About the Execution of LoLA for NeoElection-PT-8
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2163.100 | 2425434.00 | 2431748.00 | 157.60 | TTF?TF?FTTTT?F?T | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
......
=====================================================================
Generated by BenchKit 2-3254
Executing tool lola
Input is NeoElection-PT-8, examination is LTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 4
Run identifier is r038-blw7-149440484800293
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-8-LTLCardinality-0
FORMULA_NAME NeoElection-COL-8-LTLCardinality-1
FORMULA_NAME NeoElection-COL-8-LTLCardinality-10
FORMULA_NAME NeoElection-COL-8-LTLCardinality-11
FORMULA_NAME NeoElection-COL-8-LTLCardinality-12
FORMULA_NAME NeoElection-COL-8-LTLCardinality-13
FORMULA_NAME NeoElection-COL-8-LTLCardinality-14
FORMULA_NAME NeoElection-COL-8-LTLCardinality-15
FORMULA_NAME NeoElection-COL-8-LTLCardinality-2
FORMULA_NAME NeoElection-COL-8-LTLCardinality-3
FORMULA_NAME NeoElection-COL-8-LTLCardinality-4
FORMULA_NAME NeoElection-COL-8-LTLCardinality-5
FORMULA_NAME NeoElection-COL-8-LTLCardinality-6
FORMULA_NAME NeoElection-COL-8-LTLCardinality-7
FORMULA_NAME NeoElection-COL-8-LTLCardinality-8
FORMULA_NAME NeoElection-COL-8-LTLCardinality-9
=== Now, execution of the tool begins
BK_START 1494642847736
Time: 3600 - MCC
----- Start make prepare stdout -----
checking for too many tokens
----- Start make result stdout -----
LTLCardinality @ NeoElection-PT-8 @ 3540 seconds
----- Start make result stdout -----
lola: LoLA will run for 3540 seconds at most (--timelimit)
lola: NET
lola: reading net from model.pnml.lola
lola: finished parsing
lola: closed net file model.pnml.lola
lola: 32328/65536 symbol table entries, 8032 collisions
lola: preprocessing...
lola: finding significant places
lola: 10062 places, 22266 transitions, 2295 significant places
lola: computing forward-conflicting sets
lola: computing back-conflicting sets
lola: 5067 transition conflict sets
lola: TASK
lola: reading formula from NeoElection-COL-8-LTLCardinality.task
lola: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 <= P-stage_2_SEC + P-stage_3_NEG + P-stage_1_SEC + P-stage_5_SEC + P-stage_4_PRIM + P-stage_6_SEC + P-stage_3_SEC + P-stage_0_SEC + P-stage_7_PRIM + P-stage_8_SEC + P-stage_1_NEG + P-stage_2_PRIM + P-stage_6_NEG + P-stage_4_NEG + P-stage_5_PRIM + P-stage_7_NEG + P-stage_0_PRIM + P-stage_8_PRIM + P-stage_2_NEG + P-stage_3_PRIM + P-stage_4_SEC + P-stage_5_NEG + P-stage_7_SEC + P-stage_6_PRIM + P-stage_8_NEG + P-stage_0_NEG + P-stage_1_PRIM) U X (F ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8))))) : A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)))))) : A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8)))))) : A ((3 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8)) : A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_8_1_AI_0 + P-network_7_6_AskP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_0 + P-network_4_5_AskP_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_4_5_RP_0 + P-network_8_2_AskP_0 + P-network_7_8_AnnP_0 + P-network_2_7_RI_0 + P-network_2_4_AI_0 + P-network_1_1_AskP_0 + P-network_7_2_RP_0 + P-network_0_7_AnnP_0 + P-network_7_5_AnsP_8 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_0_8_RI_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_0_5_AI_0 + P-network_7_8_AI_0 + P-network_5_3_RP_0 + P-network_3_6_AskP_0 + P-network_8_4_AnsP_0 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_8 + P-network_1_6_AnnP_0 + P-network_8_4_AnnP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_6_4_RP_0 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_1_5_RP_0 + P-network_8_8_RP_0 + P-network_2_0_AskP_0 + P-network_4_2_AskP_0 + P-network_3_8_AnnP_0 + P-network_1_6_AI_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_8_7_AnnP_0 + P-network_3_5_AnsP_0 + P-network_6_7_AskP_0 + P-network_0_0_RI_0 + P-network_7_3_RI_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_4_AnnP_0 + P-network_1_0_RP_0 + P-network_5_4_RI_0 + P-network_4_1_AnsP_8 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_5_1_AI_0 + P-network_7_3_AskP_0 + P-network_3_5_AI_0 + P-network_3_5_RI_0 + P-network_0_7_AnsP_0 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_8 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_6_6_AnsP_8 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_0 + P-network_8_0_RP_0 + P-network_5_0_AnnP_0 + P-network_1_6_RI_0 + P-network_1_3_AI_0 + P-network_8_6_AI_0 + P-network_3_8_RI_0 + P-network_2_7_AskP_0 + P-network_6_1_RP_0 + P-network_7_5_AnnP_0 + P-network_6_2_AnnP_0 + P-network_6_7_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_8_AnsP_0 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_8 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_1_4_AskP_0 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_8_AI_0 + P-network_5_4_AI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_8_1_AnnP_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_5_7_RI_0 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_0_4_RP_0 + P-network_7_7_RP_0 + P-network_1_0_AnnP_0 + P-network_5_8_AskP_0 + P-network_8_5_AskP_0 + P-network_5_8_RP_0 + P-network_8_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_8 + P-network_3_5_AnnP_0 + P-network_7_3_AI_0 + P-network_6_2_RI_0 + P-network_3_2_AnsP_8 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_4 + P-network_0_0_AI_0 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_6_4_AskP_0 + P-network_7_6_RI_0 + P-network_0_3_RI_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_2_1_AI_0 + P-network_1_8_AskP_0 + P-network_7_0_AskP_0 + P-network_6_6_AnnP_0 + P-network_0_5_RI_0 + P-network_7_8_RI_0 + P-network_0_2_AI_0 + P-network_7_5_AI_0 + P-network_6_3_AnsP_8 + P-network_5_6_AnnP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_6_0_AskP_0 + P-network_5_0_RP_0 + P-network_5_6_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_0_8_AskP_0 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_7_2_AnnP_0 + P-network_3_7_AI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_2_2_RI_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_1_2_RP_0 + P-network_8_5_RP_0 + P-network_0_1_AnnP_0 + P-network_1_8_AI_0 + P-network_6_6_RP_0 + P-network_3_0_AskP_0 + P-network_2_6_AnnP_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_4_7_RP_0 + P-network_7_0_RI_0 + P-network_3_1_AnnP_0 + P-network_5_5_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_2_8_RP_0 + P-network_5_1_RI_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_1_RI_0 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_1_8_RP_0 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_4_8_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_6_1_AskP_0 + P-network_5_7_AnnP_0 + P-network_1_3_RI_0 + P-network_8_6_RI_0 + P-network_1_0_AI_0 + P-network_8_3_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_8_6_AskP_0 + P-network_6_7_RI_0 + P-network_5_4_AskP_0 + P-network_6_4_AI_0 + P-network_1_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_4_8_RI_0 + P-network_0_8_AnsP_8 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_4 + P-network_6_0_RI_0 + P-network_0_8_AnsP_3 + P-network_3_7_RP_0 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_0 + P-network_4_5_AI_0 + P-network_6_0_AnsP_8 + P-network_6_0_AnsP_7 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_0 + P-network_2_0_RP_0 + P-network_8_8_AnnP_0 + P-network_2_6_AI_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_7_4_RP_0 + P-network_1_7_AnnP_0 + P-network_8_5_AnsP_8 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_0 + P-network_0_7_AI_0 + P-network_2_5_AnnP_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_5_RP_0 + P-network_5_6_RP_0 + P-network_4_6_AskP_0 + P-network_3_6_RP_0 + P-network_2_3_AnnP_0 + P-network_0_8_AI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_7_RP_0 + P-network_4_0_RI_0 + P-network_5_2_AskP_0 + P-network_4_8_AnnP_0 + P-network_4_8_AskP_0 + P-network_0_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_7_5_RP_0 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_7_7_AskP_0 + P-network_0_2_RI_0 + P-network_7_5_RI_0 + P-network_0_2_RP_0 + P-network_0_6_AskP_0 + P-network_7_2_AI_0 + P-network_1_6_AnsP_0 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_8 + P-network_5_4_AnnP_0 + P-network_5_6_RI_0 + P-network_5_3_AI_0 + P-network_5_1_AnsP_8 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_5 + P-network_2_7_AI_0 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_0 + P-network_8_3_AskP_0 + P-network_3_7_RI_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_8_2_RP_0 + P-network_0_8_AnnP_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_1_AnnP_0 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_8_7_AnsP_0 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_8 + P-network_6_0_AnnP_0 + P-network_1_8_RI_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_1_5_AI_0 + P-network_8_8_AI_0 + P-network_6_3_RP_0 + P-network_3_7_AskP_0 + P-network_2_1_RP_0 + P-network_8_5_AnnP_0 + P-network_2_3_AskP_0 + P-network_4_4_RP_0 + P-network_4_6_AI_0 + P-network_1_4_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_4_0_RP_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_6_2_AnsP_0 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_8 + P-network_1_1_AnsP_0 + P-network_2_5_RP_0 + P-network_6_5_AI_0 + P-network_4_3_AskP_0 + P-network_0_6_RP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_2_0_AnnP_0 + P-network_6_8_RI_0 + P-network_6_8_AskP_0 + P-network_1_0_RI_0 + P-network_8_3_RI_0 + P-network_6_5_AnnP_0 + P-network_8_0_AI_0 + P-network_4_5_AnnP_0 + P-network_6_4_RI_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_1_7_AskP_0 + P-network_4_2_AnsP_0 + P-network_6_1_AI_0 + P-network_7_4_AskP_0 + P-network_4_5_RI_0 + P-network_8_4_AI_0 + P-network_0_3_AskP_0 + P-network_1_1_AI_0 + P-network_4_2_AI_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_5_1_AnnP_0 + P-network_8_7_RI_0 + P-network_1_4_RI_0 + P-network_2_6_RI_0 + P-network_2_3_AI_0 + P-network_2_8_AskP_0 + P-network_7_1_RP_0 + P-network_8_0_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RI_0 + P-network_0_4_AI_0 + P-network_8_8_AskP_0 + P-network_7_7_AI_0 + P-network_5_2_RP_0 + P-network_0_5_AnnP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_4_0_AnnP_0 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_5_8_AI_0 + P-network_3_0_AI_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_8_2_AnnP_0 + P-network_2_7_AnsP_8 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_0 + P-network_1_4_RP_0 + P-network_8_7_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_RI_0 + P-network_6_8_RP_0 + P-network_4_0_AskP_0 + P-network_3_6_AnnP_0 + P-network_7_2_RI_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_6_5_AskP_0 + P-network_6_3_AskP_0 + P-network_5_3_RI_0 + P-network_5_0_AI_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_8 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_7_1_AskP_0 + P-network_6_7_AnnP_0 + P-network_1_5_RI_0 + P-network_8_8_RI_0 + P-network_5_2_RI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_8_5_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_6_0_RP_0 + P-network_6_6_AI_0 + P-network_3_4_AnnP_0 + P-network_2_5_AskP_0 + P-network_4_1_RP_0 + P-network_7_3_AnnP_0 + P-network_4_7_AI_0 + P-network_7_1_RI_0 + P-network_1_8_AnsP_8 + P-network_4_8_RP_0 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_7_0_AnsP_8 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_0 + P-network_2_8_AI_0 + P-network_0_3_RP_0 + P-network_7_6_RP_0 + P-network_3_1_AskP_0 + P-network_2_7_AnnP_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_5_7_RP_0 + P-network_8_0_RI_0 + P-network_5_6_AskP_0 + P-network_3_8_RP_0 + P-network_5_7_AskP_0 + P-network_6_1_RI_0 + P-network_6_7_RP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_2_5_AnsP_0 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_8 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_6_2_AskP_0 + P-network_5_8_AnnP_0 + P-network_8_0_AnnP_0 + P-network_2_8_AnnP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_8_7_AskP_0 + P-network_0_4_RI_0 + P-network_7_7_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_7_4_AI_0 + P-network_8_6_RP_0 + P-network_1_6_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_8_RI_0 + P-network_1_3_RP_0 + P-network_5_5_AI_0 + P-network_6_1_AnsP_8 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_6 + P-network_3_8_AI_0 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_0 + P-network_3_0_RP_0 + P-network_3_6_AI_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_8 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_8_4_RP_0 + P-network_1_8_AnnP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_7_0_AnnP_0 + P-network_7_1_AnsP_0 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_8 + P-network_0_3_AnnP_0 + P-network_1_7_AI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_5_RP_0 + P-network_4_7_AskP_0 + P-network_3_2_RP_0 + P-network_5_7_AI_0 + P-network_4_6_RP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_2_7_RP_0 + P-network_5_0_RI_0 + P-network_5_3_AskP_0 + P-network_7_4_AnnP_0 + P-network_0_8_RP_0 + P-network_3_1_RI_0 + P-network_4_6_AnsP_8 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_3 + P-network_5_1_RP_0 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_0 + P-network_3_0_AnnP_0 + P-network_7_8_AskP_0 + P-network_1_2_RI_0 + P-network_8_5_RI_0 + P-network_0_7_AskP_0 + P-network_8_2_AI_0 + P-network_2_6_AskP_0 + P-network_5_5_AnnP_0 + P-network_7_6_AI_0 + P-network_6_6_RI_0 + P-network_6_3_AI_0 + P-network_0_3_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_8_4_AskP_0 + P-network_4_7_RI_0 + P-network_0_6_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_6_1_AnnP_0 + P-network_2_8_RI_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_7_0_RP_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_2_5_AI_0 + P-network_6_5_AnsP_0 + P-network_0_0_RP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_8 + P-network_7_3_RP_0 + P-network_3_8_AskP_0 + P-network_2_2_AI_0 + P-network_8_6_AnnP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_5_4_RP_0 + P-network_1_5_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_2_5_RI_0 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_3_5_RP_0 + P-network_4_4_AskP_0 + P-network_6_8_AnnP_0 + P-network_1_6_RP_0 + P-network_3_7_AnsP_8 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_3 + P-network_7_2_AskP_0 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_4_1_AI_0 + P-network_5_0_AskP_0 + P-network_4_6_AnnP_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_8 + P-network_0_1_RI_0 + P-network_7_4_RI_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_7_1_AI_0 + P-network_7_5_AskP_0 + P-network_4_4_RI_0 + P-network_5_5_RI_0 + P-network_0_4_AskP_0 + P-network_5_2_AI_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_5_2_AnnP_0 + P-network_3_6_RI_0 + P-network_3_3_AI_0 + P-network_4_3_AnnP_0 + P-network_6_0_AI_0 + P-network_8_1_RP_0 + P-network_8_1_AskP_0 + P-network_7_7_AnnP_0 + P-network_1_7_RI_0 + P-network_6_3_RI_0 + P-network_1_4_AI_0 + P-network_8_7_AI_0 + P-network_1_0_AskP_0 + P-network_6_2_RP_0 + P-network_0_6_AnnP_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_0_3_AnsP_8 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_0 + P-network_6_8_AI_0 + P-network_4_3_RP_0 + P-network_3_5_AskP_0 + P-network_8_3_AnnP_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_6_6_AskP_0 + P-network_2_8_AnsP_4 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_2_4_RP_0 + P-network_1_2_AnnP_0 + P-network_8_0_AnsP_8 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_8 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_0 + P-network_8_2_RI_0 + P-network_0_5_RP_0 + P-network_7_8_RP_0 + P-network_4_1_AskP_0 + P-network_3_7_AnnP_0 + P-network_3_7_AnnP_1 + P-network_3_7_AnnP_2 + P-network_3_7_AnnP_3 + P-network_3_7_AnnP_4 + P-network_3_7_AnnP_5 + P-network_3_7_AnnP_6 + P-network_3_7_AnnP_7 + P-network_3_7_AnnP_8 + P-network_4_1_AskP_1 + P-network_4_1_AskP_2 + P-network_4_1_AskP_3 + P-network_4_1_AskP_4 + P-network_4_1_AskP_5 + P-network_4_1_AskP_6 + P-network_4_1_AskP_7 + P-network_4_1_AskP_8 + P-network_8_2_RI_8 + P-network_8_2_RI_7 + P-network_8_2_RI_6 + P-network_8_2_RI_5 + P-network_8_2_RI_4 + P-network_7_8_RP_1 + P-network_7_8_RP_2 + P-network_7_8_RP_3 + P-network_7_8_RP_4 + P-network_7_8_RP_5 + P-network_7_8_RP_6 + P-network_7_8_RP_7 + P-network_7_8_RP_8 + P-network_8_2_RI_3 + P-network_0_5_RP_1 + P-network_0_5_RP_2 + P-network_0_5_RP_3 + P-network_0_5_RP_4 + P-network_0_5_RP_5 + P-network_0_5_RP_6 + P-network_0_5_RP_7 + P-network_0_5_RP_8 + P-network_8_2_RI_2 + P-network_8_2_RI_1 + P-network_6_6_AskP_8 + P-network_6_6_AskP_7 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_7 + P-network_1_2_AnnP_8 + P-network_6_6_AskP_6 + P-network_2_4_RP_1 + P-network_2_4_RP_2 + P-network_2_4_RP_3 + P-network_2_4_RP_4 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_7 + P-network_2_4_RP_8 + P-network_6_6_AskP_5 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_8_3_AnnP_1 + P-network_8_3_AnnP_2 + P-network_8_3_AnnP_3 + P-network_8_3_AnnP_4 + P-network_8_3_AnnP_5 + P-network_8_3_AnnP_6 + P-network_8_3_AnnP_7 + P-network_8_3_AnnP_8 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_3_5_AskP_7 + P-network_3_5_AskP_8 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_4_3_RP_7 + P-network_4_3_RP_8 + P-network_6_8_AI_1 + P-network_6_8_AI_2 + P-network_6_8_AI_3 + P-network_6_8_AI_4 + P-network_6_8_AI_5 + P-network_6_8_AI_6 + P-network_6_8_AI_7 + P-network_6_8_AI_8 + P-network_6_3_RI_8 + P-network_6_3_RI_7 + P-network_6_3_RI_6 + P-network_0_6_AnnP_1 + P-network_0_6_AnnP_2 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_6 + P-network_0_6_AnnP_7 + P-network_0_6_AnnP_8 + P-network_6_3_RI_5 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_6_2_RP_7 + P-network_6_2_RP_8 + P-network_6_3_RI_4 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_0_AskP_7 + P-network_1_0_AskP_8 + P-network_6_3_RI_3 + P-network_8_7_AI_1 + P-network_8_7_AI_2 + P-network_8_7_AI_3 + P-network_8_7_AI_4 + P-network_8_7_AI_5 + P-network_8_7_AI_6 + P-network_8_7_AI_7 + P-network_8_7_AI_8 + P-network_6_3_RI_2 + P-network_6_3_RI_1 + P-network_1_4_AI_1 + P-network_1_4_AI_2 + P-network_1_4_AI_3 + P-network_1_4_AI_4 + P-network_1_4_AI_5 + P-network_1_4_AI_6 + P-network_1_4_AI_7 + P-network_1_4_AI_8 + P-network_1_7_RI_1 + P-network_1_7_RI_2 + P-network_1_7_RI_3 + P-network_1_7_RI_4 + P-network_1_7_RI_5 + P-network_1_7_RI_6 + P-network_1_7_RI_7 + P-network_1_7_RI_8 + P-network_7_7_AnnP_1 + P-network_7_7_AnnP_2 + P-network_7_7_AnnP_3 + P-network_7_7_AnnP_4 + P-network_7_7_AnnP_5 + P-network_7_7_AnnP_6 + P-network_7_7_AnnP_7 + P-network_7_7_AnnP_8 + P-network_6_0_AI_8 + P-network_6_0_AI_7 + P-network_8_1_AskP_1 + P-network_8_1_AskP_2 + P-network_8_1_AskP_3 + P-network_8_1_AskP_4 + P-network_8_1_AskP_5 + P-network_8_1_AskP_6 + P-network_8_1_AskP_7 + P-network_8_1_AskP_8 + P-network_6_0_AI_6 + P-network_8_1_RP_1 + P-network_8_1_RP_2 + P-network_8_1_RP_3 + P-network_8_1_RP_4 + P-network_8_1_RP_5 + P-network_8_1_RP_6 + P-network_8_1_RP_7 + P-network_8_1_RP_8 + P-network_6_0_AI_5 + P-network_6_0_AI_4 + P-network_6_0_AI_3 + P-network_6_0_AI_2 + P-network_6_0_AI_1 + P-network_4_3_AnnP_8 + P-network_4_3_AnnP_7 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_3_3_AI_1 + P-network_3_3_AI_2 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_5 + P-network_3_3_AI_6 + P-network_3_3_AI_7 + P-network_3_3_AI_8 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_3_6_RI_7 + P-network_3_6_RI_8 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AnnP_7 + P-network_5_2_AnnP_8 + P-network_5_2_AI_1 + P-network_5_2_AI_2 + P-network_5_2_AI_3 + P-network_5_2_AI_4 + P-network_5_2_AI_5 + P-network_5_2_AI_6 + P-network_5_2_AI_7 + P-network_5_2_AI_8 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_0_4_AskP_7 + P-network_0_4_AskP_8 + P-network_4_4_RI_8 + P-network_4_4_RI_7 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_5_5_RI_7 + P-network_5_5_RI_8 + P-network_4_4_RI_1 + P-network_7_5_AskP_1 + P-network_7_5_AskP_2 + P-network_7_5_AskP_3 + P-network_7_5_AskP_4 + P-network_7_5_AskP_5 + P-network_7_5_AskP_6 + P-network_7_5_AskP_7 + P-network_7_5_AskP_8 + P-network_7_1_AI_1 + P-network_7_1_AI_2 + P-network_7_1_AI_3 + P-network_7_1_AI_4 + P-network_7_1_AI_5 + P-network_7_1_AI_6 + P-network_7_1_AI_7 + P-network_7_1_AI_8 + P-network_7_4_RI_1 + P-network_7_4_RI_2 + P-network_7_4_RI_3 + P-network_7_4_RI_4 + P-network_7_4_RI_5 + P-network_7_4_RI_6 + P-network_7_4_RI_7 + P-network_7_4_RI_8 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_0_1_RI_5 + P-network_0_1_RI_6 + P-network_0_1_RI_7 + P-network_0_1_RI_8 + P-network_4_1_AI_8 + P-network_4_1_AI_7 + P-network_4_1_AI_6 + P-network_4_1_AI_5 + P-network_4_1_AI_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_4_6_AnnP_7 + P-network_4_6_AnnP_8 + P-network_4_1_AI_1 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_5_0_AskP_7 + P-network_5_0_AskP_8 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_2_0_RI_5 + P-network_2_0_RI_6 + P-network_2_0_RI_7 + P-network_2_0_RI_8 + P-network_7_2_AskP_8 + P-network_7_2_AskP_7 + P-network_7_2_AskP_6 + P-network_7_2_AskP_5 + P-network_7_2_AskP_4 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_2_1_AnnP_7 + P-network_2_1_AnnP_8 + P-network_7_2_AskP_3 + P-network_7_2_AskP_2 + P-network_7_2_AskP_1 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_1_6_RP_7 + P-network_1_6_RP_8 + P-network_6_8_AnnP_8 + P-network_6_8_AnnP_7 + P-network_6_8_AnnP_6 + P-network_6_8_AnnP_5 + P-network_6_8_AnnP_4 + P-network_6_8_AnnP_3 + P-network_6_8_AnnP_2 + P-network_6_8_AnnP_1 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_4_4_AskP_7 + P-network_4_4_AskP_8 + P-network_2_5_RI_8 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_3_5_RP_7 + P-network_3_5_RP_8 + P-network_2_5_RI_7 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_2_5_RI_3 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_0_1_AskP_8 + P-network_0_1_AskP_7 + P-network_0_1_AskP_6 + P-network_1_5_AnnP_1 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_3 + P-network_1_5_AnnP_4 + P-network_1_5_AnnP_5 + P-network_1_5_AnnP_6 + P-network_1_5_AnnP_7 + P-network_1_5_AnnP_8 + P-network_0_1_AskP_5 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_5_4_RP_7 + P-network_5_4_RP_8 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_8 + P-network_2_2_AI_7 + P-network_2_2_AI_6 + P-network_2_2_AI_5 + P-network_2_2_AI_4 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_6_AI_7 + P-network_0_6_AI_8 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_8_6_AnnP_1 + P-network_8_6_AnnP_2 + P-network_8_6_AnnP_3 + P-network_8_6_AnnP_4 + P-network_8_6_AnnP_5 + P-network_8_6_AnnP_6 + P-network_8_6_AnnP_7 + P-network_8_6_AnnP_8 + P-network_2_2_AI_1 + P-network_3_8_AskP_1 + P-network_3_8_AskP_2 + P-network_3_8_AskP_3 + P-network_3_8_AskP_4 + P-network_3_8_AskP_5 + P-network_3_8_AskP_6 + P-network_3_8_AskP_7 + P-network_3_8_AskP_8 + P-network_7_3_RP_1 + P-network_7_3_RP_2 + P-network_7_3_RP_3 + P-network_7_3_RP_4 + P-network_7_3_RP_5 + P-network_7_3_RP_6 + P-network_7_3_RP_7 + P-network_7_3_RP_8 + P-network_7_0_RP_8 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_0_0_RP_5 + P-network_0_0_RP_6 + P-network_0_0_RP_7 + P-network_0_0_RP_8 + P-network_7_0_RP_7 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_7_0_RP_6 + P-network_2_5_AI_3 + P-network_7_0_RP_5 + P-network_2_5_AI_4 + P-network_7_0_RP_4 + P-network_2_5_AI_5 + P-network_7_0_RP_3 + P-network_2_5_AI_6 + P-network_7_0_RP_2 + P-network_2_5_AI_7 + P-network_7_0_RP_1 + P-network_2_5_AI_8 + P-network_2_8_RI_1 + P-network_2_8_RI_2 + P-network_2_8_RI_3 + P-network_2_8_RI_4 + P-network_2_8_RI_5 + P-network_2_8_RI_6 + P-network_2_8_RI_7 + P-network_2_8_RI_8 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_1_AnnP_7 + P-network_6_1_AnnP_8 + P-network_0_6_RI_8 + P-network_0_6_RI_7 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_1_3_AskP_5 + P-network_1_3_AskP_6 + P-network_1_3_AskP_7 + P-network_1_3_AskP_8 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_4_4_AI_1 + P-network_0_6_RI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_4_4_AI_7 + P-network_4_4_AI_8 + P-network_4_7_RI_1 + P-network_4_7_RI_2 + P-network_4_7_RI_3 + P-network_4_7_RI_4 + P-network_4_7_RI_5 + P-network_4_7_RI_6 + P-network_4_7_RI_7 + P-network_4_7_RI_8 + P-network_8_4_AskP_1 + P-network_8_4_AskP_2 + P-network_8_4_AskP_3 + P-network_8_4_AskP_4 + P-network_8_4_AskP_5 + P-network_8_4_AskP_6 + P-network_8_4_AskP_7 + P-network_8_4_AskP_8 + P-network_0_3_AI_8 + P-network_0_3_AI_7 + P-network_0_3_AI_6 + P-network_0_3_AI_5 + P-network_0_3_AI_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_7_6_AI_8 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_3_AI_7 + P-network_6_3_AI_8 + P-network_7_6_AI_7 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_6_6_RI_7 + P-network_6_6_RI_8 + P-network_7_6_AI_6 + P-network_7_6_AI_5 + P-network_7_6_AI_4 + P-network_7_6_AI_3 + P-network_7_6_AI_2 + P-network_7_6_AI_1 + P-network_2_6_AskP_8 + P-network_2_6_AskP_7 + P-network_2_6_AskP_6 + P-network_2_6_AskP_5 + P-network_2_6_AskP_4 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_5_5_AnnP_7 + P-network_5_5_AnnP_8 + P-network_2_6_AskP_3 + P-network_2_6_AskP_2 + P-network_2_6_AskP_1 + P-network_8_2_AI_1 + P-network_8_2_AI_2 + P-network_8_2_AI_3 + P-network_8_2_AI_4 + P-network_8_2_AI_5 + P-network_8_2_AI_6 + P-network_8_2_AI_7 + P-network_8_2_AI_8 + P-network_5_1_RP_8 + P-network_0_7_AskP_1 + P-network_0_7_AskP_2 + P-network_0_7_AskP_3 + P-network_0_7_AskP_4 + P-network_0_7_AskP_5 + P-network_0_7_AskP_6 + P-network_0_7_AskP_7 + P-network_0_7_AskP_8 + P-network_8_5_RI_1 + P-network_8_5_RI_2 + P-network_8_5_RI_3 + P-network_8_5_RI_4 + P-network_8_5_RI_5 + P-network_8_5_RI_6 + P-network_8_5_RI_7 + P-network_8_5_RI_8 + P-network_5_1_RP_7 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_1_2_RI_7 + P-network_1_2_RI_8 + P-network_5_1_RP_6 + P-network_7_8_AskP_1 + P-network_7_8_AskP_2 + P-network_7_8_AskP_3 + P-network_7_8_AskP_4 + P-network_7_8_AskP_5 + P-network_7_8_AskP_6 + P-network_7_8_AskP_7 + P-network_7_8_AskP_8 + P-network_5_1_RP_5 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_0_AnnP_7 + P-network_3_0_AnnP_8 + P-network_5_1_RP_4 + P-network_5_1_RP_3 + P-network_5_1_RP_2 + P-network_5_1_RP_1 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_0_8_RP_1 + P-network_3_1_RI_4 + P-network_0_8_RP_2 + P-network_3_1_RI_5 + P-network_0_8_RP_3 + P-network_3_1_RI_6 + P-network_0_8_RP_4 + P-network_3_1_RI_7 + P-network_0_8_RP_5 + P-network_3_1_RI_8 + P-network_0_8_RP_6 + P-network_0_8_RP_7 + P-network_0_8_RP_8 + P-network_7_4_AnnP_8 + P-network_7_4_AnnP_7 + P-network_7_4_AnnP_6 + P-network_7_4_AnnP_5 + P-network_7_4_AnnP_4 + P-network_7_4_AnnP_3 + P-network_7_4_AnnP_2 + P-network_7_4_AnnP_1 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_5_3_AskP_7 + P-network_5_3_AskP_8 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_2_7_RP_1 + P-network_5_0_RI_4 + P-network_2_7_RP_2 + P-network_5_0_RI_5 + P-network_2_7_RP_3 + P-network_5_0_RI_6 + P-network_2_7_RP_4 + P-network_5_0_RI_7 + P-network_2_7_RP_5 + P-network_5_0_RI_8 + P-network_2_7_RP_6 + P-network_2_7_RP_7 + P-network_2_7_RP_8 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_2_4_AnnP_7 + P-network_2_4_AnnP_8 + P-network_4_6_RP_1 + P-network_4_6_RP_2 + P-network_4_6_RP_3 + P-network_4_6_RP_4 + P-network_4_6_RP_5 + P-network_4_6_RP_6 + P-network_4_6_RP_7 + P-network_4_6_RP_8 + P-network_5_7_AI_8 + P-network_5_7_AI_7 + P-network_5_7_AI_6 + P-network_5_7_AI_5 + P-network_5_7_AI_4 + P-network_5_7_AI_3 + P-network_5_7_AI_2 + P-network_5_7_AI_1 + P-network_3_2_RP_8 + P-network_3_2_RP_7 + P-network_3_2_RP_6 + P-network_3_2_RP_5 + P-network_3_2_RP_4 + P-network_3_2_RP_3 + P-network_3_2_RP_2 + P-network_3_2_RP_1 + P-network_0_3_AnnP_8 + P-network_4_7_AskP_1 + P-network_4_7_AskP_2 + P-network_4_7_AskP_3 + P-network_4_7_AskP_4 + P-network_4_7_AskP_5 + P-network_4_7_AskP_6 + P-network_4_7_AskP_7 + P-network_4_7_AskP_8 + P-network_6_5_RP_1 + P-network_6_5_RP_2 + P-network_6_5_RP_3 + P-network_6_5_RP_4 + P-network_6_5_RP_5 + P-network_6_5_RP_6 + P-network_6_5_RP_7 + P-network_6_5_RP_8 + P-network_0_3_AnnP_7 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_1_7_AI_1 + P-network_1_7_AI_2 + P-network_1_7_AI_3 + P-network_1_7_AI_4 + P-network_1_7_AI_5 + P-network_1_7_AI_6 + P-network_1_7_AI_7 + P-network_1_7_AI_8 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_7_0_AnnP_1 + P-network_7_0_AnnP_2 + P-network_7_0_AnnP_3 + P-network_7_0_AnnP_4 + P-network_7_0_AnnP_5 + P-network_7_0_AnnP_6 + P-network_7_0_AnnP_7 + P-network_7_0_AnnP_8 + P-network_1_8_AnnP_1 + P-network_1_8_AnnP_2 + P-network_1_8_AnnP_3 + P-network_1_8_AnnP_4 + P-network_1_8_AnnP_5 + P-network_1_8_AnnP_6 + P-network_1_8_AnnP_7 + P-network_1_8_AnnP_8 + P-network_8_4_RP_1 + P-network_8_4_RP_2 + P-network_8_4_RP_3 + P-network_8_4_RP_4 + P-network_8_4_RP_5 + P-network_8_4_RP_6 + P-network_8_4_RP_7 + P-network_8_4_RP_8 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_1_1_RP_7 + P-network_1_1_RP_8 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_2_2_AskP_5 + P-network_2_2_AskP_6 + P-network_2_2_AskP_7 + P-network_2_2_AskP_8 + P-network_3_8_AI_8 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_3_6_AI_7 + P-network_3_6_AI_8 + P-network_3_8_AI_7 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_3_0_RP_7 + P-network_3_0_RP_8 + P-network_3_8_AI_6 + P-network_3_8_AI_5 + P-network_3_8_AI_4 + P-network_3_8_AI_3 + P-network_3_8_AI_2 + P-network_3_8_AI_1 + P-network_1_3_RP_8 + P-network_1_3_RP_7 + P-network_1_3_RP_6 + P-network_1_3_RP_5 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_5_5_AI_7 + P-network_5_5_AI_8 + P-network_1_3_RP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_8_6_RP_8 + P-network_8_6_RP_7 + P-network_8_6_RP_6 + P-network_8_6_RP_5 + P-network_5_8_RI_1 + P-network_5_8_RI_2 + P-network_5_8_RI_3 + P-network_5_8_RI_4 + P-network_5_8_RI_5 + P-network_5_8_RI_6 + P-network_5_8_RI_7 + P-network_5_8_RI_8 + P-network_8_6_RP_4 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_6_4_AnnP_7 + P-network_6_4_AnnP_8 + P-network_8_6_RP_3 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_1_6_AskP_7 + P-network_1_6_AskP_8 + P-network_8_6_RP_2 + P-network_8_6_RP_1 + P-network_3_2_AskP_8 + P-network_3_2_AskP_7 + P-network_3_2_AskP_6 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_7_4_AI_1 + P-network_7_4_AI_2 + P-network_7_4_AI_3 + P-network_7_4_AI_4 + P-network_7_4_AI_5 + P-network_7_4_AI_6 + P-network_7_4_AI_7 + P-network_7_4_AI_8 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_0_1_AI_7 + P-network_0_1_AI_8 + P-network_2_8_AnnP_8 + P-network_7_7_RI_1 + P-network_7_7_RI_2 + P-network_7_7_RI_3 + P-network_7_7_RI_4 + P-network_7_7_RI_5 + P-network_7_7_RI_6 + P-network_7_7_RI_7 + P-network_7_7_RI_8 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_0_4_RI_7 + P-network_0_4_RI_8 + P-network_2_8_AnnP_7 + P-network_8_7_AskP_1 + P-network_8_7_AskP_2 + P-network_8_7_AskP_3 + P-network_8_7_AskP_4 + P-network_8_7_AskP_5 + P-network_8_7_AskP_6 + P-network_8_7_AskP_7 + P-network_8_7_AskP_8 + P-network_2_8_AnnP_6 + P-network_2_8_AnnP_5 + P-network_2_8_AnnP_4 + P-network_2_8_AnnP_3 + P-network_2_8_AnnP_2 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_0_AI_7 + P-network_2_0_AI_8 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_2_3_RI_7 + P-network_2_3_RI_8 + P-network_2_8_AnnP_1 + P-network_8_0_AnnP_8 + P-network_8_0_AnnP_7 + P-network_8_0_AnnP_6 + P-network_8_0_AnnP_5 + P-network_8_0_AnnP_4 + P-network_8_0_AnnP_3 + P-network_8_0_AnnP_2 + P-network_8_0_AnnP_1 + P-network_5_8_AnnP_1 + P-network_5_8_AnnP_2 + P-network_5_8_AnnP_3 + P-network_5_8_AnnP_4 + P-network_5_8_AnnP_5 + P-network_5_8_AnnP_6 + P-network_5_8_AnnP_7 + P-network_5_8_AnnP_8 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_6_2_AskP_7 + P-network_6_2_AskP_8 + P-network_6_7_RP_8 + P-network_6_7_RP_7 + P-network_6_7_RP_6 + P-network_6_7_RP_5 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_4_2_RI_7 + P-network_4_2_RI_8 + P-network_6_7_RP_4 + P-network_6_7_RP_3 + P-network_6_7_RP_2 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_3_3_AnnP_7 + P-network_3_3_AnnP_8 + P-network_6_7_RP_1 + P-network_5_7_AskP_8 + P-network_5_7_AskP_7 + P-network_5_7_AskP_6 + P-network_5_7_AskP_5 + P-network_5_7_AskP_4 + P-network_5_7_AskP_3 + P-network_5_7_AskP_2 + P-network_5_7_AskP_1 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_3_8_RP_1 + P-network_6_1_RI_4 + P-network_3_8_RP_2 + P-network_6_1_RI_5 + P-network_3_8_RP_3 + P-network_6_1_RI_6 + P-network_3_8_RP_4 + P-network_6_1_RI_7 + P-network_3_8_RP_5 + P-network_6_1_RI_8 + P-network_3_8_RP_6 + P-network_3_8_RP_7 + P-network_3_8_RP_8 + P-network_5_6_AskP_1 + P-network_5_6_AskP_2 + P-network_5_6_AskP_3 + P-network_5_6_AskP_4 + P-network_5_6_AskP_5 + P-network_5_6_AskP_6 + P-network_5_6_AskP_7 + P-network_5_6_AskP_8 + P-network_8_0_RI_1 + P-network_8_0_RI_2 + P-network_8_0_RI_3 + P-network_5_7_RP_1 + P-network_8_0_RI_4 + P-network_5_7_RP_2 + P-network_8_0_RI_5 + P-network_5_7_RP_3 + P-network_8_0_RI_6 + P-network_5_7_RP_4 + P-network_8_0_RI_7 + P-network_5_7_RP_5 + P-network_8_0_RI_8 + P-network_5_7_RP_6 + P-network_5_7_RP_7 + P-network_5_7_RP_8 + P-network_2_7_AnnP_1 + P-network_2_7_AnnP_2 + P-network_2_7_AnnP_3 + P-network_2_7_AnnP_4 + P-network_2_7_AnnP_5 + P-network_2_7_AnnP_6 + P-network_2_7_AnnP_7 + P-network_2_7_AnnP_8 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_1_AskP_7 + P-network_3_1_AskP_8 + P-network_7_6_RP_1 + P-network_7_6_RP_2 + P-network_7_6_RP_3 + P-network_7_6_RP_4 + P-network_7_6_RP_5 + P-network_7_6_RP_6 + P-network_7_6_RP_7 + P-network_7_6_RP_8 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_3_RP_5 + P-network_0_3_RP_6 + P-network_0_3_RP_7 + P-network_0_3_RP_8 + P-network_2_8_AI_1 + P-network_2_8_AI_2 + P-network_2_8_AI_3 + P-network_2_8_AI_4 + P-network_2_8_AI_5 + P-network_2_8_AI_6 + P-network_2_8_AI_7 + P-network_2_8_AI_8 + P-network_4_8_RP_8 + P-network_4_8_RP_7 + P-network_4_8_RP_6 + P-network_7_1_RI_8 + P-network_4_8_RP_5 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_0_2_AnnP_7 + P-network_0_2_AnnP_8 + P-network_7_1_RI_7 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_2_2_RP_5 + P-network_2_2_RP_6 + P-network_2_2_RP_7 + P-network_2_2_RP_8 + P-network_4_8_RP_4 + P-network_7_1_RI_6 + P-network_4_8_RP_3 + P-network_7_1_RI_5 + P-network_4_8_RP_2 + P-network_7_1_RI_4 + P-network_4_8_RP_1 + P-network_7_1_RI_3 + P-network_7_1_RI_2 + P-network_7_1_RI_1 + P-network_4_7_AI_1 + P-network_4_7_AI_2 + P-network_4_7_AI_3 + P-network_4_7_AI_4 + P-network_4_7_AI_5 + P-network_4_7_AI_6 + P-network_4_7_AI_7 + P-network_4_7_AI_8 + P-network_3_4_AnnP_8 + P-network_7_3_AnnP_1 + P-network_7_3_AnnP_2 + P-network_7_3_AnnP_3 + P-network_7_3_AnnP_4 + P-network_7_3_AnnP_5 + P-network_7_3_AnnP_6 + P-network_7_3_AnnP_7 + P-network_7_3_AnnP_8 + P-network_3_4_AnnP_7 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_4_1_RP_5 + P-network_4_1_RP_6 + P-network_4_1_RP_7 + P-network_4_1_RP_8 + P-network_3_4_AnnP_6 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_2_5_AskP_7 + P-network_2_5_AskP_8 + P-network_3_4_AnnP_5 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_6_AI_7 + P-network_6_6_AI_8 + P-network_6_0_RP_1 + P-network_6_0_RP_2 + P-network_6_0_RP_3 + P-network_6_0_RP_4 + P-network_6_0_RP_5 + P-network_6_0_RP_6 + P-network_6_0_RP_7 + P-network_6_0_RP_8 + P-network_8_5_AI_1 + P-network_8_5_AI_2 + P-network_8_5_AI_3 + P-network_8_5_AI_4 + P-network_8_5_AI_5 + P-network_8_5_AI_6 + P-network_8_5_AI_7 + P-network_8_5_AI_8 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_1_2_AI_7 + P-network_1_2_AI_8 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_0_0_AskP_7 + P-network_0_0_AskP_8 + P-network_5_2_RI_8 + P-network_5_2_RI_7 + P-network_5_2_RI_6 + P-network_5_2_RI_5 + P-network_5_2_RI_4 + P-network_5_2_RI_3 + P-network_5_2_RI_2 + P-network_5_2_RI_1 + P-network_8_8_RI_1 + P-network_8_8_RI_2 + P-network_8_8_RI_3 + P-network_8_8_RI_4 + P-network_8_8_RI_5 + P-network_8_8_RI_6 + P-network_8_8_RI_7 + P-network_8_8_RI_8 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_1_5_RI_7 + P-network_1_5_RI_8 + P-network_6_7_AnnP_1 + P-network_6_7_AnnP_2 + P-network_6_7_AnnP_3 + P-network_6_7_AnnP_4 + P-network_6_7_AnnP_5 + P-network_6_7_AnnP_6 + P-network_6_7_AnnP_7 + P-network_6_7_AnnP_8 + P-network_7_1_AskP_1 + P-network_7_1_AskP_2 + P-network_7_1_AskP_3 + P-network_7_1_AskP_4 + P-network_7_1_AskP_5 + P-network_7_1_AskP_6 + P-network_7_1_AskP_7 + P-network_7_1_AskP_8 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_1_AI_7 + P-network_3_1_AI_8 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_3_4_RI_7 + P-network_3_4_RI_8 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_4_2_AnnP_7 + P-network_4_2_AnnP_8 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_0_AI_7 + P-network_5_0_AI_8 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_5_3_RI_7 + P-network_5_3_RI_8 + P-network_6_3_AskP_8 + P-network_6_3_AskP_7 + P-network_6_3_AskP_6 + P-network_6_3_AskP_5 + P-network_6_3_AskP_4 + P-network_6_3_AskP_3 + P-network_6_3_AskP_2 + P-network_6_3_AskP_1 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_6_5_AskP_7 + P-network_6_5_AskP_8 + P-network_7_2_RI_1 + P-network_7_2_RI_2 + P-network_7_2_RI_3 + P-network_7_2_RI_4 + P-network_7_2_RI_5 + P-network_7_2_RI_6 + P-network_7_2_RI_7 + P-network_7_2_RI_8 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_6_AnnP_7 + P-network_3_6_AnnP_8 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_4_0_AskP_7 + P-network_4_0_AskP_8 + P-network_6_8_RP_1 + P-network_6_8_RP_2 + P-network_6_8_RP_3 + P-network_6_8_RP_4 + P-network_6_8_RP_5 + P-network_6_8_RP_6 + P-network_6_8_RP_7 + P-network_6_8_RP_8 + P-network_3_3_RI_8 + P-network_3_3_RI_7 + P-network_3_3_RI_6 + P-network_3_3_RI_5 + P-network_3_3_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_1_1_AnnP_7 + P-network_1_1_AnnP_8 + P-network_8_7_RP_1 + P-network_8_7_RP_2 + P-network_8_7_RP_3 + P-network_8_7_RP_4 + P-network_8_7_RP_5 + P-network_8_7_RP_6 + P-network_8_7_RP_7 + P-network_8_7_RP_8 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_1_4_RP_7 + P-network_1_4_RP_8 + P-network_8_2_AnnP_1 + P-network_8_2_AnnP_2 + P-network_8_2_AnnP_3 + P-network_8_2_AnnP_4 + P-network_8_2_AnnP_5 + P-network_8_2_AnnP_6 + P-network_8_2_AnnP_7 + P-network_8_2_AnnP_8 + P-network_3_0_AI_8 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_3_4_AskP_7 + P-network_3_4_AskP_8 + P-network_3_0_AI_7 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_0_AI_6 + P-network_3_3_RP_6 + P-network_3_0_AI_5 + P-network_3_3_RP_7 + P-network_3_0_AI_4 + P-network_3_3_RP_8 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_3_0_AI_1 + P-network_5_8_AI_1 + P-network_5_8_AI_2 + P-network_5_8_AI_3 + P-network_5_8_AI_4 + P-network_5_8_AI_5 + P-network_5_8_AI_6 + P-network_5_8_AI_7 + P-network_5_8_AI_8 + P-network_4_0_AnnP_8 + P-network_4_0_AnnP_7 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_5 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_8_8_AskP_8 + P-network_8_8_AskP_7 + P-network_8_8_AskP_6 + P-network_8_8_AskP_5 + P-network_8_8_AskP_4 + P-network_8_8_AskP_3 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_0_5_AnnP_7 + P-network_0_5_AnnP_8 + P-network_8_8_AskP_2 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_5_2_RP_7 + P-network_5_2_RP_8 + P-network_8_8_AskP_1 + P-network_7_7_AI_1 + P-network_7_7_AI_2 + P-network_7_7_AI_3 + P-network_7_7_AI_4 + P-network_7_7_AI_5 + P-network_7_7_AI_6 + P-network_7_7_AI_7 + P-network_7_7_AI_8 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_0_4_AI_5 + P-network_0_4_AI_6 + P-network_0_4_AI_7 + P-network_0_4_AI_8 + P-network_0_7_RI_1 + P-network_0_7_RI_2 + P-network_0_7_RI_3 + P-network_0_7_RI_4 + P-network_0_7_RI_5 + P-network_0_7_RI_6 + P-network_0_7_RI_7 + P-network_0_7_RI_8 + P-network_7_6_AnnP_1 + P-network_7_6_AnnP_2 + P-network_7_6_AnnP_3 + P-network_7_6_AnnP_4 + P-network_7_6_AnnP_5 + P-network_7_6_AnnP_6 + P-network_7_6_AnnP_7 + P-network_7_6_AnnP_8 + P-network_1_4_RI_8 + P-network_1_4_RI_7 + P-network_1_4_RI_6 + P-network_8_0_AskP_1 + P-network_8_0_AskP_2 + P-network_8_0_AskP_3 + P-network_8_0_AskP_4 + P-network_8_0_AskP_5 + P-network_8_0_AskP_6 + P-network_8_0_AskP_7 + P-network_8_0_AskP_8 + P-network_1_4_RI_5 + P-network_7_1_RP_1 + P-network_7_1_RP_2 + P-network_7_1_RP_3 + P-network_7_1_RP_4 + P-network_7_1_RP_5 + P-network_7_1_RP_6 + P-network_7_1_RP_7 + P-network_7_1_RP_8 + P-network_1_4_RI_4 + P-network_2_8_AskP_1 + P-network_2_8_AskP_2 + P-network_2_8_AskP_3 + P-network_2_8_AskP_4 + P-network_2_8_AskP_5 + P-network_2_8_AskP_6 + P-network_2_8_AskP_7 + P-network_2_8_AskP_8 + P-network_1_4_RI_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_3_AI_7 + P-network_2_3_AI_8 + P-network_1_4_RI_2 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_2_6_RI_7 + P-network_2_6_RI_8 + P-network_1_4_RI_1 + P-network_8_7_RI_8 + P-network_8_7_RI_7 + P-network_8_7_RI_6 + P-network_8_7_RI_5 + P-network_8_7_RI_4 + P-network_8_7_RI_3 + P-network_8_7_RI_2 + P-network_8_7_RI_1 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_5_1_AnnP_7 + P-network_5_1_AnnP_8 + P-network_1_1_AI_8 + P-network_1_1_AI_7 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_4_2_AI_7 + P-network_4_2_AI_8 + P-network_1_1_AI_6 + P-network_1_1_AI_5 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_8_4_AI_8 + P-network_8_4_AI_7 + P-network_8_4_AI_6 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_0_3_AskP_5 + P-network_0_3_AskP_6 + P-network_0_3_AskP_7 + P-network_0_3_AskP_8 + P-network_8_4_AI_5 + P-network_8_4_AI_4 + P-network_8_4_AI_3 + P-network_8_4_AI_2 + P-network_8_4_AI_1 + P-network_1_7_AskP_8 + P-network_1_7_AskP_7 + P-network_1_7_AskP_6 + P-network_1_7_AskP_5 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_4_5_RI_7 + P-network_4_5_RI_8 + P-network_1_7_AskP_4 + P-network_1_7_AskP_3 + P-network_7_4_AskP_1 + P-network_7_4_AskP_2 + P-network_7_4_AskP_3 + P-network_7_4_AskP_4 + P-network_7_4_AskP_5 + P-network_7_4_AskP_6 + P-network_7_4_AskP_7 + P-network_7_4_AskP_8 + P-network_1_7_AskP_2 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_1_7_AskP_1 + P-network_6_1_AI_3 + P-network_6_1_AI_4 + P-network_6_1_AI_5 + P-network_6_1_AI_6 + P-network_6_1_AI_7 + P-network_6_1_AI_8 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_6_4_RI_7 + P-network_6_4_RI_8 + P-network_6_5_AnnP_8 + P-network_6_5_AnnP_7 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_2 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_4_5_AnnP_7 + P-network_4_5_AnnP_8 + P-network_6_5_AnnP_1 + P-network_8_0_AI_1 + P-network_8_0_AI_2 + P-network_8_0_AI_3 + P-network_8_0_AI_4 + P-network_8_0_AI_5 + P-network_6_8_RI_8 + P-network_8_0_AI_6 + P-network_6_8_RI_7 + P-network_8_0_AI_7 + P-network_6_8_RI_6 + P-network_8_0_AI_8 + P-network_6_8_RI_5 + P-network_8_3_RI_1 + P-network_8_3_RI_2 + P-network_8_3_RI_3 + P-network_8_3_RI_4 + P-network_8_3_RI_5 + P-network_8_3_RI_6 + P-network_8_3_RI_7 + P-network_8_3_RI_8 + P-network_6_8_RI_4 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_0_RI_7 + P-network_1_0_RI_8 + P-network_6_8_RI_3 + P-network_6_8_RI_2 + P-network_6_8_RI_1 + P-network_6_8_AskP_1 + P-network_6_8_AskP_2 + P-network_6_8_AskP_3 + P-network_6_8_AskP_4 + P-network_6_8_AskP_5 + P-network_6_8_AskP_6 + P-network_6_8_AskP_7 + P-network_6_8_AskP_8 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_2_0_AnnP_5 + P-network_2_0_AnnP_6 + P-network_2_0_AnnP_7 + P-network_2_0_AnnP_8 + P-network_6_5_AI_8 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_0_6_RP_7 + P-network_0_6_RP_8 + P-network_6_5_AI_7 + P-network_6_5_AI_6 + P-network_6_5_AI_5 + P-network_6_5_AI_4 + P-network_6_5_AI_3 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_4_3_AskP_7 + P-network_4_3_AskP_8 + P-network_6_5_AI_2 + P-network_6_5_AI_1 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_2_5_RP_7 + P-network_2_5_RP_8 + P-network_4_0_RP_8 + P-network_4_0_RP_7 + P-network_4_0_RP_6 + P-network_4_0_RP_5 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_4_0_RP_1 + P-network_4_6_AI_8 + P-network_4_6_AI_7 + P-network_4_6_AI_6 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_1_4_AnnP_7 + P-network_1_4_AnnP_8 + P-network_4_6_AI_5 + P-network_4_6_AI_4 + P-network_4_6_AI_3 + P-network_4_6_AI_2 + P-network_4_6_AI_1 + P-network_2_3_AskP_8 + P-network_2_3_AskP_7 + P-network_2_3_AskP_6 + P-network_2_3_AskP_5 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_4_4_RP_7 + P-network_4_4_RP_8 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_8 + P-network_2_1_RP_7 + P-network_2_1_RP_6 + P-network_2_1_RP_5 + P-network_2_1_RP_4 + P-network_2_1_RP_3 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_8_5_AnnP_1 + P-network_8_5_AnnP_2 + P-network_8_5_AnnP_3 + P-network_8_5_AnnP_4 + P-network_8_5_AnnP_5 + P-network_8_5_AnnP_6 + P-network_8_5_AnnP_7 + P-network_8_5_AnnP_8 + P-network_3_7_AskP_1 + P-network_3_7_AskP_2 + P-network_3_7_AskP_3 + P-network_3_7_AskP_4 + P-network_3_7_AskP_5 + P-network_3_7_AskP_6 + P-network_3_7_AskP_7 + P-network_3_7_AskP_8 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_6_3_RP_7 + P-network_6_3_RP_8 + P-network_8_8_AI_1 + P-network_8_8_AI_2 + P-network_8_8_AI_3 + P-network_8_8_AI_4 + P-network_8_8_AI_5 + P-network_8_8_AI_6 + P-network_8_8_AI_7 + P-network_8_8_AI_8 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_1_5_AI_7 + P-network_1_5_AI_8 + P-network_1_8_RI_1 + P-network_1_8_RI_2 + P-network_1_8_RI_3 + P-network_1_8_RI_4 + P-network_1_8_RI_5 + P-network_1_8_RI_6 + P-network_1_8_RI_7 + P-network_1_8_RI_8 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_6_0_AnnP_3 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_7_1_AnnP_8 + P-network_6_0_AnnP_6 + P-network_7_1_AnnP_7 + P-network_6_0_AnnP_7 + P-network_7_1_AnnP_6 + P-network_6_0_AnnP_8 + P-network_7_1_AnnP_5 + P-network_7_1_AnnP_4 + P-network_7_1_AnnP_3 + P-network_7_1_AnnP_2 + P-network_7_1_AnnP_1 + P-network_0_8_AnnP_1 + P-network_0_8_AnnP_2 + P-network_0_8_AnnP_3 + P-network_0_8_AnnP_4 + P-network_0_8_AnnP_5 + P-network_0_8_AnnP_6 + P-network_0_8_AnnP_7 + P-network_0_8_AnnP_8 + P-network_8_2_RP_1 + P-network_8_2_RP_2 + P-network_8_2_RP_3 + P-network_8_2_RP_4 + P-network_8_2_RP_5 + P-network_8_2_RP_6 + P-network_8_2_RP_7 + P-network_8_2_RP_8 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_1_2_AskP_7 + P-network_1_2_AskP_8 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AI_5 + P-network_3_4_AI_6 + P-network_3_4_AI_7 + P-network_3_4_AI_8 + P-network_2_7_AI_8 + P-network_3_7_RI_1 + P-network_3_7_RI_2 + P-network_3_7_RI_3 + P-network_3_7_RI_4 + P-network_3_7_RI_5 + P-network_3_7_RI_6 + P-network_3_7_RI_7 + P-network_3_7_RI_8 + P-network_2_7_AI_7 + P-network_8_3_AskP_1 + P-network_8_3_AskP_2 + P-network_8_3_AskP_3 + P-network_8_3_AskP_4 + P-network_8_3_AskP_5 + P-network_8_3_AskP_6 + P-network_8_3_AskP_7 + P-network_8_3_AskP_8 + P-network_2_7_AI_6 + P-network_2_7_AI_5 + P-network_2_7_AI_4 + P-network_2_7_AI_3 + P-network_2_7_AI_2 + P-network_2_7_AI_1 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_5_3_AI_7 + P-network_5_3_AI_8 + P-network_5_6_RI_1 + P-network_5_6_RI_2 + P-network_5_6_RI_3 + P-network_5_6_RI_4 + P-network_5_6_RI_5 + P-network_5_6_RI_6 + P-network_5_6_RI_7 + P-network_5_6_RI_8 + P-network_5_4_AnnP_1 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_6 + P-network_5_4_AnnP_7 + P-network_5_4_AnnP_8 + P-network_0_2_RP_8 + P-network_0_2_RP_7 + P-network_0_2_RP_6 + P-network_0_2_RP_5 + P-network_0_2_RP_4 + P-network_0_2_RP_3 + P-network_7_2_AI_1 + P-network_7_2_AI_2 + P-network_7_2_AI_3 + P-network_7_2_AI_4 + P-network_7_2_AI_5 + P-network_7_2_AI_6 + P-network_7_2_AI_7 + P-network_7_2_AI_8 + P-network_0_2_RP_2 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_6_AskP_7 + P-network_0_6_AskP_8 + P-network_0_2_RP_1 + P-network_7_5_RP_8 + P-network_7_5_RI_1 + P-network_7_5_RI_2 + P-network_7_5_RI_3 + P-network_7_5_RI_4 + P-network_7_5_RI_5 + P-network_7_5_RI_6 + P-network_7_5_RI_7 + P-network_7_5_RI_8 + P-network_7_5_RP_7 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_0_2_RI_7 + P-network_0_2_RI_8 + P-network_7_5_RP_6 + P-network_7_5_RP_5 + P-network_7_7_AskP_1 + P-network_7_7_AskP_2 + P-network_7_7_AskP_3 + P-network_7_7_AskP_4 + P-network_7_7_AskP_5 + P-network_7_7_AskP_6 + P-network_7_7_AskP_7 + P-network_7_7_AskP_8 + P-network_7_5_RP_4 + P-network_7_5_RP_3 + P-network_7_5_RP_2 + P-network_7_5_RP_1 + P-network_0_0_AnnP_8 + P-network_0_0_AnnP_7 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_5 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_2_1_RI_7 + P-network_2_1_RI_8 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_4_8_AskP_8 + P-network_4_8_AskP_7 + P-network_4_8_AskP_6 + P-network_4_8_AskP_5 + P-network_4_8_AskP_4 + P-network_4_8_AskP_3 + P-network_4_8_AskP_2 + P-network_4_8_AskP_1 + P-network_4_8_AnnP_1 + P-network_4_8_AnnP_2 + P-network_4_8_AnnP_3 + P-network_4_8_AnnP_4 + P-network_4_8_AnnP_5 + P-network_4_8_AnnP_6 + P-network_4_8_AnnP_7 + P-network_4_8_AnnP_8 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_5_2_AskP_7 + P-network_5_2_AskP_8 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_1_7_RP_1 + P-network_4_0_RI_4 + P-network_1_7_RP_2 + P-network_4_0_RI_5 + P-network_1_7_RP_3 + P-network_4_0_RI_6 + P-network_1_7_RP_4 + P-network_4_0_RI_7 + P-network_1_7_RP_5 + P-network_4_0_RI_8 + P-network_1_7_RP_6 + P-network_1_7_RP_7 + P-network_1_7_RP_8 + P-network_0_8_AI_8 + P-network_0_8_AI_7 + P-network_0_8_AI_6 + P-network_0_8_AI_5 + P-network_0_8_AI_4 + P-network_0_8_AI_3 + P-network_0_8_AI_2 + P-network_0_8_AI_1 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_2_3_AnnP_7 + P-network_2_3_AnnP_8 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_3_6_RP_7 + P-network_3_6_RP_8 + P-network_5_6_RP_8 + P-network_5_6_RP_7 + P-network_5_6_RP_6 + P-network_5_6_RP_5 + P-network_5_6_RP_4 + P-network_5_6_RP_3 + P-network_5_6_RP_2 + P-network_5_6_RP_1 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_4_6_AskP_7 + P-network_4_6_AskP_8 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_5_RP_7 + P-network_5_5_RP_8 + P-network_2_5_AnnP_8 + P-network_2_5_AnnP_7 + P-network_2_5_AnnP_6 + P-network_2_5_AnnP_5 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_0_7_AI_1 + P-network_0_7_AI_2 + P-network_0_7_AI_3 + P-network_0_7_AI_4 + P-network_0_7_AI_5 + P-network_0_7_AI_6 + P-network_0_7_AI_7 + P-network_0_7_AI_8 + P-network_1_7_AnnP_1 + P-network_1_7_AnnP_2 + P-network_1_7_AnnP_3 + P-network_1_7_AnnP_4 + P-network_1_7_AnnP_5 + P-network_1_7_AnnP_6 + P-network_1_7_AnnP_7 + P-network_1_7_AnnP_8 + P-network_7_4_RP_1 + P-network_7_4_RP_2 + P-network_7_4_RP_3 + P-network_7_4_RP_4 + P-network_7_4_RP_5 + P-network_7_4_RP_6 + P-network_7_4_RP_7 + P-network_7_4_RP_8 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_0_1_RP_7 + P-network_0_1_RP_8 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_1_AskP_7 + P-network_2_1_AskP_8 + P-network_2_6_AI_1 + P-network_2_6_AI_2 + P-network_2_6_AI_3 + P-network_2_6_AI_4 + P-network_2_6_AI_5 + P-network_2_6_AI_6 + P-network_2_6_AI_7 + P-network_2_6_AI_8 + P-network_8_8_AnnP_1 + P-network_8_8_AnnP_2 + P-network_8_8_AnnP_3 + P-network_8_8_AnnP_4 + P-network_8_8_AnnP_5 + P-network_8_8_AnnP_6 + P-network_8_8_AnnP_7 + P-network_8_8_AnnP_8 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_2_0_RP_7 + P-network_2_0_RP_8 + P-network_3_7_RP_8 + P-network_3_7_RP_7 + P-network_3_7_RP_6 + P-network_6_0_RI_8 + P-network_3_7_RP_5 + P-network_6_0_RI_7 + P-network_3_7_RP_4 + P-network_6_0_RI_6 + P-network_3_7_RP_3 + P-network_6_0_RI_5 + P-network_3_7_RP_2 + P-network_4_5_AI_1 + P-network_4_5_AI_2 + P-network_6_0_RI_4 + P-network_4_5_AI_3 + P-network_3_7_RP_1 + P-network_4_5_AI_4 + P-network_6_0_RI_3 + P-network_4_5_AI_5 + P-network_6_0_RI_2 + P-network_4_5_AI_6 + P-network_6_0_RI_1 + P-network_4_5_AI_7 + P-network_5_4_AskP_8 + P-network_4_5_AI_8 + P-network_5_4_AskP_7 + P-network_5_4_AskP_6 + P-network_5_4_AskP_5 + P-network_5_4_AskP_4 + P-network_4_8_RI_1 + P-network_4_8_RI_2 + P-network_4_8_RI_3 + P-network_4_8_RI_4 + P-network_4_8_RI_5 + P-network_4_8_RI_6 + P-network_4_8_RI_7 + P-network_4_8_RI_8 + P-network_5_4_AskP_3 + P-network_6_3_AnnP_1 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_3 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_6 + P-network_6_3_AnnP_7 + P-network_6_3_AnnP_8 + P-network_5_4_AskP_2 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_1_5_AskP_7 + P-network_1_5_AskP_8 + P-network_5_4_AskP_1 + P-network_6_4_AI_1 + P-network_6_4_AI_2 + P-network_6_4_AI_3 + P-network_6_4_AI_4 + P-network_6_4_AI_5 + P-network_6_4_AI_6 + P-network_6_4_AI_7 + P-network_6_4_AI_8 + P-network_6_7_RI_1 + P-network_6_7_RI_2 + P-network_6_7_RI_3 + P-network_6_7_RI_4 + P-network_6_7_RI_5 + P-network_6_7_RI_6 + P-network_6_7_RI_7 + P-network_6_7_RI_8 + P-network_8_6_AskP_1 + P-network_8_6_AskP_2 + P-network_8_6_AskP_3 + P-network_8_6_AskP_4 + P-network_8_6_AskP_5 + P-network_8_6_AskP_6 + P-network_8_6_AskP_7 + P-network_8_6_AskP_8 + P-network_8_3_AI_1 + P-network_8_3_AI_2 + P-network_8_3_AI_3 + P-network_8_3_AI_4 + P-network_8_3_AI_5 + P-network_8_3_AI_6 + P-network_8_3_AI_7 + P-network_8_3_AI_8 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_0_AI_7 + P-network_1_0_AI_8 + P-network_8_6_RI_1 + P-network_8_6_RI_2 + P-network_8_6_RI_3 + P-network_8_6_RI_4 + P-network_8_6_RI_5 + P-network_8_6_RI_6 + P-network_8_6_RI_7 + P-network_8_6_RI_8 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_1_3_RI_5 + P-network_1_3_RI_6 + P-network_1_3_RI_7 + P-network_1_3_RI_8 + P-network_5_7_AnnP_1 + P-network_5_7_AnnP_2 + P-network_5_7_AnnP_3 + P-network_5_7_AnnP_4 + P-network_5_7_AnnP_5 + P-network_5_7_AnnP_6 + P-network_5_7_AnnP_7 + P-network_5_7_AnnP_8 + P-network_6_1_AskP_1 + P-network_6_1_AskP_2 + P-network_6_1_AskP_3 + P-network_6_1_AskP_4 + P-network_6_1_AskP_5 + P-network_6_1_AskP_6 + P-network_6_1_AskP_7 + P-network_6_1_AskP_8 + P-network_1_8_RP_8 + P-network_1_8_RP_7 + P-network_1_8_RP_6 + P-network_4_1_RI_8 + P-network_1_8_RP_5 + P-network_4_1_RI_7 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_RI_5 + P-network_3_2_RI_6 + P-network_3_2_RI_7 + P-network_3_2_RI_8 + P-network_1_8_RP_4 + P-network_4_1_RI_6 + P-network_1_8_RP_3 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_3_2_AnnP_7 + P-network_3_2_AnnP_8 + P-network_4_1_RI_5 + P-network_1_8_RP_2 + P-network_4_1_RI_4 + P-network_1_8_RP_1 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_4_1_RI_1 + P-network_5_1_RI_1 + P-network_5_1_RI_2 + P-network_5_1_RI_3 + P-network_2_8_RP_1 + P-network_5_1_RI_4 + P-network_2_8_RP_2 + P-network_5_1_RI_5 + P-network_2_8_RP_3 + P-network_5_1_RI_6 + P-network_2_8_RP_4 + P-network_5_1_RI_7 + P-network_2_8_RP_5 + P-network_5_1_RI_8 + P-network_2_8_RP_6 + P-network_2_8_RP_7 + P-network_2_8_RP_8 + P-network_3_1_AnnP_8 + P-network_3_1_AnnP_7 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_5 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_5_5_AskP_7 + P-network_5_5_AskP_8 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_7_0_RI_1 + P-network_7_0_RI_2 + P-network_7_0_RI_3 + P-network_4_7_RP_1 + P-network_7_0_RI_4 + P-network_4_7_RP_2 + P-network_7_0_RI_5 + P-network_4_7_RP_3 + P-network_7_0_RI_6 + P-network_4_7_RP_4 + P-network_7_0_RI_7 + P-network_4_7_RP_5 + P-network_7_0_RI_8 + P-network_4_7_RP_6 + P-network_4_7_RP_7 + P-network_4_7_RP_8 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_2_6_AnnP_7 + P-network_2_6_AnnP_8 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_3_0_AskP_7 + P-network_3_0_AskP_8 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_6_6_RP_7 + P-network_6_6_RP_8 + P-network_2_2_RI_8 + P-network_1_8_AI_1 + P-network_1_8_AI_2 + P-network_1_8_AI_3 + P-network_1_8_AI_4 + P-network_1_8_AI_5 + P-network_1_8_AI_6 + P-network_1_8_AI_7 + P-network_1_8_AI_8 + P-network_2_2_RI_7 + P-network_2_2_RI_6 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_6 + P-network_0_1_AnnP_7 + P-network_0_1_AnnP_8 + P-network_2_2_RI_5 + P-network_8_5_RP_1 + P-network_8_5_RP_2 + P-network_8_5_RP_3 + P-network_8_5_RP_4 + P-network_8_5_RP_5 + P-network_8_5_RP_6 + P-network_8_5_RP_7 + P-network_8_5_RP_8 + P-network_2_2_RI_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_1_2_RP_7 + P-network_1_2_RP_8 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_2_2_RI_1 + P-network_3_7_AI_1 + P-network_3_7_AI_2 + P-network_3_7_AI_3 + P-network_3_7_AI_4 + P-network_3_7_AI_5 + P-network_3_7_AI_6 + P-network_3_7_AI_7 + P-network_3_7_AI_8 + P-network_0_8_AskP_8 + P-network_0_8_AskP_7 + P-network_0_8_AskP_6 + P-network_0_8_AskP_5 + P-network_7_2_AnnP_1 + P-network_7_2_AnnP_2 + P-network_7_2_AnnP_3 + P-network_7_2_AnnP_4 + P-network_7_2_AnnP_5 + P-network_7_2_AnnP_6 + P-network_7_2_AnnP_7 + P-network_7_2_AnnP_8 + P-network_0_8_AskP_4 + P-network_0_8_AskP_3 + P-network_0_8_AskP_2 + P-network_0_8_AskP_1 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_3_1_RP_7 + P-network_3_1_RP_8 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_4_AskP_7 + P-network_2_4_AskP_8 + P-network_6_0_AskP_8 + P-network_6_0_AskP_7 + P-network_6_0_AskP_6 + P-network_6_0_AskP_5 + P-network_6_0_AskP_4 + P-network_6_0_AskP_3 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_5_6_AI_7 + P-network_5_6_AI_8 + P-network_6_0_AskP_2 + P-network_6_0_AskP_1 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_5_0_RP_7 + P-network_5_0_RP_8 + P-network_5_6_AnnP_8 + P-network_5_6_AnnP_7 + P-network_5_6_AnnP_6 + P-network_5_6_AnnP_5 + P-network_5_6_AnnP_4 + P-network_5_6_AnnP_3 + P-network_5_6_AnnP_2 + P-network_5_6_AnnP_1 + P-network_7_5_AI_1 + P-network_7_5_AI_2 + P-network_7_5_AI_3 + P-network_7_5_AI_4 + P-network_7_5_AI_5 + P-network_7_5_AI_6 + P-network_7_5_AI_7 + P-network_7_5_AI_8 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_AI_5 + P-network_0_2_AI_6 + P-network_0_2_AI_7 + P-network_0_2_AI_8 + P-network_7_8_RI_1 + P-network_7_8_RI_2 + P-network_7_8_RI_3 + P-network_7_8_RI_4 + P-network_7_8_RI_5 + P-network_7_8_RI_6 + P-network_7_8_RI_7 + P-network_7_8_RI_8 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_0_5_RI_7 + P-network_0_5_RI_8 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_6_6_AnnP_7 + P-network_6_6_AnnP_8 + P-network_7_0_AskP_1 + P-network_7_0_AskP_2 + P-network_7_0_AskP_3 + P-network_7_0_AskP_4 + P-network_7_0_AskP_5 + P-network_7_0_AskP_6 + P-network_7_0_AskP_7 + P-network_7_0_AskP_8 + P-network_1_8_AskP_1 + P-network_1_8_AskP_2 + P-network_1_8_AskP_3 + P-network_1_8_AskP_4 + P-network_1_8_AskP_5 + P-network_1_8_AskP_6 + P-network_1_8_AskP_7 + P-network_1_8_AskP_8 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_1_AI_5 + P-network_2_1_AI_6 + P-network_2_1_AI_7 + P-network_2_1_AI_8 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_2_4_RI_7 + P-network_2_4_RI_8 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_4_1_AnnP_7 + P-network_4_1_AnnP_8 + P-network_0_3_RI_8 + P-network_0_3_RI_7 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_0_AI_5 + P-network_4_0_AI_6 + P-network_4_0_AI_7 + P-network_4_0_AI_8 + P-network_0_3_RI_6 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_4_3_RI_7 + P-network_4_3_RI_8 + P-network_0_3_RI_5 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_7_6_RI_8 + P-network_7_6_RI_7 + P-network_7_6_RI_6 + P-network_7_6_RI_5 + P-network_7_6_RI_4 + P-network_7_6_RI_3 + P-network_7_6_RI_2 + P-network_7_6_RI_1 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_6_4_AskP_7 + P-network_6_4_AskP_8 + P-network_0_0_AI_8 + P-network_0_0_AI_7 + P-network_0_0_AI_6 + P-network_0_0_AI_5 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_7_3_AI_8 + P-network_7_3_AI_7 + P-network_7_3_AI_6 + P-network_7_3_AI_5 + P-network_7_3_AI_4 + P-network_7_3_AI_3 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_6_2_RI_7 + P-network_6_2_RI_8 + P-network_7_3_AI_2 + P-network_7_3_AI_1 + P-network_3_5_AnnP_1 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_4 + P-network_3_5_AnnP_5 + P-network_3_5_AnnP_6 + P-network_3_5_AnnP_7 + P-network_3_5_AnnP_8 + P-network_8_5_AskP_8 + P-network_8_5_AskP_7 + P-network_8_5_AskP_6 + P-network_8_5_AskP_5 + P-network_8_5_AskP_4 + P-network_8_5_AskP_3 + P-network_8_5_AskP_2 + P-network_8_1_RI_1 + P-network_8_1_RI_2 + P-network_8_5_AskP_1 + P-network_8_1_RI_3 + P-network_5_8_RP_1 + P-network_8_1_RI_4 + P-network_5_8_RP_2 + P-network_8_1_RI_5 + P-network_5_8_RP_3 + P-network_8_1_RI_6 + P-network_5_8_RP_4 + P-network_8_1_RI_7 + P-network_5_8_RP_5 + P-network_8_1_RI_8 + P-network_5_8_RP_6 + P-network_5_8_RP_7 + P-network_5_8_RP_8 + P-network_5_7_RI_8 + P-network_5_8_AskP_1 + P-network_5_8_AskP_2 + P-network_5_8_AskP_3 + P-network_5_8_AskP_4 + P-network_5_8_AskP_5 + P-network_5_8_AskP_6 + P-network_5_8_AskP_7 + P-network_5_8_AskP_8 + P-network_5_7_RI_7 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_6 + P-network_1_0_AnnP_7 + P-network_1_0_AnnP_8 + P-network_5_7_RI_6 + P-network_7_7_RP_1 + P-network_7_7_RP_2 + P-network_7_7_RP_3 + P-network_7_7_RP_4 + P-network_7_7_RP_5 + P-network_7_7_RP_6 + P-network_7_7_RP_7 + P-network_7_7_RP_8 + P-network_5_7_RI_5 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_0_4_RP_7 + P-network_0_4_RP_8 + P-network_5_7_RI_4 + P-network_5_7_RI_3 + P-network_5_7_RI_2 + P-network_5_7_RI_1 + P-network_8_1_AnnP_1 + P-network_8_1_AnnP_2 + P-network_8_1_AnnP_3 + P-network_8_1_AnnP_4 + P-network_8_1_AnnP_5 + P-network_8_1_AnnP_6 + P-network_8_1_AnnP_7 + P-network_8_1_AnnP_8 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_3_3_AskP_7 + P-network_3_3_AskP_8 + P-network_5_4_AI_8 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_5_4_AI_7 + P-network_2_3_RP_6 + P-network_5_4_AI_6 + P-network_2_3_RP_7 + P-network_5_4_AI_5 + P-network_2_3_RP_8 + P-network_5_4_AI_4 + P-network_5_4_AI_3 + P-network_5_4_AI_2 + P-network_5_4_AI_1 + P-network_1_4_AskP_8 + P-network_4_8_AI_1 + P-network_4_8_AI_2 + P-network_4_8_AI_3 + P-network_4_8_AI_4 + P-network_4_8_AI_5 + P-network_4_8_AI_6 + P-network_4_8_AI_7 + P-network_4_8_AI_8 + P-network_1_4_AskP_7 + P-network_1_4_AskP_6 + P-network_1_4_AskP_5 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_4_AskP_1 + P-network_6_2_AnnP_8 + P-network_6_2_AnnP_7 + P-network_6_2_AnnP_6 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_0_4_AnnP_7 + P-network_0_4_AnnP_8 + P-network_6_2_AnnP_5 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_4_2_RP_7 + P-network_4_2_RP_8 + P-network_6_2_AnnP_4 + P-network_6_7_AI_1 + P-network_6_7_AI_2 + P-network_6_7_AI_3 + P-network_6_7_AI_4 + P-network_6_7_AI_5 + P-network_6_7_AI_6 + P-network_6_7_AI_7 + P-network_6_7_AI_8 + P-network_6_2_AnnP_3 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_1 + P-network_3_8_RI_8 + P-network_3_8_RI_7 + P-network_3_8_RI_6 + P-network_3_8_RI_5 + P-network_3_8_RI_4 + P-network_3_8_RI_3 + P-network_7_5_AnnP_1 + P-network_7_5_AnnP_2 + P-network_7_5_AnnP_3 + P-network_7_5_AnnP_4 + P-network_7_5_AnnP_5 + P-network_7_5_AnnP_6 + P-network_7_5_AnnP_7 + P-network_7_5_AnnP_8 + P-network_3_8_RI_2 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_1_RP_7 + P-network_6_1_RP_8 + P-network_3_8_RI_1 + P-network_2_7_AskP_1 + P-network_2_7_AskP_2 + P-network_2_7_AskP_3 + P-network_2_7_AskP_4 + P-network_2_7_AskP_5 + P-network_2_7_AskP_6 + P-network_2_7_AskP_7 + P-network_2_7_AskP_8 + P-network_8_6_AI_1 + P-network_8_6_AI_2 + P-network_8_6_AI_3 + P-network_8_6_AI_4 + P-network_8_6_AI_5 + P-network_8_6_AI_6 + P-network_8_6_AI_7 + P-network_8_6_AI_8 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_1_3_AI_7 + P-network_1_3_AI_8 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_1_6_RI_7 + P-network_1_6_RI_8 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_5_0_AnnP_7 + P-network_5_0_AnnP_8 + P-network_8_0_RP_1 + P-network_8_0_RP_2 + P-network_8_0_RP_3 + P-network_8_0_RP_4 + P-network_8_0_RP_5 + P-network_8_0_RP_6 + P-network_8_0_RP_7 + P-network_8_0_RP_8 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_2_AI_7 + P-network_3_2_AI_8 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_0_2_AskP_7 + P-network_0_2_AskP_8 + P-network_3_5_AI_8 + P-network_3_5_AI_7 + P-network_3_5_AI_6 + P-network_3_5_AI_5 + P-network_3_5_AI_4 + P-network_3_5_AI_3 + P-network_3_5_AI_2 + P-network_3_5_AI_1 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_3_5_RI_7 + P-network_3_5_RI_8 + P-network_7_3_AskP_1 + P-network_7_3_AskP_2 + P-network_7_3_AskP_3 + P-network_7_3_AskP_4 + P-network_7_3_AskP_5 + P-network_7_3_AskP_6 + P-network_7_3_AskP_7 + P-network_7_3_AskP_8 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_5_1_AI_6 + P-network_5_1_AI_7 + P-network_5_1_AI_8 + P-network_1_0_RP_8 + P-network_1_0_RP_7 + P-network_1_0_RP_6 + P-network_1_0_RP_5 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_5_4_RI_7 + P-network_5_4_RI_8 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_8_3_RP_8 + P-network_8_3_RP_7 + P-network_8_3_RP_6 + P-network_8_3_RP_5 + P-network_8_3_RP_4 + P-network_8_3_RP_3 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_6 + P-network_4_4_AnnP_7 + P-network_4_4_AnnP_8 + P-network_8_3_RP_2 + P-network_8_3_RP_1 + P-network_7_0_AI_1 + P-network_7_0_AI_2 + P-network_7_0_AI_3 + P-network_7_0_AI_4 + P-network_8_7_AnnP_8 + P-network_7_0_AI_5 + P-network_8_7_AnnP_7 + P-network_7_0_AI_6 + P-network_8_7_AnnP_6 + P-network_7_0_AI_7 + P-network_8_7_AnnP_5 + P-network_7_0_AI_8 + P-network_8_7_AnnP_4 + P-network_7_3_RI_1 + P-network_7_3_RI_2 + P-network_7_3_RI_3 + P-network_7_3_RI_4 + P-network_7_3_RI_5 + P-network_7_3_RI_6 + P-network_7_3_RI_7 + P-network_7_3_RI_8 + P-network_8_7_AnnP_3 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_0_0_RI_7 + P-network_0_0_RI_8 + P-network_8_7_AnnP_2 + P-network_6_7_AskP_1 + P-network_6_7_AskP_2 + P-network_6_7_AskP_3 + P-network_6_7_AskP_4 + P-network_6_7_AskP_5 + P-network_6_7_AskP_6 + P-network_6_7_AskP_7 + P-network_6_7_AskP_8 + P-network_8_7_AnnP_1 + P-network_1_6_AI_8 + P-network_1_6_AI_7 + P-network_1_6_AI_6 + P-network_1_6_AI_5 + P-network_1_6_AI_4 + P-network_1_6_AI_3 + P-network_1_6_AI_2 + P-network_1_6_AI_1 + P-network_2_0_AskP_8 + P-network_3_8_AnnP_1 + P-network_3_8_AnnP_2 + P-network_3_8_AnnP_3 + P-network_3_8_AnnP_4 + P-network_3_8_AnnP_5 + P-network_3_8_AnnP_6 + P-network_3_8_AnnP_7 + P-network_3_8_AnnP_8 + P-network_2_0_AskP_7 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_4_2_AskP_5 + P-network_4_2_AskP_6 + P-network_4_2_AskP_7 + P-network_4_2_AskP_8 + P-network_2_0_AskP_6 + P-network_2_0_AskP_5 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_8_8_RP_1 + P-network_8_8_RP_2 + P-network_8_8_RP_3 + P-network_8_8_RP_4 + P-network_8_8_RP_5 + P-network_8_8_RP_6 + P-network_8_8_RP_7 + P-network_8_8_RP_8 + P-network_1_5_RP_1 + P-network_1_5_RP_2 + P-network_1_5_RP_3 + P-network_1_5_RP_4 + P-network_1_5_RP_5 + P-network_1_5_RP_6 + P-network_1_5_RP_7 + P-network_1_5_RP_8 + P-network_6_4_RP_8 + P-network_6_4_RP_7 + P-network_6_4_RP_6 + P-network_6_4_RP_5 + P-network_6_4_RP_4 + P-network_6_4_RP_3 + P-network_6_4_RP_2 + P-network_6_4_RP_1 + P-network_1_6_AnnP_8 + P-network_1_6_AnnP_7 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_3_AnnP_7 + P-network_1_3_AnnP_8 + P-network_1_6_AnnP_6 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_3_4_RP_5 + P-network_3_4_RP_6 + P-network_3_4_RP_7 + P-network_3_4_RP_8 + P-network_1_6_AnnP_5 + P-network_1_6_AnnP_4 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_2 + P-network_8_4_AnnP_1 + P-network_8_4_AnnP_2 + P-network_8_4_AnnP_3 + P-network_8_4_AnnP_4 + P-network_8_4_AnnP_5 + P-network_8_4_AnnP_6 + P-network_8_4_AnnP_7 + P-network_8_4_AnnP_8 + P-network_1_6_AnnP_1 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_3_6_AskP_7 + P-network_3_6_AskP_8 + P-network_5_3_RP_1 + P-network_5_3_RP_2 + P-network_5_3_RP_3 + P-network_5_3_RP_4 + P-network_5_3_RP_5 + P-network_5_3_RP_6 + P-network_5_3_RP_7 + P-network_5_3_RP_8 + P-network_7_8_AI_1 + P-network_7_8_AI_2 + P-network_7_8_AI_3 + P-network_7_8_AI_4 + P-network_7_8_AI_5 + P-network_7_8_AI_6 + P-network_7_8_AI_7 + P-network_7_8_AI_8 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_0_5_AI_7 + P-network_0_5_AI_8 + P-network_0_8_RI_1 + P-network_0_8_RI_2 + P-network_0_8_RI_3 + P-network_0_8_RI_4 + P-network_0_8_RI_5 + P-network_0_8_RI_6 + P-network_0_8_RI_7 + P-network_0_8_RI_8 + P-network_0_7_AnnP_1 + P-network_0_7_AnnP_2 + P-network_0_7_AnnP_3 + P-network_0_7_AnnP_4 + P-network_0_7_AnnP_5 + P-network_0_7_AnnP_6 + P-network_0_7_AnnP_7 + P-network_0_7_AnnP_8 + P-network_7_2_RP_1 + P-network_7_2_RP_2 + P-network_7_2_RP_3 + P-network_7_2_RP_4 + P-network_7_2_RP_5 + P-network_7_2_RP_6 + P-network_7_2_RP_7 + P-network_7_2_RP_8 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_1_1_AskP_7 + P-network_1_1_AskP_8 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_4_5_RP_8 + P-network_2_4_AI_4 + P-network_4_5_RP_7 + P-network_2_4_AI_5 + P-network_4_5_RP_6 + P-network_2_4_AI_6 + P-network_4_5_RP_5 + P-network_2_4_AI_7 + P-network_4_5_RP_4 + P-network_2_4_AI_8 + P-network_4_5_RP_3 + P-network_2_7_RI_1 + P-network_2_7_RI_2 + P-network_2_7_RI_3 + P-network_2_7_RI_4 + P-network_2_7_RI_5 + P-network_2_7_RI_6 + P-network_2_7_RI_7 + P-network_2_7_RI_8 + P-network_4_5_RP_2 + P-network_7_8_AnnP_1 + P-network_7_8_AnnP_2 + P-network_7_8_AnnP_3 + P-network_7_8_AnnP_4 + P-network_7_8_AnnP_5 + P-network_7_8_AnnP_6 + P-network_7_8_AnnP_7 + P-network_7_8_AnnP_8 + P-network_4_5_RP_1 + P-network_8_2_AskP_1 + P-network_8_2_AskP_2 + P-network_8_2_AskP_3 + P-network_8_2_AskP_4 + P-network_8_2_AskP_5 + P-network_8_2_AskP_6 + P-network_8_2_AskP_7 + P-network_8_2_AskP_8 + P-network_4_5_AskP_8 + P-network_4_5_AskP_7 + P-network_4_5_AskP_6 + P-network_4_5_AskP_5 + P-network_4_5_AskP_4 + P-network_4_5_AskP_3 + P-network_4_5_AskP_2 + P-network_4_5_AskP_1 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_3_AI_7 + P-network_4_3_AI_8 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_4_6_RI_7 + P-network_4_6_RI_8 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_5_3_AnnP_7 + P-network_5_3_AnnP_8 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_6_2_AI_7 + P-network_6_2_AI_8 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_0_5_AskP_7 + P-network_0_5_AskP_8 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_6_5_RI_7 + P-network_6_5_RI_8 + P-network_7_6_AskP_1 + P-network_7_6_AskP_2 + P-network_7_6_AskP_3 + P-network_7_6_AskP_4 + P-network_7_6_AskP_5 + P-network_7_6_AskP_6 + P-network_7_6_AskP_7 + P-network_7_6_AskP_8 + P-network_8_1_AI_1 + P-network_8_1_AI_2 + P-network_8_1_AI_3 + P-network_8_1_AI_4 + P-network_8_1_AI_5 + P-network_8_1_AI_6 + P-network_8_1_AI_7 + P-network_8_1_AI_8 + P-network_2_6_RP_8 + P-network_2_6_RP_7 + P-network_2_6_RP_6 + P-network_2_6_RP_5 + P-network_8_4_RI_1 + P-network_8_4_RI_2 + P-network_8_4_RI_3 + P-network_8_4_RI_4 + P-network_8_4_RI_5 + P-network_8_4_RI_6 + P-network_8_4_RI_7 + P-network_8_4_RI_8 + P-network_2_6_RP_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_1_1_RI_7 + P-network_1_1_RI_8 + P-network_2_6_RP_3 + P-network_2_6_RP_2 + P-network_2_6_RP_1 + P-network_2_2_AnnP_8 + P-network_2_2_AnnP_7 + P-network_4_7_AnnP_1 + P-network_4_7_AnnP_2 + P-network_4_7_AnnP_3 + P-network_4_7_AnnP_4 + P-network_4_7_AnnP_5 + P-network_4_7_AnnP_6 + P-network_4_7_AnnP_7 + P-network_4_7_AnnP_8 + P-network_2_2_AnnP_6 + P-network_5_1_AskP_1 + P-network_5_1_AskP_2 + P-network_5_1_AskP_3 + P-network_5_1_AskP_4 + P-network_5_1_AskP_5 + P-network_5_1_AskP_6 + P-network_5_1_AskP_7 + P-network_5_1_AskP_8 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_3 + P-network_0_7_RP_1 + P-network_3_0_RI_4 + P-network_0_7_RP_2 + P-network_3_0_RI_5 + P-network_0_7_RP_3 + P-network_3_0_RI_6 + P-network_0_7_RP_4 + P-network_3_0_RI_7 + P-network_0_7_RP_5 + P-network_3_0_RI_8 + P-network_0_7_RP_6 + P-network_0_7_RP_7 + P-network_0_7_RP_8)))))) : A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-masterState_3_F_6 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_6_T_8 + P-masterState_6_T_7 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_4_T_5 + P-masterState_4_T_6 + P-masterState_4_T_7 + P-masterState_4_T_8 + P-masterState_0_F_7 + P-masterState_0_F_6 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_8_F_7 + P-masterState_8_F_6 + P-masterState_8_F_5 + P-masterState_8_F_4 + P-masterState_8_F_3 + P-masterState_8_F_2 + P-masterState_8_F_1 + P-masterState_8_F_0 + P-masterState_3_T_8 + P-masterState_3_T_7 + P-masterState_3_T_6 + P-masterState_3_T_5 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_1_F_7 + P-masterState_1_F_8 + P-masterState_5_F_7 + P-masterState_5_F_6 + P-masterState_5_F_5 + P-masterState_5_F_4 + P-masterState_5_F_3 + P-masterState_5_F_2 + P-masterState_5_F_1 + P-masterState_5_F_0 + P-masterState_0_T_8 + P-masterState_0_T_7 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_8_T_8 + P-masterState_8_T_7 + P-masterState_8_T_6 + P-masterState_8_T_5 + P-masterState_8_T_4 + P-masterState_8_T_3 + P-masterState_8_T_2 + P-masterState_8_T_1 + P-masterState_8_T_0 + P-masterState_2_F_7 + P-masterState_2_F_6 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_5_T_8 + P-masterState_5_T_7 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_7_T_0 + P-masterState_7_T_1 + P-masterState_7_T_2 + P-masterState_7_T_3 + P-masterState_7_T_4 + P-masterState_7_T_5 + P-masterState_7_T_6 + P-masterState_7_T_7 + P-masterState_7_T_8 + P-masterState_7_F_7 + P-masterState_7_F_6 + P-masterState_7_F_5 + P-masterState_7_F_4 + P-masterState_7_F_3 + P-masterState_7_F_2 + P-masterState_7_F_1 + P-masterState_7_F_0 + P-masterState_2_T_8 + P-masterState_2_T_7 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_4_F_4 + P-masterState_4_F_5 + P-masterState_4_F_6 + P-masterState_4_F_7 + P-masterState_4_F_8 + P-masterState_7_F_8 + P-masterState_2_F_8 + P-masterState_5_F_8 + P-masterState_8_F_8 + P-masterState_0_F_8 + P-masterState_3_F_8 + P-masterState_1_T_8 + P-masterState_6_F_8)))))) : A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO) U (P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO))))) : A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8)))))) : A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)))))) : A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)) U X ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)))) : A ((1 <= P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0)) : A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8))))) : A ((P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8)) : A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0))))) : A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8)))))) : A (F (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1))))))
lola: computing a collection of formulas
lola: RUNNING
lola: subprocess 0 will run for 221 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8 <= P-stage_2_SEC + P-stage_3_NEG + P-stage_1_SEC + P-stage_5_SEC + P-stage_4_PRIM + P-stage_6_SEC + P-stage_3_SEC + P-stage_0_SEC + P-stage_7_PRIM + P-stage_8_SEC + P-stage_1_NEG + P-stage_2_PRIM + P-stage_6_NEG + P-stage_4_NEG + P-stage_5_PRIM + P-stage_7_NEG + P-stage_0_PRIM + P-stage_8_PRIM + P-stage_2_NEG + P-stage_3_PRIM + P-stage_4_SEC + P-stage_5_NEG + P-stage_7_SEC + P-stage_6_PRIM + P-stage_8_NEG + P-stage_0_NEG + P-stage_1_PRIM) U X (F ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8)))))
lola: processed formula: A (((P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_... (shortened)
lola: processed formula length: 14241
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 1 will run for 235 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1))))))
lola: processed formula: A (X (F (X (F ((P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_... (shortened)
lola: processed formula length: 2423
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 2 will run for 252 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))))))
lola: processed formula: A (X (X (X (F ((P-poll__pollEnd_8 + P-poll__pollEnd_7 + P-poll__pollEnd_6 + P-poll__pollEnd_5 + P-poll__pollEnd_4 + P-poll__pollEnd_3 + P-poll__pollEnd_2 + P-poll__pollEnd_1 + P-poll__pollEnd_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))))))
lola: processed formula length: 389
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 6 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 3 will run for 272 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((3 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (3 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6... (shortened)
lola: processed formula length: 13612
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: ========================================
lola: subprocess 4 will run for 294 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 ... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 + P-network_4_4_AnsP_8 + P-network_4_4_AnsP_7 + P-network_4_4_AnsP_6 + P-network_4_4_AnsP_5 + P-network_4_4_AnsP_4 + P-network_4_4_AnsP_3 + P-network_4_4_AnsP_2 + P-network_4_4_AnsP_1 + P-network_4_4_AnsP_0 + P-network_8_1_AI_0 + P-network_7_6_AskP_0 + P-network_6_5_RI_0 + P-network_0_5_AskP_0 + P-network_6_2_AI_0 + P-network_5_3_AnnP_0 + P-network_4_6_RI_0 + P-network_4_3_AI_0 + P-network_4_5_AskP_0 + P-network_5_0_AnsP_8 + P-network_5_0_AnsP_7 + P-network_5_0_AnsP_6 + P-network_5_0_AnsP_5 + P-network_5_0_AnsP_4 + P-network_5_0_AnsP_3 + P-network_5_0_AnsP_2 + P-network_5_0_AnsP_1 + P-network_5_0_AnsP_0 + P-network_4_5_RP_0 + P-network_8_2_AskP_0 + P-network_7_8_AnnP_0 + P-network_2_7_RI_0 + P-network_2_4_AI_0 + P-network_1_1_AskP_0 + P-network_7_2_RP_0 + P-network_0_7_AnnP_0 + P-network_7_5_AnsP_8 + P-network_7_5_AnsP_7 + P-network_7_5_AnsP_6 + P-network_7_5_AnsP_5 + P-network_7_5_AnsP_4 + P-network_7_5_AnsP_3 + P-network_7_5_AnsP_2 + P-network_7_5_AnsP_1 + P-network_7_5_AnsP_0 + P-network_1_3_AnsP_0 + P-network_1_3_AnsP_1 + P-network_1_3_AnsP_2 + P-network_1_3_AnsP_3 + P-network_1_3_AnsP_4 + P-network_1_3_AnsP_5 + P-network_1_3_AnsP_6 + P-network_1_3_AnsP_7 + P-network_1_3_AnsP_8 + P-network_0_8_RI_0 + P-network_0_4_AnsP_8 + P-network_0_4_AnsP_7 + P-network_0_4_AnsP_6 + P-network_0_4_AnsP_5 + P-network_0_4_AnsP_4 + P-network_0_4_AnsP_3 + P-network_0_4_AnsP_2 + P-network_0_4_AnsP_1 + P-network_0_4_AnsP_0 + P-network_0_5_AI_0 + P-network_7_8_AI_0 + P-network_5_3_RP_0 + P-network_3_6_AskP_0 + P-network_8_4_AnsP_0 + P-network_8_4_AnsP_1 + P-network_8_4_AnsP_2 + P-network_8_4_AnsP_3 + P-network_8_4_AnsP_4 + P-network_8_4_AnsP_5 + P-network_8_4_AnsP_6 + P-network_8_4_AnsP_7 + P-network_8_4_AnsP_8 + P-network_1_6_AnnP_0 + P-network_8_4_AnnP_0 + P-network_3_4_RP_0 + P-network_1_3_AnnP_0 + P-network_8_1_AnsP_8 + P-network_8_1_AnsP_7 + P-network_8_1_AnsP_6 + P-network_8_1_AnsP_5 + P-network_8_1_AnsP_4 + P-network_6_4_RP_0 + P-network_8_1_AnsP_3 + P-network_8_1_AnsP_2 + P-network_8_1_AnsP_1 + P-network_8_1_AnsP_0 + P-network_1_0_AnsP_8 + P-network_1_0_AnsP_7 + P-network_1_0_AnsP_6 + P-network_1_0_AnsP_5 + P-network_1_0_AnsP_4 + P-network_1_0_AnsP_3 + P-network_1_0_AnsP_2 + P-network_1_0_AnsP_1 + P-network_1_0_AnsP_0 + P-network_1_5_RP_0 + P-network_8_8_RP_0 + P-network_2_0_AskP_0 + P-network_4_2_AskP_0 + P-network_3_8_AnnP_0 + P-network_1_6_AI_0 + P-network_3_5_AnsP_8 + P-network_3_5_AnsP_7 + P-network_3_5_AnsP_6 + P-network_3_5_AnsP_5 + P-network_3_5_AnsP_4 + P-network_3_5_AnsP_3 + P-network_3_5_AnsP_2 + P-network_3_5_AnsP_1 + P-network_8_7_AnnP_0 + P-network_3_5_AnsP_0 + P-network_6_7_AskP_0 + P-network_0_0_RI_0 + P-network_7_3_RI_0 + P-network_7_0_AI_0 + P-network_8_3_RP_0 + P-network_4_4_AnnP_0 + P-network_1_0_RP_0 + P-network_5_4_RI_0 + P-network_4_1_AnsP_8 + P-network_4_1_AnsP_7 + P-network_4_1_AnsP_6 + P-network_4_1_AnsP_5 + P-network_4_1_AnsP_4 + P-network_4_1_AnsP_3 + P-network_4_1_AnsP_2 + P-network_4_1_AnsP_1 + P-network_4_1_AnsP_0 + P-network_5_1_AI_0 + P-network_7_3_AskP_0 + P-network_3_5_AI_0 + P-network_3_5_RI_0 + P-network_0_7_AnsP_0 + P-network_0_7_AnsP_1 + P-network_0_7_AnsP_2 + P-network_0_7_AnsP_3 + P-network_0_7_AnsP_4 + P-network_0_7_AnsP_5 + P-network_0_7_AnsP_6 + P-network_0_7_AnsP_7 + P-network_0_7_AnsP_8 + P-network_0_2_AskP_0 + P-network_3_2_AI_0 + P-network_6_6_AnsP_8 + P-network_6_6_AnsP_7 + P-network_6_6_AnsP_6 + P-network_6_6_AnsP_5 + P-network_6_6_AnsP_4 + P-network_6_6_AnsP_3 + P-network_6_6_AnsP_2 + P-network_6_6_AnsP_1 + P-network_6_6_AnsP_0 + P-network_8_0_RP_0 + P-network_5_0_AnnP_0 + P-network_1_6_RI_0 + P-network_1_3_AI_0 + P-network_8_6_AI_0 + P-network_3_8_RI_0 + P-network_2_7_AskP_0 + P-network_6_1_RP_0 + P-network_7_5_AnnP_0 + P-network_6_2_AnnP_0 + P-network_6_7_AI_0 + P-network_4_2_RP_0 + P-network_0_4_AnnP_0 + P-network_7_2_AnsP_8 + P-network_7_2_AnsP_7 + P-network_7_8_AnsP_0 + P-network_7_8_AnsP_1 + P-network_7_8_AnsP_2 + P-network_7_8_AnsP_3 + P-network_7_8_AnsP_4 + P-network_7_8_AnsP_5 + P-network_7_8_AnsP_6 + P-network_7_8_AnsP_7 + P-network_7_8_AnsP_8 + P-network_7_2_AnsP_6 + P-network_7_2_AnsP_5 + P-network_7_2_AnsP_4 + P-network_7_2_AnsP_3 + P-network_7_2_AnsP_2 + P-network_7_2_AnsP_1 + P-network_7_2_AnsP_0 + P-network_0_1_AnsP_8 + P-network_0_1_AnsP_7 + P-network_1_4_AskP_0 + P-network_0_1_AnsP_6 + P-network_0_1_AnsP_5 + P-network_0_1_AnsP_4 + P-network_0_1_AnsP_3 + P-network_0_1_AnsP_2 + P-network_0_1_AnsP_1 + P-network_0_1_AnsP_0 + P-network_4_8_AI_0 + P-network_5_4_AI_0 + P-network_2_3_RP_0 + P-network_3_3_AskP_0 + P-network_8_1_AnnP_0 + P-network_2_6_AnsP_8 + P-network_2_6_AnsP_7 + P-network_2_6_AnsP_6 + P-network_2_6_AnsP_5 + P-network_2_6_AnsP_4 + P-network_5_7_RI_0 + P-network_2_6_AnsP_3 + P-network_2_6_AnsP_2 + P-network_2_6_AnsP_1 + P-network_2_6_AnsP_0 + P-network_0_4_RP_0 + P-network_7_7_RP_0 + P-network_1_0_AnnP_0 + P-network_5_8_AskP_0 + P-network_8_5_AskP_0 + P-network_5_8_RP_0 + P-network_8_1_RI_0 + P-network_5_3_AnsP_0 + P-network_5_3_AnsP_1 + P-network_5_3_AnsP_2 + P-network_5_3_AnsP_3 + P-network_5_3_AnsP_4 + P-network_5_3_AnsP_5 + P-network_5_3_AnsP_6 + P-network_5_3_AnsP_7 + P-network_5_3_AnsP_8 + P-network_3_5_AnnP_0 + P-network_7_3_AI_0 + P-network_6_2_RI_0 + P-network_3_2_AnsP_8 + P-network_3_2_AnsP_7 + P-network_3_2_AnsP_6 + P-network_3_2_AnsP_5 + P-network_3_2_AnsP_4 + P-network_0_0_AI_0 + P-network_3_2_AnsP_3 + P-network_3_2_AnsP_2 + P-network_3_2_AnsP_1 + P-network_3_2_AnsP_0 + P-network_6_4_AskP_0 + P-network_7_6_RI_0 + P-network_0_3_RI_0 + P-network_4_3_RI_0 + P-network_4_0_AI_0 + P-network_5_7_AnsP_8 + P-network_5_7_AnsP_7 + P-network_5_7_AnsP_6 + P-network_5_7_AnsP_5 + P-network_5_7_AnsP_4 + P-network_5_7_AnsP_3 + P-network_5_7_AnsP_2 + P-network_5_7_AnsP_1 + P-network_5_7_AnsP_0 + P-network_4_1_AnnP_0 + P-network_2_4_RI_0 + P-network_2_1_AI_0 + P-network_1_8_AskP_0 + P-network_7_0_AskP_0 + P-network_6_6_AnnP_0 + P-network_0_5_RI_0 + P-network_7_8_RI_0 + P-network_0_2_AI_0 + P-network_7_5_AI_0 + P-network_6_3_AnsP_8 + P-network_5_6_AnnP_0 + P-network_6_3_AnsP_7 + P-network_6_3_AnsP_6 + P-network_6_3_AnsP_5 + P-network_6_3_AnsP_4 + P-network_6_3_AnsP_3 + P-network_6_3_AnsP_2 + P-network_6_3_AnsP_1 + P-network_6_3_AnsP_0 + P-network_6_0_AskP_0 + P-network_5_0_RP_0 + P-network_5_6_AI_0 + P-network_2_4_AskP_0 + P-network_3_1_RP_0 + P-network_8_8_AnsP_8 + P-network_8_8_AnsP_7 + P-network_8_8_AnsP_6 + P-network_8_8_AnsP_5 + P-network_8_8_AnsP_4 + P-network_0_8_AskP_0 + P-network_8_8_AnsP_3 + P-network_8_8_AnsP_2 + P-network_8_8_AnsP_1 + P-network_8_8_AnsP_0 + P-network_7_2_AnnP_0 + P-network_3_7_AI_0 + P-network_1_7_AnsP_8 + P-network_1_7_AnsP_7 + P-network_1_7_AnsP_6 + P-network_1_7_AnsP_5 + P-network_1_7_AnsP_4 + P-network_1_7_AnsP_3 + P-network_1_7_AnsP_2 + P-network_2_2_RI_0 + P-network_1_7_AnsP_1 + P-network_1_7_AnsP_0 + P-network_1_2_RP_0 + P-network_8_5_RP_0 + P-network_0_1_AnnP_0 + P-network_1_8_AI_0 + P-network_6_6_RP_0 + P-network_3_0_AskP_0 + P-network_2_6_AnnP_0 + P-network_2_3_AnsP_8 + P-network_2_3_AnsP_7 + P-network_2_3_AnsP_6 + P-network_2_3_AnsP_5 + P-network_2_3_AnsP_4 + P-network_2_3_AnsP_3 + P-network_2_3_AnsP_2 + P-network_2_3_AnsP_1 + P-network_2_3_AnsP_0 + P-network_4_7_RP_0 + P-network_7_0_RI_0 + P-network_3_1_AnnP_0 + P-network_5_5_AskP_0 + P-network_4_7_AnsP_0 + P-network_4_7_AnsP_1 + P-network_4_7_AnsP_2 + P-network_4_7_AnsP_3 + P-network_4_7_AnsP_4 + P-network_4_7_AnsP_5 + P-network_4_7_AnsP_6 + P-network_4_7_AnsP_7 + P-network_4_7_AnsP_8 + P-network_2_8_RP_0 + P-network_5_1_RI_0 + P-network_4_8_AnsP_8 + P-network_4_8_AnsP_7 + P-network_4_1_RI_0 + P-network_4_8_AnsP_6 + P-network_4_8_AnsP_5 + P-network_1_8_RP_0 + P-network_4_8_AnsP_4 + P-network_4_8_AnsP_3 + P-network_4_8_AnsP_2 + P-network_4_8_AnsP_1 + P-network_4_8_AnsP_0 + P-network_3_2_AnnP_0 + P-network_3_2_RI_0 + P-network_6_1_AskP_0 + P-network_5_7_AnnP_0 + P-network_1_3_RI_0 + P-network_8_6_RI_0 + P-network_1_0_AI_0 + P-network_8_3_AI_0 + P-network_5_4_AnsP_8 + P-network_5_4_AnsP_7 + P-network_5_4_AnsP_6 + P-network_5_4_AnsP_5 + P-network_5_4_AnsP_4 + P-network_5_4_AnsP_3 + P-network_5_4_AnsP_2 + P-network_5_4_AnsP_1 + P-network_5_4_AnsP_0 + P-network_8_6_AskP_0 + P-network_6_7_RI_0 + P-network_5_4_AskP_0 + P-network_6_4_AI_0 + P-network_1_5_AskP_0 + P-network_6_3_AnnP_0 + P-network_4_8_RI_0 + P-network_0_8_AnsP_8 + P-network_0_8_AnsP_7 + P-network_0_8_AnsP_6 + P-network_0_8_AnsP_5 + P-network_0_8_AnsP_4 + P-network_6_0_RI_0 + P-network_0_8_AnsP_3 + P-network_3_7_RP_0 + P-network_0_8_AnsP_2 + P-network_0_8_AnsP_1 + P-network_0_8_AnsP_0 + P-network_4_5_AI_0 + P-network_6_0_AnsP_8 + P-network_6_0_AnsP_7 + P-network_2_2_AnsP_0 + P-network_2_2_AnsP_1 + P-network_2_2_AnsP_2 + P-network_2_2_AnsP_3 + P-network_2_2_AnsP_4 + P-network_2_2_AnsP_5 + P-network_2_2_AnsP_6 + P-network_2_2_AnsP_7 + P-network_2_2_AnsP_8 + P-network_6_0_AnsP_6 + P-network_6_0_AnsP_5 + P-network_6_0_AnsP_4 + P-network_6_0_AnsP_3 + P-network_6_0_AnsP_2 + P-network_6_0_AnsP_1 + P-network_6_0_AnsP_0 + P-network_2_0_RP_0 + P-network_8_8_AnnP_0 + P-network_2_6_AI_0 + P-network_2_1_AskP_0 + P-network_0_1_RP_0 + P-network_7_4_RP_0 + P-network_1_7_AnnP_0 + P-network_8_5_AnsP_8 + P-network_8_5_AnsP_7 + P-network_8_5_AnsP_6 + P-network_8_5_AnsP_5 + P-network_8_5_AnsP_4 + P-network_8_5_AnsP_3 + P-network_8_5_AnsP_2 + P-network_8_5_AnsP_1 + P-network_8_5_AnsP_0 + P-network_0_7_AI_0 + P-network_2_5_AnnP_0 + P-network_1_4_AnsP_8 + P-network_1_4_AnsP_7 + P-network_1_4_AnsP_6 + P-network_1_4_AnsP_5 + P-network_1_4_AnsP_4 + P-network_1_4_AnsP_3 + P-network_1_4_AnsP_2 + P-network_1_4_AnsP_1 + P-network_1_4_AnsP_0 + P-network_5_5_RP_0 + P-network_5_6_RP_0 + P-network_4_6_AskP_0 + P-network_3_6_RP_0 + P-network_2_3_AnnP_0 + P-network_0_8_AI_0 + P-network_2_0_AnsP_8 + P-network_2_0_AnsP_7 + P-network_2_0_AnsP_6 + P-network_2_0_AnsP_5 + P-network_2_0_AnsP_4 + P-network_2_0_AnsP_3 + P-network_2_0_AnsP_2 + P-network_2_0_AnsP_1 + P-network_2_0_AnsP_0 + P-network_1_7_RP_0 + P-network_4_0_RI_0 + P-network_5_2_AskP_0 + P-network_4_8_AnnP_0 + P-network_4_8_AskP_0 + P-network_0_0_AnnP_0 + P-network_2_1_RI_0 + P-network_4_5_AnsP_8 + P-network_4_5_AnsP_7 + P-network_4_5_AnsP_6 + P-network_4_5_AnsP_5 + P-network_4_5_AnsP_4 + P-network_7_5_RP_0 + P-network_4_5_AnsP_3 + P-network_4_5_AnsP_2 + P-network_4_5_AnsP_1 + P-network_4_5_AnsP_0 + P-network_7_7_AskP_0 + P-network_0_2_RI_0 + P-network_7_5_RI_0 + P-network_0_2_RP_0 + P-network_0_6_AskP_0 + P-network_7_2_AI_0 + P-network_1_6_AnsP_0 + P-network_1_6_AnsP_1 + P-network_1_6_AnsP_2 + P-network_1_6_AnsP_3 + P-network_1_6_AnsP_4 + P-network_1_6_AnsP_5 + P-network_1_6_AnsP_6 + P-network_1_6_AnsP_7 + P-network_1_6_AnsP_8 + P-network_5_4_AnnP_0 + P-network_5_6_RI_0 + P-network_5_3_AI_0 + P-network_5_1_AnsP_8 + P-network_5_1_AnsP_7 + P-network_5_1_AnsP_6 + P-network_5_1_AnsP_5 + P-network_2_7_AI_0 + P-network_5_1_AnsP_4 + P-network_5_1_AnsP_3 + P-network_5_1_AnsP_2 + P-network_5_1_AnsP_1 + P-network_5_1_AnsP_0 + P-network_8_3_AskP_0 + P-network_3_7_RI_0 + P-network_3_4_AI_0 + P-network_1_2_AskP_0 + P-network_8_2_RP_0 + P-network_0_8_AnnP_0 + P-network_7_6_AnsP_8 + P-network_7_6_AnsP_7 + P-network_7_6_AnsP_6 + P-network_7_6_AnsP_5 + P-network_7_6_AnsP_4 + P-network_7_6_AnsP_3 + P-network_7_1_AnnP_0 + P-network_7_6_AnsP_2 + P-network_7_6_AnsP_1 + P-network_7_6_AnsP_0 + P-network_8_7_AnsP_0 + P-network_8_7_AnsP_1 + P-network_8_7_AnsP_2 + P-network_8_7_AnsP_3 + P-network_8_7_AnsP_4 + P-network_8_7_AnsP_5 + P-network_8_7_AnsP_6 + P-network_8_7_AnsP_7 + P-network_8_7_AnsP_8 + P-network_6_0_AnnP_0 + P-network_1_8_RI_0 + P-network_0_5_AnsP_8 + P-network_0_5_AnsP_7 + P-network_0_5_AnsP_6 + P-network_0_5_AnsP_5 + P-network_0_5_AnsP_4 + P-network_0_5_AnsP_3 + P-network_0_5_AnsP_2 + P-network_0_5_AnsP_1 + P-network_0_5_AnsP_0 + P-network_1_5_AI_0 + P-network_8_8_AI_0 + P-network_6_3_RP_0 + P-network_3_7_AskP_0 + P-network_2_1_RP_0 + P-network_8_5_AnnP_0 + P-network_2_3_AskP_0 + P-network_4_4_RP_0 + P-network_4_6_AI_0 + P-network_1_4_AnnP_0 + P-network_8_2_AnsP_8 + P-network_8_2_AnsP_7 + P-network_8_2_AnsP_6 + P-network_8_2_AnsP_5 + P-network_8_2_AnsP_4 + P-network_8_2_AnsP_3 + P-network_8_2_AnsP_2 + P-network_8_2_AnsP_1 + P-network_8_2_AnsP_0 + P-network_4_0_RP_0 + P-network_1_1_AnsP_8 + P-network_1_1_AnsP_7 + P-network_1_1_AnsP_6 + P-network_1_1_AnsP_5 + P-network_1_1_AnsP_4 + P-network_1_1_AnsP_3 + P-network_1_1_AnsP_2 + P-network_1_1_AnsP_1 + P-network_6_2_AnsP_0 + P-network_6_2_AnsP_1 + P-network_6_2_AnsP_2 + P-network_6_2_AnsP_3 + P-network_6_2_AnsP_4 + P-network_6_2_AnsP_5 + P-network_6_2_AnsP_6 + P-network_6_2_AnsP_7 + P-network_6_2_AnsP_8 + P-network_1_1_AnsP_0 + P-network_2_5_RP_0 + P-network_6_5_AI_0 + P-network_4_3_AskP_0 + P-network_0_6_RP_0 + P-network_3_6_AnsP_8 + P-network_3_6_AnsP_7 + P-network_3_6_AnsP_6 + P-network_3_6_AnsP_5 + P-network_3_6_AnsP_4 + P-network_3_6_AnsP_3 + P-network_3_6_AnsP_2 + P-network_3_6_AnsP_1 + P-network_3_6_AnsP_0 + P-network_2_0_AnnP_0 + P-network_6_8_RI_0 + P-network_6_8_AskP_0 + P-network_1_0_RI_0 + P-network_8_3_RI_0 + P-network_6_5_AnnP_0 + P-network_8_0_AI_0 + P-network_4_5_AnnP_0 + P-network_6_4_RI_0 + P-network_4_2_AnsP_8 + P-network_4_2_AnsP_7 + P-network_4_2_AnsP_6 + P-network_4_2_AnsP_5 + P-network_4_2_AnsP_4 + P-network_4_2_AnsP_3 + P-network_4_2_AnsP_2 + P-network_4_2_AnsP_1 + P-network_1_7_AskP_0 + P-network_4_2_AnsP_0 + P-network_6_1_AI_0 + P-network_7_4_AskP_0 + P-network_4_5_RI_0 + P-network_8_4_AI_0 + P-network_0_3_AskP_0 + P-network_1_1_AI_0 + P-network_4_2_AI_0 + P-network_6_7_AnsP_8 + P-network_6_7_AnsP_7 + P-network_6_7_AnsP_6 + P-network_6_7_AnsP_5 + P-network_6_7_AnsP_4 + P-network_6_7_AnsP_3 + P-network_6_7_AnsP_2 + P-network_6_7_AnsP_1 + P-network_6_7_AnsP_0 + P-network_5_1_AnnP_0 + P-network_8_7_RI_0 + P-network_1_4_RI_0 + P-network_2_6_RI_0 + P-network_2_3_AI_0 + P-network_2_8_AskP_0 + P-network_7_1_RP_0 + P-network_8_0_AskP_0 + P-network_7_6_AnnP_0 + P-network_0_7_RI_0 + P-network_0_4_AI_0 + P-network_8_8_AskP_0 + P-network_7_7_AI_0 + P-network_5_2_RP_0 + P-network_0_5_AnnP_0 + P-network_7_3_AnsP_8 + P-network_7_3_AnsP_7 + P-network_7_3_AnsP_6 + P-network_7_3_AnsP_5 + P-network_7_3_AnsP_4 + P-network_4_0_AnnP_0 + P-network_7_3_AnsP_3 + P-network_7_3_AnsP_2 + P-network_7_3_AnsP_1 + P-network_7_3_AnsP_0 + P-network_0_2_AnsP_8 + P-network_0_2_AnsP_7 + P-network_0_2_AnsP_6 + P-network_0_2_AnsP_5 + P-network_5_6_AnsP_0 + P-network_5_6_AnsP_1 + P-network_5_6_AnsP_2 + P-network_5_6_AnsP_3 + P-network_5_6_AnsP_4 + P-network_5_6_AnsP_5 + P-network_5_6_AnsP_6 + P-network_5_6_AnsP_7 + P-network_5_6_AnsP_8 + P-network_0_2_AnsP_4 + P-network_0_2_AnsP_3 + P-network_0_2_AnsP_2 + P-network_0_2_AnsP_1 + P-network_0_2_AnsP_0 + P-network_5_8_AI_0 + P-network_3_0_AI_0 + P-network_3_3_RP_0 + P-network_3_4_AskP_0 + P-network_8_2_AnnP_0 + P-network_2_7_AnsP_8 + P-network_2_7_AnsP_7 + P-network_2_7_AnsP_6 + P-network_2_7_AnsP_5 + P-network_2_7_AnsP_4 + P-network_2_7_AnsP_3 + P-network_2_7_AnsP_2 + P-network_2_7_AnsP_1 + P-network_2_7_AnsP_0 + P-network_1_4_RP_0 + P-network_8_7_RP_0 + P-network_1_1_AnnP_0 + P-network_3_3_RI_0 + P-network_6_8_RP_0 + P-network_4_0_AskP_0 + P-network_3_6_AnnP_0 + P-network_7_2_RI_0 + P-network_3_3_AnsP_8 + P-network_3_3_AnsP_7 + P-network_3_3_AnsP_6 + P-network_3_3_AnsP_5 + P-network_3_3_AnsP_4 + P-network_3_3_AnsP_3 + P-network_3_3_AnsP_2 + P-network_3_3_AnsP_1 + P-network_3_3_AnsP_0 + P-network_6_5_AskP_0 + P-network_6_3_AskP_0 + P-network_5_3_RI_0 + P-network_5_0_AI_0 + P-network_5_8_AnsP_8 + P-network_5_8_AnsP_7 + P-network_5_8_AnsP_6 + P-network_5_8_AnsP_5 + P-network_5_8_AnsP_4 + P-network_5_8_AnsP_3 + P-network_5_8_AnsP_2 + P-network_5_8_AnsP_1 + P-network_5_8_AnsP_0 + P-network_3_1_AnsP_0 + P-network_3_1_AnsP_1 + P-network_3_1_AnsP_2 + P-network_3_1_AnsP_3 + P-network_3_1_AnsP_4 + P-network_3_1_AnsP_5 + P-network_3_1_AnsP_6 + P-network_3_1_AnsP_7 + P-network_3_1_AnsP_8 + P-network_4_2_AnnP_0 + P-network_3_4_RI_0 + P-network_3_1_AI_0 + P-network_7_1_AskP_0 + P-network_6_7_AnnP_0 + P-network_1_5_RI_0 + P-network_8_8_RI_0 + P-network_5_2_RI_0 + P-network_0_0_AskP_0 + P-network_1_2_AI_0 + P-network_8_5_AI_0 + P-network_6_4_AnsP_8 + P-network_6_4_AnsP_7 + P-network_6_4_AnsP_6 + P-network_6_4_AnsP_5 + P-network_6_4_AnsP_4 + P-network_6_4_AnsP_3 + P-network_6_4_AnsP_2 + P-network_6_4_AnsP_1 + P-network_6_4_AnsP_0 + P-network_6_0_RP_0 + P-network_6_6_AI_0 + P-network_3_4_AnnP_0 + P-network_2_5_AskP_0 + P-network_4_1_RP_0 + P-network_7_3_AnnP_0 + P-network_4_7_AI_0 + P-network_7_1_RI_0 + P-network_1_8_AnsP_8 + P-network_4_8_RP_0 + P-network_1_8_AnsP_7 + P-network_1_8_AnsP_6 + P-network_1_8_AnsP_5 + P-network_1_8_AnsP_4 + P-network_1_8_AnsP_3 + P-network_1_8_AnsP_2 + P-network_1_8_AnsP_1 + P-network_1_8_AnsP_0 + P-network_2_2_RP_0 + P-network_0_2_AnnP_0 + P-network_7_0_AnsP_8 + P-network_7_0_AnsP_7 + P-network_7_0_AnsP_6 + P-network_7_0_AnsP_5 + P-network_7_0_AnsP_4 + P-network_7_0_AnsP_3 + P-network_7_0_AnsP_2 + P-network_7_0_AnsP_1 + P-network_7_0_AnsP_0 + P-network_2_8_AI_0 + P-network_0_3_RP_0 + P-network_7_6_RP_0 + P-network_3_1_AskP_0 + P-network_2_7_AnnP_0 + P-network_2_4_AnsP_8 + P-network_2_4_AnsP_7 + P-network_2_4_AnsP_6 + P-network_2_4_AnsP_5 + P-network_2_4_AnsP_4 + P-network_2_4_AnsP_3 + P-network_2_4_AnsP_2 + P-network_2_4_AnsP_1 + P-network_2_4_AnsP_0 + P-network_5_7_RP_0 + P-network_8_0_RI_0 + P-network_5_6_AskP_0 + P-network_3_8_RP_0 + P-network_5_7_AskP_0 + P-network_6_1_RI_0 + P-network_6_7_RP_0 + P-network_3_3_AnnP_0 + P-network_4_2_RI_0 + P-network_3_0_AnsP_8 + P-network_3_0_AnsP_7 + P-network_3_0_AnsP_6 + P-network_2_5_AnsP_0 + P-network_2_5_AnsP_1 + P-network_2_5_AnsP_2 + P-network_2_5_AnsP_3 + P-network_2_5_AnsP_4 + P-network_2_5_AnsP_5 + P-network_2_5_AnsP_6 + P-network_2_5_AnsP_7 + P-network_2_5_AnsP_8 + P-network_3_0_AnsP_5 + P-network_3_0_AnsP_4 + P-network_3_0_AnsP_3 + P-network_3_0_AnsP_2 + P-network_3_0_AnsP_1 + P-network_3_0_AnsP_0 + P-network_6_2_AskP_0 + P-network_5_8_AnnP_0 + P-network_8_0_AnnP_0 + P-network_2_8_AnnP_0 + P-network_2_3_RI_0 + P-network_2_0_AI_0 + P-network_5_5_AnsP_8 + P-network_5_5_AnsP_7 + P-network_5_5_AnsP_6 + P-network_5_5_AnsP_5 + P-network_5_5_AnsP_4 + P-network_5_5_AnsP_3 + P-network_5_5_AnsP_2 + P-network_5_5_AnsP_1 + P-network_5_5_AnsP_0 + P-network_8_7_AskP_0 + P-network_0_4_RI_0 + P-network_7_7_RI_0 + P-network_0_1_AI_0 + P-network_3_2_AskP_0 + P-network_7_4_AI_0 + P-network_8_6_RP_0 + P-network_1_6_AskP_0 + P-network_6_4_AnnP_0 + P-network_5_8_RI_0 + P-network_1_3_RP_0 + P-network_5_5_AI_0 + P-network_6_1_AnsP_8 + P-network_6_1_AnsP_7 + P-network_6_1_AnsP_6 + P-network_3_8_AI_0 + P-network_6_1_AnsP_5 + P-network_6_1_AnsP_4 + P-network_6_1_AnsP_3 + P-network_6_1_AnsP_2 + P-network_6_1_AnsP_1 + P-network_6_1_AnsP_0 + P-network_3_0_RP_0 + P-network_3_6_AI_0 + P-network_0_0_AnsP_0 + P-network_0_0_AnsP_1 + P-network_0_0_AnsP_2 + P-network_0_0_AnsP_3 + P-network_0_0_AnsP_4 + P-network_0_0_AnsP_5 + P-network_0_0_AnsP_6 + P-network_0_0_AnsP_7 + P-network_0_0_AnsP_8 + P-network_2_2_AskP_0 + P-network_1_1_RP_0 + P-network_8_4_RP_0 + P-network_1_8_AnnP_0 + P-network_8_6_AnsP_8 + P-network_8_6_AnsP_7 + P-network_8_6_AnsP_6 + P-network_8_6_AnsP_5 + P-network_8_6_AnsP_4 + P-network_8_6_AnsP_3 + P-network_8_6_AnsP_2 + P-network_8_6_AnsP_1 + P-network_8_6_AnsP_0 + P-network_7_0_AnnP_0 + P-network_7_1_AnsP_0 + P-network_7_1_AnsP_1 + P-network_7_1_AnsP_2 + P-network_7_1_AnsP_3 + P-network_7_1_AnsP_4 + P-network_7_1_AnsP_5 + P-network_7_1_AnsP_6 + P-network_7_1_AnsP_7 + P-network_7_1_AnsP_8 + P-network_0_3_AnnP_0 + P-network_1_7_AI_0 + P-network_1_5_AnsP_8 + P-network_1_5_AnsP_7 + P-network_1_5_AnsP_6 + P-network_1_5_AnsP_5 + P-network_1_5_AnsP_4 + P-network_1_5_AnsP_3 + P-network_1_5_AnsP_2 + P-network_1_5_AnsP_1 + P-network_1_5_AnsP_0 + P-network_6_5_RP_0 + P-network_4_7_AskP_0 + P-network_3_2_RP_0 + P-network_5_7_AI_0 + P-network_4_6_RP_0 + P-network_2_4_AnnP_0 + P-network_2_1_AnsP_8 + P-network_2_1_AnsP_7 + P-network_2_1_AnsP_6 + P-network_2_1_AnsP_5 + P-network_2_1_AnsP_4 + P-network_2_1_AnsP_3 + P-network_2_1_AnsP_2 + P-network_2_1_AnsP_1 + P-network_2_1_AnsP_0 + P-network_2_7_RP_0 + P-network_5_0_RI_0 + P-network_5_3_AskP_0 + P-network_7_4_AnnP_0 + P-network_0_8_RP_0 + P-network_3_1_RI_0 + P-network_4_6_AnsP_8 + P-network_4_6_AnsP_7 + P-network_4_6_AnsP_6 + P-network_4_6_AnsP_5 + P-network_4_6_AnsP_4 + P-network_4_6_AnsP_3 + P-network_5_1_RP_0 + P-network_4_6_AnsP_2 + P-network_4_6_AnsP_1 + P-network_4_6_AnsP_0 + P-network_3_0_AnnP_0 + P-network_7_8_AskP_0 + P-network_1_2_RI_0 + P-network_8_5_RI_0 + P-network_0_7_AskP_0 + P-network_8_2_AI_0 + P-network_2_6_AskP_0 + P-network_5_5_AnnP_0 + P-network_7_6_AI_0 + P-network_6_6_RI_0 + P-network_6_3_AI_0 + P-network_0_3_AI_0 + P-network_5_2_AnsP_8 + P-network_5_2_AnsP_7 + P-network_5_2_AnsP_6 + P-network_5_2_AnsP_5 + P-network_5_2_AnsP_4 + P-network_5_2_AnsP_3 + P-network_5_2_AnsP_2 + P-network_5_2_AnsP_1 + P-network_5_2_AnsP_0 + P-network_8_4_AskP_0 + P-network_4_7_RI_0 + P-network_0_6_RI_0 + P-network_4_4_AI_0 + P-network_1_3_AskP_0 + P-network_7_7_AnsP_8 + P-network_7_7_AnsP_7 + P-network_7_7_AnsP_6 + P-network_7_7_AnsP_5 + P-network_7_7_AnsP_4 + P-network_7_7_AnsP_3 + P-network_7_7_AnsP_2 + P-network_7_7_AnsP_1 + P-network_7_7_AnsP_0 + P-network_6_1_AnnP_0 + P-network_2_8_RI_0 + P-network_0_6_AnsP_8 + P-network_0_6_AnsP_7 + P-network_0_6_AnsP_6 + P-network_7_0_RP_0 + P-network_0_6_AnsP_5 + P-network_0_6_AnsP_4 + P-network_0_6_AnsP_3 + P-network_0_6_AnsP_2 + P-network_0_6_AnsP_1 + P-network_0_6_AnsP_0 + P-network_2_5_AI_0 + P-network_6_5_AnsP_0 + P-network_0_0_RP_0 + P-network_6_5_AnsP_1 + P-network_6_5_AnsP_2 + P-network_6_5_AnsP_3 + P-network_6_5_AnsP_4 + P-network_6_5_AnsP_5 + P-network_6_5_AnsP_6 + P-network_6_5_AnsP_7 + P-network_6_5_AnsP_8 + P-network_7_3_RP_0 + P-network_3_8_AskP_0 + P-network_2_2_AI_0 + P-network_8_6_AnnP_0 + P-network_0_6_AI_0 + P-network_0_1_AskP_0 + P-network_5_4_RP_0 + P-network_1_5_AnnP_0 + P-network_8_3_AnsP_8 + P-network_8_3_AnsP_7 + P-network_8_3_AnsP_6 + P-network_8_3_AnsP_5 + P-network_8_3_AnsP_4 + P-network_8_3_AnsP_3 + P-network_8_3_AnsP_2 + P-network_8_3_AnsP_1 + P-network_8_3_AnsP_0 + P-network_1_2_AnsP_8 + P-network_1_2_AnsP_7 + P-network_2_5_RI_0 + P-network_1_2_AnsP_6 + P-network_1_2_AnsP_5 + P-network_1_2_AnsP_4 + P-network_1_2_AnsP_3 + P-network_1_2_AnsP_2 + P-network_1_2_AnsP_1 + P-network_1_2_AnsP_0 + P-network_3_5_RP_0 + P-network_4_4_AskP_0 + P-network_6_8_AnnP_0 + P-network_1_6_RP_0 + P-network_3_7_AnsP_8 + P-network_3_7_AnsP_7 + P-network_3_7_AnsP_6 + P-network_3_7_AnsP_5 + P-network_3_7_AnsP_4 + P-network_3_7_AnsP_3 + P-network_7_2_AskP_0 + P-network_3_7_AnsP_2 + P-network_3_7_AnsP_1 + P-network_3_7_AnsP_0 + P-network_2_1_AnnP_0 + P-network_2_0_RI_0 + P-network_4_1_AI_0 + P-network_5_0_AskP_0 + P-network_4_6_AnnP_0 + P-network_4_0_AnsP_0 + P-network_4_0_AnsP_1 + P-network_4_0_AnsP_2 + P-network_4_0_AnsP_3 + P-network_4_0_AnsP_4 + P-network_4_0_AnsP_5 + P-network_4_0_AnsP_6 + P-network_4_0_AnsP_7 + P-network_4_0_AnsP_8 + P-network_0_1_RI_0 + P-network_7_4_RI_0 + P-network_4_3_AnsP_8 + P-network_4_3_AnsP_7 + P-network_4_3_AnsP_6 + P-network_4_3_AnsP_5 + P-network_4_3_AnsP_4 + P-network_4_3_AnsP_3 + P-network_4_3_AnsP_2 + P-network_4_3_AnsP_1 + P-network_4_3_AnsP_0 + P-network_7_1_AI_0 + P-network_7_5_AskP_0 + P-network_4_4_RI_0 + P-network_5_5_RI_0 + P-network_0_4_AskP_0 + P-network_5_2_AI_0 + P-network_6_8_AnsP_8 + P-network_6_8_AnsP_7 + P-network_6_8_AnsP_6 + P-network_6_8_AnsP_5 + P-network_6_8_AnsP_4 + P-network_6_8_AnsP_3 + P-network_6_8_AnsP_2 + P-network_6_8_AnsP_1 + P-network_6_8_AnsP_0 + P-network_5_2_AnnP_0 + P-network_3_6_RI_0 + P-network_3_3_AI_0 + P-network_4_3_AnnP_0 + P-network_6_0_AI_0 + P-network_8_1_RP_0 + P-network_8_1_AskP_0 + P-network_7_7_AnnP_0 + P-network_1_7_RI_0 + P-network_6_3_RI_0 + P-network_1_4_AI_0 + P-network_8_7_AI_0 + P-network_1_0_AskP_0 + P-network_6_2_RP_0 + P-network_0_6_AnnP_0 + P-network_7_4_AnsP_8 + P-network_7_4_AnsP_7 + P-network_7_4_AnsP_6 + P-network_7_4_AnsP_5 + P-network_7_4_AnsP_4 + P-network_7_4_AnsP_3 + P-network_7_4_AnsP_2 + P-network_7_4_AnsP_1 + P-network_7_4_AnsP_0 + P-network_0_3_AnsP_8 + P-network_0_3_AnsP_7 + P-network_0_3_AnsP_6 + P-network_0_3_AnsP_5 + P-network_0_3_AnsP_4 + P-network_0_3_AnsP_3 + P-network_0_3_AnsP_2 + P-network_0_3_AnsP_1 + P-network_0_3_AnsP_0 + P-network_6_8_AI_0 + P-network_4_3_RP_0 + P-network_3_5_AskP_0 + P-network_8_3_AnnP_0 + P-network_2_8_AnsP_8 + P-network_2_8_AnsP_7 + P-network_2_8_AnsP_6 + P-network_2_8_AnsP_5 + P-network_6_6_AskP_0 + P-network_2_8_AnsP_4 + P-network_2_8_AnsP_3 + P-network_2_8_AnsP_2 + P-network_2_8_AnsP_1 + P-network_2_8_AnsP_0 + P-network_2_4_RP_0 + P-network_1_2_AnnP_0 + P-network_8_0_AnsP_8 + P-network_3_4_AnsP_0 + P-network_3_4_AnsP_1 + P-network_3_4_AnsP_2 + P-network_3_4_AnsP_3 + P-network_3_4_AnsP_4 + P-network_3_4_AnsP_5 + P-network_3_4_AnsP_6 + P-network_3_4_AnsP_7 + P-network_3_4_AnsP_8 + P-network_8_0_AnsP_7 + P-network_8_0_AnsP_6 + P-network_8_0_AnsP_5 + P-network_8_0_AnsP_4 + P-network_8_0_AnsP_3 + P-network_8_0_AnsP_2 + P-network_8_0_AnsP_1 + P-network_8_0_AnsP_0 + P-network_8_2_RI_0 + P-network_0_5_RP_0 + P-network_7_8_RP_0 + P-network_4_1_AskP_0 + P-network_3_7_AnnP_0 + P-network_3_7_AnnP_1 + P-network_3_7_AnnP_2 + P-network_3_7_AnnP_3 + P-network_3_7_AnnP_4 + P-network_3_7_AnnP_5 + P-network_3_7_AnnP_6 + P-network_3_7_AnnP_7 + P-network_3_7_AnnP_8 + P-network_4_1_AskP_1 + P-network_4_1_AskP_2 + P-network_4_1_AskP_3 + P-network_4_1_AskP_4 + P-network_4_1_AskP_5 + P-network_4_1_AskP_6 + P-network_4_1_AskP_7 + P-network_4_1_AskP_8 + P-network_8_2_RI_8 + P-network_8_2_RI_7 + P-network_8_2_RI_6 + P-network_8_2_RI_5 + P-network_8_2_RI_4 + P-network_7_8_RP_1 + P-network_7_8_RP_2 + P-network_7_8_RP_3 + P-network_7_8_RP_4 + P-network_7_8_RP_5 + P-network_7_8_RP_6 + P-network_7_8_RP_7 + P-network_7_8_RP_8 + P-network_8_2_RI_3 + P-network_0_5_RP_1 + P-network_0_5_RP_2 + P-network_0_5_RP_3 + P-network_0_5_RP_4 + P-network_0_5_RP_5 + P-network_0_5_RP_6 + P-network_0_5_RP_7 + P-network_0_5_RP_8 + P-network_8_2_RI_2 + P-network_8_2_RI_1 + P-network_6_6_AskP_8 + P-network_6_6_AskP_7 + P-network_1_2_AnnP_1 + P-network_1_2_AnnP_2 + P-network_1_2_AnnP_3 + P-network_1_2_AnnP_4 + P-network_1_2_AnnP_5 + P-network_1_2_AnnP_6 + P-network_1_2_AnnP_7 + P-network_1_2_AnnP_8 + P-network_6_6_AskP_6 + P-network_2_4_RP_1 + P-network_2_4_RP_2 + P-network_2_4_RP_3 + P-network_2_4_RP_4 + P-network_2_4_RP_5 + P-network_2_4_RP_6 + P-network_2_4_RP_7 + P-network_2_4_RP_8 + P-network_6_6_AskP_5 + P-network_6_6_AskP_4 + P-network_6_6_AskP_3 + P-network_6_6_AskP_2 + P-network_6_6_AskP_1 + P-network_8_3_AnnP_1 + P-network_8_3_AnnP_2 + P-network_8_3_AnnP_3 + P-network_8_3_AnnP_4 + P-network_8_3_AnnP_5 + P-network_8_3_AnnP_6 + P-network_8_3_AnnP_7 + P-network_8_3_AnnP_8 + P-network_3_5_AskP_1 + P-network_3_5_AskP_2 + P-network_3_5_AskP_3 + P-network_3_5_AskP_4 + P-network_3_5_AskP_5 + P-network_3_5_AskP_6 + P-network_3_5_AskP_7 + P-network_3_5_AskP_8 + P-network_4_3_RP_1 + P-network_4_3_RP_2 + P-network_4_3_RP_3 + P-network_4_3_RP_4 + P-network_4_3_RP_5 + P-network_4_3_RP_6 + P-network_4_3_RP_7 + P-network_4_3_RP_8 + P-network_6_8_AI_1 + P-network_6_8_AI_2 + P-network_6_8_AI_3 + P-network_6_8_AI_4 + P-network_6_8_AI_5 + P-network_6_8_AI_6 + P-network_6_8_AI_7 + P-network_6_8_AI_8 + P-network_6_3_RI_8 + P-network_6_3_RI_7 + P-network_6_3_RI_6 + P-network_0_6_AnnP_1 + P-network_0_6_AnnP_2 + P-network_0_6_AnnP_3 + P-network_0_6_AnnP_4 + P-network_0_6_AnnP_5 + P-network_0_6_AnnP_6 + P-network_0_6_AnnP_7 + P-network_0_6_AnnP_8 + P-network_6_3_RI_5 + P-network_6_2_RP_1 + P-network_6_2_RP_2 + P-network_6_2_RP_3 + P-network_6_2_RP_4 + P-network_6_2_RP_5 + P-network_6_2_RP_6 + P-network_6_2_RP_7 + P-network_6_2_RP_8 + P-network_6_3_RI_4 + P-network_1_0_AskP_1 + P-network_1_0_AskP_2 + P-network_1_0_AskP_3 + P-network_1_0_AskP_4 + P-network_1_0_AskP_5 + P-network_1_0_AskP_6 + P-network_1_0_AskP_7 + P-network_1_0_AskP_8 + P-network_6_3_RI_3 + P-network_8_7_AI_1 + P-network_8_7_AI_2 + P-network_8_7_AI_3 + P-network_8_7_AI_4 + P-network_8_7_AI_5 + P-network_8_7_AI_6 + P-network_8_7_AI_7 + P-network_8_7_AI_8 + P-network_6_3_RI_2 + P-network_6_3_RI_1 + P-network_1_4_AI_1 + P-network_1_4_AI_2 + P-network_1_4_AI_3 + P-network_1_4_AI_4 + P-network_1_4_AI_5 + P-network_1_4_AI_6 + P-network_1_4_AI_7 + P-network_1_4_AI_8 + P-network_1_7_RI_1 + P-network_1_7_RI_2 + P-network_1_7_RI_3 + P-network_1_7_RI_4 + P-network_1_7_RI_5 + P-network_1_7_RI_6 + P-network_1_7_RI_7 + P-network_1_7_RI_8 + P-network_7_7_AnnP_1 + P-network_7_7_AnnP_2 + P-network_7_7_AnnP_3 + P-network_7_7_AnnP_4 + P-network_7_7_AnnP_5 + P-network_7_7_AnnP_6 + P-network_7_7_AnnP_7 + P-network_7_7_AnnP_8 + P-network_6_0_AI_8 + P-network_6_0_AI_7 + P-network_8_1_AskP_1 + P-network_8_1_AskP_2 + P-network_8_1_AskP_3 + P-network_8_1_AskP_4 + P-network_8_1_AskP_5 + P-network_8_1_AskP_6 + P-network_8_1_AskP_7 + P-network_8_1_AskP_8 + P-network_6_0_AI_6 + P-network_8_1_RP_1 + P-network_8_1_RP_2 + P-network_8_1_RP_3 + P-network_8_1_RP_4 + P-network_8_1_RP_5 + P-network_8_1_RP_6 + P-network_8_1_RP_7 + P-network_8_1_RP_8 + P-network_6_0_AI_5 + P-network_6_0_AI_4 + P-network_6_0_AI_3 + P-network_6_0_AI_2 + P-network_6_0_AI_1 + P-network_4_3_AnnP_8 + P-network_4_3_AnnP_7 + P-network_4_3_AnnP_6 + P-network_4_3_AnnP_5 + P-network_4_3_AnnP_4 + P-network_4_3_AnnP_3 + P-network_4_3_AnnP_2 + P-network_4_3_AnnP_1 + P-network_3_3_AI_1 + P-network_3_3_AI_2 + P-network_3_3_AI_3 + P-network_3_3_AI_4 + P-network_3_3_AI_5 + P-network_3_3_AI_6 + P-network_3_3_AI_7 + P-network_3_3_AI_8 + P-network_3_6_RI_1 + P-network_3_6_RI_2 + P-network_3_6_RI_3 + P-network_3_6_RI_4 + P-network_3_6_RI_5 + P-network_3_6_RI_6 + P-network_3_6_RI_7 + P-network_3_6_RI_8 + P-network_5_2_AnnP_1 + P-network_5_2_AnnP_2 + P-network_5_2_AnnP_3 + P-network_5_2_AnnP_4 + P-network_5_2_AnnP_5 + P-network_5_2_AnnP_6 + P-network_5_2_AnnP_7 + P-network_5_2_AnnP_8 + P-network_5_2_AI_1 + P-network_5_2_AI_2 + P-network_5_2_AI_3 + P-network_5_2_AI_4 + P-network_5_2_AI_5 + P-network_5_2_AI_6 + P-network_5_2_AI_7 + P-network_5_2_AI_8 + P-network_0_4_AskP_1 + P-network_0_4_AskP_2 + P-network_0_4_AskP_3 + P-network_0_4_AskP_4 + P-network_0_4_AskP_5 + P-network_0_4_AskP_6 + P-network_0_4_AskP_7 + P-network_0_4_AskP_8 + P-network_4_4_RI_8 + P-network_4_4_RI_7 + P-network_4_4_RI_6 + P-network_4_4_RI_5 + P-network_4_4_RI_4 + P-network_4_4_RI_3 + P-network_4_4_RI_2 + P-network_5_5_RI_1 + P-network_5_5_RI_2 + P-network_5_5_RI_3 + P-network_5_5_RI_4 + P-network_5_5_RI_5 + P-network_5_5_RI_6 + P-network_5_5_RI_7 + P-network_5_5_RI_8 + P-network_4_4_RI_1 + P-network_7_5_AskP_1 + P-network_7_5_AskP_2 + P-network_7_5_AskP_3 + P-network_7_5_AskP_4 + P-network_7_5_AskP_5 + P-network_7_5_AskP_6 + P-network_7_5_AskP_7 + P-network_7_5_AskP_8 + P-network_7_1_AI_1 + P-network_7_1_AI_2 + P-network_7_1_AI_3 + P-network_7_1_AI_4 + P-network_7_1_AI_5 + P-network_7_1_AI_6 + P-network_7_1_AI_7 + P-network_7_1_AI_8 + P-network_7_4_RI_1 + P-network_7_4_RI_2 + P-network_7_4_RI_3 + P-network_7_4_RI_4 + P-network_7_4_RI_5 + P-network_7_4_RI_6 + P-network_7_4_RI_7 + P-network_7_4_RI_8 + P-network_0_1_RI_1 + P-network_0_1_RI_2 + P-network_0_1_RI_3 + P-network_0_1_RI_4 + P-network_0_1_RI_5 + P-network_0_1_RI_6 + P-network_0_1_RI_7 + P-network_0_1_RI_8 + P-network_4_1_AI_8 + P-network_4_1_AI_7 + P-network_4_1_AI_6 + P-network_4_1_AI_5 + P-network_4_1_AI_4 + P-network_4_1_AI_3 + P-network_4_1_AI_2 + P-network_4_6_AnnP_1 + P-network_4_6_AnnP_2 + P-network_4_6_AnnP_3 + P-network_4_6_AnnP_4 + P-network_4_6_AnnP_5 + P-network_4_6_AnnP_6 + P-network_4_6_AnnP_7 + P-network_4_6_AnnP_8 + P-network_4_1_AI_1 + P-network_5_0_AskP_1 + P-network_5_0_AskP_2 + P-network_5_0_AskP_3 + P-network_5_0_AskP_4 + P-network_5_0_AskP_5 + P-network_5_0_AskP_6 + P-network_5_0_AskP_7 + P-network_5_0_AskP_8 + P-network_2_0_RI_1 + P-network_2_0_RI_2 + P-network_2_0_RI_3 + P-network_2_0_RI_4 + P-network_2_0_RI_5 + P-network_2_0_RI_6 + P-network_2_0_RI_7 + P-network_2_0_RI_8 + P-network_7_2_AskP_8 + P-network_7_2_AskP_7 + P-network_7_2_AskP_6 + P-network_7_2_AskP_5 + P-network_7_2_AskP_4 + P-network_2_1_AnnP_1 + P-network_2_1_AnnP_2 + P-network_2_1_AnnP_3 + P-network_2_1_AnnP_4 + P-network_2_1_AnnP_5 + P-network_2_1_AnnP_6 + P-network_2_1_AnnP_7 + P-network_2_1_AnnP_8 + P-network_7_2_AskP_3 + P-network_7_2_AskP_2 + P-network_7_2_AskP_1 + P-network_1_6_RP_1 + P-network_1_6_RP_2 + P-network_1_6_RP_3 + P-network_1_6_RP_4 + P-network_1_6_RP_5 + P-network_1_6_RP_6 + P-network_1_6_RP_7 + P-network_1_6_RP_8 + P-network_6_8_AnnP_8 + P-network_6_8_AnnP_7 + P-network_6_8_AnnP_6 + P-network_6_8_AnnP_5 + P-network_6_8_AnnP_4 + P-network_6_8_AnnP_3 + P-network_6_8_AnnP_2 + P-network_6_8_AnnP_1 + P-network_4_4_AskP_1 + P-network_4_4_AskP_2 + P-network_4_4_AskP_3 + P-network_4_4_AskP_4 + P-network_4_4_AskP_5 + P-network_4_4_AskP_6 + P-network_4_4_AskP_7 + P-network_4_4_AskP_8 + P-network_2_5_RI_8 + P-network_3_5_RP_1 + P-network_3_5_RP_2 + P-network_3_5_RP_3 + P-network_3_5_RP_4 + P-network_3_5_RP_5 + P-network_3_5_RP_6 + P-network_3_5_RP_7 + P-network_3_5_RP_8 + P-network_2_5_RI_7 + P-network_2_5_RI_6 + P-network_2_5_RI_5 + P-network_2_5_RI_4 + P-network_2_5_RI_3 + P-network_2_5_RI_2 + P-network_2_5_RI_1 + P-network_0_1_AskP_8 + P-network_0_1_AskP_7 + P-network_0_1_AskP_6 + P-network_1_5_AnnP_1 + P-network_1_5_AnnP_2 + P-network_1_5_AnnP_3 + P-network_1_5_AnnP_4 + P-network_1_5_AnnP_5 + P-network_1_5_AnnP_6 + P-network_1_5_AnnP_7 + P-network_1_5_AnnP_8 + P-network_0_1_AskP_5 + P-network_5_4_RP_1 + P-network_5_4_RP_2 + P-network_5_4_RP_3 + P-network_5_4_RP_4 + P-network_5_4_RP_5 + P-network_5_4_RP_6 + P-network_5_4_RP_7 + P-network_5_4_RP_8 + P-network_0_1_AskP_4 + P-network_0_1_AskP_3 + P-network_0_1_AskP_2 + P-network_0_1_AskP_1 + P-network_2_2_AI_8 + P-network_2_2_AI_7 + P-network_2_2_AI_6 + P-network_2_2_AI_5 + P-network_2_2_AI_4 + P-network_0_6_AI_1 + P-network_0_6_AI_2 + P-network_0_6_AI_3 + P-network_0_6_AI_4 + P-network_0_6_AI_5 + P-network_0_6_AI_6 + P-network_0_6_AI_7 + P-network_0_6_AI_8 + P-network_2_2_AI_3 + P-network_2_2_AI_2 + P-network_8_6_AnnP_1 + P-network_8_6_AnnP_2 + P-network_8_6_AnnP_3 + P-network_8_6_AnnP_4 + P-network_8_6_AnnP_5 + P-network_8_6_AnnP_6 + P-network_8_6_AnnP_7 + P-network_8_6_AnnP_8 + P-network_2_2_AI_1 + P-network_3_8_AskP_1 + P-network_3_8_AskP_2 + P-network_3_8_AskP_3 + P-network_3_8_AskP_4 + P-network_3_8_AskP_5 + P-network_3_8_AskP_6 + P-network_3_8_AskP_7 + P-network_3_8_AskP_8 + P-network_7_3_RP_1 + P-network_7_3_RP_2 + P-network_7_3_RP_3 + P-network_7_3_RP_4 + P-network_7_3_RP_5 + P-network_7_3_RP_6 + P-network_7_3_RP_7 + P-network_7_3_RP_8 + P-network_7_0_RP_8 + P-network_0_0_RP_1 + P-network_0_0_RP_2 + P-network_0_0_RP_3 + P-network_0_0_RP_4 + P-network_0_0_RP_5 + P-network_0_0_RP_6 + P-network_0_0_RP_7 + P-network_0_0_RP_8 + P-network_7_0_RP_7 + P-network_2_5_AI_1 + P-network_2_5_AI_2 + P-network_7_0_RP_6 + P-network_2_5_AI_3 + P-network_7_0_RP_5 + P-network_2_5_AI_4 + P-network_7_0_RP_4 + P-network_2_5_AI_5 + P-network_7_0_RP_3 + P-network_2_5_AI_6 + P-network_7_0_RP_2 + P-network_2_5_AI_7 + P-network_7_0_RP_1 + P-network_2_5_AI_8 + P-network_2_8_RI_1 + P-network_2_8_RI_2 + P-network_2_8_RI_3 + P-network_2_8_RI_4 + P-network_2_8_RI_5 + P-network_2_8_RI_6 + P-network_2_8_RI_7 + P-network_2_8_RI_8 + P-network_6_1_AnnP_1 + P-network_6_1_AnnP_2 + P-network_6_1_AnnP_3 + P-network_6_1_AnnP_4 + P-network_6_1_AnnP_5 + P-network_6_1_AnnP_6 + P-network_6_1_AnnP_7 + P-network_6_1_AnnP_8 + P-network_0_6_RI_8 + P-network_0_6_RI_7 + P-network_0_6_RI_6 + P-network_0_6_RI_5 + P-network_0_6_RI_4 + P-network_1_3_AskP_1 + P-network_1_3_AskP_2 + P-network_1_3_AskP_3 + P-network_1_3_AskP_4 + P-network_1_3_AskP_5 + P-network_1_3_AskP_6 + P-network_1_3_AskP_7 + P-network_1_3_AskP_8 + P-network_0_6_RI_3 + P-network_0_6_RI_2 + P-network_4_4_AI_1 + P-network_0_6_RI_1 + P-network_4_4_AI_2 + P-network_4_4_AI_3 + P-network_4_4_AI_4 + P-network_4_4_AI_5 + P-network_4_4_AI_6 + P-network_4_4_AI_7 + P-network_4_4_AI_8 + P-network_4_7_RI_1 + P-network_4_7_RI_2 + P-network_4_7_RI_3 + P-network_4_7_RI_4 + P-network_4_7_RI_5 + P-network_4_7_RI_6 + P-network_4_7_RI_7 + P-network_4_7_RI_8 + P-network_8_4_AskP_1 + P-network_8_4_AskP_2 + P-network_8_4_AskP_3 + P-network_8_4_AskP_4 + P-network_8_4_AskP_5 + P-network_8_4_AskP_6 + P-network_8_4_AskP_7 + P-network_8_4_AskP_8 + P-network_0_3_AI_8 + P-network_0_3_AI_7 + P-network_0_3_AI_6 + P-network_0_3_AI_5 + P-network_0_3_AI_4 + P-network_0_3_AI_3 + P-network_0_3_AI_2 + P-network_0_3_AI_1 + P-network_7_6_AI_8 + P-network_6_3_AI_1 + P-network_6_3_AI_2 + P-network_6_3_AI_3 + P-network_6_3_AI_4 + P-network_6_3_AI_5 + P-network_6_3_AI_6 + P-network_6_3_AI_7 + P-network_6_3_AI_8 + P-network_7_6_AI_7 + P-network_6_6_RI_1 + P-network_6_6_RI_2 + P-network_6_6_RI_3 + P-network_6_6_RI_4 + P-network_6_6_RI_5 + P-network_6_6_RI_6 + P-network_6_6_RI_7 + P-network_6_6_RI_8 + P-network_7_6_AI_6 + P-network_7_6_AI_5 + P-network_7_6_AI_4 + P-network_7_6_AI_3 + P-network_7_6_AI_2 + P-network_7_6_AI_1 + P-network_2_6_AskP_8 + P-network_2_6_AskP_7 + P-network_2_6_AskP_6 + P-network_2_6_AskP_5 + P-network_2_6_AskP_4 + P-network_5_5_AnnP_1 + P-network_5_5_AnnP_2 + P-network_5_5_AnnP_3 + P-network_5_5_AnnP_4 + P-network_5_5_AnnP_5 + P-network_5_5_AnnP_6 + P-network_5_5_AnnP_7 + P-network_5_5_AnnP_8 + P-network_2_6_AskP_3 + P-network_2_6_AskP_2 + P-network_2_6_AskP_1 + P-network_8_2_AI_1 + P-network_8_2_AI_2 + P-network_8_2_AI_3 + P-network_8_2_AI_4 + P-network_8_2_AI_5 + P-network_8_2_AI_6 + P-network_8_2_AI_7 + P-network_8_2_AI_8 + P-network_5_1_RP_8 + P-network_0_7_AskP_1 + P-network_0_7_AskP_2 + P-network_0_7_AskP_3 + P-network_0_7_AskP_4 + P-network_0_7_AskP_5 + P-network_0_7_AskP_6 + P-network_0_7_AskP_7 + P-network_0_7_AskP_8 + P-network_8_5_RI_1 + P-network_8_5_RI_2 + P-network_8_5_RI_3 + P-network_8_5_RI_4 + P-network_8_5_RI_5 + P-network_8_5_RI_6 + P-network_8_5_RI_7 + P-network_8_5_RI_8 + P-network_5_1_RP_7 + P-network_1_2_RI_1 + P-network_1_2_RI_2 + P-network_1_2_RI_3 + P-network_1_2_RI_4 + P-network_1_2_RI_5 + P-network_1_2_RI_6 + P-network_1_2_RI_7 + P-network_1_2_RI_8 + P-network_5_1_RP_6 + P-network_7_8_AskP_1 + P-network_7_8_AskP_2 + P-network_7_8_AskP_3 + P-network_7_8_AskP_4 + P-network_7_8_AskP_5 + P-network_7_8_AskP_6 + P-network_7_8_AskP_7 + P-network_7_8_AskP_8 + P-network_5_1_RP_5 + P-network_3_0_AnnP_1 + P-network_3_0_AnnP_2 + P-network_3_0_AnnP_3 + P-network_3_0_AnnP_4 + P-network_3_0_AnnP_5 + P-network_3_0_AnnP_6 + P-network_3_0_AnnP_7 + P-network_3_0_AnnP_8 + P-network_5_1_RP_4 + P-network_5_1_RP_3 + P-network_5_1_RP_2 + P-network_5_1_RP_1 + P-network_3_1_RI_1 + P-network_3_1_RI_2 + P-network_3_1_RI_3 + P-network_0_8_RP_1 + P-network_3_1_RI_4 + P-network_0_8_RP_2 + P-network_3_1_RI_5 + P-network_0_8_RP_3 + P-network_3_1_RI_6 + P-network_0_8_RP_4 + P-network_3_1_RI_7 + P-network_0_8_RP_5 + P-network_3_1_RI_8 + P-network_0_8_RP_6 + P-network_0_8_RP_7 + P-network_0_8_RP_8 + P-network_7_4_AnnP_8 + P-network_7_4_AnnP_7 + P-network_7_4_AnnP_6 + P-network_7_4_AnnP_5 + P-network_7_4_AnnP_4 + P-network_7_4_AnnP_3 + P-network_7_4_AnnP_2 + P-network_7_4_AnnP_1 + P-network_5_3_AskP_1 + P-network_5_3_AskP_2 + P-network_5_3_AskP_3 + P-network_5_3_AskP_4 + P-network_5_3_AskP_5 + P-network_5_3_AskP_6 + P-network_5_3_AskP_7 + P-network_5_3_AskP_8 + P-network_5_0_RI_1 + P-network_5_0_RI_2 + P-network_5_0_RI_3 + P-network_2_7_RP_1 + P-network_5_0_RI_4 + P-network_2_7_RP_2 + P-network_5_0_RI_5 + P-network_2_7_RP_3 + P-network_5_0_RI_6 + P-network_2_7_RP_4 + P-network_5_0_RI_7 + P-network_2_7_RP_5 + P-network_5_0_RI_8 + P-network_2_7_RP_6 + P-network_2_7_RP_7 + P-network_2_7_RP_8 + P-network_2_4_AnnP_1 + P-network_2_4_AnnP_2 + P-network_2_4_AnnP_3 + P-network_2_4_AnnP_4 + P-network_2_4_AnnP_5 + P-network_2_4_AnnP_6 + P-network_2_4_AnnP_7 + P-network_2_4_AnnP_8 + P-network_4_6_RP_1 + P-network_4_6_RP_2 + P-network_4_6_RP_3 + P-network_4_6_RP_4 + P-network_4_6_RP_5 + P-network_4_6_RP_6 + P-network_4_6_RP_7 + P-network_4_6_RP_8 + P-network_5_7_AI_8 + P-network_5_7_AI_7 + P-network_5_7_AI_6 + P-network_5_7_AI_5 + P-network_5_7_AI_4 + P-network_5_7_AI_3 + P-network_5_7_AI_2 + P-network_5_7_AI_1 + P-network_3_2_RP_8 + P-network_3_2_RP_7 + P-network_3_2_RP_6 + P-network_3_2_RP_5 + P-network_3_2_RP_4 + P-network_3_2_RP_3 + P-network_3_2_RP_2 + P-network_3_2_RP_1 + P-network_0_3_AnnP_8 + P-network_4_7_AskP_1 + P-network_4_7_AskP_2 + P-network_4_7_AskP_3 + P-network_4_7_AskP_4 + P-network_4_7_AskP_5 + P-network_4_7_AskP_6 + P-network_4_7_AskP_7 + P-network_4_7_AskP_8 + P-network_6_5_RP_1 + P-network_6_5_RP_2 + P-network_6_5_RP_3 + P-network_6_5_RP_4 + P-network_6_5_RP_5 + P-network_6_5_RP_6 + P-network_6_5_RP_7 + P-network_6_5_RP_8 + P-network_0_3_AnnP_7 + P-network_0_3_AnnP_6 + P-network_0_3_AnnP_5 + P-network_0_3_AnnP_4 + P-network_0_3_AnnP_3 + P-network_1_7_AI_1 + P-network_1_7_AI_2 + P-network_1_7_AI_3 + P-network_1_7_AI_4 + P-network_1_7_AI_5 + P-network_1_7_AI_6 + P-network_1_7_AI_7 + P-network_1_7_AI_8 + P-network_0_3_AnnP_2 + P-network_0_3_AnnP_1 + P-network_7_0_AnnP_1 + P-network_7_0_AnnP_2 + P-network_7_0_AnnP_3 + P-network_7_0_AnnP_4 + P-network_7_0_AnnP_5 + P-network_7_0_AnnP_6 + P-network_7_0_AnnP_7 + P-network_7_0_AnnP_8 + P-network_1_8_AnnP_1 + P-network_1_8_AnnP_2 + P-network_1_8_AnnP_3 + P-network_1_8_AnnP_4 + P-network_1_8_AnnP_5 + P-network_1_8_AnnP_6 + P-network_1_8_AnnP_7 + P-network_1_8_AnnP_8 + P-network_8_4_RP_1 + P-network_8_4_RP_2 + P-network_8_4_RP_3 + P-network_8_4_RP_4 + P-network_8_4_RP_5 + P-network_8_4_RP_6 + P-network_8_4_RP_7 + P-network_8_4_RP_8 + P-network_1_1_RP_1 + P-network_1_1_RP_2 + P-network_1_1_RP_3 + P-network_1_1_RP_4 + P-network_1_1_RP_5 + P-network_1_1_RP_6 + P-network_1_1_RP_7 + P-network_1_1_RP_8 + P-network_2_2_AskP_1 + P-network_2_2_AskP_2 + P-network_2_2_AskP_3 + P-network_2_2_AskP_4 + P-network_2_2_AskP_5 + P-network_2_2_AskP_6 + P-network_2_2_AskP_7 + P-network_2_2_AskP_8 + P-network_3_8_AI_8 + P-network_3_6_AI_1 + P-network_3_6_AI_2 + P-network_3_6_AI_3 + P-network_3_6_AI_4 + P-network_3_6_AI_5 + P-network_3_6_AI_6 + P-network_3_6_AI_7 + P-network_3_6_AI_8 + P-network_3_8_AI_7 + P-network_3_0_RP_1 + P-network_3_0_RP_2 + P-network_3_0_RP_3 + P-network_3_0_RP_4 + P-network_3_0_RP_5 + P-network_3_0_RP_6 + P-network_3_0_RP_7 + P-network_3_0_RP_8 + P-network_3_8_AI_6 + P-network_3_8_AI_5 + P-network_3_8_AI_4 + P-network_3_8_AI_3 + P-network_3_8_AI_2 + P-network_3_8_AI_1 + P-network_1_3_RP_8 + P-network_1_3_RP_7 + P-network_1_3_RP_6 + P-network_1_3_RP_5 + P-network_5_5_AI_1 + P-network_5_5_AI_2 + P-network_5_5_AI_3 + P-network_5_5_AI_4 + P-network_5_5_AI_5 + P-network_5_5_AI_6 + P-network_5_5_AI_7 + P-network_5_5_AI_8 + P-network_1_3_RP_4 + P-network_1_3_RP_3 + P-network_1_3_RP_2 + P-network_1_3_RP_1 + P-network_8_6_RP_8 + P-network_8_6_RP_7 + P-network_8_6_RP_6 + P-network_8_6_RP_5 + P-network_5_8_RI_1 + P-network_5_8_RI_2 + P-network_5_8_RI_3 + P-network_5_8_RI_4 + P-network_5_8_RI_5 + P-network_5_8_RI_6 + P-network_5_8_RI_7 + P-network_5_8_RI_8 + P-network_8_6_RP_4 + P-network_6_4_AnnP_1 + P-network_6_4_AnnP_2 + P-network_6_4_AnnP_3 + P-network_6_4_AnnP_4 + P-network_6_4_AnnP_5 + P-network_6_4_AnnP_6 + P-network_6_4_AnnP_7 + P-network_6_4_AnnP_8 + P-network_8_6_RP_3 + P-network_1_6_AskP_1 + P-network_1_6_AskP_2 + P-network_1_6_AskP_3 + P-network_1_6_AskP_4 + P-network_1_6_AskP_5 + P-network_1_6_AskP_6 + P-network_1_6_AskP_7 + P-network_1_6_AskP_8 + P-network_8_6_RP_2 + P-network_8_6_RP_1 + P-network_3_2_AskP_8 + P-network_3_2_AskP_7 + P-network_3_2_AskP_6 + P-network_3_2_AskP_5 + P-network_3_2_AskP_4 + P-network_3_2_AskP_3 + P-network_3_2_AskP_2 + P-network_3_2_AskP_1 + P-network_7_4_AI_1 + P-network_7_4_AI_2 + P-network_7_4_AI_3 + P-network_7_4_AI_4 + P-network_7_4_AI_5 + P-network_7_4_AI_6 + P-network_7_4_AI_7 + P-network_7_4_AI_8 + P-network_0_1_AI_1 + P-network_0_1_AI_2 + P-network_0_1_AI_3 + P-network_0_1_AI_4 + P-network_0_1_AI_5 + P-network_0_1_AI_6 + P-network_0_1_AI_7 + P-network_0_1_AI_8 + P-network_2_8_AnnP_8 + P-network_7_7_RI_1 + P-network_7_7_RI_2 + P-network_7_7_RI_3 + P-network_7_7_RI_4 + P-network_7_7_RI_5 + P-network_7_7_RI_6 + P-network_7_7_RI_7 + P-network_7_7_RI_8 + P-network_0_4_RI_1 + P-network_0_4_RI_2 + P-network_0_4_RI_3 + P-network_0_4_RI_4 + P-network_0_4_RI_5 + P-network_0_4_RI_6 + P-network_0_4_RI_7 + P-network_0_4_RI_8 + P-network_2_8_AnnP_7 + P-network_8_7_AskP_1 + P-network_8_7_AskP_2 + P-network_8_7_AskP_3 + P-network_8_7_AskP_4 + P-network_8_7_AskP_5 + P-network_8_7_AskP_6 + P-network_8_7_AskP_7 + P-network_8_7_AskP_8 + P-network_2_8_AnnP_6 + P-network_2_8_AnnP_5 + P-network_2_8_AnnP_4 + P-network_2_8_AnnP_3 + P-network_2_8_AnnP_2 + P-network_2_0_AI_1 + P-network_2_0_AI_2 + P-network_2_0_AI_3 + P-network_2_0_AI_4 + P-network_2_0_AI_5 + P-network_2_0_AI_6 + P-network_2_0_AI_7 + P-network_2_0_AI_8 + P-network_2_3_RI_1 + P-network_2_3_RI_2 + P-network_2_3_RI_3 + P-network_2_3_RI_4 + P-network_2_3_RI_5 + P-network_2_3_RI_6 + P-network_2_3_RI_7 + P-network_2_3_RI_8 + P-network_2_8_AnnP_1 + P-network_8_0_AnnP_8 + P-network_8_0_AnnP_7 + P-network_8_0_AnnP_6 + P-network_8_0_AnnP_5 + P-network_8_0_AnnP_4 + P-network_8_0_AnnP_3 + P-network_8_0_AnnP_2 + P-network_8_0_AnnP_1 + P-network_5_8_AnnP_1 + P-network_5_8_AnnP_2 + P-network_5_8_AnnP_3 + P-network_5_8_AnnP_4 + P-network_5_8_AnnP_5 + P-network_5_8_AnnP_6 + P-network_5_8_AnnP_7 + P-network_5_8_AnnP_8 + P-network_6_2_AskP_1 + P-network_6_2_AskP_2 + P-network_6_2_AskP_3 + P-network_6_2_AskP_4 + P-network_6_2_AskP_5 + P-network_6_2_AskP_6 + P-network_6_2_AskP_7 + P-network_6_2_AskP_8 + P-network_6_7_RP_8 + P-network_6_7_RP_7 + P-network_6_7_RP_6 + P-network_6_7_RP_5 + P-network_4_2_RI_1 + P-network_4_2_RI_2 + P-network_4_2_RI_3 + P-network_4_2_RI_4 + P-network_4_2_RI_5 + P-network_4_2_RI_6 + P-network_4_2_RI_7 + P-network_4_2_RI_8 + P-network_6_7_RP_4 + P-network_6_7_RP_3 + P-network_6_7_RP_2 + P-network_3_3_AnnP_1 + P-network_3_3_AnnP_2 + P-network_3_3_AnnP_3 + P-network_3_3_AnnP_4 + P-network_3_3_AnnP_5 + P-network_3_3_AnnP_6 + P-network_3_3_AnnP_7 + P-network_3_3_AnnP_8 + P-network_6_7_RP_1 + P-network_5_7_AskP_8 + P-network_5_7_AskP_7 + P-network_5_7_AskP_6 + P-network_5_7_AskP_5 + P-network_5_7_AskP_4 + P-network_5_7_AskP_3 + P-network_5_7_AskP_2 + P-network_5_7_AskP_1 + P-network_6_1_RI_1 + P-network_6_1_RI_2 + P-network_6_1_RI_3 + P-network_3_8_RP_1 + P-network_6_1_RI_4 + P-network_3_8_RP_2 + P-network_6_1_RI_5 + P-network_3_8_RP_3 + P-network_6_1_RI_6 + P-network_3_8_RP_4 + P-network_6_1_RI_7 + P-network_3_8_RP_5 + P-network_6_1_RI_8 + P-network_3_8_RP_6 + P-network_3_8_RP_7 + P-network_3_8_RP_8 + P-network_5_6_AskP_1 + P-network_5_6_AskP_2 + P-network_5_6_AskP_3 + P-network_5_6_AskP_4 + P-network_5_6_AskP_5 + P-network_5_6_AskP_6 + P-network_5_6_AskP_7 + P-network_5_6_AskP_8 + P-network_8_0_RI_1 + P-network_8_0_RI_2 + P-network_8_0_RI_3 + P-network_5_7_RP_1 + P-network_8_0_RI_4 + P-network_5_7_RP_2 + P-network_8_0_RI_5 + P-network_5_7_RP_3 + P-network_8_0_RI_6 + P-network_5_7_RP_4 + P-network_8_0_RI_7 + P-network_5_7_RP_5 + P-network_8_0_RI_8 + P-network_5_7_RP_6 + P-network_5_7_RP_7 + P-network_5_7_RP_8 + P-network_2_7_AnnP_1 + P-network_2_7_AnnP_2 + P-network_2_7_AnnP_3 + P-network_2_7_AnnP_4 + P-network_2_7_AnnP_5 + P-network_2_7_AnnP_6 + P-network_2_7_AnnP_7 + P-network_2_7_AnnP_8 + P-network_3_1_AskP_1 + P-network_3_1_AskP_2 + P-network_3_1_AskP_3 + P-network_3_1_AskP_4 + P-network_3_1_AskP_5 + P-network_3_1_AskP_6 + P-network_3_1_AskP_7 + P-network_3_1_AskP_8 + P-network_7_6_RP_1 + P-network_7_6_RP_2 + P-network_7_6_RP_3 + P-network_7_6_RP_4 + P-network_7_6_RP_5 + P-network_7_6_RP_6 + P-network_7_6_RP_7 + P-network_7_6_RP_8 + P-network_0_3_RP_1 + P-network_0_3_RP_2 + P-network_0_3_RP_3 + P-network_0_3_RP_4 + P-network_0_3_RP_5 + P-network_0_3_RP_6 + P-network_0_3_RP_7 + P-network_0_3_RP_8 + P-network_2_8_AI_1 + P-network_2_8_AI_2 + P-network_2_8_AI_3 + P-network_2_8_AI_4 + P-network_2_8_AI_5 + P-network_2_8_AI_6 + P-network_2_8_AI_7 + P-network_2_8_AI_8 + P-network_4_8_RP_8 + P-network_4_8_RP_7 + P-network_4_8_RP_6 + P-network_7_1_RI_8 + P-network_4_8_RP_5 + P-network_0_2_AnnP_1 + P-network_0_2_AnnP_2 + P-network_0_2_AnnP_3 + P-network_0_2_AnnP_4 + P-network_0_2_AnnP_5 + P-network_0_2_AnnP_6 + P-network_0_2_AnnP_7 + P-network_0_2_AnnP_8 + P-network_7_1_RI_7 + P-network_2_2_RP_1 + P-network_2_2_RP_2 + P-network_2_2_RP_3 + P-network_2_2_RP_4 + P-network_2_2_RP_5 + P-network_2_2_RP_6 + P-network_2_2_RP_7 + P-network_2_2_RP_8 + P-network_4_8_RP_4 + P-network_7_1_RI_6 + P-network_4_8_RP_3 + P-network_7_1_RI_5 + P-network_4_8_RP_2 + P-network_7_1_RI_4 + P-network_4_8_RP_1 + P-network_7_1_RI_3 + P-network_7_1_RI_2 + P-network_7_1_RI_1 + P-network_4_7_AI_1 + P-network_4_7_AI_2 + P-network_4_7_AI_3 + P-network_4_7_AI_4 + P-network_4_7_AI_5 + P-network_4_7_AI_6 + P-network_4_7_AI_7 + P-network_4_7_AI_8 + P-network_3_4_AnnP_8 + P-network_7_3_AnnP_1 + P-network_7_3_AnnP_2 + P-network_7_3_AnnP_3 + P-network_7_3_AnnP_4 + P-network_7_3_AnnP_5 + P-network_7_3_AnnP_6 + P-network_7_3_AnnP_7 + P-network_7_3_AnnP_8 + P-network_3_4_AnnP_7 + P-network_4_1_RP_1 + P-network_4_1_RP_2 + P-network_4_1_RP_3 + P-network_4_1_RP_4 + P-network_4_1_RP_5 + P-network_4_1_RP_6 + P-network_4_1_RP_7 + P-network_4_1_RP_8 + P-network_3_4_AnnP_6 + P-network_2_5_AskP_1 + P-network_2_5_AskP_2 + P-network_2_5_AskP_3 + P-network_2_5_AskP_4 + P-network_2_5_AskP_5 + P-network_2_5_AskP_6 + P-network_2_5_AskP_7 + P-network_2_5_AskP_8 + P-network_3_4_AnnP_5 + P-network_3_4_AnnP_4 + P-network_3_4_AnnP_3 + P-network_3_4_AnnP_2 + P-network_3_4_AnnP_1 + P-network_6_6_AI_1 + P-network_6_6_AI_2 + P-network_6_6_AI_3 + P-network_6_6_AI_4 + P-network_6_6_AI_5 + P-network_6_6_AI_6 + P-network_6_6_AI_7 + P-network_6_6_AI_8 + P-network_6_0_RP_1 + P-network_6_0_RP_2 + P-network_6_0_RP_3 + P-network_6_0_RP_4 + P-network_6_0_RP_5 + P-network_6_0_RP_6 + P-network_6_0_RP_7 + P-network_6_0_RP_8 + P-network_8_5_AI_1 + P-network_8_5_AI_2 + P-network_8_5_AI_3 + P-network_8_5_AI_4 + P-network_8_5_AI_5 + P-network_8_5_AI_6 + P-network_8_5_AI_7 + P-network_8_5_AI_8 + P-network_1_2_AI_1 + P-network_1_2_AI_2 + P-network_1_2_AI_3 + P-network_1_2_AI_4 + P-network_1_2_AI_5 + P-network_1_2_AI_6 + P-network_1_2_AI_7 + P-network_1_2_AI_8 + P-network_0_0_AskP_1 + P-network_0_0_AskP_2 + P-network_0_0_AskP_3 + P-network_0_0_AskP_4 + P-network_0_0_AskP_5 + P-network_0_0_AskP_6 + P-network_0_0_AskP_7 + P-network_0_0_AskP_8 + P-network_5_2_RI_8 + P-network_5_2_RI_7 + P-network_5_2_RI_6 + P-network_5_2_RI_5 + P-network_5_2_RI_4 + P-network_5_2_RI_3 + P-network_5_2_RI_2 + P-network_5_2_RI_1 + P-network_8_8_RI_1 + P-network_8_8_RI_2 + P-network_8_8_RI_3 + P-network_8_8_RI_4 + P-network_8_8_RI_5 + P-network_8_8_RI_6 + P-network_8_8_RI_7 + P-network_8_8_RI_8 + P-network_1_5_RI_1 + P-network_1_5_RI_2 + P-network_1_5_RI_3 + P-network_1_5_RI_4 + P-network_1_5_RI_5 + P-network_1_5_RI_6 + P-network_1_5_RI_7 + P-network_1_5_RI_8 + P-network_6_7_AnnP_1 + P-network_6_7_AnnP_2 + P-network_6_7_AnnP_3 + P-network_6_7_AnnP_4 + P-network_6_7_AnnP_5 + P-network_6_7_AnnP_6 + P-network_6_7_AnnP_7 + P-network_6_7_AnnP_8 + P-network_7_1_AskP_1 + P-network_7_1_AskP_2 + P-network_7_1_AskP_3 + P-network_7_1_AskP_4 + P-network_7_1_AskP_5 + P-network_7_1_AskP_6 + P-network_7_1_AskP_7 + P-network_7_1_AskP_8 + P-network_3_1_AI_1 + P-network_3_1_AI_2 + P-network_3_1_AI_3 + P-network_3_1_AI_4 + P-network_3_1_AI_5 + P-network_3_1_AI_6 + P-network_3_1_AI_7 + P-network_3_1_AI_8 + P-network_3_4_RI_1 + P-network_3_4_RI_2 + P-network_3_4_RI_3 + P-network_3_4_RI_4 + P-network_3_4_RI_5 + P-network_3_4_RI_6 + P-network_3_4_RI_7 + P-network_3_4_RI_8 + P-network_4_2_AnnP_1 + P-network_4_2_AnnP_2 + P-network_4_2_AnnP_3 + P-network_4_2_AnnP_4 + P-network_4_2_AnnP_5 + P-network_4_2_AnnP_6 + P-network_4_2_AnnP_7 + P-network_4_2_AnnP_8 + P-network_5_0_AI_1 + P-network_5_0_AI_2 + P-network_5_0_AI_3 + P-network_5_0_AI_4 + P-network_5_0_AI_5 + P-network_5_0_AI_6 + P-network_5_0_AI_7 + P-network_5_0_AI_8 + P-network_5_3_RI_1 + P-network_5_3_RI_2 + P-network_5_3_RI_3 + P-network_5_3_RI_4 + P-network_5_3_RI_5 + P-network_5_3_RI_6 + P-network_5_3_RI_7 + P-network_5_3_RI_8 + P-network_6_3_AskP_8 + P-network_6_3_AskP_7 + P-network_6_3_AskP_6 + P-network_6_3_AskP_5 + P-network_6_3_AskP_4 + P-network_6_3_AskP_3 + P-network_6_3_AskP_2 + P-network_6_3_AskP_1 + P-network_6_5_AskP_1 + P-network_6_5_AskP_2 + P-network_6_5_AskP_3 + P-network_6_5_AskP_4 + P-network_6_5_AskP_5 + P-network_6_5_AskP_6 + P-network_6_5_AskP_7 + P-network_6_5_AskP_8 + P-network_7_2_RI_1 + P-network_7_2_RI_2 + P-network_7_2_RI_3 + P-network_7_2_RI_4 + P-network_7_2_RI_5 + P-network_7_2_RI_6 + P-network_7_2_RI_7 + P-network_7_2_RI_8 + P-network_3_6_AnnP_1 + P-network_3_6_AnnP_2 + P-network_3_6_AnnP_3 + P-network_3_6_AnnP_4 + P-network_3_6_AnnP_5 + P-network_3_6_AnnP_6 + P-network_3_6_AnnP_7 + P-network_3_6_AnnP_8 + P-network_4_0_AskP_1 + P-network_4_0_AskP_2 + P-network_4_0_AskP_3 + P-network_4_0_AskP_4 + P-network_4_0_AskP_5 + P-network_4_0_AskP_6 + P-network_4_0_AskP_7 + P-network_4_0_AskP_8 + P-network_6_8_RP_1 + P-network_6_8_RP_2 + P-network_6_8_RP_3 + P-network_6_8_RP_4 + P-network_6_8_RP_5 + P-network_6_8_RP_6 + P-network_6_8_RP_7 + P-network_6_8_RP_8 + P-network_3_3_RI_8 + P-network_3_3_RI_7 + P-network_3_3_RI_6 + P-network_3_3_RI_5 + P-network_3_3_RI_4 + P-network_3_3_RI_3 + P-network_3_3_RI_2 + P-network_3_3_RI_1 + P-network_1_1_AnnP_1 + P-network_1_1_AnnP_2 + P-network_1_1_AnnP_3 + P-network_1_1_AnnP_4 + P-network_1_1_AnnP_5 + P-network_1_1_AnnP_6 + P-network_1_1_AnnP_7 + P-network_1_1_AnnP_8 + P-network_8_7_RP_1 + P-network_8_7_RP_2 + P-network_8_7_RP_3 + P-network_8_7_RP_4 + P-network_8_7_RP_5 + P-network_8_7_RP_6 + P-network_8_7_RP_7 + P-network_8_7_RP_8 + P-network_1_4_RP_1 + P-network_1_4_RP_2 + P-network_1_4_RP_3 + P-network_1_4_RP_4 + P-network_1_4_RP_5 + P-network_1_4_RP_6 + P-network_1_4_RP_7 + P-network_1_4_RP_8 + P-network_8_2_AnnP_1 + P-network_8_2_AnnP_2 + P-network_8_2_AnnP_3 + P-network_8_2_AnnP_4 + P-network_8_2_AnnP_5 + P-network_8_2_AnnP_6 + P-network_8_2_AnnP_7 + P-network_8_2_AnnP_8 + P-network_3_0_AI_8 + P-network_3_4_AskP_1 + P-network_3_4_AskP_2 + P-network_3_4_AskP_3 + P-network_3_4_AskP_4 + P-network_3_4_AskP_5 + P-network_3_4_AskP_6 + P-network_3_4_AskP_7 + P-network_3_4_AskP_8 + P-network_3_0_AI_7 + P-network_3_3_RP_1 + P-network_3_3_RP_2 + P-network_3_3_RP_3 + P-network_3_3_RP_4 + P-network_3_3_RP_5 + P-network_3_0_AI_6 + P-network_3_3_RP_6 + P-network_3_0_AI_5 + P-network_3_3_RP_7 + P-network_3_0_AI_4 + P-network_3_3_RP_8 + P-network_3_0_AI_3 + P-network_3_0_AI_2 + P-network_3_0_AI_1 + P-network_5_8_AI_1 + P-network_5_8_AI_2 + P-network_5_8_AI_3 + P-network_5_8_AI_4 + P-network_5_8_AI_5 + P-network_5_8_AI_6 + P-network_5_8_AI_7 + P-network_5_8_AI_8 + P-network_4_0_AnnP_8 + P-network_4_0_AnnP_7 + P-network_4_0_AnnP_6 + P-network_4_0_AnnP_5 + P-network_4_0_AnnP_4 + P-network_4_0_AnnP_3 + P-network_4_0_AnnP_2 + P-network_4_0_AnnP_1 + P-network_8_8_AskP_8 + P-network_8_8_AskP_7 + P-network_8_8_AskP_6 + P-network_8_8_AskP_5 + P-network_8_8_AskP_4 + P-network_8_8_AskP_3 + P-network_0_5_AnnP_1 + P-network_0_5_AnnP_2 + P-network_0_5_AnnP_3 + P-network_0_5_AnnP_4 + P-network_0_5_AnnP_5 + P-network_0_5_AnnP_6 + P-network_0_5_AnnP_7 + P-network_0_5_AnnP_8 + P-network_8_8_AskP_2 + P-network_5_2_RP_1 + P-network_5_2_RP_2 + P-network_5_2_RP_3 + P-network_5_2_RP_4 + P-network_5_2_RP_5 + P-network_5_2_RP_6 + P-network_5_2_RP_7 + P-network_5_2_RP_8 + P-network_8_8_AskP_1 + P-network_7_7_AI_1 + P-network_7_7_AI_2 + P-network_7_7_AI_3 + P-network_7_7_AI_4 + P-network_7_7_AI_5 + P-network_7_7_AI_6 + P-network_7_7_AI_7 + P-network_7_7_AI_8 + P-network_0_4_AI_1 + P-network_0_4_AI_2 + P-network_0_4_AI_3 + P-network_0_4_AI_4 + P-network_0_4_AI_5 + P-network_0_4_AI_6 + P-network_0_4_AI_7 + P-network_0_4_AI_8 + P-network_0_7_RI_1 + P-network_0_7_RI_2 + P-network_0_7_RI_3 + P-network_0_7_RI_4 + P-network_0_7_RI_5 + P-network_0_7_RI_6 + P-network_0_7_RI_7 + P-network_0_7_RI_8 + P-network_7_6_AnnP_1 + P-network_7_6_AnnP_2 + P-network_7_6_AnnP_3 + P-network_7_6_AnnP_4 + P-network_7_6_AnnP_5 + P-network_7_6_AnnP_6 + P-network_7_6_AnnP_7 + P-network_7_6_AnnP_8 + P-network_1_4_RI_8 + P-network_1_4_RI_7 + P-network_1_4_RI_6 + P-network_8_0_AskP_1 + P-network_8_0_AskP_2 + P-network_8_0_AskP_3 + P-network_8_0_AskP_4 + P-network_8_0_AskP_5 + P-network_8_0_AskP_6 + P-network_8_0_AskP_7 + P-network_8_0_AskP_8 + P-network_1_4_RI_5 + P-network_7_1_RP_1 + P-network_7_1_RP_2 + P-network_7_1_RP_3 + P-network_7_1_RP_4 + P-network_7_1_RP_5 + P-network_7_1_RP_6 + P-network_7_1_RP_7 + P-network_7_1_RP_8 + P-network_1_4_RI_4 + P-network_2_8_AskP_1 + P-network_2_8_AskP_2 + P-network_2_8_AskP_3 + P-network_2_8_AskP_4 + P-network_2_8_AskP_5 + P-network_2_8_AskP_6 + P-network_2_8_AskP_7 + P-network_2_8_AskP_8 + P-network_1_4_RI_3 + P-network_2_3_AI_1 + P-network_2_3_AI_2 + P-network_2_3_AI_3 + P-network_2_3_AI_4 + P-network_2_3_AI_5 + P-network_2_3_AI_6 + P-network_2_3_AI_7 + P-network_2_3_AI_8 + P-network_1_4_RI_2 + P-network_2_6_RI_1 + P-network_2_6_RI_2 + P-network_2_6_RI_3 + P-network_2_6_RI_4 + P-network_2_6_RI_5 + P-network_2_6_RI_6 + P-network_2_6_RI_7 + P-network_2_6_RI_8 + P-network_1_4_RI_1 + P-network_8_7_RI_8 + P-network_8_7_RI_7 + P-network_8_7_RI_6 + P-network_8_7_RI_5 + P-network_8_7_RI_4 + P-network_8_7_RI_3 + P-network_8_7_RI_2 + P-network_8_7_RI_1 + P-network_5_1_AnnP_1 + P-network_5_1_AnnP_2 + P-network_5_1_AnnP_3 + P-network_5_1_AnnP_4 + P-network_5_1_AnnP_5 + P-network_5_1_AnnP_6 + P-network_5_1_AnnP_7 + P-network_5_1_AnnP_8 + P-network_1_1_AI_8 + P-network_1_1_AI_7 + P-network_4_2_AI_1 + P-network_4_2_AI_2 + P-network_4_2_AI_3 + P-network_4_2_AI_4 + P-network_4_2_AI_5 + P-network_4_2_AI_6 + P-network_4_2_AI_7 + P-network_4_2_AI_8 + P-network_1_1_AI_6 + P-network_1_1_AI_5 + P-network_1_1_AI_4 + P-network_1_1_AI_3 + P-network_1_1_AI_2 + P-network_1_1_AI_1 + P-network_8_4_AI_8 + P-network_8_4_AI_7 + P-network_8_4_AI_6 + P-network_0_3_AskP_1 + P-network_0_3_AskP_2 + P-network_0_3_AskP_3 + P-network_0_3_AskP_4 + P-network_0_3_AskP_5 + P-network_0_3_AskP_6 + P-network_0_3_AskP_7 + P-network_0_3_AskP_8 + P-network_8_4_AI_5 + P-network_8_4_AI_4 + P-network_8_4_AI_3 + P-network_8_4_AI_2 + P-network_8_4_AI_1 + P-network_1_7_AskP_8 + P-network_1_7_AskP_7 + P-network_1_7_AskP_6 + P-network_1_7_AskP_5 + P-network_4_5_RI_1 + P-network_4_5_RI_2 + P-network_4_5_RI_3 + P-network_4_5_RI_4 + P-network_4_5_RI_5 + P-network_4_5_RI_6 + P-network_4_5_RI_7 + P-network_4_5_RI_8 + P-network_1_7_AskP_4 + P-network_1_7_AskP_3 + P-network_7_4_AskP_1 + P-network_7_4_AskP_2 + P-network_7_4_AskP_3 + P-network_7_4_AskP_4 + P-network_7_4_AskP_5 + P-network_7_4_AskP_6 + P-network_7_4_AskP_7 + P-network_7_4_AskP_8 + P-network_1_7_AskP_2 + P-network_6_1_AI_1 + P-network_6_1_AI_2 + P-network_1_7_AskP_1 + P-network_6_1_AI_3 + P-network_6_1_AI_4 + P-network_6_1_AI_5 + P-network_6_1_AI_6 + P-network_6_1_AI_7 + P-network_6_1_AI_8 + P-network_6_4_RI_1 + P-network_6_4_RI_2 + P-network_6_4_RI_3 + P-network_6_4_RI_4 + P-network_6_4_RI_5 + P-network_6_4_RI_6 + P-network_6_4_RI_7 + P-network_6_4_RI_8 + P-network_6_5_AnnP_8 + P-network_6_5_AnnP_7 + P-network_6_5_AnnP_6 + P-network_6_5_AnnP_5 + P-network_6_5_AnnP_4 + P-network_6_5_AnnP_3 + P-network_6_5_AnnP_2 + P-network_4_5_AnnP_1 + P-network_4_5_AnnP_2 + P-network_4_5_AnnP_3 + P-network_4_5_AnnP_4 + P-network_4_5_AnnP_5 + P-network_4_5_AnnP_6 + P-network_4_5_AnnP_7 + P-network_4_5_AnnP_8 + P-network_6_5_AnnP_1 + P-network_8_0_AI_1 + P-network_8_0_AI_2 + P-network_8_0_AI_3 + P-network_8_0_AI_4 + P-network_8_0_AI_5 + P-network_6_8_RI_8 + P-network_8_0_AI_6 + P-network_6_8_RI_7 + P-network_8_0_AI_7 + P-network_6_8_RI_6 + P-network_8_0_AI_8 + P-network_6_8_RI_5 + P-network_8_3_RI_1 + P-network_8_3_RI_2 + P-network_8_3_RI_3 + P-network_8_3_RI_4 + P-network_8_3_RI_5 + P-network_8_3_RI_6 + P-network_8_3_RI_7 + P-network_8_3_RI_8 + P-network_6_8_RI_4 + P-network_1_0_RI_1 + P-network_1_0_RI_2 + P-network_1_0_RI_3 + P-network_1_0_RI_4 + P-network_1_0_RI_5 + P-network_1_0_RI_6 + P-network_1_0_RI_7 + P-network_1_0_RI_8 + P-network_6_8_RI_3 + P-network_6_8_RI_2 + P-network_6_8_RI_1 + P-network_6_8_AskP_1 + P-network_6_8_AskP_2 + P-network_6_8_AskP_3 + P-network_6_8_AskP_4 + P-network_6_8_AskP_5 + P-network_6_8_AskP_6 + P-network_6_8_AskP_7 + P-network_6_8_AskP_8 + P-network_2_0_AnnP_1 + P-network_2_0_AnnP_2 + P-network_2_0_AnnP_3 + P-network_2_0_AnnP_4 + P-network_2_0_AnnP_5 + P-network_2_0_AnnP_6 + P-network_2_0_AnnP_7 + P-network_2_0_AnnP_8 + P-network_6_5_AI_8 + P-network_0_6_RP_1 + P-network_0_6_RP_2 + P-network_0_6_RP_3 + P-network_0_6_RP_4 + P-network_0_6_RP_5 + P-network_0_6_RP_6 + P-network_0_6_RP_7 + P-network_0_6_RP_8 + P-network_6_5_AI_7 + P-network_6_5_AI_6 + P-network_6_5_AI_5 + P-network_6_5_AI_4 + P-network_6_5_AI_3 + P-network_4_3_AskP_1 + P-network_4_3_AskP_2 + P-network_4_3_AskP_3 + P-network_4_3_AskP_4 + P-network_4_3_AskP_5 + P-network_4_3_AskP_6 + P-network_4_3_AskP_7 + P-network_4_3_AskP_8 + P-network_6_5_AI_2 + P-network_6_5_AI_1 + P-network_2_5_RP_1 + P-network_2_5_RP_2 + P-network_2_5_RP_3 + P-network_2_5_RP_4 + P-network_2_5_RP_5 + P-network_2_5_RP_6 + P-network_2_5_RP_7 + P-network_2_5_RP_8 + P-network_4_0_RP_8 + P-network_4_0_RP_7 + P-network_4_0_RP_6 + P-network_4_0_RP_5 + P-network_4_0_RP_4 + P-network_4_0_RP_3 + P-network_4_0_RP_2 + P-network_4_0_RP_1 + P-network_4_6_AI_8 + P-network_4_6_AI_7 + P-network_4_6_AI_6 + P-network_1_4_AnnP_1 + P-network_1_4_AnnP_2 + P-network_1_4_AnnP_3 + P-network_1_4_AnnP_4 + P-network_1_4_AnnP_5 + P-network_1_4_AnnP_6 + P-network_1_4_AnnP_7 + P-network_1_4_AnnP_8 + P-network_4_6_AI_5 + P-network_4_6_AI_4 + P-network_4_6_AI_3 + P-network_4_6_AI_2 + P-network_4_6_AI_1 + P-network_2_3_AskP_8 + P-network_2_3_AskP_7 + P-network_2_3_AskP_6 + P-network_2_3_AskP_5 + P-network_4_4_RP_1 + P-network_4_4_RP_2 + P-network_4_4_RP_3 + P-network_4_4_RP_4 + P-network_4_4_RP_5 + P-network_4_4_RP_6 + P-network_4_4_RP_7 + P-network_4_4_RP_8 + P-network_2_3_AskP_4 + P-network_2_3_AskP_3 + P-network_2_3_AskP_2 + P-network_2_3_AskP_1 + P-network_2_1_RP_8 + P-network_2_1_RP_7 + P-network_2_1_RP_6 + P-network_2_1_RP_5 + P-network_2_1_RP_4 + P-network_2_1_RP_3 + P-network_2_1_RP_2 + P-network_2_1_RP_1 + P-network_8_5_AnnP_1 + P-network_8_5_AnnP_2 + P-network_8_5_AnnP_3 + P-network_8_5_AnnP_4 + P-network_8_5_AnnP_5 + P-network_8_5_AnnP_6 + P-network_8_5_AnnP_7 + P-network_8_5_AnnP_8 + P-network_3_7_AskP_1 + P-network_3_7_AskP_2 + P-network_3_7_AskP_3 + P-network_3_7_AskP_4 + P-network_3_7_AskP_5 + P-network_3_7_AskP_6 + P-network_3_7_AskP_7 + P-network_3_7_AskP_8 + P-network_6_3_RP_1 + P-network_6_3_RP_2 + P-network_6_3_RP_3 + P-network_6_3_RP_4 + P-network_6_3_RP_5 + P-network_6_3_RP_6 + P-network_6_3_RP_7 + P-network_6_3_RP_8 + P-network_8_8_AI_1 + P-network_8_8_AI_2 + P-network_8_8_AI_3 + P-network_8_8_AI_4 + P-network_8_8_AI_5 + P-network_8_8_AI_6 + P-network_8_8_AI_7 + P-network_8_8_AI_8 + P-network_1_5_AI_1 + P-network_1_5_AI_2 + P-network_1_5_AI_3 + P-network_1_5_AI_4 + P-network_1_5_AI_5 + P-network_1_5_AI_6 + P-network_1_5_AI_7 + P-network_1_5_AI_8 + P-network_1_8_RI_1 + P-network_1_8_RI_2 + P-network_1_8_RI_3 + P-network_1_8_RI_4 + P-network_1_8_RI_5 + P-network_1_8_RI_6 + P-network_1_8_RI_7 + P-network_1_8_RI_8 + P-network_6_0_AnnP_1 + P-network_6_0_AnnP_2 + P-network_6_0_AnnP_3 + P-network_6_0_AnnP_4 + P-network_6_0_AnnP_5 + P-network_7_1_AnnP_8 + P-network_6_0_AnnP_6 + P-network_7_1_AnnP_7 + P-network_6_0_AnnP_7 + P-network_7_1_AnnP_6 + P-network_6_0_AnnP_8 + P-network_7_1_AnnP_5 + P-network_7_1_AnnP_4 + P-network_7_1_AnnP_3 + P-network_7_1_AnnP_2 + P-network_7_1_AnnP_1 + P-network_0_8_AnnP_1 + P-network_0_8_AnnP_2 + P-network_0_8_AnnP_3 + P-network_0_8_AnnP_4 + P-network_0_8_AnnP_5 + P-network_0_8_AnnP_6 + P-network_0_8_AnnP_7 + P-network_0_8_AnnP_8 + P-network_8_2_RP_1 + P-network_8_2_RP_2 + P-network_8_2_RP_3 + P-network_8_2_RP_4 + P-network_8_2_RP_5 + P-network_8_2_RP_6 + P-network_8_2_RP_7 + P-network_8_2_RP_8 + P-network_1_2_AskP_1 + P-network_1_2_AskP_2 + P-network_1_2_AskP_3 + P-network_1_2_AskP_4 + P-network_1_2_AskP_5 + P-network_1_2_AskP_6 + P-network_1_2_AskP_7 + P-network_1_2_AskP_8 + P-network_3_4_AI_1 + P-network_3_4_AI_2 + P-network_3_4_AI_3 + P-network_3_4_AI_4 + P-network_3_4_AI_5 + P-network_3_4_AI_6 + P-network_3_4_AI_7 + P-network_3_4_AI_8 + P-network_2_7_AI_8 + P-network_3_7_RI_1 + P-network_3_7_RI_2 + P-network_3_7_RI_3 + P-network_3_7_RI_4 + P-network_3_7_RI_5 + P-network_3_7_RI_6 + P-network_3_7_RI_7 + P-network_3_7_RI_8 + P-network_2_7_AI_7 + P-network_8_3_AskP_1 + P-network_8_3_AskP_2 + P-network_8_3_AskP_3 + P-network_8_3_AskP_4 + P-network_8_3_AskP_5 + P-network_8_3_AskP_6 + P-network_8_3_AskP_7 + P-network_8_3_AskP_8 + P-network_2_7_AI_6 + P-network_2_7_AI_5 + P-network_2_7_AI_4 + P-network_2_7_AI_3 + P-network_2_7_AI_2 + P-network_2_7_AI_1 + P-network_5_3_AI_1 + P-network_5_3_AI_2 + P-network_5_3_AI_3 + P-network_5_3_AI_4 + P-network_5_3_AI_5 + P-network_5_3_AI_6 + P-network_5_3_AI_7 + P-network_5_3_AI_8 + P-network_5_6_RI_1 + P-network_5_6_RI_2 + P-network_5_6_RI_3 + P-network_5_6_RI_4 + P-network_5_6_RI_5 + P-network_5_6_RI_6 + P-network_5_6_RI_7 + P-network_5_6_RI_8 + P-network_5_4_AnnP_1 + P-network_5_4_AnnP_2 + P-network_5_4_AnnP_3 + P-network_5_4_AnnP_4 + P-network_5_4_AnnP_5 + P-network_5_4_AnnP_6 + P-network_5_4_AnnP_7 + P-network_5_4_AnnP_8 + P-network_0_2_RP_8 + P-network_0_2_RP_7 + P-network_0_2_RP_6 + P-network_0_2_RP_5 + P-network_0_2_RP_4 + P-network_0_2_RP_3 + P-network_7_2_AI_1 + P-network_7_2_AI_2 + P-network_7_2_AI_3 + P-network_7_2_AI_4 + P-network_7_2_AI_5 + P-network_7_2_AI_6 + P-network_7_2_AI_7 + P-network_7_2_AI_8 + P-network_0_2_RP_2 + P-network_0_6_AskP_1 + P-network_0_6_AskP_2 + P-network_0_6_AskP_3 + P-network_0_6_AskP_4 + P-network_0_6_AskP_5 + P-network_0_6_AskP_6 + P-network_0_6_AskP_7 + P-network_0_6_AskP_8 + P-network_0_2_RP_1 + P-network_7_5_RP_8 + P-network_7_5_RI_1 + P-network_7_5_RI_2 + P-network_7_5_RI_3 + P-network_7_5_RI_4 + P-network_7_5_RI_5 + P-network_7_5_RI_6 + P-network_7_5_RI_7 + P-network_7_5_RI_8 + P-network_7_5_RP_7 + P-network_0_2_RI_1 + P-network_0_2_RI_2 + P-network_0_2_RI_3 + P-network_0_2_RI_4 + P-network_0_2_RI_5 + P-network_0_2_RI_6 + P-network_0_2_RI_7 + P-network_0_2_RI_8 + P-network_7_5_RP_6 + P-network_7_5_RP_5 + P-network_7_7_AskP_1 + P-network_7_7_AskP_2 + P-network_7_7_AskP_3 + P-network_7_7_AskP_4 + P-network_7_7_AskP_5 + P-network_7_7_AskP_6 + P-network_7_7_AskP_7 + P-network_7_7_AskP_8 + P-network_7_5_RP_4 + P-network_7_5_RP_3 + P-network_7_5_RP_2 + P-network_7_5_RP_1 + P-network_0_0_AnnP_8 + P-network_0_0_AnnP_7 + P-network_0_0_AnnP_6 + P-network_0_0_AnnP_5 + P-network_0_0_AnnP_4 + P-network_0_0_AnnP_3 + P-network_2_1_RI_1 + P-network_2_1_RI_2 + P-network_2_1_RI_3 + P-network_2_1_RI_4 + P-network_2_1_RI_5 + P-network_2_1_RI_6 + P-network_2_1_RI_7 + P-network_2_1_RI_8 + P-network_0_0_AnnP_2 + P-network_0_0_AnnP_1 + P-network_4_8_AskP_8 + P-network_4_8_AskP_7 + P-network_4_8_AskP_6 + P-network_4_8_AskP_5 + P-network_4_8_AskP_4 + P-network_4_8_AskP_3 + P-network_4_8_AskP_2 + P-network_4_8_AskP_1 + P-network_4_8_AnnP_1 + P-network_4_8_AnnP_2 + P-network_4_8_AnnP_3 + P-network_4_8_AnnP_4 + P-network_4_8_AnnP_5 + P-network_4_8_AnnP_6 + P-network_4_8_AnnP_7 + P-network_4_8_AnnP_8 + P-network_5_2_AskP_1 + P-network_5_2_AskP_2 + P-network_5_2_AskP_3 + P-network_5_2_AskP_4 + P-network_5_2_AskP_5 + P-network_5_2_AskP_6 + P-network_5_2_AskP_7 + P-network_5_2_AskP_8 + P-network_4_0_RI_1 + P-network_4_0_RI_2 + P-network_4_0_RI_3 + P-network_1_7_RP_1 + P-network_4_0_RI_4 + P-network_1_7_RP_2 + P-network_4_0_RI_5 + P-network_1_7_RP_3 + P-network_4_0_RI_6 + P-network_1_7_RP_4 + P-network_4_0_RI_7 + P-network_1_7_RP_5 + P-network_4_0_RI_8 + P-network_1_7_RP_6 + P-network_1_7_RP_7 + P-network_1_7_RP_8 + P-network_0_8_AI_8 + P-network_0_8_AI_7 + P-network_0_8_AI_6 + P-network_0_8_AI_5 + P-network_0_8_AI_4 + P-network_0_8_AI_3 + P-network_0_8_AI_2 + P-network_0_8_AI_1 + P-network_2_3_AnnP_1 + P-network_2_3_AnnP_2 + P-network_2_3_AnnP_3 + P-network_2_3_AnnP_4 + P-network_2_3_AnnP_5 + P-network_2_3_AnnP_6 + P-network_2_3_AnnP_7 + P-network_2_3_AnnP_8 + P-network_3_6_RP_1 + P-network_3_6_RP_2 + P-network_3_6_RP_3 + P-network_3_6_RP_4 + P-network_3_6_RP_5 + P-network_3_6_RP_6 + P-network_3_6_RP_7 + P-network_3_6_RP_8 + P-network_5_6_RP_8 + P-network_5_6_RP_7 + P-network_5_6_RP_6 + P-network_5_6_RP_5 + P-network_5_6_RP_4 + P-network_5_6_RP_3 + P-network_5_6_RP_2 + P-network_5_6_RP_1 + P-network_4_6_AskP_1 + P-network_4_6_AskP_2 + P-network_4_6_AskP_3 + P-network_4_6_AskP_4 + P-network_4_6_AskP_5 + P-network_4_6_AskP_6 + P-network_4_6_AskP_7 + P-network_4_6_AskP_8 + P-network_5_5_RP_1 + P-network_5_5_RP_2 + P-network_5_5_RP_3 + P-network_5_5_RP_4 + P-network_5_5_RP_5 + P-network_5_5_RP_6 + P-network_5_5_RP_7 + P-network_5_5_RP_8 + P-network_2_5_AnnP_8 + P-network_2_5_AnnP_7 + P-network_2_5_AnnP_6 + P-network_2_5_AnnP_5 + P-network_2_5_AnnP_4 + P-network_2_5_AnnP_3 + P-network_2_5_AnnP_2 + P-network_2_5_AnnP_1 + P-network_0_7_AI_1 + P-network_0_7_AI_2 + P-network_0_7_AI_3 + P-network_0_7_AI_4 + P-network_0_7_AI_5 + P-network_0_7_AI_6 + P-network_0_7_AI_7 + P-network_0_7_AI_8 + P-network_1_7_AnnP_1 + P-network_1_7_AnnP_2 + P-network_1_7_AnnP_3 + P-network_1_7_AnnP_4 + P-network_1_7_AnnP_5 + P-network_1_7_AnnP_6 + P-network_1_7_AnnP_7 + P-network_1_7_AnnP_8 + P-network_7_4_RP_1 + P-network_7_4_RP_2 + P-network_7_4_RP_3 + P-network_7_4_RP_4 + P-network_7_4_RP_5 + P-network_7_4_RP_6 + P-network_7_4_RP_7 + P-network_7_4_RP_8 + P-network_0_1_RP_1 + P-network_0_1_RP_2 + P-network_0_1_RP_3 + P-network_0_1_RP_4 + P-network_0_1_RP_5 + P-network_0_1_RP_6 + P-network_0_1_RP_7 + P-network_0_1_RP_8 + P-network_2_1_AskP_1 + P-network_2_1_AskP_2 + P-network_2_1_AskP_3 + P-network_2_1_AskP_4 + P-network_2_1_AskP_5 + P-network_2_1_AskP_6 + P-network_2_1_AskP_7 + P-network_2_1_AskP_8 + P-network_2_6_AI_1 + P-network_2_6_AI_2 + P-network_2_6_AI_3 + P-network_2_6_AI_4 + P-network_2_6_AI_5 + P-network_2_6_AI_6 + P-network_2_6_AI_7 + P-network_2_6_AI_8 + P-network_8_8_AnnP_1 + P-network_8_8_AnnP_2 + P-network_8_8_AnnP_3 + P-network_8_8_AnnP_4 + P-network_8_8_AnnP_5 + P-network_8_8_AnnP_6 + P-network_8_8_AnnP_7 + P-network_8_8_AnnP_8 + P-network_2_0_RP_1 + P-network_2_0_RP_2 + P-network_2_0_RP_3 + P-network_2_0_RP_4 + P-network_2_0_RP_5 + P-network_2_0_RP_6 + P-network_2_0_RP_7 + P-network_2_0_RP_8 + P-network_3_7_RP_8 + P-network_3_7_RP_7 + P-network_3_7_RP_6 + P-network_6_0_RI_8 + P-network_3_7_RP_5 + P-network_6_0_RI_7 + P-network_3_7_RP_4 + P-network_6_0_RI_6 + P-network_3_7_RP_3 + P-network_6_0_RI_5 + P-network_3_7_RP_2 + P-network_4_5_AI_1 + P-network_4_5_AI_2 + P-network_6_0_RI_4 + P-network_4_5_AI_3 + P-network_3_7_RP_1 + P-network_4_5_AI_4 + P-network_6_0_RI_3 + P-network_4_5_AI_5 + P-network_6_0_RI_2 + P-network_4_5_AI_6 + P-network_6_0_RI_1 + P-network_4_5_AI_7 + P-network_5_4_AskP_8 + P-network_4_5_AI_8 + P-network_5_4_AskP_7 + P-network_5_4_AskP_6 + P-network_5_4_AskP_5 + P-network_5_4_AskP_4 + P-network_4_8_RI_1 + P-network_4_8_RI_2 + P-network_4_8_RI_3 + P-network_4_8_RI_4 + P-network_4_8_RI_5 + P-network_4_8_RI_6 + P-network_4_8_RI_7 + P-network_4_8_RI_8 + P-network_5_4_AskP_3 + P-network_6_3_AnnP_1 + P-network_6_3_AnnP_2 + P-network_6_3_AnnP_3 + P-network_6_3_AnnP_4 + P-network_6_3_AnnP_5 + P-network_6_3_AnnP_6 + P-network_6_3_AnnP_7 + P-network_6_3_AnnP_8 + P-network_5_4_AskP_2 + P-network_1_5_AskP_1 + P-network_1_5_AskP_2 + P-network_1_5_AskP_3 + P-network_1_5_AskP_4 + P-network_1_5_AskP_5 + P-network_1_5_AskP_6 + P-network_1_5_AskP_7 + P-network_1_5_AskP_8 + P-network_5_4_AskP_1 + P-network_6_4_AI_1 + P-network_6_4_AI_2 + P-network_6_4_AI_3 + P-network_6_4_AI_4 + P-network_6_4_AI_5 + P-network_6_4_AI_6 + P-network_6_4_AI_7 + P-network_6_4_AI_8 + P-network_6_7_RI_1 + P-network_6_7_RI_2 + P-network_6_7_RI_3 + P-network_6_7_RI_4 + P-network_6_7_RI_5 + P-network_6_7_RI_6 + P-network_6_7_RI_7 + P-network_6_7_RI_8 + P-network_8_6_AskP_1 + P-network_8_6_AskP_2 + P-network_8_6_AskP_3 + P-network_8_6_AskP_4 + P-network_8_6_AskP_5 + P-network_8_6_AskP_6 + P-network_8_6_AskP_7 + P-network_8_6_AskP_8 + P-network_8_3_AI_1 + P-network_8_3_AI_2 + P-network_8_3_AI_3 + P-network_8_3_AI_4 + P-network_8_3_AI_5 + P-network_8_3_AI_6 + P-network_8_3_AI_7 + P-network_8_3_AI_8 + P-network_1_0_AI_1 + P-network_1_0_AI_2 + P-network_1_0_AI_3 + P-network_1_0_AI_4 + P-network_1_0_AI_5 + P-network_1_0_AI_6 + P-network_1_0_AI_7 + P-network_1_0_AI_8 + P-network_8_6_RI_1 + P-network_8_6_RI_2 + P-network_8_6_RI_3 + P-network_8_6_RI_4 + P-network_8_6_RI_5 + P-network_8_6_RI_6 + P-network_8_6_RI_7 + P-network_8_6_RI_8 + P-network_1_3_RI_1 + P-network_1_3_RI_2 + P-network_1_3_RI_3 + P-network_1_3_RI_4 + P-network_1_3_RI_5 + P-network_1_3_RI_6 + P-network_1_3_RI_7 + P-network_1_3_RI_8 + P-network_5_7_AnnP_1 + P-network_5_7_AnnP_2 + P-network_5_7_AnnP_3 + P-network_5_7_AnnP_4 + P-network_5_7_AnnP_5 + P-network_5_7_AnnP_6 + P-network_5_7_AnnP_7 + P-network_5_7_AnnP_8 + P-network_6_1_AskP_1 + P-network_6_1_AskP_2 + P-network_6_1_AskP_3 + P-network_6_1_AskP_4 + P-network_6_1_AskP_5 + P-network_6_1_AskP_6 + P-network_6_1_AskP_7 + P-network_6_1_AskP_8 + P-network_1_8_RP_8 + P-network_1_8_RP_7 + P-network_1_8_RP_6 + P-network_4_1_RI_8 + P-network_1_8_RP_5 + P-network_4_1_RI_7 + P-network_3_2_RI_1 + P-network_3_2_RI_2 + P-network_3_2_RI_3 + P-network_3_2_RI_4 + P-network_3_2_RI_5 + P-network_3_2_RI_6 + P-network_3_2_RI_7 + P-network_3_2_RI_8 + P-network_1_8_RP_4 + P-network_4_1_RI_6 + P-network_1_8_RP_3 + P-network_3_2_AnnP_1 + P-network_3_2_AnnP_2 + P-network_3_2_AnnP_3 + P-network_3_2_AnnP_4 + P-network_3_2_AnnP_5 + P-network_3_2_AnnP_6 + P-network_3_2_AnnP_7 + P-network_3_2_AnnP_8 + P-network_4_1_RI_5 + P-network_1_8_RP_2 + P-network_4_1_RI_4 + P-network_1_8_RP_1 + P-network_4_1_RI_3 + P-network_4_1_RI_2 + P-network_4_1_RI_1 + P-network_5_1_RI_1 + P-network_5_1_RI_2 + P-network_5_1_RI_3 + P-network_2_8_RP_1 + P-network_5_1_RI_4 + P-network_2_8_RP_2 + P-network_5_1_RI_5 + P-network_2_8_RP_3 + P-network_5_1_RI_6 + P-network_2_8_RP_4 + P-network_5_1_RI_7 + P-network_2_8_RP_5 + P-network_5_1_RI_8 + P-network_2_8_RP_6 + P-network_2_8_RP_7 + P-network_2_8_RP_8 + P-network_3_1_AnnP_8 + P-network_3_1_AnnP_7 + P-network_3_1_AnnP_6 + P-network_3_1_AnnP_5 + P-network_5_5_AskP_1 + P-network_5_5_AskP_2 + P-network_5_5_AskP_3 + P-network_5_5_AskP_4 + P-network_5_5_AskP_5 + P-network_5_5_AskP_6 + P-network_5_5_AskP_7 + P-network_5_5_AskP_8 + P-network_3_1_AnnP_4 + P-network_3_1_AnnP_3 + P-network_3_1_AnnP_2 + P-network_3_1_AnnP_1 + P-network_7_0_RI_1 + P-network_7_0_RI_2 + P-network_7_0_RI_3 + P-network_4_7_RP_1 + P-network_7_0_RI_4 + P-network_4_7_RP_2 + P-network_7_0_RI_5 + P-network_4_7_RP_3 + P-network_7_0_RI_6 + P-network_4_7_RP_4 + P-network_7_0_RI_7 + P-network_4_7_RP_5 + P-network_7_0_RI_8 + P-network_4_7_RP_6 + P-network_4_7_RP_7 + P-network_4_7_RP_8 + P-network_2_6_AnnP_1 + P-network_2_6_AnnP_2 + P-network_2_6_AnnP_3 + P-network_2_6_AnnP_4 + P-network_2_6_AnnP_5 + P-network_2_6_AnnP_6 + P-network_2_6_AnnP_7 + P-network_2_6_AnnP_8 + P-network_3_0_AskP_1 + P-network_3_0_AskP_2 + P-network_3_0_AskP_3 + P-network_3_0_AskP_4 + P-network_3_0_AskP_5 + P-network_3_0_AskP_6 + P-network_3_0_AskP_7 + P-network_3_0_AskP_8 + P-network_6_6_RP_1 + P-network_6_6_RP_2 + P-network_6_6_RP_3 + P-network_6_6_RP_4 + P-network_6_6_RP_5 + P-network_6_6_RP_6 + P-network_6_6_RP_7 + P-network_6_6_RP_8 + P-network_2_2_RI_8 + P-network_1_8_AI_1 + P-network_1_8_AI_2 + P-network_1_8_AI_3 + P-network_1_8_AI_4 + P-network_1_8_AI_5 + P-network_1_8_AI_6 + P-network_1_8_AI_7 + P-network_1_8_AI_8 + P-network_2_2_RI_7 + P-network_2_2_RI_6 + P-network_0_1_AnnP_1 + P-network_0_1_AnnP_2 + P-network_0_1_AnnP_3 + P-network_0_1_AnnP_4 + P-network_0_1_AnnP_5 + P-network_0_1_AnnP_6 + P-network_0_1_AnnP_7 + P-network_0_1_AnnP_8 + P-network_2_2_RI_5 + P-network_8_5_RP_1 + P-network_8_5_RP_2 + P-network_8_5_RP_3 + P-network_8_5_RP_4 + P-network_8_5_RP_5 + P-network_8_5_RP_6 + P-network_8_5_RP_7 + P-network_8_5_RP_8 + P-network_2_2_RI_4 + P-network_1_2_RP_1 + P-network_1_2_RP_2 + P-network_1_2_RP_3 + P-network_1_2_RP_4 + P-network_1_2_RP_5 + P-network_1_2_RP_6 + P-network_1_2_RP_7 + P-network_1_2_RP_8 + P-network_2_2_RI_3 + P-network_2_2_RI_2 + P-network_2_2_RI_1 + P-network_3_7_AI_1 + P-network_3_7_AI_2 + P-network_3_7_AI_3 + P-network_3_7_AI_4 + P-network_3_7_AI_5 + P-network_3_7_AI_6 + P-network_3_7_AI_7 + P-network_3_7_AI_8 + P-network_0_8_AskP_8 + P-network_0_8_AskP_7 + P-network_0_8_AskP_6 + P-network_0_8_AskP_5 + P-network_7_2_AnnP_1 + P-network_7_2_AnnP_2 + P-network_7_2_AnnP_3 + P-network_7_2_AnnP_4 + P-network_7_2_AnnP_5 + P-network_7_2_AnnP_6 + P-network_7_2_AnnP_7 + P-network_7_2_AnnP_8 + P-network_0_8_AskP_4 + P-network_0_8_AskP_3 + P-network_0_8_AskP_2 + P-network_0_8_AskP_1 + P-network_3_1_RP_1 + P-network_3_1_RP_2 + P-network_3_1_RP_3 + P-network_3_1_RP_4 + P-network_3_1_RP_5 + P-network_3_1_RP_6 + P-network_3_1_RP_7 + P-network_3_1_RP_8 + P-network_2_4_AskP_1 + P-network_2_4_AskP_2 + P-network_2_4_AskP_3 + P-network_2_4_AskP_4 + P-network_2_4_AskP_5 + P-network_2_4_AskP_6 + P-network_2_4_AskP_7 + P-network_2_4_AskP_8 + P-network_6_0_AskP_8 + P-network_6_0_AskP_7 + P-network_6_0_AskP_6 + P-network_6_0_AskP_5 + P-network_6_0_AskP_4 + P-network_6_0_AskP_3 + P-network_5_6_AI_1 + P-network_5_6_AI_2 + P-network_5_6_AI_3 + P-network_5_6_AI_4 + P-network_5_6_AI_5 + P-network_5_6_AI_6 + P-network_5_6_AI_7 + P-network_5_6_AI_8 + P-network_6_0_AskP_2 + P-network_6_0_AskP_1 + P-network_5_0_RP_1 + P-network_5_0_RP_2 + P-network_5_0_RP_3 + P-network_5_0_RP_4 + P-network_5_0_RP_5 + P-network_5_0_RP_6 + P-network_5_0_RP_7 + P-network_5_0_RP_8 + P-network_5_6_AnnP_8 + P-network_5_6_AnnP_7 + P-network_5_6_AnnP_6 + P-network_5_6_AnnP_5 + P-network_5_6_AnnP_4 + P-network_5_6_AnnP_3 + P-network_5_6_AnnP_2 + P-network_5_6_AnnP_1 + P-network_7_5_AI_1 + P-network_7_5_AI_2 + P-network_7_5_AI_3 + P-network_7_5_AI_4 + P-network_7_5_AI_5 + P-network_7_5_AI_6 + P-network_7_5_AI_7 + P-network_7_5_AI_8 + P-network_0_2_AI_1 + P-network_0_2_AI_2 + P-network_0_2_AI_3 + P-network_0_2_AI_4 + P-network_0_2_AI_5 + P-network_0_2_AI_6 + P-network_0_2_AI_7 + P-network_0_2_AI_8 + P-network_7_8_RI_1 + P-network_7_8_RI_2 + P-network_7_8_RI_3 + P-network_7_8_RI_4 + P-network_7_8_RI_5 + P-network_7_8_RI_6 + P-network_7_8_RI_7 + P-network_7_8_RI_8 + P-network_0_5_RI_1 + P-network_0_5_RI_2 + P-network_0_5_RI_3 + P-network_0_5_RI_4 + P-network_0_5_RI_5 + P-network_0_5_RI_6 + P-network_0_5_RI_7 + P-network_0_5_RI_8 + P-network_6_6_AnnP_1 + P-network_6_6_AnnP_2 + P-network_6_6_AnnP_3 + P-network_6_6_AnnP_4 + P-network_6_6_AnnP_5 + P-network_6_6_AnnP_6 + P-network_6_6_AnnP_7 + P-network_6_6_AnnP_8 + P-network_7_0_AskP_1 + P-network_7_0_AskP_2 + P-network_7_0_AskP_3 + P-network_7_0_AskP_4 + P-network_7_0_AskP_5 + P-network_7_0_AskP_6 + P-network_7_0_AskP_7 + P-network_7_0_AskP_8 + P-network_1_8_AskP_1 + P-network_1_8_AskP_2 + P-network_1_8_AskP_3 + P-network_1_8_AskP_4 + P-network_1_8_AskP_5 + P-network_1_8_AskP_6 + P-network_1_8_AskP_7 + P-network_1_8_AskP_8 + P-network_2_1_AI_1 + P-network_2_1_AI_2 + P-network_2_1_AI_3 + P-network_2_1_AI_4 + P-network_2_1_AI_5 + P-network_2_1_AI_6 + P-network_2_1_AI_7 + P-network_2_1_AI_8 + P-network_2_4_RI_1 + P-network_2_4_RI_2 + P-network_2_4_RI_3 + P-network_2_4_RI_4 + P-network_2_4_RI_5 + P-network_2_4_RI_6 + P-network_2_4_RI_7 + P-network_2_4_RI_8 + P-network_4_1_AnnP_1 + P-network_4_1_AnnP_2 + P-network_4_1_AnnP_3 + P-network_4_1_AnnP_4 + P-network_4_1_AnnP_5 + P-network_4_1_AnnP_6 + P-network_4_1_AnnP_7 + P-network_4_1_AnnP_8 + P-network_0_3_RI_8 + P-network_0_3_RI_7 + P-network_4_0_AI_1 + P-network_4_0_AI_2 + P-network_4_0_AI_3 + P-network_4_0_AI_4 + P-network_4_0_AI_5 + P-network_4_0_AI_6 + P-network_4_0_AI_7 + P-network_4_0_AI_8 + P-network_0_3_RI_6 + P-network_4_3_RI_1 + P-network_4_3_RI_2 + P-network_4_3_RI_3 + P-network_4_3_RI_4 + P-network_4_3_RI_5 + P-network_4_3_RI_6 + P-network_4_3_RI_7 + P-network_4_3_RI_8 + P-network_0_3_RI_5 + P-network_0_3_RI_4 + P-network_0_3_RI_3 + P-network_0_3_RI_2 + P-network_0_3_RI_1 + P-network_7_6_RI_8 + P-network_7_6_RI_7 + P-network_7_6_RI_6 + P-network_7_6_RI_5 + P-network_7_6_RI_4 + P-network_7_6_RI_3 + P-network_7_6_RI_2 + P-network_7_6_RI_1 + P-network_6_4_AskP_1 + P-network_6_4_AskP_2 + P-network_6_4_AskP_3 + P-network_6_4_AskP_4 + P-network_6_4_AskP_5 + P-network_6_4_AskP_6 + P-network_6_4_AskP_7 + P-network_6_4_AskP_8 + P-network_0_0_AI_8 + P-network_0_0_AI_7 + P-network_0_0_AI_6 + P-network_0_0_AI_5 + P-network_0_0_AI_4 + P-network_0_0_AI_3 + P-network_0_0_AI_2 + P-network_0_0_AI_1 + P-network_7_3_AI_8 + P-network_7_3_AI_7 + P-network_7_3_AI_6 + P-network_7_3_AI_5 + P-network_7_3_AI_4 + P-network_7_3_AI_3 + P-network_6_2_RI_1 + P-network_6_2_RI_2 + P-network_6_2_RI_3 + P-network_6_2_RI_4 + P-network_6_2_RI_5 + P-network_6_2_RI_6 + P-network_6_2_RI_7 + P-network_6_2_RI_8 + P-network_7_3_AI_2 + P-network_7_3_AI_1 + P-network_3_5_AnnP_1 + P-network_3_5_AnnP_2 + P-network_3_5_AnnP_3 + P-network_3_5_AnnP_4 + P-network_3_5_AnnP_5 + P-network_3_5_AnnP_6 + P-network_3_5_AnnP_7 + P-network_3_5_AnnP_8 + P-network_8_5_AskP_8 + P-network_8_5_AskP_7 + P-network_8_5_AskP_6 + P-network_8_5_AskP_5 + P-network_8_5_AskP_4 + P-network_8_5_AskP_3 + P-network_8_5_AskP_2 + P-network_8_1_RI_1 + P-network_8_1_RI_2 + P-network_8_5_AskP_1 + P-network_8_1_RI_3 + P-network_5_8_RP_1 + P-network_8_1_RI_4 + P-network_5_8_RP_2 + P-network_8_1_RI_5 + P-network_5_8_RP_3 + P-network_8_1_RI_6 + P-network_5_8_RP_4 + P-network_8_1_RI_7 + P-network_5_8_RP_5 + P-network_8_1_RI_8 + P-network_5_8_RP_6 + P-network_5_8_RP_7 + P-network_5_8_RP_8 + P-network_5_7_RI_8 + P-network_5_8_AskP_1 + P-network_5_8_AskP_2 + P-network_5_8_AskP_3 + P-network_5_8_AskP_4 + P-network_5_8_AskP_5 + P-network_5_8_AskP_6 + P-network_5_8_AskP_7 + P-network_5_8_AskP_8 + P-network_5_7_RI_7 + P-network_1_0_AnnP_1 + P-network_1_0_AnnP_2 + P-network_1_0_AnnP_3 + P-network_1_0_AnnP_4 + P-network_1_0_AnnP_5 + P-network_1_0_AnnP_6 + P-network_1_0_AnnP_7 + P-network_1_0_AnnP_8 + P-network_5_7_RI_6 + P-network_7_7_RP_1 + P-network_7_7_RP_2 + P-network_7_7_RP_3 + P-network_7_7_RP_4 + P-network_7_7_RP_5 + P-network_7_7_RP_6 + P-network_7_7_RP_7 + P-network_7_7_RP_8 + P-network_5_7_RI_5 + P-network_0_4_RP_1 + P-network_0_4_RP_2 + P-network_0_4_RP_3 + P-network_0_4_RP_4 + P-network_0_4_RP_5 + P-network_0_4_RP_6 + P-network_0_4_RP_7 + P-network_0_4_RP_8 + P-network_5_7_RI_4 + P-network_5_7_RI_3 + P-network_5_7_RI_2 + P-network_5_7_RI_1 + P-network_8_1_AnnP_1 + P-network_8_1_AnnP_2 + P-network_8_1_AnnP_3 + P-network_8_1_AnnP_4 + P-network_8_1_AnnP_5 + P-network_8_1_AnnP_6 + P-network_8_1_AnnP_7 + P-network_8_1_AnnP_8 + P-network_3_3_AskP_1 + P-network_3_3_AskP_2 + P-network_3_3_AskP_3 + P-network_3_3_AskP_4 + P-network_3_3_AskP_5 + P-network_3_3_AskP_6 + P-network_3_3_AskP_7 + P-network_3_3_AskP_8 + P-network_5_4_AI_8 + P-network_2_3_RP_1 + P-network_2_3_RP_2 + P-network_2_3_RP_3 + P-network_2_3_RP_4 + P-network_2_3_RP_5 + P-network_5_4_AI_7 + P-network_2_3_RP_6 + P-network_5_4_AI_6 + P-network_2_3_RP_7 + P-network_5_4_AI_5 + P-network_2_3_RP_8 + P-network_5_4_AI_4 + P-network_5_4_AI_3 + P-network_5_4_AI_2 + P-network_5_4_AI_1 + P-network_1_4_AskP_8 + P-network_4_8_AI_1 + P-network_4_8_AI_2 + P-network_4_8_AI_3 + P-network_4_8_AI_4 + P-network_4_8_AI_5 + P-network_4_8_AI_6 + P-network_4_8_AI_7 + P-network_4_8_AI_8 + P-network_1_4_AskP_7 + P-network_1_4_AskP_6 + P-network_1_4_AskP_5 + P-network_1_4_AskP_4 + P-network_1_4_AskP_3 + P-network_1_4_AskP_2 + P-network_1_4_AskP_1 + P-network_6_2_AnnP_8 + P-network_6_2_AnnP_7 + P-network_6_2_AnnP_6 + P-network_0_4_AnnP_1 + P-network_0_4_AnnP_2 + P-network_0_4_AnnP_3 + P-network_0_4_AnnP_4 + P-network_0_4_AnnP_5 + P-network_0_4_AnnP_6 + P-network_0_4_AnnP_7 + P-network_0_4_AnnP_8 + P-network_6_2_AnnP_5 + P-network_4_2_RP_1 + P-network_4_2_RP_2 + P-network_4_2_RP_3 + P-network_4_2_RP_4 + P-network_4_2_RP_5 + P-network_4_2_RP_6 + P-network_4_2_RP_7 + P-network_4_2_RP_8 + P-network_6_2_AnnP_4 + P-network_6_7_AI_1 + P-network_6_7_AI_2 + P-network_6_7_AI_3 + P-network_6_7_AI_4 + P-network_6_7_AI_5 + P-network_6_7_AI_6 + P-network_6_7_AI_7 + P-network_6_7_AI_8 + P-network_6_2_AnnP_3 + P-network_6_2_AnnP_2 + P-network_6_2_AnnP_1 + P-network_3_8_RI_8 + P-network_3_8_RI_7 + P-network_3_8_RI_6 + P-network_3_8_RI_5 + P-network_3_8_RI_4 + P-network_3_8_RI_3 + P-network_7_5_AnnP_1 + P-network_7_5_AnnP_2 + P-network_7_5_AnnP_3 + P-network_7_5_AnnP_4 + P-network_7_5_AnnP_5 + P-network_7_5_AnnP_6 + P-network_7_5_AnnP_7 + P-network_7_5_AnnP_8 + P-network_3_8_RI_2 + P-network_6_1_RP_1 + P-network_6_1_RP_2 + P-network_6_1_RP_3 + P-network_6_1_RP_4 + P-network_6_1_RP_5 + P-network_6_1_RP_6 + P-network_6_1_RP_7 + P-network_6_1_RP_8 + P-network_3_8_RI_1 + P-network_2_7_AskP_1 + P-network_2_7_AskP_2 + P-network_2_7_AskP_3 + P-network_2_7_AskP_4 + P-network_2_7_AskP_5 + P-network_2_7_AskP_6 + P-network_2_7_AskP_7 + P-network_2_7_AskP_8 + P-network_8_6_AI_1 + P-network_8_6_AI_2 + P-network_8_6_AI_3 + P-network_8_6_AI_4 + P-network_8_6_AI_5 + P-network_8_6_AI_6 + P-network_8_6_AI_7 + P-network_8_6_AI_8 + P-network_1_3_AI_1 + P-network_1_3_AI_2 + P-network_1_3_AI_3 + P-network_1_3_AI_4 + P-network_1_3_AI_5 + P-network_1_3_AI_6 + P-network_1_3_AI_7 + P-network_1_3_AI_8 + P-network_1_6_RI_1 + P-network_1_6_RI_2 + P-network_1_6_RI_3 + P-network_1_6_RI_4 + P-network_1_6_RI_5 + P-network_1_6_RI_6 + P-network_1_6_RI_7 + P-network_1_6_RI_8 + P-network_5_0_AnnP_1 + P-network_5_0_AnnP_2 + P-network_5_0_AnnP_3 + P-network_5_0_AnnP_4 + P-network_5_0_AnnP_5 + P-network_5_0_AnnP_6 + P-network_5_0_AnnP_7 + P-network_5_0_AnnP_8 + P-network_8_0_RP_1 + P-network_8_0_RP_2 + P-network_8_0_RP_3 + P-network_8_0_RP_4 + P-network_8_0_RP_5 + P-network_8_0_RP_6 + P-network_8_0_RP_7 + P-network_8_0_RP_8 + P-network_3_2_AI_1 + P-network_3_2_AI_2 + P-network_3_2_AI_3 + P-network_3_2_AI_4 + P-network_3_2_AI_5 + P-network_3_2_AI_6 + P-network_3_2_AI_7 + P-network_3_2_AI_8 + P-network_0_2_AskP_1 + P-network_0_2_AskP_2 + P-network_0_2_AskP_3 + P-network_0_2_AskP_4 + P-network_0_2_AskP_5 + P-network_0_2_AskP_6 + P-network_0_2_AskP_7 + P-network_0_2_AskP_8 + P-network_3_5_AI_8 + P-network_3_5_AI_7 + P-network_3_5_AI_6 + P-network_3_5_AI_5 + P-network_3_5_AI_4 + P-network_3_5_AI_3 + P-network_3_5_AI_2 + P-network_3_5_AI_1 + P-network_3_5_RI_1 + P-network_3_5_RI_2 + P-network_3_5_RI_3 + P-network_3_5_RI_4 + P-network_3_5_RI_5 + P-network_3_5_RI_6 + P-network_3_5_RI_7 + P-network_3_5_RI_8 + P-network_7_3_AskP_1 + P-network_7_3_AskP_2 + P-network_7_3_AskP_3 + P-network_7_3_AskP_4 + P-network_7_3_AskP_5 + P-network_7_3_AskP_6 + P-network_7_3_AskP_7 + P-network_7_3_AskP_8 + P-network_5_1_AI_1 + P-network_5_1_AI_2 + P-network_5_1_AI_3 + P-network_5_1_AI_4 + P-network_5_1_AI_5 + P-network_5_1_AI_6 + P-network_5_1_AI_7 + P-network_5_1_AI_8 + P-network_1_0_RP_8 + P-network_1_0_RP_7 + P-network_1_0_RP_6 + P-network_1_0_RP_5 + P-network_5_4_RI_1 + P-network_5_4_RI_2 + P-network_5_4_RI_3 + P-network_5_4_RI_4 + P-network_5_4_RI_5 + P-network_5_4_RI_6 + P-network_5_4_RI_7 + P-network_5_4_RI_8 + P-network_1_0_RP_4 + P-network_1_0_RP_3 + P-network_1_0_RP_2 + P-network_1_0_RP_1 + P-network_8_3_RP_8 + P-network_8_3_RP_7 + P-network_8_3_RP_6 + P-network_8_3_RP_5 + P-network_8_3_RP_4 + P-network_8_3_RP_3 + P-network_4_4_AnnP_1 + P-network_4_4_AnnP_2 + P-network_4_4_AnnP_3 + P-network_4_4_AnnP_4 + P-network_4_4_AnnP_5 + P-network_4_4_AnnP_6 + P-network_4_4_AnnP_7 + P-network_4_4_AnnP_8 + P-network_8_3_RP_2 + P-network_8_3_RP_1 + P-network_7_0_AI_1 + P-network_7_0_AI_2 + P-network_7_0_AI_3 + P-network_7_0_AI_4 + P-network_8_7_AnnP_8 + P-network_7_0_AI_5 + P-network_8_7_AnnP_7 + P-network_7_0_AI_6 + P-network_8_7_AnnP_6 + P-network_7_0_AI_7 + P-network_8_7_AnnP_5 + P-network_7_0_AI_8 + P-network_8_7_AnnP_4 + P-network_7_3_RI_1 + P-network_7_3_RI_2 + P-network_7_3_RI_3 + P-network_7_3_RI_4 + P-network_7_3_RI_5 + P-network_7_3_RI_6 + P-network_7_3_RI_7 + P-network_7_3_RI_8 + P-network_8_7_AnnP_3 + P-network_0_0_RI_1 + P-network_0_0_RI_2 + P-network_0_0_RI_3 + P-network_0_0_RI_4 + P-network_0_0_RI_5 + P-network_0_0_RI_6 + P-network_0_0_RI_7 + P-network_0_0_RI_8 + P-network_8_7_AnnP_2 + P-network_6_7_AskP_1 + P-network_6_7_AskP_2 + P-network_6_7_AskP_3 + P-network_6_7_AskP_4 + P-network_6_7_AskP_5 + P-network_6_7_AskP_6 + P-network_6_7_AskP_7 + P-network_6_7_AskP_8 + P-network_8_7_AnnP_1 + P-network_1_6_AI_8 + P-network_1_6_AI_7 + P-network_1_6_AI_6 + P-network_1_6_AI_5 + P-network_1_6_AI_4 + P-network_1_6_AI_3 + P-network_1_6_AI_2 + P-network_1_6_AI_1 + P-network_2_0_AskP_8 + P-network_3_8_AnnP_1 + P-network_3_8_AnnP_2 + P-network_3_8_AnnP_3 + P-network_3_8_AnnP_4 + P-network_3_8_AnnP_5 + P-network_3_8_AnnP_6 + P-network_3_8_AnnP_7 + P-network_3_8_AnnP_8 + P-network_2_0_AskP_7 + P-network_4_2_AskP_1 + P-network_4_2_AskP_2 + P-network_4_2_AskP_3 + P-network_4_2_AskP_4 + P-network_4_2_AskP_5 + P-network_4_2_AskP_6 + P-network_4_2_AskP_7 + P-network_4_2_AskP_8 + P-network_2_0_AskP_6 + P-network_2_0_AskP_5 + P-network_2_0_AskP_4 + P-network_2_0_AskP_3 + P-network_2_0_AskP_2 + P-network_2_0_AskP_1 + P-network_8_8_RP_1 + P-network_8_8_RP_2 + P-network_8_8_RP_3 + P-network_8_8_RP_4 + P-network_8_8_RP_5 + P-network_8_8_RP_6 + P-network_8_8_RP_7 + P-network_8_8_RP_8 + P-network_1_5_RP_1 + P-network_1_5_RP_2 + P-network_1_5_RP_3 + P-network_1_5_RP_4 + P-network_1_5_RP_5 + P-network_1_5_RP_6 + P-network_1_5_RP_7 + P-network_1_5_RP_8 + P-network_6_4_RP_8 + P-network_6_4_RP_7 + P-network_6_4_RP_6 + P-network_6_4_RP_5 + P-network_6_4_RP_4 + P-network_6_4_RP_3 + P-network_6_4_RP_2 + P-network_6_4_RP_1 + P-network_1_6_AnnP_8 + P-network_1_6_AnnP_7 + P-network_1_3_AnnP_1 + P-network_1_3_AnnP_2 + P-network_1_3_AnnP_3 + P-network_1_3_AnnP_4 + P-network_1_3_AnnP_5 + P-network_1_3_AnnP_6 + P-network_1_3_AnnP_7 + P-network_1_3_AnnP_8 + P-network_1_6_AnnP_6 + P-network_3_4_RP_1 + P-network_3_4_RP_2 + P-network_3_4_RP_3 + P-network_3_4_RP_4 + P-network_3_4_RP_5 + P-network_3_4_RP_6 + P-network_3_4_RP_7 + P-network_3_4_RP_8 + P-network_1_6_AnnP_5 + P-network_1_6_AnnP_4 + P-network_1_6_AnnP_3 + P-network_1_6_AnnP_2 + P-network_8_4_AnnP_1 + P-network_8_4_AnnP_2 + P-network_8_4_AnnP_3 + P-network_8_4_AnnP_4 + P-network_8_4_AnnP_5 + P-network_8_4_AnnP_6 + P-network_8_4_AnnP_7 + P-network_8_4_AnnP_8 + P-network_1_6_AnnP_1 + P-network_3_6_AskP_1 + P-network_3_6_AskP_2 + P-network_3_6_AskP_3 + P-network_3_6_AskP_4 + P-network_3_6_AskP_5 + P-network_3_6_AskP_6 + P-network_3_6_AskP_7 + P-network_3_6_AskP_8 + P-network_5_3_RP_1 + P-network_5_3_RP_2 + P-network_5_3_RP_3 + P-network_5_3_RP_4 + P-network_5_3_RP_5 + P-network_5_3_RP_6 + P-network_5_3_RP_7 + P-network_5_3_RP_8 + P-network_7_8_AI_1 + P-network_7_8_AI_2 + P-network_7_8_AI_3 + P-network_7_8_AI_4 + P-network_7_8_AI_5 + P-network_7_8_AI_6 + P-network_7_8_AI_7 + P-network_7_8_AI_8 + P-network_0_5_AI_1 + P-network_0_5_AI_2 + P-network_0_5_AI_3 + P-network_0_5_AI_4 + P-network_0_5_AI_5 + P-network_0_5_AI_6 + P-network_0_5_AI_7 + P-network_0_5_AI_8 + P-network_0_8_RI_1 + P-network_0_8_RI_2 + P-network_0_8_RI_3 + P-network_0_8_RI_4 + P-network_0_8_RI_5 + P-network_0_8_RI_6 + P-network_0_8_RI_7 + P-network_0_8_RI_8 + P-network_0_7_AnnP_1 + P-network_0_7_AnnP_2 + P-network_0_7_AnnP_3 + P-network_0_7_AnnP_4 + P-network_0_7_AnnP_5 + P-network_0_7_AnnP_6 + P-network_0_7_AnnP_7 + P-network_0_7_AnnP_8 + P-network_7_2_RP_1 + P-network_7_2_RP_2 + P-network_7_2_RP_3 + P-network_7_2_RP_4 + P-network_7_2_RP_5 + P-network_7_2_RP_6 + P-network_7_2_RP_7 + P-network_7_2_RP_8 + P-network_1_1_AskP_1 + P-network_1_1_AskP_2 + P-network_1_1_AskP_3 + P-network_1_1_AskP_4 + P-network_1_1_AskP_5 + P-network_1_1_AskP_6 + P-network_1_1_AskP_7 + P-network_1_1_AskP_8 + P-network_2_4_AI_1 + P-network_2_4_AI_2 + P-network_2_4_AI_3 + P-network_4_5_RP_8 + P-network_2_4_AI_4 + P-network_4_5_RP_7 + P-network_2_4_AI_5 + P-network_4_5_RP_6 + P-network_2_4_AI_6 + P-network_4_5_RP_5 + P-network_2_4_AI_7 + P-network_4_5_RP_4 + P-network_2_4_AI_8 + P-network_4_5_RP_3 + P-network_2_7_RI_1 + P-network_2_7_RI_2 + P-network_2_7_RI_3 + P-network_2_7_RI_4 + P-network_2_7_RI_5 + P-network_2_7_RI_6 + P-network_2_7_RI_7 + P-network_2_7_RI_8 + P-network_4_5_RP_2 + P-network_7_8_AnnP_1 + P-network_7_8_AnnP_2 + P-network_7_8_AnnP_3 + P-network_7_8_AnnP_4 + P-network_7_8_AnnP_5 + P-network_7_8_AnnP_6 + P-network_7_8_AnnP_7 + P-network_7_8_AnnP_8 + P-network_4_5_RP_1 + P-network_8_2_AskP_1 + P-network_8_2_AskP_2 + P-network_8_2_AskP_3 + P-network_8_2_AskP_4 + P-network_8_2_AskP_5 + P-network_8_2_AskP_6 + P-network_8_2_AskP_7 + P-network_8_2_AskP_8 + P-network_4_5_AskP_8 + P-network_4_5_AskP_7 + P-network_4_5_AskP_6 + P-network_4_5_AskP_5 + P-network_4_5_AskP_4 + P-network_4_5_AskP_3 + P-network_4_5_AskP_2 + P-network_4_5_AskP_1 + P-network_4_3_AI_1 + P-network_4_3_AI_2 + P-network_4_3_AI_3 + P-network_4_3_AI_4 + P-network_4_3_AI_5 + P-network_4_3_AI_6 + P-network_4_3_AI_7 + P-network_4_3_AI_8 + P-network_4_6_RI_1 + P-network_4_6_RI_2 + P-network_4_6_RI_3 + P-network_4_6_RI_4 + P-network_4_6_RI_5 + P-network_4_6_RI_6 + P-network_4_6_RI_7 + P-network_4_6_RI_8 + P-network_5_3_AnnP_1 + P-network_5_3_AnnP_2 + P-network_5_3_AnnP_3 + P-network_5_3_AnnP_4 + P-network_5_3_AnnP_5 + P-network_5_3_AnnP_6 + P-network_5_3_AnnP_7 + P-network_5_3_AnnP_8 + P-network_6_2_AI_1 + P-network_6_2_AI_2 + P-network_6_2_AI_3 + P-network_6_2_AI_4 + P-network_6_2_AI_5 + P-network_6_2_AI_6 + P-network_6_2_AI_7 + P-network_6_2_AI_8 + P-network_0_5_AskP_1 + P-network_0_5_AskP_2 + P-network_0_5_AskP_3 + P-network_0_5_AskP_4 + P-network_0_5_AskP_5 + P-network_0_5_AskP_6 + P-network_0_5_AskP_7 + P-network_0_5_AskP_8 + P-network_6_5_RI_1 + P-network_6_5_RI_2 + P-network_6_5_RI_3 + P-network_6_5_RI_4 + P-network_6_5_RI_5 + P-network_6_5_RI_6 + P-network_6_5_RI_7 + P-network_6_5_RI_8 + P-network_7_6_AskP_1 + P-network_7_6_AskP_2 + P-network_7_6_AskP_3 + P-network_7_6_AskP_4 + P-network_7_6_AskP_5 + P-network_7_6_AskP_6 + P-network_7_6_AskP_7 + P-network_7_6_AskP_8 + P-network_8_1_AI_1 + P-network_8_1_AI_2 + P-network_8_1_AI_3 + P-network_8_1_AI_4 + P-network_8_1_AI_5 + P-network_8_1_AI_6 + P-network_8_1_AI_7 + P-network_8_1_AI_8 + P-network_2_6_RP_8 + P-network_2_6_RP_7 + P-network_2_6_RP_6 + P-network_2_6_RP_5 + P-network_8_4_RI_1 + P-network_8_4_RI_2 + P-network_8_4_RI_3 + P-network_8_4_RI_4 + P-network_8_4_RI_5 + P-network_8_4_RI_6 + P-network_8_4_RI_7 + P-network_8_4_RI_8 + P-network_2_6_RP_4 + P-network_1_1_RI_1 + P-network_1_1_RI_2 + P-network_1_1_RI_3 + P-network_1_1_RI_4 + P-network_1_1_RI_5 + P-network_1_1_RI_6 + P-network_1_1_RI_7 + P-network_1_1_RI_8 + P-network_2_6_RP_3 + P-network_2_6_RP_2 + P-network_2_6_RP_1 + P-network_2_2_AnnP_8 + P-network_2_2_AnnP_7 + P-network_4_7_AnnP_1 + P-network_4_7_AnnP_2 + P-network_4_7_AnnP_3 + P-network_4_7_AnnP_4 + P-network_4_7_AnnP_5 + P-network_4_7_AnnP_6 + P-network_4_7_AnnP_7 + P-network_4_7_AnnP_8 + P-network_2_2_AnnP_6 + P-network_5_1_AskP_1 + P-network_5_1_AskP_2 + P-network_5_1_AskP_3 + P-network_5_1_AskP_4 + P-network_5_1_AskP_5 + P-network_5_1_AskP_6 + P-network_5_1_AskP_7 + P-network_5_1_AskP_8 + P-network_2_2_AnnP_5 + P-network_2_2_AnnP_4 + P-network_2_2_AnnP_3 + P-network_2_2_AnnP_2 + P-network_3_0_RI_1 + P-network_3_0_RI_2 + P-network_2_2_AnnP_1 + P-network_3_0_RI_3 + P-network_0_7_RP_1 + P-network_3_0_RI_4 + P-network_0_7_RP_2 + P-network_3_0_RI_5 + P-network_0_7_RP_3 + P-network_3_0_RI_6 + P-network_0_7_RP_4 + P-network_3_0_RI_7 + P-network_0_7_RP_5 + P-network_3_0_RI_8 + P-network_0_7_RP_6 + P-network_0_7_RP_7 + P-network_0_7_RP_8))))))
lola: processed formula: A (F (X (F (X ((3 <= P-network_2_2_AnnP_0 + P-network_0_7_RP_0 + P-network_3_0_RI_0 + P-network_5_1_AskP_0 + P-network_4_7_AnnP_0 + P-network_3_8_AnsP_0 + P-network_3_8_AnsP_1 + P-network_3_8_AnsP_2 + P-network_3_8_AnsP_3 + P-network_3_8_AnsP_4 + P-network_3_8_AnsP_5 + P-network_3_8_AnsP_6 + P-network_3_8_AnsP_7 + P-network_3_8_AnsP_8 + P-network_2_6_RP_0 + P-network_1_1_RI_0 + P-network_8_4_RI_0 ... (shortened)
lola: processed formula length: 96252
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 5 will run for 321 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-mas... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-masterState_3_F_6 + P-masterState_3_F_5 + P-masterState_3_F_4 + P-masterState_3_F_3 + P-masterState_3_F_2 + P-masterState_3_F_1 + P-masterState_3_F_0 + P-masterState_6_T_8 + P-masterState_6_T_7 + P-masterState_6_T_6 + P-masterState_6_T_5 + P-masterState_6_T_4 + P-masterState_6_T_3 + P-masterState_6_T_2 + P-masterState_6_T_1 + P-masterState_6_T_0 + P-masterState_4_T_0 + P-masterState_4_T_1 + P-masterState_4_T_2 + P-masterState_4_T_3 + P-masterState_4_T_4 + P-masterState_4_T_5 + P-masterState_4_T_6 + P-masterState_4_T_7 + P-masterState_4_T_8 + P-masterState_0_F_7 + P-masterState_0_F_6 + P-masterState_0_F_5 + P-masterState_0_F_4 + P-masterState_0_F_3 + P-masterState_0_F_2 + P-masterState_0_F_1 + P-masterState_0_F_0 + P-masterState_8_F_7 + P-masterState_8_F_6 + P-masterState_8_F_5 + P-masterState_8_F_4 + P-masterState_8_F_3 + P-masterState_8_F_2 + P-masterState_8_F_1 + P-masterState_8_F_0 + P-masterState_3_T_8 + P-masterState_3_T_7 + P-masterState_3_T_6 + P-masterState_3_T_5 + P-masterState_3_T_4 + P-masterState_3_T_3 + P-masterState_3_T_2 + P-masterState_3_T_1 + P-masterState_3_T_0 + P-masterState_1_F_0 + P-masterState_1_F_1 + P-masterState_1_F_2 + P-masterState_1_F_3 + P-masterState_1_F_4 + P-masterState_1_F_5 + P-masterState_1_F_6 + P-masterState_1_F_7 + P-masterState_1_F_8 + P-masterState_5_F_7 + P-masterState_5_F_6 + P-masterState_5_F_5 + P-masterState_5_F_4 + P-masterState_5_F_3 + P-masterState_5_F_2 + P-masterState_5_F_1 + P-masterState_5_F_0 + P-masterState_0_T_8 + P-masterState_0_T_7 + P-masterState_0_T_6 + P-masterState_0_T_5 + P-masterState_0_T_4 + P-masterState_0_T_3 + P-masterState_0_T_2 + P-masterState_0_T_1 + P-masterState_0_T_0 + P-masterState_8_T_8 + P-masterState_8_T_7 + P-masterState_8_T_6 + P-masterState_8_T_5 + P-masterState_8_T_4 + P-masterState_8_T_3 + P-masterState_8_T_2 + P-masterState_8_T_1 + P-masterState_8_T_0 + P-masterState_2_F_7 + P-masterState_2_F_6 + P-masterState_2_F_5 + P-masterState_2_F_4 + P-masterState_2_F_3 + P-masterState_2_F_2 + P-masterState_2_F_1 + P-masterState_2_F_0 + P-masterState_5_T_8 + P-masterState_5_T_7 + P-masterState_5_T_6 + P-masterState_5_T_5 + P-masterState_5_T_4 + P-masterState_5_T_3 + P-masterState_5_T_2 + P-masterState_5_T_1 + P-masterState_5_T_0 + P-masterState_7_T_0 + P-masterState_7_T_1 + P-masterState_7_T_2 + P-masterState_7_T_3 + P-masterState_7_T_4 + P-masterState_7_T_5 + P-masterState_7_T_6 + P-masterState_7_T_7 + P-masterState_7_T_8 + P-masterState_7_F_7 + P-masterState_7_F_6 + P-masterState_7_F_5 + P-masterState_7_F_4 + P-masterState_7_F_3 + P-masterState_7_F_2 + P-masterState_7_F_1 + P-masterState_7_F_0 + P-masterState_2_T_8 + P-masterState_2_T_7 + P-masterState_2_T_6 + P-masterState_2_T_5 + P-masterState_2_T_4 + P-masterState_2_T_3 + P-masterState_2_T_2 + P-masterState_2_T_1 + P-masterState_2_T_0 + P-masterState_4_F_0 + P-masterState_4_F_1 + P-masterState_4_F_2 + P-masterState_4_F_3 + P-masterState_4_F_4 + P-masterState_4_F_5 + P-masterState_4_F_6 + P-masterState_4_F_7 + P-masterState_4_F_8 + P-masterState_7_F_8 + P-masterState_2_F_8 + P-masterState_5_F_8 + P-masterState_8_F_8 + P-masterState_0_F_8 + P-masterState_3_F_8 + P-masterState_1_T_8 + P-masterState_6_F_8))))))
lola: processed formula: A (X (X (X (F ((1 <= P-masterState_6_F_7 + P-masterState_6_F_6 + P-masterState_6_F_5 + P-masterState_6_F_4 + P-masterState_6_F_3 + P-masterState_6_F_2 + P-masterState_6_F_1 + P-masterState_6_F_0 + P-masterState_1_T_7 + P-masterState_1_T_6 + P-masterState_1_T_5 + P-masterState_1_T_4 + P-masterState_1_T_3 + P-masterState_1_T_2 + P-masterState_1_T_1 + P-masterState_1_T_0 + P-masterState_3_F_7 + P-mas... (shortened)
lola: processed formula length: 3588
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 6 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 6 will run for 353 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__netw... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO) U (P-dead_8 + P-dead_7 + P-dead_6 + P-dead_5 + P-dead_4 + P-dead_3 + P-dead_2 + P-dead_1 + P-dead_0 <= P-negotiation_6_4_NONE + P-negotiation_6_2_CO + P-negotiation_3_2_DONE + P-negotiation_8_3_NONE + P-negotiation_1_0_NONE + P-negotiation_5_1_DONE + P-negotiation_7_4_CO + P-negotiation_1_3_CO + P-negotiation_7_0_DONE + P-negotiation_8_6_CO + P-negotiation_3_7_DONE + P-negotiation_1_8_DONE + P-negotiation_5_6_CO + P-negotiation_7_5_CO + P-negotiation_3_1_CO + P-negotiation_1_8_NONE + P-negotiation_0_7_DONE + P-negotiation_0_7_CO + P-negotiation_5_0_NONE + P-negotiation_7_2_DONE + P-negotiation_3_7_NONE + P-negotiation_4_3_CO + P-negotiation_5_3_DONE + P-negotiation_7_8_DONE + P-negotiation_0_5_DONE + P-negotiation_3_4_DONE + P-negotiation_1_5_DONE + P-negotiation_8_8_DONE + P-negotiation_5_6_NONE + P-negotiation_2_6_CO + P-negotiation_5_5_CO + P-negotiation_2_4_DONE + P-negotiation_0_2_CO + P-negotiation_7_5_NONE + P-negotiation_0_2_NONE + P-negotiation_8_0_DONE + P-negotiation_4_3_DONE + P-negotiation_6_1_DONE + P-negotiation_6_7_CO + P-negotiation_2_0_NONE + P-negotiation_4_2_DONE + P-negotiation_0_1_NONE + P-negotiation_2_1_NONE + P-negotiation_2_3_DONE + P-negotiation_4_5_CO + P-negotiation_6_2_DONE + P-negotiation_0_4_DONE + P-negotiation_7_7_DONE + P-negotiation_5_8_DONE + P-negotiation_2_1_CO + P-negotiation_0_0_CO + P-negotiation_4_0_NONE + P-negotiation_8_8_CO + P-negotiation_8_1_DONE + P-negotiation_6_4_CO + P-negotiation_5_0_DONE + P-negotiation_8_2_NONE + P-negotiation_1_2_CO + P-negotiation_3_1_DONE + P-negotiation_6_3_NONE + P-negotiation_1_2_DONE + P-negotiation_8_5_DONE + P-negotiation_4_4_NONE + P-negotiation_4_0_CO + P-negotiation_6_6_DONE + P-negotiation_2_5_NONE + P-negotiation_2_4_CO + P-negotiation_4_7_DONE + P-negotiation_0_6_NONE + P-negotiation_2_8_DONE + P-negotiation_8_3_CO + P-negotiation_3_6_CO + P-negotiation_7_1_NONE + P-negotiation_2_0_DONE + P-negotiation_1_5_CO + P-negotiation_5_2_NONE + P-negotiation_0_1_DONE + P-negotiation_7_4_DONE + P-negotiation_3_3_NONE + P-negotiation_8_0_CO + P-negotiation_4_8_NONE + P-negotiation_5_5_DONE + P-negotiation_1_4_NONE + P-negotiation_8_7_NONE + P-negotiation_1_6_DONE + P-negotiation_4_8_CO + P-negotiation_3_6_DONE + P-negotiation_6_8_NONE + P-negotiation_5_8_CO + P-negotiation_1_7_DONE + P-negotiation_6_7_NONE + P-negotiation_3_4_CO + P-negotiation_3_5_DONE + P-negotiation_8_2_DONE + P-negotiation_1_0_CO + P-negotiation_8_6_NONE + P-negotiation_1_3_NONE + P-negotiation_6_3_DONE + P-negotiation_2_2_NONE + P-negotiation_5_4_DONE + P-negotiation_7_7_CO + P-negotiation_4_4_DONE + P-negotiation_0_3_NONE + P-negotiation_7_6_NONE + P-negotiation_2_5_DONE + P-negotiation_5_7_NONE + P-negotiation_3_2_NONE + P-negotiation_0_6_DONE + P-negotiation_5_3_CO + P-negotiation_7_3_DONE + P-negotiation_0_0_DONE + P-negotiation_3_8_NONE + P-negotiation_4_1_CO + P-negotiation_5_1_NONE + P-negotiation_0_5_CO + P-negotiation_7_1_DONE + P-negotiation_5_2_DONE + P-negotiation_8_4_NONE + P-negotiation_7_0_NONE + P-negotiation_3_3_DONE + P-negotiation_7_2_CO + P-negotiation_6_5_NONE + P-negotiation_2_8_CO + P-negotiation_1_4_DONE + P-negotiation_8_7_DONE + P-negotiation_1_7_CO + P-negotiation_4_6_NONE + P-negotiation_6_0_CO + P-negotiation_6_8_DONE + P-negotiation_2_7_NONE + P-negotiation_0_8_NONE + P-negotiation_0_4_CO + P-negotiation_6_1_CO + P-negotiation_6_0_DONE + P-negotiation_4_7_CO + P-negotiation_4_1_DONE + P-negotiation_7_3_CO + P-negotiation_2_2_DONE + P-negotiation_0_8_DONE + P-negotiation_0_3_DONE + P-negotiation_7_6_DONE + P-negotiation_2_3_CO + P-negotiation_3_5_NONE + P-negotiation_5_7_DONE + P-negotiation_1_6_NONE + P-negotiation_1_1_CO + P-negotiation_3_8_DONE + P-negotiation_8_5_CO + P-negotiation_2_7_DONE + P-negotiation_6_6_CO + P-negotiation_7_8_NONE + P-negotiation_5_4_CO + P-negotiation_8_1_NONE + P-negotiation_4_6_DONE + P-negotiation_3_0_DONE + P-negotiation_4_2_CO + P-negotiation_1_1_DONE + P-negotiation_8_4_DONE + P-negotiation_3_0_CO + P-negotiation_6_5_DONE + P-negotiation_2_4_NONE + P-negotiation_4_3_NONE + P-negotiation_6_2_NONE + P-negotiation_0_5_NONE + P-negotiation_7_8_CO + P-negotiation_5_4_NONE + P-negotiation_3_5_CO + P-negotiation_7_3_NONE + P-negotiation_0_0_NONE + P-negotiation_1_6_CO + P-negotiation_1_1_NONE + P-negotiation_8_4_CO + P-negotiation_3_0_NONE + P-negotiation_6_5_CO + P-negotiation_4_1_NONE + P-negotiation_6_0_NONE + P-negotiation_2_2_CO + P-negotiation_4_6_CO + P-negotiation_0_3_CO + P-negotiation_2_7_CO + P-negotiation_7_1_CO + P-negotiation_0_8_CO + P-negotiation_5_2_CO + P-negotiation_7_6_CO + P-negotiation_1_7_NONE + P-negotiation_3_6_NONE + P-negotiation_3_3_CO + P-negotiation_5_5_NONE + P-negotiation_7_4_NONE + P-negotiation_5_7_CO + P-negotiation_1_4_CO + P-negotiation_2_8_NONE + P-negotiation_7_0_CO + P-negotiation_4_7_NONE + P-negotiation_3_8_CO + P-negotiation_6_6_NONE + P-negotiation_8_2_CO + P-negotiation_8_5_NONE + P-negotiation_1_2_NONE + P-negotiation_3_1_NONE + P-negotiation_5_1_CO + P-negotiation_6_3_CO + P-negotiation_5_8_NONE + P-negotiation_2_6_DONE + P-negotiation_7_7_NONE + P-negotiation_0_4_NONE + P-negotiation_4_5_DONE + P-negotiation_8_7_CO + P-negotiation_2_3_NONE + P-negotiation_6_4_DONE + P-negotiation_2_0_CO + P-negotiation_4_2_NONE + P-negotiation_8_3_DONE + P-negotiation_1_0_DONE + P-negotiation_6_1_NONE + P-negotiation_3_2_CO + P-negotiation_8_0_NONE + P-negotiation_4_4_CO + P-negotiation_6_8_CO + P-negotiation_0_1_CO + P-negotiation_8_8_NONE + P-negotiation_1_5_NONE + P-negotiation_5_6_DONE + P-negotiation_3_4_NONE + P-negotiation_7_5_DONE + P-negotiation_0_2_DONE + P-negotiation_5_3_NONE + P-negotiation_2_5_CO + P-negotiation_2_1_DONE + P-negotiation_7_2_NONE + P-negotiation_4_0_DONE + P-negotiation_3_7_CO + P-negotiation_8_1_CO + P-negotiation_0_7_NONE + P-negotiation_4_8_DONE + P-negotiation_2_6_NONE + P-negotiation_0_6_CO + P-negotiation_6_7_DONE + P-negotiation_5_0_CO + P-negotiation_4_5_NONE + P-negotiation_8_6_DONE + P-negotiation_1_3_DONE + P-negotiation_1_8_CO)))))
lola: processed formula: A (F (G (((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__netw... (shortened)
lola: processed formula length: 134414
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 5984 markings, 8513 edges, 1197 markings/sec, 0 secs
lola: 13532 markings, 20249 edges, 1510 markings/sec, 5 secs
lola: 20881 markings, 31998 edges, 1470 markings/sec, 10 secs
lola: 29138 markings, 46552 edges, 1651 markings/sec, 15 secs
lola: 36461 markings, 59815 edges, 1465 markings/sec, 20 secs
lola: 45631 markings, 76628 edges, 1834 markings/sec, 25 secs
lola: 52635 markings, 90475 edges, 1401 markings/sec, 30 secs
lola: 59343 markings, 102741 edges, 1342 markings/sec, 35 secs
lola: 66509 markings, 113548 edges, 1433 markings/sec, 40 secs
lola: 74645 markings, 125902 edges, 1627 markings/sec, 45 secs
lola: 81279 markings, 136350 edges, 1327 markings/sec, 50 secs
lola: 89299 markings, 149060 edges, 1604 markings/sec, 55 secs
lola: 96847 markings, 162646 edges, 1510 markings/sec, 60 secs
lola: 105481 markings, 178709 edges, 1727 markings/sec, 65 secs
lola: 113091 markings, 193867 edges, 1522 markings/sec, 70 secs
lola: 119649 markings, 205333 edges, 1312 markings/sec, 75 secs
lola: 127686 markings, 217753 edges, 1607 markings/sec, 80 secs
lola: 135095 markings, 230741 edges, 1482 markings/sec, 85 secs
lola: 143250 markings, 246254 edges, 1631 markings/sec, 90 secs
lola: 150263 markings, 260299 edges, 1403 markings/sec, 95 secs
lola: 157871 markings, 272457 edges, 1522 markings/sec, 100 secs
lola: 165638 markings, 287134 edges, 1553 markings/sec, 105 secs
lola: 175158 markings, 304850 edges, 1904 markings/sec, 110 secs
lola: 182014 markings, 318869 edges, 1371 markings/sec, 115 secs
lola: 190010 markings, 335160 edges, 1599 markings/sec, 120 secs
lola: 197713 markings, 350750 edges, 1541 markings/sec, 125 secs
lola: 205147 markings, 366550 edges, 1487 markings/sec, 130 secs
lola: 214420 markings, 389056 edges, 1855 markings/sec, 135 secs
lola: 220768 markings, 403437 edges, 1270 markings/sec, 140 secs
lola: 230007 markings, 425477 edges, 1848 markings/sec, 145 secs
lola: 238884 markings, 445186 edges, 1775 markings/sec, 150 secs
lola: 246324 markings, 463717 edges, 1488 markings/sec, 155 secs
lola: 253394 markings, 482752 edges, 1414 markings/sec, 160 secs
lola: 260277 markings, 501062 edges, 1377 markings/sec, 165 secs
lola: 266760 markings, 512844 edges, 1297 markings/sec, 170 secs
lola: 274380 markings, 527302 edges, 1524 markings/sec, 175 secs
lola: 281827 markings, 540121 edges, 1489 markings/sec, 180 secs
lola: 290628 markings, 556337 edges, 1760 markings/sec, 185 secs
lola: 297387 markings, 568555 edges, 1352 markings/sec, 190 secs
lola: 304988 markings, 583686 edges, 1520 markings/sec, 195 secs
lola: 311812 markings, 594268 edges, 1365 markings/sec, 200 secs
lola: 319257 markings, 605476 edges, 1489 markings/sec, 205 secs
lola: 326718 markings, 616926 edges, 1492 markings/sec, 210 secs
lola: 333505 markings, 627751 edges, 1357 markings/sec, 215 secs
lola: 340666 markings, 638649 edges, 1432 markings/sec, 220 secs
lola: 348165 markings, 650809 edges, 1500 markings/sec, 225 secs
lola: 355788 markings, 662968 edges, 1525 markings/sec, 230 secs
lola: 362158 markings, 673363 edges, 1274 markings/sec, 235 secs
lola: 368802 markings, 685094 edges, 1329 markings/sec, 240 secs
lola: 376878 markings, 700119 edges, 1615 markings/sec, 245 secs
lola: 384146 markings, 712644 edges, 1454 markings/sec, 250 secs
lola: 392376 markings, 728225 edges, 1646 markings/sec, 255 secs
lola: 398613 markings, 739483 edges, 1247 markings/sec, 260 secs
lola: 406491 markings, 754673 edges, 1576 markings/sec, 265 secs
lola: 413625 markings, 765298 edges, 1427 markings/sec, 270 secs
lola: 422318 markings, 778692 edges, 1739 markings/sec, 275 secs
lola: 431727 markings, 793513 edges, 1882 markings/sec, 280 secs
lola: 439393 markings, 805253 edges, 1533 markings/sec, 285 secs
lola: 448065 markings, 819642 edges, 1734 markings/sec, 290 secs
lola: 455441 markings, 831614 edges, 1475 markings/sec, 295 secs
lola: 462907 markings, 845812 edges, 1493 markings/sec, 300 secs
lola: 471715 markings, 861948 edges, 1762 markings/sec, 305 secs
lola: 478734 markings, 876422 edges, 1404 markings/sec, 310 secs
lola: 485754 markings, 887457 edges, 1404 markings/sec, 315 secs
lola: 493078 markings, 898821 edges, 1465 markings/sec, 320 secs
lola: 499697 markings, 910565 edges, 1324 markings/sec, 325 secs
lola: 507713 markings, 925920 edges, 1603 markings/sec, 330 secs
lola: 514647 markings, 939773 edges, 1387 markings/sec, 335 secs
lola: 522233 markings, 951887 edges, 1517 markings/sec, 340 secs
lola: 530811 markings, 968594 edges, 1716 markings/sec, 345 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 7 will run for 353 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8))))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8))))))
lola: processed formula: A (X (F (G (X ((1 <= P-polling_0 + P-polling_1 + P-polling_2 + P-polling_3 + P-polling_4 + P-polling_5 + P-polling_6 + P-polling_7 + P-polling_8))))))
lola: processed formula length: 150
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 8 will run for 398 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1))))))
lola: processed formula: A (X (X (G (F ((P-poll__waitingMessage_0 + P-poll__waitingMessage_1 + P-poll__waitingMessage_2 + P-poll__waitingMessage_4 + P-poll__waitingMessage_5 + P-poll__waitingMessage_6 + P-poll__waitingMessage_7 + P-poll__waitingMessage_8 + P-poll__waitingMessage_3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs_... (shortened)
lola: processed formula length: 2567
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 4 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 6 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: 102569 markings, 445851 edges, 20514 markings/sec, 0 secs
lola: 198288 markings, 951038 edges, 19144 markings/sec, 5 secs
lola: 291459 markings, 1442891 edges, 18634 markings/sec, 10 secs
lola: 389238 markings, 1933830 edges, 19556 markings/sec, 15 secs
lola: 482313 markings, 2389892 edges, 18615 markings/sec, 20 secs
lola: 573498 markings, 2912691 edges, 18237 markings/sec, 25 secs
lola: 660379 markings, 3457818 edges, 17376 markings/sec, 30 secs
lola: 740696 markings, 3961116 edges, 16063 markings/sec, 35 secs
lola: 823191 markings, 4463371 edges, 16499 markings/sec, 40 secs
lola: 914776 markings, 4967865 edges, 18317 markings/sec, 45 secs
lola: 1006701 markings, 5482771 edges, 18385 markings/sec, 50 secs
lola: 1092780 markings, 6024186 edges, 17216 markings/sec, 55 secs
lola: 1179043 markings, 6565906 edges, 17253 markings/sec, 60 secs
lola: 1264868 markings, 7088813 edges, 17165 markings/sec, 65 secs
lola: 1353426 markings, 7577499 edges, 17712 markings/sec, 70 secs
lola: 1445667 markings, 8091446 edges, 18448 markings/sec, 75 secs
lola: 1531824 markings, 8631707 edges, 17231 markings/sec, 80 secs
lola: 1617990 markings, 9173316 edges, 17233 markings/sec, 85 secs
lola: 1705449 markings, 9708028 edges, 17492 markings/sec, 90 secs
lola: 1799148 markings, 10208160 edges, 18740 markings/sec, 95 secs
lola: 1894593 markings, 10678275 edges, 19089 markings/sec, 100 secs
lola: 1986905 markings, 11196971 edges, 18462 markings/sec, 105 secs
lola: 2078202 markings, 11709618 edges, 18259 markings/sec, 110 secs
lola: 2169840 markings, 12196435 edges, 18328 markings/sec, 115 secs
lola: 2266575 markings, 12690039 edges, 19347 markings/sec, 120 secs
lola: 2355740 markings, 13210524 edges, 17833 markings/sec, 125 secs
lola: 2438319 markings, 13728690 edges, 16516 markings/sec, 130 secs
lola: 2521484 markings, 14251214 edges, 16633 markings/sec, 135 secs
lola: 2606066 markings, 14757300 edges, 16916 markings/sec, 140 secs
lola: 2693620 markings, 15270926 edges, 17511 markings/sec, 145 secs
lola: 2773182 markings, 15795944 edges, 15912 markings/sec, 150 secs
lola: 2846217 markings, 16326835 edges, 14607 markings/sec, 155 secs
lola: 2922997 markings, 16889514 edges, 15356 markings/sec, 160 secs
lola: 3001959 markings, 17461461 edges, 15792 markings/sec, 165 secs
lola: 3083398 markings, 18007394 edges, 16288 markings/sec, 170 secs
lola: 3165785 markings, 18531792 edges, 16477 markings/sec, 175 secs
lola: 3246751 markings, 19094782 edges, 16193 markings/sec, 180 secs
lola: 3324726 markings, 19661015 edges, 15595 markings/sec, 185 secs
lola: 3403632 markings, 20234418 edges, 15781 markings/sec, 190 secs
lola: 3483837 markings, 20802785 edges, 16041 markings/sec, 195 secs
lola: 3568086 markings, 21352535 edges, 16850 markings/sec, 200 secs
lola: 3652419 markings, 21898429 edges, 16867 markings/sec, 205 secs
lola: 3731430 markings, 22473370 edges, 15802 markings/sec, 210 secs
lola: 3809929 markings, 23047728 edges, 15700 markings/sec, 215 secs
lola: 3888081 markings, 23613776 edges, 15630 markings/sec, 220 secs
lola: 3970266 markings, 24165268 edges, 16437 markings/sec, 225 secs
lola: 4059671 markings, 24686284 edges, 17881 markings/sec, 230 secs
lola: 4145319 markings, 25231758 edges, 17130 markings/sec, 235 secs
lola: 4228692 markings, 25785519 edges, 16675 markings/sec, 240 secs
lola: 4312092 markings, 26335449 edges, 16680 markings/sec, 245 secs
lola: 4398837 markings, 26872738 edges, 17349 markings/sec, 250 secs
lola: 4491550 markings, 27384804 edges, 18543 markings/sec, 255 secs
lola: 4580655 markings, 27913994 edges, 17821 markings/sec, 260 secs
lola: 4666807 markings, 28454415 edges, 17230 markings/sec, 265 secs
lola: 4753092 markings, 28996170 edges, 17257 markings/sec, 270 secs
lola: 4842526 markings, 29521189 edges, 17887 markings/sec, 275 secs
lola: 4930236 markings, 30048285 edges, 17542 markings/sec, 280 secs
lola: 5011881 markings, 30605977 edges, 16329 markings/sec, 285 secs
lola: 5090565 markings, 31179438 edges, 15737 markings/sec, 290 secs
lola: 5169198 markings, 31752750 edges, 15727 markings/sec, 295 secs
lola: 5248905 markings, 32320834 edges, 15941 markings/sec, 300 secs
lola: 5332836 markings, 32870734 edges, 16786 markings/sec, 305 secs
lola: 5417967 markings, 33413623 edges, 17026 markings/sec, 310 secs
lola: 5496246 markings, 33987508 edges, 15656 markings/sec, 315 secs
lola: 5575323 markings, 34561094 edges, 15815 markings/sec, 320 secs
lola: 5654292 markings, 35134348 edges, 15794 markings/sec, 325 secs
lola: 5736665 markings, 35692447 edges, 16475 markings/sec, 330 secs
lola: 5821146 markings, 36230958 edges, 16896 markings/sec, 335 secs
lola: 5900338 markings, 36775837 edges, 15838 markings/sec, 340 secs
lola: 5978952 markings, 37348585 edges, 15723 markings/sec, 345 secs
lola: 6057534 markings, 37920867 edges, 15716 markings/sec, 350 secs
lola: 6136956 markings, 38486157 edges, 15884 markings/sec, 355 secs
lola: 6222369 markings, 39034507 edges, 17083 markings/sec, 360 secs
lola: 6312936 markings, 39560211 edges, 18113 markings/sec, 365 secs
lola: 6393094 markings, 40088749 edges, 16032 markings/sec, 370 secs
lola: 6476463 markings, 40642107 edges, 16674 markings/sec, 375 secs
lola: 6560019 markings, 41196193 edges, 16711 markings/sec, 380 secs
lola: 6649050 markings, 41725693 edges, 17806 markings/sec, 385 secs
lola: 6743293 markings, 42226127 edges, 18849 markings/sec, 390 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 9 will run for 398 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)) U X ((3 <= P-electionInit_4 + P-electionInit_2 + P-electionInit_1 + P-electionInit_0 + P-electionInit_3 + P-electionInit_5 + P-electionInit_6 + P-electionInit_7 + P-electionInit_8))))
lola: processed formula: A ((((1 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8) U (1 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-... (shortened)
lola: processed formula length: 2757
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 6 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 6 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: LTL model checker
lola: The net satisfies the given formula (language of the product automaton is empty).
lola: ========================================
lola: subprocess 10 will run for 464 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((1 <= P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (1 <= P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0)
lola: processed formula length: 130
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: preprocessing
lola: The net violates the given property already in its initial state.
