About the Execution of MARCIE for QuasiCertifProtocol-PT-02
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2206.180 | 2654.00 | 2019.00 | 30.60 | FFFFTFTTFTFTTTFF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
............
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is QuasiCertifProtocol-PT-02, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r051-smll-149440918200246
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-0
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-1
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-10
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-11
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-12
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-13
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-14
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-15
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-2
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-3
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-4
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-5
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-6
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-7
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-8
FORMULA_NAME QuasiCertifProtocol-COL-02-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1494685422118
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6
parse successfull
net created successfully
Net: QuasiCertifProtocol_PT_02
(NrP: 86 NrTr: 56 NrArc: 223)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.001sec
net check time: 0m 0.000sec
init dd package: 0m 1.337sec
RS generation: 0m 0.006sec
-> reachability set: #nodes 900 (9.0e+02) #states 1,029 (3)
starting MCC model checker
--------------------------
checking: AF [AG [3<=AstopOK]]
normalized: ~ [EG [E [true U ~ [3<=AstopOK]]]]
abstracting: (3<=AstopOK)
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.011sec
checking: AF [3<=a3]
normalized: ~ [EG [~ [3<=a3]]]
abstracting: (3<=a3)
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: ~ [EF [AG [3<=a3]]]
normalized: ~ [E [true U ~ [E [true U ~ [3<=a3]]]]]
abstracting: (3<=a3)
states: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: AG [AF [[3<=AstopAbort | 2<=sum(n2_2, n2_1, n2_0)]]]
normalized: ~ [E [true U EG [~ [[3<=AstopAbort | 2<=sum(n2_2, n2_1, n2_0)]]]]]
abstracting: (2<=sum(n2_2, n2_1, n2_0))
states: 32
abstracting: (3<=AstopAbort)
states: 0
......
EG iterations: 6
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.037sec
checking: EX [A [sum(n6_1, n6_2, n6_0)<=a5 U 3<=CstopAbort]]
normalized: EX [[~ [EG [~ [3<=CstopAbort]]] & ~ [E [~ [3<=CstopAbort] U [~ [sum(n6_1, n6_2, n6_0)<=a5] & ~ [3<=CstopAbort]]]]]]
abstracting: (3<=CstopAbort)
states: 0
abstracting: (sum(n6_1, n6_2, n6_0)<=a5)
states: 423
abstracting: (3<=CstopAbort)
states: 0
abstracting: (3<=CstopAbort)
states: 0
EG iterations: 0
.-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.032sec
checking: AG [AF [sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]
normalized: ~ [E [true U EG [~ [sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1)]]]]
abstracting: (sum(CstopOK_2, CstopOK_1, CstopOK_0)<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 1,029 (3)
.
EG iterations: 1
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.019sec
checking: [1<=sum(s5_2, s5_1, s5_0) | ~ [[AF [2<=SstopAbort] & EF [sum(n4_0, n4_2, n4_1)<=a5]]]]
normalized: [~ [[E [true U sum(n4_0, n4_2, n4_1)<=a5] & ~ [EG [~ [2<=SstopAbort]]]]] | 1<=sum(s5_2, s5_1, s5_0)]
abstracting: (1<=sum(s5_2, s5_1, s5_0))
states: 570
abstracting: (2<=SstopAbort)
states: 0
EG iterations: 0
abstracting: (sum(n4_0, n4_2, n4_1)<=a5)
states: 973
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.039sec
checking: EG [[EF [1<=sum(s3_2, s3_0, s3_1)] | [[2<=sum(s6_2, s6_1, s6_0) & Astart<=SstopAbort] | a4<=a3]]]
normalized: EG [[[[2<=sum(s6_2, s6_1, s6_0) & Astart<=SstopAbort] | a4<=a3] | E [true U 1<=sum(s3_2, s3_0, s3_1)]]]
abstracting: (1<=sum(s3_2, s3_0, s3_1))
states: 186
abstracting: (a4<=a3)
states: 1,025 (3)
abstracting: (Astart<=SstopAbort)
states: 1,028 (3)
abstracting: (2<=sum(s6_2, s6_1, s6_0))
states: 102
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.046sec
checking: A [[~ [sum(s4_1, s4_2, s4_0)<=CstopAbort] & [3<=a2 & sum(n5_2, n5_1, n5_0)<=sum(n2_2, n2_1, n2_0)]] U AF [2<=CstopAbort]]
normalized: [~ [EG [EG [~ [2<=CstopAbort]]]] & ~ [E [EG [~ [2<=CstopAbort]] U [~ [[[3<=a2 & sum(n5_2, n5_1, n5_0)<=sum(n2_2, n2_1, n2_0)] & ~ [sum(s4_1, s4_2, s4_0)<=CstopAbort]]] & EG [~ [2<=CstopAbort]]]]]]
abstracting: (2<=CstopAbort)
states: 0
EG iterations: 0
abstracting: (sum(s4_1, s4_2, s4_0)<=CstopAbort)
states: 876
abstracting: (sum(n5_2, n5_1, n5_0)<=sum(n2_2, n2_1, n2_0))
states: 877
abstracting: (3<=a2)
states: 0
abstracting: (2<=CstopAbort)
states: 0
EG iterations: 0
abstracting: (2<=CstopAbort)
states: 0
EG iterations: 0
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.035sec
checking: ~ [AF [EG [sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]]]
normalized: EG [~ [EG [sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]]]
abstracting: (sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 1,029 (3)
EG iterations: 0
.
