About the Execution of MARCIE for QuasiCertifProtocol-PT-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2206.060 | 2672.00 | 2020.00 | 30.30 | FTFTTFFFFTFTFTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..............
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is QuasiCertifProtocol-PT-02, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r051-smll-149440918200250
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-02-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1494685489017
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6
parse successfull
net created successfully
Net: QuasiCertifProtocol_PT_02
(NrP: 86 NrTr: 56 NrArc: 223)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec
net check time: 0m 0.000sec
init dd package: 0m 1.233sec
RS generation: 0m 0.006sec
-> reachability set: #nodes 900 (9.0e+02) #states 1,029 (3)
starting MCC model checker
--------------------------
checking: AG [~ [3<=a4]]
normalized: ~ [E [true U 3<=a4]]
abstracting: (3<=a4)
states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [[3<=Astart & 2<=a1]]
normalized: E [true U [3<=Astart & 2<=a1]]
abstracting: (2<=a1)
states: 0
abstracting: (3<=Astart)
states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: EF [[3<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & ~ [~ [3<=sum(n2_2, n2_1, n2_0)]]]]
normalized: E [true U [3<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & 3<=sum(n2_2, n2_1, n2_0)]]
abstracting: (3<=sum(n2_2, n2_1, n2_0))
states: 8
abstracting: (3<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 60
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.039sec
checking: AG [~ [[~ [2<=sum(s4_1, s4_2, s4_0)] & [3<=a2 | 3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]]]]
normalized: ~ [E [true U [[3<=a2 | 3<=sum(CstopOK_2, CstopOK_1, CstopOK_0)] & ~ [2<=sum(s4_1, s4_2, s4_0)]]]]
abstracting: (2<=sum(s4_1, s4_2, s4_0))
states: 42
abstracting: (3<=sum(CstopOK_2, CstopOK_1, CstopOK_0))
states: 3
abstracting: (3<=a2)
states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.042sec
checking: AG [[sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s2_1, s2_2, s2_0) | ~ [[2<=Astart & 1<=sum(n6_1, n6_2, n6_0)]]]]
normalized: ~ [E [true U ~ [[~ [[2<=Astart & 1<=sum(n6_1, n6_2, n6_0)]] | sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s2_1, s2_2, s2_0)]]]]
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s2_1, s2_2, s2_0))
states: 540
abstracting: (1<=sum(n6_1, n6_2, n6_0))
states: 630
abstracting: (2<=Astart)
states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.035sec
checking: EF [~ [[~ [2<=sum(Sstart_2, Sstart_0, Sstart_1)] | [a4<=sum(Cstart_2, Cstart_0, Cstart_1) & sum(c1_2, c1_1, c1_0)<=a3]]]]
normalized: E [true U ~ [[[a4<=sum(Cstart_2, Cstart_0, Cstart_1) & sum(c1_2, c1_1, c1_0)<=a3] | ~ [2<=sum(Sstart_2, Sstart_0, Sstart_1)]]]]
abstracting: (2<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 24
abstracting: (sum(c1_2, c1_1, c1_0)<=a3)
states: 417
abstracting: (a4<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 1,029 (3)
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.052sec
checking: EF [~ [[[sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | sum(s5_2, s5_1, s5_0)<=sum(s2_1, s2_2, s2_0)] | ~ [2<=a5]]]]
normalized: E [true U ~ [[~ [2<=a5] | [sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | sum(s5_2, s5_1, s5_0)<=sum(s2_1, s2_2, s2_0)]]]]
abstracting: (sum(s5_2, s5_1, s5_0)<=sum(s2_1, s2_2, s2_0))
states: 459
abstracting: (sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 973
abstracting: (2<=a5)
states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: EF [[[[2<=sum(s6_2, s6_1, s6_0) & 3<=sum(n6_1, n6_2, n6_0)] & ~ [a2<=malicious_reservoir]] | [3<=sum(Sstart_2, Sstart_0, Sstart_1) & 3<=sum(n2_2, n2_1, n2_0)]]]
normalized: E [true U [[[2<=sum(s6_2, s6_1, s6_0) & 3<=sum(n6_1, n6_2, n6_0)] & ~ [a2<=malicious_reservoir]] | [3<=sum(Sstart_2, Sstart_0, Sstart_1) & 3<=sum(n2_2, n2_1, n2_0)]]]
