About the Execution of MARCIE for Philosophers-PT-000005
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2205.960 | 2536.00 | 1999.00 | 40.80 | FTFFFTFTTFFTFTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..............
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is Philosophers-PT-000005, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r041-smll-149440525600201
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-0
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-1
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-10
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-11
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-12
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-13
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-14
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-15
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-2
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-3
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-4
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-5
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-6
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-7
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-8
FORMULA_NAME Philosophers-COL-000005-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1494602955613
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6
parse successfull
net created successfully
Net: Philosophers_PT_000005
(NrP: 25 NrTr: 25 NrArc: 80)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 1.226sec
RS generation: 0m 0.000sec
-> reachability set: #nodes 43 (4.3e+01) #states 243
starting MCC model checker
--------------------------
checking: 2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)
normalized: 2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)
abstracting: (2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 196
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.019sec
checking: 1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)
normalized: 1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)
abstracting: (1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 161
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.019sec
checking: ~ [~ [AX [~ [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]
normalized: ~ [EX [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 243
.-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)
normalized: sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 32
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
checking: AG [~ [EX [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]
normalized: ~ [E [true U EX [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 147
.-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.023sec
checking: EG [EG [[2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]
normalized: EG [EG [[2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 188
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 131
.
EG iterations: 1
.
EG iterations: 1
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.041sec
checking: ~ [[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) | EX [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]
normalized: ~ [[EX [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] | sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 127
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 112
.-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-10 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.041sec
checking: AF [[[[2<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) & 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] | ~ [1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]
normalized: ~ [EG [~ [[[~ [1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] | [2<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) & 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 208
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 51
abstracting: (2<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 76
abstracting: (1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 161
..
EG iterations: 2
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.079sec
checking: [[~ [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | EX [EF [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]
normalized: [EX [E [true U 1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] | [~ [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 243
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
abstracting: (1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 211
.-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.061sec
checking: [EX [[2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) & [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]] & AG [EG [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]
normalized: [~ [E [true U ~ [EG [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]] & EX [[[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & 2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]
abstracting: (2<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 76
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 127
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
.abstracting: (1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 161
.
EG iterations: 1
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.065sec
checking: [[AF [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] & AG [~ [1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]] | ~ [EG [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]
normalized: [~ [EG [[sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]] | [~ [E [true U 1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] & ~ [EG [~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]]]
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 32
..
EG iterations: 2
abstracting: (1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 161
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 188
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 243
EG iterations: 0
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.042sec
checking: E [[[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | ~ [1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] U ~ [[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]
normalized: E [[~ [1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] U ~ [[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]
abstracting: (3<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 51
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
abstracting: (2<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 196
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
abstracting: (1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 241
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.022sec
checking: [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | ~ [[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] | [~ [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] | sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
normalized: [~ [[~ [sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] | [~ [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] | sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]] | sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 243
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 243
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 188
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 77
-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.027sec
checking: [AF [[[sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] & ~ [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]] & ~ [[[~ [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & ~ [1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]] & EX [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)]]]]
normalized: [~ [[EX [1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)] & [~ [1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)] & ~ [sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]] & ~ [EG [~ [[~ [1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] & [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) & 3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)]]]]]]
abstracting: (3<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 26
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
abstracting: (1<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 211
..
EG iterations: 2
abstracting: (sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 243
abstracting: (1<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 161
abstracting: (1<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 161
.-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
checking: EX [[~ [[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] | [[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]]]
normalized: EX [[[[sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1) & sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) & sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]] | ~ [[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]]]
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 123
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 182
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 207
abstracting: (sum(Think_5, Think_4, Think_3, Think_2, Think_1)<=sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1))
states: 77
.-> the formula is TRUE
FORMULA Philosophers-COL-000005-CTLCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.041sec
checking: [[~ [AF [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] & [[[sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] | [3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) | 1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]] | EF [1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)]]] & [[[[3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)] | [sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] | AG [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] | ~ [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]
normalized: [[[~ [E [true U ~ [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]] | [[sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)] | [3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1) | 2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1)]]] | ~ [sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]] & [[E [true U 1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | [[3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1) | 1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1)] | [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1) | 1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]] & EG [~ [sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)]]]]
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 127
...
EG iterations: 3
abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 120
abstracting: (sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2)<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 182
abstracting: (1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 241
abstracting: (3<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 0
abstracting: (1<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 241
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 127
abstracting: (2<=sum(Fork_5, Fork_4, Fork_3, Fork_2, Fork_1))
states: 131
abstracting: (3<=sum(Think_5, Think_4, Think_3, Think_2, Think_1))
states: 86
abstracting: (1<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 120
abstracting: (sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1)<=sum(Catch2_5, Catch2_3, Catch2_4, Catch2_1, Catch2_2))
states: 188
abstracting: (sum(Catch1_4, Catch1_5, Catch1_3, Catch1_2, Catch1_1)<=sum(Eat_4, Eat_5, Eat_2, Eat_3, Eat_1))
states: 127
-> the formula is FALSE
FORMULA Philosophers-COL-000005-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.063sec
totally nodes used: 19301(1.9e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 10101 18050 28151
used/not used/entry size/cache size: 16550 67092314 16 1024MB
basic ops cache: hits/miss/sum: 15459 29801 45260
used/not used/entry size/cache size: 67042 16710174 12 192MB
unary ops cache: hits/miss/sum: 0 45 45
used/not used/entry size/cache size: 45 8388563 8 64MB
abstract ops cache: hits/miss/sum: 0 37204 37204
used/not used/entry size/cache size: 2 8388606 12 96MB
state nr cache: hits/miss/sum: 522 687 1209
used/not used/entry size/cache size: 687 2096465 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67089570
1 19287
2 7
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 2.503sec
BK_STOP 1494602958149
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:108 (4), effective:15 (0)
initing FirstDep: 0m 0.000sec
iterations count:163 (6), effective:22 (0)
iterations count:69 (2), effective:5 (0)
iterations count:194 (7), effective:25 (1)
iterations count:113 (4), effective:12 (0)
iterations count:184 (7), effective:27 (1)
iterations count:25 (1), effective:0 (0)
iterations count:163 (6), effective:22 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-PT-000005"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-PT-000005.tgz
mv Philosophers-PT-000005 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is Philosophers-PT-000005, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r041-smll-149440525600201"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;