EG iterations: 1
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: AG [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)]
normalized: ~ [E [true U ~ [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)]]]
abstracting: (sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0))
states: 1,029 (3)
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: E [EF [1<=sum(n5_2, n5_1, n5_0)] U [[sum(n6_1, n6_2, n6_0)<=sum(n4_0, n4_2, n4_1) & 1<=sum(n2_2, n2_1, n2_0)] & ~ [sum(n5_2, n5_1, n5_0)<=sum(s4_1, s4_2, s4_0)]]]
normalized: E [E [true U 1<=sum(n5_2, n5_1, n5_0)] U [[sum(n6_1, n6_2, n6_0)<=sum(n4_0, n4_2, n4_1) & 1<=sum(n2_2, n2_1, n2_0)] & ~ [sum(n5_2, n5_1, n5_0)<=sum(s4_1, s4_2, s4_0)]]]
abstracting: (sum(n5_2, n5_1, n5_0)<=sum(s4_1, s4_2, s4_0))
states: 937
abstracting: (1<=sum(n2_2, n2_1, n2_0))
states: 56
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n4_0, n4_2, n4_1))
states: 399
abstracting: (1<=sum(n5_2, n5_1, n5_0))
states: 152
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.072sec
checking: EG [[[1<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | a5<=sum(s5_2, s5_1, s5_0)] | ~ [[3<=SstopAbort & sum(n4_0, n4_2, n4_1)<=sum(n6_1, n6_2, n6_0)]]]]
normalized: EG [[~ [[3<=SstopAbort & sum(n4_0, n4_2, n4_1)<=sum(n6_1, n6_2, n6_0)]] | [1<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0) | a5<=sum(s5_2, s5_1, s5_0)]]]
abstracting: (a5<=sum(s5_2, s5_1, s5_0))
states: 913
abstracting: (1<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 453
abstracting: (sum(n4_0, n4_2, n4_1)<=sum(n6_1, n6_2, n6_0))
states: 973
abstracting: (3<=SstopAbort)
states: 0
EG iterations: 0
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.052sec
checking: [[[~ [[sum(n4_0, n4_2, n4_1)<=sum(Cstart_2, Cstart_0, Cstart_1) | sum(n1_1, n1_0, n1_2)<=sum(s4_1, s4_2, s4_0)]] | [~ [a3<=Astart] | [1<=CstopAbort & sum(n2_2, n2_1, n2_0)<=a3]]] | AF [3<=a2]] & EG [~ [2<=a1]]]
normalized: [EG [~ [2<=a1]] & [~ [EG [~ [3<=a2]]] | [[[1<=CstopAbort & sum(n2_2, n2_1, n2_0)<=a3] | ~ [a3<=Astart]] | ~ [[sum(n4_0, n4_2, n4_1)<=sum(Cstart_2, Cstart_0, Cstart_1) | sum(n1_1, n1_0, n1_2)<=sum(s4_1, s4_2, s4_0)]]]]]
abstracting: (sum(n1_1, n1_0, n1_2)<=sum(s4_1, s4_2, s4_0))
states: 973
abstracting: (sum(n4_0, n4_2, n4_1)<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 1,029 (3)
abstracting: (a3<=Astart)
states: 997
abstracting: (sum(n2_2, n2_1, n2_0)<=a3)
states: 973
abstracting: (1<=CstopAbort)
states: 297
abstracting: (3<=a2)
states: 0
EG iterations: 0
abstracting: (2<=a1)
states: 0
EG iterations: 0
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.053sec
checking: A [[~ [3<=sum(n6_1, n6_2, n6_0)] & ~ [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0)]] U EG [sum(n6_1, n6_2, n6_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]]
normalized: [~ [EG [~ [EG [sum(n6_1, n6_2, n6_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]]]] & ~ [E [~ [EG [sum(n6_1, n6_2, n6_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]] U [~ [[~ [sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0)] & ~ [3<=sum(n6_1, n6_2, n6_0)]]] & ~ [EG [sum(n6_1, n6_2, n6_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)]]]]]]
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 701
........
