About the Execution of MARCIE for S_LamportFastMutEx-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2206.140 | 2317.00 | 2019.00 | 20.60 | FFFFTFTFFTTFTFFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.......
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is S_LamportFastMutEx-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r111-blw7-149441636900178
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-0
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-1
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-10
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-11
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-12
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-13
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-14
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-15
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-2
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-3
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-4
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-5
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-6
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-7
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-8
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1494779139739
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6
parse successfull
net created successfully
Net: LamportFastMutEx_PT_2
(NrP: 69 NrTr: 96 NrArc: 402)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec
net check time: 0m 0.000sec
init dd package: 0m 1.125sec
RS generation: 0m 0.009sec
-> reachability set: #nodes 221 (2.2e+02) #states 380
starting MCC model checker
--------------------------
checking: AG [~ [1<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]
normalized: ~ [E [true U 1<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]
abstracting: (1<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 58
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: AG [~ [3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]
normalized: ~ [E [true U 3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]
abstracting: (3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.013sec
checking: AG [~ [2<=sum(x_2, x_1, x_0)]]
normalized: ~ [E [true U 2<=sum(x_2, x_1, x_0)]]
abstracting: (2<=sum(x_2, x_1, x_0))
states: 0
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.013sec
checking: EF [~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]
normalized: E [true U ~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 380
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [~ [[~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | 2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]
normalized: E [true U ~ [[~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | 2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]
abstracting: (2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 2
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 332
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.030sec
checking: AG [~ [[~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(y_2, y_1, y_0)] | ~ [1<=sum(y_2, y_1, y_0)]]]]
normalized: ~ [E [true U [~ [1<=sum(y_2, y_1, y_0)] | ~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(y_2, y_1, y_0)]]]]
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(y_2, y_1, y_0))
states: 380
abstracting: (1<=sum(y_2, y_1, y_0))
states: 380
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.028sec
checking: AG [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]
normalized: ~ [E [true U ~ [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]
abstracting: (2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 32
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.017sec
checking: AG [[3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]
normalized: ~ [E [true U ~ [[3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]]
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 308
abstracting: (3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.029sec
checking: EF [[~ [1<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & ~ [[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) | sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]
normalized: E [true U [~ [[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) | sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] & ~ [1<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]
abstracting: (1<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 69
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.043sec
checking: AG [~ [[[1<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & 2<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | [sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]
normalized: ~ [E [true U [[1<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & 2<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | [sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]
abstracting: (1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 42
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 316
abstracting: (2<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (1<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 42
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.063sec
checking: EF [~ [[[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]
normalized: E [true U ~ [[[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]
abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 356
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 317
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 324
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.057sec
checking: EF [[[[1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] | [2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & 2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]] | ~ [[1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]
normalized: E [true U [~ [[1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] | [[2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & 2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] | [1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]]]]
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 327
abstracting: (1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 64
abstracting: (2<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 2
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
abstracting: (1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 64
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.069sec
checking: AG [[[[sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & 3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]] | 1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]
normalized: ~ [E [true U ~ [[[[sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & 3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]] | 1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]]
abstracting: (1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
abstracting: (3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 32
abstracting: (3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 0
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 380
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.045sec
checking: AG [[~ [~ [3<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] & [[2<=sum(x_2, x_1, x_0) & sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] & [3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]
normalized: ~ [E [true U ~ [[[[2<=sum(x_2, x_1, x_0) & sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] & [3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]] & 3<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]
abstracting: (3<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 308
abstracting: (3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (2<=sum(x_2, x_1, x_0))
states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.027sec
checking: AG [[~ [1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] & [[sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] & [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) & sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]]
normalized: ~ [E [true U ~ [[~ [1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] & [[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) & sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] & [sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]]]]
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 316
abstracting: (sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 348
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 320
abstracting: (1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.050sec
checking: AG [[~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]] & [[3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & 1<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] | [sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]]
normalized: ~ [E [true U ~ [[[[sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] | [3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & 1<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] & ~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]]]
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 312
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 356
abstracting: (1<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 88
abstracting: (3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 348
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.071sec
totally nodes used: 68177(6.8e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 82011 142902 224913
used/not used/entry size/cache size: 124789 66984075 16 1024MB
basic ops cache: hits/miss/sum: 71758 140049 211807
used/not used/entry size/cache size: 300560 16476656 12 192MB
unary ops cache: hits/miss/sum: 0 15 15
used/not used/entry size/cache size: 15 8388593 8 64MB
abstract ops cache: hits/miss/sum: 0 30693 30693
used/not used/entry size/cache size: 14 8388594 12 96MB
state nr cache: hits/miss/sum: 798 1169 1967
used/not used/entry size/cache size: 1169 2095983 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67040721
1 68109
2 34
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 2.289sec
BK_STOP 1494779142056
--------------------
content from stderr:
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_setbi_11_0
P_ifxi_10_0
P_sety_9_0
P_ify0_4_0
P_setbi_5_0
P_setx_3_0
P_b_0_true
P_b_0_false
P_start_1_0
P_wait_0_0
P_fordo_12_0
P_awaity_0
P_setbi_24_0
P_CS_21_0
P_done_2_0
P_done_0_0
P_done_0_1
P_wait_0_1
P_wait_0_2
P_wait_1_0
P_wait_2_0
P_await_13_0
P_done_0_2
P_done_1_0
P_ifyi_15_0
The net has transition(s) that can never fire:
T_ynei_15_3
T_yeqi_15_1
T_xeqi_10_1
T_sety0_23_1
T_sety0_23_2
T_sety0_23_3
T_setbi_24_1
T_setbi_24_2
T_setx_3_3
T_setx_3_1
T_setx_3_2
T_setbi_2_1
T_forod_13_1
T_xnei_10_2
T_xnei_10_3
T_yne0_4_3
T_yeq0_4_1
T_yne0_4_2
T_awaity_1
T_sety_9_3
T_sety_9_1
T_sety_9_2
T_ynei_15_2
T_await_13_7
T_setbi_5_2
T_setbi_5_1
T_setbi_2_2
T_setbi_11_1
T_setbi_11_2
T_fordo_12_1
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:1779 (18), effective:98 (1)
initing FirstDep: 0m 0.000sec
iterations count:1000 (10), effective:46 (0)
iterations count:126 (1), effective:5 (0)
iterations count:299 (3), effective:13 (0)
iterations count:1525 (15), effective:74 (0)
iterations count:379 (3), effective:9 (0)
iterations count:1972 (20), effective:98 (1)
iterations count:96 (1), effective:0 (0)
iterations count:600 (6), effective:28 (0)
iterations count:96 (1), effective:0 (0)
iterations count:658 (6), effective:39 (0)
iterations count:264 (2), effective:5 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_LamportFastMutEx-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/S_LamportFastMutEx-PT-2.tgz
mv S_LamportFastMutEx-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is S_LamportFastMutEx-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r111-blw7-149441636900178"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;