fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r058-smll-149440926300275
Last Updated
June 27, 2017

About the Execution of LoLA for QuasiCertifProtocol-PT-22

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
8359.440 1180304.00 1182485.00 3394.60 TFFTTFFFFF????FF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
...........
=====================================================================
Generated by BenchKit 2-3254
Executing tool lola
Input is QuasiCertifProtocol-PT-22, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r058-smll-149440926300275
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-22-LTLCardinality-9

=== Now, execution of the tool begins

BK_START 1494778022753


Time: 3600 - MCC
----- Start make prepare stdout -----
checking for too many tokens
----- Start make result stdout -----
LTLCardinality @ QuasiCertifProtocol-PT-22 @ 3540 seconds
----- Start make result stdout -----
lola: LoLA will run for 3540 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 2322/65536 symbol table entries, 0 collisions
lola: preprocessing...
lola: finding significant places
lola: 1966 places, 356 transitions, 355 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 471 transition conflict sets
lola: TASK
lola: reading formula from QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: A ((X (F ((SstopAbort <= Astart))) U F ((s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_9 <= a4)))) : A (G (F (X (F ((3 <= s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9)))))) : A (G (((1 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_13_22 + n9_13_21 + n9_13_20 + n9_13_19 + n9_13_18 + n9_13_17 + n9_13_16 + n9_13_15 + n9_13_14 + n9_13_13 + n9_13_12 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_13_11 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_13_10 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_0_0 + n9_0_1 + n9_0_2 + n9_0_3 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_1_0 + n9_1_1 + n9_1_2 + n9_1_3 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_2_0 + n9_2_1 + n9_2_2 + n9_2_3 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_3_0 + n9_3_1 + n9_3_2 + n9_3_3 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_0 + n9_4_1 + n9_4_2 + n9_4_3 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_20_13 + n9_20_12 + n9_20_11 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_7_12 + n9_7_11 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22) U (1 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10)))) : A ((X (F ((1 <= AstopOK))) U ((2 <= a1) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 + n8_2_0 + n8_13_0 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_20_22 + n8_20_21 + n8_20_20 + n8_20_19 + n8_20_18 + n8_20_17 + n8_20_16 + n8_20_15 + n8_20_14 + n8_20_13 + n8_20_12 + n8_20_11 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_19_22 + n8_19_21 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_19_20 + n8_19_19 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_19_18 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_1_9 + n8_1_8 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_1_2 + n8_1_1 + n8_12_9 + n8_12_8 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_12_7 + n8_12_6 + n8_12_5 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_12_4 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_12_3 + n8_12_2 + n8_12_1 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_0_9 + n8_0_8 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_0_1 + n8_5_22 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9)))) : A (F (G (G (X ((1 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22)))))) : A (X (G (G (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9)))))) : A (G (F (G ((n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9 <= a5))))) : A ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_13_22 + n9_13_21 + n9_13_20 + n9_13_19 + n9_13_18 + n9_13_17 + n9_13_16 + n9_13_15 + n9_13_14 + n9_13_13 + n9_13_12 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_13_11 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_13_10 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_0_0 + n9_0_1 + n9_0_2 + n9_0_3 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_1_0 + n9_1_1 + n9_1_2 + n9_1_3 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_2_0 + n9_2_1 + n9_2_2 + n9_2_3 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_3_0 + n9_3_1 + n9_3_2 + n9_3_3 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_0 + n9_4_1 + n9_4_2 + n9_4_3 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_20_13 + n9_20_12 + n9_20_11 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_7_12 + n9_7_11 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22) U (2 <= Sstart_9 + Sstart_8 + Sstart_7 + Sstart_6 + Sstart_5 + Sstart_4 + Sstart_3 + Sstart_2 + Sstart_1 + Sstart_0 + Sstart_10 + Sstart_11 + Sstart_12 + Sstart_13 + Sstart_14 + Sstart_15 + Sstart_16 + Sstart_17 + Sstart_18 + Sstart_19 + Sstart_20 + Sstart_21 + Sstart_22)) U G (X ((a2 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22))))) : A (X (X ((2 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22)))) : A (((3 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 + n8_2_0 + n8_13_0 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_20_22 + n8_20_21 + n8_20_20 + n8_20_19 + n8_20_18 + n8_20_17 + n8_20_16 + n8_20_15 + n8_20_14 + n8_20_13 + n8_20_12 + n8_20_11 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_19_22 + n8_19_21 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_19_20 + n8_19_19 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_19_18 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_1_9 + n8_1_8 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_1_2 + n8_1_1 + n8_12_9 + n8_12_8 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_12_7 + n8_12_6 + n8_12_5 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_12_4 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_12_3 + n8_12_2 + n8_12_1 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_0_9 + n8_0_8 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_0_1 + n8_5_22 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9))) : A ((2 <= SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20)) : A ((X (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))) U F (F ((SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20 <= Astart))))) : A (F ((G ((2 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9)) U (n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 <= a5)))) : A (X ((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22))) : A ((3 <= SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20)) : A ((((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_3_10 + n7_6_0 + n7_15_0 + n7_4_10 + n7_16_10 + n7_18_0 + n7_7_0 + n7_5_10 + n7_11_10 + n7_10_0 + n7_0_10 + n7_22_0 + n7_14_10 + n7_8_10 + n7_12_10 + n7_1_10 + n7_19_0 + n7_13_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_8_0 + n7_8_9 + n7_8_8 + n7_8_7 + n7_8_6 + n7_8_5 + n7_8_4 + n7_8_3 + n7_8_2 + n7_8_1 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_19_9 + n7_19_8 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_19_7 + n7_19_6 + n7_19_5 + n7_19_4 + n7_19_3 + n7_19_2 + n7_19_1 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_8_22 + n7_8_21 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_8_16 + n7_8_15 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_14_22 + n7_14_21 + n7_14_20 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9)) U (2 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9)))
