + P-network_6_5_RP_2 + P-network_6_5_RP_3 + P-network_6_5_RP_4 + P-network_6_5_RP_5 + P-network_6_5_RP_6 + P-network_6_5_RP_7 + P-network_6_5_RP_8 + P-network_0_3_AnnP_7 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_1_7_AI_1 + P-network_1_7_AI_2 + P-network_1_7_AI_3 + P-network_1_7_AI_4 + P-network_1_7_AI_5 + P-network_1_7_AI_6 + P-network_1_7_AI_7 + P-network_1_7_AI_8 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_7_0_AnnP_1 + P-network_7_0_AnnP_2 + P-network_7_0_AnnP_3 + P-network_7_0_AnnP_4 + P-network_7_0_AnnP_5 + P-network_7_0_AnnP_6 + P-network_7_0_AnnP_7 + P-network_7_0_AnnP_8 + P-network_1_8_AnnP_1 + P-network_1_8_AnnP_2 + P-network_1_8_AnnP_3 + P-network_1_8_AnnP_4 + P-network_1_8_AnnP_5 + P-network_1_8_AnnP_6 + P-network_1_8_AnnP_7 + P-network_1_8_AnnP_8 + P-network_8_4_RP_1 + P-network_8_4_RP_2 + P-network_8_4_RP_3 + P-network_8_4_RP_4 + P-network_8_4_RP_5 + P-network_8_4_RP_6 + P-network_8_4_RP_7 + P-network_8_4_RP_8 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_1_1_RP_7 + P-network_1_1_RP_8 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_2_2_AskP_5 + P-network_2_2_AskP_6 + P-network_2_2_AskP_7 + P-network_2_2_AskP_8 + P-network_3_8_AI_8 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_3_6_AI_7 + P-network_3_6_AI_8 + P-network_3_8_AI_7 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_3_0_RP_7 + P-network_3_0_RP_8 + P-network_3_8_AI_6 + P-network_3_8_AI_5 + P-network_3_8_AI_4 + P-network_3_8_AI_3 + P-network_3_8_AI_2 + P-network_3_8_AI_1 + P-network_1_3_RP_8 + P-network_1_3_RP_7 + P-network_1_3_RP_6 + P-network_1_3_RP_5 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_5_5_AI_7 + P-network_5_5_AI_8 + P-network_1_3_RP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_8_6_RP_8 + P-network_8_6_RP_7 + P-network_8_6_RP_6 + P-network_8_6_RP_5 + P-network_5_8_RI_1 + P-network_5_8_RI_2 + P-network_5_8_RI_3 + P-network_5_8_RI_4 + P-network_5_8_RI_5 + P-network_5_8_RI_6 + P-network_5_8_RI_7 + P-network_5_8_RI_8 + P-network_8_6_RP_4 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_6_4_AnnP_7 + P-network_6_4_AnnP_8 + P-network_8_6_RP_3 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_1_6_AskP_7 + P-network_1_6_AskP_8 + P-network_8_6_RP_2 + P-network_8_6_RP_1 + P-network_3_2_AskP_8 + P-network_3_2_AskP_7 + P-network_3_2_AskP_6 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_7_4_AI_1 + P-network_7_4_AI_2 + P-network_7_4_AI_3 + P-network_7_4_AI_4 + P-network_7_4_AI_5 + P-network_7_4_AI_6 + P-network_7_4_AI_7 + P-network_7_4_AI_8 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_0_1_AI_7 + P-network_0_1_AI_8 + P-network_2_8_AnnP_8 + P-network_7_7_RI_1 + P-network_7_7_RI_2 + P-network_7_7_RI_3 + P-network_7_7_RI_4 + P-network_7_7_RI_5 + P-network_7_7_RI_6 + P-network_7_7_RI_7 + P-network_7_7_RI_8 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_0_4_RI_7 + P-network_0_4_RI_8 + P-network_2_8_AnnP_7 + P-network_8_7_AskP_1 + P-network_8_7_AskP_2 + P-network_8_7_AskP_3 + P-network_8_7_AskP_4 + P-network_8_7_AskP_5 + P-network_8_7_AskP_6 + P-network_8_7_AskP_7 + P-network_8_7_AskP_8 + P-network_2_8_AnnP_6 + P-network_2_8_AnnP_5 + P-network_2_8_AnnP_4 + P-network_2_8_AnnP_3 + P-network_2_8_AnnP_2 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_0_AI_7 + P-network_2_0_AI_8 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_2_3_RI_7 + P-network_2_3_RI_8 + P-network_2_8_AnnP_1 + P-network_8_0_AnnP_8 + P-network_8_0_AnnP_7 + P-network_8_0_AnnP_6 + P-network_8_0_AnnP_5 + P-network_8_0_AnnP_4 + P-network_8_0_AnnP_3 + P-network_8_0_AnnP_2 + P-network_8_0_AnnP_1 + P-network_5_8_AnnP_1 + P-network_5_8_AnnP_2 + P-network_5_8_AnnP_3 + P-network_5_8_AnnP_4 + P-network_5_8_AnnP_5 + P-network_5_8_AnnP_6 + P-network_5_8_AnnP_7 + P-network_5_8_AnnP_8 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_6_2_AskP_7 + P-network_6_2_AskP_8 + P-network_6_7_RP_8 + P-network_6_7_RP_7 + P-network_6_7_RP_6 + P-network_6_7_RP_5 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_4_2_RI_7 + P-network_4_2_RI_8 + P-network_6_7_RP_4 + P-network_6_7_RP_3 + P-network_6_7_RP_2 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_3_3_AnnP_7 + P-network_3_3_AnnP_8 + P-network_6_7_RP_1 + P-network_5_7_AskP_8 + P-network_5_7_AskP_7 + P-network_5_7_AskP_6 + P-network_5_7_AskP_5 + P-network_5_7_AskP_4 + P-network_5_7_AskP_3 + P-network_5_7_AskP_2 + P-network_5_7_AskP_1 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_3_8_RP_1 + P-network_6_1_RI_4 + P-network_3_8_RP_2 + P-network_6_1_RI_5 + P-network_3_8_RP_3 + P-network_6_1_RI_6 + P-network_3_8_RP_4 + P-network_6_1_RI_7 + P-network_3_8_RP_5 + P-network_6_1_RI_8 + P-network_3_8_RP_6 + P-network_3_8_RP_7 + P-network_3_8_RP_8 + P-network_5_6_AskP_1 + P-network_5_6_AskP_2 + P-network_5_6_AskP_3 + P-network_5_6_AskP_4 + P-network_5_6_AskP_5 + P-network_5_6_AskP_6 + P-network_5_6_AskP_7 + P-network_5_6_AskP_8 + P-network_8_0_RI_1 + P-network_8_0_RI_2 + P-network_8_0_RI_3 + P-network_5_7_RP_1 + P-network_8_0_RI_4 + P-network_5_7_RP_2 + P-network_8_0_RI_5 + P-network_5_7_RP_3 + P-network_8_0_RI_6 + P-network_5_7_RP_4 + P-network_8_0_RI_7 + P-network_5_7_RP_5 + P-network_8_0_RI_8 + P-network_5_7_RP_6 + P-network_5_7_RP_7 + P-network_5_7_RP_8 + P-network_2_7_AnnP_1 + P-network_2_7_AnnP_2 + P-network_2_7_AnnP_3 + P-network_2_7_AnnP_4 + P-network_2_7_AnnP_5 + P-network_2_7_AnnP_6 + P-network_2_7_AnnP_7 + P-network_2_7_AnnP_8 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_1_AskP_7 + P-network_3_1_AskP_8 + P-network_7_6_RP_1 + P-network_7_6_RP_2 + P-network_7_6_RP_3 + P-network_7_6_RP_4 + P-network_7_6_RP_5 + P-network_7_6_RP_6 + P-network_7_6_RP_7 + P-network_7_6_RP_8 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_3_RP_5 + P-network_0_3_RP_6 + P-network_0_3_RP_7 + P-network_0_3_RP_8 + P-network_2_8_AI_1 + P-network_2_8_AI_2 + P-network_2_8_AI_3 + P-network_2_8_AI_4 + P-network_2_8_AI_5 + P-network_2_8_AI_6 + P-network_2_8_AI_7 + P-network_2_8_AI_8 + P-network_4_8_RP_8 + P-network_4_8_RP_7 + P-network_4_8_RP_6 + P-network_7_1_RI_8 + P-network_4_8_RP_5 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_0_2_AnnP_7 + P-network_0_2_AnnP_8 + P-network_7_1_RI_7 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_2_2_RP_5 + P-network_2_2_RP_6 + P-network_2_2_RP_7 + P-network_2_2_RP_8 + P-network_4_8_RP_4 + P-network_7_1_RI_6 + P-network_4_8_RP_3 + P-network_7_1_RI_5 + P-network_4_8_RP_2 + P-network_7_1_RI_4 + P-network_4_8_RP_1 + P-network_7_1_RI_3 + P-network_7_1_RI_2 + P-network_7_1_RI_1 + P-network_4_7_AI_1 + P-network_4_7_AI_2 + P-network_4_7_AI_3 + P-network_4_7_AI_4 + P-network_4_7_AI_5 + P-network_4_7_AI_6 + P-network_4_7_AI_7 + P-network_4_7_AI_8 + P-network_3_4_AnnP_8 + P-network_7_3_AnnP_1 + P-network_7_3_AnnP_2 + P-network_7_3_AnnP_3 + P-network_7_3_AnnP_4 + P-network_7_3_AnnP_5 + P-network_7_3_AnnP_6 + P-network_7_3_AnnP_7 + P-network_7_3_AnnP_8 + P-network_3_4_AnnP_7 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_4_1_RP_5 + P-network_4_1_RP_6 + P-network_4_1_RP_7 + P-network_4_1_RP_8 + P-network_3_4_AnnP_6 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_2_5_AskP_7 + P-network_2_5_AskP_8 + P-network_3_4_AnnP_5 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_6_AI_7 + P-network_6_6_AI_8 + P-network_6_0_RP_1 + P-network_6_0_RP_2 + P-network_6_0_RP_3 + P-network_6_0_RP_4 + P-network_6_0_RP_5 + P-network_6_0_RP_6 + P-network_6_0_RP_7 + P-network_6_0_RP_8 + P-network_8_5_AI_1 + P-network_8_5_AI_2 + P-network_8_5_AI_3 + P-network_8_5_AI_4 + P-network_8_5_AI_5 + P-network_8_5_AI_6 + P-network_8_5_AI_7 + P-network_8_5_AI_8 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_1_2_AI_7 + P-network_1_2_AI_8 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_0_0_AskP_7 + P-network_0_0_AskP_8 + P-network_5_2_RI_8 + P-network_5_2_RI_7 + P-network_5_2_RI_6 + P-network_5_2_RI_5 + P-network_5_2_RI_4 + P-network_5_2_RI_3 + P-network_5_2_RI_2 + P-network_5_2_RI_1 + P-network_8_8_RI_1 + P-network_8_8_RI_2 + P-network_8_8_RI_3 + P-network_8_8_RI_4 + P-network_8_8_RI_5 + P-network_8_8_RI_6 + P-network_8_8_RI_7 + P-network_8_8_RI_8 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_1_5_RI_7 + P-network_1_5_RI_8 + P-network_6_7_AnnP_1 + P-network_6_7_AnnP_2 + P-network_6_7_AnnP_3 + P-network_6_7_AnnP_4 + P-network_6_7_AnnP_5 + P-network_6_7_AnnP_6 + P-network_6_7_AnnP_7 + P-network_6_7_AnnP_8 + P-network_7_1_AskP_1 + P-network_7_1_AskP_2 + P-network_7_1_AskP_3 + P-network_7_1_AskP_4 + P-network_7_1_AskP_5 + P-network_7_1_AskP_6 + P-network_7_1_AskP_7 + P-network_7_1_AskP_8 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_1_AI_7 + P-network_3_1_AI_8 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_3_4_RI_7 + P-network_3_4_RI_8 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_4_2_AnnP_7 + P-network_4_2_AnnP_8 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_0_AI_7 + P-network_5_0_AI_8 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_5_3_RI_7 + P-network_5_3_RI_8 + P-network_6_3_AskP_8 + P-network_6_3_AskP_7 + P-network_6_3_AskP_6 + P-network_6_3_AskP_5 + P-network_6_3_AskP_4 + P-network_6_3_AskP_3 + P-network_6_3_AskP_2 + P-network_6_3_AskP_1 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_6_5_AskP_7 + P-network_6_5_AskP_8 + P-network_7_2_RI_1 + P-network_7_2_RI_2 + P-network_7_2_RI_3 + P-network_7_2_RI_4 + P-network_7_2_RI_5 + P-network_7_2_RI_6 + P-network_7_2_RI_7 + P-network_7_2_RI_8 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_6_AnnP_7 + P-network_3_6_AnnP_8 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_4_0_AskP_7 + P-network_4_0_AskP_8 + P-network_6_8_RP_1 + P-network_6_8_RP_2 + P-network_6_8_RP_3 + P-network_6_8_RP_4 + P-network_6_8_RP_5 + P-network_6_8_RP_6 + P-network_6_8_RP_7 + P-network_6_8_RP_8 + P-network_3_3_RI_8 + P-network_3_3_RI_7 + P-network_3_3_RI_6 + P-network_3_3_RI_5 + P-network_3_3_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_1_1_AnnP_7 + P-network_1_1_AnnP_8 + P-network_8_7_RP_1 + P-network_8_7_RP_2 + P-network_8_7_RP_3 + P-network_8_7_RP_4 + P-network_8_7_RP_5 + P-network_8_7_RP_6 + P-network_8_7_RP_7 + P-network_8_7_RP_8 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_1_4_RP_7 + P-network_1_4_RP_8 + P-network_8_2_AnnP_1 + P-network_8_2_AnnP_2 + P-network_8_2_AnnP_3 + P-network_8_2_AnnP_4 + P-network_8_2_AnnP_5 + P-network_8_2_AnnP_6 + P-network_8_2_AnnP_7 + P-network_8_2_AnnP_8 + P-network_3_0_AI_8 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_3_4_AskP_7 + P-network_3_4_AskP_8 + P-network_3_0_AI_7 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_0_AI_6 + P-network_3_3_RP_6 + P-network_3_0_AI_5 + P-network_3_3_RP_7 + P-network_3_0_AI_4 + P-network_3_3_RP_8 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_3_0_AI_1 + P-network_5_8_AI_1 + P-network_5_8_AI_2 + P-network_5_8_AI_3 + P-network_5_8_AI_4 + P-network_5_8_AI_5 + P-network_5_8_AI_6 + P-network_5_8_AI_7 + P-network_5_8_AI_8 + P-network_4_0_AnnP_8 + P-network_4_0_AnnP_7 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_5 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_8_8_AskP_8 + P-network_8_8_AskP_7 + P-network_8_8_AskP_6 + P-network_8_8_AskP_5 + P-network_8_8_AskP_4 + P-network_8_8_AskP_3 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_0_5_AnnP_7 + P-network_0_5_AnnP_8 + P-network_8_8_AskP_2 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_5_2_RP_7 + P-network_5_2_RP_8 + P-network_8_8_AskP_1 + P-network_7_7_AI_1 + P-network_7_7_AI_2 + P-network_7_7_AI_3 + P-network_7_7_AI_4 + P-network_7_7_AI_5 + P-network_7_7_AI_6 + P-network_7_7_AI_7 + P-network_7_7_AI_8 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_0_4_AI_5 + P-network_0_4_AI_6 + P-network_0_4_AI_7 + P-network_0_4_AI_8 + P-network_0_7_RI_1 + P-network_0_7_RI_2 + P-network_0_7_RI_3 + P-network_0_7_RI_4 + P-network_0_7_RI_5 + P-network_0_7_RI_6 + P-network_0_7_RI_7 + P-network_0_7_RI_8 + P-network_7_6_AnnP_1 + P-network_7_6_AnnP_2 + P-network_7_6_AnnP_3 + P-network_7_6_AnnP_4 + P-network_7_6_AnnP_5 + P-network_7_6_AnnP_6 + P-network_7_6_AnnP_7 + P-network_7_6_AnnP_8 + P-network_1_4_RI_8 + P-network_1_4_RI_7 + P-network_1_4_RI_6 + P-network_8_0_AskP_1 + P-network_8_0_AskP_2 + P-network_8_0_AskP_3 + P-network_8_0_AskP_4 + P-network_8_0_AskP_5 + P-network_8_0_AskP_6 + P-network_8_0_AskP_7 + P-network_8_0_AskP_8 + P-network_1_4_RI_5 + P-network_7_1_RP_1 + P-network_7_1_RP_2 + P-network_7_1_RP_3 + P-network_7_1_RP_4 + P-network_7_1_RP_5 + P-network_7_1_RP_6 + P-network_7_1_RP_7 + P-network_7_1_RP_8 + P-network_1_4_RI_4 + P-network_2_8_AskP_1 + P-network_2_8_AskP_2 + P-network_2_8_AskP_3 + P-network_2_8_AskP_4 + P-network_2_8_AskP_5 + P-network_2_8_AskP_6 + P-network_2_8_AskP_7 + P-network_2_8_AskP_8 + P-network_1_4_RI_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_3_AI_7 + P-network_2_3_AI_8 + P-network_1_4_RI_2 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_2_6_RI_7 + P-network_2_6_RI_8 + P-network_1_4_RI_1 + P-network_8_7_RI_8 + P-network_8_7_RI_7 + P-network_8_7_RI_6 + P-network_8_7_RI_5 + P-network_8_7_RI_4 + P-network_8_7_RI_3 + P-network_8_7_RI_2 + P-network_8_7_RI_1 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_5_1_AnnP_7 + P-network_5_1_AnnP_8 + P-network_1_1_AI_8 + P-network_1_1_AI_7 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_4_2_AI_7 + P-network_4_2_AI_8 + P-network_1_1_AI_6 + P-network_1_1_AI_5 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_8_4_AI_8 + P-network_8_4_AI_7 + P-network_8_4_AI_6 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_0_3_AskP_5 + P-network_0_3_AskP_6 + P-network_0_3_AskP_7 + P-network_0_3_AskP_8 + P-network_8_4_AI_5 + P-network_8_4_AI_4 + P-network_8_4_AI_3 + P-network_8_4_AI_2 + P-network_8_4_AI_1 + P-network_1_7_AskP_8 + P-network_1_7_AskP_7 + P-network_1_7_AskP_6 + P-network_1_7_AskP_5 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_4_5_RI_7 + P-network_4_5_RI_8 + P-network_1_7_AskP_4 + P-network_1_7_AskP_3 + P-network_7_4_AskP_1 + P-network_7_4_AskP_2 + P-network_7_4_AskP_3 + P-network_7_4_AskP_4 + P-network_7_4_AskP_5 + P-network_7_4_AskP_6 + P-network_7_4_AskP_7 + P-network_7_4_AskP_8 + P-network_1_7_AskP_2 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_1_7_AskP_1 + P-network_6_1_AI_3 + P-network_6_1_AI_4 + P-network_6_1_AI_5 + P-network_6_1_AI_6 + P-network_6_1_AI_7 + P-network_6_1_AI_8 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_6_4_RI_7 + P-network_6_4_RI_8 + P-network_6_5_AnnP_8 + P-network_6_5_AnnP_7 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_2 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_4_5_AnnP_7 + P-network_4_5_AnnP_8 + P-network_6_5_AnnP_1 + P-network_8_0_AI_1 + P-network_8_0_AI_2 + P-network_8_0_AI_3 + P-network_8_0_AI_4 + P-network_8_0_AI_5 + P-network_6_8_RI_8 + P-network_8_0_AI_6 + P-network_6_8_RI_7 + P-network_8_0_AI_7 + P-network_6_8_RI_6 + P-network_8_0_AI_8 + P-network_6_8_RI_5 + P-network_8_3_RI_1 + P-network_8_3_RI_2 + P-network_8_3_RI_3 + P-network_8_3_RI_4 + P-network_8_3_RI_5 + P-network_8_3_RI_6 + P-network_8_3_RI_7 + P-network_8_3_RI_8 + P-network_6_8_RI_4 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_0_RI_7 + P-network_1_0_RI_8 + P-network_6_8_RI_3 + P-network_6_8_RI_2 + P-network_6_8_RI_1 + P-network_6_8_AskP_1 + P-network_6_8_AskP_2 + P-network_6_8_AskP_3 + P-network_6_8_AskP_4 + P-network_6_8_AskP_5 + P-network_6_8_AskP_6 + P-network_6_8_AskP_7 + P-network_6_8_AskP_8 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_2_0_AnnP_5 + P-network_2_0_AnnP_6 + P-network_2_0_AnnP_7 + P-network_2_0_AnnP_8 + P-network_6_5_AI_8 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_0_6_RP_7 + P-network_0_6_RP_8 + P-network_6_5_AI_7 + P-network_6_5_AI_6 + P-network_6_5_AI_5 + P-network_6_5_AI_4 + P-network_6_5_AI_3 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_4_3_AskP_7 + P-network_4_3_AskP_8 + P-network_6_5_AI_2 + P-network_6_5_AI_1 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_2_5_RP_7 + P-network_2_5_RP_8 + P-network_4_0_RP_8 + P-network_4_0_RP_7 + P-network_4_0_RP_6 + P-network_4_0_RP_5 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_4_0_RP_1 + P-network_4_6_AI_8 + P-network_4_6_AI_7 + P-network_4_6_AI_6 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_1_4_AnnP_7 + P-network_1_4_AnnP_8 + P-network_4_6_AI_5 + P-network_4_6_AI_4 + P-network_4_6_AI_3 + P-network_4_6_AI_2 + P-network_4_6_AI_1 + P-network_2_3_AskP_8 + P-network_2_3_AskP_7 + P-network_2_3_AskP_6 + P-network_2_3_AskP_5 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_4_4_RP_7 + P-network_4_4_RP_8 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_8 + P-network_2_1_RP_7 + P-network_2_1_RP_6 + P-network_2_1_RP_5 + P-network_2_1_RP_4 + P-network_2_1_RP_3 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_8_5_AnnP_1 + P-network_8_5_AnnP_2 + P-network_8_5_AnnP_3 + P-network_8_5_AnnP_4 + P-network_8_5_AnnP_5 + P-network_8_5_AnnP_6 + P-network_8_5_AnnP_7 + P-network_8_5_AnnP_8 + P-network_3_7_AskP_1 + P-network_3_7_AskP_2 + P-network_3_7_AskP_3 + P-network_3_7_AskP_4 + P-network_3_7_AskP_5 + P-network_3_7_AskP_6 + P-network_3_7_AskP_7 + P-network_3_7_AskP_8 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_6_3_RP_7 + P-network_6_3_RP_8 + P-network_8_8_AI_1 + P-network_8_8_AI_2 + P-network_8_8_AI_3 + P-network_8_8_AI_4 + P-network_8_8_AI_5 + P-network_8_8_AI_6 + P-network_8_8_AI_7 + P-network_8_8_AI_8 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_1_5_AI_7 + P-network_1_5_AI_8 + P-network_1_8_RI_1 + P-network_1_8_RI_2 + P-network_1_8_RI_3 + P-network_1_8_RI_4 + P-network_1_8_RI_5 + P-network_1_8_RI_6 + P-network_1_8_RI_7 + P-network_1_8_RI_8 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_6_0_AnnP_3 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_7_1_AnnP_8 + P-network_6_0_AnnP_6 + P-network_7_1_AnnP_7 + P-network_6_0_AnnP_7 + P-network_7_1_AnnP_6 + P-network_6_0_AnnP_8 + P-network_7_1_AnnP_5 + P-network_7_1_AnnP_4 + P-network_7_1_AnnP_3 + P-network_7_1_AnnP_2 + P-network_7_1_AnnP_1 + P-network_0_8_AnnP_1 + P-network_0_8_AnnP_2 + P-network_0_8_AnnP_3 + P-network_0_8_AnnP_4 + P-network_0_8_AnnP_5 + P-network_0_8_AnnP_6 + P-network_0_8_AnnP_7 + P-network_0_8_AnnP_8 + P-network_8_2_RP_1 + P-network_8_2_RP_2 + P-network_8_2_RP_3 + P-network_8_2_RP_4 + P-network_8_2_RP_5 + P-network_8_2_RP_6 + P-network_8_2_RP_7 + P-network_8_2_RP_8 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_1_2_AskP_7 + P-network_1_2_AskP_8 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AI_5 + P-network_3_4_AI_6 + P-network_3_4_AI_7 + P-network_3_4_AI_8 + P-network_2_7_AI_8 + P-network_3_7_RI_1 + P-network_3_7_RI_2 + P-network_3_7_RI_3 + P-network_3_7_RI_4 + P-network_3_7_RI_5 + P-network_3_7_RI_6 + P-network_3_7_RI_7 + P-network_3_7_RI_8 + P-network_2_7_AI_7 + P-network_8_3_AskP_1 + P-network_8_3_AskP_2 + P-network_8_3_AskP_3 + P-network_8_3_AskP_4 + P-network_8_3_AskP_5 + P-network_8_3_AskP_6 + P-network_8_3_AskP_7 + P-network_8_3_AskP_8 + P-network_2_7_AI_6 + P-network_2_7_AI_5 + P-network_2_7_AI_4 + P-network_2_7_AI_3 + P-network_2_7_AI_2 + P-network_2_7_AI_1 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_5_3_AI_7 + P-network_5_3_AI_8 + P-network_5_6_RI_1 + P-network_5_6_RI_2 + P-network_5_6_RI_3 + P-network_5_6_RI_4 + P-network_5_6_RI_5 + P-network_5_6_RI_6 + P-network_5_6_RI_7 + P-network_5_6_RI_8 + P-network_5_4_AnnP_1 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_6 + P-network_5_4_AnnP_7 + P-network_5_4_AnnP_8 + P-network_0_2_RP_8 + P-network_0_2_RP_7 + P-network_0_2_RP_6 + P-network_0_2_RP_5 + P-network_0_2_RP_4 + P-network_0_2_RP_3 + P-network_7_2_AI_1 + P-network_7_2_AI_2 + P-network_7_2_AI_3 + P-network_7_2_AI_4 + P-network_7_2_AI_5 + P-network_7_2_AI_6 + P-network_7_2_AI_7 + P-network_7_2_AI_8 + P-network_0_2_RP_2 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_6_AskP_7 + P-network_0_6_AskP_8 + P-network_0_2_RP_1 + P-network_7_5_RP_8 + P-network_7_5_RI_1 + P-network_7_5_RI_2 + P-network_7_5_RI_3 + P-network_7_5_RI_4 + P-network_7_5_RI_5 + P-network_7_5_RI_6 + P-network_7_5_RI_7 + P-network_7_5_RI_8 + P-network_7_5_RP_7 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_0_2_RI_7 + P-network_0_2_RI_8 + P-network_7_5_RP_6 + P-network_7_5_RP_5 + P-network_7_7_AskP_1 + P-network_7_7_AskP_2 + P-network_7_7_AskP_3 + P-network_7_7_AskP_4 + P-network_7_7_AskP_5 + P-network_7_7_AskP_6 + P-network_7_7_AskP_7 + P-network_7_7_AskP_8 + P-network_7_5_RP_4 + P-network_7_5_RP_3 + P-network_7_5_RP_2 + P-network_7_5_RP_1 + P-network_0_0_AnnP_8 + P-network_0_0_AnnP_7 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_5 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_2_1_RI_7 + P-network_2_1_RI_8 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_4_8_AskP_8 + P-network_4_8_AskP_7 + P-network_4_8_AskP_6 + P-network_4_8_AskP_5 + P-network_4_8_AskP_4 + P-network_4_8_AskP_3 + P-network_4_8_AskP_2 + P-network_4_8_AskP_1 + P-network_4_8_AnnP_1 + P-network_4_8_AnnP_2 + P-network_4_8_AnnP_3 + P-network_4_8_AnnP_4 + P-network_4_8_AnnP_5 + P-network_4_8_AnnP_6 + P-network_4_8_AnnP_7 + P-network_4_8_AnnP_8 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_5_2_AskP_7 + P-network_5_2_AskP_8 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_1_7_RP_1 + P-network_4_0_RI_4 + P-network_1_7_RP_2 + P-network_4_0_RI_5 + P-network_1_7_RP_3 + P-network_4_0_RI_6 + P-network_1_7_RP_4 + P-network_4_0_RI_7 + P-network_1_7_RP_5 + P-network_4_0_RI_8 + P-network_1_7_RP_6 + P-network_1_7_RP_7 + P-network_1_7_RP_8 + P-network_0_8_AI_8 + P-network_0_8_AI_7 + P-network_0_8_AI_6 + P-network_0_8_AI_5 + P-network_0_8_AI_4 + P-network_0_8_AI_3 + P-network_0_8_AI_2 + P-network_0_8_AI_1 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_2_3_AnnP_7 + P-network_2_3_AnnP_8 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_3_6_RP_7 + P-network_3_6_RP_8 + P-network_5_6_RP_8 + P-network_5_6_RP_7 + P-network_5_6_RP_6 + P-network_5_6_RP_5 + P-network_5_6_RP_4 + P-network_5_6_RP_3 + P-network_5_6_RP_2 + P-network_5_6_RP_1 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_4_6_AskP_7 + P-network_4_6_AskP_8 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_5_RP_7 + P-network_5_5_RP_8 + P-network_2_5_AnnP_8 + P-network_2_5_AnnP_7 + P-network_2_5_AnnP_6 + P-network_2_5_AnnP_5 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_0_7_AI_1 + P-network_0_7_AI_2 + P-network_0_7_AI_3 + P-network_0_7_AI_4 + P-network_0_7_AI_5 + P-network_0_7_AI_6 + P-network_0_7_AI_7 + P-network_0_7_AI_8 + P-network_1_7_AnnP_1 + P-network_1_7_AnnP_2 + P-network_1_7_AnnP_3 + P-network_1_7_AnnP_4 + P-network_1_7_AnnP_5 + P-network_1_7_AnnP_6 + P-network_1_7_AnnP_7 + P-network_1_7_AnnP_8 + P-network_7_4_RP_1 + P-network_7_4_RP_2 + P-network_7_4_RP_3 + P-network_7_4_RP_4 + P-network_7_4_RP_5 + P-network_7_4_RP_6 + P-network_7_4_RP_7 + P-network_7_4_RP_8 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_0_1_RP_7 + P-network_0_1_RP_8 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_1_AskP_7 + P-network_2_1_AskP_8 + P-network_2_6_AI_1 + P-network_2_6_AI_2 + P-network_2_6_AI_3 + P-network_2_6_AI_4 + P-network_2_6_AI_5 + P-network_2_6_AI_6 + P-network_2_6_AI_7 + P-network_2_6_AI_8 + P-network_8_8_AnnP_1 + P-network_8_8_AnnP_2 + P-network_8_8_AnnP_3 + P-network_8_8_AnnP_4 + P-network_8_8_AnnP_5 + P-network_8_8_AnnP_6 + P-network_8_8_AnnP_7 + P-network_8_8_AnnP_8 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_2_0_RP_7 + P-network_2_0_RP_8 + P-network_3_7_RP_8 + P-network_3_7_RP_7 + P-network_3_7_RP_6 + P-network_6_0_RI_8 + P-network_3_7_RP_5 + P-network_6_0_RI_7 + P-network_3_7_RP_4 + P-network_6_0_RI_6 + P-network_3_7_RP_3 + P-network_6_0_RI_5 + P-network_3_7_RP_2 + P-network_4_5_AI_1 + P-network_4_5_AI_2 + P-network_6_0_RI_4 + P-network_4_5_AI_3 + P-network_3_7_RP_1 + P-network_4_5_AI_4 + P-network_6_0_RI_3 + P-network_4_5_AI_5 + P-network_6_0_RI_2 + P-network_4_5_AI_6 + P-network_6_0_RI_1 + P-network_4_5_AI_7 + P-network_5_4_AskP_8 + P-network_4_5_AI_8 + P-network_5_4_AskP_7 + P-network_5_4_AskP_6 + P-network_5_4_AskP_5 + P-network_5_4_AskP_4 + P-network_4_8_RI_1 + P-network_4_8_RI_2 + P-network_4_8_RI_3 + P-network_4_8_RI_4 + P-network_4_8_RI_5 + P-network_4_8_RI_6 + P-network_4_8_RI_7 + P-network_4_8_RI_8 + P-network_5_4_AskP_3 + P-network_6_3_AnnP_1 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_3 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_6 + P-network_6_3_AnnP_7 + P-network_6_3_AnnP_8 + P-network_5_4_AskP_2 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_1_5_AskP_7 + P-network_1_5_AskP_8 + P-network_5_4_AskP_1 + P-network_6_4_AI_1 + P-network_6_4_AI_2 + P-network_6_4_AI_3 + P-network_6_4_AI_4 + P-network_6_4_AI_5 + P-network_6_4_AI_6 + P-network_6_4_AI_7 + P-network_6_4_AI_8 + P-network_6_7_RI_1 + P-network_6_7_RI_2 + P-network_6_7_RI_3 + P-network_6_7_RI_4 + P-network_6_7_RI_5 + P-network_6_7_RI_6 + P-network_6_7_RI_7 + P-network_6_7_RI_8 + P-network_8_6_AskP_1 + P-network_8_6_AskP_2 + P-network_8_6_AskP_3 + P-network_8_6_AskP_4 + P-network_8_6_AskP_5 + P-network_8_6_AskP_6 + P-network_8_6_AskP_7 + P-network_8_6_AskP_8 + P-network_8_3_AI_1 + P-network_8_3_AI_2 + P-network_8_3_AI_3 + P-network_8_3_AI_4 + P-network_8_3_AI_5 + P-network_8_3_AI_6 + P-network_8_3_AI_7 + P-network_8_3_AI_8 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_0_AI_7 + P-network_1_0_AI_8 + P-network_8_6_RI_1 + P-network_8_6_RI_2 + P-network_8_6_RI_3 + P-network_8_6_RI_4 + P-network_8_6_RI_5 + P-network_8_6_RI_6 + P-network_8_6_RI_7 + P-network_8_6_RI_8 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_1_3_RI_5 + P-network_1_3_RI_6 + P-network_1_3_RI_7 + P-network_1_3_RI_8 + P-network_5_7_AnnP_1 + P-network_5_7_AnnP_2 + P-network_5_7_AnnP_3 + P-network_5_7_AnnP_4 + P-network_5_7_AnnP_5 + P-network_5_7_AnnP_6 + P-network_5_7_AnnP_7 + P-network_5_7_AnnP_8 + P-network_6_1_AskP_1 + P-network_6_1_AskP_2 + P-network_6_1_AskP_3 + P-network_6_1_AskP_4 + P-network_6_1_AskP_5 + P-network_6_1_AskP_6 + P-network_6_1_AskP_7 + P-network_6_1_AskP_8 + P-network_1_8_RP_8 + P-network_1_8_RP_7 + P-network_1_8_RP_6 + P-network_4_1_RI_8 + P-network_1_8_RP_5 + P-network_4_1_RI_7 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_RI_5 + P-network_3_2_RI_6 + P-network_3_2_RI_7 + P-network_3_2_RI_8 + P-network_1_8_RP_4 + P-network_4_1_RI_6 + P-network_1_8_RP_3 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_3_2_AnnP_7 + P-network_3_2_AnnP_8 + P-network_4_1_RI_5 + P-network_1_8_RP_2 + P-network_4_1_RI_4 + P-network_1_8_RP_1 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_4_1_RI_1 + P-network_5_1_RI_1 + P-network_5_1_RI_2 + P-network_5_1_RI_3 + P-network_2_8_RP_1 + P-network_5_1_RI_4 + P-network_2_8_RP_2 + P-network_5_1_RI_5 + P-network_2_8_RP_3 + P-network_5_1_RI_6 + P-network_2_8_RP_4 + P-network_5_1_RI_7 + P-network_2_8_RP_5 + P-network_5_1_RI_8 + P-network_2_8_RP_6 + P-network_2_8_RP_7 + P-network_2_8_RP_8 + P-network_3_1_AnnP_8 + P-network_3_1_AnnP_7 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_5 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_5_5_AskP_7 + P-network_5_5_AskP_8 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_7_0_RI_1 + P-network_7_0_RI_2 + P-network_7_0_RI_3 + P-network_4_7_RP_1 + P-network_7_0_RI_4 + P-network_4_7_RP_2 + P-network_7_0_RI_5 + P-network_4_7_RP_3 + P-network_7_0_RI_6 + P-network_4_7_RP_4 + P-network_7_0_RI_7 + P-network_4_7_RP_5 + P-network_7_0_RI_8 + P-network_4_7_RP_6 + P-network_4_7_RP_7 + P-network_4_7_RP_8 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_2_6_AnnP_7 + P-network_2_6_AnnP_8 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_3_0_AskP_7 + P-network_3_0_AskP_8 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_6_6_RP_7 + P-network_6_6_RP_8 + P-network_2_2_RI_8 + P-network_1_8_AI_1 + P-network_1_8_AI_2 + P-network_1_8_AI_3 + P-network_1_8_AI_4 + P-network_1_8_AI_5 + P-network_1_8_AI_6 + P-network_1_8_AI_7 + P-network_1_8_AI_8 + P-network_2_2_RI_7 + P-network_2_2_RI_6 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_6 + P-network_0_1_AnnP_7 + P-network_0_1_AnnP_8 + P-network_2_2_RI_5 + P-network_8_5_RP_1 + P-network_8_5_RP_2 + P-network_8_5_RP_3 + P-network_8_5_RP_4 + P-network_8_5_RP_5 + P-network_8_5_RP_6 + P-network_8_5_RP_7 + P-network_8_5_RP_8 + P-network_2_2_RI_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_1_2_RP_7 + P-network_1_2_RP_8 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_2_2_RI_1 + P-network_3_7_AI_1 + P-network_3_7_AI_2 + P-network_3_7_AI_3 + P-network_3_7_AI_4 + P-network_3_7_AI_5 + P-network_3_7_AI_6 + P-network_3_7_AI_7 + P-network_3_7_AI_8 + P-network_0_8_AskP_8 + P-network_0_8_AskP_7 + P-network_0_8_AskP_6 + P-network_0_8_AskP_5 + P-network_7_2_AnnP_1 + P-network_7_2_AnnP_2 + P-network_7_2_AnnP_3 + P-network_7_2_AnnP_4 + P-network_7_2_AnnP_5 + P-network_7_2_AnnP_6 + P-network_7_2_AnnP_7 + P-network_7_2_AnnP_8 + P-network_0_8_AskP_4 + P-network_0_8_AskP_3 + P-network_0_8_AskP_2 + P-network_0_8_AskP_1 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_3_1_RP_7 + P-network_3_1_RP_8 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_4_AskP_7 + P-network_2_4_AskP_8 + P-network_6_0_AskP_8 + P-network_6_0_AskP_7 + P-network_6_0_AskP_6 + P-network_6_0_AskP_5 + P-network_6_0_AskP_4 + P-network_6_0_AskP_3 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_5_6_AI_7 + P-network_5_6_AI_8 + P-network_6_0_AskP_2 + P-network_6_0_AskP_1 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_5_0_RP_7 + P-network_5_0_RP_8 + P-network_5_6_AnnP_8 + P-network_5_6_AnnP_7 + P-network_5_6_AnnP_6 + P-network_5_6_AnnP_5 + P-network_5_6_AnnP_4 + P-network_5_6_AnnP_3 + P-network_5_6_AnnP_2 + P-network_5_6_AnnP_1 + P-network_7_5_AI_1 + P-network_7_5_AI_2 + P-network_7_5_AI_3 + P-network_7_5_AI_4 + P-network_7_5_AI_5 + P-network_7_5_AI_6 + P-network_7_5_AI_7 + P-network_7_5_AI_8 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_AI_5 + P-network_0_2_AI_6 + P-network_0_2_AI_7 + P-network_0_2_AI_8 + P-network_7_8_RI_1 + P-network_7_8_RI_2 + P-network_7_8_RI_3 + P-network_7_8_RI_4 + P-network_7_8_RI_5 + P-network_7_8_RI_6 + P-network_7_8_RI_7 + P-network_7_8_RI_8 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_0_5_RI_7 + P-network_0_5_RI_8 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_6_6_AnnP_7 + P-network_6_6_AnnP_8 + P-network_7_0_AskP_1 + P-network_7_0_AskP_2 + P-network_7_0_AskP_3 + P-network_7_0_AskP_4 + P-network_7_0_AskP_5 + P-network_7_0_AskP_6 + P-network_7_0_AskP_7 + P-network_7_0_AskP_8 + P-network_1_8_AskP_1 + P-network_1_8_AskP_2 + P-network_1_8_AskP_3 + P-network_1_8_AskP_4 + P-network_1_8_AskP_5 + P-network_1_8_AskP_6 + P-network_1_8_AskP_7 + P-network_1_8_AskP_8 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_1_AI_5 + P-network_2_1_AI_6 + P-network_2_1_AI_7 + P-network_2_1_AI_8 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_2_4_RI_7 + P-network_2_4_RI_8 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_4_1_AnnP_7 + P-network_4_1_AnnP_8 + P-network_0_3_RI_8 + P-network_0_3_RI_7 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_0_AI_5 + P-network_4_0_AI_6 + P-network_4_0_AI_7 + P-network_4_0_AI_8 + P-network_0_3_RI_6 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_4_3_RI_7 + P-network_4_3_RI_8 + P-network_0_3_RI_5 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_7_6_RI_8 + P-network_7_6_RI_7 + P-network_7_6_RI_6 + P-network_7_6_RI_5 + P-network_7_6_RI_4 + P-network_7_6_RI_3 + P-network_7_6_RI_2 + P-network_7_6_RI_1 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_6_4_AskP_7 + P-network_6_4_AskP_8 + P-network_0_0_AI_8 + P-network_0_0_AI_7 + P-network_0_0_AI_6 + P-network_0_0_AI_5 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_7_3_AI_8 + P-network_7_3_AI_7 + P-network_7_3_AI_6 + P-network_7_3_AI_5 + P-network_7_3_AI_4 + P-network_7_3_AI_3 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_6_2_RI_7 + P-network_6_2_RI_8 + P-network_7_3_AI_2 + P-network_7_3_AI_1 + P-network_3_5_AnnP_1 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_4 + P-network_3_5_AnnP_5 + P-network_3_5_AnnP_6 + P-network_3_5_AnnP_7 + P-network_3_5_AnnP_8 + P-network_8_5_AskP_8 + P-network_8_5_AskP_7 + P-network_8_5_AskP_6 + P-network_8_5_AskP_5 + P-network_8_5_AskP_4 + P-network_8_5_AskP_3 + P-network_8_5_AskP_2 + P-network_8_1_RI_1 + P-network_8_1_RI_2 + P-network_8_5_AskP_1 + P-network_8_1_RI_3 + P-network_5_8_RP_1 + P-network_8_1_RI_4 + P-network_5_8_RP_2 + P-network_8_1_RI_5 + P-network_5_8_RP_3 + P-network_8_1_RI_6 + P-network_5_8_RP_4 + P-network_8_1_RI_7 + P-network_5_8_RP_5 + P-network_8_1_RI_8 + P-network_5_8_RP_6 + P-network_5_8_RP_7 + P-network_5_8_RP_8 + P-network_5_7_RI_8 + P-network_5_8_AskP_1 + P-network_5_8_AskP_2 + P-network_5_8_AskP_3 + P-network_5_8_AskP_4 + P-network_5_8_AskP_5 + P-network_5_8_AskP_6 + P-network_5_8_AskP_7 + P-network_5_8_AskP_8 + P-network_5_7_RI_7 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_6 + P-network_1_0_AnnP_7 + P-network_1_0_AnnP_8 + P-network_5_7_RI_6 + P-network_7_7_RP_1 + P-network_7_7_RP_2 + P-network_7_7_RP_3 + P-network_7_7_RP_4 + P-network_7_7_RP_5 + P-network_7_7_RP_6 + P-network_7_7_RP_7 + P-network_7_7_RP_8 + P-network_5_7_RI_5 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_0_4_RP_7 + P-network_0_4_RP_8 + P-network_5_7_RI_4 + P-network_5_7_RI_3 + P-network_5_7_RI_2 + P-network_5_7_RI_1 + P-network_8_1_AnnP_1 + P-network_8_1_AnnP_2 + P-network_8_1_AnnP_3 + P-network_8_1_AnnP_4 + P-network_8_1_AnnP_5 + P-network_8_1_AnnP_6 + P-network_8_1_AnnP_7 + P-network_8_1_AnnP_8 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_3_3_AskP_7 + P-network_3_3_AskP_8 + P-network_5_4_AI_8 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_5_4_AI_7 + P-network_2_3_RP_6 + P-network_5_4_AI_6 + P-network_2_3_RP_7 + P-network_5_4_AI_5 + P-network_2_3_RP_8 + P-network_5_4_AI_4 + P-network_5_4_AI_3 + P-network_5_4_AI_2 + P-network_5_4_AI_1 + P-network_1_4_AskP_8 + P-network_4_8_AI_1 + P-network_4_8_AI_2 + P-network_4_8_AI_3 + P-network_4_8_AI_4 + P-network_4_8_AI_5 + P-network_4_8_AI_6 + P-network_4_8_AI_7 + P-network_4_8_AI_8 + P-network_1_4_AskP_7 + P-network_1_4_AskP_6 + P-network_1_4_AskP_5 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_4_AskP_1 + P-network_6_2_AnnP_8 + P-network_6_2_AnnP_7 + P-network_6_2_AnnP_6 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_0_4_AnnP_7 + P-network_0_4_AnnP_8 + P-network_6_2_AnnP_5 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_4_2_RP_7 + P-network_4_2_RP_8 + P-network_6_2_AnnP_4 + P-network_6_7_AI_1 + P-network_6_7_AI_2 + P-network_6_7_AI_3 + P-network_6_7_AI_4 + P-network_6_7_AI_5 + P-network_6_7_AI_6 + P-network_6_7_AI_7 + P-network_6_7_AI_8 + P-network_6_2_AnnP_3 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_1 + P-network_3_8_RI_8 + P-network_3_8_RI_7 + P-network_3_8_RI_6 + P-network_3_8_RI_5 + P-network_3_8_RI_4 + P-network_3_8_RI_3 + P-network_7_5_AnnP_1 + P-network_7_5_AnnP_2 + P-network_7_5_AnnP_3 + P-network_7_5_AnnP_4 + P-network_7_5_AnnP_5 + P-network_7_5_AnnP_6 + P-network_7_5_AnnP_7 + P-network_7_5_AnnP_8 + P-network_3_8_RI_2 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_1_RP_7 + P-network_6_1_RP_8 + P-network_3_8_RI_1 + P-network_2_7_AskP_1 + P-network_2_7_AskP_2 + P-network_2_7_AskP_3 + P-network_2_7_AskP_4 + P-network_2_7_AskP_5 + P-network_2_7_AskP_6 + P-network_2_7_AskP_7 + P-network_2_7_AskP_8 + P-network_8_6_AI_1 + P-network_8_6_AI_2 + P-network_8_6_AI_3 + P-network_8_6_AI_4 + P-network_8_6_AI_5 + P-network_8_6_AI_6 + P-network_8_6_AI_7 + P-network_8_6_AI_8 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_1_3_AI_7 + P-network_1_3_AI_8 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_1_6_RI_7 + P-network_1_6_RI_8 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_5_0_AnnP_7 + P-network_5_0_AnnP_8 + P-network_8_0_RP_1 + P-network_8_0_RP_2 + P-network_8_0_RP_3 + P-network_8_0_RP_4 + P-network_8_0_RP_5 + P-network_8_0_RP_6 + P-network_8_0_RP_7 + P-network_8_0_RP_8 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_2_AI_7 + P-network_3_2_AI_8 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_0_2_AskP_7 + P-network_0_2_AskP_8 + P-network_3_5_AI_8 + P-network_3_5_AI_7 + P-network_3_5_AI_6 + P-network_3_5_AI_5 + P-network_3_5_AI_4 + P-network_3_5_AI_3 + P-network_3_5_AI_2 + P-network_3_5_AI_1 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_3_5_RI_7 + P-network_3_5_RI_8 + P-network_7_3_AskP_1 + P-network_7_3_AskP_2 + P-network_7_3_AskP_3 + P-network_7_3_AskP_4 + P-network_7_3_AskP_5 + P-network_7_3_AskP_6 + P-network_7_3_AskP_7 + P-network_7_3_AskP_8 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_5_1_AI_6 + P-network_5_1_AI_7 + P-network_5_1_AI_8 + P-network_1_0_RP_8 + P-network_1_0_RP_7 + P-network_1_0_RP_6 + P-network_1_0_RP_5 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_5_4_RI_7 + P-network_5_4_RI_8 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_8_3_RP_8 + P-network_8_3_RP_7 + P-network_8_3_RP_6 + P-network_8_3_RP_5 + P-network_8_3_RP_4 + P-network_8_3_RP_3 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_6 + P-network_4_4_AnnP_7 + P-network_4_4_AnnP_8 + P-network_8_3_RP_2 + P-network_8_3_RP_1 + P-network_7_0_AI_1 + P-network_7_0_AI_2 + P-network_7_0_AI_3 + P-network_7_0_AI_4 + P-network_8_7_AnnP_8 + P-network_7_0_AI_5 + P-network_8_7_AnnP_7 + P-network_7_0_AI_6 + P-network_8_7_AnnP_6 + P-network_7_0_AI_7 + P-network_8_7_AnnP_5 + P-network_7_0_AI_8 + P-network_8_7_AnnP_4 + P-network_7_3_RI_1 + P-network_7_3_RI_2 + P-network_7_3_RI_3 + P-network_7_3_RI_4 + P-network_7_3_RI_5 + P-network_7_3_RI_6 + P-network_7_3_RI_7 + P-network_7_3_RI_8 + P-network_8_7_AnnP_3 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_0_0_RI_7 + P-network_0_0_RI_8 + P-network_8_7_AnnP_2 + P-network_6_7_AskP_1 + P-network_6_7_AskP_2 + P-network_6_7_AskP_3 + P-network_6_7_AskP_4 + P-network_6_7_AskP_5 + P-network_6_7_AskP_6 + P-network_6_7_AskP_7 + P-network_6_7_AskP_8 + P-network_8_7_AnnP_1 + P-network_1_6_AI_8 + P-network_1_6_AI_7 + P-network_1_6_AI_6 + P-network_1_6_AI_5 + P-network_1_6_AI_4 + P-network_1_6_AI_3 + P-network_1_6_AI_2 + P-network_1_6_AI_1 + P-network_2_0_AskP_8 + P-network_3_8_AnnP_1 + P-network_3_8_AnnP_2 + P-network_3_8_AnnP_3 + P-network_3_8_AnnP_4 + P-network_3_8_AnnP_5 + P-network_3_8_AnnP_6 + P-network_3_8_AnnP_7 + P-network_3_8_AnnP_8 + P-network_2_0_AskP_7 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_4_2_AskP_5 + P-network_4_2_AskP_6 + P-network_4_2_AskP_7 + P-network_4_2_AskP_8 + P-network_2_0_AskP_6 + P-network_2_0_AskP_5 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_8_8_RP_1 + P-network_8_8_RP_2 + P-network_8_8_RP_3 + P-network_8_8_RP_4 + P-network_8_8_RP_5 + P-network_8_8_RP_6 + P-network_8_8_RP_7 + P-network_8_8_RP_8 + P-network_1_5_RP_1 + P-network_1_5_RP_2 + P-network_1_5_RP_3 + P-network_1_5_RP_4 + P-network_1_5_RP_5 + P-network_1_5_RP_6 + P-network_1_5_RP_7 + P-network_1_5_RP_8 + P-network_6_4_RP_8 + P-network_6_4_RP_7 + P-network_6_4_RP_6 + P-network_6_4_RP_5 + P-network_6_4_RP_4 + P-network_6_4_RP_3 + P-network_6_4_RP_2 + P-network_6_4_RP_1 + P-network_1_6_AnnP_8 + P-network_1_6_AnnP_7 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_3_AnnP_7 + P-network_1_3_AnnP_8 + P-network_1_6_AnnP_6 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_3_4_RP_5 + P-network_3_4_RP_6 + P-network_3_4_RP_7 + P-network_3_4_RP_8 + P-network_1_6_AnnP_5 + P-network_1_6_AnnP_4 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_2 + P-network_8_4_AnnP_1 + P-network_8_4_AnnP_2 + P-network_8_4_AnnP_3 + P-network_8_4_AnnP_4 + P-network_8_4_AnnP_5 + P-network_8_4_AnnP_6 + P-network_8_4_AnnP_7 + P-network_8_4_AnnP_8 + P-network_1_6_AnnP_1 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_3_6_AskP_7 + P-network_3_6_AskP_8 + P-network_5_3_RP_1 + P-network_5_3_RP_2 + P-network_5_3_RP_3 + P-network_5_3_RP_4 + P-network_5_3_RP_5 + P-network_5_3_RP_6 + P-network_5_3_RP_7 + P-network_5_3_RP_8 + P-network_7_8_AI_1 + P-network_7_8_AI_2 + P-network_7_8_AI_3 + P-network_7_8_AI_4 + P-network_7_8_AI_5 + P-network_7_8_AI_6 + P-network_7_8_AI_7 + P-network_7_8_AI_8 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_0_5_AI_7 + P-network_0_5_AI_8 + P-network_0_8_RI_1 + P-network_0_8_RI_2 + P-network_0_8_RI_3 + P-network_0_8_RI_4 + P-network_0_8_RI_5 + P-network_0_8_RI_6 + P-network_0_8_RI_7 + P-network_0_8_RI_8 + P-network_0_7_AnnP_1 + P-network_0_7_AnnP_2 + P-network_0_7_AnnP_3 + P-network_0_7_AnnP_4 + P-network_0_7_AnnP_5 + P-network_0_7_AnnP_6 + P-network_0_7_AnnP_7 + P-network_0_7_AnnP_8 + P-network_7_2_RP_1 + P-network_7_2_RP_2 + P-network_7_2_RP_3 + P-network_7_2_RP_4 + P-network_7_2_RP_5 + P-network_7_2_RP_6 + P-network_7_2_RP_7 + P-network_7_2_RP_8 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_1_1_AskP_7 + P-network_1_1_AskP_8 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_4_5_RP_8 + P-network_2_4_AI_4 + P-network_4_5_RP_7 + P-network_2_4_AI_5 + P-network_4_5_RP_6 + P-network_2_4_AI_6 + P-network_4_5_RP_5 + P-network_2_4_AI_7 + P-network_4_5_RP_4 + P-network_2_4_AI_8 + P-network_4_5_RP_3 + P-network_2_7_RI_1 + P-network_2_7_RI_2 + P-network_2_7_RI_3 + P-network_2_7_RI_4 + P-network_2_7_RI_5 + P-network_2_7_RI_6 + P-network_2_7_RI_7 + P-network_2_7_RI_8 + P-network_4_5_RP_2 + P-network_7_8_AnnP_1 + P-network_7_8_AnnP_2 + P-network_7_8_AnnP_3 + P-network_7_8_AnnP_4 + P-network_7_8_AnnP_5 + P-network_7_8_AnnP_6 + P-network_7_8_AnnP_7 + P-network_7_8_AnnP_8 + P-network_4_5_RP_1 + P-network_8_2_AskP_1 + P-network_8_2_AskP_2 + P-network_8_2_AskP_3 + P-network_8_2_AskP_4 + P-network_8_2_AskP_5 + P-network_8_2_AskP_6 + P-network_8_2_AskP_7 + P-network_8_2_AskP_8 + P-network_4_5_AskP_8 + P-network_4_5_AskP_7 + P-network_4_5_AskP_6 + P-network_4_5_AskP_5 + P-network_4_5_AskP_4 + P-network_4_5_AskP_3 + P-network_4_5_AskP_2 + P-network_4_5_AskP_1 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_3_AI_7 + P-network_4_3_AI_8 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_4_6_RI_7 + P-network_4_6_RI_8 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_5_3_AnnP_7 + P-network_5_3_AnnP_8 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_6_2_AI_7 + P-network_6_2_AI_8 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_0_5_AskP_7 + P-network_0_5_AskP_8 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_6_5_RI_7 + P-network_6_5_RI_8 + P-network_7_6_AskP_1 + P-network_7_6_AskP_2 + P-network_7_6_AskP_3 + P-network_7_6_AskP_4 + P-network_7_6_AskP_5 + P-network_7_6_AskP_6 + P-network_7_6_AskP_7 + P-network_7_6_AskP_8 + P-network_8_1_AI_1 + P-network_8_1_AI_2 + P-network_8_1_AI_3 + P-network_8_1_AI_4 + P-network_8_1_AI_5 + P-network_8_1_AI_6 + P-network_8_1_AI_7 + P-network_8_1_AI_8 + P-network_2_6_RP_8 + P-network_2_6_RP_7 + P-network_2_6_RP_6 + P-network_2_6_RP_5 + P-network_8_4_RI_1 + P-network_8_4_RI_2 + P-network_8_4_RI_3 + P-network_8_4_RI_4 + P-network_8_4_RI_5 + P-network_8_4_RI_6 + P-network_8_4_RI_7 + P-network_8_4_RI_8 + P-network_2_6_RP_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_1_1_RI_7 + P-network_1_1_RI_8 + P-network_2_6_RP_3 + P-network_2_6_RP_2 + P-network_2_6_RP_1 + P-network_2_2_AnnP_8 + P-network_2_2_AnnP_7 + P-network_4_7_AnnP_1 + P-network_4_7_AnnP_2 + P-network_4_7_AnnP_3 + P-network_4_7_AnnP_4 + P-network_4_7_AnnP_5 + P-network_4_7_AnnP_6 + P-network_4_7_AnnP_7 + P-network_4_7_AnnP_8 + P-network_2_2_AnnP_6 + P-network_5_1_AskP_1 + P-network_5_1_AskP_2 + P-network_5_1_AskP_3 + P-network_5_1_AskP_4 + P-network_5_1_AskP_5 + P-network_5_1_AskP_6 + P-network_5_1_AskP_7 + P-network_5_1_AskP_8 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_3 + P-network_0_7_RP_1 + P-network_3_0_RI_4 + P-network_0_7_RP_2 + P-network_3_0_RI_5 + P-network_0_7_RP_3 + P-network_3_0_RI_6 + P-network_0_7_RP_4 + P-network_3_0_RI_7 + P-network_0_7_RP_5 + P-network_3_0_RI_8 + P-network_0_7_RP_6 + P-network_0_7_RP_7 + P-network_0_7_RP_8)))))) : A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-masterState_3_F_6 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_6_T_8 + P-masterState_6_T_7 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_4_T_5 + P-masterState_4_T_6 + P-masterState_4_T_7 + P-masterState_4_T_8 + P-masterState_0_F_7 + P-masterState_0_F_6 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_8_F_7 + P-masterState_8_F_6 + P-masterState_8_F_5 + P-masterState_8_F_4 + P-masterState_8_F_3 + P-masterState_8_F_2 + P-masterState_8_F_1 + P-masterState_8_F_0 + P-masterState_3_T_8 + P-masterState_3_T_7 + P-masterState_3_T_6 + P-masterState_3_T_5 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_1_F_7 + P-masterState_1_F_8 + P-masterState_5_F_7 + P-masterState_5_F_6 + P-masterState_5_F_5 + P-masterState_5_F_4 + P-masterState_5_F_3 + P-masterState_5_F_2 + P-masterState_5_F_1 + P-masterState_5_F_0 + P-masterState_0_T_8 + P-masterState_0_T_7 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_8_T_8 + P-masterState_8_T_7 + P-masterState_8_T_6 + P-masterState_8_T_5 + P-masterState_8_T_4 + P-masterState_8_T_3 + P-masterState_8_T_2 + P-masterState_8_T_1 + P-masterState_8_T_0 + P-masterState_2_F_7 + P-masterState_2_F_6 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_5_T_8 + P-masterState_5_T_7 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_7_T_0 + P-masterState_7_T_1 + P-masterState_7_T_2 + P-masterState_7_T_3 + P-masterState_7_T_4 + P-masterState_7_T_5 + P-masterState_7_T_6 + P-masterState_7_T_7 + P-masterState_7_T_8 + P-masterState_7_F_7 + P-masterState_7_F_6 + P-masterState_7_F_5 + P-masterState_7_F_4 + P-masterState_7_F_3 + P-masterState_7_F_2 + P-masterState_7_F_1 + P-masterState_7_F_0 + P-masterState_2_T_8 + P-masterState_2_T_7 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_4_F_4 + P-masterState_4_F_5 + P-masterState_4_F_6 + P-masterState_4_F_7 + P-masterState_4_F_8 + P-masterState_7_F_8 + P-masterState_2_F_8 + P-masterState_5_F_8 + P-masterState_8_F_8 + P-masterState_0_F_8 + P-masterState_3_F_8 + P-masterState_1_T_8 + P-masterState_6_F_8)))))) : A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO) U (P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO))))) : A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8)))))) : A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)))))) : A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)) U X ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)))) : A ((1 <= P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0)) : A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8))))) : A ((P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8)) : A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0))))) : A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8)))))) : A (F (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1))))))
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 <= P-stage_2_SEC + P-stage_3_NEG + P-stage_1_SEC + P-stage_5_SEC + P-stage_4_PRIM + P-stage_6_SEC + P-stage_3_SEC + P-stage_0_SEC + P-stage_7_PRIM + P-stage_8_SEC + P-stage_1_NEG + P-stage_2_PRIM + P-stage_6_NEG + P-stage_4_NEG + P-stage_5_PRIM + P-stage_7_NEG + P-stage_0_PRIM + P-stage_8_PRIM + P-stage_2_NEG + P-stage_3_PRIM + P-stage_4_SEC + P-stage_5_NEG + P-stage_7_SEC + P-stage_6_PRIM + P-stage_8_NEG + P-stage_0_NEG + P-stage_1_PRIM) U X (F ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)))))
lola: processed formula: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_... (shortened)
lola: processed formula length: 14241
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 1 will run for 235 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1))))))
lola: processed formula: A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_... (shortened)
lola: processed formula length: 2423
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 2 will run for 252 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))))))
lola: processed formula: A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))))))
lola: processed formula length: 389
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((3 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6... (shortened)
lola: processed formula length: 13612
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: ========================================
lola: subprocess 4 will run for 294 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_8_1_AI_0 + P-network_7_6_AskP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_0 + P-network_4_5_AskP_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_4_5_RP_0 + P-network_8_2_AskP_0 + P-network_7_8_AnnP_0 + P-network_2_7_RI_0 + P-network_2_4_AI_0 + P-network_1_1_AskP_0 + P-network_7_2_RP_0 + P-network_0_7_AnnP_0 + P-network_7_5_AnsP_8 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_0_8_RI_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_0_5_AI_0 + P-network_7_8_AI_0 + P-network_5_3_RP_0 + P-network_3_6_AskP_0 + P-network_8_4_AnsP_0 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_8 + P-network_1_6_AnnP_0 + P-network_8_4_AnnP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_6_4_RP_0 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_1_5_RP_0 + P-network_8_8_RP_0 + P-network_2_0_AskP_0 + P-network_4_2_AskP_0 + P-network_3_8_AnnP_0 + P-network_1_6_AI_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_8_7_AnnP_0 + P-network_3_5_AnsP_0 + P-network_6_7_AskP_0 + P-network_0_0_RI_0 + P-network_7_3_RI_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_4_AnnP_0 + P-network_1_0_RP_0 + P-network_5_4_RI_0 + P-network_4_1_AnsP_8 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_5_1_AI_0 + P-network_7_3_AskP_0 + P-network_3_5_AI_0 + P-network_3_5_RI_0 + P-network_0_7_AnsP_0 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_8 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_6_6_AnsP_8 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_0 + P-network_8_0_RP_0 + P-network_5_0_AnnP_0 + P-network_1_6_RI_0 + P-network_1_3_AI_0 + P-network_8_6_AI_0 + P-network_3_8_RI_0 + P-network_2_7_AskP_0 + P-network_6_1_RP_0 + P-network_7_5_AnnP_0 + P-network_6_2_AnnP_0 + P-network_6_7_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_8_AnsP_0 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_8 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_1_4_AskP_0 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_8_AI_0 + P-network_5_4_AI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_8_1_AnnP_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_5_7_RI_0 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_0_4_RP_0 + P-network_7_7_RP_0 + P-network_1_0_AnnP_0 + P-network_5_8_AskP_0 + P-network_8_5_AskP_0 + P-network_5_8_RP_0 + P-network_8_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_8 + P-network_3_5_AnnP_0 + P-network_7_3_AI_0 + P-network_6_2_RI_0 + P-network_3_2_AnsP_8 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_4 + P-network_0_0_AI_0 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_6_4_AskP_0 + P-network_7_6_RI_0 + P-network_0_3_RI_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_2_1_AI_0 + P-network_1_8_AskP_0 + P-network_7_0_AskP_0 + P-network_6_6_AnnP_0 + P-network_0_5_RI_0 + P-network_7_8_RI_0 + P-network_0_2_AI_0 + P-network_7_5_AI_0 + P-network_6_3_AnsP_8 + P-network_5_6_AnnP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_6_0_AskP_0 + P-network_5_0_RP_0 + P-network_5_6_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_0_8_AskP_0 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_7_2_AnnP_0 + P-network_3_7_AI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_2_2_RI_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_1_2_RP_0 + P-network_8_5_RP_0 + P-network_0_1_AnnP_0 + P-network_1_8_AI_0 + P-network_6_6_RP_0 + P-network_3_0_AskP_0 + P-network_2_6_AnnP_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_4_7_RP_0 + P-network_7_0_RI_0 + P-network_3_1_AnnP_0 + P-network_5_5_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_2_8_RP_0 + P-network_5_1_RI_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_1_RI_0 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_1_8_RP_0 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_4_8_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_6_1_AskP_0 + P-network_5_7_AnnP_0 + P-network_1_3_RI_0 + P-network_8_6_RI_0 + P-network_1_0_AI_0 + P-network_8_3_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_8_6_AskP_0 + P-network_6_7_RI_0 + P-network_5_4_AskP_0 + P-network_6_4_AI_0 + P-network_1_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_4_8_RI_0 + P-network_0_8_AnsP_8 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_4 + P-network_6_0_RI_0 + P-network_0_8_AnsP_3 + P-network_3_7_RP_0 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_0 + P-network_4_5_AI_0 + P-network_6_0_AnsP_8 + P-network_6_0_AnsP_7 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_0 + P-network_2_0_RP_0 + P-network_8_8_AnnP_0 + P-network_2_6_AI_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_7_4_RP_0 + P-network_1_7_AnnP_0 + P-network_8_5_AnsP_8 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_0 + P-network_0_7_AI_0 + P-network_2_5_AnnP_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_5_RP_0 + P-network_5_6_RP_0 + P-network_4_6_AskP_0 + P-network_3_6_RP_0 + P-network_2_3_AnnP_0 + P-network_0_8_AI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_7_RP_0 + P-network_4_0_RI_0 + P-network_5_2_AskP_0 + P-network_4_8_AnnP_0 + P-network_4_8_AskP_0 + P-network_0_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_7_5_RP_0 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_7_7_AskP_0 + P-network_0_2_RI_0 + P-network_7_5_RI_0 + P-network_0_2_RP_0 + P-network_0_6_AskP_0 + P-network_7_2_AI_0 + P-network_1_6_AnsP_0 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_8 + P-network_5_4_AnnP_0 + P-network_5_6_RI_0 + P-network_5_3_AI_0 + P-network_5_1_AnsP_8 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_5 + P-network_2_7_AI_0 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_0 + P-network_8_3_AskP_0 + P-network_3_7_RI_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_8_2_RP_0 + P-network_0_8_AnnP_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_1_AnnP_0 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_8_7_AnsP_0 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_8 + P-network_6_0_AnnP_0 + P-network_1_8_RI_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_1_5_AI_0 + P-network_8_8_AI_0 + P-network_6_3_RP_0 + P-network_3_7_AskP_0 + P-network_2_1_RP_0 + P-network_8_5_AnnP_0 + P-network_2_3_AskP_0 + P-network_4_4_RP_0 + P-network_4_6_AI_0 + P-network_1_4_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_4_0_RP_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_6_2_AnsP_0 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_8 + P-network_1_1_AnsP_0 + P-network_2_5_RP_0 + P-network_6_5_AI_0 + P-network_4_3_AskP_0 + P-network_0_6_RP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_2_0_AnnP_0 + P-network_6_8_RI_0 + P-network_6_8_AskP_0 + P-network_1_0_RI_0 + P-network_8_3_RI_0 + P-network_6_5_AnnP_0 + P-network_8_0_AI_0 + P-network_4_5_AnnP_0 + P-network_6_4_RI_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_1_7_AskP_0 + P-network_4_2_AnsP_0 + P-network_6_1_AI_0 + P-network_7_4_AskP_0 + P-network_4_5_RI_0 + P-network_8_4_AI_0 + P-network_0_3_AskP_0 + P-network_1_1_AI_0 + P-network_4_2_AI_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_5_1_AnnP_0 + P-network_8_7_RI_0 + P-network_1_4_RI_0 + P-network_2_6_RI_0 + P-network_2_3_AI_0 + P-network_2_8_AskP_0 + P-network_7_1_RP_0 + P-network_8_0_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RI_0 + P-network_0_4_AI_0 + P-network_8_8_AskP_0 + P-network_7_7_AI_0 + P-network_5_2_RP_0 + P-network_0_5_AnnP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_4_0_AnnP_0 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_5_8_AI_0 + P-network_3_0_AI_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_8_2_AnnP_0 + P-network_2_7_AnsP_8 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_0 + P-network_1_4_RP_0 + P-network_8_7_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_RI_0 + P-network_6_8_RP_0 + P-network_4_0_AskP_0 + P-network_3_6_AnnP_0 + P-network_7_2_RI_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_6_5_AskP_0 + P-network_6_3_AskP_0 + P-network_5_3_RI_0 + P-network_5_0_AI_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_8 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_7_1_AskP_0 + P-network_6_7_AnnP_0 + P-network_1_5_RI_0 + P-network_8_8_RI_0 + P-network_5_2_RI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_8_5_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_6_0_RP_0 + P-network_6_6_AI_0 + P-network_3_4_AnnP_0 + P-network_2_5_AskP_0 + P-network_4_1_RP_0 + P-network_7_3_AnnP_0 + P-network_4_7_AI_0 + P-network_7_1_RI_0 + P-network_1_8_AnsP_8 + P-network_4_8_RP_0 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_7_0_AnsP_8 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_0 + P-network_2_8_AI_0 + P-network_0_3_RP_0 + P-network_7_6_RP_0 + P-network_3_1_AskP_0 + P-network_2_7_AnnP_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_5_7_RP_0 + P-network_8_0_RI_0 + P-network_5_6_AskP_0 + P-network_3_8_RP_0 + P-network_5_7_AskP_0 + P-network_6_1_RI_0 + P-network_6_7_RP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_2_5_AnsP_0 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_8 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_6_2_AskP_0 + P-network_5_8_AnnP_0 + P-network_8_0_AnnP_0 + P-network_2_8_AnnP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_8_7_AskP_0 + P-network_0_4_RI_0 + P-network_7_7_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_7_4_AI_0 + P-network_8_6_RP_0 + P-network_1_6_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_8_RI_0 + P-network_1_3_RP_0 + P-network_5_5_AI_0 + P-network_6_1_AnsP_8 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_6 + P-network_3_8_AI_0 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_0 + P-network_3_0_RP_0 + P-network_3_6_AI_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_8 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_8_4_RP_0 + P-network_1_8_AnnP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_7_0_AnnP_0 + P-network_7_1_AnsP_0 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_8 + P-network_0_3_AnnP_0 + P-network_1_7_AI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_5_RP_0 + P-network_4_7_AskP_0 + P-network_3_2_RP_0 + P-network_5_7_AI_0 + P-network_4_6_RP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_2_7_RP_0 + P-network_5_0_RI_0 + P-network_5_3_AskP_0 + P-network_7_4_AnnP_0 + P-network_0_8_RP_0 + P-network_3_1_RI_0 + P-network_4_6_AnsP_8 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_3 + P-network_5_1_RP_0 