fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r111-blw7-149441636900178
Last Updated
June 27, 2017

About the Execution of MARCIE for S_LamportFastMutEx-PT-2

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
2206.140 2317.00 2019.00 20.60 FFFFTFTFFTTFTFFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
.......
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is S_LamportFastMutEx-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r111-blw7-149441636900178
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-0
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-1
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-10
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-11
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-12
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-13
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-14
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-15
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-2
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-3
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-4
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-5
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-6
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-7
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-8
FORMULA_NAME LamportFastMutEx-COL-2-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1494779139739

timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6

parse successfull
net created successfully

Net: LamportFastMutEx_PT_2
(NrP: 69 NrTr: 96 NrArc: 402)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec

net check time: 0m 0.000sec

init dd package: 0m 1.125sec


RS generation: 0m 0.009sec


-> reachability set: #nodes 221 (2.2e+02) #states 380



starting MCC model checker
--------------------------

checking: AG [~ [1<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]
normalized: ~ [E [true U 1<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]

abstracting: (1<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 58
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.036sec

checking: AG [~ [3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]
normalized: ~ [E [true U 3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]

abstracting: (3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.013sec

checking: AG [~ [2<=sum(x_2, x_1, x_0)]]
normalized: ~ [E [true U 2<=sum(x_2, x_1, x_0)]]

abstracting: (2<=sum(x_2, x_1, x_0))
states: 0
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.013sec

checking: EF [~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]
normalized: E [true U ~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]

abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 380
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [~ [[~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | 2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]
normalized: E [true U ~ [[~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] | 2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)]]]

abstracting: (2<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 2
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 332
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.030sec

checking: AG [~ [[~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(y_2, y_1, y_0)] | ~ [1<=sum(y_2, y_1, y_0)]]]]
normalized: ~ [E [true U [~ [1<=sum(y_2, y_1, y_0)] | ~ [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(y_2, y_1, y_0)]]]]

abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(y_2, y_1, y_0))
states: 380
abstracting: (1<=sum(y_2, y_1, y_0))
states: 380
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.028sec

checking: AG [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]
normalized: ~ [E [true U ~ [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]

abstracting: (2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 32
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.017sec

checking: AG [[3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]
normalized: ~ [E [true U ~ [[3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]]

abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 308
abstracting: (3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.029sec

checking: EF [[~ [1<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] & ~ [[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) | sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]
normalized: E [true U [~ [[sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0) | sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] & ~ [1<=sum(P_start_1_2, P_start_1_1, P_start_1_0)]]]

abstracting: (1<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 69
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.043sec

checking: AG [~ [[[1<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & 2<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | [sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]
normalized: ~ [E [true U [[1<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & 2<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)] | [sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]]

abstracting: (1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 42
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 316
abstracting: (2<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 0
abstracting: (1<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 42
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.063sec

checking: EF [~ [[[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]
normalized: E [true U ~ [[[sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0)] | sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]

abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 356
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 317
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 324
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.057sec

checking: EF [[[[1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] | [2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & 2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]] | ~ [[1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]
normalized: E [true U [~ [[1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] | [[2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) & 2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] | [1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0) | sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]]]]

abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 327
abstracting: (1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 64
abstracting: (2<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 2
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
abstracting: (1<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 64
-> the formula is TRUE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.069sec

checking: AG [[[[sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & 3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]] | 1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]
normalized: ~ [E [true U ~ [[[[sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & 3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)] & [2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) | 3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)]] | 1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]]

abstracting: (1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
abstracting: (3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (2<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 32
abstracting: (3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 0
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 380
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.045sec

checking: AG [[~ [~ [3<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]] & [[2<=sum(x_2, x_1, x_0) & sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] & [3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]
normalized: ~ [E [true U ~ [[[[2<=sum(x_2, x_1, x_0) & sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)] & [3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]] & 3<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]]

abstracting: (3<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 0
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 308
abstracting: (3<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 0
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (2<=sum(x_2, x_1, x_0))
states: 0
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.027sec

checking: AG [[~ [1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] & [[sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] & [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) & sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]]
normalized: ~ [E [true U ~ [[~ [1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] & [[sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) & sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] & [sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) | sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]]]]]]

abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 316
abstracting: (sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 348
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 320
abstracting: (1<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.050sec

checking: AG [[~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]] & [[3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & 1<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)] | [sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]]]]
normalized: ~ [E [true U ~ [[[[sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) & sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] | [3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & 1<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] & ~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]]]

abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 312
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 356
abstracting: (1<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 88
abstracting: (3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 348
-> the formula is FALSE

FORMULA LamportFastMutEx-COL-2-ReachabilityCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.071sec

totally nodes used: 68177(6.8e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 82011 142902 224913
used/not used/entry size/cache size: 124789 66984075 16 1024MB
basic ops cache: hits/miss/sum: 71758 140049 211807
used/not used/entry size/cache size: 300560 16476656 12 192MB
unary ops cache: hits/miss/sum: 0 15 15
used/not used/entry size/cache size: 15 8388593 8 64MB
abstract ops cache: hits/miss/sum: 0 30693 30693
used/not used/entry size/cache size: 14 8388594 12 96MB
state nr cache: hits/miss/sum: 798 1169 1967
used/not used/entry size/cache size: 1169 2095983 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67040721
1 68109
2 34
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0

Total processing time: 0m 2.289sec


BK_STOP 1494779142056

--------------------
content from stderr:

check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_setbi_11_0
P_ifxi_10_0
P_sety_9_0
P_ify0_4_0
P_setbi_5_0
P_setx_3_0
P_b_0_true
P_b_0_false
P_start_1_0
P_wait_0_0
P_fordo_12_0
P_awaity_0
P_setbi_24_0
P_CS_21_0
P_done_2_0
P_done_0_0
P_done_0_1
P_wait_0_1
P_wait_0_2
P_wait_1_0
P_wait_2_0
P_await_13_0
P_done_0_2
P_done_1_0
P_ifyi_15_0

The net has transition(s) that can never fire:
T_ynei_15_3
T_yeqi_15_1
T_xeqi_10_1
T_sety0_23_1
T_sety0_23_2
T_sety0_23_3
T_setbi_24_1
T_setbi_24_2
T_setx_3_3
T_setx_3_1
T_setx_3_2
T_setbi_2_1
T_forod_13_1
T_xnei_10_2
T_xnei_10_3
T_yne0_4_3
T_yeq0_4_1
T_yne0_4_2
T_awaity_1
T_sety_9_3
T_sety_9_1
T_sety_9_2
T_ynei_15_2
T_await_13_7
T_setbi_5_2
T_setbi_5_1
T_setbi_2_2
T_setbi_11_1
T_setbi_11_2
T_fordo_12_1
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4

check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:1779 (18), effective:98 (1)

initing FirstDep: 0m 0.000sec


iterations count:1000 (10), effective:46 (0)

iterations count:126 (1), effective:5 (0)

iterations count:299 (3), effective:13 (0)

iterations count:1525 (15), effective:74 (0)

iterations count:379 (3), effective:9 (0)

iterations count:1972 (20), effective:98 (1)

iterations count:96 (1), effective:0 (0)

iterations count:600 (6), effective:28 (0)

iterations count:96 (1), effective:0 (0)

iterations count:658 (6), effective:39 (0)

iterations count:264 (2), effective:5 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="S_LamportFastMutEx-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/S_LamportFastMutEx-PT-2.tgz
mv S_LamportFastMutEx-PT-2 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is S_LamportFastMutEx-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r111-blw7-149441636900178"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;