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((X (F ((SstopAbort <= Astart))) U F ((s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_9 <= a4))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X (F ((SstopAbort <= Astart))) U F ((s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_9 <= a4))))
lola: processed formula: A ((X (F ((SstopAbort <= Astart))) U F ((s3_8 + s3_7 + s3_6 + s3_5 + s3_4 + s3_3 + s3_2 + s3_1 + s3_0 + s3_10 + s3_11 + s3_12 + s3_13 + s3_14 + s3_15 + s3_16 + s3_17 + s3_18 + s3_19 + s3_20 + s3_21 + s3_22 + s3_9 <= a4))))
lola: processed formula length: 222
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 1 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 31 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 1 will run for 236 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (F (X (F ((3 <= s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (F (X (F ((3 <= s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9))))))
lola: processed formula: A (G (F (X (F ((3 <= s5_22 + s5_21 + s5_20 + s5_19 + s5_18 + s5_17 + s5_16 + s5_15 + s5_14 + s5_13 + s5_12 + s5_11 + s5_10 + s5_0 + s5_1 + s5_2 + s5_3 + s5_4 + s5_5 + s5_6 + s5_7 + s5_8 + s5_9))))))
lola: processed formula length: 198
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 2 will run for 252 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (((1 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (((1 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_13_22 + n9_13_21 + n9_13_20 + n9_13_19 + n9_13_18 + n9_13_17 + n9_13_16 + n9_13_15 + n9_13_14 + n9_13_13 + n9_13_12 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_13_11 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_13_10 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_0_0 + n9_0_1 + n9_0_2 + n9_0_3 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_1_0 + n9_1_1 + n9_1_2 + n9_1_3 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_2_0 + n9_2_1 + n9_2_2 + n9_2_3 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_3_0 + n9_3_1 + n9_3_2 + n9_3_3 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_0 + n9_4_1 + n9_4_2 + n9_4_3 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_20_13 + n9_20_12 + n9_20_11 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_7_12 + n9_7_11 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22) U (1 <= s2_9 + s2_8 + s2_7 + s2_6 + s2_5 + s2_4 + s2_3 + s2_2 + s2_1 + s2_0 + s2_22 + s2_21 + s2_20 + s2_19 + s2_18 + s2_17 + s2_16 + s2_15 + s2_14 + s2_13 + s2_12 + s2_11 + s2_10))))
lola: processed formula: A (G (((1 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_... (shortened)
lola: processed formula length: 5554
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((X (F ((1 <= AstopOK))) U ((2 <= a1) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 + n8_2_0 + n8_13_0 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X (F ((1 <= AstopOK))) U ((2 <= a1) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 + n8_2_0 + n8_13_0 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_20_22 + n8_20_21 + n8_20_20 + n8_20_19 + n8_20_18 + n8_20_17 + n8_20_16 + n8_20_15 + n8_20_14 + n8_20_13 + n8_20_12 + n8_20_11 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_19_22 + n8_19_21 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_19_20 + n8_19_19 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_19_18 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_1_9 + n8_1_8 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_1_2 + n8_1_1 + n8_12_9 + n8_12_8 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_12_7 + n8_12_6 + n8_12_5 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_12_4 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_12_3 + n8_12_2 + n8_12_1 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_0_9 + n8_0_8 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_0_1 + n8_5_22 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9))))
lola: processed formula: A ((X (F ((1 <= AstopOK))) U ((2 <= a1) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 + n8_2_0 + n8_13_0 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_... (shortened)
lola: processed formula length: 5408
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 4 will run for 295 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (G (G (X ((1 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G (G (X ((1 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22))))))
lola: processed formula: A (F (G (G (X ((1 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22))))))
lola: processed formula length: 198
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 510445 markings, 3307823 edges, 102089 markings/sec, 0 secs
lola: 916308 markings, 6330112 edges, 81173 markings/sec, 5 secs
lola: 1266740 markings, 9270272 edges, 70086 markings/sec, 10 secs
lola: 1690256 markings, 12109886 edges, 84703 markings/sec, 15 secs
lola: 2036820 markings, 14779104 edges, 69313 markings/sec, 20 secs
lola: 2406225 markings, 17683980 edges, 73881 markings/sec, 25 secs
lola: 2781832 markings, 20375028 edges, 75121 markings/sec, 30 secs
lola: 3125366 markings, 23022767 edges, 68707 markings/sec, 35 secs
lola: 3474524 markings, 25749267 edges, 69832 markings/sec, 40 secs
lola: 3845083 markings, 28413291 edges, 74112 markings/sec, 45 secs
lola: 4181547 markings, 30753787 edges, 67293 markings/sec, 50 secs
lola: 4539340 markings, 33162196 edges, 71559 markings/sec, 55 secs
lola: 4939998 markings, 36041223 edges, 80132 markings/sec, 60 secs
lola: 5222081 markings, 38558512 edges, 56417 markings/sec, 65 secs
lola: 5527355 markings, 40868215 edges, 61055 markings/sec, 70 secs