EG iterations: 8
abstracting: (3<=sum(n6_1, n6_2, n6_0))
states: 486
abstracting: (sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0)<=sum(CstopOK_2, CstopOK_1, CstopOK_0))
states: 666
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 701
........
EG iterations: 8
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0))
states: 701
........
EG iterations: 8
.......
EG iterations: 7
-> the formula is TRUE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.084sec
checking: [E [[sum(n6_1, n6_2, n6_0)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) | CstopAbort<=sum(SstopOK_2, SstopOK_0, SstopOK_1)] U ~ [sum(n1_1, n1_0, n1_2)<=sum(Cstart_2, Cstart_0, Cstart_1)]] | [[AF [sum(n5_2, n5_1, n5_0)<=sum(n6_1, n6_2, n6_0)] | ~ [[sum(CstopOK_2, CstopOK_1, CstopOK_0)<=a5 & a5<=sum(Sstart_2, Sstart_0, Sstart_1)]]] & ~ [[a5<=sum(Cstart_2, Cstart_0, Cstart_1) | sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n5_2, n5_1, n5_0)]]]]
normalized: [[~ [[a5<=sum(Cstart_2, Cstart_0, Cstart_1) | sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n5_2, n5_1, n5_0)]] & [~ [[sum(CstopOK_2, CstopOK_1, CstopOK_0)<=a5 & a5<=sum(Sstart_2, Sstart_0, Sstart_1)]] | ~ [EG [~ [sum(n5_2, n5_1, n5_0)<=sum(n6_1, n6_2, n6_0)]]]]] | E [[sum(n6_1, n6_2, n6_0)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0) | CstopAbort<=sum(SstopOK_2, SstopOK_0, SstopOK_1)] U ~ [sum(n1_1, n1_0, n1_2)<=sum(Cstart_2, Cstart_0, Cstart_1)]]]
abstracting: (sum(n1_1, n1_0, n1_2)<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 1,029 (3)
abstracting: (CstopAbort<=sum(SstopOK_2, SstopOK_0, SstopOK_1))
states: 930
abstracting: (sum(n6_1, n6_2, n6_0)<=sum(n9_2_2, n9_1_2, n9_1_1, n9_0_1, n9_0_2, n9_2_1, n9_0_0, n9_2_0, n9_1_0))
states: 641
abstracting: (sum(n5_2, n5_1, n5_0)<=sum(n6_1, n6_2, n6_0))
states: 973
......
EG iterations: 6
abstracting: (a5<=sum(Sstart_2, Sstart_0, Sstart_1))
states: 710
abstracting: (sum(CstopOK_2, CstopOK_1, CstopOK_0)<=a5)
states: 990
abstracting: (sum(n8_2_2, n8_1_2, n8_0_1, n8_1_1, n8_2_1, n8_0_2, n8_0_0, n8_1_0, n8_2_0)<=sum(n5_2, n5_1, n5_0))
states: 576
abstracting: (a5<=sum(Cstart_2, Cstart_0, Cstart_1))
states: 851
-> the formula is FALSE
FORMULA QuasiCertifProtocol-COL-02-CTLCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.144sec
totally nodes used: 158067(1.6e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 55900 148134 204034
used/not used/entry size/cache size: 140376 66968488 16 1024MB
basic ops cache: hits/miss/sum: 59390 220836 280226
used/not used/entry size/cache size: 485789 16291427 12 192MB
unary ops cache: hits/miss/sum: 0 28 28
used/not used/entry size/cache size: 28 8388580 8 64MB
abstract ops cache: hits/miss/sum: 0 64985 64985
used/not used/entry size/cache size: 25 8388583 12 96MB
state nr cache: hits/miss/sum: 1815 4244 6059
used/not used/entry size/cache size: 4241 2092911 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66950984
1 157693
2 187
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 2.618sec
BK_STOP 1494685424772
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:899 (16), effective:56 (1)
initing FirstDep: 0m 0.000sec
iterations count:56 (1), effective:0 (0)
iterations count:56 (1), effective:0 (0)
iterations count:71 (1), effective:5 (0)
iterations count:172 (3), effective:18 (0)
iterations count:98 (1), effective:4 (0)
iterations count:113 (2), effective:12 (0)
iterations count:56 (1), effective:0 (0)
iterations count:122 (2), effective:11 (0)
iterations count:56 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="QuasiCertifProtocol-PT-02"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/QuasiCertifProtocol-PT-02.tgz
mv QuasiCertifProtocol-PT-02 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is QuasiCertifProtocol-PT-02, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r051-smll-149440918200246"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;