About the Execution of MARCIE for Philosophers-COL-000005
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2228.480 | 2940.00 | 3009.00 | 30.60 | FTTTTTTTTFTTTTFT | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..................
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is Philosophers-COL-000005, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r041-smll-149440525500160
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-0
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-1
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-10
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-11
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-12
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-13
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-14
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-15
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-2
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-3
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-4
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-5
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-6
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-7
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-8
FORMULA_NAME Philosophers-COL-000005-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1494569883216
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6
parse successfull
net created successfully
Unfolding complete |P|=25|T|=25|A|=80
Time for unfolding: 0m 0.559sec
Net: Philosophers_COL_000005
(NrP: 25 NrTr: 25 NrArc: 80)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 1.195sec
RS generation: 0m 0.000sec
-> reachability set: #nodes 43 (4.3e+01) #states 243
starting MCC model checker
--------------------------
checking: AG [1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]
normalized: ~ [E [true U ~ [1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]]
abstracting: (1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1))
states: 161
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
checking: EF [3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]
normalized: E [true U 3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]
abstracting: (3<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 86
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.021sec
checking: AG [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]
normalized: ~ [E [true U ~ [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1))
states: 182
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.021sec
checking: EF [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]
normalized: E [true U sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1))
states: 123
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
checking: EF [sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]
normalized: E [true U sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 87
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.021sec
checking: AG [~ [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]
normalized: ~ [E [true U sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 243
-> the formula is FALSE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
checking: EF [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]
normalized: E [true U sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 147
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.021sec
checking: EF [~ [~ [[sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & 2<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]]
normalized: E [true U [sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & 2<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]
abstracting: (2<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 196
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 32
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.042sec
checking: EF [~ [~ [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & 1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]]
normalized: E [true U [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & 1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]
abstracting: (1<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 241
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 127
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.039sec
checking: EF [~ [[1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) & 1<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]]]]
normalized: E [true U ~ [[1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) & 1<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]]]]
abstracting: (1<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 161
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 147
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 120
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.039sec
checking: EF [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]]
normalized: E [true U [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]]
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 188
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1))
states: 182
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.040sec
checking: EF [[sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) | ~ [[3<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | 3<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]]]]
normalized: E [true U [~ [[3<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | 3<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)]] | sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)]]
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1))
states: 188
abstracting: (3<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 0
abstracting: (3<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1))
states: 51
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.056sec
checking: AG [~ [[~ [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)] & [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) & 3<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]]
normalized: ~ [E [true U [~ [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)] & [sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) & 3<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]]]
abstracting: (3<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1))
states: 51
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1))
states: 147
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 207
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.044sec
checking: EF [[sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1) | ~ [[sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) & 2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]]]]
normalized: E [true U [~ [[sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) & 2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]] | sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)]]
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1))
states: 182
abstracting: (2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 76
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1))
states: 188
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.018sec
checking: EF [[[[1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) | 2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)] & sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)] | [[2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) & 1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)] & ~ [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]]]]
normalized: E [true U [[[2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1) & 1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)] & ~ [sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)]] | [[1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1) | 2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)] & sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 207
abstracting: (2<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1))
states: 76
abstracting: (1<=sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1))
states: 161
abstracting: (sum(catch2_Id5, catch2_Id4, catch2_Id3, catch2_Id2, catch2_Id1)<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 147
abstracting: (1<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 120
abstracting: (2<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 76
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.019sec
checking: EF [[sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1) | [[sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & 3<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)] | [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]]]
normalized: E [true U [[[sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & 3<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)] | [sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1) & sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]] | sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)]]
abstracting: (sum(fork_Id5, fork_Id4, fork_Id3, fork_Id2, fork_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 243
abstracting: (sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1)<=sum(think_Id5, think_Id4, think_Id3, think_Id2, think_Id1))
states: 243
abstracting: (sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 243
abstracting: (3<=sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1))
states: 26
abstracting: (sum(catch1_Id5, catch1_Id4, catch1_Id3, catch1_Id2, catch1_Id1)<=sum(eat_Id5, eat_Id4, eat_Id3, eat_Id2, eat_Id1))
states: 127
-> the formula is TRUE
FORMULA Philosophers-COL-000005-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.053sec
totally nodes used: 15959(1.6e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 12099 14936 27035
used/not used/entry size/cache size: 14401 67094463 16 1024MB
basic ops cache: hits/miss/sum: 19679 26820 46499
used/not used/entry size/cache size: 60753 16716463 12 192MB
unary ops cache: hits/miss/sum: 0 45 45
used/not used/entry size/cache size: 45 8388563 8 64MB
abstract ops cache: hits/miss/sum: 0 35480 35480
used/not used/entry size/cache size: 3 8388605 12 96MB
state nr cache: hits/miss/sum: 462 640 1102
used/not used/entry size/cache size: 640 2096512 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67092910
1 15949
2 5
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 2.897sec
BK_STOP 1494569886156
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:123 (4), effective:15 (0)
initing FirstDep: 0m 0.000sec
iterations count:173 (6), effective:24 (0)
iterations count:179 (7), effective:25 (1)
iterations count:206 (8), effective:33 (1)
iterations count:68 (2), effective:5 (0)
iterations count:120 (4), effective:22 (0)
iterations count:25 (1), effective:0 (0)
iterations count:231 (9), effective:35 (1)
iterations count:341 (13), effective:57 (2)
iterations count:172 (6), effective:26 (1)
iterations count:96 (3), effective:12 (0)
iterations count:103 (4), effective:12 (0)
iterations count:34 (1), effective:3 (0)
iterations count:86 (3), effective:10 (0)
iterations count:113 (4), effective:15 (0)
iterations count:25 (1), effective:0 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Philosophers-COL-000005"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Philosophers-COL-000005.tgz
mv Philosophers-COL-000005 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is Philosophers-COL-000005, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r041-smll-149440525500160"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;