lola: 5836118 markings, 43332741 edges, 61753 markings/sec, 75 secs
lola: 6159974 markings, 45998151 edges, 64771 markings/sec, 80 secs
lola: 6394585 markings, 48393745 edges, 46922 markings/sec, 85 secs
lola: 6712966 markings, 50801675 edges, 63676 markings/sec, 90 secs
lola: 7027017 markings, 53246938 edges, 62810 markings/sec, 95 secs
lola: 7350216 markings, 55906923 edges, 64640 markings/sec, 100 secs
lola: 7584936 markings, 58333724 edges, 46944 markings/sec, 105 secs
lola: 7877070 markings, 60864946 edges, 58427 markings/sec, 110 secs
lola: 8180483 markings, 63557523 edges, 60683 markings/sec, 115 secs
lola: 8434141 markings, 66080759 edges, 50732 markings/sec, 120 secs
lola: 8693145 markings, 68520180 edges, 51801 markings/sec, 125 secs
lola: 8993673 markings, 70847751 edges, 60106 markings/sec, 130 secs
lola: 9324599 markings, 73479326 edges, 66185 markings/sec, 135 secs
lola: 9626134 markings, 76080980 edges, 60307 markings/sec, 140 secs
lola: 9871117 markings, 78497899 edges, 48997 markings/sec, 145 secs
lola: 10157495 markings, 81048353 edges, 57276 markings/sec, 150 secs
lola: 10445641 markings, 83677553 edges, 57629 markings/sec, 155 secs
lola: 10671488 markings, 86109301 edges, 45169 markings/sec, 160 secs
lola: 10927412 markings, 88529985 edges, 51185 markings/sec, 165 secs
lola: 11235395 markings, 91226728 edges, 61597 markings/sec, 170 secs
lola: 11501168 markings, 93783101 edges, 53155 markings/sec, 175 secs
lola: 11727675 markings, 96310984 edges, 45301 markings/sec, 180 secs
lola: 12011243 markings, 99118123 edges, 56714 markings/sec, 185 secs
lola: 12257449 markings, 101781561 edges, 49241 markings/sec, 190 secs
lola: 12539360 markings, 104492017 edges, 56382 markings/sec, 195 secs
lola: 12945036 markings, 107235448 edges, 81135 markings/sec, 200 secs
lola: 13304684 markings, 109987067 edges, 71930 markings/sec, 205 secs
lola: 13630846 markings, 112779952 edges, 65232 markings/sec, 210 secs
lola: 14013333 markings, 115350253 edges, 76497 markings/sec, 215 secs
lola: 14355705 markings, 117929620 edges, 68474 markings/sec, 220 secs
lola: 14665379 markings, 120607399 edges, 61935 markings/sec, 225 secs
lola: 15045609 markings, 123177653 edges, 76046 markings/sec, 230 secs
lola: 15407117 markings, 125522943 edges, 72302 markings/sec, 235 secs
lola: 15760006 markings, 127978712 edges, 70578 markings/sec, 240 secs
lola: 16092084 markings, 130476744 edges, 66416 markings/sec, 245 secs
lola: 16364537 markings, 132845848 edges, 54491 markings/sec, 250 secs
lola: 16665740 markings, 135156914 edges, 60241 markings/sec, 255 secs
lola: 16969150 markings, 137565811 edges, 60682 markings/sec, 260 secs
lola: 17255864 markings, 139979899 edges, 57343 markings/sec, 265 secs
lola: 17463262 markings, 142189290 edges, 41480 markings/sec, 270 secs
lola: 17792833 markings, 144664292 edges, 65914 markings/sec, 275 secs
lola: 18102593 markings, 147062204 edges, 61952 markings/sec, 280 secs
lola: 18410813 markings, 149570064 edges, 61644 markings/sec, 285 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 5 will run for 294 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (G (G (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (G (G (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))))))
lola: processed formula: A (X (G (G (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))))))
lola: processed formula length: 290
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 396999 markings, 2747323 edges, 79400 markings/sec, 0 secs
lola: 719151 markings, 5251340 edges, 64430 markings/sec, 5 secs
lola: 1025890 markings, 7440971 edges, 61348 markings/sec, 10 secs
lola: 1335230 markings, 9802504 edges, 61868 markings/sec, 15 secs
lola: 1645285 markings, 12094018 edges, 62011 markings/sec, 20 secs
lola: 1943708 markings, 14373602 edges, 59685 markings/sec, 25 secs
lola: 2218196 markings, 16246404 edges, 54898 markings/sec, 30 secs
lola: 2552587 markings, 18786043 edges, 66878 markings/sec, 35 secs
lola: 2799510 markings, 20712822 edges, 49385 markings/sec, 40 secs
lola: 3084015 markings, 23041593 edges, 56901 markings/sec, 45 secs
lola: 3312682 markings, 25076567 edges, 45733 markings/sec, 50 secs
lola: 3589857 markings, 27232751 edges, 55435 markings/sec, 55 secs
lola: 3816955 markings, 29373478 edges, 45420 markings/sec, 60 secs
lola: 4078340 markings, 31679586 edges, 52277 markings/sec, 65 secs
lola: 4282066 markings, 33804690 edges, 40745 markings/sec, 70 secs
lola: 4532506 markings, 35742317 edges, 50088 markings/sec, 75 secs
lola: 4817591 markings, 38085326 edges, 57017 markings/sec, 80 secs
lola: 5035340 markings, 40144872 edges, 43550 markings/sec, 85 secs
lola: 5281429 markings, 42425479 edges, 49218 markings/sec, 90 secs
lola: 5483586 markings, 44449752 edges, 40431 markings/sec, 95 secs
lola: 5741920 markings, 46797915 edges, 51667 markings/sec, 100 secs
lola: 5952140 markings, 49020133 edges, 42044 markings/sec, 105 secs
lola: 6159333 markings, 51288229 edges, 41439 markings/sec, 110 secs
lola: 6459937 markings, 53527531 edges, 60121 markings/sec, 115 secs
lola: 6750259 markings, 55821780 edges, 58064 markings/sec, 120 secs
lola: 7042057 markings, 57921903 edges, 58360 markings/sec, 125 secs
lola: 7308655 markings, 60057937 edges, 53320 markings/sec, 130 secs
lola: 7602722 markings, 62069259 edges, 58813 markings/sec, 135 secs
lola: 7874957 markings, 63944922 edges, 54447 markings/sec, 140 secs
lola: 8108704 markings, 65868093 edges, 46749 markings/sec, 145 secs
lola: 8348396 markings, 67712115 edges, 47938 markings/sec, 150 secs
lola: 8593823 markings, 69685646 edges, 49085 markings/sec, 155 secs
lola: 8793081 markings, 71512060 edges, 39852 markings/sec, 160 secs
lola: 9028076 markings, 73376835 edges, 46999 markings/sec, 165 secs
lola: 9272284 markings, 75388245 edges, 48842 markings/sec, 170 secs
lola: 9469385 markings, 77285203 edges, 39420 markings/sec, 175 secs
lola: 9692685 markings, 79287402 edges, 44660 markings/sec, 180 secs
lola: 9879066 markings, 81132089 edges, 37276 markings/sec, 185 secs
lola: 10113158 markings, 82977735 edges, 46818 markings/sec, 190 secs
lola: 10374998 markings, 85159314 edges, 52368 markings/sec, 195 secs
lola: 10583134 markings, 87134774 edges, 41627 markings/sec, 200 secs
lola: 10819264 markings, 89308097 edges, 47226 markings/sec, 205 secs
lola: 11010747 markings, 91245553 edges, 38297 markings/sec, 210 secs
lola: 11257569 markings, 93468558 edges, 49364 markings/sec, 215 secs
lola: 11450956 markings, 95522202 edges, 38677 markings/sec, 220 secs
lola: 11662752 markings, 97719610 edges, 42359 markings/sec, 225 secs
