fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r051-smll-149440918200250
Last Updated
June 27, 2017

About the Execution of MARCIE for QuasiCertifProtocol-PT-02

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
2206.060 2672.00 2020.00 30.30 FTFTTFFFFTFTFTTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
..............
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is QuasiCertifProtocol-PT-02, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r051-smll-149440918200250
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1494685489017

timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6

parse successfull
net created successfully

Net: QuasiCertifProtocol_PT_02
(NrP: 86 NrTr: 56 NrArc: 223)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec

net check time: 0m 0.000sec

init dd package: 0m 1.233sec


RS generation: 0m 0.006sec


-> reachability set: #nodes 900 (9.0e+02) #states 1,029 (3)



starting MCC model checker
--------------------------

checking: AG [~ [3<=a4]]
normalized: ~ [E [true U 3<=a4]]

abstracting: (3<=a4)
states: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [[3<=Astart & 2<=a1]]
normalized: E [true U [3<=Astart & 2<=a1]]

abstracting: (2<=a1)
states: 0
abstracting: (3<=Astart)
states: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EF [[3<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & ~ [~ [3<=sum(n2_2, n2_1, n2_0)]]]]
normalized: E [true U [3<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & 3<=sum(n2_2, n2_1, n2_0)]]

abstracting: (3<=sum(n2_2, n2_1, n2_0))
states: 8
abstracting: (3<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 60
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.039sec

checking: AG [~ [[~ [2<=sum(s4_1, s4_2, s4_0)] & [3<=a2 | 3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]]]]
normalized: ~ [E [true U [[3<=a2 | 3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)] & ~ [2<=sum(s4_1, s4_2, s4_0)]]]]

abstracting: (2<=sum(s4_1, s4_2, s4_0))
states: 42
abstracting: (3<=sum(CstopOK_2, CstopOK_1, CstopOK_0))
states: 3
abstracting: (3<=a2)
states: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.042sec

checking: AG [[sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s2_1, s2_2, s2_0) | ~ [[2<=Astart & 1<=sum(n6_1, n6_2, n6_0)]]]]
normalized: ~ [E [true U ~ [[~ [[2<=Astart & 1<=sum(n6_1, n6_2, n6_0)]] | sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s2_1, s2_2, s2_0)]]]]

abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s2_1, s2_2, s2_0))
states: 540
abstracting: (1<=sum(n6_1, n6_2, n6_0))
states: 630
abstracting: (2<=Astart)
states: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.035sec

checking: EF [~ [[~ [2<=sum(Sstart_2, Sstart_0, Sstart_1)] | [a4<=sum(Cstart_2, Cstart_0, Cstart_1) & sum(c1_2, c1_1, c1_0)<=a3]]]]
normalized: E [true U ~ [[[a4<=sum(Cstart_2, Cstart_0, Cstart_1) & sum(c1_2, c1_1, c1_0)<=a3] | ~ [2<=sum(Sstart_2, Sstart_0, Sstart_1)]]]]

abstracting: (2<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 24
abstracting: (sum(c1_2, c1_1, c1_0)<=a3)
states: 417
abstracting: (a4<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 1,029 (3)
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.052sec

checking: EF [~ [[[sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | sum(s5_2, s5_1, s5_0)<=sum(s2_1, s2_2, s2_0)] | ~ [2<=a5]]]]
normalized: E [true U ~ [[~ [2<=a5] | [sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | sum(s5_2, s5_1, s5_0)<=sum(s2_1, s2_2, s2_0)]]]]

abstracting: (sum(s5_2, s5_1, s5_0)<=sum(s2_1, s2_2, s2_0))
states: 459
abstracting: (sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 973
abstracting: (2<=a5)
states: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.036sec

checking: EF [[[[2<=sum(s6_2, s6_1, s6_0) & 3<=sum(n6_1, n6_2, n6_0)] & ~ [a2<=malicious_reservoir]] | [3<=sum(Sstart_2, Sstart_0, Sstart_1) & 3<=sum(n2_2, n2_1, n2_0)]]]
normalized: E [true U [[[2<=sum(s6_2, s6_1, s6_0) & 3<=sum(n6_1, n6_2, n6_0)] & ~ [a2<=malicious_reservoir]] | [3<=sum(Sstart_2, Sstart_0, Sstart_1) & 3<=sum(n2_2, n2_1, n2_0)]]]