abstracting: (3<=sum(n2_2, n2_1, n2_0))
states: 8
abstracting: (3<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 3
abstracting: (a2<=malicious_reservoir)
states: 1,026 (3)
abstracting: (3<=sum(n6_1, n6_2, n6_0))
states: 486
abstracting: (2<=sum(s6_2, s6_1, s6_0))
states: 102
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.053sec
checking: EF [~ [[[sum(s5_2, s5_1, s5_0)<=a2 | sum(s5_2, s5_1, s5_0)<=sum(n4_0, n4_2, n4_1)] | [AstopOK<=sum(n5_2, n5_1, n5_0) | a1<=a3]]]]
normalized: E [true U ~ [[[AstopOK<=sum(n5_2, n5_1, n5_0) | a1<=a3] | [sum(s5_2, s5_1, s5_0)<=a2 | sum(s5_2, s5_1, s5_0)<=sum(n4_0, n4_2, n4_1)]]]]
abstracting: (sum(s5_2, s5_1, s5_0)<=sum(n4_0, n4_2, n4_1))
states: 459
abstracting: (sum(s5_2, s5_1, s5_0)<=a2)
states: 459
abstracting: (a1<=a3)
states: 997
abstracting: (AstopOK<=sum(n5_2, n5_1, n5_0))
states: 786
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.053sec
checking: AG [[~ [[sum(n4_0, n4_2, n4_1)<=malicious_reservoir & 1<=sum(c1_2, c1_1, c1_0)]] | [[2<=Astart | 2<=sum(n2_2, n2_1, n2_0)] | [3<=a4 | sum(Sstart_2, Sstart_0, Sstart_1)<=sum(s2_1, s2_2, s2_0)]]]]
normalized: ~ [E [true U ~ [[[[3<=a4 | sum(Sstart_2, Sstart_0, Sstart_1)<=sum(s2_1, s2_2, s2_0)] | [2<=Astart | 2<=sum(n2_2, n2_1, n2_0)]] | ~ [[sum(n4_0, n4_2, n4_1)<=malicious_reservoir & 1<=sum(c1_2, c1_1, c1_0)]]]]]]
abstracting: (1<=sum(c1_2, c1_1, c1_0))
states: 612
abstracting: (sum(n4_0, n4_2, n4_1)<=malicious_reservoir)
states: 979
abstracting: (2<=sum(n2_2, n2_1, n2_0))
states: 32
abstracting: (2<=Astart)
states: 0
abstracting: (sum(Sstart_2, Sstart_0, Sstart_1)<=sum(s2_1, s2_2, s2_0))
states: 1,005 (3)
abstracting: (3<=a4)
states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.078sec
checking: AG [[~ [[3<=sum(n2_2, n2_1, n2_0) & sum(s3_2, s3_0, s3_1)<=a2]] | sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]
normalized: ~ [E [true U ~ [[sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) | ~ [[3<=sum(n2_2, n2_1, n2_0) & sum(s3_2, s3_0, s3_1)<=a2]]]]]]
abstracting: (sum(s3_2, s3_0, s3_1)<=a2)
states: 843
abstracting: (3<=sum(n2_2, n2_1, n2_0))
states: 8
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 750
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: AG [[[~ [sum(s2_1, s2_2, s2_0)<=a1] | [a5<=sum(n2_2, n2_1, n2_0) | 1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]] | AstopAbort<=sum(c1_2, c1_1, c1_0)]]
normalized: ~ [E [true U ~ [[AstopAbort<=sum(c1_2, c1_1, c1_0) | [~ [sum(s2_1, s2_2, s2_0)<=a1] | [a5<=sum(n2_2, n2_1, n2_0) | 1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)]]]]]]
abstracting: (1<=sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0))
states: 279
abstracting: (a5<=sum(n2_2, n2_1, n2_0))
states: 710
abstracting: (sum(s2_1, s2_2, s2_0)<=a1)
states: 936
abstracting: (AstopAbort<=sum(c1_2, c1_1, c1_0))
states: 842
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.070sec
checking: EF [[sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & [~ [sum(n2_2, n2_1, n2_0)<=sum(n3_2, n3_1, n3_0)] & [1<=sum(n6_1, n6_2, n6_0) | 1<=AstopOK]]]]
normalized: E [true U [sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1) & [[1<=sum(n6_1, n6_2, n6_0) | 1<=AstopOK] & ~ [sum(n2_2, n2_1, n2_0)<=sum(n3_2, n3_1, n3_0)]]]]
abstracting: (sum(n2_2, n2_1, n2_0)<=sum(n3_2, n3_1, n3_0))
states: 973
abstracting: (1<=AstopOK)
states: 243
abstracting: (1<=sum(n6_1, n6_2, n6_0))
states: 630
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 750
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.018sec
checking: EF [[[[3<=a2 | 2<=sum(s6_2, s6_1, s6_0)] | sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s5_2, s5_1, s5_0)] & ~ [[SstopAbort<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]
normalized: E [true U [[[3<=a2 | 2<=sum(s6_2, s6_1, s6_0)] | sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s5_2, s5_1, s5_0)] & ~ [[SstopAbort<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]