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_0 + P-network_3_0_AnnP_0 + P-network_7_8_AskP_0 + P-network_1_2_RI_0 + P-network_8_5_RI_0 + P-network_0_7_AskP_0 + P-network_8_2_AI_0 + P-network_2_6_AskP_0 + P-network_5_5_AnnP_0 + P-network_7_6_AI_0 + P-network_6_6_RI_0 + P-network_6_3_AI_0 + P-network_0_3_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_8_4_AskP_0 + P-network_4_7_RI_0 + P-network_0_6_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_6_1_AnnP_0 + P-network_2_8_RI_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_7_0_RP_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_2_5_AI_0 + P-network_6_5_AnsP_0 + P-network_0_0_RP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_8 + P-network_7_3_RP_0 + P-network_3_8_AskP_0 + P-network_2_2_AI_0 + P-network_8_6_AnnP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_5_4_RP_0 + P-network_1_5_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_2_5_RI_0 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_3_5_RP_0 + P-network_4_4_AskP_0 + P-network_6_8_AnnP_0 + P-network_1_6_RP_0 + P-network_3_7_AnsP_8 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_3 + P-network_7_2_AskP_0 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_4_1_AI_0 + P-network_5_0_AskP_0 + P-network_4_6_AnnP_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_8 + P-network_0_1_RI_0 + P-network_7_4_RI_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_7_1_AI_0 + P-network_7_5_AskP_0 + P-network_4_4_RI_0 + P-network_5_5_RI_0 + P-network_0_4_AskP_0 + P-network_5_2_AI_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_5_2_AnnP_0 + P-network_3_6_RI_0 + P-network_3_3_AI_0 + P-network_4_3_AnnP_0 + P-network_6_0_AI_0 + P-network_8_1_RP_0 + P-network_8_1_AskP_0 + P-network_7_7_AnnP_0 + P-network_1_7_RI_0 + P-network_6_3_RI_0 + P-network_1_4_AI_0 + P-network_8_7_AI_0 + P-network_1_0_AskP_0 + P-network_6_2_RP_0 + P-network_0_6_AnnP_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_0_3_AnsP_8 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_0 + P-network_6_8_AI_0 + P-network_4_3_RP_0 + P-network_3_5_AskP_0 + P-network_8_3_AnnP_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_6_6_AskP_0 + P-network_2_8_AnsP_4 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_2_4_RP_0 + P-network_1_2_AnnP_0 + P-network_8_0_AnsP_8 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_8 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_0 + P-network_8_2_RI_0 + P-network_0_5_RP_0 + P-network_7_8_RP_0 + P-network_4_1_AskP_0 + P-network_3_7_AnnP_0 + P-network_3_7_AnnP_1 + P-network_3_7_AnnP_2 + P-network_3_7_AnnP_3 + P-network_3_7_AnnP_4 + P-network_3_7_AnnP_5 + P-network_3_7_AnnP_6 + P-network_3_7_AnnP_7 + P-network_3_7_AnnP_8 + P-network_4_1_AskP_1 + P-network_4_1_AskP_2 + P-network_4_1_AskP_3 + P-network_4_1_AskP_4 + P-network_4_1_AskP_5 + P-network_4_1_AskP_6 + P-network_4_1_AskP_7 + P-network_4_1_AskP_8 + P-network_8_2_RI_8 + P-network_8_2_RI_7 + P-network_8_2_RI_6 + P-network_8_2_RI_5 + P-network_8_2_RI_4 + P-network_7_8_RP_1 + P-network_7_8_RP_2 + P-network_7_8_RP_3 + P-network_7_8_RP_4 + P-network_7_8_RP_5 + P-network_7_8_RP_6 + P-network_7_8_RP_7 + P-network_7_8_RP_8 + P-network_8_2_RI_3 + P-network_0_5_RP_1 + P-network_0_5_RP_2 + P-network_0_5_RP_3 + P-network_0_5_RP_4 + P-network_0_5_RP_5 + P-network_0_5_RP_6 + P-network_0_5_RP_7 + P-network_0_5_RP_8 + P-network_8_2_RI_2 + P-network_8_2_RI_1 + P-network_6_6_AskP_8 + P-network_6_6_AskP_7 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_7 + P-network_1_2_AnnP_8 + P-network_6_6_AskP_6 + P-network_2_4_RP_1 + P-network_2_4_RP_2 + P-network_2_4_RP_3 + P-network_2_4_RP_4 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_7 + P-network_2_4_RP_8 + P-network_6_6_AskP_5 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_8_3_AnnP_1 + P-network_8_3_AnnP_2 + P-network_8_3_AnnP_3 + P-network_8_3_AnnP_4 + P-network_8_3_AnnP_5 + P-network_8_3_AnnP_6 + P-network_8_3_AnnP_7 + P-network_8_3_AnnP_8 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_3_5_AskP_7 + P-network_3_5_AskP_8 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_4_3_RP_7 + P-network_4_3_RP_8 + P-network_6_8_AI_1 + P-network_6_8_AI_2 + P-network_6_8_AI_3 + P-network_6_8_AI_4 + P-network_6_8_AI_5 + P-network_6_8_AI_6 + P-network_6_8_AI_7 + P-network_6_8_AI_8 + P-network_6_3_RI_8 + P-network_6_3_RI_7 + P-network_6_3_RI_6 + P-network_0_6_AnnP_1 + P-network_0_6_AnnP_2 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_6 + P-network_0_6_AnnP_7 + P-network_0_6_AnnP_8 + P-network_6_3_RI_5 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_6_2_RP_7 + P-network_6_2_RP_8 + P-network_6_3_RI_4 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_0_AskP_7 + P-network_1_0_AskP_8 + P-network_6_3_RI_3 + P-network_8_7_AI_1 + P-network_8_7_AI_2 + P-network_8_7_AI_3 + P-network_8_7_AI_4 + P-network_8_7_AI_5 + P-network_8_7_AI_6 + P-network_8_7_AI_7 + P-network_8_7_AI_8 + P-network_6_3_RI_2 + P-network_6_3_RI_1 + P-network_1_4_AI_1 + P-network_1_4_AI_2 + P-network_1_4_AI_3 + P-network_1_4_AI_4 + P-network_1_4_AI_5 + P-network_1_4_AI_6 + P-network_1_4_AI_7 + P-network_1_4_AI_8 + P-network_1_7_RI_1 + P-network_1_7_RI_2 + P-network_1_7_RI_3 + P-network_1_7_RI_4 + P-network_1_7_RI_5 + P-network_1_7_RI_6 + P-network_1_7_RI_7 + P-network_1_7_RI_8 + P-network_7_7_AnnP_1 + P-network_7_7_AnnP_2 + P-network_7_7_AnnP_3 + P-network_7_7_AnnP_4 + P-network_7_7_AnnP_5 + P-network_7_7_AnnP_6 + P-network_7_7_AnnP_7 + P-network_7_7_AnnP_8 + P-network_6_0_AI_8 + P-network_6_0_AI_7 + P-network_8_1_AskP_1 + P-network_8_1_AskP_2 + P-network_8_1_AskP_3 + P-network_8_1_AskP_4 + P-network_8_1_AskP_5 + P-network_8_1_AskP_6 + P-network_8_1_AskP_7 + P-network_8_1_AskP_8 + P-network_6_0_AI_6 + P-network_8_1_RP_1 + P-network_8_1_RP_2 + P-network_8_1_RP_3 + P-network_8_1_RP_4 + P-network_8_1_RP_5 + P-network_8_1_RP_6 + P-network_8_1_RP_7 + P-network_8_1_RP_8 + P-network_6_0_AI_5 + P-network_6_0_AI_4 + P-network_6_0_AI_3 + P-network_6_0_AI_2 + P-network_6_0_AI_1 + P-network_4_3_AnnP_8 + P-network_4_3_AnnP_7 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_3_3_AI_1 + P-network_3_3_AI_2 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_5 + P-network_3_3_AI_6 + P-network_3_3_AI_7 + P-network_3_3_AI_8 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_3_6_RI_7 + P-network_3_6_RI_8 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AnnP_7 + P-network_5_2_AnnP_8 + P-network_5_2_AI_1 + P-network_5_2_AI_2 + P-network_5_2_AI_3 + P-network_5_2_AI_4 + P-network_5_2_AI_5 + P-network_5_2_AI_6 + P-network_5_2_AI_7 + P-network_5_2_AI_8 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_0_4_AskP_7 + P-network_0_4_AskP_8 + P-network_4_4_RI_8 + P-network_4_4_RI_7 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_5_5_RI_7 + P-network_5_5_RI_8 + P-network_4_4_RI_1 + P-network_7_5_AskP_1 + P-network_7_5_AskP_2 + P-network_7_5_AskP_3 + P-network_7_5_AskP_4 + P-network_7_5_AskP_5 + P-network_7_5_AskP_6 + P-network_7_5_AskP_7 + P-network_7_5_AskP_8 + P-network_7_1_AI_1 + P-network_7_1_AI_2 + P-network_7_1_AI_3 + P-network_7_1_AI_4 + P-network_7_1_AI_5 + P-network_7_1_AI_6 + P-network_7_1_AI_7 + P-network_7_1_AI_8 + P-network_7_4_RI_1 + P-network_7_4_RI_2 + P-network_7_4_RI_3 + P-network_7_4_RI_4 + P-network_7_4_RI_5 + P-network_7_4_RI_6 + P-network_7_4_RI_7 + P-network_7_4_RI_8 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_0_1_RI_5 + P-network_0_1_RI_6 + P-network_0_1_RI_7 + P-network_0_1_RI_8 + P-network_4_1_AI_8 + P-network_4_1_AI_7 + P-network_4_1_AI_6 + P-network_4_1_AI_5 + P-network_4_1_AI_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_4_6_AnnP_7 + P-network_4_6_AnnP_8 + P-network_4_1_AI_1 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_5_0_AskP_7 + P-network_5_0_AskP_8 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_2_0_RI_5 + P-network_2_0_RI_6 + P-network_2_0_RI_7 + P-network_2_0_RI_8 + P-network_7_2_AskP_8 + P-network_7_2_AskP_7 + P-network_7_2_AskP_6 + P-network_7_2_AskP_5 + P-network_7_2_AskP_4 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_2_1_AnnP_7 + P-network_2_1_AnnP_8 + P-network_7_2_AskP_3 + P-network_7_2_AskP_2 + P-network_7_2_AskP_1 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_1_6_RP_7 + P-network_1_6_RP_8 + P-network_6_8_AnnP_8 + P-network_6_8_AnnP_7 + P-network_6_8_AnnP_6 + P-network_6_8_AnnP_5 + P-network_6_8_AnnP_4 + P-network_6_8_AnnP_3 + P-network_6_8_AnnP_2 + P-network_6_8_AnnP_1 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_4_4_AskP_7 + P-network_4_4_AskP_8 + P-network_2_5_RI_8 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_3_5_RP_7 + P-network_3_5_RP_8 + P-network_2_5_RI_7 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_2_5_RI_3 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_0_1_AskP_8 + P-network_0_1_AskP_7 + P-network_0_1_AskP_6 + P-network_1_5_AnnP_1 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_3 + P-network_1_5_AnnP_4 + P-network_1_5_AnnP_5 + P-network_1_5_AnnP_6 + P-network_1_5_AnnP_7 + P-network_1_5_AnnP_8 + P-network_0_1_AskP_5 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_5_4_RP_7 + P-network_5_4_RP_8 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_8 + P-network_2_2_AI_7 + P-network_2_2_AI_6 + P-network_2_2_AI_5 + P-network_2_2_AI_4 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_6_AI_7 + P-network_0_6_AI_8 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_8_6_AnnP_1 + P-network_8_6_AnnP_2 + P-network_8_6_AnnP_3 + P-network_8_6_AnnP_4 + P-network_8_6_AnnP_5 + P-network_8_6_AnnP_6 + P-network_8_6_AnnP_7 + P-network_8_6_AnnP_8 + P-network_2_2_AI_1 + P-network_3_8_AskP_1 + P-network_3_8_AskP_2 + P-network_3_8_AskP_3 + P-network_3_8_AskP_4 + P-network_3_8_AskP_5 + P-network_3_8_AskP_6 + P-network_3_8_AskP_7 + P-network_3_8_AskP_8 + P-network_7_3_RP_1 + P-network_7_3_RP_2 + P-network_7_3_RP_3 + P-network_7_3_RP_4 + P-network_7_3_RP_5 + P-network_7_3_RP_6 + P-network_7_3_RP_7 + P-network_7_3_RP_8 + P-network_7_0_RP_8 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_0_0_RP_5 + P-network_0_0_RP_6 + P-network_0_0_RP_7 + P-network_0_0_RP_8 + P-network_7_0_RP_7 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_7_0_RP_6 + P-network_2_5_AI_3 + P-network_7_0_RP_5 + P-network_2_5_AI_4 + P-network_7_0_RP_4 + P-network_2_5_AI_5 + P-network_7_0_RP_3 + P-network_2_5_AI_6 + P-network_7_0_RP_2 + P-network_2_5_AI_7 + P-network_7_0_RP_1 + P-network_2_5_AI_8 + P-network_2_8_RI_1 + P-network_2_8_RI_2 + P-network_2_8_RI_3 + P-network_2_8_RI_4 + P-network_2_8_RI_5 + P-network_2_8_RI_6 + P-network_2_8_RI_7 + P-network_2_8_RI_8 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_1_AnnP_7 + P-network_6_1_AnnP_8 + P-network_0_6_RI_8 + P-network_0_6_RI_7 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_1_3_AskP_5 + P-network_1_3_AskP_6 + P-network_1_3_AskP_7 + P-network_1_3_AskP_8 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_4_4_AI_1 + P-network_0_6_RI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_4_4_AI_7 + P-network_4_4_AI_8 + P-network_4_7_RI_1 + P-network_4_7_RI_2 + P-network_4_7_RI_3 + P-network_4_7_RI_4 + P-network_4_7_RI_5 + P-network_4_7_RI_6 + P-network_4_7_RI_7 + P-network_4_7_RI_8 + P-network_8_4_AskP_1 + P-network_8_4_AskP_2 + P-network_8_4_AskP_3 + P-network_8_4_AskP_4 + P-network_8_4_AskP_5 + P-network_8_4_AskP_6 + P-network_8_4_AskP_7 + P-network_8_4_AskP_8 + P-network_0_3_AI_8 + P-network_0_3_AI_7 + P-network_0_3_AI_6 + P-network_0_3_AI_5 + P-network_0_3_AI_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_7_6_AI_8 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_3_AI_7 + P-network_6_3_AI_8 + P-network_7_6_AI_7 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_6_6_RI_7 + P-network_6_6_RI_8 + P-network_7_6_AI_6 + P-network_7_6_AI_5 + P-network_7_6_AI_4 + P-network_7_6_AI_3 + P-network_7_6_AI_2 + P-network_7_6_AI_1 + P-network_2_6_AskP_8 + P-network_2_6_AskP_7 + P-network_2_6_AskP_6 + P-network_2_6_AskP_5 + P-network_2_6_AskP_4 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_5_5_AnnP_7 + P-network_5_5_AnnP_8 + P-network_2_6_AskP_3 + P-network_2_6_AskP_2 + P-network_2_6_AskP_1 + P-network_8_2_AI_1 + P-network_8_2_AI_2 + P-network_8_2_AI_3 + P-network_8_2_AI_4 + P-network_8_2_AI_5 + P-network_8_2_AI_6 + P-network_8_2_AI_7 + P-network_8_2_AI_8 + P-network_5_1_RP_8 + P-network_0_7_AskP_1 + P-network_0_7_AskP_2 + P-network_0_7_AskP_3 + P-network_0_7_AskP_4 + P-network_0_7_AskP_5 + P-network_0_7_AskP_6 + P-network_0_7_AskP_7 + P-network_0_7_AskP_8 + P-network_8_5_RI_1 + P-network_8_5_RI_2 + P-network_8_5_RI_3 + P-network_8_5_RI_4 + P-network_8_5_RI_5 + P-network_8_5_RI_6 + P-network_8_5_RI_7 + P-network_8_5_RI_8 + P-network_5_1_RP_7 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_1_2_RI_7 + P-network_1_2_RI_8 + P-network_5_1_RP_6 + P-network_7_8_AskP_1 + P-network_7_8_AskP_2 + P-network_7_8_AskP_3 + P-network_7_8_AskP_4 + P-network_7_8_AskP_5 + P-network_7_8_AskP_6 + P-network_7_8_AskP_7 + P-network_7_8_AskP_8 + P-network_5_1_RP_5 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_0_AnnP_7 + P-network_3_0_AnnP_8 + P-network_5_1_RP_4 + P-network_5_1_RP_3 + P-network_5_1_RP_2 + P-network_5_1_RP_1 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_0_8_RP_1 + P-network_3_1_RI_4 + P-network_0_8_RP_2 + P-network_3_1_RI_5 + P-network_0_8_RP_3 + P-network_3_1_RI_6 + P-network_0_8_RP_4 + P-network_3_1_RI_7 + P-network_0_8_RP_5 + P-network_3_1_RI_8 + P-network_0_8_RP_6 + P-network_0_8_RP_7 + P-network_0_8_RP_8 + P-network_7_4_AnnP_8 + P-network_7_4_AnnP_7 + P-network_7_4_AnnP_6 + P-network_7_4_AnnP_5 + P-network_7_4_AnnP_4 + P-network_7_4_AnnP_3 + P-network_7_4_AnnP_2 + P-network_7_4_AnnP_1 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_5_3_AskP_7 + P-network_5_3_AskP_8 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_2_7_RP_1 + P-network_5_0_RI_4 + P-network_2_7_RP_2 + P-network_5_0_RI_5 + P-network_2_7_RP_3 + P-network_5_0_RI_6 + P-network_2_7_RP_4 + P-network_5_0_RI_7 + P-network_2_7_RP_5 + P-network_5_0_RI_8 + P-network_2_7_RP_6 + P-network_2_7_RP_7 + P-network_2_7_RP_8 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_2_4_AnnP_7 + P-network_2_4_AnnP_8 + P-network_4_6_RP_1 + P-network_4_6_RP_2 + P-network_4_6_RP_3 + P-network_4_6_RP_4 + P-network_4_6_RP_5 + P-network_4_6_RP_6 + P-network_4_6_RP_7 + P-network_4_6_RP_8 + P-network_5_7_AI_8 + P-network_5_7_AI_7 + P-network_5_7_AI_6 + P-network_5_7_AI_5 + P-network_5_7_AI_4 + P-network_5_7_AI_3 + P-network_5_7_AI_2 + P-network_5_7_AI_1 + P-network_3_2_RP_8 + P-network_3_2_RP_7 + P-network_3_2_RP_6 + P-network_3_2_RP_5 + P-network_3_2_RP_4 + P-network_3_2_RP_3 + P-network_3_2_RP_2 + P-network_3_2_RP_1 + P-network_0_3_AnnP_8 + P-network_4_7_AskP_1 + P-network_4_7_AskP_2 + P-network_4_7_AskP_3 + P-network_4_7_AskP_4 + P-network_4_7_AskP_5 + P-network_4_7_AskP_6 + P-network_4_7_AskP_7 + P-network_4_7_AskP_8 + P-network_6_5_RP_1 + P-network_6_5_RP_2 + P-network_6_5_RP_3 + P-network_6_5_RP_4 + P-network_6_5_RP_5 + P-network_6_5_RP_6 + P-network_6_5_RP_7 + P-network_6_5_RP_8 + P-network_0_3_AnnP_7 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_1_7_AI_1 + P-network_1_7_AI_2 + P-network_1_7_AI_3 + P-network_1_7_AI_4 + P-network_1_7_AI_5 + P-network_1_7_AI_6 + P-network_1_7_AI_7 + P-network_1_7_AI_8 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_7_0_AnnP_1 + P-network_7_0_AnnP_2 + P-network_7_0_AnnP_3 + P-network_7_0_AnnP_4 + P-network_7_0_AnnP_5 + P-network_7_0_AnnP_6 + P-network_7_0_AnnP_7 + P-network_7_0_AnnP_8 + P-network_1_8_AnnP_1 + P-network_1_8_AnnP_2 + P-network_1_8_AnnP_3 + P-network_1_8_AnnP_4 + P-network_1_8_AnnP_5 + P-network_1_8_AnnP_6 + P-network_1_8_AnnP_7 + P-network_1_8_AnnP_8 + P-network_8_4_RP_1 + P-network_8_4_RP_2 + P-network_8_4_RP_3 + P-network_8_4_RP_4 + P-network_8_4_RP_5 + P-network_8_4_RP_6 + P-network_8_4_RP_7 + P-network_8_4_RP_8 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_1_1_RP_7 + P-network_1_1_RP_8 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_2_2_AskP_5 + P-network_2_2_AskP_6 + P-network_2_2_AskP_7 + P-network_2_2_AskP_8 + P-network_3_8_AI_8 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_3_6_AI_7 + P-network_3_6_AI_8 + P-network_3_8_AI_7 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_3_0_RP_7 + P-network_3_0_RP_8 + P-network_3_8_AI_6 + P-network_3_8_AI_5 + P-network_3_8_AI_4 + P-network_3_8_AI_3 + P-network_3_8_AI_2 + P-network_3_8_AI_1 + P-network_1_3_RP_8 + P-network_1_3_RP_7 + P-network_1_3_RP_6 + P-network_1_3_RP_5 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_5_5_AI_7 + P-network_5_5_AI_8 + P-network_1_3_RP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_8_6_RP_8 + P-network_8_6_RP_7 + P-network_8_6_RP_6 + P-network_8_6_RP_5 + P-network_5_8_RI_1 + P-network_5_8_RI_2 + P-network_5_8_RI_3 + P-network_5_8_RI_4 + P-network_5_8_RI_5 + P-network_5_8_RI_6 + P-network_5_8_RI_7 + P-network_5_8_RI_8 + P-network_8_6_RP_4 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_6_4_AnnP_7 + P-network_6_4_AnnP_8 + P-network_8_6_RP_3 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_1_6_AskP_7 + P-network_1_6_AskP_8 + P-network_8_6_RP_2 + P-network_8_6_RP_1 + P-network_3_2_AskP_8 + P-network_3_2_AskP_7 + P-network_3_2_AskP_6 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_7_4_AI_1 + P-network_7_4_AI_2 + P-network_7_4_AI_3 + P-network_7_4_AI_4 + P-network_7_4_AI_5 + P-network_7_4_AI_6 + P-network_7_4_AI_7 + P-network_7_4_AI_8 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_0_1_AI_7 + P-network_0_1_AI_8 + P-network_2_8_AnnP_8 + P-network_7_7_RI_1 + P-network_7_7_RI_2 + P-network_7_7_RI_3 + P-network_7_7_RI_4 + P-network_7_7_RI_5 + P-network_7_7_RI_6 + P-network_7_7_RI_7 + P-network_7_7_RI_8 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_0_4_RI_7 + P-network_0_4_RI_8 + P-network_2_8_AnnP_7 + P-network_8_7_AskP_1 + P-network_8_7_AskP_2 + P-network_8_7_AskP_3 + P-network_8_7_AskP_4 + P-network_8_7_AskP_5 + P-network_8_7_AskP_6 + P-network_8_7_AskP_7 + P-network_8_7_AskP_8 + P-network_2_8_AnnP_6 + P-network_2_8_AnnP_5 + P-network_2_8_AnnP_4 + P-network_2_8_AnnP_3 + P-network_2_8_AnnP_2 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_0_AI_7 + P-network_2_0_AI_8 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_2_3_RI_7 + P-network_2_3_RI_8 + P-network_2_8_AnnP_1 + P-network_8_0_AnnP_8 + P-network_8_0_AnnP_7 + P-network_8_0_AnnP_6 + P-network_8_0_AnnP_5 + P-network_8_0_AnnP_4 + P-network_8_0_AnnP_3 + P-network_8_0_AnnP_2 + P-network_8_0_AnnP_1 + P-network_5_8_AnnP_1 + P-network_5_8_AnnP_2 + P-network_5_8_AnnP_3 + P-network_5_8_AnnP_4 + P-network_5_8_AnnP_5 + P-network_5_8_AnnP_6 + P-network_5_8_AnnP_7 + P-network_5_8_AnnP_8 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_6_2_AskP_7 + P-network_6_2_AskP_8 + P-network_6_7_RP_8 + P-network_6_7_RP_7 + P-network_6_7_RP_6 + P-network_6_7_RP_5 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_4_2_RI_7 + P-network_4_2_RI_8 + P-network_6_7_RP_4 + P-network_6_7_RP_3 + P-network_6_7_RP_2 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_3_3_AnnP_7 + P-network_3_3_AnnP_8 + P-network_6_7_RP_1 + P-network_5_7_AskP_8 + P-network_5_7_AskP_7 + P-network_5_7_AskP_6 + P-network_5_7_AskP_5 + P-network_5_7_AskP_4 + P-network_5_7_AskP_3 + P-network_5_7_AskP_2 + P-network_5_7_AskP_1 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_3_8_RP_1 + P-network_6_1_RI_4 + P-network_3_8_RP_2 + P-network_6_1_RI_5 + P-network_3_8_RP_3 + P-network_6_1_RI_6 + P-network_3_8_RP_4 + P-network_6_1_RI_7 + P-network_3_8_RP_5 + P-network_6_1_RI_8 + P-network_3_8_RP_6 + P-network_3_8_RP_7 + P-network_3_8_RP_8 + P-network_5_6_AskP_1 + P-network_5_6_AskP_2 + P-network_5_6_AskP_3 + P-network_5_6_AskP_4 + P-network_5_6_AskP_5 + P-network_5_6_AskP_6 + P-network_5_6_AskP_7 + P-network_5_6_AskP_8 + P-network_8_0_RI_1 + P-network_8_0_RI_2 + P-network_8_0_RI_3 + P-network_5_7_RP_1 + P-network_8_0_RI_4 + P-network_5_7_RP_2 + P-network_8_0_RI_5 + P-network_5_7_RP_3 + P-network_8_0_RI_6 + P-network_5_7_RP_4 + P-network_8_0_RI_7 + P-network_5_7_RP_5 + P-network_8_0_RI_8 + P-network_5_7_RP_6 + P-network_5_7_RP_7 + P-network_5_7_RP_8 + P-network_2_7_AnnP_1 + P-network_2_7_AnnP_2 + P-network_2_7_AnnP_3 + P-network_2_7_AnnP_4 + P-network_2_7_AnnP_5 + P-network_2_7_AnnP_6 + P-network_2_7_AnnP_7 + P-network_2_7_AnnP_8 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_1_AskP_7 + P-network_3_1_AskP_8 + P-network_7_6_RP_1 + P-network_7_6_RP_2 + P-network_7_6_RP_3 + P-network_7_6_RP_4 + P-network_7_6_RP_5 + P-network_7_6_RP_6 + P-network_7_6_RP_7 + P-network_7_6_RP_8 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_3_RP_5 + P-network_0_3_RP_6 + P-network_0_3_RP_7 + P-network_0_3_RP_8 + P-network_2_8_AI_1 + P-network_2_8_AI_2 + P-network_2_8_AI_3 + P-network_2_8_AI_4 + P-network_2_8_AI_5 + P-network_2_8_AI_6 + P-network_2_8_AI_7 + P-network_2_8_AI_8 + P-network_4_8_RP_8 + P-network_4_8_RP_7 + P-network_4_8_RP_6 + P-network_7_1_RI_8 + P-network_4_8_RP_5 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_0_2_AnnP_7 + P-network_0_2_AnnP_8 + P-network_7_1_RI_7 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_2_2_RP_5 + P-network_2_2_RP_6 + P-network_2_2_RP_7 + P-network_2_2_RP_8 + P-network_4_8_RP_4 + P-network_7_1_RI_6 + P-network_4_8_RP_3 + P-network_7_1_RI_5 + P-network_4_8_RP_2 + P-network_7_1_RI_4 + P-network_4_8_RP_1 + P-network_7_1_RI_3 + P-network_7_1_RI_2 + P-network_7_1_RI_1 + P-network_4_7_AI_1 + P-network_4_7_AI_2 + P-network_4_7_AI_3 + P-network_4_7_AI_4 + P-network_4_7_AI_5 + P-network_4_7_AI_6 + P-network_4_7_AI_7 + P-network_4_7_AI_8 + P-network_3_4_AnnP_8 + P-network_7_3_AnnP_1 + P-network_7_3_AnnP_2 + P-network_7_3_AnnP_3 + P-network_7_3_AnnP_4 + P-network_7_3_AnnP_5 + P-network_7_3_AnnP_6 + P-network_7_3_AnnP_7 + P-network_7_3_AnnP_8 + P-network_3_4_AnnP_7 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_4_1_RP_5 + P-network_4_1_RP_6 + P-network_4_1_RP_7 + P-network_4_1_RP_8 + P-network_3_4_AnnP_6 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_2_5_AskP_7 + P-network_2_5_AskP_8 + P-network_3_4_AnnP_5 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_6_AI_7 + P-network_6_6_AI_8 + P-network_6_0_RP_1 + P-network_6_0_RP_2 + P-network_6_0_RP_3 + P-network_6_0_RP_4 + P-network_6_0_RP_5 + P-network_6_0_RP_6 + P-network_6_0_RP_7 + P-network_6_0_RP_8 + P-network_8_5_AI_1 + P-network_8_5_AI_2 + P-network_8_5_AI_3 + P-network_8_5_AI_4 + P-network_8_5_AI_5 + P-network_8_5_AI_6 + P-network_8_5_AI_7 + P-network_8_5_AI_8 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_1_2_AI_7 + P-network_1_2_AI_8 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_0_0_AskP_7 + P-network_0_0_AskP_8 + P-network_5_2_RI_8 + P-network_5_2_RI_7 + P-network_5_2_RI_6 + P-network_5_2_RI_5 + P-network_5_2_RI_4 + P-network_5_2_RI_3 + P-network_5_2_RI_2 + P-network_5_2_RI_1 + P-network_8_8_RI_1 + P-network_8_8_RI_2 + P-network_8_8_RI_3 + P-network_8_8_RI_4 + P-network_8_8_RI_5 + P-network_8_8_RI_6 + P-network_8_8_RI_7 + P-network_8_8_RI_8 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_1_5_RI_7 + P-network_1_5_RI_8 + P-network_6_7_AnnP_1 + P-network_6_7_AnnP_2 + P-network_6_7_AnnP_3 + P-network_6_7_AnnP_4 + P-network_6_7_AnnP_5 + P-network_6_7_AnnP_6 + P-network_6_7_AnnP_7 + P-network_6_7_AnnP_8 + P-network_7_1_AskP_1 + P-network_7_1_AskP_2 + P-network_7_1_AskP_3 + P-network_7_1_AskP_4 + P-network_7_1_AskP_5 + P-network_7_1_AskP_6 + P-network_7_1_AskP_7 + P-network_7_1_AskP_8 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_1_AI_7 + P-network_3_1_AI_8 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_3_4_RI_7 + P-network_3_4_RI_8 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_4_2_AnnP_7 + P-network_4_2_AnnP_8 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_0_AI_7 + P-network_5_0_AI_8 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_5_3_RI_7 + P-network_5_3_RI_8 + P-network_6_3_AskP_8 + P-network_6_3_AskP_7 + P-network_6_3_AskP_6 + P-network_6_3_AskP_5 + P-network_6_3_AskP_4 + P-network_6_3_AskP_3 + P-network_6_3_AskP_2 + P-network_6_3_AskP_1 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_6_5_AskP_7 + P-network_6_5_AskP_8 + P-network_7_2_RI_1 + P-network_7_2_RI_2 + P-network_7_2_RI_3 + P-network_7_2_RI_4 + P-network_7_2_RI_5 + P-network_7_2_RI_6 + P-network_7_2_RI_7 + P-network_7_2_RI_8 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_6_AnnP_7 + P-network_3_6_AnnP_8 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_4_0_AskP_7 + P-network_4_0_AskP_8 + P-network_6_8_RP_1 + P-network_6_8_RP_2 + P-network_6_8_RP_3 + P-network_6_8_RP_4 + P-network_6_8_RP_5 + P-network_6_8_RP_6 + P-network_6_8_RP_7 + P-network_6_8_RP_8 + P-network_3_3_RI_8 + P-network_3_3_RI_7 + P-network_3_3_RI_6 + P-network_3_3_RI_5 + P-network_3_3_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_1_1_AnnP_7 + P-network_1_1_AnnP_8 + P-network_8_7_RP_1 + P-network_8_7_RP_2 + P-network_8_7_RP_3 + P-network_8_7_RP_4 + P-network_8_7_RP_5 + P-network_8_7_RP_6 + P-network_8_7_RP_7 + P-network_8_7_RP_8 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_1_4_RP_7 + P-network_1_4_RP_8 + P-network_8_2_AnnP_1 + P-network_8_2_AnnP_2 + P-network_8_2_AnnP_3 + P-network_8_2_AnnP_4 + P-network_8_2_AnnP_5 + P-network_8_2_AnnP_6 + P-network_8_2_AnnP_7 + P-network_8_2_AnnP_8 + P-network_3_0_AI_8 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_3_4_AskP_7 + P-network_3_4_AskP_8 + P-network_3_0_AI_7 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_0_AI_6 + P-network_3_3_RP_6 + P-network_3_0_AI_5 + P-network_3_3_RP_7 + P-network_3_0_AI_4 + P-network_3_3_RP_8 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_3_0_AI_1 + P-network_5_8_AI_1 + P-network_5_8_AI_2 + P-network_5_8_AI_3 + P-network_5_8_AI_4 + P-network_5_8_AI_5 + P-network_5_8_AI_6 + P-network_5_8_AI_7 + P-network_5_8_AI_8 + P-network_4_0_AnnP_8 + P-network_4_0_AnnP_7 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_5 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_8_8_AskP_8 + P-network_8_8_AskP_7 + P-network_8_8_AskP_6 + P-network_8_8_AskP_5 + P-network_8_8_AskP_4 + P-network_8_8_AskP_3 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_0_5_AnnP_7 + P-network_0_5_AnnP_8 + P-network_8_8_AskP_2 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_5_2_RP_7 + P-network_5_2_RP_8 + P-network_8_8_AskP_1 + P-network_7_7_AI_1 + P-network_7_7_AI_2 + P-network_7_7_AI_3 + P-network_7_7_AI_4 + P-network_7_7_AI_5 + P-network_7_7_AI_6 + P-network_7_7_AI_7 + P-network_7_7_AI_8 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_0_4_AI_5 + P-network_0_4_AI_6 + P-network_0_4_AI_7 + P-network_0_4_AI_8 + P-network_0_7_RI_1 + P-network_0_7_RI_2 + P-network_0_7_RI_3 + P-network_0_7_RI_4 + P-network_0_7_RI_5 + P-network_0_7_RI_6 + P-network_0_7_RI_7 + P-network_0_7_RI_8 + P-network_7_6_AnnP_1 + P-network_7_6_AnnP_2 + P-network_7_6_AnnP_3 + P-network_7_6_AnnP_4 + P-network_7_6_AnnP_5 + P-network_7_6_AnnP_6 + P-network_7_6_AnnP_7 + P-network_7_6_AnnP_8 + P-network_1_4_RI_8 + P-network_1_4_RI_7 + P-network_1_4_RI_6 + P-network_8_0_AskP_1 + P-network_8_0_AskP_2 + P-network_8_0_AskP_3 + P-network_8_0_AskP_4 + P-network_8_0_AskP_5 + P-network_8_0_AskP_6 + P-network_8_0_AskP_7 + P-network_8_0_AskP_8 + P-network_1_4_RI_5 + P-network_7_1_RP_1 + P-network_7_1_RP_2 + P-network_7_1_RP_3 + P-network_7_1_RP_4 + P-network_7_1_RP_5 + P-network_7_1_RP_6 + P-network_7_1_RP_7 + P-network_7_1_RP_8 + P-network_1_4_RI_4 + P-network_2_8_AskP_1 + P-network_2_8_AskP_2 + P-network_2_8_AskP_3 + P-network_2_8_AskP_4 + P-network_2_8_AskP_5 + P-network_2_8_AskP_6 + P-network_2_8_AskP_7 + P-network_2_8_AskP_8 + P-network_1_4_RI_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_3_AI_7 + P-network_2_3_AI_8 + P-network_1_4_RI_2 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_2_6_RI_7 + P-network_2_6_RI_8 + P-network_1_4_RI_1 + P-network_8_7_RI_8 + P-network_8_7_RI_7 + P-network_8_7_RI_6 + P-network_8_7_RI_5 + P-network_8_7_RI_4 + P-network_8_7_RI_3 + P-network_8_7_RI_2 + P-network_8_7_RI_1 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_5_1_AnnP_7 + P-network_5_1_AnnP_8 + P-network_1_1_AI_8 + P-network_1_1_AI_7 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_4_2_AI_7 + P-network_4_2_AI_8 + P-network_1_1_AI_6 + P-network_1_1_AI_5 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_8_4_AI_8 + P-network_8_4_AI_7 + P-network_8_4_AI_6 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_0_3_AskP_5 + P-network_0_3_AskP_6 + P-network_0_3_AskP_7 + P-network_0_3_AskP_8 + P-network_8_4_AI_5 + P-network_8_4_AI_4 + P-network_8_4_AI_3 + P-network_8_4_AI_2 + P-network_8_4_AI_1 + P-network_1_7_AskP_8 + P-network_1_7_AskP_7 + P-network_1_7_AskP_6 + P-network_1_7_AskP_5 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_4_5_RI_7 + P-network_4_5_RI_8 + P-network_1_7_AskP_4 + P-network_1_7_AskP_3 + P-network_7_4_AskP_1 + P-network_7_4_AskP_2 + P-network_7_4_AskP_3 + P-network_7_4_AskP_4 + P-network_7_4_AskP_5 + P-network_7_4_AskP_6 + P-network_7_4_AskP_7 + P-network_7_4_AskP_8 + P-network_1_7_AskP_2 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_1_7_AskP_1 + P-network_6_1_AI_3 + P-network_6_1_AI_4 + P-network_6_1_AI_5 + P-network_6_1_AI_6 + P-network_6_1_AI_7 + P-network_6_1_AI_8 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_6_4_RI_7 + P-network_6_4_RI_8 + P-network_6_5_AnnP_8 + P-network_6_5_AnnP_7 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_2 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_4_5_AnnP_7 + P-network_4_5_AnnP_8 + P-network_6_5_AnnP_1 + P-network_8_0_AI_1 + P-network_8_0_AI_2 + P-network_8_0_AI_3 + P-network_8_0_AI_4 + P-network_8_0_AI_5 + P-network_6_8_RI_8 + P-network_8_0_AI_6 + P-network_6_8_RI_7 + P-network_8_0_AI_7 + P-network_6_8_RI_6 + P-network_8_0_AI_8 + P-network_6_8_RI_5 + P-network_8_3_RI_1 + P-network_8_3_RI_2 + P-network_8_3_RI_3 + P-network_8_3_RI_4 + P-network_8_3_RI_5 + P-network_8_3_RI_6 + P-network_8_3_RI_7 + P-network_8_3_RI_8 + P-network_6_8_RI_4 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_0_RI_7 + P-network_1_0_RI_8 + P-network_6_8_RI_3 + P-network_6_8_RI_2 + P-network_6_8_RI_1 + P-network_6_8_AskP_1 + P-network_6_8_AskP_2 + P-network_6_8_AskP_3 + P-network_6_8_AskP_4 + P-network_6_8_AskP_5 + P-network_6_8_AskP_6 + P-network_6_8_AskP_7 + P-network_6_8_AskP_8 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_2_0_AnnP_5 + P-network_2_0_AnnP_6 + P-network_2_0_AnnP_7 + P-network_2_0_AnnP_8 + P-network_6_5_AI_8 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_0_6_RP_7 + P-network_0_6_RP_8 + P-network_6_5_AI_7 + P-network_6_5_AI_6 + P-network_6_5_AI_5 + P-network_6_5_AI_4 + P-network_6_5_AI_3 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_4_3_AskP_7 + P-network_4_3_AskP_8 + P-network_6_5_AI_2 + P-network_6_5_AI_1 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_2_5_RP_7 + P-network_2_5_RP_8 + P-network_4_0_RP_8 + P-network_4_0_RP_7 + P-network_4_0_RP_6 + P-network_4_0_RP_5 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_4_0_RP_1 + P-network_4_6_AI_8 + P-network_4_6_AI_7 + P-network_4_6_AI_6 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_1_4_AnnP_7 + P-network_1_4_AnnP_8 + P-network_4_6_AI_5 + P-network_4_6_AI_4 + P-network_4_6_AI_3 + P-network_4_6_AI_2 + P-network_4_6_AI_1 + P-network_2_3_AskP_8 + P-network_2_3_AskP_7 + P-network_2_3_AskP_6 + P-network_2_3_AskP_5 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_4_4_RP_7 + P-network_4_4_RP_8 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_8 + P-network_2_1_RP_7 + P-network_2_1_RP_6 + P-network_2_1_RP_5 + P-network_2_1_RP_4 + P-network_2_1_RP_3 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_8_5_AnnP_1 + P-network_8_5_AnnP_2 + P-network_8_5_AnnP_3 + P-network_8_5_AnnP_4 + P-network_8_5_AnnP_5 + P-network_8_5_AnnP_6 + P-network_8_5_AnnP_7 + P-network_8_5_AnnP_8 + P-network_3_7_AskP_1 + P-network_3_7_AskP_2 + P-network_3_7_AskP_3 + P-network_3_7_AskP_4 + P-network_3_7_AskP_5 + P-network_3_7_AskP_6 + P-network_3_7_AskP_7 + P-network_3_7_AskP_8 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_6_3_RP_7 + P-network_6_3_RP_8 + P-network_8_8_AI_1 + P-network_8_8_AI_2 + P-network_8_8_AI_3 + P-network_8_8_AI_4 + P-network_8_8_AI_5 + P-network_8_8_AI_6 + P-network_8_8_AI_7 + P-network_8_8_AI_8 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_1_5_AI_7 + P-network_1_5_AI_8 + P-network_1_8_RI_1 + P-network_1_8_RI_2 + P-network_1_8_RI_3 + P-network_1_8_RI_4 + P-network_1_8_RI_5 + P-network_1_8_RI_6 + P-network_1_8_RI_7 + P-network_1_8_RI_8 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_6_0_AnnP_3 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_7_1_AnnP_8 + P-network_6_0_AnnP_6 + P-network_7_1_AnnP_7 + P-network_6_0_AnnP_7 + P-network_7_1_AnnP_6 + P-network_6_0_AnnP_8 + P-network_7_1_AnnP_5 + P-network_7_1_AnnP_4 + P-network_7_1_AnnP_3 + P-network_7_1_AnnP_2 + P-network_7_1_AnnP_1 + P-network_0_8_AnnP_1 + P-network_0_8_AnnP_2 + P-network_0_8_AnnP_3 + P-network_0_8_AnnP_4 + P-network_0_8_AnnP_5 + P-network_0_8_AnnP_6 + P-network_0_8_AnnP_7 + P-network_0_8_AnnP_8 + P-network_8_2_RP_1 + P-network_8_2_RP_2 + P-network_8_2_RP_3 + P-network_8_2_RP_4 + P-network_8_2_RP_5 + P-network_8_2_RP_6 + P-network_8_2_RP_7 + P-network_8_2_RP_8 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_1_2_AskP_7 + P-network_1_2_AskP_8 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AI_5 + P-network_3_4_AI_6 + P-network_3_4_AI_7 + P-network_3_4_AI_8 + P-network_2_7_AI_8 + P-network_3_7_RI_1 + P-network_3_7_RI_2 + P-network_3_7_RI_3 + P-network_3_7_RI_4 + P-network_3_7_RI_5 + P-network_3_7_RI_6 + P-network_3_7_RI_7 + P-network_3_7_RI_8 + P-network_2_7_AI_7 + P-network_8_3_AskP_1 + P-network_8_3_AskP_2 + P-network_8_3_AskP_3 + P-network_8_3_AskP_4 + P-network_8_3_AskP_5 + P-network_8_3_AskP_6 + P-network_8_3_AskP_7 + P-network_8_3_AskP_8 + P-network_2_7_AI_6 + P-network_2_7_AI_5 + P-network_2_7_AI_4 + P-network_2_7_AI_3 + P-network_2_7_AI_2 + P-network_2_7_AI_1 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_5_3_AI_7 + P-network_5_3_AI_8 + P-network_5_6_RI_1 + P-network_5_6_RI_2 + P-network_5_6_RI_3 + P-network_5_6_RI_4 + P-network_5_6_RI_5 + P-network_5_6_RI_6 + P-network_5_6_RI_7 + P-network_5_6_RI_8 + P-network_5_4_AnnP_1 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_6 + P-network_5_4_AnnP_7 + P-network_5_4_AnnP_8 + P-network_0_2_RP_8 + P-network_0_2_RP_7 + P-network_0_2_RP_6 + P-network_0_2_RP_5 + P-network_0_2_RP_4 + P-network_0_2_RP_3 + P-network_7_2_AI_1 + P-network_7_2_AI_2 + P-network_7_2_AI_3 + P-network_7_2_AI_4 + P-network_7_2_AI_5 + P-network_7_2_AI_6 + P-network_7_2_AI_7 + P-network_7_2_AI_8 + P-network_0_2_RP_2 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_6_AskP_7 + P-network_0_6_AskP_8 + P-network_0_2_RP_1 + P-network_7_5_RP_8 + P-network_7_5_RI_1 + P-network_7_5_RI_2 + P-network_7_5_RI_3 + P-network_7_5_RI_4 + P-network_7_5_RI_5 + P-network_7_5_RI_6 + P-network_7_5_RI_7 + P-network_7_5_RI_8 + P-network_7_5_RP_7 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_0_2_RI_7 + P-network_0_2_RI_8 + P-network_7_5_RP_6 + P-network_7_5_RP_5 + P-network_7_7_AskP_1 + P-network_7_7_AskP_2 + P-network_7_7_AskP_3 + P-network_7_7_AskP_4 + P-network_7_7_AskP_5 + P-network_7_7_AskP_6 + P-network_7_7_AskP_7 + P-network_7_7_AskP_8 + P-network_7_5_RP_4 + P-network_7_5_RP_3 + P-network_7_5_RP_2 + P-network_7_5_RP_1 + P-network_0_0_AnnP_8 + P-network_0_0_AnnP_7 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_5 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_2_1_RI_7 + P-network_2_1_RI_8 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_4_8_AskP_8 + P-network_4_8_AskP_7 + P-network_4_8_AskP_6 + P-network_4_8_AskP_5 + P-network_4_8_AskP_4 + P-network_4_8_AskP_3 + P-network_4_8_AskP_2 + P-network_4_8_AskP_1 + P-network_4_8_AnnP_1 + P-network_4_8_AnnP_2 + P-network_4_8_AnnP_3 + P-network_4_8_AnnP_4 + P-network_4_8_AnnP_5 + P-network_4_8_AnnP_6 + P-network_4_8_AnnP_7 + P-network_4_8_AnnP_8 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_5_2_AskP_7 + P-network_5_2_AskP_8 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_1_7_RP_1 + P-network_4_0_RI_4 + P-network_1_7_RP_2 + P-network_4_0_RI_5 + P-network_1_7_RP_3 + P-network_4_0_RI_6 + P-network_1_7_RP_4 + P-network_4_0_RI_7 + P-network_1_7_RP_5 + P-network_4_0_RI_8 + P-network_1_7_RP_6 + P-network_1_7_RP_7 + P-network_1_7_RP_8 + P-network_0_8_AI_8 + P-network_0_8_AI_7 + P-network_0_8_AI_6 + P-network_0_8_AI_5 + P-network_0_8_AI_4 + P-network_0_8_AI_3 + P-network_0_8_AI_2 + P-network_0_8_AI_1 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_2_3_AnnP_7 + P-network_2_3_AnnP_8 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_3_6_RP_7 + P-network_3_6_RP_8 + P-network_5_6_RP_8 + P-network_5_6_RP_7 + P-network_5_6_RP_6 + P-network_5_6_RP_5 + P-network_5_6_RP_4 + P-network_5_6_RP_3 + P-network_5_6_RP_2 + P-network_5_6_RP_1 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_4_6_AskP_7 + P-network_4_6_AskP_8 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_5_RP_7 + P-network_5_5_RP_8 + P-network_2_5_AnnP_8 + P-network_2_5_AnnP_7 + P-network_2_5_AnnP_6 + P-network_2_5_AnnP_5 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_0_7_AI_1 + P-network_0_7_AI_2 + P-network_0_7_AI_3 + P-network_0_7_AI_4 + P-network_0_7_AI_5 + P-network_0_7_AI_6 + P-network_0_7_AI_7 + P-network_0_7_AI_8 + P-network_1_7_AnnP_1 + P-network_1_7_AnnP_2 + P-network_1_7_AnnP_3 + P-network_1_7_AnnP_4 + P-network_1_7_AnnP_5 + P-network_1_7_AnnP_6 + P-network_1_7_AnnP_7 + P-network_1_7_AnnP_8 + P-network_7_4_RP_1 + P-network_7_4_RP_2 + P-network_7_4_RP_3 + P-network_7_4_RP_4 + P-network_7_4_RP_5 + P-network_7_4_RP_6 + P-network_7_4_RP_7 + P-network_7_4_RP_8 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_0_1_RP_7 + P-network_0_1_RP_8 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_1_AskP_7 + P-network_2_1_AskP_8 + P-network_2_6_AI_1 + P-network_2_6_AI_2 + P-network_2_6_AI_3 + P-network_2_6_AI_4 + P-network_2_6_AI_5 + P-network_2_6_AI_6 + P-network_2_6_AI_7 + P-network_2_6_AI_8 + P-network_8_8_AnnP_1 + P-network_8_8_AnnP_2 + P-network_8_8_AnnP_3 + P-network_8_8_AnnP_4 + P-network_8_8_AnnP_5 + P-network_8_8_AnnP_6 + P-network_8_8_AnnP_7 + P-network_8_8_AnnP_8 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_2_0_RP_7 + P-network_2_0_RP_8 + P-network_3_7_RP_8 + P-network_3_7_RP_7 + P-network_3_7_RP_6 + P-network_6_0_RI_8 + P-network_3_7_RP_5 + P-network_6_0_RI_7 + P-network_3_7_RP_4 + P-network_6_0_RI_6 + P-network_3_7_RP_3 + P-network_6_0_RI_5 + P-network_3_7_RP_2 + P-network_4_5_AI_1 + P-network_4_5_AI_2 + P-network_6_0_RI_4 + P-network_4_5_AI_3 + P-network_3_7_RP_1 + P-network_4_5_AI_4 + P-network_6_0_RI_3 + P-network_4_5_AI_5 + P-network_6_0_RI_2 + P-network_4_5_AI_6 + P-network_6_0_RI_1 + P-network_4_5_AI_7 + P-network_5_4_AskP_8 + P-network_4_5_AI_8 + P-network_5_4_AskP_7 + P-network_5_4_AskP_6 + P-network_5_4_AskP_5 + P-network_5_4_AskP_4 + P-network_4_8_RI_1 + P-network_4_8_RI_2 + P-network_4_8_RI_3 + P-network_4_8_RI_4 + P-network_4_8_RI_5 + P-network_4_8_RI_6 + P-network_4_8_RI_7 + P-network_4_8_RI_8 + P-network_5_4_AskP_3 + P-network_6_3_AnnP_1 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_3 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_6 + P-network_6_3_AnnP_7 + P-network_6_3_AnnP_8 + P-network_5_4_AskP_2 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_1_5_AskP_7 + P-network_1_5_AskP_8 + P-network_5_4_AskP_1 + P-network_6_4_AI_1 + P-network_6_4_AI_2 + P-network_6_4_AI_3 + P-network_6_4_AI_4 + P-network_6_4_AI_5 + P-network_6_4_AI_6 + P-network_6_4_AI_7 + P-network_6_4_AI_8 + P-network_6_7_RI_1 + P-network_6_7_RI_2 + P-network_6_7_RI_3 + P-network_6_7_RI_4 + P-network_6_7_RI_5 + P-network_6_7_RI_6 + P-network_6_7_RI_7 + P-network_6_7_RI_8 + P-network_8_6_AskP_1 + P-network_8_6_AskP_2 + P-network_8_6_AskP_3 + P-network_8_6_AskP_4 + P-network_8_6_AskP_5 + P-network_8_6_AskP_6 + P-network_8_6_AskP_7 + P-network_8_6_AskP_8 + P-network_8_3_AI_1 + P-network_8_3_AI_2 + P-network_8_3_AI_3 + P-network_8_3_AI_4 + P-network_8_3_AI_5 + P-network_8_3_AI_6 + P-network_8_3_AI_7 + P-network_8_3_AI_8 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_0_AI_7 + P-network_1_0_AI_8 + P-network_8_6_RI_1 + P-network_8_6_RI_2 + P-network_8_6_RI_3 + P-network_8_6_RI_4 + P-network_8_6_RI_5 + P-network_8_6_RI_6 + P-network_8_6_RI_7 + P-network_8_6_RI_8 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_1_3_RI_5 + P-network_1_3_RI_6 + P-network_1_3_RI_7 + P-network_1_3_RI_8 + P-network_5_7_AnnP_1 + P-network_5_7_AnnP_2 + P-network_5_7_AnnP_3 + P-network_5_7_AnnP_4 + P-network_5_7_AnnP_5 + P-network_5_7_AnnP_6 + P-network_5_7_AnnP_7 + P-network_5_7_AnnP_8 + P-network_6_1_AskP_1 + P-network_6_1_AskP_2 + P-network_6_1_AskP_3 + P-network_6_1_AskP_4 + P-network_6_1_AskP_5 + P-network_6_1_AskP_6 + P-network_6_1_AskP_7 + P-network_6_1_AskP_8 + P-network_1_8_RP_8 + P-network_1_8_RP_7 + P-network_1_8_RP_6 + P-network_4_1_RI_8 + P-network_1_8_RP_5 + P-network_4_1_RI_7 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_RI_5 + P-network_3_2_RI_6 + P-network_3_2_RI_7 + P-network_3_2_RI_8 + P-network_1_8_RP_4 + P-network_4_1_RI_6 + P-network_1_8_RP_3 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_3_2_AnnP_7 + P-network_3_2_AnnP_8 + P-network_4_1_RI_5 + P-network_1_8_RP_2 + P-network_4_1_RI_4 + P-network_1_8_RP_1 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_4_1_RI_1 + P-network_5_1_RI_1 + P-network_5_1_RI_2 + P-network_5_1_RI_3 + P-network_2_8_RP_1 + P-network_5_1_RI_4 + P-network_2_8_RP_2 + P-network_5_1_RI_5 + P-network_2_8_RP_3 + P-network_5_1_RI_6 + P-network_2_8_RP_4 + P-network_5_1_RI_7 + P-network_2_8_RP_5 + P-network_5_1_RI_8 + P-network_2_8_RP_6 + P-network_2_8_RP_7 + P-network_2_8_RP_8 + P-network_3_1_AnnP_8 + P-network_3_1_AnnP_7 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_5 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_5_5_AskP_7 + P-network_5_5_AskP_8 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_7_0_RI_1 + P-network_7_0_RI_2 + P-network_7_0_RI_3 + P-network_4_7_RP_1 + P-network_7_0_RI_4 + P-network_4_7_RP_2 + P-network_7_0_RI_5 + P-network_4_7_RP_3 + P-network_7_0_RI_6 + P-network_4_7_RP_4 + P-network_7_0_RI_7 + P-network_4_7_RP_5 + P-network_7_0_RI_8 + P-network_4_7_RP_6 + P-network_4_7_RP_7 + P-network_4_7_RP_8 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_2_6_AnnP_7 + P-network_2_6_AnnP_8 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_3_0_AskP_7 + P-network_3_0_AskP_8 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_6_6_RP_7 + P-network_6_6_RP_8 + P-network_2_2_RI_8 + P-network_1_8_AI_1 + P-network_1_8_AI_2 + P-network_1_8_AI_3 + P-network_1_8_AI_4 + P-network_1_8_AI_5 + P-network_1_8_AI_6 + P-network_1_8_AI_7 + P-network_1_8_AI_8 + P-network_2_2_RI_7 + P-network_2_2_RI_6 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_6 + P-network_0_1_AnnP_7 + P-network_0_1_AnnP_8 + P-network_2_2_RI_5 + P-network_8_5_RP_1 + P-network_8_5_RP_2 + P-network_8_5_RP_3 + P-network_8_5_RP_4 + P-network_8_5_RP_5 + P-network_8_5_RP_6 + P-network_8_5_RP_7 + P-network_8_5_RP_8 + P-network_2_2_RI_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_1_2_RP_7 + P-network_1_2_RP_8 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_2_2_RI_1 + P-network_3_7_AI_1 + P-network_3_7_AI_2 + P-network_3_7_AI_3 + P-network_3_7_AI_4 + P-network_3_7_AI_5 + P-network_3_7_AI_6 + P-network_3_7_AI_7 + P-network_3_7_AI_8 + P-network_0_8_AskP_8 + P-network_0_8_AskP_7 + P-network_0_8_AskP_6 + P-network_0_8_AskP_5 + P-network_7_2_AnnP_1 + P-network_7_2_AnnP_2 + P-network_7_2_AnnP_3 + P-network_7_2_AnnP_4 + P-network_7_2_AnnP_5 + P-network_7_2_AnnP_6 + P-network_7_2_AnnP_7 + P-network_7_2_AnnP_8 + P-network_0_8_AskP_4 + P-network_0_8_AskP_3 + P-network_0_8_AskP_2 + P-network_0_8_AskP_1 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_3_1_RP_7 + P-network_3_1_RP_8 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_4_AskP_7 + P-network_2_4_AskP_8 + P-network_6_0_AskP_8 + P-network_6_0_AskP_7 + P-network_6_0_AskP_6 + P-network_6_0_AskP_5 + P-network_6_0_AskP_4 + P-network_6_0_AskP_3 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_5_6_AI_7 + P-network_5_6_AI_8 + P-network_6_0_AskP_2 + P-network_6_0_AskP_1 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_5_0_RP_7 + P-network_5_0_RP_8 + P-network_5_6_AnnP_8 + P-network_5_6_AnnP_7 + P-network_5_6_AnnP_6 + P-network_5_6_AnnP_5 + P-network_5_6_AnnP_4 + P-network_5_6_AnnP_3 + P-network_5_6_AnnP_2 + P-network_5_6_AnnP_1 + P-network_7_5_AI_1 + P-network_7_5_AI_2 + P-network_7_5_AI_3 + P-network_7_5_AI_4 + P-network_7_5_AI_5 + P-network_7_5_AI_6 + P-network_7_5_AI_7 + P-network_7_5_AI_8 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_AI_5 + P-network_0_2_AI_6 + P-network_0_2_AI_7 + P-network_0_2_AI_8 + P-network_7_8_RI_1 + P-network_7_8_RI_2 + P-network_7_8_RI_3 + P-network_7_8_RI_4 + P-network_7_8_RI_5 + P-network_7_8_RI_6 + P-network_7_8_RI_7 + P-network_7_8_RI_8 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_0_5_RI_7 + P-network_0_5_RI_8 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_6_6_AnnP_7 + P-network_6_6_AnnP_8 + P-network_7_0_AskP_1 + P-network_7_0_AskP_2 + P-network_7_0_AskP_3 + P-network_7_0_AskP_4 + P-network_7_0_AskP_5 + P-network_7_0_AskP_6 + P-network_7_0_AskP_7 + P-network_7_0_AskP_8 + P-network_1_8_AskP_1 + P-network_1_8_AskP_2 + P-network_1_8_AskP_3 + P-network_1_8_AskP_4 + P-network_1_8_AskP_5 + P-network_1_8_AskP_6 + P-network_1_8_AskP_7 + P-network_1_8_AskP_8 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_1_AI_5 + P-network_2_1_AI_6 + P-network_2_1_AI_7 + P-network_2_1_AI_8 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_2_4_RI_7 + P-network_2_4_RI_8 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_4_1_AnnP_7 + P-network_4_1_AnnP_8 + P-network_0_3_RI_8 + P-network_0_3_RI_7 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_0_AI_5 + P-network_4_0_AI_6 + P-network_4_0_AI_7 + P-network_4_0_AI_8 + P-network_0_3_RI_6 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_4_3_RI_7 + P-network_4_3_RI_8 + P-network_0_3_RI_5 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_7_6_RI_8 + P-network_7_6_RI_7 + P-network_7_6_RI_6 + P-network_7_6_RI_5 + P-network_7_6_RI_4 + P-network_7_6_RI_3 + P-network_7_6_RI_2 + P-network_7_6_RI_1 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_6_4_AskP_7 + P-network_6_4_AskP_8 + P-network_0_0_AI_8 + P-network_0_0_AI_7 + P-network_0_0_AI_6 + P-network_0_0_AI_5 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_7_3_AI_8 + P-network_7_3_AI_7 + P-network_7_3_AI_6 + P-network_7_3_AI_5 + P-network_7_3_AI_4 + P-network_7_3_AI_3 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_6_2_RI_7 + P-network_6_2_RI_8 + P-network_7_3_AI_2 + P-network_7_3_AI_1 + P-network_3_5_AnnP_1 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_4 + P-network_3_5_AnnP_5 + P-network_3_5_AnnP_6 + P-network_3_5_AnnP_7 + P-network_3_5_AnnP_8 + P-network_8_5_AskP_8 + P-network_8_5_AskP_7 + P-network_8_5_AskP_6 + P-network_8_5_AskP_5 + P-network_8_5_AskP_4 + P-network_8_5_AskP_3 + P-network_8_5_AskP_2 + P-network_8_1_RI_1 + P-network_8_1_RI_2 + P-network_8_5_AskP_1 + P-network_8_1_RI_3 + P-network_5_8_RP_1 + P-network_8_1_RI_4 + P-network_5_8_RP_2 + P-network_8_1_RI_5 + P-network_5_8_RP_3 + P-network_8_1_RI_6 + P-network_5_8_RP_4 + P-network_8_1_RI_7 + P-network_5_8_RP_5 + P-network_8_1_RI_8 + P-network_5_8_RP_6 + P-network_5_8_RP_7 + P-network_5_8_RP_8 + P-network_5_7_RI_8 + P-network_5_8_AskP_1 + P-network_5_8_AskP_2 + P-network_5_8_AskP_3 + P-network_5_8_AskP_4 + P-network_5_8_AskP_5 + P-network_5_8_AskP_6 + P-network_5_8_AskP_7 + P-network_5_8_AskP_8 + P-network_5_7_RI_7 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_6 + P-network_1_0_AnnP_7 + P-network_1_0_AnnP_8 + P-network_5_7_RI_6 + P-network_7_7_RP_1 + P-network_7_7_RP_2 + P-network_7_7_RP_3 + P-network_7_7_RP_4 + P-network_7_7_RP_5 + P-network_7_7_RP_6 + P-network_7_7_RP_7 + P-network_7_7_RP_8 + P-network_5_7_RI_5 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_0_4_RP_7 + P-network_0_4_RP_8 + P-network_5_7_RI_4 + P-network_5_7_RI_3 + P-network_5_7_RI_2 + P-network_5_7_RI_1 + P-network_8_1_AnnP_1 + P-network_8_1_AnnP_2 + P-network_8_1_AnnP_3 + P-network_8_1_AnnP_4 + P-network_8_1_AnnP_5 + P-network_8_1_AnnP_6 + P-network_8_1_AnnP_7 + P-network_8_1_AnnP_8 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_3_3_AskP_7 + P-network_3_3_AskP_8 + P-network_5_4_AI_8 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_5_4_AI_7 + P-network_2_3_RP_6 + P-network_5_4_AI_6 + P-network_2_3_RP_7 + P-network_5_4_AI_5 + P-network_2_3_RP_8 + P-network_5_4_AI_4 + P-network_5_4_AI_3 + P-network_5_4_AI_2 + P-network_5_4_AI_1 + P-network_1_4_AskP_8 + P-network_4_8_AI_1 + P-network_4_8_AI_2 + P-network_4_8_AI_3 + P-network_4_8_AI_4 + P-network_4_8_AI_5 + P-network_4_8_AI_6 + P-network_4_8_AI_7 + P-network_4_8_AI_8 + P-network_1_4_AskP_7 + P-network_1_4_AskP_6 + P-network_1_4_AskP_5 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_4_AskP_1 + P-network_6_2_AnnP_8 + P-network_6_2_AnnP_7 + P-network_6_2_AnnP_6 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_0_4_AnnP_7 + P-network_0_4_AnnP_8 + P-network_6_2_AnnP_5 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_4_2_RP_7 + P-network_4_2_RP_8 + P-network_6_2_AnnP_4 + P-network_6_7_AI_1 + P-network_6_7_AI_2 + P-network_6_7_AI_3 + P-network_6_7_AI_4 + P-network_6_7_AI_5 + P-network_6_7_AI_6 + P-network_6_7_AI_7 + P-network_6_7_AI_8 + P-network_6_2_AnnP_3 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_1 + P-network_3_8_RI_8 + P-network_3_8_RI_7 + P-network_3_8_RI_6 + P-network_3_8_RI_5 + P-network_3_8_RI_4 + P-network_3_8_RI_3 + P-network_7_5_AnnP_1 + P-network_7_5_AnnP_2 + P-network_7_5_AnnP_3 + P-network_7_5_AnnP_4 + P-network_7_5_AnnP_5 + P-network_7_5_AnnP_6 + P-network_7_5_AnnP_7 + P-network_7_5_AnnP_8 + P-network_3_8_RI_2 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_1_RP_7 + P-network_6_1_RP_8 + P-network_3_8_RI_1 + P-network_2_7_AskP_1 + P-network_2_7_AskP_2 + P-network_2_7_AskP_3 + P-network_2_7_AskP_4 + P-network_2_7_AskP_5 + P-network_2_7_AskP_6 + P-network_2_7_AskP_7 + P-network_2_7_AskP_8 + P-network_8_6_AI_1 + P-network_8_6_AI_2 + P-network_8_6_AI_3 + P-network_8_6_AI_4 + P-network_8_6_AI_5 + P-network_8_6_AI_6 + P-network_8_6_AI_7 + P-network_8_6_AI_8 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_1_3_AI_7 + P-network_1_3_AI_8 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_1_6_RI_7 + P-network_1_6_RI_8 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_5_0_AnnP_7 + P-network_5_0_AnnP_8 + P-network_8_0_RP_1 + P-network_8_0_RP_2 + P-network_8_0_RP_3 + P-network_8_0_RP_4 + P-network_8_0_RP_5 + P-network_8_0_RP_6 + P-network_8_0_RP_7 + P-network_8_0_RP_8 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_2_AI_7 + P-network_3_2_AI_8 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_0_2_AskP_7 + P-network_0_2_AskP_8 + P-network_3_5_AI_8 + P-network_3_5_AI_7 + P-network_3_5_AI_6 + P-network_3_5_AI_5 + P-network_3_5_AI_4 + P-network_3_5_AI_3 + P-network_3_5_AI_2 + P-network_3_5_AI_1 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_3_5_RI_7 + P-network_3_5_RI_8 + P-network_7_3_AskP_1 + P-network_7_3_AskP_2 + P-network_7_3_AskP_3 + P-network_7_3_AskP_4 + P-network_7_3_AskP_5 + P-network_7_3_AskP_6 + P-network_7_3_AskP_7 + P-network_7_3_AskP_8 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_5_1_AI_6 + P-network_5_1_AI_7 + P-network_5_1_AI_8 + P-network_1_0_RP_8 + P-network_1_0_RP_7 + P-network_1_0_RP_6 + P-network_1_0_RP_5 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_5_4_RI_7 + P-network_5_4_RI_8 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_8_3_RP_8 + P-network_8_3_RP_7 + P-network_8_3_RP_6 + P-network_8_3_RP_5 + P-network_8_3_RP_4 + P-network_8_3_RP_3 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_6 + P-network_4_4_AnnP_7 + P-network_4_4_AnnP_8 + P-network_8_3_RP_2 + P-network_8_3_RP_1 + P-network_7_0_AI_1 + P-network_7_0_AI_2 + P-network_7_0_AI_3 + P-network_7_0_AI_4 + P-network_8_7_AnnP_8 + P-network_7_0_AI_5 + P-network_8_7_AnnP_7 + P-network_7_0_AI_6 + P-network_8_7_AnnP_6 + P-network_7_0_AI_7 + P-network_8_7_AnnP_5 + P-network_7_0_AI_8 + P-network_8_7_AnnP_4 + P-network_7_3_RI_1 + P-network_7_3_RI_2 + P-network_7_3_RI_3 + P-network_7_3_RI_4 + P-network_7_3_RI_5 + P-network_7_3_RI_6 + P-network_7_3_RI_7 + P-network_7_3_RI_8 + P-network_8_7_AnnP_3 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_0_0_RI_7 + P-network_0_0_RI_8 + P-network_8_7_AnnP_2 + P-network_6_7_AskP_1 + P-network_6_7_AskP_2 + P-network_6_7_AskP_3 + P-network_6_7_AskP_4 + P-network_6_7_AskP_5 + P-network_6_7_AskP_6 + P-network_6_7_AskP_7 + P-network_6_7_AskP_8 + P-network_8_7_AnnP_1 + P-network_1_6_AI_8 + P-network_1_6_AI_7 + P-network_1_6_AI_6 + P-network_1_6_AI_5 + P-network_1_6_AI_4 + P-network_1_6_AI_3 + P-network_1_6_AI_2 + P-network_1_6_AI_1 + P-network_2_0_AskP_8 + P-network_3_8_AnnP_1 + P-network_3_8_AnnP_2 + P-network_3_8_AnnP_3 + P-network_3_8_AnnP_4 + P-network_3_8_AnnP_5 + P-network_3_8_AnnP_6 + P-network_3_8_AnnP_7 + P-network_3_8_AnnP_8 + P-network_2_0_AskP_7 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_4_2_AskP_5 + P-network_4_2_AskP_6 + P-network_4_2_AskP_7 + P-network_4_2_AskP_8 + P-network_2_0_AskP_6 + P-network_2_0_AskP_5 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_8_8_RP_1 + P-network_8_8_RP_2 + P-network_8_8_RP_3 + P-network_8_8_RP_4 + P-network_8_8_RP_5 + P-network_8_8_RP_6 + P-network_8_8_RP_7 + P-network_8_8_RP_8 + P-network_1_5_RP_1 + P-network_1_5_RP_2 + P-network_1_5_RP_3 + P-network_1_5_RP_4 + P-network_1_5_RP_5 + P-network_1_5_RP_6 + P-network_1_5_RP_7 + P-network_1_5_RP_8 + P-network_6_4_RP_8 + P-network_6_4_RP_7 + P-network_6_4_RP_6 + P-network_6_4_RP_5 + P-network_6_4_RP_4 + P-network_6_4_RP_3 + P-network_6_4_RP_2 + P-network_6_4_RP_1 + P-network_1_6_AnnP_8 + P-network_1_6_AnnP_7 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_3_AnnP_7 + P-network_1_3_AnnP_8 + P-network_1_6_AnnP_6 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_3_4_RP_5 + P-network_3_4_RP_6 + P-network_3_4_RP_7 + P-network_3_4_RP_8 + P-network_1_6_AnnP_5 + P-network_1_6_AnnP_4 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_2 + P-network_8_4_AnnP_1 + P-network_8_4_AnnP_2 + P-network_8_4_AnnP_3 + P-network_8_4_AnnP_4 + P-network_8_4_AnnP_5 + P-network_8_4_AnnP_6 + P-network_8_4_AnnP_7 + P-network_8_4_AnnP_8 + P-network_1_6_AnnP_1 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_3_6_AskP_7 + P-network_3_6_AskP_8 + P-network_5_3_RP_1 + P-network_5_3_RP_2 + P-network_5_3_RP_3 + P-network_5_3_RP_4 + P-network_5_3_RP_5 + P-network_5_3_RP_6 + P-network_5_3_RP_7 + P-network_5_3_RP_8 + P-network_7_8_AI_1 + P-network_7_8_AI_2 + P-network_7_8_AI_3 + P-network_7_8_AI_4 + P-network_7_8_AI_5 + P-network_7_8_AI_6 + P-network_7_8_AI_7 + P-network_7_8_AI_8 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_0_5_AI_7 + P-network_0_5_AI_8 + P-network_0_8_RI_1 + P-network_0_8_RI_2 + P-network_0_8_RI_3 + P-network_0_8_RI_4 + P-network_0_8_RI_5 + P-network_0_8_RI_6 + P-network_0_8_RI_7 + P-network_0_8_RI_8 + P-network_0_7_AnnP_1 + P-network_0_7_AnnP_2 + P-network_0_7_AnnP_3 + P-network_0_7_AnnP_4 + P-network_0_7_AnnP_5 + P-network_0_7_AnnP_6 + P-network_0_7_AnnP_7 + P-network_0_7_AnnP_8 + P-network_7_2_RP_1 + P-network_7_2_RP_2 + P-network_7_2_RP_3 + P-network_7_2_RP_4 + P-network_7_2_RP_5 + P-network_7_2_RP_6 + P-network_7_2_RP_7 + P-network_7_2_RP_8 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_1_1_AskP_7 + P-network_1_1_AskP_8 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_4_5_RP_8 + P-network_2_4_AI_4 + P-network_4_5_RP_7 + P-network_2_4_AI_5 + P-network_4_5_RP_6 + P-network_2_4_AI_6 + P-network_4_5_RP_5 + P-network_2_4_AI_7 + P-network_4_5_RP_4 + P-network_2_4_AI_8 + P-network_4_5_RP_3 + P-network_2_7_RI_1 + P-network_2_7_RI_2 + P-network_2_7_RI_3 + P-network_2_7_RI_4 + P-network_2_7_RI_5 + P-network_2_7_RI_6 + P-network_2_7_RI_7 + P-network_2_7_RI_8 + P-network_4_5_RP_2 + P-network_7_8_AnnP_1 + P-network_7_8_AnnP_2 + P-network_7_8_AnnP_3 + P-network_7_8_AnnP_4 + P-network_7_8_AnnP_5 + P-network_7_8_AnnP_6 + P-network_7_8_AnnP_7 + P-network_7_8_AnnP_8 + P-network_4_5_RP_1 + P-network_8_2_AskP_1 + P-network_8_2_AskP_2 + P-network_8_2_AskP_3 + P-network_8_2_AskP_4 + P-network_8_2_AskP_5 + P-network_8_2_AskP_6 + P-network_8_2_AskP_7 + P-network_8_2_AskP_8 + P-network_4_5_AskP_8 + P-network_4_5_AskP_7 + P-network_4_5_AskP_6 + P-network_4_5_AskP_5 + P-network_4_5_AskP_4 + P-network_4_5_AskP_3 + P-network_4_5_AskP_2 + P-network_4_5_AskP_1 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_3_AI_7 + P-network_4_3_AI_8 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_4_6_RI_7 + P-network_4_6_RI_8 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_5_3_AnnP_7 + P-network_5_3_AnnP_8 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_6_2_AI_7 + P-network_6_2_AI_8 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_0_5_AskP_7 + P-network_0_5_AskP_8 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_6_5_RI_7 + P-network_6_5_RI_8 + P-network_7_6_AskP_1 + P-network_7_6_AskP_2 + P-network_7_6_AskP_3 + P-network_7_6_AskP_4 + P-network_7_6_AskP_5 + P-network_7_6_AskP_6 + P-network_7_6_AskP_7 + P-network_7_6_AskP_8 + P-network_8_1_AI_1 + P-network_8_1_AI_2 + P-network_8_1_AI_3 + P-network_8_1_AI_4 + P-network_8_1_AI_5 + P-network_8_1_AI_6 + P-network_8_1_AI_7 + P-network_8_1_AI_8 + P-network_2_6_RP_8 + P-network_2_6_RP_7 + P-network_2_6_RP_6 + P-network_2_6_RP_5 + P-network_8_4_RI_1 + P-network_8_4_RI_2 + P-network_8_4_RI_3 + P-network_8_4_RI_4 + P-network_8_4_RI_5 + P-network_8_4_RI_6 + P-network_8_4_RI_7 + P-network_8_4_RI_8 + P-network_2_6_RP_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_1_1_RI_7 + P-network_1_1_RI_8 + P-network_2_6_RP_3 + P-network_2_6_RP_2 + P-network_2_6_RP_1 + P-network_2_2_AnnP_8 + P-network_2_2_AnnP_7 + P-network_4_7_AnnP_1 + P-network_4_7_AnnP_2 + P-network_4_7_AnnP_3 + P-network_4_7_AnnP_4 + P-network_4_7_AnnP_5 + P-network_4_7_AnnP_6 + P-network_4_7_AnnP_7 + P-network_4_7_AnnP_8 + P-network_2_2_AnnP_6 + P-network_5_1_AskP_1 + P-network_5_1_AskP_2 + P-network_5_1_AskP_3 + P-network_5_1_AskP_4 + P-network_5_1_AskP_5 + P-network_5_1_AskP_6 + P-network_5_1_AskP_7 + P-network_5_1_AskP_8 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_3 + P-network_0_7_RP_1 + P-network_3_0_RI_4 + P-network_0_7_RP_2 + P-network_3_0_RI_5 + P-network_0_7_RP_3 + P-network_3_0_RI_6 + P-network_0_7_RP_4 + P-network_3_0_RI_7 + P-network_0_7_RP_5 + P-network_3_0_RI_8 + P-network_0_7_RP_6 + P-network_0_7_RP_7 + P-network_0_7_RP_8))))))