abstracting: (3<=sum(n2_2, n2_1, n2_0))
states: 8
abstracting: (3<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 3
abstracting: (a2<=malicious_reservoir)
states: 1,026 (3)
abstracting: (3<=sum(n6_1, n6_2, n6_0))
states: 486
abstracting: (2<=sum(s6_2, s6_1, s6_0))
states: 102
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.053sec

checking: EF [~ [[[sum(s5_2, s5_1, s5_0)<=a2 | sum(s5_2, s5_1, s5_0)<=sum(n4_0, n4_2, n4_1)] | [AstopOK<=sum(n5_2, n5_1, n5_0) | a1<=a3]]]]
normalized: E [true U ~ [[[AstopOK<=sum(n5_2, n5_1, n5_0) | a1<=a3] | [sum(s5_2, s5_1, s5_0)<=a2 | sum(s5_2, s5_1, s5_0)<=sum(n4_0, n4_2, n4_1)]]]]

abstracting: (sum(s5_2, s5_1, s5_0)<=sum(n4_0, n4_2, n4_1))
states: 459
abstracting: (sum(s5_2, s5_1, s5_0)<=a2)
states: 459
abstracting: (a1<=a3)
states: 997
abstracting: (AstopOK<=sum(n5_2, n5_1, n5_0))
states: 786
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.053sec

checking: AG [[~ [[sum(n4_0, n4_2, n4_1)<=malicious_reservoir & 1<=sum(c1_2, c1_1, c1_0)]] | [[2<=Astart | 2<=sum(n2_2, n2_1, n2_0)] | [3<=a4 | sum(Sstart_2, Sstart_0, Sstart_1)<=sum(s2_1, s2_2, s2_0)]]]]
normalized: ~ [E [true U ~ [[[[3<=a4 | sum(Sstart_2, Sstart_0, Sstart_1)<=sum(s2_1, s2_2, s2_0)] | [2<=Astart | 2<=sum(n2_2, n2_1, n2_0)]] | ~ [[sum(n4_0, n4_2, n4_1)<=malicious_reservoir & 1<=sum(c1_2, c1_1, c1_0)]]]]]]

abstracting: (1<=sum(c1_2, c1_1, c1_0))
states: 612
abstracting: (sum(n4_0, n4_2, n4_1)<=malicious_reservoir)
states: 979
abstracting: (2<=sum(n2_2, n2_1, n2_0))
states: 32
abstracting: (2<=Astart)
states: 0
abstracting: (sum(Sstart_2, Sstart_0, Sstart_1)<=sum(s2_1, s2_2, s2_0))
states: 1,005 (3)
abstracting: (3<=a4)
states: 0
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.078sec

checking: AG [[~ [[3<=sum(n2_2, n2_1, n2_0) & sum(s3_2, s3_0, s3_1)<=a2]] | sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]
normalized: ~ [E [true U ~ [[sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | ~ [[3<=sum(n2_2, n2_1, n2_0) & sum(s3_2, s3_0, s3_1)<=a2]]]]]]

abstracting: (sum(s3_2, s3_0, s3_1)<=a2)
states: 843
abstracting: (3<=sum(n2_2, n2_1, n2_0))
states: 8
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 750
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.036sec

checking: AG [[[~ [sum(s2_1, s2_2, s2_0)<=a1] | [a5<=sum(n2_2, n2_1, n2_0) | 1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]] | AstopAbort<=sum(c1_2, c1_1, c1_0)]]
normalized: ~ [E [true U ~ [[AstopAbort<=sum(c1_2, c1_1, c1_0) | [~ [sum(s2_1, s2_2, s2_0)<=a1] | [a5<=sum(n2_2, n2_1, n2_0) | 1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]]]]

abstracting: (1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0))
states: 279
abstracting: (a5<=sum(n2_2, n2_1, n2_0))
states: 710
abstracting: (sum(s2_1, s2_2, s2_0)<=a1)
states: 936
abstracting: (AstopAbort<=sum(c1_2, c1_1, c1_0))
states: 842
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.070sec

checking: EF [[sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & [~ [sum(n2_2, n2_1, n2_0)<=sum(n3_2, n3_1, n3_0)] & [1<=sum(n6_1, n6_2, n6_0) | 1<=AstopOK]]]]
normalized: E [true U [sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & [[1<=sum(n6_1, n6_2, n6_0) | 1<=AstopOK] & ~ [sum(n2_2, n2_1, n2_0)<=sum(n3_2, n3_1, n3_0)]]]]

