About the Execution of MARCIE for Peterson-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2240.680 | 3600000.00 | 3600029.00 | 30.30 | FTTTFTFTF?TFFTTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
..............................
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is Peterson-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r041-smll-149440525400052
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-0
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-1
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-10
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-11
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-12
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-13
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-14
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-15
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-2
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-3
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-4
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-5
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-6
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-7
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-8
FORMULA_NAME Peterson-COL-2-ReachabilityCardinality-9
=== Now, execution of the tool begins
BK_START 1494485473046
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6
parse successfull
net created successfully
Net: Peterson_PT_2
(NrP: 102 NrTr: 126 NrArc: 384)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.009sec
net check time: 0m 0.000sec
init dd package: 0m 1.377sec
RS generation: 0m 0.131sec
-> reachability set: #nodes 1459 (1.5e+03) #states 20,754 (4)
starting MCC model checker
--------------------------
checking: EF [3<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]
normalized: E [true U 3<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]
abstracting: (3<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.020sec
checking: AG [~ [3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]
normalized: ~ [E [true U 3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]
abstracting: (3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 0
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.019sec
checking: AG [2<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]
normalized: ~ [E [true U ~ [2<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]
abstracting: (2<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-13 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.019sec
checking: AG [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]
normalized: ~ [E [true U ~ [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 20,295 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.298sec
checking: EF [[3<=sum(CS_2, CS_1, CS_0) & ~ [~ [sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]]]]
normalized: E [true U [3<=sum(CS_2, CS_1, CS_0) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]]
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,742 (4)
abstracting: (3<=sum(CS_2, CS_1, CS_0))
states: 0
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.041sec
checking: EF [~ [sum(CS_2, CS_1, CS_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]
normalized: E [true U ~ [sum(CS_2, CS_1, CS_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0))
states: 20,427 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 1.088sec
checking: AG [[~ [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0) | 3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]] | ~ [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]
normalized: ~ [E [true U ~ [[~ [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] | ~ [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0) | 3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]]]]
abstracting: (3<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 66
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(CS_2, CS_1, CS_0))
states: 0
abstracting: (sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 1,239 (3)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.411sec
checking: AG [[~ [[sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0) & sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]] | 1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]
normalized: ~ [E [true U ~ [[1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) | ~ [[sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0) & sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]]]
abstracting: (sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 378
abstracting: (sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 20,754 (4)
abstracting: (1<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 4,824 (3)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.047sec
checking: EF [[[[3<=sum(Idle_1, Idle_2, Idle_0) & sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0)] | [3<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]] & [[sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & 2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)] | [2<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]]]
normalized: E [true U [[[2<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)] | [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & 2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]] & [[3<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | [3<=sum(Idle_1, Idle_2, Idle_0) & sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0)]]]]
abstracting: (sum(Idle_1, Idle_2, Idle_0)<=sum(Idle_1, Idle_2, Idle_0))
states: 20,754 (4)
abstracting: (3<=sum(Idle_1, Idle_2, Idle_0))
states: 3
abstracting: (1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,754 (4)
abstracting: (3<=sum(Idle_1, Idle_2, Idle_0))
states: 3
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 75
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 0
abstracting: (3<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 0
abstracting: (2<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 378
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-6 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.093sec
checking: AG [~ [[3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & [3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & 1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]]
normalized: ~ [E [true U [3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & [3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) & 1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]]]]
abstracting: (1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 8,022 (3)
abstracting: (3<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 194
abstracting: (3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0))
states: 194
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.359sec
checking: EF [[[~ [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] & sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(CS_2, CS_1, CS_0)] & [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & ~ [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]
normalized: E [true U [[sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(CS_2, CS_1, CS_0) & ~ [sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]] & [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) & ~ [sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)]]]]