lola: processed formula: A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 ... (shortened)
lola: processed formula length: 96252
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 5 will run for 321 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-mas... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-masterState_3_F_6 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_6_T_8 + P-masterState_6_T_7 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_4_T_5 + P-masterState_4_T_6 + P-masterState_4_T_7 + P-masterState_4_T_8 + P-masterState_0_F_7 + P-masterState_0_F_6 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_8_F_7 + P-masterState_8_F_6 + P-masterState_8_F_5 + P-masterState_8_F_4 + P-masterState_8_F_3 + P-masterState_8_F_2 + P-masterState_8_F_1 + P-masterState_8_F_0 + P-masterState_3_T_8 + P-masterState_3_T_7 + P-masterState_3_T_6 + P-masterState_3_T_5 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_1_F_7 + P-masterState_1_F_8 + P-masterState_5_F_7 + P-masterState_5_F_6 + P-masterState_5_F_5 + P-masterState_5_F_4 + P-masterState_5_F_3 + P-masterState_5_F_2 + P-masterState_5_F_1 + P-masterState_5_F_0 + P-masterState_0_T_8 + P-masterState_0_T_7 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_8_T_8 + P-masterState_8_T_7 + P-masterState_8_T_6 + P-masterState_8_T_5 + P-masterState_8_T_4 + P-masterState_8_T_3 + P-masterState_8_T_2 + P-masterState_8_T_1 + P-masterState_8_T_0 + P-masterState_2_F_7 + P-masterState_2_F_6 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_5_T_8 + P-masterState_5_T_7 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_7_T_0 + P-masterState_7_T_1 + P-masterState_7_T_2 + P-masterState_7_T_3 + P-masterState_7_T_4 + P-masterState_7_T_5 + P-masterState_7_T_6 + P-masterState_7_T_7 + P-masterState_7_T_8 + P-masterState_7_F_7 + P-masterState_7_F_6 + P-masterState_7_F_5 + P-masterState_7_F_4 + P-masterState_7_F_3 + P-masterState_7_F_2 + P-masterState_7_F_1 + P-masterState_7_F_0 + P-masterState_2_T_8 + P-masterState_2_T_7 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_4_F_4 + P-masterState_4_F_5 + P-masterState_4_F_6 + P-masterState_4_F_7 + P-masterState_4_F_8 + P-masterState_7_F_8 + P-masterState_2_F_8 + P-masterState_5_F_8 + P-masterState_8_F_8 + P-masterState_0_F_8 + P-masterState_3_F_8 + P-masterState_1_T_8 + P-masterState_6_F_8))))))
lola: processed formula: A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-mas... (shortened)
lola: processed formula length: 3588
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 6 will run for 353 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__netw... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO) U (P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO)))))
lola: processed formula: A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__netw... (shortened)
lola: processed formula length: 134414
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 7384 markings, 10673 edges, 1477 markings/sec, 0 secs
lola: 14521 markings, 21809 edges, 1427 markings/sec, 5 secs
lola: 21912 markings, 33667 edges, 1478 markings/sec, 10 secs
lola: 30027 markings, 48032 edges, 1623 markings/sec, 15 secs
lola: 37830 markings, 62287 edges, 1561 markings/sec, 20 secs
lola: 46762 markings, 78727 edges, 1786 markings/sec, 25 secs
lola: 53875 markings, 92731 edges, 1423 markings/sec, 30 secs
lola: 60223 markings, 104068 edges, 1270 markings/sec, 35 secs
lola: 67565 markings, 115014 edges, 1468 markings/sec, 40 secs
lola: 75574 markings, 127195 edges, 1602 markings/sec, 45 secs
lola: 82642 markings, 138583 edges, 1414 markings/sec, 50 secs
lola: 90382 markings, 150935 edges, 1548 markings/sec, 55 secs
lola: 97744 markings, 164697 edges, 1472 markings/sec, 60 secs
lola: 106812 markings, 181409 edges, 1814 markings/sec, 65 secs
lola: 113972 markings, 195948 edges, 1432 markings/sec, 70 secs
lola: 121101 markings, 207684 edges, 1426 markings/sec, 75 secs
lola: 128723 markings, 219395 edges, 1524 markings/sec, 80 secs
lola: 136181 markings, 232822 edges, 1492 markings/sec, 85 secs
lola: 144560 markings, 248793 edges, 1676 markings/sec, 90 secs
lola: 151551 markings, 262251 edges, 1398 markings/sec, 95 secs
lola: 159322 markings, 275015 edges, 1554 markings/sec, 100 secs
lola: 167622 markings, 290780 edges, 1660 markings/sec, 105 secs
lola: 176578 markings, 307511 edges, 1791 markings/sec, 110 secs
lola: 183395 markings, 322072 edges, 1363 markings/sec, 115 secs
lola: 191239 markings, 337456 edges, 1569 markings/sec, 120 secs
lola: 198395 markings, 352454 edges, 1431 markings/sec, 125 secs
lola: 206280 markings, 368951 edges, 1577 markings/sec, 130 secs
lola: 215678 markings, 391803 edges, 1880 markings/sec, 135 secs
lola: 221861 markings, 407034 edges, 1237 markings/sec, 140 secs
lola: 233187 markings, 433188 edges, 2265 markings/sec, 145 secs
lola: 240561 markings, 450110 edges, 1475 markings/sec, 150 secs
lola: 247981 markings, 468304 edges, 1484 markings/sec, 155 secs
lola: 255599 markings, 487855 edges, 1524 markings/sec, 160 secs
lola: 262308 markings, 505145 edges, 1342 markings/sec, 165 secs
lola: 268789 markings, 516193 edges, 1296 markings/sec, 170 secs
lola: 276879 markings, 531700 edges, 1618 markings/sec, 175 secs
lola: 284277 markings, 544123 edges, 1480 markings/sec, 180 secs
lola: 293359 markings, 561264 edges, 1816 markings/sec, 185 secs
lola: 299786 markings, 572734 edges, 1285 markings/sec, 190 secs
lola: 307529 markings, 588158 edges, 1549 markings/sec, 195 secs
lola: 313921 markings, 597799 edges, 1278 markings/sec, 200 secs
lola: 320528 markings, 607288 edges, 1321 markings/sec, 205 secs
lola: 326495 markings, 616554 edges, 1193 markings/sec, 210 secs
lola: 333416 markings, 627605 edges, 1384 markings/sec, 215 secs
lola: 340701 markings, 638695 edges, 1457 markings/sec, 220 secs
lola: 347945 markings, 650458 edges, 1449 markings/sec, 225 secs
lola: 355341 markings, 662242 edges, 1479 markings/sec, 230 secs
lola: 361917 markings, 672971 edges, 1315 markings/sec, 235 secs
lola: 368258 markings, 684087 edges, 1268 markings/sec, 240 secs
lola: 375823 markings, 698413 edges, 1513 markings/sec, 245 secs
lola: 382893 markings, 710455 edges, 1414 markings/sec, 250 secs
lola: 391534 markings, 726800 edges, 1728 markings/sec, 255 secs
lola: 397482 markings, 737603 edges, 1190 markings/sec, 260 secs
lola: 405420 markings, 753206 edges, 1588 markings/sec, 265 secs
lola: 412336 markings, 763294 edges, 1383 markings/sec, 270 secs
lola: 420839 markings, 776511 edges, 1701 markings/sec, 275 secs
lola: 429075 markings, 788915 edges, 1647 markings/sec, 280 secs
lola: 437322 markings, 801888 edges, 1649 markings/sec, 285 secs
lola: 445333 markings, 815276 edges, 1602 markings/sec, 290 secs
lola: 453275 markings, 827862 edges, 1588 markings/sec, 295 secs
lola: 460666 markings, 841126 edges, 1478 markings/sec, 300 secs
lola: 468863 markings, 856341 edges, 1639 markings/sec, 305 secs
lola: 476050 markings, 870884 edges, 1437 markings/sec, 310 secs
lola: 482623 markings, 882519 edges, 1315 markings/sec, 315 secs
lola: 490254 markings, 894449 edges, 1526 markings/sec, 320 secs
lola: 497749 markings, 907156 edges, 1499 markings/sec, 325 secs
lola: 505333 markings, 921295 edges, 1517 markings/sec, 330 secs
lola: 512656 markings, 936333 edges, 1465 markings/sec, 335 secs
lola: 519850 markings, 948088 edges, 1439 markings/sec, 340 secs
lola: 527321 markings, 961599 edges, 1494 markings/sec, 345 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 7 will run for 353 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8))))))
lola: processed formula: A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8))))))
lola: processed formula length: 150
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 8 will run for 398 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1))))))
lola: processed formula: A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs_... (shortened)
lola: processed formula length: 2567
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 125847 markings, 567957 edges, 25169 markings/sec, 0 secs
lola: 244750 markings, 1195097 edges, 23781 markings/sec, 5 secs
lola: 364791 markings, 1821717 edges, 24008 markings/sec, 10 secs
lola: 487560 markings, 2417249 edges, 24554 markings/sec, 15 secs
lola: 599691 markings, 3075837 edges, 22426 markings/sec, 20 secs
lola: 707589 markings, 3756945 edges, 21580 markings/sec, 25 secs
lola: 817411 markings, 4431174 edges, 21964 markings/sec, 30 secs
lola: 933407 markings, 5064451 edges, 23199 markings/sec, 35 secs
lola: 1044240 markings, 5719355 edges, 22167 markings/sec, 40 secs
lola: 1151627 markings, 6396643 edges, 21477 markings/sec, 45 secs
lola: 1261255 markings, 7068597 edges, 21926 markings/sec, 50 secs
lola: 1377342 markings, 7701940 edges, 23217 markings/sec, 55 secs
lola: 1488519 markings, 8360238 edges, 22235 markings/sec, 60 secs
lola: 1595634 markings, 9036296 edges, 21423 markings/sec, 65 secs
lola: 1705624 markings, 9709052 edges, 21998 markings/sec, 70 secs
lola: 1824522 markings, 10324296 edges, 23780 markings/sec, 75 secs
lola: 1941813 markings, 10946616 edges, 23458 markings/sec, 80 secs
lola: 2056290 markings, 11587207 edges, 22895 markings/sec, 85 secs
lola: 2173593 markings, 12213200 edges, 23461 markings/sec, 90 secs
lola: 2290512 markings, 12818356 edges, 23384 markings/sec, 95 secs
lola: 2398308 markings, 13479431 edges, 21559 markings/sec, 100 secs
lola: 2504216 markings, 14143807 edges, 21182 markings/sec, 105 secs
lola: 2612214 markings, 14793567 edges, 21600 markings/sec, 110 secs
lola: 2720873 markings, 15444358 edges, 21732 markings/sec, 115 secs
lola: 2822127 markings, 16153834 edges, 20251 markings/sec, 120 secs
lola: 2920707 markings, 16871529 edges, 19716 markings/sec, 125 secs
lola: 3019988 markings, 17588870 edges, 19856 markings/sec, 130 secs
lola: 3125146 markings, 18277174 edges, 21032 markings/sec, 135 secs
lola: 3227163 markings, 18950700 edges, 20403 markings/sec, 140 secs
lola: 3324044 markings, 19656178 edges, 19376 markings/sec, 145 secs
lola: 3420630 markings, 20359597 edges, 19317 markings/sec, 150 secs
lola: 3522222 markings, 21054611 edges, 20318 markings/sec, 155 secs
lola: 3626821 markings, 21722961 edges, 20920 markings/sec, 160 secs
lola: 3724371 markings, 22425248 edges, 19510 markings/sec, 165 secs
lola: 3823047 markings, 23138811 edges, 19735 markings/sec, 170 secs
lola: 3922322 markings, 23848730 edges, 19855 markings/sec, 175 secs
lola: 4029416 markings, 24516388 edges, 21419 markings/sec, 180 secs
lola: 4136589 markings, 25174840 edges, 21435 markings/sec, 185 secs
lola: 4240038 markings, 25860831 edges, 20690 markings/sec, 190 secs
lola: 4343529 markings, 26546485 edges, 20698 markings/sec, 195 secs
lola: 4453961 markings, 27186801 edges, 22086 markings/sec, 200 secs
lola: 4565634 markings, 27818709 edges, 22335 markings/sec, 205 secs
lola: 4671969 markings, 28488210 edges, 21267 markings/sec, 210 secs
lola: 4778979 markings, 29160804 edges, 21402 markings/sec, 215 secs
lola: 4890894 markings, 29801848 edges, 22383 markings/sec, 220 secs
lola: 4994398 markings, 30480168 edges, 20701 markings/sec, 225 secs
lola: 5090012 markings, 31175474 edges, 19123 markings/sec, 230 secs
lola: 5183535 markings, 31856884 edges, 18705 markings/sec, 235 secs
lola: 5274894 markings, 32491379 edges, 18272 markings/sec, 240 secs
lola: 5376519 markings, 33144976 edges, 20325 markings/sec, 245 secs
lola: 5475600 markings, 33832969 edges, 19816 markings/sec, 250 secs
lola: 5574142 markings, 34551732 edges, 19708 markings/sec, 255 secs
lola: 5656210 markings, 35148556 edges, 16414 markings/sec, 260 secs
lola: 5757814 markings, 35833427 edges, 20321 markings/sec, 265 secs
lola: 5862954 markings, 36503531 edges, 21028 markings/sec, 270 secs
lola: 5960682 markings, 37216084 edges, 19546 markings/sec, 275 secs
lola: 6058890 markings, 37930167 edges, 19642 markings/sec, 280 secs
lola: 6159591 markings, 38635645 edges, 20140 markings/sec, 285 secs
lola: 6268110 markings, 39291958 edges, 21704 markings/sec, 290 secs
lola: 6369471 markings, 39934981 edges, 20272 markings/sec, 295 secs
lola: 6466489 markings, 40576162 edges, 19404 markings/sec, 300 secs
lola: 6570396 markings, 41254243 edges, 20781 markings/sec, 305 secs
lola: 6678873 markings, 41880827 edges, 21695 markings/sec, 310 secs
lola: 6783775 markings, 42478132 edges, 20980 markings/sec, 315 secs
lola: 6887265 markings, 43129938 edges, 20698 markings/sec, 320 secs
lola: 6988920 markings, 43768668 edges, 20331 markings/sec, 325 secs
lola: 7099560 markings, 44402227 edges, 22128 markings/sec, 330 secs
lola: 7202346 markings, 45067862 edges, 20557 markings/sec, 335 secs
lola: 7299146 markings, 45772263 edges, 19360 markings/sec, 340 secs
lola: 7396212 markings, 46478119 edges, 19413 markings/sec, 345 secs
lola: 7495704 markings, 47168762 edges, 19898 markings/sec, 350 secs
lola: 7596840 markings, 47819503 edges, 20227 markings/sec, 355 secs
lola: 7694960 markings, 48504624 edges, 19624 markings/sec, 360 secs
lola: 7791390 markings, 49207579 edges, 19286 markings/sec, 365 secs
lola: 7887951 markings, 49912281 edges, 19312 markings/sec, 370 secs
lola: 7990977 markings, 50586684 edges, 20605 markings/sec, 375 secs
lola: 8090115 markings, 51232651 edges, 19828 markings/sec, 380 secs
lola: 8178345 markings, 51874936 edges, 17646 markings/sec, 385 secs
lola: 8272173 markings, 52557359 edges, 18766 markings/sec, 390 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 9 will run for 397 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)) U X ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8))))
lola: processed formula: A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-... (shortened)
lola: processed formula length: 2757
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 10 will run for 464 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((1 <= P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0)
lola: processed formula length: 130
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: ========================================
lola: subprocess 11 will run for 557 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8)))))
lola: processed formula: A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8)))))
lola: processed formula length: 272
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 100833 markings, 178543 edges, 20167 markings/sec, 0 secs
lola: 198823 markings, 356521 edges, 19598 markings/sec, 5 secs
lola: 301904 markings, 542932 edges, 20616 markings/sec, 10 secs
lola: 400838 markings, 723338 edges, 19787 markings/sec, 15 secs
lola: 496506 markings, 898669 edges, 19134 markings/sec, 20 secs
lola: 592954 markings, 1075399 edges, 19290 markings/sec, 25 secs
lola: 688297 markings, 1249742 edges, 19069 markings/sec, 30 secs
lola: 784230 markings, 1426828 edges, 19187 markings/sec, 35 secs
lola: 884357 markings, 1615291 edges, 20025 markings/sec, 40 secs
lola: 984649 markings, 1801482 edges, 20058 markings/sec, 45 secs
lola: 1082811 markings, 1984007 edges, 19632 markings/sec, 50 secs
lola: 1173671 markings, 2154696 edges, 18172 markings/sec, 55 secs
lola: 1274617 markings, 2342520 edges, 20189 markings/sec, 60 secs
lola: 1375389 markings, 2530234 edges, 20154 markings/sec, 65 secs
lola: 1476991 markings, 2721653 edges, 20320 markings/sec, 70 secs
lola: 1572366 markings, 2900884 edges, 19075 markings/sec, 75 secs
lola: 1672617 markings, 3089837 edges, 20050 markings/sec, 80 secs
lola: 1771120 markings, 3277204 edges, 19701 markings/sec, 85 secs
lola: 1867866 markings, 3453725 edges, 19349 markings/sec, 90 secs
lola: 1970982 markings, 3642821 edges, 20623 markings/sec, 95 secs
lola: 2072121 markings, 3831199 edges, 20228 markings/sec, 100 secs
lola: 2164740 markings, 4005404 edges, 18524 markings/sec, 105 secs
lola: 2257339 markings, 4179677 edges, 18520 markings/sec, 110 secs
lola: 2358138 markings, 4369925 edges, 20160 markings/sec, 115 secs
lola: 2459972 markings, 4562084 edges, 20367 markings/sec, 120 secs
lola: 2552567 markings, 4738068 edges, 18519 markings/sec, 125 secs
lola: 2650406 markings, 4925543 edges, 19568 markings/sec, 130 secs
lola: 2751059 markings, 5115493 edges, 20131 markings/sec, 135 secs
lola: 2850962 markings, 5306959 edges, 19981 markings/sec, 140 secs
lola: 2951270 markings, 5500164 edges, 20062 markings/sec, 145 secs
lola: 3049779 markings, 5694371 edges, 19702 markings/sec, 150 secs
lola: 3149237 markings, 5885404 edges, 19892 markings/sec, 155 secs
lola: 3246990 markings, 6067029 edges, 19551 markings/sec, 160 secs
lola: 3337818 markings, 6236972 edges, 18166 markings/sec, 165 secs
lola: 3432596 markings, 6414223 edges, 18956 markings/sec, 170 secs
lola: 3523744 markings, 6583943 edges, 18230 markings/sec, 175 secs
lola: 3621540 markings, 6766924 edges, 19559 markings/sec, 180 secs
lola: 3714242 markings, 6941559 edges, 18540 markings/sec, 185 secs
lola: 3811388 markings, 7124391 edges, 19429 markings/sec, 190 secs
lola: 3908395 markings, 7307754 edges, 19401 markings/sec, 195 secs
lola: 4006607 markings, 7493888 edges, 19642 markings/sec, 200 secs
lola: 4105637 markings, 7680155 edges, 19806 markings/sec, 205 secs
lola: 4203087 markings, 7864104 edges, 19490 markings/sec, 210 secs
lola: 4289965 markings, 8027864 edges, 17376 markings/sec, 215 secs
lola: 4386432 markings, 8211390 edges, 19293 markings/sec, 220 secs
lola: 4480994 markings, 8391702 edges, 18912 markings/sec, 225 secs
lola: 4571711 markings, 8565695 edges, 18143 markings/sec, 230 secs
lola: 4667571 markings, 8749681 edges, 19172 markings/sec, 235 secs
lola: 4764867 markings, 8938561 edges, 19459 markings/sec, 240 secs
lola: 4862227 markings, 9133540 edges, 19472 markings/sec, 245 secs
lola: 4961101 markings, 9325932 edges, 19775 markings/sec, 250 secs
lola: 5060663 markings, 9520529 edges, 19912 markings/sec, 255 secs
lola: 5160293 markings, 9715782 edges, 19926 markings/sec, 260 secs
lola: 5258171 markings, 9908826 edges, 19576 markings/sec, 265 secs
lola: 5357996 markings, 10104772 edges, 19965 markings/sec, 270 secs
lola: 5454295 markings, 10293391 edges, 19260 markings/sec, 275 secs
lola: 5553642 markings, 10487171 edges, 19869 markings/sec, 280 secs
lola: 5652556 markings, 10682084 edges, 19783 markings/sec, 285 secs
lola: 5750172 markings, 10875590 edges, 19523 markings/sec, 290 secs
lola: 5846404 markings, 11065263 edges, 19246 markings/sec, 295 secs
lola: 5945478 markings, 11261382 edges, 19815 markings/sec, 300 secs
lola: 6044669 markings, 11458223 edges, 19838 markings/sec, 305 secs
lola: 6139324 markings, 11647192 edges, 18931 markings/sec, 310 secs
lola: 6237446 markings, 11833814 edges, 19624 markings/sec, 315 secs
lola: 6337637 markings, 12017063 edges, 20038 markings/sec, 320 secs
lola: 6433841 markings, 12194783 edges, 19241 markings/sec, 325 secs
lola: 6533664 markings, 12382799 edges, 19965 markings/sec, 330 secs
lola: 6632046 markings, 12567043 edges, 19676 markings/sec, 335 secs
lola: 6732593 markings, 12757058 edges, 20109 markings/sec, 340 secs
lola: 6832067 markings, 12944286 edges, 19895 markings/sec, 345 secs
lola: 6933006 markings, 13135911 edges, 20188 markings/sec, 350 secs
lola: 7033409 markings, 13327418 edges, 20081 markings/sec, 355 secs
lola: 7133787 markings, 13517704 edges, 20076 markings/sec, 360 secs
lola: 7233654 markings, 13708807 edges, 19973 markings/sec, 365 secs
lola: 7334784 markings, 13903030 edges, 20226 markings/sec, 370 secs
lola: 7433936 markings, 14096701 edges, 19830 markings/sec, 375 secs