lola: 11891837 markings, 99703919 edges, 45817 markings/sec, 230 secs
lola: 12155326 markings, 101694772 edges, 52698 markings/sec, 235 secs
lola: 12433299 markings, 103797613 edges, 55595 markings/sec, 240 secs
lola: 12693565 markings, 105559887 edges, 52053 markings/sec, 245 secs
lola: 12963303 markings, 107474449 edges, 53948 markings/sec, 250 secs
lola: 13177649 markings, 109271284 edges, 42869 markings/sec, 255 secs
lola: 13402450 markings, 111048666 edges, 44960 markings/sec, 260 secs
lola: 13611945 markings, 112816799 edges, 41899 markings/sec, 265 secs
lola: 13814330 markings, 114619316 edges, 40477 markings/sec, 270 secs
lola: 14067508 markings, 116563556 edges, 50636 markings/sec, 275 secs
lola: 14272686 markings, 118448493 edges, 41036 markings/sec, 280 secs
lola: 14492959 markings, 120437651 edges, 44055 markings/sec, 285 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 6 will run for 295 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (F (G ((n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9 <= a5)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G ((n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9 <= a5))))
lola: processed formula: A (F (G ((n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9 <= a5))))
lola: processed formula length: 191
lola: 1 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 579308 markings, 1570602 edges, 115862 markings/sec, 0 secs
lola: 1006347 markings, 3056421 edges, 85408 markings/sec, 5 secs
lola: 1386052 markings, 4556627 edges, 75941 markings/sec, 10 secs
lola: 1792255 markings, 6025375 edges, 81241 markings/sec, 15 secs
lola: 2177706 markings, 7505997 edges, 77090 markings/sec, 20 secs
lola: 2651196 markings, 9006817 edges, 94698 markings/sec, 25 secs
lola: 3032862 markings, 10477331 edges, 76333 markings/sec, 30 secs
lola: 3417519 markings, 11948571 edges, 76931 markings/sec, 35 secs
lola: 3834708 markings, 13427340 edges, 83438 markings/sec, 40 secs
lola: 4230439 markings, 14898072 edges, 79146 markings/sec, 45 secs
lola: 4612697 markings, 16376738 edges, 76452 markings/sec, 50 secs
lola: 5021174 markings, 17651234 edges, 81695 markings/sec, 55 secs
lola: 5361325 markings, 19009272 edges, 68030 markings/sec, 60 secs
lola: 5730884 markings, 20320429 edges, 73912 markings/sec, 65 secs
lola: 6072737 markings, 21670385 edges, 68371 markings/sec, 70 secs
lola: 6416363 markings, 23017586 edges, 68725 markings/sec, 75 secs
lola: 6770857 markings, 24345943 edges, 70899 markings/sec, 80 secs
lola: 7110926 markings, 25682109 edges, 68014 markings/sec, 85 secs
lola: 7445766 markings, 27036015 edges, 66968 markings/sec, 90 secs
lola: 7730550 markings, 28464054 edges, 56957 markings/sec, 95 secs
lola: 7997438 markings, 29897528 edges, 53378 markings/sec, 100 secs
lola: 8291286 markings, 31297957 edges, 58770 markings/sec, 105 secs
lola: 8563295 markings, 32715880 edges, 54402 markings/sec, 110 secs
lola: 8829133 markings, 34139562 edges, 53168 markings/sec, 115 secs
lola: 9144933 markings, 35497802 edges, 63160 markings/sec, 120 secs
lola: 9467316 markings, 36848143 edges, 64477 markings/sec, 125 secs
lola: 9727634 markings, 38278587 edges, 52064 markings/sec, 130 secs
lola: 10001237 markings, 39685188 edges, 54721 markings/sec, 135 secs
lola: 10294373 markings, 41065206 edges, 58627 markings/sec, 140 secs
lola: 10577533 markings, 42456696 edges, 56632 markings/sec, 145 secs
lola: 10857146 markings, 43854145 edges, 55923 markings/sec, 150 secs
lola: 11129519 markings, 45253465 edges, 54475 markings/sec, 155 secs
lola: 11417018 markings, 46650603 edges, 57500 markings/sec, 160 secs
lola: 11766522 markings, 47966207 edges, 69901 markings/sec, 165 secs
lola: 12114874 markings, 49288142 edges, 69670 markings/sec, 170 secs
lola: 12453583 markings, 50621997 edges, 67742 markings/sec, 175 secs
lola: 12783308 markings, 51958503 edges, 65945 markings/sec, 180 secs
lola: 13044578 markings, 53376525 edges, 52254 markings/sec, 185 secs
lola: 13320812 markings, 54772863 edges, 55247 markings/sec, 190 secs
lola: 13604655 markings, 56159243 edges, 56769 markings/sec, 195 secs
lola: 13887691 markings, 57540942 edges, 56607 markings/sec, 200 secs
lola: 14163851 markings, 58933698 edges, 55232 markings/sec, 205 secs
lola: 14436970 markings, 60321130 edges, 54624 markings/sec, 210 secs
lola: 14705594 markings, 61723154 edges, 53725 markings/sec, 215 secs
lola: 15043781 markings, 63016416 edges, 67637 markings/sec, 220 secs
lola: 15380130 markings, 64367248 edges, 67270 markings/sec, 225 secs
lola: 15651305 markings, 65765426 edges, 54235 markings/sec, 230 secs
lola: 15933898 markings, 67150499 edges, 56519 markings/sec, 235 secs
lola: 16201781 markings, 68550885 edges, 53577 markings/sec, 240 secs
lola: 16488262 markings, 69937363 edges, 57296 markings/sec, 245 secs
lola: 16801442 markings, 71290349 edges, 62636 markings/sec, 250 secs
lola: 17069045 markings, 72689341 edges, 53521 markings/sec, 255 secs
lola: 17364149 markings, 74081875 edges, 59021 markings/sec, 260 secs
lola: 17640016 markings, 75509839 edges, 55173 markings/sec, 265 secs
lola: 17933232 markings, 76954849 edges, 58643 markings/sec, 270 secs
lola: 18348562 markings, 78455573 edges, 83066 markings/sec, 275 secs
lola: 18732091 markings, 79879651 edges, 76706 markings/sec, 280 secs
lola: 19118890 markings, 81360585 edges, 77360 markings/sec, 285 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 7 will run for 295 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19_19 + n9_19_20 + n9_19_21 + n9_19_22 + n9_7_10 + n9_20_10 + n9_6_10 + n9_20_9 + n9_20_8 + n9_20_7 + n9_20_6 + n9_20_5 + n9_20_4 + n9_20_3 + n9_20_2 + n9_20_1 + n9_20_0 + n9_1_10 + n9_1_11 + n9_1_12 + n9_1_13 + n9_1_14 + n9_1_15 + n9_1_16 + n9_1_17 + n9_1_18 + n9_1_19 + n9_1_20 + n9_1_21 + n9_1_22 + n9_13_22 + n9_13_21 + n9_13_20 + n9_13_19 + n9_13_18 + n9_13_17 + n9_13_16 + n9_13_15 + n9_13_14 + n9_13_13 + n9_13_12 + n9_18_10 + n9_18_11 + n9_18_12 + n9_18_13 + n9_18_14 + n9_18_15 + n9_18_16 + n9_18_17 + n9_18_18 + n9_18_19 + n9_18_20 + n9_18_21 + n9_18_22 + n9_21_0 + n9_21_1 + n9_21_2 + n9_21_3 + n9_21_4 + n9_21_5 + n9_21_6 + n9_21_7 + n9_21_8 + n9_21_9 + n9_13_11 + n9_6_11 + n9_6_12 + n9_6_13 + n9_6_14 + n9_6_15 + n9_6_16 + n9_6_17 + n9_6_18 + n9_6_19 + n9_6_20 + n9_6_21 + n9_6_22 + n9_13_10 + n9_22_0 + n9_22_1 + n9_22_2 + n9_22_3 + n9_22_4 + n9_22_5 + n9_22_6 + n9_22_7 + n9_22_8 + n9_22_9 + n9_12_10 + n9_12_11 + n9_12_12 + n9_12_13 + n9_12_14 + n9_12_15 + n9_12_16 + n9_12_17 + n9_12_18 + n9_12_19 + n9_12_20 + n9_12_21 + n9_12_22 + n9_0_10 + n9_0_11 + n9_0_12 + n9_0_13 + n9_0_14 + n9_0_15 + n9_0_16 + n9_0_17 + n9_0_18 + n9_0_19 + n9_0_20 + n9_0_21 + n9_0_22 + n9_10_0 + n9_10_1 + n9_10_2 + n9_10_3 + n9_10_4 + n9_10_5 + n9_10_6 + n9_10_7 + n9_10_8 + n9_10_9 + n9_17_10 + n9_17_11 + n9_17_12 + n9_17_13 + n9_17_14 + n9_17_15 + n9_17_16 + n9_17_17 + n9_17_18 + n9_17_19 + n9_17_20 + n9_17_21 + n9_17_22 + n9_0_0 + n9_0_1 + n9_0_2 + n9_0_3 + n9_0_4 + n9_0_5 + n9_0_6 + n9_0_7 + n9_0_8 + n9_0_9 + n9_11_0 + n9_11_1 + n9_11_2 + n9_11_3 + n9_11_4 + n9_11_5 + n9_11_6 + n9_11_7 + n9_11_8 + n9_11_9 + n9_5_10 + n9_5_11 + n9_5_12 + n9_5_13 + n9_5_14 + n9_5_15 + n9_5_16 + n9_5_17 + n9_5_18 + n9_5_19 + n9_5_20 + n9_5_21 + n9_5_22 + n9_1_0 + n9_1_1 + n9_1_2 + n9_1_3 + n9_1_4 + n9_1_5 + n9_1_6 + n9_1_7 + n9_1_8 + n9_1_9 + n9_12_0 + n9_12_1 + n9_12_2 + n9_12_3 + n9_12_4 + n9_12_5 + n9_12_6 + n9_12_7 + n9_12_8 + n9_12_9 + n9_11_10 + n9_11_11 + n9_11_12 + n9_11_13 + n9_11_14 + n9_11_15 + n9_11_16 + n9_11_17 + n9_11_18 + n9_11_19 + n9_11_20 + n9_11_21 + n9_11_22 + n9_2_0 + n9_2_1 + n9_2_2 + n9_2_3 + n9_2_4 + n9_2_5 + n9_2_6 + n9_2_7 + n9_2_8 + n9_2_9 + n9_13_0 + n9_13_1 + n9_13_2 + n9_13_3 + n9_13_4 + n9_13_5 + n9_13_6 + n9_13_7 + n9_13_8 + n9_13_9 + n9_3_0 + n9_3_1 + n9_3_2 + n9_3_3 + n9_3_4 + n9_3_5 + n9_3_6 + n9_3_7 + n9_3_8 + n9_3_9 + n9_16_10 + n9_16_11 + n9_16_12 + n9_16_13 + n9_16_14 + n9_16_15 + n9_16_16 + n9_16_17 + n9_16_18 + n9_16_19 + n9_16_20 + n9_16_21 + n9_16_22 + n9_14_0 + n9_14_1 + n9_14_2 + n9_14_3 + n9_14_4 + n9_14_5 + n9_14_6 + n9_14_7 + n9_14_8 + n9_14_9 + n9_4_10 + n9_4_11 + n9_4_12 + n9_4_13 + n9_4_14 + n9_4_15 + n9_4_16 + n9_4_17 + n9_4_18 + n9_4_19 + n9_4_20 + n9_4_21 + n9_4_22 + n9_4_0 + n9_4_1 + n9_4_2 + n9_4_3 + n9_4_4 + n9_4_5 + n9_4_6 + n9_4_7 + n9_4_8 + n9_4_9 + n9_15_0 + n9_15_1 + n9_15_2 + n9_15_3 + n9_15_4 + n9_15_5 + n9_15_6 + n9_15_7 + n9_15_8 + n9_15_9 + n9_9_10 + n9_9_11 + n9_9_12 + n9_9_13 + n9_9_14 + n9_9_15 + n9_9_16 + n9_9_17 + n9_9_18 + n9_9_19 + n9_9_20 + n9_9_21 + n9_9_22 + n9_10_10 + n9_10_11 + n9_10_12 + n9_10_13 + n9_10_14 + n9_10_15 + n9_10_16 + n9_10_17 + n9_10_18 + n9_10_19 + n9_10_20 + n9_10_21 + n9_10_22 + n9_22_10 + n9_22_11 + n9_22_12 + n9_22_13 + n9_22_14 + n9_22_15 + n9_22_16 + n9_22_17 + n9_22_18 + n9_22_19 + n9_22_20 + n9_22_21 + n9_22_22 + n9_20_22 + n9_20_21 + n9_20_20 + n9_20_19 + n9_20_18 + n9_20_17 + n9_20_16 + n9_20_15 + n9_20_14 + n9_5_0 + n9_5_1 + n9_5_2 + n9_5_3 + n9_5_4 + n9_5_5 + n9_5_6 + n9_5_7 + n9_5_8 + n9_5_9 + n9_16_0 + n9_16_1 + n9_16_2 + n9_16_3 + n9_16_4 + n9_16_5 + n9_16_6 + n9_16_7 + n9_16_8 + n9_16_9 + n9_20_13 + n9_20_12 + n9_20_11 + n9_7_22 + n9_7_21 + n9_7_20 + n9_7_19 + n9_7_18 + n9_7_17 + n9_7_16 + n9_7_15 + n9_7_14 + n9_7_13 + n9_6_0 + n9_6_1 + n9_6_2 + n9_6_3 + n9_6_4 + n9_6_5 + n9_6_6 + n9_6_7 + n9_6_8 + n9_6_9 + n9_17_0 + n9_17_1 + n9_17_2 + n9_17_3 + n9_17_4 + n9_17_5 + n9_17_6 + n9_17_7 + n9_17_8 + n9_17_9 + n9_15_10 + n9_15_11 + n9_15_12 + n9_15_13 + n9_15_14 + n9_15_15 + n9_15_16 + n9_15_17 + n9_15_18 + n9_15_19 + n9_15_20 + n9_15_21 + n9_15_22 + n9_3_10 + n9_3_11 + n9_3_12 + n9_3_13 + n9_3_14 + n9_3_15 + n9_3_16 + n9_3_17 + n9_3_18 + n9_3_19 + n9_3_20 + n9_3_21 + n9_3_22 + n9_7_12 + n9_7_11 + n9_7_0 + n9_7_1 + n9_7_2 + n9_7_3 + n9_7_4 + n9_7_5 + n9_7_6 + n9_7_7 + n9_7_8 + n9_7_9 + n9_18_0 + n9_18_1 + n9_18_2 + n9_18_3 + n9_18_4 + n9_18_5 + n9_18_6 + n9_18_7 + n9_18_8 + n9_18_9 + n9_8_10 + n9_8_11 + n9_8_12 + n9_8_13 + n9_8_14 + n9_8_15 + n9_8_16 + n9_8_17 + n9_8_18 + n9_8_19 + n9_8_20 + n9_8_21 + n9_8_22 + n9_21_10 + n9_21_11 + n9_21_12 + n9_21_13 + n9_21_14 + n9_21_15 + n9_21_16 + n9_21_17 + n9_21_18 + n9_21_19 + n9_21_20 + n9_21_21 + n9_21_22 + n9_8_0 + n9_8_1 + n9_8_2 + n9_8_3 + n9_8_4 + n9_8_5 + n9_8_6 + n9_8_7 + n9_8_8 + n9_8_9 + n9_19_0 + n9_19_1 + n9_19_2 + n9_19_3 + n9_19_4 + n9_19_5 + n9_19_6 + n9_19_7 + n9_19_8 + n9_19_9 + n9_9_0 + n9_9_1 + n9_9_2 + n9_9_3 + n9_9_4 + n9_9_5 + n9_9_6 + n9_9_7 + n9_9_8 + n9_9_9 + n9_14_10 + n9_14_11 + n9_14_12 + n9_14_13 + n9_14_14 + n9_14_15 + n9_14_16 + n9_14_17 + n9_14_18 + n9_14_19 + n9_14_20 + n9_14_21 + n9_14_22 + n9_2_10 + n9_2_11 + n9_2_12 + n9_2_13 + n9_2_14 + n9_2_15 + n9_2_16 + n9_2_17 + n9_2_18 + n9_2_19 + n9_2_20 + n9_2_21 + n9_2_22) U (2 <= Sstart_9 + Sstart_8 + Sstart_7 + Sstart_6 + Sstart_5 + Sstart_4 + Sstart_3 + Sstart_2 + Sstart_1 + Sstart_0 + Sstart_10 + Sstart_11 + Sstart_12 + Sstart_13 + Sstart_14 + Sstart_15 + Sstart_16 + Sstart_17 + Sstart_18 + Sstart_19 + Sstart_20 + Sstart_21 + Sstart_22)) U G (X ((a2 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22)))))
lola: processed formula: A ((((CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22 <= n9_19_10 + n9_19_11 + n9_19_12 + n9_19_13 + n9_19_14 + n9_19_15 + n9_19_16 + n9_19_17 + n9_19_18 + n9_19... (shortened)
lola: processed formula length: 6234
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 8 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 28 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 469418 markings, 2908910 edges, 93884 markings/sec, 0 secs
lola: 813169 markings, 5600753 edges, 68750 markings/sec, 5 secs
lola: 1161340 markings, 8287521 edges, 69634 markings/sec, 10 secs
lola: 1490545 markings, 10793755 edges, 65841 markings/sec, 15 secs
lola: 1856101 markings, 13277258 edges, 73111 markings/sec, 20 secs
lola: 2186394 markings, 15774314 edges, 66059 markings/sec, 25 secs
lola: 2476961 markings, 18272626 edges, 58113 markings/sec, 30 secs
lola: 2826557 markings, 20654127 edges, 69919 markings/sec, 35 secs
lola: 3144468 markings, 23090513 edges, 63582 markings/sec, 40 secs
lola: 3458705 markings, 25533905 edges, 62847 markings/sec, 45 secs
lola: 3784810 markings, 27998747 edges, 65221 markings/sec, 50 secs
lola: 4117729 markings, 30170007 edges, 66584 markings/sec, 55 secs
lola: 4415892 markings, 32171543 edges, 59633 markings/sec, 60 secs
lola: 4761686 markings, 34575067 edges, 69159 markings/sec, 65 secs
lola: 5088382 markings, 37047504 edges, 65339 markings/sec, 70 secs
lola: 5345615 markings, 39321137 edges, 51447 markings/sec, 75 secs
lola: 5615158 markings, 41394728 edges, 53909 markings/sec, 80 secs
lola: 5895632 markings, 43596929 edges, 56095 markings/sec, 85 secs
lola: 6192818 markings, 46014612 edges, 59437 markings/sec, 90 secs
lola: 6423227 markings, 48274873 edges, 46082 markings/sec, 95 secs
lola: 6696537 markings, 50481434 edges, 54662 markings/sec, 100 secs
lola: 6953429 markings, 52533203 edges, 51378 markings/sec, 105 secs
lola: 7269405 markings, 54965313 edges, 63195 markings/sec, 110 secs
lola: 7539687 markings, 57308941 edges, 54056 markings/sec, 115 secs
lola: 7759085 markings, 59537877 edges, 43880 markings/sec, 120 secs
lola: 8015353 markings, 61835810 edges, 51254 markings/sec, 125 secs