abstracting: (sum(n1_1, n1_0, n1_2)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 973
abstracting: (SstopAbort<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 696
abstracting: (sum(Cstart_2, Cstart_0, Cstart_1)<=sum(s5_2, s5_1, s5_0))
states: 636
abstracting: (2<=sum(s6_2, s6_1, s6_0))
states: 102
abstracting: (3<=a2)
states: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.035sec
checking: AG [[[[1<=sum(n5_2, n5_1, n5_0) | a2<=sum(Sstart_2, Sstart_0, Sstart_1)] | [sum(n4_0, n4_2, n4_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) & 3<=sum(n5_2, n5_1, n5_0)]] | [[1<=sum(Cstart_2, Cstart_0, Cstart_1) & a1<=sum(n2_2, n2_1, n2_0)] | 1<=sum(Sstart_2, Sstart_0, Sstart_1)]]]
normalized: ~ [E [true U ~ [[[1<=sum(Sstart_2, Sstart_0, Sstart_1) | [1<=sum(Cstart_2, Cstart_0, Cstart_1) & a1<=sum(n2_2, n2_1, n2_0)]] | [[sum(n4_0, n4_2, n4_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) & 3<=sum(n5_2, n5_1, n5_0)] | [1<=sum(n5_2, n5_1, n5_0) | a2<=sum(Sstart_2, Sstart_0, Sstart_1)]]]]]]
abstracting: (a2<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 1,025 (3)
abstracting: (1<=sum(n5_2, n5_1, n5_0))
states: 152
abstracting: (3<=sum(n5_2, n5_1, n5_0))
states: 8
abstracting: (sum(n4_0, n4_2, n4_1)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0))
states: 973
abstracting: (a1<=sum(n2_2, n2_1, n2_0))
states: 1,025 (3)
abstracting: (1<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 495
abstracting: (1<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 54
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.128sec
checking: AG [[[[sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | 2<=sum(c1_2, c1_1, c1_0)] | [sum(n4_0, n4_2, n4_1)<=AstopAbort | sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir]] | ~ [~ [sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0)]]]]
normalized: ~ [E [true U ~ [[sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0) | [[sum(n4_0, n4_2, n4_1)<=AstopAbort | sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir] | [sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | 2<=sum(c1_2, c1_1, c1_0)]]]]]]
abstracting: (2<=sum(c1_2, c1_1, c1_0))
states: 531
abstracting: (sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 1,029 (3)
abstracting: (sum(n7_1_2, n7_2_2, n7_0_1, n7_1_1, n7_2_1, n7_0_2, n7_0_0, n7_2_0, n7_1_0)<=malicious_reservoir)
states: 750
abstracting: (sum(n4_0, n4_2, n4_1)<=AstopAbort)
states: 985
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n3_2, n3_1, n3_0))
states: 399
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.070sec
totally nodes used: 17837(1.8e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 7195 36806 44001
used/not used/entry size/cache size: 32986 67075878 16 1024MB
basic ops cache: hits/miss/sum: 12093 74737 86830
used/not used/entry size/cache size: 107413 16669803 12 192MB
unary ops cache: hits/miss/sum: 0 28 28
used/not used/entry size/cache size: 28 8388580 8 64MB
abstract ops cache: hits/miss/sum: 0 40455 40455
used/not used/entry size/cache size: 50 8388558 12 96MB
state nr cache: hits/miss/sum: 1981 4504 6485
used/not used/entry size/cache size: 4498 2092654 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67091029
1 17833
2 2
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 2.636sec
BK_STOP 1494685491689
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:899 (16), effective:56 (1)
initing FirstDep: 0m 0.000sec
iterations count:230 (4), effective:29 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-PT-02"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-PT-02.tgz
mv QuasiCertifProtocol-PT-02 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-PT-02, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r051-smll-149440918200250"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;