lola: 7533575 markings, 14292709 edges, 19928 markings/sec, 380 secs
lola: 7634617 markings, 14482802 edges, 20208 markings/sec, 385 secs
lola: 7735980 markings, 14674249 edges, 20273 markings/sec, 390 secs
lola: 7838488 markings, 14867589 edges, 20502 markings/sec, 395 secs
lola: 7939427 markings, 15059438 edges, 20188 markings/sec, 400 secs
lola: 8039315 markings, 15250873 edges, 19978 markings/sec, 405 secs
lola: 8139609 markings, 15443053 edges, 20059 markings/sec, 410 secs
lola: 8240515 markings, 15637472 edges, 20181 markings/sec, 415 secs
lola: 8339849 markings, 15833160 edges, 19867 markings/sec, 420 secs
lola: 8439516 markings, 16031104 edges, 19933 markings/sec, 425 secs
lola: 8539819 markings, 16228888 edges, 20061 markings/sec, 430 secs
lola: 8638988 markings, 16425832 edges, 19834 markings/sec, 435 secs
lola: 8739501 markings, 16624888 edges, 20103 markings/sec, 440 secs
lola: 8841571 markings, 16826314 edges, 20414 markings/sec, 445 secs
lola: 8942405 markings, 17026873 edges, 20167 markings/sec, 450 secs
lola: 9042187 markings, 17225915 edges, 19956 markings/sec, 455 secs
lola: 9142050 markings, 17425279 edges, 19973 markings/sec, 460 secs
lola: 9240578 markings, 17623647 edges, 19706 markings/sec, 465 secs
lola: 9340728 markings, 17816203 edges, 20030 markings/sec, 470 secs
lola: 9440522 markings, 18007289 edges, 19959 markings/sec, 475 secs
lola: 9541809 markings, 18201782 edges, 20257 markings/sec, 480 secs
lola: 9641238 markings, 18396152 edges, 19886 markings/sec, 485 secs
lola: 9740815 markings, 18593161 edges, 19915 markings/sec, 490 secs
lola: 9841666 markings, 18786492 edges, 20170 markings/sec, 495 secs
lola: 9942191 markings, 18980748 edges, 20105 markings/sec, 500 secs
lola: 10041348 markings, 19177978 edges, 19831 markings/sec, 505 secs
lola: 10140879 markings, 19377355 edges, 19906 markings/sec, 510 secs
lola: 10239497 markings, 19576068 edges, 19724 markings/sec, 515 secs
lola: 10340358 markings, 19777627 edges, 20172 markings/sec, 520 secs
lola: 10439475 markings, 19977931 edges, 19823 markings/sec, 525 secs
lola: 10538159 markings, 20177970 edges, 19737 markings/sec, 530 secs
lola: 10636179 markings, 20376532 edges, 19604 markings/sec, 535 secs
lola: 10734860 markings, 20574880 edges, 19736 markings/sec, 540 secs
lola: 10832927 markings, 20775235 edges, 19613 markings/sec, 545 secs
lola: 10931659 markings, 20978478 edges, 19746 markings/sec, 550 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 12 will run for 557 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8)
lola: processed formula length: 315
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: ========================================
lola: subprocess 13 will run for 742 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0))... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)))))
lola: processed formula: A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0))... (shortened)
lola: processed formula length: 403
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 14 will run for 1113 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8))))))
lola: processed formula: A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll_... (shortened)
lola: processed formula length: 136100
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 5604 markings, 7665 edges, 1121 markings/sec, 0 secs
lola: 10943 markings, 16792 edges, 1068 markings/sec, 5 secs
lola: 17222 markings, 25594 edges, 1256 markings/sec, 10 secs
lola: 22764 markings, 33483 edges, 1108 markings/sec, 15 secs
lola: 28506 markings, 42748 edges, 1148 markings/sec, 20 secs
lola: 35528 markings, 52993 edges, 1404 markings/sec, 25 secs
lola: 41108 markings, 61823 edges, 1116 markings/sec, 30 secs
lola: 46429 markings, 70635 edges, 1064 markings/sec, 35 secs
lola: 52568 markings, 79634 edges, 1228 markings/sec, 40 secs
lola: 58057 markings, 88588 edges, 1098 markings/sec, 45 secs
lola: 64849 markings, 99002 edges, 1358 markings/sec, 50 secs
lola: 70413 markings, 108252 edges, 1113 markings/sec, 55 secs
lola: 76246 markings, 117688 edges, 1167 markings/sec, 60 secs
lola: 82956 markings, 128525 edges, 1342 markings/sec, 65 secs
lola: 88679 markings, 138910 edges, 1145 markings/sec, 70 secs
lola: 94712 markings, 149014 edges, 1207 markings/sec, 75 secs
lola: 100018 markings, 159044 edges, 1061 markings/sec, 80 secs
lola: 104989 markings, 169825 edges, 994 markings/sec, 85 secs
lola: 111444 markings, 183518 edges, 1291 markings/sec, 90 secs
lola: 117959 markings, 195020 edges, 1303 markings/sec, 95 secs
lola: 123576 markings, 204894 edges, 1123 markings/sec, 100 secs
lola: 128627 markings, 215128 edges, 1010 markings/sec, 105 secs
lola: 135991 markings, 229568 edges, 1473 markings/sec, 110 secs
lola: 143300 markings, 243048 edges, 1462 markings/sec, 115 secs
lola: 148903 markings, 255021 edges, 1121 markings/sec, 120 secs
lola: 155328 markings, 265065 edges, 1285 markings/sec, 125 secs
lola: 161819 markings, 274492 edges, 1298 markings/sec, 130 secs
lola: 168269 markings, 285400 edges, 1290 markings/sec, 135 secs
lola: 176175 markings, 297644 edges, 1581 markings/sec, 140 secs
lola: 183591 markings, 308130 edges, 1483 markings/sec, 145 secs
lola: 190414 markings, 318037 edges, 1365 markings/sec, 150 secs
lola: 196862 markings, 329007 edges, 1290 markings/sec, 155 secs
lola: 205787 markings, 342921 edges, 1785 markings/sec, 160 secs
lola: 213750 markings, 354666 edges, 1593 markings/sec, 165 secs
lola: 221169 markings, 366587 edges, 1484 markings/sec, 170 secs
lola: 226302 markings, 373701 edges, 1027 markings/sec, 175 secs
lola: 231798 markings, 382526 edges, 1099 markings/sec, 180 secs
lola: 237971 markings, 391111 edges, 1235 markings/sec, 185 secs
lola: 243541 markings, 399068 edges, 1114 markings/sec, 190 secs
lola: 249171 markings, 408166 edges, 1126 markings/sec, 195 secs
lola: 255791 markings, 417757 edges, 1324 markings/sec, 200 secs
lola: 261326 markings, 426253 edges, 1107 markings/sec, 205 secs
lola: 266478 markings, 434370 edges, 1030 markings/sec, 210 secs
lola: 272580 markings, 443332 edges, 1220 markings/sec, 215 secs
lola: 278007 markings, 452176 edges, 1085 markings/sec, 220 secs
lola: 284456 markings, 461707 edges, 1290 markings/sec, 225 secs
lola: 290010 markings, 470678 edges, 1111 markings/sec, 230 secs
lola: 295588 markings, 479392 edges, 1116 markings/sec, 235 secs
lola: 302124 markings, 490097 edges, 1307 markings/sec, 240 secs
lola: 307943 markings, 500155 edges, 1164 markings/sec, 245 secs
lola: 313921 markings, 510186 edges, 1196 markings/sec, 250 secs
lola: 318675 markings, 518618 edges, 951 markings/sec, 255 secs
lola: 323383 markings, 527546 edges, 942 markings/sec, 260 secs
lola: 329373 markings, 540547 edges, 1198 markings/sec, 265 secs
lola: 336081 markings, 552394 edges, 1342 markings/sec, 270 secs
lola: 341491 markings, 561544 edges, 1082 markings/sec, 275 secs
lola: 346939 markings, 571764 edges, 1090 markings/sec, 280 secs
lola: 352599 markings, 584321 edges, 1132 markings/sec, 285 secs
lola: 361060 markings, 599032 edges, 1692 markings/sec, 290 secs
lola: 366315 markings, 609716 edges, 1051 markings/sec, 295 secs
lola: 373525 markings, 622258 edges, 1442 markings/sec, 300 secs
lola: 381276 markings, 633467 edges, 1550 markings/sec, 305 secs
lola: 388484 markings, 644444 edges, 1442 markings/sec, 310 secs
lola: 397447 markings, 659320 edges, 1793 markings/sec, 315 secs
lola: 406875 markings, 673051 edges, 1886 markings/sec, 320 secs
lola: 415166 markings, 685029 edges, 1658 markings/sec, 325 secs
lola: 423436 markings, 697491 edges, 1654 markings/sec, 330 secs
lola: 432351 markings, 712629 edges, 1783 markings/sec, 335 secs
lola: 443295 markings, 728691 edges, 2189 markings/sec, 340 secs
lola: 451782 markings, 742106 edges, 1697 markings/sec, 345 secs
lola: 458869 markings, 752963 edges, 1417 markings/sec, 350 secs
lola: 464328 markings, 761398 edges, 1092 markings/sec, 355 secs
lola: 469392 markings, 770218 edges, 1013 markings/sec, 360 secs
lola: 475379 markings, 781569 edges, 1197 markings/sec, 365 secs
lola: 481864 markings, 791617 edges, 1297 markings/sec, 370 secs
lola: 487426 markings, 800245 edges, 1112 markings/sec, 375 secs
lola: 492597 markings, 809083 edges, 1034 markings/sec, 380 secs
lola: 499146 markings, 821082 edges, 1310 markings/sec, 385 secs
lola: 506805 markings, 833100 edges, 1532 markings/sec, 390 secs
lola: 512174 markings, 842628 edges, 1074 markings/sec, 395 secs
lola: 517691 markings, 851402 edges, 1103 markings/sec, 400 secs
lola: 523359 markings, 860760 edges, 1134 markings/sec, 405 secs
lola: 529237 markings, 869237 edges, 1176 markings/sec, 410 secs
lola: 535855 markings, 879818 edges, 1324 markings/sec, 415 secs
lola: 541755 markings, 889144 edges, 1180 markings/sec, 420 secs
lola: 547333 markings, 898343 edges, 1116 markings/sec, 425 secs
lola: 553223 markings, 907695 edges, 1178 markings/sec, 430 secs
lola: 559326 markings, 917788 edges, 1221 markings/sec, 435 secs
lola: 565726 markings, 928981 edges, 1280 markings/sec, 440 secs
lola: 571016 markings, 938470 edges, 1058 markings/sec, 445 secs
lola: 576290 markings, 950601 edges, 1055 markings/sec, 450 secs
lola: 583141 markings, 964042 edges, 1370 markings/sec, 455 secs
lola: 588780 markings, 974107 edges, 1128 markings/sec, 460 secs
lola: 594363 markings, 986496 edges, 1117 markings/sec, 465 secs
lola: 602393 markings, 1001169 edges, 1606 markings/sec, 470 secs
lola: 608157 markings, 1013621 edges, 1153 markings/sec, 475 secs
lola: 614720 markings, 1023626 edges, 1313 markings/sec, 480 secs
lola: 621572 markings, 1035311 edges, 1370 markings/sec, 485 secs
lola: 629519 markings, 1047312 edges, 1589 markings/sec, 490 secs
lola: 636273 markings, 1057289 edges, 1351 markings/sec, 495 secs
lola: 643368 markings, 1069711 edges, 1419 markings/sec, 500 secs
lola: 652369 markings, 1083061 edges, 1800 markings/sec, 505 secs
lola: 659577 markings, 1094741 edges, 1442 markings/sec, 510 secs
lola: 664765 markings, 1102717 edges, 1038 markings/sec, 515 secs
lola: 670911 markings, 1111891 edges, 1229 markings/sec, 520 secs
lola: 676302 markings, 1120544 edges, 1078 markings/sec, 525 secs
lola: 683188 markings, 1130782 edges, 1377 markings/sec, 530 secs
lola: 688684 markings, 1139445 edges, 1099 markings/sec, 535 secs
lola: 694474 markings, 1148371 edges, 1158 markings/sec, 540 secs
lola: 700867 markings, 1158725 edges, 1279 markings/sec, 545 secs
lola: 706605 markings, 1168686 edges, 1148 markings/sec, 550 secs
lola: 712718 markings, 1178893 edges, 1223 markings/sec, 555 secs
lola: 717898 markings, 1188689 edges, 1036 markings/sec, 560 secs
lola: 723955 markings, 1201588 edges, 1211 markings/sec, 565 secs
lola: 730475 markings, 1213421 edges, 1304 markings/sec, 570 secs
lola: 735690 markings, 1223457 edges, 1043 markings/sec, 575 secs
lola: 742753 markings, 1237802 edges, 1413 markings/sec, 580 secs
lola: 749066 markings, 1250157 edges, 1263 markings/sec, 585 secs
lola: 756488 markings, 1263436 edges, 1484 markings/sec, 590 secs
lola: 764471 markings, 1275469 edges, 1597 markings/sec, 595 secs
lola: 773368 markings, 1290074 edges, 1779 markings/sec, 600 secs
lola: 782527 markings, 1303645 edges, 1832 markings/sec, 605 secs
lola: 790331 markings, 1315828 edges, 1561 markings/sec, 610 secs
lola: 800491 markings, 1332397 edges, 2032 markings/sec, 615 secs
lola: 809705 markings, 1346615 edges, 1843 markings/sec, 620 secs
lola: 817165 markings, 1358324 edges, 1492 markings/sec, 625 secs
lola: 822355 markings, 1366887 edges, 1038 markings/sec, 630 secs
lola: 828158 markings, 1378024 edges, 1161 markings/sec, 635 secs
lola: 834476 markings, 1388052 edges, 1264 markings/sec, 640 secs
lola: 839122 markings, 1395837 edges, 929 markings/sec, 645 secs
lola: 845211 markings, 1407080 edges, 1218 markings/sec, 650 secs
lola: 851925 markings, 1418042 edges, 1343 markings/sec, 655 secs
lola: 857507 markings, 1427952 edges, 1116 markings/sec, 660 secs
lola: 863417 markings, 1437709 edges, 1182 markings/sec, 665 secs
lola: 869809 markings, 1448042 edges, 1278 markings/sec, 670 secs
lola: 875452 markings, 1458038 edges, 1129 markings/sec, 675 secs
lola: 881878 markings, 1469057 edges, 1285 markings/sec, 680 secs
lola: 887033 markings, 1479720 edges, 1031 markings/sec, 685 secs
lola: 893793 markings, 1494165 edges, 1352 markings/sec, 690 secs
lola: 899242 markings, 1505702 edges, 1090 markings/sec, 695 secs
lola: 906617 markings, 1520352 edges, 1475 markings/sec, 700 secs
lola: 912818 markings, 1532877 edges, 1240 markings/sec, 705 secs
lola: 919802 markings, 1544930 edges, 1397 markings/sec, 710 secs
lola: 927494 markings, 1556510 edges, 1538 markings/sec, 715 secs
lola: 934872 markings, 1569249 edges, 1476 markings/sec, 720 secs
lola: 943197 markings, 1582570 edges, 1665 markings/sec, 725 secs
lola: 949325 markings, 1592662 edges, 1226 markings/sec, 730 secs
lola: 955197 markings, 1602058 edges, 1174 markings/sec, 735 secs
lola: 961785 markings, 1612452 edges, 1318 markings/sec, 740 secs
lola: 967558 markings, 1622853 edges, 1155 markings/sec, 745 secs
lola: 973577 markings, 1633110 edges, 1204 markings/sec, 750 secs
lola: 979370 markings, 1645924 edges, 1159 markings/sec, 755 secs
lola: 985642 markings, 1657970 edges, 1254 markings/sec, 760 secs
lola: 992293 markings, 1672345 edges, 1330 markings/sec, 765 secs
lola: 998700 markings, 1685345 edges, 1281 markings/sec, 770 secs
lola: 1006615 markings, 1698285 edges, 1583 markings/sec, 775 secs
lola: 1016192 markings, 1714036 edges, 1915 markings/sec, 780 secs
lola: 1024393 markings, 1727176 edges, 1640 markings/sec, 785 secs
lola: 1034901 markings, 1743909 edges, 2102 markings/sec, 790 secs
lola: 1043143 markings, 1757287 edges, 1648 markings/sec, 795 secs
lola: 1048555 markings, 1767587 edges, 1082 markings/sec, 800 secs
lola: 1054925 markings, 1778458 edges, 1274 markings/sec, 805 secs
lola: 1060598 markings, 1789434 edges, 1135 markings/sec, 810 secs
lola: 1067515 markings, 1800897 edges, 1383 markings/sec, 815 secs
lola: 1073630 markings, 1812186 edges, 1223 markings/sec, 820 secs
lola: 1079948 markings, 1823101 edges, 1264 markings/sec, 825 secs
lola: 1085955 markings, 1837073 edges, 1201 markings/sec, 830 secs
lola: 1092463 markings, 1851630 edges, 1302 markings/sec, 835 secs
lola: 1098778 markings, 1864813 edges, 1263 markings/sec, 840 secs
lola: 1106334 markings, 1877975 edges, 1511 markings/sec, 845 secs
lola: 1114703 markings, 1892238 edges, 1674 markings/sec, 850 secs
lola: 1121272 markings, 1903896 edges, 1314 markings/sec, 855 secs
lola: 1127606 markings, 1914684 edges, 1267 markings/sec, 860 secs
lola: 1133447 markings, 1927732 edges, 1168 markings/sec, 865 secs
lola: 1139736 markings, 1941774 edges, 1258 markings/sec, 870 secs
lola: 1146565 markings, 1956079 edges, 1366 markings/sec, 875 secs
lola: 1155838 markings, 1971617 edges, 1855 markings/sec, 880 secs
lola: 1165332 markings, 1987696 edges, 1899 markings/sec, 885 secs
lola: 1173612 markings, 2001434 edges, 1656 markings/sec, 890 secs
lola: 1179672 markings, 2013202 edges, 1212 markings/sec, 895 secs
lola: 1186520 markings, 2026001 edges, 1370 markings/sec, 900 secs
lola: 1192337 markings, 2039143 edges, 1163 markings/sec, 905 secs
lola: 1199021 markings, 2055611 edges, 1337 markings/sec, 910 secs
lola: 1207250 markings, 2071588 edges, 1646 markings/sec, 915 secs
lola: 1214300 markings, 2087243 edges, 1410 markings/sec, 920 secs
lola: 1221364 markings, 2104307 edges, 1413 markings/sec, 925 secs
lola: 1231649 markings, 2122849 edges, 2057 markings/sec, 930 secs
lola: 1238909 markings, 2137623 edges, 1452 markings/sec, 935 secs
lola: 1245271 markings, 2149478 edges, 1272 markings/sec, 940 secs
lola: 1250609 markings, 2159582 edges, 1068 markings/sec, 945 secs
lola: 1255563 markings, 2170426 edges, 991 markings/sec, 950 secs
lola: 1261584 markings, 2183410 edges, 1204 markings/sec, 955 secs
lola: 1267651 markings, 2194108 edges, 1213 markings/sec, 960 secs
lola: 1273276 markings, 2203993 edges, 1125 markings/sec, 965 secs
lola: 1278300 markings, 2214225 edges, 1005 markings/sec, 970 secs
lola: 1284901 markings, 2227382 edges, 1320 markings/sec, 975 secs
lola: 1292008 markings, 2240286 edges, 1421 markings/sec, 980 secs
lola: 1297480 markings, 2252120 edges, 1094 markings/sec, 985 secs
lola: 1302787 markings, 2262644 edges, 1061 markings/sec, 990 secs
lola: 1308041 markings, 2274724 edges, 1051 markings/sec, 995 secs
lola: 1314460 markings, 2287216 edges, 1284 markings/sec, 1000 secs
lola: 1319908 markings, 2296936 edges, 1090 markings/sec, 1005 secs
lola: 1325208 markings, 2308952 edges, 1060 markings/sec, 1010 secs
lola: 1332741 markings, 2322414 edges, 1507 markings/sec, 1015 secs
lola: 1338267 markings, 2334477 edges, 1105 markings/sec, 1020 secs
lola: 1343382 markings, 2346034 edges, 1023 markings/sec, 1025 secs
lola: 1349619 markings, 2358763 edges, 1247 markings/sec, 1030 secs
lola: 1355051 markings, 2370551 edges, 1086 markings/sec, 1035 secs
lola: 1361964 markings, 2383891 edges, 1383 markings/sec, 1040 secs
lola: 1367524 markings, 2396449 edges, 1112 markings/sec, 1045 secs
lola: 1373482 markings, 2409722 edges, 1192 markings/sec, 1050 secs
lola: 1379913 markings, 2423682 edges, 1286 markings/sec, 1055 secs
lola: 1385804 markings, 2438027 edges, 1178 markings/sec, 1060 secs
lola: 1391946 markings, 2452517 edges, 1228 markings/sec, 1065 secs
lola: 1397000 markings, 2465601 edges, 1011 markings/sec, 1070 secs
lola: 1402041 markings, 2479366 edges, 1008 markings/sec, 1075 secs
lola: 1407187 markings, 2494399 edges, 1029 markings/sec, 1080 secs
lola: 1413057 markings, 2513817 edges, 1174 markings/sec, 1085 secs
lola: 1420328 markings, 2530512 edges, 1454 markings/sec, 1090 secs
lola: 1426490 markings, 2544427 edges, 1232 markings/sec, 1095 secs
lola: 1432004 markings, 2557100 edges, 1103 markings/sec, 1100 secs
lola: 1437385 markings, 2570437 edges, 1076 markings/sec, 1105 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1114 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)))))
lola: processed formula: A (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 ... (shortened)
lola: processed formula length: 2324
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 9184 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: RESULT
lola:
SUMMARY: yes yes yes yes yes yes unknown no unknown yes no unknown yes no unknown no
lola: ========================================
FORMULA NeoElection-COL-8-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-2 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-4 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-6 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-8 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-11 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-14 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
----- Kill lola and sara stdout -----
----- Finished stdout -----

BK_STOP 1496375838240

--------------------
content from stderr:

----- Start make prepare stderr -----
----- Start make result stderr -----
----- Start make result stderr -----
----- Kill lola and sara stderr -----
----- Finished stderr -----

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_NeoElection-PT-8"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/S_NeoElection-PT-8.tgz
mv S_NeoElection-PT-8 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool lola"
echo " Input is S_NeoElection-PT-8, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r118-blw7-149441650100293"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;