abstracting: (sum(n2_2, n2_1, n2_0)<=sum(n3_2, n3_1, n3_0))
states: 973
abstracting: (1<=AstopOK)
states: 243
abstracting: (1<=sum(n6_1, n6_2, n6_0))
states: 630
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 750
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.018sec

checking: EF [[[[3<=a2 | 2<=sum(s6_2, s6_1, s6_0)] | sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s5_2, s5_1, s5_0)] & ~ [[SstopAbort<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]
normalized: E [true U [[[3<=a2 | 2<=sum(s6_2, s6_1, s6_0)] | sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s5_2, s5_1, s5_0)] & ~ [[SstopAbort<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]

abstracting: (sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 973
abstracting: (SstopAbort<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 696
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s5_2, s5_1, s5_0))
states: 636
abstracting: (2<=sum(s6_2, s6_1, s6_0))
states: 102
abstracting: (3<=a2)
states: 0
-> the formula is FALSE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.035sec

checking: AG [[[[1<=sum(n5_2, n5_1, n5_0) | a2<=sum(Sstart_2, Sstart_0, Sstart_1)] | [sum(n4_0, n4_2, n4_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) & 3<=sum(n5_2, n5_1, n5_0)]] | [[1<=sum(Cstart_2, Cstart_0, Cstart_1) & a1<=sum(n2_2, n2_1, n2_0)] | 1<=sum(Sstart_2, Sstart_0, Sstart_1)]]]
normalized: ~ [E [true U ~ [[[1<=sum(Sstart_2, Sstart_0, Sstart_1) | [1<=sum(Cstart_2, Cstart_0, Cstart_1) & a1<=sum(n2_2, n2_1, n2_0)]] | [[sum(n4_0, n4_2, n4_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) & 3<=sum(n5_2, n5_1, n5_0)] | [1<=sum(n5_2, n5_1, n5_0) | a2<=sum(Sstart_2, Sstart_0, Sstart_1)]]]]]]

abstracting: (a2<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 1,025 (3)
abstracting: (1<=sum(n5_2, n5_1, n5_0))
states: 152
abstracting: (3<=sum(n5_2, n5_1, n5_0))
states: 8
abstracting: (sum(n4_0, n4_2, n4_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0))
states: 973
abstracting: (a1<=sum(n2_2, n2_1, n2_0))
states: 1,025 (3)
abstracting: (1<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 495
abstracting: (1<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 54
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.128sec

checking: AG [[[[sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | 2<=sum(c1_2, c1_1, c1_0)] | [sum(n4_0, n4_2, n4_1)<=AstopAbort | sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir]] | ~ [~ [sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0)]]]]
normalized: ~ [E [true U ~ [[sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0) | [[sum(n4_0, n4_2, n4_1)<=AstopAbort | sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir] | [sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | 2<=sum(c1_2, c1_1, c1_0)]]]]]]

abstracting: (2<=sum(c1_2, c1_1, c1_0))
states: 531
abstracting: (sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 1,029 (3)
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir)
states: 750
abstracting: (sum(n4_0, n4_2, n4_1)<=AstopAbort)
states: 985
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0))
states: 399
-> the formula is TRUE

FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.070sec

totally nodes used: 17837(1.8e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 7195 36806 44001
used/not used/entry size/cache size: 32986 67075878 16 1024MB
basic ops cache: hits/miss/sum: 12093 74737 86830
used/not used/entry size/cache size: 107413 16669803 12 192MB
unary ops cache: hits/miss/sum: 0 28 28
used/not used/entry size/cache size: 28 8388580 8 64MB
abstract ops cache: hits/miss/sum: 0 40455 40455
used/not used/entry size/cache size: 50 8388558 12 96MB
state nr cache: hits/miss/sum: 1981 4504 6485
used/not used/entry size/cache size: 4498 2092654 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67091029
1 17833
2 2
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0

Total processing time: 0m 2.636sec


BK_STOP 1494685491689

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:899 (16), effective:56 (1)

initing FirstDep: 0m 0.000sec


iterations count:230 (4), effective:29 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-PT-02"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-PT-02.tgz
mv QuasiCertifProtocol-PT-02 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-PT-02, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r051-smll-149440918200250"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;