lola: 8291958 markings, 64271138 edges, 55321 markings/sec, 130 secs
lola: 8526014 markings, 66585331 edges, 46811 markings/sec, 135 secs
lola: 8749964 markings, 68817669 edges, 44790 markings/sec, 140 secs
lola: 9028618 markings, 70945053 edges, 55731 markings/sec, 145 secs
lola: 9311245 markings, 73173638 edges, 56525 markings/sec, 150 secs
lola: 9607160 markings, 75574794 edges, 59183 markings/sec, 155 secs
lola: 9835836 markings, 77828197 edges, 45735 markings/sec, 160 secs
lola: 10076075 markings, 80028172 edges, 48048 markings/sec, 165 secs
lola: 10347011 markings, 82425149 edges, 54187 markings/sec, 170 secs
lola: 10600994 markings, 84786466 edges, 50797 markings/sec, 175 secs
lola: 10797699 markings, 87004150 edges, 39341 markings/sec, 180 secs
lola: 11039517 markings, 89229220 edges, 48364 markings/sec, 185 secs
lola: 11320451 markings, 91695914 edges, 56187 markings/sec, 190 secs
lola: 11575332 markings, 94088486 edges, 50976 markings/sec, 195 secs
lola: 11765415 markings, 96294795 edges, 38017 markings/sec, 200 secs
lola: 12019302 markings, 98768138 edges, 50777 markings/sec, 205 secs
lola: 12254515 markings, 101190998 edges, 47043 markings/sec, 210 secs
lola: 12452008 markings, 103539108 edges, 39499 markings/sec, 215 secs
lola: 12791928 markings, 105989876 edges, 67984 markings/sec, 220 secs
lola: 13117259 markings, 108333116 edges, 65066 markings/sec, 225 secs
lola: 13430101 markings, 110753666 edges, 62568 markings/sec, 230 secs
lola: 13711830 markings, 113260710 edges, 56346 markings/sec, 235 secs
lola: 14048234 markings, 115462518 edges, 67281 markings/sec, 240 secs
lola: 14345294 markings, 117720123 edges, 59412 markings/sec, 245 secs
lola: 14644054 markings, 120050329 edges, 59752 markings/sec, 250 secs
lola: 14961182 markings, 122463559 edges, 63426 markings/sec, 255 secs
lola: 15294449 markings, 124636045 edges, 66653 markings/sec, 260 secs
lola: 15595458 markings, 126641905 edges, 60202 markings/sec, 265 secs
lola: 15909117 markings, 128806727 edges, 62732 markings/sec, 270 secs
lola: 16210637 markings, 131032986 edges, 60304 markings/sec, 275 secs
lola: 16430675 markings, 133151691 edges, 44008 markings/sec, 280 secs
lola: 16713279 markings, 135305355 edges, 56521 markings/sec, 285 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 8 will run for 295 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X ((2 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X ((2 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22))))
lola: processed formula: A (X (X ((2 <= n1_9 + n1_8 + n1_7 + n1_6 + n1_5 + n1_4 + n1_3 + n1_2 + n1_1 + n1_0 + n1_10 + n1_11 + n1_12 + n1_13 + n1_14 + n1_15 + n1_16 + n1_17 + n1_18 + n1_19 + n1_20 + n1_21 + n1_22))))
lola: processed formula length: 190
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 29 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 9 will run for 337 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (((3 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((3 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 + n8_2_0 + n8_13_0 + n8_13_1 + n8_13_2 + n8_13_3 + n8_13_4 + n8_13_5 + n8_13_6 + n8_13_7 + n8_13_8 + n8_13_9 + n8_2_1 + n8_2_2 + n8_2_3 + n8_2_4 + n8_2_5 + n8_2_6 + n8_2_7 + n8_2_8 + n8_2_9 + n8_14_0 + n8_14_1 + n8_14_2 + n8_14_3 + n8_14_4 + n8_14_5 + n8_14_6 + n8_14_7 + n8_14_8 + n8_14_9 + n8_13_10 + n8_13_11 + n8_13_12 + n8_13_13 + n8_13_14 + n8_13_15 + n8_13_16 + n8_13_17 + n8_13_18 + n8_13_19 + n8_13_20 + n8_13_21 + n8_13_22 + n8_3_1 + n8_3_2 + n8_3_3 + n8_3_4 + n8_3_5 + n8_3_6 + n8_3_7 + n8_3_8 + n8_3_9 + n8_4_11 + n8_4_12 + n8_4_13 + n8_4_14 + n8_4_15 + n8_4_16 + n8_4_17 + n8_4_18 + n8_4_19 + n8_4_20 + n8_4_21 + n8_4_22 + n8_20_22 + n8_20_21 + n8_20_20 + n8_20_19 + n8_20_18 + n8_20_17 + n8_20_16 + n8_20_15 + n8_20_14 + n8_20_13 + n8_20_12 + n8_20_11 + n8_15_1 + n8_15_2 + n8_15_3 + n8_15_4 + n8_15_5 + n8_15_6 + n8_15_7 + n8_15_8 + n8_15_9 + n8_4_0 + n8_4_1 + n8_4_2 + n8_4_3 + n8_4_4 + n8_4_5 + n8_4_6 + n8_4_7 + n8_4_8 + n8_4_9 + n8_18_11 + n8_18_12 + n8_18_13 + n8_18_14 + n8_18_15 + n8_18_16 + n8_18_17 + n8_18_18 + n8_18_19 + n8_18_20 + n8_18_21 + n8_18_22 + n8_9_11 + n8_9_12 + n8_9_13 + n8_9_14 + n8_9_15 + n8_9_16 + n8_9_17 + n8_9_18 + n8_9_19 + n8_9_20 + n8_9_21 + n8_9_22 + n8_19_22 + n8_19_21 + n8_16_1 + n8_16_2 + n8_16_3 + n8_16_4 + n8_16_5 + n8_16_6 + n8_16_7 + n8_16_8 + n8_16_9 + n8_5_0 + n8_5_1 + n8_5_2 + n8_5_3 + n8_5_4 + n8_5_5 + n8_5_6 + n8_5_7 + n8_5_8 + n8_5_9 + n8_19_20 + n8_19_19 + n8_17_1 + n8_17_2 + n8_17_3 + n8_17_4 + n8_17_5 + n8_17_6 + n8_17_7 + n8_17_8 + n8_17_9 + n8_12_10 + n8_12_11 + n8_12_12 + n8_12_13 + n8_12_14 + n8_12_15 + n8_12_16 + n8_12_17 + n8_12_18 + n8_12_19 + n8_12_20 + n8_12_21 + n8_12_22 + n8_19_18 + n8_19_17 + n8_19_16 + n8_19_15 + n8_19_14 + n8_19_13 + n8_19_12 + n8_19_11 + n8_6_1 + n8_6_2 + n8_6_3 + n8_6_4 + n8_6_5 + n8_6_6 + n8_6_7 + n8_6_8 + n8_6_9 + n8_3_10 + n8_3_11 + n8_3_12 + n8_3_13 + n8_3_14 + n8_3_15 + n8_3_16 + n8_3_17 + n8_3_18 + n8_3_19 + n8_3_20 + n8_3_21 + n8_3_22 + n8_18_0 + n8_18_1 + n8_18_2 + n8_18_3 + n8_18_4 + n8_18_5 + n8_18_6 + n8_18_7 + n8_18_8 + n8_18_9 + n8_7_1 + n8_7_2 + n8_7_3 + n8_7_4 + n8_7_5 + n8_7_6 + n8_7_7 + n8_7_8 + n8_7_9 + n8_17_10 + n8_17_11 + n8_17_12 + n8_17_13 + n8_17_14 + n8_17_15 + n8_17_16 + n8_17_17 + n8_17_18 + n8_17_19 + n8_17_20 + n8_17_21 + n8_17_22 + n8_8_11 + n8_8_12 + n8_8_13 + n8_8_14 + n8_8_15 + n8_8_16 + n8_8_17 + n8_8_18 + n8_8_19 + n8_8_20 + n8_8_21 + n8_8_22 + n8_1_9 + n8_1_8 + n8_1_7 + n8_1_6 + n8_1_5 + n8_1_4 + n8_1_3 + n8_19_0 + n8_19_1 + n8_19_2 + n8_19_3 + n8_19_4 + n8_19_5 + n8_19_6 + n8_19_7 + n8_19_8 + n8_19_9 + n8_1_2 + n8_1_1 + n8_12_9 + n8_12_8 + n8_8_0 + n8_8_1 + n8_8_2 + n8_8_3 + n8_8_4 + n8_8_5 + n8_8_6 + n8_8_7 + n8_8_8 + n8_8_9 + n8_12_7 + n8_12_6 + n8_12_5 + n8_9_0 + n8_9_1 + n8_9_2 + n8_9_3 + n8_9_4 + n8_9_5 + n8_9_6 + n8_9_7 + n8_9_8 + n8_9_9 + n8_11_10 + n8_11_11 + n8_11_12 + n8_11_13 + n8_11_14 + n8_11_15 + n8_11_16 + n8_11_17 + n8_11_18 + n8_11_19 + n8_11_20 + n8_11_21 + n8_11_22 + n8_12_4 + n8_2_10 + n8_2_11 + n8_2_12 + n8_2_13 + n8_2_14 + n8_2_15 + n8_2_16 + n8_2_17 + n8_2_18 + n8_2_19 + n8_2_20 + n8_2_21 + n8_2_22 + n8_12_3 + n8_12_2 + n8_12_1 + n8_16_10 + n8_16_11 + n8_16_12 + n8_16_13 + n8_16_14 + n8_16_15 + n8_16_16 + n8_16_17 + n8_16_18 + n8_16_19 + n8_16_20 + n8_16_21 + n8_16_22 + n8_7_10 + n8_7_11 + n8_7_12 + n8_7_13 + n8_7_14 + n8_7_15 + n8_7_16 + n8_7_17 + n8_7_18 + n8_7_19 + n8_7_20 + n8_7_21 + n8_7_22 + n8_10_11 + n8_10_12 + n8_10_13 + n8_10_14 + n8_10_15 + n8_10_16 + n8_10_17 + n8_10_18 + n8_10_19 + n8_10_20 + n8_10_21 + n8_10_22 + n8_22_11 + n8_22_12 + n8_22_13 + n8_22_14 + n8_22_15 + n8_22_16 + n8_22_17 + n8_22_18 + n8_22_19 + n8_22_20 + n8_22_21 + n8_22_22 + n8_1_10 + n8_1_11 + n8_1_12 + n8_1_13 + n8_1_14 + n8_1_15 + n8_1_16 + n8_1_17 + n8_1_18 + n8_1_19 + n8_1_20 + n8_1_21 + n8_1_22 + n8_20_0 + n8_20_1 + n8_20_2 + n8_20_3 + n8_20_4 + n8_20_5 + n8_20_6 + n8_20_7 + n8_20_8 + n8_20_9 + n8_0_9 + n8_0_8 + n8_0_7 + n8_0_6 + n8_0_5 + n8_0_4 + n8_0_3 + n8_0_2 + n8_15_10 + n8_15_11 + n8_15_12 + n8_15_13 + n8_15_14 + n8_15_15 + n8_15_16 + n8_15_17 + n8_15_18 + n8_15_19 + n8_15_20 + n8_15_21 + n8_15_22 + n8_0_1 + n8_5_22 + n8_21_1 + n8_21_2 + n8_21_3 + n8_21_4 + n8_21_5 + n8_21_6 + n8_21_7 + n8_21_8 + n8_21_9 + n8_6_10 + n8_6_11 + n8_6_12 + n8_6_13 + n8_6_14 + n8_6_15 + n8_6_16 + n8_6_17 + n8_6_18 + n8_6_19 + n8_6_20 + n8_6_21 + n8_6_22 + n8_5_21 + n8_5_20 + n8_5_19 + n8_5_18 + n8_5_17 + n8_5_16 + n8_5_15 + n8_5_14 + n8_5_13 + n8_5_12 + n8_5_11 + n8_11_9 + n8_11_8 + n8_11_7 + n8_11_6 + n8_11_5 + n8_11_4 + n8_11_3 + n8_11_2 + n8_11_1 + n8_14_22 + n8_14_21 + n8_14_20 + n8_14_19 + n8_14_18 + n8_22_0 + n8_22_1 + n8_22_2 + n8_22_3 + n8_22_4 + n8_22_5 + n8_22_6 + n8_22_7 + n8_22_8 + n8_22_9 + n8_14_17 + n8_14_16 + n8_14_15 + n8_14_14 + n8_14_13 + n8_14_12 + n8_14_11 + n8_21_10 + n8_21_11 + n8_21_12 + n8_21_13 + n8_21_14 + n8_21_15 + n8_21_16 + n8_21_17 + n8_21_18 + n8_21_19 + n8_21_20 + n8_21_21 + n8_21_22 + n8_0_10 + n8_0_11 + n8_0_12 + n8_0_13 + n8_0_14 + n8_0_15 + n8_0_16 + n8_0_17 + n8_0_18 + n8_0_19 + n8_0_20 + n8_0_21 + n8_0_22 + n8_10_0 + n8_10_1 + n8_10_2 + n8_10_3 + n8_10_4 + n8_10_5 + n8_10_6 + n8_10_7 + n8_10_8 + n8_10_9)))
lola: processed formula: A (((3 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n8_14_10 + n8_11_0 + n8_5_10 + n8_21_0 + n8_0_0 + n8_22_10 + n8_10_10 + n8_12_0 + n8_1_0 + n8_8_10 + n8_7_0 + n8_6_0 + n8_19_10 + n8_17_0 + n8_16_0 + n8_9_10 + n8_18_10 + n8_15_0 + n8_20_10 + n8_4_10 + n8_3_0 ... (shortened)
lola: processed formula length: 5550
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 10 will run for 393 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((2 <= SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (2 <= SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20)
lola: processed formula length: 293
lola: 1 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: ========================================
lola: subprocess 11 will run for 472 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((X (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))) U F (F ((SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + Sstop... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((X (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))) U F ((SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20 <= Astart))))
lola: processed formula: A ((X (F ((2 <= Cstart_10 + Cstart_11 + Cstart_12 + Cstart_13 + Cstart_14 + Cstart_15 + Cstart_16 + Cstart_17 + Cstart_18 + Cstart_19 + Cstart_20 + Cstart_21 + Cstart_22 + Cstart_0 + Cstart_1 + Cstart_2 + Cstart_3 + Cstart_4 + Cstart_5 + Cstart_6 + Cstart_7 + Cstart_8 + Cstart_9))) U F ((SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_... (shortened)
lola: processed formula length: 589
lola: 1 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 1 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 31 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 12 will run for 590 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F ((G ((2 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9)) U (n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 <= a5))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F ((G ((2 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9)) U (n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 <= a5))))
lola: processed formula: A (F ((G ((2 <= c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9)) U (n6_0 + n6_1 + n6_2 + n6_3 + n6_4 + n6_5 + n6_6 + n6_7 + n6_8 + n6_9 + n6_22 + n6_21 + n6_20 + n6_19 + n6_18 + n6_17 + n6_16 + n6_15 + n6_14 + n6_13 + n6_12 + n6_11 + n6_10 <= a5))))
lola: processed formula length: 374
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 1 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 31 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 13 will run for 786 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X ((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22)))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X ((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22)))
lola: processed formula: A (X ((1 <= CstopOK_0 + CstopOK_1 + CstopOK_2 + CstopOK_3 + CstopOK_4 + CstopOK_5 + CstopOK_6 + CstopOK_7 + CstopOK_8 + CstopOK_9 + CstopOK_10 + CstopOK_11 + CstopOK_12 + CstopOK_13 + CstopOK_14 + CstopOK_15 + CstopOK_16 + CstopOK_17 + CstopOK_18 + CstopOK_19 + CstopOK_20 + CstopOK_21 + CstopOK_22)))
lola: processed formula length: 301
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 14 will run for 1180 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((3 <= SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= SstopOK_9 + SstopOK_10 + SstopOK_11 + SstopOK_12 + SstopOK_13 + SstopOK_14 + SstopOK_15 + SstopOK_16 + SstopOK_17 + SstopOK_18 + SstopOK_19 + SstopOK_8 + SstopOK_21 + SstopOK_22 + SstopOK_5 + SstopOK_4 + SstopOK_3 + SstopOK_2 + SstopOK_0 + SstopOK_1 + SstopOK_6 + SstopOK_7 + SstopOK_20)
lola: processed formula length: 293
lola: 1 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: ========================================
lola: subprocess 15 will run for 2360 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 + n7_17_4 + n7_17_5 + n7_17_6 + n7_17_7 + n7_17_8 + n7_17_9 + n7_21_10 + n7_21_11 + n7_21_12 + n7_21_13 + n7_21_14 + n7_21_15 + n7_21_16 + n7_21_17 + n7_21_18 + n7_21_19 + n7_21_20 + n7_21_21 + n7_21_22 + n7_3_10 + n7_6_0 + n7_15_0 + n7_4_10 + n7_16_10 + n7_18_0 + n7_7_0 + n7_5_10 + n7_11_10 + n7_10_0 + n7_0_10 + n7_22_0 + n7_14_10 + n7_8_10 + n7_12_10 + n7_1_10 + n7_19_0 + n7_13_10 + n7_9_0 + n7_2_10 + n7_20_10 + n7_8_0 + n7_8_9 + n7_8_8 + n7_8_7 + n7_8_6 + n7_8_5 + n7_8_4 + n7_8_3 + n7_8_2 + n7_8_1 + n7_19_10 + n7_19_11 + n7_19_12 + n7_19_13 + n7_19_14 + n7_19_15 + n7_19_16 + n7_19_17 + n7_19_18 + n7_19_19 + n7_19_20 + n7_19_21 + n7_19_22 + n7_20_11 + n7_20_12 + n7_20_13 + n7_20_14 + n7_20_15 + n7_20_16 + n7_20_17 + n7_20_18 + n7_20_19 + n7_20_20 + n7_20_21 + n7_20_22 + n7_2_11 + n7_2_12 + n7_2_13 + n7_2_14 + n7_2_15 + n7_2_16 + n7_2_17 + n7_2_18 + n7_2_19 + n7_2_20 + n7_2_21 + n7_2_22 + n7_9_1 + n7_9_2 + n7_9_3 + n7_9_4 + n7_9_5 + n7_9_6 + n7_9_7 + n7_9_8 + n7_9_9 + n7_19_9 + n7_19_8 + n7_13_11 + n7_13_12 + n7_13_13 + n7_13_14 + n7_13_15 + n7_13_16 + n7_13_17 + n7_13_18 + n7_13_19 + n7_13_20 + n7_13_21 + n7_13_22 + n7_7_10 + n7_7_11 + n7_7_12 + n7_7_13 + n7_7_14 + n7_7_15 + n7_7_16 + n7_7_17 + n7_7_18 + n7_7_19 + n7_7_20 + n7_7_21 + n7_7_22 + n7_19_7 + n7_19_6 + n7_19_5 + n7_19_4 + n7_19_3 + n7_19_2 + n7_19_1 + n7_18_10 + n7_18_11 + n7_18_12 + n7_18_13 + n7_18_14 + n7_18_15 + n7_18_16 + n7_18_17 + n7_18_18 + n7_18_19 + n7_18_20 + n7_18_21 + n7_18_22 + n7_1_11 + n7_1_12 + n7_1_13 + n7_1_14 + n7_1_15 + n7_1_16 + n7_1_17 + n7_1_18 + n7_1_19 + n7_1_20 + n7_1_21 + n7_1_22 + n7_8_22 + n7_8_21 + n7_8_20 + n7_8_19 + n7_8_18 + n7_8_17 + n7_20_0 + n7_20_1 + n7_20_2 + n7_20_3 + n7_20_4 + n7_20_5 + n7_20_6 + n7_20_7 + n7_20_8 + n7_20_9 + n7_8_16 + n7_8_15 + n7_12_11 + n7_12_12 + n7_12_13 + n7_12_14 + n7_12_15 + n7_12_16 + n7_12_17 + n7_12_18 + n7_12_19 + n7_21_0 + n7_21_1 + n7_21_2 + n7_21_3 + n7_21_4 + n7_21_5 + n7_21_6 + n7_21_7 + n7_21_8 + n7_21_9 + n7_12_20 + n7_12_21 + n7_12_22 + n7_6_10 + n7_6_11 + n7_6_12 + n7_6_13 + n7_6_14 + n7_6_15 + n7_6_16 + n7_6_17 + n7_6_18 + n7_6_19 + n7_6_20 + n7_6_21 + n7_6_22 + n7_8_14 + n7_8_13 + n7_8_12 + n7_8_11 + n7_14_22 + n7_14_21 + n7_14_20 + n7_14_19 + n7_14_18 + n7_14_17 + n7_14_16 + n7_14_15 + n7_14_14 + n7_14_13 + n7_14_12 + n7_14_11 + n7_22_1 + n7_22_2 + n7_22_3 + n7_22_4 + n7_22_5 + n7_22_6 + n7_22_7 + n7_22_8 + n7_22_9 + n7_17_10 + n7_17_11 + n7_17_12 + n7_17_13 + n7_17_14 + n7_17_15 + n7_17_16 + n7_17_17 + n7_17_18 + n7_17_19 + n7_17_20 + n7_17_21 + n7_17_22 + n7_0_11 + n7_0_12 + n7_0_13 + n7_0_14 + n7_0_15 + n7_0_16 + n7_0_17 + n7_0_18 + n7_0_19 + n7_0_20 + n7_0_21 + n7_0_22 + n7_10_1 + n7_10_2 + n7_10_3 + n7_10_4 + n7_10_5 + n7_10_6 + n7_10_7 + n7_10_8 + n7_10_9 + n7_11_11 + n7_11_12 + n7_11_13 + n7_11_14 + n7_11_15 + n7_11_16 + n7_11_17 + n7_11_18 + n7_11_19 + n7_11_0 + n7_11_1 + n7_11_2 + n7_11_3 + n7_11_4 + n7_11_5 + n7_11_6 + n7_11_7 + n7_11_8 + n7_11_9 + n7_11_20 + n7_11_21 + n7_11_22 + n7_5_11 + n7_5_12 + n7_5_13 + n7_5_14 + n7_5_15 + n7_5_16 + n7_5_17 + n7_5_18 + n7_5_19 + n7_5_20 + n7_5_21 + n7_5_22 + n7_7_9 + n7_7_8 + n7_7_7 + n7_7_6 + n7_7_5 + n7_7_4 + n7_7_3 + n7_7_2 + n7_7_1 + n7_18_9 + n7_18_8 + n7_18_7 + n7_18_6 + n7_0_0 + n7_0_1 + n7_0_2 + n7_0_3 + n7_0_4 + n7_0_5 + n7_0_6 + n7_0_7 + n7_0_8 + n7_0_9 + n7_18_5 + n7_18_4 + n7_18_3 + n7_18_2 + n7_18_1 + n7_12_0 + n7_12_1 + n7_12_2 + n7_12_3 + n7_12_4 + n7_12_5 + n7_12_6 + n7_12_7 + n7_12_8 + n7_12_9 + n7_1_0 + n7_1_1 + n7_1_2 + n7_1_3 + n7_1_4 + n7_1_5 + n7_1_6 + n7_1_7 + n7_1_8 + n7_1_9 + n7_16_11 + n7_16_12 + n7_16_13 + n7_16_14 + n7_16_15 + n7_16_16 + n7_16_17 + n7_16_18 + n7_16_19 + n7_16_20 + n7_16_21 + n7_16_22 + n7_13_0 + n7_13_1 + n7_13_2 + n7_13_3 + n7_13_4 + n7_13_5 + n7_13_6 + n7_13_7 + n7_13_8 + n7_13_9 + n7_2_0 + n7_2_1 + n7_2_2 + n7_2_3 + n7_2_4 + n7_2_5 + n7_2_6 + n7_2_7 + n7_2_8 + n7_2_9 + n7_14_0 + n7_14_1 + n7_14_2 + n7_14_3 + n7_14_4 + n7_14_5 + n7_14_6 + n7_14_7 + n7_14_8 + n7_14_9 + n7_10_10 + n7_10_11 + n7_10_12 + n7_10_13 + n7_10_14 + n7_10_15 + n7_10_16 + n7_10_17 + n7_10_18 + n7_10_19 + n7_10_20 + n7_10_21 + n7_10_22 + n7_22_10 + n7_22_11 + n7_22_12 + n7_22_13 + n7_22_14 + n7_22_15 + n7_22_16 + n7_22_17 + n7_22_18 + n7_22_19 + n7_22_20 + n7_22_21 + n7_22_22 + n7_4_11 + n7_4_12 + n7_4_13 + n7_4_14 + n7_4_15 + n7_4_16 + n7_4_17 + n7_4_18 + n7_4_19 + n7_4_20 + n7_4_21 + n7_4_22 + n7_3_0 + n7_3_1 + n7_3_2 + n7_3_3 + n7_3_4 + n7_3_5 + n7_3_6 + n7_3_7 + n7_3_8 + n7_3_9 + n7_6_9 + n7_15_1 + n7_15_2 + n7_15_3 + n7_15_4 + n7_15_5 + n7_15_6 + n7_15_7 + n7_15_8 + n7_15_9 + n7_6_8 + n7_6_7 + n7_6_6 + n7_6_5 + n7_6_4 + n7_6_3 + n7_6_2 + n7_6_1 + n7_4_0 + n7_4_1 + n7_4_2 + n7_4_3 + n7_4_4 + n7_4_5 + n7_4_6 + n7_4_7 + n7_4_8 + n7_4_9 + n7_3_22 + n7_3_21 + n7_3_20 + n7_15_10 + n7_15_11 + n7_15_12 + n7_15_13 + n7_15_14 + n7_15_15 + n7_15_16 + n7_15_17 + n7_15_18 + n7_15_19 + n7_15_20 + n7_15_21 + n7_15_22 + n7_9_10 + n7_9_11 + n7_9_12 + n7_9_13 + n7_9_14 + n7_9_15 + n7_9_16 + n7_9_17 + n7_9_18 + n7_9_19 + n7_9_20 + n7_9_21 + n7_9_22 + n7_16_0 + n7_16_1 + n7_16_2 + n7_16_3 + n7_16_4 + n7_16_5 + n7_16_6 + n7_16_7 + n7_16_8 + n7_16_9 + n7_3_19 + n7_3_18 + n7_3_17 + n7_3_16 + n7_3_15 + n7_3_14 + n7_3_13 + n7_3_12 + n7_3_11 + n7_5_0 + n7_5_1 + n7_5_2 + n7_5_3 + n7_5_4 + n7_5_5 + n7_5_6 + n7_5_7 + n7_5_8 + n7_5_9)) U (2 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9)))
lola: processed formula: A ((((c1_8 + c1_7 + c1_6 + c1_5 + c1_4 + c1_3 + c1_2 + c1_1 + c1_0 + c1_22 + c1_21 + c1_20 + c1_19 + c1_18 + c1_17 + c1_16 + c1_15 + c1_14 + c1_13 + c1_12 + c1_11 + c1_10 + c1_9 <= n4_10 + n4_11 + n4_12 + n4_13 + n4_14 + n4_15 + n4_16 + n4_17 + n4_18 + n4_19 + n4_20 + n4_21 + n4_22 + n4_0 + n4_1 + n4_2 + n4_3 + n4_4 + n4_5 + n4_6 + n4_7 + n4_8 + n4_9) U (3 <= n7_17_0 + n7_17_1 + n7_17_2 + n7_17_3 ... (shortened)
lola: processed formula length: 5903
lola: 0 rewrites
lola: formula mentions 0 of 1966 places; total mentions: 0
lola: closed formula file QuasiCertifProtocol-COL-22-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 1424 bytes per marking, with 30 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: RESULT
lola:
SUMMARY: yes no no no unknown unknown unknown unknown no no no yes yes no no no
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-1 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-2 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-3 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-4 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-5 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-6 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-7 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-8 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-9 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-11 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-14 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA QuasiCertifProtocol-COL-22-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
----- Kill lola and sara stdout -----
----- Finished stdout -----

BK_STOP 1494779203057

--------------------
content from stderr:

----- Start make prepare stderr -----
----- Start make result stderr -----
----- Start make result stderr -----
----- Kill lola and sara stderr -----
----- Finished stderr -----

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-PT-22"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-PT-22.tgz
mv QuasiCertifProtocol-PT-22 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool lola"
echo " Input is QuasiCertifProtocol-PT-22, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r058-smll-149440926300275"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' LTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;