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 20,295 (4)
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 75
abstracting: (sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 194
abstracting: (sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0)<=sum(CS_2, CS_1, CS_0))
states: 13,392 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m16.032sec
checking: EF [[[1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0) & [sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]] & [~ [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & 3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)]]]
normalized: E [true U [[~ [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & 3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)] & [[sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Idle_1, Idle_2, Idle_0) | 1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] & 1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]]
abstracting: (1<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0))
states: 10,596 (4)
abstracting: (1<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,754 (4)
abstracting: (sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Idle_1, Idle_2, Idle_0))
states: 15,198 (4)
abstracting: (3<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0))
states: 21
abstracting: (sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
-> the formula is FALSE
FORMULA Peterson-COL-2-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m14.834sec
checking: AG [[[~ [3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & ~ [1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)]] | [[1<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)] & [sum(CS_2, CS_1, CS_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)]]]]
normalized: ~ [E [true U ~ [[[~ [1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)] & ~ [3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]] | [[sum(CS_2, CS_1, CS_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)] & [1<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]]]]
abstracting: (sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
abstracting: (1<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 10,596 (4)
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 16,254 (4)
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,754 (4)
abstracting: (3<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
abstracting: (1<=sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0))
states: 8,022 (3)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.292sec
checking: AG [[[2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] & [sum(CS_2, CS_1, CS_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | [sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]]]]
normalized: ~ [E [true U ~ [[[sum(CS_2, CS_1, CS_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T) | [sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T)]] & [2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]]]]]
abstracting: (sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 20,754 (4)
abstracting: (2<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0))
states: 75
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
abstracting: (sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1))
states: 18,636 (4)
abstracting: (sum(CS_2, CS_1, CS_0)<=sum(WantSection_0_F, WantSection_1_F, WantSection_2_F, WantSection_0_T, WantSection_2_T, WantSection_1_T))
states: 20,754 (4)
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.063sec
checking: AG [[[[sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0)] | [~ [sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)] | [2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]]]]
normalized: ~ [E [true U ~ [[[[2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0) | sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] | ~ [sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]] | [sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0) | [sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0) | sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)]]]]]]
abstracting: (sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,733 (4)
abstracting: (sum(TestAlone_1_0_2, TestAlone_0_1_2, TestAlone_1_1_2, TestAlone_2_0_1, TestAlone_0_1_1, TestAlone_2_1_1, TestAlone_0_0_2, TestAlone_2_0_0, TestAlone_1_1_0, TestAlone_2_1_0, TestAlone_0_0_1, TestAlone_1_0_0)<=sum(IsEndLoop_2_1_2, IsEndLoop_0_1_2, IsEndLoop_1_1_2, IsEndLoop_1_0_2, IsEndLoop_2_0_2, IsEndLoop_0_0_2, IsEndLoop_2_1_1, IsEndLoop_1_1_1, IsEndLoop_0_1_1, IsEndLoop_2_0_1, IsEndLoop_1_0_1, IsEndLoop_0_0_1, IsEndLoop_2_1_0, IsEndLoop_1_1_0, IsEndLoop_0_1_0, IsEndLoop_2_0_0, IsEndLoop_1_0_0, IsEndLoop_0_0_0))
states: 14,760 (4)
abstracting: (sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(CS_2, CS_1, CS_0))
states: 10,347 (4)
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0))
states: 20,742 (4)
abstracting: (sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0))
states: 17,758 (4)
abstracting: (2<=sum(TestTurn_1_1, TestTurn_0_1, TestTurn_2_0, TestTurn_1_0, TestTurn_2_1, TestTurn_0_0))
states: 645
-> the formula is TRUE
FORMULA Peterson-COL-2-ReachabilityCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 18m13.503sec
checking: EF [[[~ [sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)] & [1<=sum(Idle_1, Idle_2, Idle_0) & 2<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)]] & [sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]]]]
normalized: E [true U [[sum(Turn_1_1, Turn_0_2, Turn_1_0, Turn_0_1, Turn_1_2, Turn_0_0)<=sum(EndTurn_2_1, EndTurn_0_1, EndTurn_1_1, EndTurn_1_0, EndTurn_2_0, EndTurn_0_0) | [sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIdentity_0_1_0, TestIdentity_1_1_1, TestIdentity_0_1_1, TestIdentity_2_0_1, TestIdentity_1_0_1, TestIdentity_2_0_0, TestIdentity_1_0_0, TestIdentity_0_0_0)<=sum(AskForSection_1_0, AskForSection_0_0, AskForSection_0_1, AskForSection_2_0, AskForSection_2_1, AskForSection_1_1) & 3<=sum(BeginLoop_2_1_2, BeginLoop_2_0_2, BeginLoop_1_0_2, BeginLoop_1_1_2, BeginLoop_0_1_2, BeginLoop_1_1_1, BeginLoop_0_1_1, BeginLoop_0_0_2, BeginLoop_2_1_1, BeginLoop_0_0_1, BeginLoop_2_1_0, BeginLoop_2_0_1, BeginLoop_1_0_1, BeginLoop_0_1_0, BeginLoop_1_1_0, BeginLoop_1_0_0, BeginLoop_2_0_0, BeginLoop_0_0_0)]] & [[1<=sum(Idle_1, Idle_2, Idle_0) & 2<=sum(TestIdentity_1_0_2, TestIdentity_2_0_2, TestIdentity_2_1_1, TestIdentity_0_0_2, TestIdentity_2_1_2, TestIdentity_0_1_2, TestIdentity_1_1_2, TestIdentity_0_0_1, TestIdentity_2_1_0, TestIdentity_1_1_0, TestIden
BK_TIME_CONFINEMENT_REACHED
--------------------
content from stderr:
check for maximal unmarked siphon
ok
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:10912 (86), effective:662 (5)
initing FirstDep: 0m 0.000sec
iterations count:8085 (64), effective:393 (3)
iterations count:7845 (62), effective:388 (3)
iterations count:6309 (50), effective:295 (2)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="Peterson-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/Peterson-PT-2.tgz
mv Peterson-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is Peterson-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r041-smll-149440525400052"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;