lola: ========================================
lola: subprocess 11 will run for 557 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8)))))
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8)))))
lola: processed formula: A (G (G (F ((2 <= P-poll__handlingMessage_1 + P-poll__handlingMessage_0 + P-poll__handlingMessage_2 + P-poll__handlingMessage_3 + P-poll__handlingMessage_4 + P-poll__handlingMessage_5 + P-poll__handlingMessage_6 + P-poll__handlingMessage_7 + P-poll__handlingMessage_8)))))
lola: processed formula length: 272
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 93157 markings, 164676 edges, 18631 markings/sec, 0 secs
lola: 187630 markings, 336392 edges, 18895 markings/sec, 5 secs
lola: 284208 markings, 510679 edges, 19316 markings/sec, 10 secs
lola: 379445 markings, 684425 edges, 19047 markings/sec, 15 secs
lola: 474314 markings, 857843 edges, 18974 markings/sec, 20 secs
lola: 568218 markings, 1030254 edges, 18781 markings/sec, 25 secs
lola: 663285 markings, 1203929 edges, 19013 markings/sec, 30 secs
lola: 744510 markings, 1353303 edges, 16245 markings/sec, 35 secs
lola: 838044 markings, 1527717 edges, 18707 markings/sec, 40 secs
lola: 931864 markings, 1703124 edges, 18764 markings/sec, 45 secs
lola: 1025566 markings, 1877152 edges, 18740 markings/sec, 50 secs
lola: 1118197 markings, 2050188 edges, 18526 markings/sec, 55 secs
lola: 1208446 markings, 2219248 edges, 18050 markings/sec, 60 secs
lola: 1297197 markings, 2384352 edges, 17750 markings/sec, 65 secs
lola: 1392617 markings, 2562461 edges, 19084 markings/sec, 70 secs
lola: 1487105 markings, 2740441 edges, 18898 markings/sec, 75 secs
lola: 1581265 markings, 2917536 edges, 18832 markings/sec, 80 secs
lola: 1675501 markings, 3095183 edges, 18847 markings/sec, 85 secs
lola: 1768838 markings, 3273082 edges, 18667 markings/sec, 90 secs
lola: 1864404 markings, 3447433 edges, 19113 markings/sec, 95 secs
lola: 1960416 markings, 3623298 edges, 19202 markings/sec, 100 secs
lola: 2055172 markings, 3799304 edges, 18951 markings/sec, 105 secs
lola: 2149572 markings, 3976975 edges, 18880 markings/sec, 110 secs
lola: 2241297 markings, 4149349 edges, 18345 markings/sec, 115 secs
lola: 2334501 markings, 4325267 edges, 18641 markings/sec, 120 secs
lola: 2430019 markings, 4505216 edges, 19104 markings/sec, 125 secs
lola: 2523937 markings, 4683600 edges, 18784 markings/sec, 130 secs
lola: 2617840 markings, 4862651 edges, 18781 markings/sec, 135 secs
lola: 2711826 markings, 5040919 edges, 18797 markings/sec, 140 secs
lola: 2805661 markings, 5219953 edges, 18767 markings/sec, 145 secs
lola: 2900137 markings, 5401302 edges, 18895 markings/sec, 150 secs
lola: 2992797 markings, 5580846 edges, 18532 markings/sec, 155 secs
lola: 3084727 markings, 5764904 edges, 18386 markings/sec, 160 secs
lola: 3178186 markings, 5939426 edges, 18692 markings/sec, 165 secs
lola: 3272213 markings, 6114114 edges, 18805 markings/sec, 170 secs
lola: 3364976 markings, 6288233 edges, 18553 markings/sec, 175 secs
lola: 3459401 markings, 6464151 edges, 18885 markings/sec, 180 secs
lola: 3554796 markings, 6641737 edges, 19079 markings/sec, 185 secs
lola: 3646157 markings, 6813163 edges, 18272 markings/sec, 190 secs
lola: 3737559 markings, 6985096 edges, 18280 markings/sec, 195 secs
lola: 3830579 markings, 7160230 edges, 18604 markings/sec, 200 secs
lola: 3923144 markings, 7335666 edges, 18513 markings/sec, 205 secs
lola: 4013126 markings, 7506140 edges, 17996 markings/sec, 210 secs
lola: 4106520 markings, 7681835 edges, 18679 markings/sec, 215 secs
lola: 4200071 markings, 7858383 edges, 18710 markings/sec, 220 secs
lola: 4294716 markings, 8036857 edges, 18929 markings/sec, 225 secs
lola: 4388165 markings, 8214604 edges, 18690 markings/sec, 230 secs
lola: 4481048 markings, 8391836 edges, 18577 markings/sec, 235 secs
lola: 4569692 markings, 8561798 edges, 17729 markings/sec, 240 secs
lola: 4662318 markings, 8739594 edges, 18525 markings/sec, 245 secs
lola: 4754864 markings, 8918925 edges, 18509 markings/sec, 250 secs
lola: 4846574 markings, 9102348 edges, 18342 markings/sec, 255 secs
lola: 4937786 markings, 9280288 edges, 18242 markings/sec, 260 secs
lola: 5030585 markings, 9461849 edges, 18560 markings/sec, 265 secs
lola: 5123025 markings, 9642415 edges, 18488 markings/sec, 270 secs
lola: 5214763 markings, 9823077 edges, 18348 markings/sec, 275 secs
lola: 5306313 markings, 10004172 edges, 18310 markings/sec, 280 secs
lola: 5400299 markings, 10187345 edges, 18797 markings/sec, 285 secs
lola: 5494047 markings, 10370937 edges, 18750 markings/sec, 290 secs
lola: 5588058 markings, 10555032 edges, 18802 markings/sec, 295 secs
lola: 5681001 markings, 10738114 edges, 18589 markings/sec, 300 secs
lola: 5773545 markings, 10921515 edges, 18509 markings/sec, 305 secs
lola: 5865925 markings, 11104018 edges, 18476 markings/sec, 310 secs
lola: 5956660 markings, 11283386 edges, 18147 markings/sec, 315 secs
lola: 6048570 markings, 11465996 edges, 18382 markings/sec, 320 secs
lola: 6138969 markings, 11646463 edges, 18080 markings/sec, 325 secs
lola: 6228582 markings, 11817558 edges, 17923 markings/sec, 330 secs
lola: 6318205 markings, 11981369 edges, 17925 markings/sec, 335 secs
lola: 6412842 markings, 12155718 edges, 18927 markings/sec, 340 secs
lola: 6506503 markings, 12331207 edges, 18732 markings/sec, 345 secs
lola: 6599991 markings, 12506977 edges, 18698 markings/sec, 350 secs
lola: 6693493 markings, 12683334 edges, 18700 markings/sec, 355 secs
lola: 6787917 markings, 12861063 edges, 18885 markings/sec, 360 secs
lola: 6882383 markings, 13039943 edges, 18893 markings/sec, 365 secs
lola: 6975905 markings, 13217373 edges, 18704 markings/sec, 370 secs
lola: 7065168 markings, 13388555 edges, 17853 markings/sec, 375 secs
lola: 7158566 markings, 13564846 edges, 18680 markings/sec, 380 secs
lola: 7251827 markings, 13743549 edges, 18652 markings/sec, 385 secs
lola: 7345662 markings, 13923989 edges, 18767 markings/sec, 390 secs
lola: 7438033 markings, 14104916 edges, 18474 markings/sec, 395 secs
lola: 7530724 markings, 14287426 edges, 18538 markings/sec, 400 secs
lola: 7624333 markings, 14463338 edges, 18722 markings/sec, 405 secs
lola: 7717784 markings, 14639772 edges, 18690 markings/sec, 410 secs
lola: 7809618 markings, 14812769 edges, 18367 markings/sec, 415 secs
lola: 7903037 markings, 14990259 edges, 18684 markings/sec, 420 secs
lola: 7996163 markings, 15167892 edges, 18625 markings/sec, 425 secs
lola: 8088815 markings, 15345497 edges, 18530 markings/sec, 430 secs
lola: 8182342 markings, 15524954 edges, 18705 markings/sec, 435 secs
lola: 8275127 markings, 15704548 edges, 18557 markings/sec, 440 secs
lola: 8367254 markings, 15888326 edges, 18425 markings/sec, 445 secs
lola: 8459477 markings, 16070595 edges, 18445 markings/sec, 450 secs
lola: 8552291 markings, 16253534 edges, 18563 markings/sec, 455 secs
lola: 8635635 markings, 16419087 edges, 16669 markings/sec, 460 secs
lola: 8728398 markings, 16602967 edges, 18553 markings/sec, 465 secs
lola: 8822411 markings, 16788557 edges, 18803 markings/sec, 470 secs
lola: 8916150 markings, 16974518 edges, 18748 markings/sec, 475 secs
lola: 9008438 markings, 17158775 edges, 18458 markings/sec, 480 secs
lola: 9100655 markings, 17342819 edges, 18443 markings/sec, 485 secs
lola: 9190090 markings, 17521858 edges, 17887 markings/sec, 490 secs
lola: 9281700 markings, 17704960 edges, 18322 markings/sec, 495 secs
lola: 9375371 markings, 17882150 edges, 18734 markings/sec, 500 secs
lola: 9468684 markings, 18061102 edges, 18663 markings/sec, 505 secs
lola: 9562461 markings, 18241761 edges, 18755 markings/sec, 510 secs
lola: 9654688 markings, 18423094 edges, 18445 markings/sec, 515 secs
lola: 9745418 markings, 18601940 edges, 18146 markings/sec, 520 secs
lola: 9838819 markings, 18781031 edges, 18680 markings/sec, 525 secs
lola: 9932068 markings, 18961029 edges, 18650 markings/sec, 530 secs
lola: 10024465 markings, 19143968 edges, 18479 markings/sec, 535 secs
lola: 10116516 markings, 19328762 edges, 18410 markings/sec, 540 secs
lola: 10208780 markings, 19513776 edges, 18453 markings/sec, 545 secs
lola: 10301473 markings, 19700071 edges, 18539 markings/sec, 550 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 12 will run for 557 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A ((P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8))
lola: ========================================
lola: SUBTASK
lola: checking initial satisfaction
lola: processed formula: (P-crashed_8 + P-crashed_7 + P-crashed_6 + P-crashed_5 + P-crashed_4 + P-crashed_3 + P-crashed_2 + P-crashed_1 + P-crashed_0 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8)
lola: processed formula length: 315
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: processed formula with 1 atomic propositions
lola: RUNNING
lola: SUBRESULT
lola: result: yes
lola: produced by: preprocessing
lola: The net satisfies the property already in its initial state.
lola: ========================================
lola: subprocess 13 will run for 743 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0))... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0)))))
lola: processed formula: A (G (X (((2 <= P-electionFailed_0 + P-electionFailed_1 + P-electionFailed_2 + P-electionFailed_3 + P-electionFailed_4 + P-electionFailed_5 + P-electionFailed_6 + P-electionFailed_7 + P-electionFailed_8) U (1 <= P-electedPrimary_8 + P-electedPrimary_7 + P-electedPrimary_6 + P-electedPrimary_5 + P-electedPrimary_4 + P-electedPrimary_3 + P-electedPrimary_2 + P-electedPrimary_1 + P-electedPrimary_0))... (shortened)
lola: processed formula length: 403
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 3 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: ========================================
lola: subprocess 14 will run for 1114 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll_... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll__networl_0_3_AnsP_3 + P-poll__networl_0_3_AnsP_2 + P-poll__networl_0_3_AnsP_1 + P-poll__networl_2_8_AnsP_8 + P-poll__networl_2_8_AnsP_7 + P-poll__networl_2_8_AnsP_6 + P-poll__networl_2_8_AnsP_5 + P-poll__networl_2_8_AnsP_4 + P-poll__networl_2_8_AnsP_3 + P-poll__networl_2_8_AnsP_2 + P-poll__networl_2_8_AnsP_1 + P-poll__networl_8_0_AnsP_8 + P-poll__networl_8_0_AnsP_7 + P-poll__networl_8_0_AnsP_6 + P-poll__networl_8_0_AnsP_5 + P-poll__networl_8_0_AnsP_4 + P-poll__networl_8_0_AnsP_3 + P-poll__networl_8_0_AnsP_2 + P-poll__networl_8_0_AnsP_1 + P-poll__networl_6_8_AnsP_1 + P-poll__networl_6_8_AnsP_2 + P-poll__networl_6_8_AnsP_3 + P-poll__networl_6_8_AnsP_4 + P-poll__networl_6_8_AnsP_5 + P-poll__networl_6_8_AnsP_6 + P-poll__networl_6_8_AnsP_7 + P-poll__networl_6_8_AnsP_8 + P-poll__networl_3_4_AnsP_8 + P-poll__networl_3_4_AnsP_7 + P-poll__networl_3_4_AnsP_6 + P-poll__networl_3_4_AnsP_5 + P-poll__networl_3_4_AnsP_4 + P-poll__networl_3_4_AnsP_3 + P-poll__networl_3_4_AnsP_2 + P-poll__networl_3_4_AnsP_1 + P-poll__networl_4_0_AnsP_8 + P-poll__networl_4_0_AnsP_7 + P-poll__networl_4_0_AnsP_6 + P-poll__networl_4_0_AnsP_5 + P-poll__networl_4_0_AnsP_4 + P-poll__networl_4_0_AnsP_3 + P-poll__networl_4_0_AnsP_2 + P-poll__networl_4_0_AnsP_1 + P-poll__networl_6_5_AnsP_8 + P-poll__networl_6_5_AnsP_7 + P-poll__networl_6_5_AnsP_6 + P-poll__networl_6_5_AnsP_5 + P-poll__networl_6_5_AnsP_4 + P-poll__networl_6_5_AnsP_3 + P-poll__networl_6_5_AnsP_2 + P-poll__networl_6_5_AnsP_1 + P-poll__networl_4_3_AnsP_1 + P-poll__networl_4_3_AnsP_2 + P-poll__networl_4_3_AnsP_3 + P-poll__networl_4_3_AnsP_4 + P-poll__networl_4_3_AnsP_5 + P-poll__networl_4_3_AnsP_6 + P-poll__networl_4_3_AnsP_7 + P-poll__networl_4_3_AnsP_8 + P-poll__networl_7_1_AnsP_8 + P-poll__networl_7_1_AnsP_7 + P-poll__networl_7_1_AnsP_6 + P-poll__networl_7_1_AnsP_5 + P-poll__networl_7_1_AnsP_4 + P-poll__networl_7_1_AnsP_3 + P-poll__networl_7_1_AnsP_2 + P-poll__networl_7_1_AnsP_1 + P-poll__networl_0_0_AnsP_8 + P-poll__networl_0_0_AnsP_7 + P-poll__networl_0_0_AnsP_6 + P-poll__networl_0_0_AnsP_5 + P-poll__networl_0_0_AnsP_4 + P-poll__networl_0_0_AnsP_3 + P-poll__networl_0_0_AnsP_2 + P-poll__networl_0_0_AnsP_1 + P-poll__networl_2_5_AnsP_8 + P-poll__networl_2_5_AnsP_7 + P-poll__networl_2_5_AnsP_6 + P-poll__networl_2_5_AnsP_5 + P-poll__networl_2_5_AnsP_4 + P-poll__networl_2_5_AnsP_3 + P-poll__networl_2_5_AnsP_2 + P-poll__networl_2_5_AnsP_1 + P-poll__networl_3_1_AnsP_8 + P-poll__networl_3_1_AnsP_7 + P-poll__networl_3_1_AnsP_6 + P-poll__networl_3_1_AnsP_5 + P-poll__networl_3_1_AnsP_4 + P-poll__networl_3_1_AnsP_3 + P-poll__networl_3_1_AnsP_2 + P-poll__networl_3_1_AnsP_1 + P-poll__networl_5_6_AnsP_8 + P-poll__networl_3_7_AnsP_1 + P-poll__networl_5_6_AnsP_7 + P-poll__networl_3_7_AnsP_2 + P-poll__networl_5_6_AnsP_6 + P-poll__networl_3_7_AnsP_3 + P-poll__networl_5_6_AnsP_5 + P-poll__networl_3_7_AnsP_4 + P-poll__networl_5_6_AnsP_4 + P-poll__networl_3_7_AnsP_5 + P-poll__networl_5_6_AnsP_3 + P-poll__networl_3_7_AnsP_6 + P-poll__networl_5_6_AnsP_2 + P-poll__networl_3_7_AnsP_7 + P-poll__networl_5_6_AnsP_1 + P-poll__networl_3_7_AnsP_8 + P-poll__networl_6_2_AnsP_8 + P-poll__networl_6_2_AnsP_7 + P-poll__networl_6_2_AnsP_6 + P-poll__networl_6_2_AnsP_5 + P-poll__networl_6_2_AnsP_4 + P-poll__networl_6_2_AnsP_3 + P-poll__networl_6_2_AnsP_2 + P-poll__networl_6_2_AnsP_1 + P-poll__networl_8_7_AnsP_8 + P-poll__networl_8_7_AnsP_7 + P-poll__networl_8_7_AnsP_6 + P-poll__networl_8_7_AnsP_5 + P-poll__networl_8_7_AnsP_4 + P-poll__networl_8_7_AnsP_3 + P-poll__networl_8_7_AnsP_2 + P-poll__networl_8_7_AnsP_1 + P-poll__networl_1_6_AnsP_8 + P-poll__networl_1_6_AnsP_7 + P-poll__networl_1_6_AnsP_6 + P-poll__networl_1_6_AnsP_5 + P-poll__networl_1_6_AnsP_4 + P-poll__networl_1_6_AnsP_3 + P-poll__networl_1_6_AnsP_2 + P-poll__networl_1_6_AnsP_1 + P-poll__networl_1_2_AnsP_1 + P-poll__networl_1_2_AnsP_2 + P-poll__networl_1_2_AnsP_3 + P-poll__networl_1_2_AnsP_4 + P-poll__networl_1_2_AnsP_5 + P-poll__networl_1_2_AnsP_6 + P-poll__networl_1_2_AnsP_7 + P-poll__networl_1_2_AnsP_8 + P-poll__networl_2_2_AnsP_8 + P-poll__networl_2_2_AnsP_7 + P-poll__networl_2_2_AnsP_6 + P-poll__networl_2_2_AnsP_5 + P-poll__networl_2_2_AnsP_4 + P-poll__networl_2_2_AnsP_3 + P-poll__networl_2_2_AnsP_2 + P-poll__networl_2_2_AnsP_1 + P-poll__networl_8_3_AnsP_1 + P-poll__networl_8_3_AnsP_2 + P-poll__networl_8_3_AnsP_3 + P-poll__networl_8_3_AnsP_4 + P-poll__networl_8_3_AnsP_5 + P-poll__networl_8_3_AnsP_6 + P-poll__networl_8_3_AnsP_7 + P-poll__networl_8_3_AnsP_8 + P-poll__networl_4_7_AnsP_8 + P-poll__networl_4_7_AnsP_7 + P-poll__networl_4_7_AnsP_6 + P-poll__networl_4_7_AnsP_5 + P-poll__networl_4_7_AnsP_4 + P-poll__networl_4_7_AnsP_3 + P-poll__networl_4_7_AnsP_2 + P-poll__networl_4_7_AnsP_1 + P-poll__networl_5_3_AnsP_8 + P-poll__networl_5_3_AnsP_7 + P-poll__networl_5_3_AnsP_6 + P-poll__networl_5_3_AnsP_5 + P-poll__networl_5_3_AnsP_4 + P-poll__networl_5_3_AnsP_3 + P-poll__networl_5_3_AnsP_2 + P-poll__networl_5_3_AnsP_1 + P-poll__networl_7_8_AnsP_8 + P-poll__networl_7_8_AnsP_7 + P-poll__networl_7_8_AnsP_6 + P-poll__networl_7_8_AnsP_5 + P-poll__networl_7_8_AnsP_4 + P-poll__networl_7_8_AnsP_3 + P-poll__networl_7_8_AnsP_2 + P-poll__networl_7_8_AnsP_1 + P-poll__networl_0_7_AnsP_8 + P-poll__networl_0_7_AnsP_7 + P-poll__networl_0_7_AnsP_6 + P-poll__networl_0_7_AnsP_5 + P-poll__networl_0_7_AnsP_4 + P-poll__networl_0_7_AnsP_3 + P-poll__networl_0_7_AnsP_2 + P-poll__networl_0_7_AnsP_1 + P-poll__networl_8_4_AnsP_8 + P-poll__networl_8_4_AnsP_7 + P-poll__networl_8_4_AnsP_6 + P-poll__networl_8_4_AnsP_5 + P-poll__networl_8_4_AnsP_4 + P-poll__networl_8_4_AnsP_3 + P-poll__networl_8_4_AnsP_2 + P-poll__networl_8_4_AnsP_1 + P-poll__networl_0_6_AnsP_1 + P-poll__networl_0_6_AnsP_2 + P-poll__networl_1_3_AnsP_8 + P-poll__networl_0_6_AnsP_3 + P-poll__networl_1_3_AnsP_7 + P-poll__networl_0_6_AnsP_4 + P-poll__networl_1_3_AnsP_6 + P-poll__networl_0_6_AnsP_5 + P-poll__networl_1_3_AnsP_5 + P-poll__networl_0_6_AnsP_6 + P-poll__networl_0_6_AnsP_7 + P-poll__networl_0_6_AnsP_8 + P-poll__networl_1_3_AnsP_4 + P-poll__networl_1_3_AnsP_3 + P-poll__networl_1_3_AnsP_2 + P-poll__networl_1_3_AnsP_1 + P-poll__networl_3_8_AnsP_8 + P-poll__networl_3_8_AnsP_7 + P-poll__networl_3_8_AnsP_6 + P-poll__networl_3_8_AnsP_5 + P-poll__networl_3_8_AnsP_4 + P-poll__networl_3_8_AnsP_3 + P-poll__networl_3_8_AnsP_2 + P-poll__networl_3_8_AnsP_1 + P-poll__networl_7_7_AnsP_1 + P-poll__networl_7_7_AnsP_2 + P-poll__networl_7_7_AnsP_3 + P-poll__networl_7_7_AnsP_4 + P-poll__networl_7_7_AnsP_5 + P-poll__networl_7_7_AnsP_6 + P-poll__networl_7_7_AnsP_7 + P-poll__networl_7_7_AnsP_8 + P-poll__networl_4_4_AnsP_8 + P-poll__networl_4_4_AnsP_7 + P-poll__networl_4_4_AnsP_6 + P-poll__networl_4_4_AnsP_5 + P-poll__networl_4_4_AnsP_4 + P-poll__networl_4_4_AnsP_3 + P-poll__networl_4_4_AnsP_2 + P-poll__networl_4_4_AnsP_1 + P-poll__networl_5_0_AnsP_8 + P-poll__networl_5_0_AnsP_7 + P-poll__networl_5_0_AnsP_6 + P-poll__networl_5_0_AnsP_5 + P-poll__networl_5_0_AnsP_4 + P-poll__networl_5_0_AnsP_3 + P-poll__networl_5_2_AnsP_1 + P-poll__networl_5_2_AnsP_2 + P-poll__networl_5_2_AnsP_3 + P-poll__networl_5_2_AnsP_4 + P-poll__networl_5_2_AnsP_5 + P-poll__networl_5_2_AnsP_6 + P-poll__networl_5_2_AnsP_7 + P-poll__networl_5_2_AnsP_8 + P-poll__networl_5_0_AnsP_2 + P-poll__networl_5_0_AnsP_1 + P-poll__networl_7_5_AnsP_8 + P-poll__networl_7_5_AnsP_7 + P-poll__networl_7_5_AnsP_6 + P-poll__networl_7_5_AnsP_5 + P-poll__networl_7_5_AnsP_4 + P-poll__networl_7_5_AnsP_3 + P-poll__networl_7_5_AnsP_2 + P-poll__networl_7_5_AnsP_1 + P-poll__networl_0_4_AnsP_8 + P-poll__networl_0_4_AnsP_7 + P-poll__networl_0_4_AnsP_6 + P-poll__networl_0_4_AnsP_5 + P-poll__networl_0_4_AnsP_4 + P-poll__networl_0_4_AnsP_3 + P-poll__networl_0_4_AnsP_2 + P-poll__networl_0_4_AnsP_1 + P-poll__networl_8_1_AnsP_8 + P-poll__networl_8_1_AnsP_7 + P-poll__networl_8_1_AnsP_6 + P-poll__networl_8_1_AnsP_5 + P-poll__networl_8_1_AnsP_4 + P-poll__networl_8_1_AnsP_3 + P-poll__networl_8_1_AnsP_2 + P-poll__networl_8_1_AnsP_1 + P-poll__networl_1_0_AnsP_8 + P-poll__networl_1_0_AnsP_7 + P-poll__networl_1_0_AnsP_6 + P-poll__networl_1_0_AnsP_5 + P-poll__networl_1_0_AnsP_4 + P-poll__networl_1_0_AnsP_3 + P-poll__networl_1_0_AnsP_2 + P-poll__networl_1_0_AnsP_1 + P-poll__networl_3_5_AnsP_8 + P-poll__networl_3_5_AnsP_7 + P-poll__networl_3_5_AnsP_6 + P-poll__networl_3_5_AnsP_5 + P-poll__networl_3_5_AnsP_4 + P-poll__networl_3_5_AnsP_3 + P-poll__networl_3_5_AnsP_2 + P-poll__networl_3_5_AnsP_1 + P-poll__networl_4_1_AnsP_8 + P-poll__networl_4_1_AnsP_7 + P-poll__networl_4_1_AnsP_6 + P-poll__networl_4_1_AnsP_5 + P-poll__networl_4_1_AnsP_4 + P-poll__networl_4_1_AnsP_3 + P-poll__networl_4_1_AnsP_2 + P-poll__networl_4_1_AnsP_1 + P-poll__networl_4_6_AnsP_1 + P-poll__networl_4_6_AnsP_2 + P-poll__networl_4_6_AnsP_3 + P-poll__networl_4_6_AnsP_4 + P-poll__networl_4_6_AnsP_5 + P-poll__networl_4_6_AnsP_6 + P-poll__networl_4_6_AnsP_7 + P-poll__networl_4_6_AnsP_8 + P-poll__networl_6_6_AnsP_8 + P-poll__networl_6_6_AnsP_7 + P-poll__networl_6_6_AnsP_6 + P-poll__networl_6_6_AnsP_5 + P-poll__networl_6_6_AnsP_4 + P-poll__networl_6_6_AnsP_3 + P-poll__networl_6_6_AnsP_2 + P-poll__networl_6_6_AnsP_1 + P-poll__networl_2_1_AnsP_1 + P-poll__networl_2_1_AnsP_2 + P-poll__networl_2_1_AnsP_3 + P-poll__networl_2_1_AnsP_4 + P-poll__networl_2_1_AnsP_5 + P-poll__networl_2_1_AnsP_6 + P-poll__networl_2_1_AnsP_7 + P-poll__networl_2_1_AnsP_8 + P-poll__networl_7_2_AnsP_8 + P-poll__networl_7_2_AnsP_7 + P-poll__networl_7_2_AnsP_6 + P-poll__networl_7_2_AnsP_5 + P-poll__networl_7_2_AnsP_4 + P-poll__networl_7_2_AnsP_3 + P-poll__networl_7_2_AnsP_2 + P-poll__networl_7_2_AnsP_1 + P-poll__networl_0_1_AnsP_8 + P-poll__networl_0_1_AnsP_7 + P-poll__networl_0_1_AnsP_6 + P-poll__networl_0_1_AnsP_5 + P-poll__networl_0_1_AnsP_4 + P-poll__networl_0_1_AnsP_3 + P-poll__networl_0_1_AnsP_2 + P-poll__networl_0_1_AnsP_1 + P-poll__networl_2_6_AnsP_8 + P-poll__networl_2_6_AnsP_7 + P-poll__networl_2_6_AnsP_6 + P-poll__networl_2_6_AnsP_5 + P-poll__networl_2_6_AnsP_4 + P-poll__networl_2_6_AnsP_3 + P-poll__networl_2_6_AnsP_2 + P-poll__networl_2_6_AnsP_1 + P-poll__networl_3_2_AnsP_8 + P-poll__networl_3_2_AnsP_7 + P-poll__networl_3_2_AnsP_6 + P-poll__networl_3_2_AnsP_5 + P-poll__networl_3_2_AnsP_4 + P-poll__networl_3_2_AnsP_3 + P-poll__networl_3_2_AnsP_2 + P-poll__networl_3_2_AnsP_1 + P-poll__networl_5_7_AnsP_8 + P-poll__networl_5_7_AnsP_7 + P-poll__networl_5_7_AnsP_6 + P-poll__networl_5_7_AnsP_5 + P-poll__networl_5_7_AnsP_4 + P-poll__networl_5_7_AnsP_3 + P-poll__networl_5_7_AnsP_2 + P-poll__networl_5_7_AnsP_1 + P-poll__networl_6_3_AnsP_8 + P-poll__networl_6_3_AnsP_7 + P-poll__networl_6_3_AnsP_6 + P-poll__networl_6_3_AnsP_5 + P-poll__networl_6_3_AnsP_4 + P-poll__networl_6_3_AnsP_3 + P-poll__networl_1_5_AnsP_1 + P-poll__networl_6_3_AnsP_2 + P-poll__networl_1_5_AnsP_2 + P-poll__networl_1_5_AnsP_3 + P-poll__networl_1_5_AnsP_4 + P-poll__networl_1_5_AnsP_5 + P-poll__networl_1_5_AnsP_6 + P-poll__networl_1_5_AnsP_7 + P-poll__networl_1_5_AnsP_8 + P-poll__networl_6_3_AnsP_1 + P-poll__networl_8_8_AnsP_8 + P-poll__networl_8_8_AnsP_7 + P-poll__networl_8_8_AnsP_6 + P-poll__networl_8_8_AnsP_5 + P-poll__networl_8_8_AnsP_4 + P-poll__networl_8_8_AnsP_3 + P-poll__networl_8_8_AnsP_2 + P-poll__networl_8_8_AnsP_1 + P-poll__networl_1_7_AnsP_8 + P-poll__networl_8_6_AnsP_1 + P-poll__networl_8_6_AnsP_2 + P-poll__networl_8_6_AnsP_3 + P-poll__networl_8_6_AnsP_4 + P-poll__networl_8_6_AnsP_5 + P-poll__networl_8_6_AnsP_6 + P-poll__networl_8_6_AnsP_7 + P-poll__networl_8_6_AnsP_8 + P-poll__networl_1_7_AnsP_7 + P-poll__networl_1_7_AnsP_6 + P-poll__networl_1_7_AnsP_5 + P-poll__networl_1_7_AnsP_4 + P-poll__networl_1_7_AnsP_3 + P-poll__networl_1_7_AnsP_2 + P-poll__networl_1_7_AnsP_1 + P-poll__networl_2_3_AnsP_8 + P-poll__networl_2_3_AnsP_7 + P-poll__networl_2_3_AnsP_6 + P-poll__networl_2_3_AnsP_5 + P-poll__networl_2_3_AnsP_4 + P-poll__networl_2_3_AnsP_3 + P-poll__networl_2_3_AnsP_2 + P-poll__networl_2_3_AnsP_1 + P-poll__networl_4_8_AnsP_8 + P-poll__networl_4_8_AnsP_7 + P-poll__networl_4_8_AnsP_6 + P-poll__networl_4_8_AnsP_5 + P-poll__networl_4_8_AnsP_4 + P-poll__networl_4_8_AnsP_3 + P-poll__networl_4_8_AnsP_2 + P-poll__networl_4_8_AnsP_1 + P-poll__networl_6_1_AnsP_1 + P-poll__networl_6_1_AnsP_2 + P-poll__networl_6_1_AnsP_3 + P-poll__networl_6_1_AnsP_4 + P-poll__networl_6_1_AnsP_5 + P-poll__networl_6_1_AnsP_6 + P-poll__networl_6_1_AnsP_7 + P-poll__networl_6_1_AnsP_8 + P-poll__networl_5_4_AnsP_8 + P-poll__networl_5_4_AnsP_7 + P-poll__networl_5_4_AnsP_6 + P-poll__networl_5_4_AnsP_5 + P-poll__networl_5_4_AnsP_4 + P-poll__networl_5_4_AnsP_3 + P-poll__networl_5_4_AnsP_2 + P-poll__networl_5_4_AnsP_1 + P-poll__networl_0_8_AnsP_8 + P-poll__networl_0_8_AnsP_7 + P-poll__networl_0_8_AnsP_6 + P-poll__networl_0_8_AnsP_5 + P-poll__networl_0_8_AnsP_4 + P-poll__networl_0_8_AnsP_3 + P-poll__networl_0_8_AnsP_2 + P-poll__networl_0_8_AnsP_1 + P-poll__networl_6_0_AnsP_8 + P-poll__networl_6_0_AnsP_7 + P-poll__networl_6_0_AnsP_6 + P-poll__networl_6_0_AnsP_5 + P-poll__networl_6_0_AnsP_4 + P-poll__networl_6_0_AnsP_3 + P-poll__networl_6_0_AnsP_2 + P-poll__networl_6_0_AnsP_1 + P-poll__networl_8_5_AnsP_8 + P-poll__networl_8_5_AnsP_7 + P-poll__networl_8_5_AnsP_6 + P-poll__networl_8_5_AnsP_5 + P-poll__networl_8_5_AnsP_4 + P-poll__networl_8_5_AnsP_3 + P-poll__networl_8_5_AnsP_2 + P-poll__networl_8_5_AnsP_1 + P-poll__networl_1_4_AnsP_8 + P-poll__networl_1_4_AnsP_7 + P-poll__networl_1_4_AnsP_6 + P-poll__networl_1_4_AnsP_5 + P-poll__networl_1_4_AnsP_4 + P-poll__networl_1_4_AnsP_3 + P-poll__networl_1_4_AnsP_2 + P-poll__networl_1_4_AnsP_1 + P-poll__networl_2_0_AnsP_8 + P-poll__networl_2_0_AnsP_7 + P-poll__networl_2_0_AnsP_6 + P-poll__networl_2_0_AnsP_5 + P-poll__networl_2_0_AnsP_4 + P-poll__networl_2_0_AnsP_3 + P-poll__networl_2_0_AnsP_2 + P-poll__networl_2_0_AnsP_1 + P-poll__networl_5_5_AnsP_1 + P-poll__networl_5_5_AnsP_2 + P-poll__networl_5_5_AnsP_3 + P-poll__networl_5_5_AnsP_4 + P-poll__networl_5_5_AnsP_5 + P-poll__networl_5_5_AnsP_6 + P-poll__networl_5_5_AnsP_7 + P-poll__networl_5_5_AnsP_8 + P-poll__networl_4_5_AnsP_8 + P-poll__networl_4_5_AnsP_7 + P-poll__networl_4_5_AnsP_6 + P-poll__networl_4_5_AnsP_5 + P-poll__networl_4_5_AnsP_4 + P-poll__networl_4_5_AnsP_3 + P-poll__networl_4_5_AnsP_2 + P-poll__networl_4_5_AnsP_1 + P-poll__networl_5_1_AnsP_8 + P-poll__networl_5_1_AnsP_7 + P-poll__networl_5_1_AnsP_6 + P-poll__networl_5_1_AnsP_5 + P-poll__networl_5_1_AnsP_4 + P-poll__networl_5_1_AnsP_3 + P-poll__networl_5_1_AnsP_2 + P-poll__networl_5_1_AnsP_1 + P-poll__networl_3_0_AnsP_1 + P-poll__networl_3_0_AnsP_2 + P-poll__networl_3_0_AnsP_3 + P-poll__networl_3_0_AnsP_4 + P-poll__networl_3_0_AnsP_5 + P-poll__networl_3_0_AnsP_6 + P-poll__networl_3_0_AnsP_7 + P-poll__networl_3_0_AnsP_8 + P-poll__networl_7_6_AnsP_8 + P-poll__networl_7_6_AnsP_7 + P-poll__networl_7_6_AnsP_6 + P-poll__networl_7_6_AnsP_5 + P-poll__networl_7_6_AnsP_4 + P-poll__networl_7_6_AnsP_3 + P-poll__networl_7_6_AnsP_2 + P-poll__networl_7_6_AnsP_1 + P-poll__networl_0_5_AnsP_8 + P-poll__networl_0_5_AnsP_7 + P-poll__networl_0_5_AnsP_6 + P-poll__networl_0_5_AnsP_5 + P-poll__networl_0_5_AnsP_4 + P-poll__networl_0_5_AnsP_3 + P-poll__networl_0_5_AnsP_2 + P-poll__networl_0_5_AnsP_1 + P-poll__networl_8_2_AnsP_8 + P-poll__networl_8_2_AnsP_7 + P-poll__networl_8_2_AnsP_6 + P-poll__networl_8_2_AnsP_5 + P-poll__networl_8_2_AnsP_4 + P-poll__networl_8_2_AnsP_3 + P-poll__networl_8_2_AnsP_2 + P-poll__networl_8_2_AnsP_1 + P-poll__networl_1_1_AnsP_8 + P-poll__networl_1_1_AnsP_7 + P-poll__networl_1_1_AnsP_6 + P-poll__networl_1_1_AnsP_5 + P-poll__networl_1_1_AnsP_4 + P-poll__networl_1_1_AnsP_3 + P-poll__networl_1_1_AnsP_2 + P-poll__networl_1_1_AnsP_1 + P-poll__networl_3_6_AnsP_8 + P-poll__networl_3_6_AnsP_7 + P-poll__networl_3_6_AnsP_6 + P-poll__networl_3_6_AnsP_5 + P-poll__networl_3_6_AnsP_4 + P-poll__networl_3_6_AnsP_3 + P-poll__networl_3_6_AnsP_2 + P-poll__networl_3_6_AnsP_1 + P-poll__networl_4_2_AnsP_8 + P-poll__networl_4_2_AnsP_7 + P-poll__networl_4_2_AnsP_6 + P-poll__networl_4_2_AnsP_5 + P-poll__networl_4_2_AnsP_4 + P-poll__networl_4_2_AnsP_3 + P-poll__networl_4_2_AnsP_2 + P-poll__networl_4_2_AnsP_1 + P-poll__networl_2_4_AnsP_1 + P-poll__networl_2_4_AnsP_2 + P-poll__networl_2_4_AnsP_3 + P-poll__networl_2_4_AnsP_4 + P-poll__networl_2_4_AnsP_5 + P-poll__networl_2_4_AnsP_6 + P-poll__networl_2_4_AnsP_7 + P-poll__networl_2_4_AnsP_8 + P-poll__networl_6_7_AnsP_8 + P-poll__networl_6_7_AnsP_7 + P-poll__networl_6_7_AnsP_6 + P-poll__networl_6_7_AnsP_5 + P-poll__networl_6_7_AnsP_4 + P-poll__networl_6_7_AnsP_3 + P-poll__networl_6_7_AnsP_2 + P-poll__networl_6_7_AnsP_1 + P-poll__networl_7_3_AnsP_8 + P-poll__networl_7_3_AnsP_7 + P-poll__networl_7_3_AnsP_6 + P-poll__networl_7_3_AnsP_5 + P-poll__networl_7_3_AnsP_4 + P-poll__networl_7_3_AnsP_3 + P-poll__networl_7_3_AnsP_2 + P-poll__networl_7_3_AnsP_1 + P-poll__networl_0_2_AnsP_8 + P-poll__networl_0_2_AnsP_7 + P-poll__networl_0_2_AnsP_6 + P-poll__networl_0_2_AnsP_5 + P-poll__networl_0_2_AnsP_4 + P-poll__networl_0_2_AnsP_3 + P-poll__networl_0_2_AnsP_2 + P-poll__networl_0_2_AnsP_1 + P-poll__networl_2_7_AnsP_8 + P-poll__networl_2_7_AnsP_7 + P-poll__networl_2_7_AnsP_6 + P-poll__networl_2_7_AnsP_5 + P-poll__networl_2_7_AnsP_4 + P-poll__networl_2_7_AnsP_3 + P-poll__networl_2_7_AnsP_2 + P-poll__networl_2_7_AnsP_1 + P-poll__networl_7_0_AnsP_1 + P-poll__networl_7_0_AnsP_2 + P-poll__networl_7_0_AnsP_3 + P-poll__networl_7_0_AnsP_4 + P-poll__networl_7_0_AnsP_5 + P-poll__networl_7_0_AnsP_6 + P-poll__networl_7_0_AnsP_7 + P-poll__networl_7_0_AnsP_8 + P-poll__networl_3_3_AnsP_8 + P-poll__networl_3_3_AnsP_7 + P-poll__networl_3_3_AnsP_6 + P-poll__networl_3_3_AnsP_5 + P-poll__networl_3_3_AnsP_4 + P-poll__networl_3_3_AnsP_3 + P-poll__networl_3_3_AnsP_2 + P-poll__networl_3_3_AnsP_1 + P-poll__networl_1_8_AnsP_1 + P-poll__networl_1_8_AnsP_2 + P-poll__networl_1_8_AnsP_3 + P-poll__networl_1_8_AnsP_4 + P-poll__networl_1_8_AnsP_5 + P-poll__networl_1_8_AnsP_6 + P-poll__networl_1_8_AnsP_7 + P-poll__networl_1_8_AnsP_8 + P-poll__networl_5_8_AnsP_8 + P-poll__networl_5_8_AnsP_7 + P-poll__networl_5_8_AnsP_6 + P-poll__networl_5_8_AnsP_5 + P-poll__networl_5_8_AnsP_4 + P-poll__networl_5_8_AnsP_3 + P-poll__networl_5_8_AnsP_2 + P-poll__networl_5_8_AnsP_1 + P-poll__networl_6_4_AnsP_8 + P-poll__networl_6_4_AnsP_7 + P-poll__networl_6_4_AnsP_6 + P-poll__networl_6_4_AnsP_5 + P-poll__networl_6_4_AnsP_4 + P-poll__networl_6_4_AnsP_3 + P-poll__networl_6_4_AnsP_2 + P-poll__networl_6_4_AnsP_1 + P-poll__networl_8_4_AI_7 + P-poll__networl_8_4_AI_8 + P-poll__networl_1_1_AI_0 + P-poll__networl_1_1_AI_1 + P-poll__networl_1_1_AI_2 + P-poll__networl_1_1_AI_3 + P-poll__networl_1_1_AI_4 + P-poll__networl_1_1_AI_5 + P-poll__networl_1_1_AI_6 + P-poll__networl_1_1_AI_7 + P-poll__networl_1_1_AI_8 + P-poll__networl_8_4_AI_6 + P-poll__networl_8_7_RI_0 + P-poll__networl_8_7_RI_1 + P-poll__networl_8_7_RI_2 + P-poll__networl_8_7_RI_3 + P-poll__networl_8_7_RI_4 + P-poll__networl_8_7_RI_5 + P-poll__networl_8_7_RI_6 + P-poll__networl_8_7_RI_7 + P-poll__networl_8_7_RI_8 + P-poll__networl_1_4_RI_0 + P-poll__networl_1_4_RI_1 + P-poll__networl_1_4_RI_2 + P-poll__networl_1_4_RI_3 + P-poll__networl_1_4_RI_4 + P-poll__networl_1_4_RI_5 + P-poll__networl_1_4_RI_6 + P-poll__networl_1_4_RI_7 + P-poll__networl_1_4_RI_8 + P-poll__networl_8_4_AI_5 + P-poll__networl_8_4_AI_4 + P-poll__networl_8_4_AI_3 + P-poll__networl_6_4_AnsP_0 + P-poll__networl_8_4_AI_2 + P-poll__networl_8_4_AI_1 + P-poll__networl_8_4_AI_0 + P-poll__networl_3_0_AI_0 + P-poll__networl_3_0_AI_1 + P-poll__networl_3_0_AI_2 + P-poll__networl_3_0_AI_3 + P-poll__networl_3_0_AI_4 + P-poll__networl_3_0_AI_5 + P-poll__networl_3_0_AI_6 + P-poll__networl_3_0_AI_7 + P-poll__networl_3_0_AI_8 + P-poll__networl_0_0_AskP_0 + P-poll__networl_0_0_AskP_1 + P-poll__networl_0_0_AskP_2 + P-poll__networl_0_0_AskP_3 + P-poll__networl_0_0_AskP_4 + P-poll__networl_0_0_AskP_5 + P-poll__networl_0_0_AskP_6 + P-poll__networl_0_0_AskP_7 + P-poll__networl_0_0_AskP_8 + P-poll__networl_3_3_RI_0 + P-poll__networl_3_3_RI_1 + P-poll__networl_3_3_RI_2 + P-poll__networl_3_3_RI_3 + P-poll__networl_3_3_RI_4 + P-poll__networl_3_3_RI_5 + P-poll__networl_3_3_RI_6 + P-poll__networl_3_3_RI_7 + P-poll__networl_3_3_RI_8 + P-poll__networl_2_5_AskP_8 + P-poll__networl_6_7_AnnP_0 + P-poll__networl_6_7_AnnP_1 + P-poll__networl_6_7_AnnP_2 + P-poll__networl_6_7_AnnP_3 + P-poll__networl_6_7_AnnP_4 + P-poll__networl_6_7_AnnP_5 + P-poll__networl_6_7_AnnP_6 + P-poll__networl_6_7_AnnP_7 + P-poll__networl_6_7_AnnP_8 + P-poll__networl_2_5_AskP_7 + P-poll__networl_2_5_AskP_6 + P-poll__networl_2_5_AskP_5 + P-poll__networl_2_5_AskP_4 + P-poll__networl_2_5_AskP_3 + P-poll__networl_2_5_AskP_2 + P-poll__networl_2_5_AskP_1 + P-poll__networl_2_5_AskP_0 + P-poll__networl_7_1_AskP_0 + P-poll__networl_7_1_AskP_1 + P-poll__networl_7_1_AskP_2 + P-poll__networl_7_1_AskP_3 + P-poll__networl_7_1_AskP_4 + P-poll__networl_7_1_AskP_5 + P-poll__networl_7_1_AskP_6 + P-poll__networl_7_1_AskP_7 + P-poll__networl_7_1_AskP_8 + P-poll__networl_7_3_AnnP_8 + P-poll__networl_7_3_AnnP_7 + P-poll__networl_7_3_AnnP_6 + P-poll__networl_7_3_AnnP_5 + P-poll__networl_7_3_AnnP_4 + P-poll__networl_5_2_RI_0 + P-poll__networl_5_2_RI_1 + P-poll__networl_5_2_RI_2 + P-poll__networl_5_2_RI_3 + P-poll__networl_5_2_RI_4 + P-poll__networl_5_2_RI_5 + P-poll__networl_5_2_RI_6 + P-poll__networl_5_2_RI_7 + P-poll__networl_5_2_RI_8 + P-poll__networl_7_3_AnnP_3 + P-poll__networl_7_3_AnnP_2 + P-poll__networl_4_2_AnnP_0 + P-poll__networl_4_2_AnnP_1 + P-poll__networl_4_2_AnnP_2 + P-poll__networl_4_2_AnnP_3 + P-poll__networl_4_2_AnnP_4 + P-poll__networl_4_2_AnnP_5 + P-poll__networl_4_2_AnnP_6 + P-poll__networl_4_2_AnnP_7 + P-poll__networl_4_2_AnnP_8 + P-poll__networl_7_3_AnnP_1 + P-poll__networl_7_3_AnnP_0 + P-poll__networl_5_8_AnsP_0 + P-poll__networl_6_8_RI_8 + P-poll__networl_6_8_RI_7 + P-poll__networl_6_8_RI_6 + P-poll__networl_6_8_RI_5 + P-poll__networl_6_8_RI_4 + P-poll__networl_6_8_RI_3 + P-poll__networl_6_8_RI_2 + P-poll__networl_6_8_RI_1 + P-poll__networl_6_8_RI_0 + P-poll__networl_6_5_AI_8 + P-poll__networl_6_5_AI_7 + P-poll__networl_6_5_AI_6 + P-poll__networl_6_5_AI_5 + P-poll__networl_6_5_AI_4 + P-poll__networl_6_5_AI_3 + P-poll__networl_6_5_AI_2 + P-poll__networl_6_5_AI_1 + P-poll__networl_7_1_RI_0 + P-poll__networl_7_1_RI_1 + P-poll__networl_7_1_RI_2 + P-poll__networl_4_8_RP_0 + P-poll__networl_7_1_RI_3 + P-poll__networl_4_8_RP_1 + P-poll__networl_7_1_RI_4 + P-poll__networl_4_8_RP_2 + P-poll__networl_7_1_RI_5 + P-poll__networl_4_8_RP_3 + P-poll__networl_7_1_RI_6 + P-poll__networl_4_8_RP_4 + P-poll__networl_7_1_RI_7 + P-poll__networl_4_8_RP_5 + P-poll__networl_7_1_RI_8 + P-poll__networl_4_8_RP_6 + P-poll__networl_4_8_RP_7 + P-poll__networl_4_8_RP_8 + P-poll__networl_6_5_AI_0 + P-poll__networl_1_8_AnsP_0 + P-poll__networl_6_5_AskP_0 + P-poll__networl_6_5_AskP_1 + P-poll__networl_6_5_AskP_2 + P-poll__networl_6_5_AskP_3 + P-poll__networl_6_5_AskP_4 + P-poll__networl_6_5_AskP_5 + P-poll__networl_6_5_AskP_6 + P-poll__networl_6_5_AskP_7 + P-poll__networl_6_5_AskP_8 + P-poll__networl_3_3_AnsP_0 + P-poll__networl_4_0_RP_8 + P-poll__networl_4_0_RP_7 + P-poll__networl_4_0_RP_6 + P-poll__networl_4_0_RP_5 + P-poll__networl_4_0_RP_4 + P-poll__networl_4_0_RP_3 + P-poll__networl_4_0_RP_2 + P-poll__networl_4_0_RP_1 + P-poll__networl_4_0_RP_0 + P-poll__networl_0_2_AnnP_8 + P-poll__networl_0_2_AnnP_7 + P-poll__networl_0_2_AnnP_6 + P-poll__networl_0_2_AnnP_5 + P-poll__networl_0_2_AnnP_4 + P-poll__networl_0_2_AnnP_3 + P-poll__networl_0_2_AnnP_2 + P-poll__networl_6_7_RP_0 + P-poll__networl_6_7_RP_1 + P-poll__networl_6_7_RP_2 + P-poll__networl_6_7_RP_3 + P-poll__networl_6_7_RP_4 + P-poll__networl_6_7_RP_5 + P-poll__networl_6_7_RP_6 + P-poll__networl_6_7_RP_7 + P-poll__networl_6_7_RP_8 + P-poll__networl_0_2_AnnP_1 + P-poll__networl_0_2_AnnP_0 + P-poll__networl_3_6_AnnP_0 + P-poll__networl_3_6_AnnP_1 + P-poll__networl_3_6_AnnP_2 + P-poll__networl_3_6_AnnP_3 + P-poll__networl_3_6_AnnP_4 + P-poll__networl_3_6_AnnP_5 + P-poll__networl_3_6_AnnP_6 + P-poll__networl_3_6_AnnP_7 + P-poll__networl_3_6_AnnP_8 + P-poll__networl_7_0_AnsP_0 + P-poll__networl_4_0_AskP_0 + P-poll__networl_4_0_AskP_1 + P-poll__networl_4_0_AskP_2 + P-poll__networl_4_0_AskP_3 + P-poll__networl_4_0_AskP_4 + P-poll__networl_4_0_AskP_5 + P-poll__networl_4_0_AskP_6 + P-poll__networl_4_0_AskP_7 + P-poll__networl_4_0_AskP_8 + P-poll__networl_8_6_RP_0 + P-poll__networl_8_6_RP_1 + P-poll__networl_8_6_RP_2 + P-poll__networl_8_6_RP_3 + P-poll__networl_8_6_RP_4 + P-poll__networl_8_6_RP_5 + P-poll__networl_8_6_RP_6 + P-poll__networl_8_6_RP_7 + P-poll__networl_8_6_RP_8 + P-poll__networl_1_3_RP_0 + P-poll__networl_1_3_RP_1 + P-poll__networl_1_3_RP_2 + P-poll__networl_1_3_RP_3 + P-poll__networl_1_3_RP_4 + P-poll__networl_1_3_RP_5 + P-poll__networl_1_3_RP_6 + P-poll__networl_1_3_RP_7 + P-poll__networl_1_3_RP_8 + P-poll__networl_3_8_AI_0 + P-poll__networl_3_8_AI_1 + P-poll__networl_3_8_AI_2 + P-poll__networl_3_8_AI_3 + P-poll__networl_3_8_AI_4 + P-poll__networl_3_8_AI_5 + P-poll__networl_3_8_AI_6 + P-poll__networl_3_8_AI_7 + P-poll__networl_3_8_AI_8 + P-poll__networl_4_6_AI_8 + P-poll__networl_4_6_AI_7 + P-poll__networl_4_6_AI_6 + P-poll__networl_4_6_AI_5 + P-poll__networl_4_6_AI_4 + P-poll__networl_1_1_AnnP_0 + P-poll__networl_1_1_AnnP_1 + P-poll__networl_1_1_AnnP_2 + P-poll__networl_1_1_AnnP_3 + P-poll__networl_1_1_AnnP_4 + P-poll__networl_1_1_AnnP_5 + P-poll__networl_1_1_AnnP_6 + P-poll__networl_1_1_AnnP_7 + P-poll__networl_1_1_AnnP_8 + P-poll__networl_4_6_AI_3 + P-poll__networl_4_6_AI_2 + P-poll__networl_3_2_RP_0 + P-poll__networl_3_2_RP_1 + P-poll__networl_3_2_RP_2 + P-poll__networl_3_2_RP_3 + P-poll__networl_3_2_RP_4 + P-poll__networl_3_2_RP_5 + P-poll__networl_3_2_RP_6 + P-poll__networl_3_2_RP_7 + P-poll__networl_2_7_AnsP_0 + P-poll__networl_3_2_RP_8 + P-poll__networl_4_6_AI_1 + P-poll__networl_4_6_AI_0 + P-poll__networl_5_7_AI_0 + P-poll__networl_5_7_AI_1 + P-poll__networl_5_7_AI_2 + P-poll__networl_5_7_AI_3 + P-poll__networl_5_7_AI_4 + P-poll__networl_5_7_AI_5 + P-poll__networl_5_7_AI_6 + P-poll__networl_5_7_AI_7 + P-poll__networl_5_7_AI_8 + P-poll__networl_8_2_AnnP_0 + P-poll__networl_8_2_AnnP_1 + P-poll__networl_8_2_AnnP_2 + P-poll__networl_8_2_AnnP_3 + P-poll__networl_8_2_AnnP_4 + P-poll__networl_8_2_AnnP_5 + P-poll__networl_8_2_AnnP_6 + P-poll__networl_8_2_AnnP_7 + P-poll__networl_8_2_AnnP_8 + P-poll__networl_2_1_RP_8 + P-poll__networl_2_1_RP_7 + P-poll__networl_2_1_RP_6 + P-poll__networl_2_1_RP_5 + P-poll__networl_2_1_RP_4 + P-poll__networl_2_1_RP_3 + P-poll__networl_2_1_RP_2 + P-poll__networl_2_1_RP_1 + P-poll__networl_2_1_RP_0 + P-poll__networl_3_1_AskP_8 + P-poll__networl_3_1_AskP_7 + P-poll__networl_3_4_AskP_0 + P-poll__networl_3_4_AskP_1 + P-poll__networl_3_4_AskP_2 + P-poll__networl_3_4_AskP_3 + P-poll__networl_3_4_AskP_4 + P-poll__networl_3_4_AskP_5 + P-poll__networl_3_4_AskP_6 + P-poll__networl_3_4_AskP_7 + P-poll__networl_3_4_AskP_8 + P-poll__networl_5_1_RP_0 + P-poll__networl_5_1_RP_1 + P-poll__networl_5_1_RP_2 + P-poll__networl_5_1_RP_3 + P-poll__networl_5_1_RP_4 + P-poll__networl_5_1_RP_5 + P-poll__networl_5_1_RP_6 + P-poll__networl_5_1_RP_7 + P-poll__networl_5_1_RP_8 + P-poll__networl_3_1_AskP_6 + P-poll__networl_3_1_AskP_5 + P-poll__networl_3_1_AskP_4 + P-poll__networl_3_1_AskP_3 + P-poll__networl_7_6_AI_0 + P-poll__networl_7_6_AI_1 + P-poll__networl_7_6_AI_2 + P-poll__networl_7_6_AI_3 + P-poll__networl_7_6_AI_4 + P-poll__networl_7_6_AI_5 + P-poll__networl_7_6_AI_6 + P-poll__networl_7_6_AI_7 + P-poll__networl_7_6_AI_8 + P-poll__networl_0_3_AI_0 + P-poll__networl_0_3_AI_1 + P-poll__networl_0_3_AI_2 + P-poll__networl_0_2_AnsP_0 + P-poll__networl_0_3_AI_3 + P-poll__networl_3_1_AskP_2 + P-poll__networl_0_3_AI_4 + P-poll__networl_3_1_AskP_1 + P-poll__networl_0_3_AI_5 + P-poll__networl_3_1_AskP_0 + P-poll__networl_0_3_AI_6 + P-poll__networl_0_3_AI_7 + P-poll__networl_0_3_AI_8 + P-poll__networl_0_6_RI_0 + P-poll__networl_0_6_RI_1 + P-poll__networl_0_6_RI_2 + P-poll__networl_0_6_RI_3 + P-poll__networl_0_6_RI_4 + P-poll__networl_0_6_RI_5 + P-poll__networl_0_6_RI_6 + P-poll__networl_0_6_RI_7 + P-poll__networl_0_6_RI_8 + P-poll__networl_7_3_AnsP_0 + P-poll__networl_2_7_AnnP_8 + P-poll__networl_2_7_AnnP_7 + P-poll__networl_2_7_AnnP_6 + P-poll__networl_2_7_AnnP_5 + P-poll__networl_2_7_AnnP_4 + P-poll__networl_2_7_AnnP_3 + P-poll__networl_2_7_AnnP_2 + P-poll__networl_2_7_AnnP_1 + P-poll__networl_0_5_AnnP_0 + P-poll__networl_0_5_AnnP_1 + P-poll__networl_0_5_AnnP_2 + P-poll__networl_0_5_AnnP_3 + P-poll__networl_0_5_AnnP_4 + P-poll__networl_0_5_AnnP_5 + P-poll__networl_0_5_AnnP_6 + P-poll__networl_0_5_AnnP_7 + P-poll__networl_0_5_AnnP_8 + P-poll__networl_7_0_RP_0 + P-poll__networl_7_0_RP_1 + P-poll__networl_7_0_RP_2 + P-poll__networl_7_0_RP_3 + P-poll__networl_7_0_RP_4 + P-poll__networl_7_0_RP_5 + P-poll__networl_7_0_RP_6 + P-poll__networl_7_0_RP_7 + P-poll__networl_7_0_RP_8 + P-poll__networl_2_7_AnnP_0 + P-poll__networl_2_2_AI_0 + P-poll__networl_2_2_AI_1 + P-poll__networl_2_2_AI_2 + P-poll__networl_2_2_AI_3 + P-poll__networl_2_2_AI_4 + P-poll__networl_2_2_AI_5 + P-poll__networl_2_2_AI_6 + P-poll__networl_2_2_AI_7 + P-poll__networl_2_2_AI_8 + P-poll__networl_2_5_RI_0 + P-poll__networl_2_5_RI_1 + P-poll__networl_2_5_RI_2 + P-poll__networl_2_5_RI_3 + P-poll__networl_2_5_RI_4 + P-poll__networl_2_5_RI_5 + P-poll__networl_2_5_RI_6 + P-poll__networl_2_5_RI_7 + P-poll__networl_2_5_RI_8 + P-poll__networl_7_6_AnnP_0 + P-poll__networl_7_6_AnnP_1 + P-poll__networl_7_6_AnnP_2 + P-poll__networl_7_6_AnnP_3 + P-poll__networl_7_6_AnnP_4 + P-poll__networl_7_6_AnnP_5 + P-poll__networl_7_6_AnnP_6 + P-poll__networl_7_6_AnnP_7 + P-poll__networl_7_6_AnnP_8 + P-poll__networl_8_0_AskP_0 + P-poll__networl_8_0_AskP_1 + P-poll__networl_8_0_AskP_2 + P-poll__networl_8_0_AskP_3 + P-poll__networl_8_0_AskP_4 + P-poll__networl_8_0_AskP_5 + P-poll__networl_8_0_AskP_6 + P-poll__networl_8_0_AskP_7 + P-poll__networl_8_0_AskP_8 + P-poll__networl_2_8_AskP_0 + P-poll__networl_2_8_AskP_1 + P-poll__networl_2_8_AskP_2 + P-poll__networl_2_8_AskP_3 + P-poll__networl_2_8_AskP_4 + P-poll__networl_2_8_AskP_5 + P-poll__networl_2_8_AskP_6 + P-poll__networl_2_8_AskP_7 + P-poll__networl_2_8_AskP_8 + P-poll__networl_4_1_AI_0 + P-poll__networl_4_1_AI_1 + P-poll__networl_4_1_AI_2 + P-poll__networl_4_1_AI_3 + P-poll__networl_4_1_AI_4 + P-poll__networl_4_1_AI_5 + P-poll__networl_4_1_AI_6 + P-poll__networl_4_1_AI_7 + P-poll__networl_4_1_AI_8 + P-poll__networl_4_4_RI_0 + P-poll__networl_4_4_RI_1 + P-poll__networl_4_4_RI_2 + P-poll__networl_4_4_RI_3 + P-poll__networl_4_4_RI_4 + P-poll__networl_4_4_RI_5 + P-poll__networl_4_4_RI_6 + P-poll__networl_4_4_RI_7 + P-poll__networl_4_4_RI_8 + P-poll__networl_5_1_AnnP_0 + P-poll__networl_5_1_AnnP_1 + P-poll__networl_5_1_AnnP_2 + P-poll__networl_5_1_AnnP_3 + P-poll__networl_5_1_AnnP_4 + P-poll__networl_5_1_AnnP_5 + P-poll__networl_5_1_AnnP_6 + P-poll__networl_5_1_AnnP_7 + P-poll__networl_5_1_AnnP_8 + P-poll__networl_2_7_AI_8 + P-poll__networl_6_7_AnsP_0 + P-poll__networl_2_7_AI_7 + P-poll__networl_2_7_AI_6 + P-poll__networl_2_7_AI_5 + P-poll__networl_2_7_AI_4 + P-poll__networl_2_7_AI_3 + P-poll__networl_2_7_AI_2 + P-poll__networl_2_7_AI_1 + P-poll__networl_2_7_AI_0 + P-poll__networl_6_0_AI_0 + P-poll__networl_6_0_AI_1 + P-poll__networl_6_0_AI_2 + P-poll__networl_6_0_AI_3 + P-poll__networl_6_0_AI_4 + P-poll__networl_6_0_AI_5 + P-poll__networl_6_0_AI_6 + P-poll__networl_6_0_AI_7 + P-poll__networl_6_0_AI_8 + P-poll__networl_2_4_AnsP_0 + P-poll__networl_0_2_RP_8 + P-poll__networl_0_3_AskP_0 + P-poll__networl_0_3_AskP_1 + P-poll__networl_0_3_AskP_2 + P-poll__networl_0_3_AskP_3 + P-poll__networl_0_3_AskP_4 + P-poll__networl_0_3_AskP_5 + P-poll__networl_0_3_AskP_6 + P-poll__networl_0_3_AskP_7 + P-poll__networl_0_3_AskP_8 + P-poll__networl_6_3_RI_0 + P-poll__networl_6_3_RI_1 + P-poll__networl_6_3_RI_2 + P-poll__networl_6_3_RI_3 + P-poll__networl_6_3_RI_4 + P-poll__networl_6_3_RI_5 + P-poll__networl_6_3_RI_6 + P-poll__networl_6_3_RI_7 + P-poll__networl_6_3_RI_8 + P-poll__networl_0_2_RP_7 + P-poll__networl_0_2_RP_6 + P-poll__networl_0_2_RP_5 + P-poll__networl_0_2_RP_4 + P-poll__networl_0_2_RP_3 + P-poll__networl_0_2_RP_2 + P-poll__networl_0_2_RP_1 + P-poll__networl_0_2_RP_0 + P-poll__networl_7_5_RP_8 + P-poll__networl_7_5_RP_7 + P-poll__networl_7_5_RP_6 + P-poll__networl_7_5_RP_5 + P-poll__networl_7_5_RP_4 + P-poll__networl_7_5_RP_3 + P-poll__networl_7_5_RP_2 + P-poll__networl_7_5_RP_1 + P-poll__networl_7_5_RP_0 + P-poll__networl_7_4_AskP_0 + P-poll__networl_7_4_AskP_1 + P-poll__networl_7_4_AskP_2 + P-poll__networl_7_4_AskP_3 + P-poll__networl_7_4_AskP_4 + P-poll__networl_7_4_AskP_5 + P-poll__networl_7_4_AskP_6 + P-poll__networl_7_4_AskP_7 + P-poll__networl_7_4_AskP_8 + P-poll__networl_4_2_AnsP_0 + P-poll__networl_8_2_RI_0 + P-poll__networl_8_2_RI_1 + P-poll__networl_8_2_RI_2 + P-poll__networl_8_2_RI_3 + P-poll__networl_8_2_RI_4 + P-poll__networl_8_2_RI_5 + P-poll__networl_8_2_RI_6 + P-poll__networl_8_2_RI_7 + P-poll__networl_8_2_RI_8 + P-poll__networl_5_6_AskP_8 + P-poll__networl_5_6_AskP_7 + P-poll__networl_5_6_AskP_6 + P-poll__networl_5_6_AskP_5 + P-poll__networl_5_6_AskP_4 + P-poll__networl_5_6_AskP_3 + P-poll__networl_5_6_AskP_2 + P-poll__networl_4_5_AnnP_0 + P-poll__networl_4_5_AnnP_1 + P-poll__networl_4_5_AnnP_2 + P-poll__networl_4_5_AnnP_3 + P-poll__networl_4_5_AnnP_4 + P-poll__networl_4_5_AnnP_5 + P-poll__networl_4_5_AnnP_6 + P-poll__networl_4_5_AnnP_7 + P-poll__networl_4_5_AnnP_8 + P-poll__networl_5_6_AskP_1 + P-poll__networl_5_6_AskP_0 + P-poll__networl_7_8_RP_0 + P-poll__networl_7_8_RP_1 + P-poll__networl_7_8_RP_2 + P-poll__networl_7_8_RP_3 + P-poll__networl_7_8_RP_4 + P-poll__networl_7_8_RP_5 + P-poll__networl_7_8_RP_6 + P-poll__networl_7_8_RP_7 + P-poll__networl_7_8_RP_8 + P-poll__networl_0_5_RP_0 + P-poll__networl_0_5_RP_1 + P-poll__networl_0_5_RP_2 + P-poll__networl_0_5_RP_3 + P-poll__networl_0_5_RP_4 + P-poll__networl_0_5_RP_5 + P-poll__networl_0_5_RP_6 + P-poll__networl_0_5_RP_7 + P-poll__networl_0_5_RP_8 + P-poll__networl_0_8_AI_8 + P-poll__networl_0_8_AI_7 + P-poll__networl_0_8_AI_6 + P-poll__networl_0_8_AI_5 + P-poll__networl_0_8_AI_4 + P-poll__networl_6_8_AskP_0 + P-poll__networl_6_8_AskP_1 + P-poll__networl_6_8_AskP_2 + P-poll__networl_6_8_AskP_3 + P-poll__networl_6_8_AskP_4 + P-poll__networl_6_8_AskP_5 + P-poll__networl_6_8_AskP_6 + P-poll__networl_6_8_AskP_7 + P-poll__networl_6_8_AskP_8 + P-poll__networl_0_8_AI_3 + P-poll__networl_0_8_AI_2 + P-poll__networl_0_8_AI_1 + P-poll__networl_0_8_AI_0 + P-poll__networl_2_0_AnnP_0 + P-poll__networl_2_0_AnnP_1 + P-poll__networl_2_0_AnnP_2 + P-poll__networl_2_0_AnnP_3 + P-poll__networl_2_0_AnnP_4 + P-poll__networl_2_0_AnnP_5 + P-poll__networl_2_0_AnnP_6 + P-poll__networl_2_0_AnnP_7 + P-poll__networl_2_0_AnnP_8 + P-poll__networl_3_6_AnsP_0 + P-poll__networl_5_6_RP_8 + P-poll__networl_5_6_RP_7 + P-poll__networl_5_6_RP_6 + P-poll__networl_5_6_RP_5 + P-poll__networl_5_6_RP_4 + P-poll__networl_5_6_RP_3 + P-poll__networl_2_4_RP_0 + P-poll__networl_2_4_RP_1 + P-poll__networl_2_4_RP_2 + P-poll__networl_2_4_RP_3 + P-poll__networl_2_4_RP_4 + P-poll__networl_2_4_RP_5 + P-poll__networl_2_4_RP_6 + P-poll__networl_2_4_RP_7 + P-poll__networl_2_4_RP_8 + P-poll__networl_5_6_RP_2 + P-poll__networl_5_6_RP_1 + P-poll__networl_5_6_RP_0 + P-poll__networl_4_3_AskP_0 + P-poll__networl_4_3_AskP_1 + P-poll__networl_4_3_AskP_2 + P-poll__networl_4_3_AskP_3 + P-poll__networl_4_3_AskP_4 + P-poll__networl_4_3_AskP_5 + P-poll__networl_4_3_AskP_6 + P-poll__networl_4_3_AskP_7 + P-poll__networl_4_3_AskP_8 + P-poll__networl_4_3_RP_0 + P-poll__networl_4_3_RP_1 + P-poll__networl_4_3_RP_2 + P-poll__networl_4_3_RP_3 + P-poll__networl_4_3_RP_4 + P-poll__networl_4_3_RP_5 + P-poll__networl_4_3_RP_6 + P-poll__networl_4_3_RP_7 + P-poll__networl_4_3_RP_8 + P-poll__networl_1_1_AnsP_0 + P-poll__networl_6_8_AI_0 + P-poll__networl_6_8_AI_1 + P-poll__networl_6_8_AI_2 + P-poll__networl_6_8_AI_3 + P-poll__networl_6_8_AI_4 + P-poll__networl_6_8_AI_5 + P-poll__networl_6_8_AI_6 + P-poll__networl_6_8_AI_7 + P-poll__networl_6_8_AI_8 + P-poll__networl_8_2_AnsP_0 + P-poll__networl_1_4_AnnP_0 + P-poll__networl_1_4_AnnP_1 + P-poll__networl_1_4_AnnP_2 + P-poll__networl_1_4_AnnP_3 + P-poll__networl_1_4_AnnP_4 + P-poll__networl_1_4_AnnP_5 + P-poll__networl_1_4_AnnP_6 + P-poll__networl_1_4_AnnP_7 + P-poll__networl_1_4_AnnP_8 + P-poll__networl_6_2_RP_0 + P-poll__networl_6_2_RP_1 + P-poll__networl_6_2_RP_2 + P-poll__networl_6_2_RP_3 + P-poll__networl_6_2_RP_4 + P-poll__networl_6_2_RP_5 + P-poll__networl_6_2_RP_6 + P-poll__networl_6_2_RP_7 + P-poll__networl_6_2_RP_8 + P-poll__networl_8_7_AI_0 + P-poll__networl_8_7_AI_1 + P-poll__networl_8_7_AI_2 + P-poll__networl_8_7_AI_3 + P-poll__networl_8_7_AI_4 + P-poll__networl_8_7_AI_5 + P-poll__networl_8_7_AI_6 + P-poll__networl_8_7_AI_7 + P-poll__networl_8_7_AI_8 + P-poll__networl_1_4_AI_0 + P-poll__networl_1_4_AI_1 + P-poll__networl_1_4_AI_2 + P-poll__networl_1_4_AI_3 + P-poll__networl_1_4_AI_4 + P-poll__networl_1_4_AI_5 + P-poll__networl_1_4_AI_6 + P-poll__networl_1_4_AI_7 + P-poll__networl_1_4_AI_8 + P-poll__networl_1_7_RI_0 + P-poll__networl_1_7_RI_1 + P-poll__networl_1_7_RI_2 + P-poll__networl_1_7_RI_3 + P-poll__networl_1_7_RI_4 + P-poll__networl_1_7_RI_5 + P-poll__networl_1_7_RI_6 + P-poll__networl_1_7_RI_7 + P-poll__networl_1_7_RI_8 + P-poll__networl_8_5_AnnP_0 + P-poll__networl_8_5_AnnP_1 + P-poll__networl_8_5_AnnP_2 + P-poll__networl_8_5_AnnP_3 + P-poll__networl_8_5_AnnP_4 + P-poll__networl_8_5_AnnP_5 + P-poll__networl_8_5_AnnP_6 + P-poll__networl_8_5_AnnP_7 + P-poll__networl_8_5_AnnP_8 + P-poll__networl_3_3_AnnP_8 + P-poll__networl_3_3_AnnP_7 + P-poll__networl_3_3_AnnP_6 + P-poll__networl_3_3_AnnP_5 + P-poll__networl_3_3_AnnP_4 + P-poll__networl_3_3_AnnP_3 + P-poll__networl_3_7_AskP_0 + P-poll__networl_3_7_AskP_1 + P-poll__networl_3_7_AskP_2 + P-poll__networl_3_7_AskP_3 + P-poll__networl_3_7_AskP_4 + P-poll__networl_3_7_AskP_5 + P-poll__networl_3_7_AskP_6 + P-poll__networl_3_7_AskP_7 + P-poll__networl_3_7_AskP_8 + P-poll__networl_8_1_RP_0 + P-poll__networl_8_1_RP_1 + P-poll__networl_8_1_RP_2 + P-poll__networl_8_1_RP_3 + P-poll__networl_8_1_RP_4 + P-poll__networl_8_1_RP_5 + P-poll__networl_8_1_RP_6 + P-poll__networl_8_1_RP_7 + P-poll__networl_8_1_RP_8 + P-poll__networl_3_3_AnnP_2 + P-poll__networl_3_3_AnnP_1 + P-poll__networl_3_3_AnnP_0 + P-poll__networl_3_3_AI_0 + P-poll__networl_3_3_AI_1 + P-poll__networl_3_3_AI_2 + P-poll__networl_0_5_AnsP_0 + P-poll__networl_3_3_AI_3 + P-poll__networl_3_3_AI_4 + P-poll__networl_3_3_AI_5 + P-poll__networl_3_3_AI_6 + P-poll__networl_3_3_AI_7 + P-poll__networl_3_3_AI_8 + P-poll__networl_3_6_RI_0 + P-poll__networl_3_6_RI_1 + P-poll__networl_3_6_RI_2 + P-poll__networl_3_6_RI_3 + P-poll__networl_3_6_RI_4 + P-poll__networl_3_6_RI_5 + P-poll__networl_3_6_RI_6 + P-poll__networl_3_6_RI_7 + P-poll__networl_3_6_RI_8 + P-poll__networl_6_0_AnnP_0 + P-poll__networl_6_0_AnnP_1 + P-poll__networl_6_0_AnnP_2 + P-poll__networl_6_0_AnnP_3 + P-poll__networl_6_0_AnnP_4 + P-poll__networl_6_0_AnnP_5 + P-poll__networl_6_0_AnnP_6 + P-poll__networl_6_0_AnnP_7 + P-poll__networl_6_0_AnnP_8 + P-poll__networl_7_6_AnsP_0 + P-poll__networl_3_7_RP_8 + P-poll__networl_3_7_RP_7 + P-poll__networl_3_7_RP_6 + P-poll__networl_0_8_AnnP_0 + P-poll__networl_0_8_AnnP_1 + P-poll__networl_0_8_AnnP_2 + P-poll__networl_0_8_AnnP_3 + P-poll__networl_0_8_AnnP_4 + P-poll__networl_0_8_AnnP_5 + P-poll__networl_0_8_AnnP_6 + P-poll__networl_0_8_AnnP_7 + P-poll__networl_0_8_AnnP_8 + P-poll__networl_6_0_RI_8 + P-poll__networl_3_7_RP_5 + P-poll__networl_6_0_RI_7 + P-poll__networl_3_7_RP_4 + P-poll__networl_6_0_RI_6 + P-poll__networl_3_7_RP_3 + P-poll__networl_6_0_RI_5 + P-poll__networl_3_7_RP_2 + P-poll__networl_6_0_RI_4 + P-poll__networl_3_7_RP_1 + P-poll__networl_6_0_RI_3 + P-poll__networl_1_2_AskP_0 + P-poll__networl_1_2_AskP_1 + P-poll__networl_1_2_AskP_2 + P-poll__networl_1_2_AskP_3 + P-poll__networl_1_2_AskP_4 + P-poll__networl_1_2_AskP_5 + P-poll__networl_1_2_AskP_6 + P-poll__networl_1_2_AskP_7 + P-poll__networl_1_2_AskP_8 + P-poll__networl_3_7_RP_0 + P-poll__networl_5_2_AI_0 + P-poll__networl_5_2_AI_1 + P-poll__networl_5_2_AI_2 + P-poll__networl_5_2_AI_3 + P-poll__networl_5_2_AI_4 + P-poll__networl_5_2_AI_5 + P-poll__networl_5_2_AI_6 + P-poll__networl_5_2_AI_7 + P-poll__networl_5_2_AI_8 + P-poll__networl_6_0_RI_2 + P-poll__networl_5_5_RI_0 + P-poll__networl_5_5_RI_1 + P-poll__networl_5_5_RI_2 + P-poll__networl_5_5_RI_3 + P-poll__networl_5_5_RI_4 + P-poll__networl_5_5_RI_5 + P-poll__networl_5_5_RI_6 + P-poll__networl_5_5_RI_7 + P-poll__networl_5_5_RI_8 + P-poll__networl_6_0_RI_1 + P-poll__networl_6_0_RI_0 + P-poll__networl_8_3_AskP_0 + P-poll__networl_8_3_AskP_1 + P-poll__networl_8_3_AskP_2 + P-poll__networl_8_3_AskP_3 + P-poll__networl_8_3_AskP_4 + P-poll__networl_8_3_AskP_5 + P-poll__networl_8_3_AskP_6 + P-poll__networl_8_3_AskP_7 + P-poll__networl_8_3_AskP_8 + P-poll__networl_3_0_AnsP_0 + P-poll__networl_5_1_AnsP_0 + P-poll__networl_7_1_AI_0 + P-poll__networl_7_1_AI_1 + P-poll__networl_7_1_AI_2 + P-poll__networl_7_1_AI_3 + P-poll__networl_6_2_AskP_8 + P-poll__networl_7_1_AI_4 + P-poll__networl_7_1_AI_5 + P-poll__networl_7_1_AI_6 + P-poll__networl_7_1_AI_7 + P-poll__networl_7_1_AI_8 + P-poll__networl_7_4_RI_0 + P-poll__networl_7_4_RI_1 + P-poll__networl_7_4_RI_2 + P-poll__networl_7_4_RI_3 + P-poll__networl_7_4_RI_4 + P-poll__networl_7_4_RI_5 + P-poll__networl_7_4_RI_6 + P-poll__networl_7_4_RI_7 + P-poll__networl_7_4_RI_8 + P-poll__networl_0_1_RI_0 + P-poll__networl_0_1_RI_1 + P-poll__networl_0_1_RI_2 + P-poll__networl_0_1_RI_3 + P-poll__networl_0_1_RI_4 + P-poll__networl_0_1_RI_5 + P-poll__networl_0_1_RI_6 + P-poll__networl_0_1_RI_7 + P-poll__networl_0_1_RI_8 + P-poll__networl_6_2_AskP_7 + P-poll__networl_5_4_AnnP_0 + P-poll__networl_5_4_AnnP_1 + P-poll__networl_5_4_AnnP_2 + P-poll__networl_5_4_AnnP_3 + P-poll__networl_5_4_AnnP_4 + P-poll__networl_5_4_AnnP_5 + P-poll__networl_5_4_AnnP_6 + P-poll__networl_5_4_AnnP_7 + P-poll__networl_5_4_AnnP_8 + P-poll__networl_6_2_AskP_6 + P-poll__networl_6_2_AskP_5 + P-poll__networl_6_2_AskP_4 + P-poll__networl_6_2_AskP_3 + P-poll__networl_6_2_AskP_2 + P-poll__networl_0_6_AskP_0 + P-poll__networl_0_6_AskP_1 + P-poll__networl_0_6_AskP_2 + P-poll__networl_0_6_AskP_3 + P-poll__networl_0_6_AskP_4 + P-poll__networl_0_6_AskP_5 + P-poll__networl_0_6_AskP_6 + P-poll__networl_0_6_AskP_7 + P-poll__networl_0_6_AskP_8 + P-poll__networl_6_2_AskP_1 + P-poll__networl_2_0_RI_0 + P-poll__networl_2_0_RI_1 + P-poll__networl_2_0_RI_2 + P-poll__networl_2_0_RI_3 + P-poll__networl_2_0_RI_4 + P-poll__networl_2_0_RI_5 + P-poll__networl_2_0_RI_6 + P-poll__networl_2_0_RI_7 + P-poll__networl_2_0_RI_8 + P-poll__networl_6_2_AskP_0 + P-poll__networl_5_8_AnnP_8 + P-poll__networl_5_8_AnnP_7 + P-poll__networl_5_8_AnnP_6 + P-poll__networl_5_8_AnnP_5 + P-poll__networl_5_8_AnnP_4 + P-poll__networl_5_8_AnnP_3 + P-poll__networl_5_8_AnnP_2 + P-poll__networl_5_8_AnnP_1 + P-poll__networl_5_8_AnnP_0 + P-poll__networl_1_8_RP_8 + P-poll__networl_1_8_RP_7 + P-poll__networl_1_8_RP_6 + P-poll__networl_4_1_RI_8 + P-poll__networl_1_8_RP_5 + P-poll__networl_4_1_RI_7 + P-poll__networl_1_8_RP_4 + P-poll__networl_7_7_AskP_0 + P-poll__networl_7_7_AskP_1 + P-poll__networl_7_7_AskP_2 + P-poll__networl_7_7_AskP_3 + P-poll__networl_7_7_AskP_4 + P-poll__networl_7_7_AskP_5 + P-poll__networl_7_7_AskP_6 + P-poll__networl_7_7_AskP_7 + P-poll__networl_7_7_AskP_8 + P-poll__networl_4_1_RI_6 + P-poll__networl_1_8_RP_3 + P-poll__networl_4_1_RI_5 + P-poll__networl_4_5_AnsP_0 + P-poll__networl_1_8_RP_2 + P-poll__networl_4_1_RI_4 + P-poll__networl_1_8_RP_1 + P-poll__networl_4_1_RI_3 + P-poll__networl_1_8_RP_0 + P-poll__networl_4_1_RI_2 + P-poll__networl_4_1_RI_1 + P-poll__networl_4_1_RI_0 + P-poll__networl_1_6_RP_0 + P-poll__networl_1_6_RP_1 + P-poll__networl_1_6_RP_2 + P-poll__networl_1_6_RP_3 + P-poll__networl_1_6_RP_4 + P-poll__networl_1_6_RP_5 + P-poll__networl_1_6_RP_6 + P-poll__networl_1_6_RP_7 + P-poll__networl_1_6_RP_8 + P-poll__networl_4_8_AnnP_0 + P-poll__networl_4_8_AnnP_1 + P-poll__networl_4_8_AnnP_2 + P-poll__networl_4_8_AnnP_3 + P-poll__networl_4_8_AnnP_4 + P-poll__networl_4_8_AnnP_5 + P-poll__networl_4_8_AnnP_6 + P-poll__networl_4_8_AnnP_7 + P-poll__networl_4_8_AnnP_8 + P-poll__networl_5_2_AskP_0 + P-poll__networl_5_2_AskP_1 + P-poll__networl_5_2_AskP_2 + P-poll__networl_5_2_AskP_3 + P-poll__networl_5_2_AskP_4 + P-poll__networl_5_2_AskP_5 + P-poll__networl_5_2_AskP_6 + P-poll__networl_5_2_AskP_7 + P-poll__networl_5_2_AskP_8 + P-poll__networl_3_5_RP_0 + P-poll__networl_3_5_RP_1 + P-poll__networl_3_5_RP_2 + P-poll__networl_3_5_RP_3 + P-poll__networl_3_5_RP_4 + P-poll__networl_3_5_RP_5 + P-poll__networl_3_5_RP_6 + P-poll__networl_3_5_RP_7 + P-poll__networl_3_5_RP_8 + P-poll__networl_2_0_AnsP_0 + P-poll__networl_5_5_AnsP_0 + P-poll__networl_2_3_AnnP_0 + P-poll__networl_2_3_AnnP_1 + P-poll__networl_2_3_AnnP_2 + P-poll__networl_2_3_AnnP_3 + P-poll__networl_2_3_AnnP_4 + P-poll__networl_2_3_AnnP_5 + P-poll__networl_2_3_AnnP_6 + P-poll__networl_2_3_AnnP_7 + P-poll__networl_2_3_AnnP_8 + P-poll__networl_8_7_AskP_8 + P-poll__networl_5_4_RP_0 + P-poll__networl_5_4_RP_1 + P-poll__networl_5_4_RP_2 + P-poll__networl_5_4_RP_3 + P-poll__networl_5_4_RP_4 + P-poll__networl_5_4_RP_5 + P-poll__networl_5_4_RP_6 + P-poll__networl_5_4_RP_7 + P-poll__networl_5_4_RP_8 + P-poll__networl_8_7_AskP_7 + P-poll__networl_8_7_AskP_6 + P-poll__networl_0_6_AI_0 + P-poll__networl_0_6_AI_1 + P-poll__networl_0_6_AI_2 + P-poll__networl_0_6_AI_3 + P-poll__networl_0_6_AI_4 + P-poll__networl_0_6_AI_5 + P-poll__networl_0_6_AI_6 + P-poll__networl_0_6_AI_7 + P-poll__networl_0_6_AI_8 + P-poll__networl_8_7_AskP_5 + P-poll__networl_8_7_AskP_4 + P-poll__networl_8_7_AskP_3 + P-poll__networl_8_7_AskP_2 + P-poll__networl_8_7_AskP_1 + P-poll__networl_4_6_AskP_0 + P-poll__networl_4_6_AskP_1 + P-poll__networl_4_6_AskP_2 + P-poll__networl_4_6_AskP_3 + P-poll__networl_4_6_AskP_4 + P-poll__networl_4_6_AskP_5 + P-poll__networl_4_6_AskP_6 + P-poll__networl_4_6_AskP_7 + P-poll__networl_4_6_AskP_8 + P-poll__networl_7_3_RP_0 + P-poll__networl_7_3_RP_1 + P-poll__networl_7_3_RP_2 + P-poll__networl_7_3_RP_3 + P-poll__networl_7_3_RP_4 + P-poll__networl_7_3_RP_5 + P-poll__networl_7_3_RP_6 + P-poll__networl_7_3_RP_7 + P-poll__networl_7_3_RP_8 + P-poll__networl_0_0_RP_0 + P-poll__networl_0_0_RP_1 + P-poll__networl_0_0_RP_2 + P-poll__networl_0_0_RP_3 + P-poll__networl_0_0_RP_4 + P-poll__networl_0_0_RP_5 + P-poll__networl_0_0_RP_6 + P-poll__networl_0_0_RP_7 + P-poll__networl_0_0_RP_8 + P-poll__networl_8_7_AskP_0 + P-poll__networl_1_4_AnsP_0 + P-poll__networl_2_5_AI_0 + P-poll__networl_2_2_RI_8 + P-poll__networl_2_5_AI_1 + P-poll__networl_2_5_AI_2 + P-poll__networl_2_5_AI_3 + P-poll__networl_2_5_AI_4 + P-poll__networl_2_5_AI_5 + P-poll__networl_2_5_AI_6 + P-poll__networl_2_5_AI_7 + P-poll__networl_2_5_AI_8 + P-poll__networl_2_8_RI_0 + P-poll__networl_2_8_RI_1 + P-poll__networl_2_8_RI_2 + P-poll__networl_2_8_RI_3 + P-poll__networl_2_8_RI_4 + P-poll__networl_2_8_RI_5 + P-poll__networl_2_8_RI_6 + P-poll__networl_2_8_RI_7 + P-poll__networl_2_8_RI_8 + P-poll__networl_2_2_RI_7 + P-poll__networl_2_2_RI_6 + P-poll__networl_2_2_RI_5 + P-poll__networl_8_5_AnsP_0 + P-poll__networl_2_2_RI_4 + P-poll__networl_2_2_RI_3 + P-poll__networl_2_2_RI_2 + P-poll__networl_2_2_RI_1 + P-poll__networl_2_2_RI_0 + P-poll__networl_1_6_AskP_8 + P-poll__networl_1_6_AskP_7 + P-poll__networl_1_6_AskP_6 + P-poll__networl_1_7_AnnP_0 + P-poll__networl_1_7_AnnP_1 + P-poll__networl_1_7_AnnP_2 + P-poll__networl_1_7_AnnP_3 + P-poll__networl_1_7_AnnP_4 + P-poll__networl_1_7_AnnP_5 + P-poll__networl_1_7_AnnP_6 + P-poll__networl_1_7_AnnP_7 + P-poll__networl_1_7_AnnP_8 + P-poll__networl_1_6_AskP_5 + P-poll__networl_1_6_AskP_4 + P-poll__networl_1_6_AskP_3 + P-poll__networl_1_6_AskP_2 + P-poll__networl_1_6_AskP_1 + P-poll__networl_1_6_AskP_0 + P-poll__networl_2_1_AskP_0 + P-poll__networl_2_1_AskP_1 + P-poll__networl_2_1_AskP_2 + P-poll__networl_2_1_AskP_3 + P-poll__networl_2_1_AskP_4 + P-poll__networl_2_1_AskP_5 + P-poll__networl_2_1_AskP_6 + P-poll__networl_2_1_AskP_7 + P-poll__networl_2_1_AskP_8 + P-poll__networl_4_4_AI_0 + P-poll__networl_4_4_AI_1 + P-poll__networl_4_4_AI_2 + P-poll__networl_4_4_AI_3 + P-poll__networl_4_4_AI_4 + P-poll__networl_4_4_AI_5 + P-poll__networl_4_4_AI_6 + P-poll__networl_4_4_AI_7 + P-poll__networl_4_4_AI_8 + P-poll__networl_4_7_RI_0 + P-poll__networl_4_7_RI_1 + P-poll__networl_4_7_RI_2 + P-poll__networl_4_7_RI_3 + P-poll__networl_4_7_RI_4 + P-poll__networl_4_7_RI_5 + P-poll__networl_4_7_RI_6 + P-poll__networl_4_7_RI_7 + P-poll__networl_4_7_RI_8 + P-poll__networl_8_8_AnnP_0 + P-poll__networl_8_8_AnnP_1 + P-poll__networl_8_8_AnnP_2 + P-poll__networl_8_8_AnnP_3 + P-poll__networl_8_8_AnnP_4 + P-poll__networl_8_8_AnnP_5 + P-poll__networl_8_8_AnnP_6 + P-poll__networl_8_8_AnnP_7 + P-poll__networl_8_8_AnnP_8 + P-poll__networl_6_0_AnsP_0 + P-poll__networl_6_3_AI_0 + P-poll__networl_6_3_AI_1 + P-poll__networl_6_3_AI_2 + P-poll__networl_0_8_AnsP_0 + P-poll__networl_6_3_AI_3 + P-poll__networl_6_3_AI_4 + P-poll__networl_6_3_AI_5 + P-poll__networl_6_3_AI_6 + P-poll__networl_6_3_AI_7 + P-poll__networl_6_3_AI_8 + P-poll__networl_6_4_AnnP_8 + P-poll__networl_6_4_AnnP_7 + P-poll__networl_6_6_RI_0 + P-poll__networl_6_6_RI_1 + P-poll__networl_6_6_RI_2 + P-poll__networl_6_6_RI_3 + P-poll__networl_6_6_RI_4 + P-poll__networl_6_6_RI_5 + P-poll__networl_6_6_RI_6 + P-poll__networl_6_6_RI_7 + P-poll__networl_6_6_RI_8 + P-poll__networl_6_4_AnnP_6 + P-poll__networl_6_4_AnnP_5 + P-poll__networl_6_3_AnnP_0 + P-poll__networl_6_3_AnnP_1 + P-poll__networl_6_3_AnnP_2 + P-poll__networl_6_3_AnnP_3 + P-poll__networl_6_3_AnnP_4 + P-poll__networl_6_3_AnnP_5 + P-poll__networl_6_3_AnnP_6 + P-poll__networl_6_3_AnnP_7 + P-poll__networl_6_3_AnnP_8 + P-poll__networl_6_4_AnnP_4 + P-poll__networl_6_4_AnnP_3 + P-poll__networl_6_4_AnnP_2 + P-poll__networl_6_4_AnnP_1 + P-poll__networl_6_4_AnnP_0 + P-poll__networl_0_3_RI_8 + P-poll__networl_0_3_RI_7 + P-poll__networl_0_3_RI_6 + P-poll__networl_0_3_RI_5 + P-poll__networl_0_3_RI_4 + P-poll__networl_0_3_RI_3 + P-poll__networl_0_3_RI_2 + P-poll__networl_0_3_RI_1 + P-poll__networl_0_3_RI_0 + P-poll__networl_7_6_RI_8 + P-poll__networl_7_6_RI_7 + P-poll__networl_7_6_RI_6 + P-poll__networl_7_6_RI_5 + P-poll__networl_7_6_RI_4 + P-poll__networl_7_6_RI_3 + P-poll__networl_1_5_AskP_0 + P-poll__networl_1_5_AskP_1 + P-poll__networl_1_5_AskP_2 + P-poll__networl_1_5_AskP_3 + P-poll__networl_1_5_AskP_4 + P-poll__networl_1_5_AskP_5 + P-poll__networl_1_5_AskP_6 + P-poll__networl_1_5_AskP_7 + P-poll__networl_1_5_AskP_8 + P-poll__networl_7_6_RI_2 + P-poll__networl_8_2_AI_0 + P-poll__networl_8_2_AI_1 + P-poll__networl_8_2_AI_2 + P-poll__networl_8_2_AI_3 + P-poll__networl_8_2_AI_4 + P-poll__networl_8_2_AI_5 + P-poll__networl_8_2_AI_6 + P-poll__networl_8_2_AI_7 + P-poll__networl_8_2_AI_8 + P-poll__networl_7_6_RI_1 + P-poll__networl_7_6_RI_0 + P-poll__networl_0_0_AI_8 + P-poll__networl_0_0_AI_7 + P-poll__networl_0_0_AI_6 + P-poll__networl_0_0_AI_5 + P-poll__networl_0_0_AI_4 + P-poll__networl_0_0_AI_3 + P-poll__networl_8_5_RI_0 + P-poll__networl_8_5_RI_1 + P-poll__networl_8_5_RI_2 + P-poll__networl_8_5_RI_3 + P-poll__networl_8_5_RI_4 + P-poll__networl_8_5_RI_5 + P-poll__networl_8_5_RI_6 + P-poll__networl_8_5_RI_7 + P-poll__networl_8_5_RI_8 + P-poll__networl_1_2_RI_0 + P-poll__networl_1_2_RI_1 + P-poll__networl_1_2_RI_2 + P-poll__networl_1_2_RI_3 + P-poll__networl_1_2_RI_4 + P-poll__networl_1_2_RI_5 + P-poll__networl_1_2_RI_6 + P-poll__networl_1_2_RI_7 + P-poll__networl_1_2_RI_8 + P-poll__networl_0_0_AI_2 + P-poll__networl_0_0_AI_1 + P-poll__networl_8_6_AskP_0 + P-poll__networl_8_6_AskP_1 + P-poll__networl_8_6_AskP_2 + P-poll__networl_8_6_AskP_3 + P-poll__networl_8_6_AskP_4 + P-poll__networl_8_6_AskP_5 + P-poll__networl_8_6_AskP_6 + P-poll__networl_8_6_AskP_7 + P-poll__networl_8_6_AskP_8 + P-poll__networl_0_0_AI_0 + P-poll__networl_7_3_AI_8 + P-poll__networl_7_3_AI_7 + P-poll__networl_5_4_AnsP_0 + P-poll__networl_7_3_AI_6 + P-poll__networl_7_3_AI_5 + P-poll__networl_7_3_AI_4 + P-poll__networl_7_3_AI_3 + P-poll__networl_7_3_AI_2 + P-poll__networl_7_3_AI_1 + P-poll__networl_7_3_AI_0 + P-poll__networl_3_1_RI_0 + P-poll__networl_3_1_RI_1 + P-poll__networl_3_1_RI_2 + P-poll__networl_0_8_RP_0 + P-poll__networl_3_1_RI_3 + P-poll__networl_0_8_RP_1 + P-poll__networl_3_1_RI_4 + P-poll__networl_0_8_RP_2 + P-poll__networl_3_1_RI_5 + P-poll__networl_0_8_RP_3 + P-poll__networl_3_1_RI_6 + P-poll__networl_0_8_RP_4 + P-poll__networl_3_1_RI_7 + P-poll__networl_0_8_RP_5 + P-poll__networl_3_1_RI_8 + P-poll__networl_0_8_RP_6 + P-poll__networl_0_8_RP_7 + P-poll__networl_0_8_RP_8 + P-poll__networl_5_7_AnnP_0 + P-poll__networl_5_7_AnnP_1 + P-poll__networl_5_7_AnnP_2 + P-poll__networl_5_7_AnnP_3 + P-poll__networl_5_7_AnnP_4 + P-poll__networl_5_7_AnnP_5 + P-poll__networl_5_7_AnnP_6 + P-poll__networl_5_7_AnnP_7 + P-poll__networl_5_7_AnnP_8 + P-poll__networl_6_1_AskP_0 + P-poll__networl_6_1_AskP_1 + P-poll__networl_6_1_AskP_2 + P-poll__networl_6_1_AskP_3 + P-poll__networl_6_1_AskP_4 + P-poll__networl_6_1_AskP_5 + P-poll__networl_6_1_AskP_6 + P-poll__networl_6_1_AskP_7 + P-poll__networl_6_1_AskP_8 + P-poll__networl_6_1_AnsP_0 + P-poll__networl_5_0_RI_0 + P-poll__networl_5_0_RI_1 + P-poll__networl_5_0_RI_2 + P-poll__networl_2_7_RP_0 + P-poll__networl_5_0_RI_3 + P-poll__networl_2_7_RP_1 + P-poll__networl_5_0_RI_4 + P-poll__networl_2_7_RP_2 + P-poll__networl_5_0_RI_5 + P-poll__networl_2_7_RP_3 + P-poll__networl_5_0_RI_6 + P-poll__networl_2_7_RP_4 + P-poll__networl_5_0_RI_7 + P-poll__networl_2_7_RP_5 + P-poll__networl_5_0_RI_8 + P-poll__networl_2_7_RP_6 + P-poll__networl_2_7_RP_7 + P-poll__networl_2_7_RP_8 + P-poll__networl_3_2_AnnP_0 + P-poll__networl_3_2_AnnP_1 + P-poll__networl_3_2_AnnP_2 + P-poll__networl_3_2_AnnP_3 + P-poll__networl_3_2_AnnP_4 + P-poll__networl_3_2_AnnP_5 + P-poll__networl_3_2_AnnP_6 + P-poll__networl_3_2_AnnP_7 + P-poll__networl_3_2_AnnP_8 + P-poll__networl_4_8_AnsP_0 + P-poll__networl_5_7_RI_8 + P-poll__networl_5_7_RI_7 + P-poll__networl_5_7_RI_6 + P-poll__networl_5_7_RI_5 + P-poll__networl_4_6_RP_0 + P-poll__networl_4_6_RP_1 + P-poll__networl_4_6_RP_2 + P-poll__networl_4_6_RP_3 + P-poll__networl_4_6_RP_4 + P-poll__networl_4_6_RP_5 + P-poll__networl_4_6_RP_6 + P-poll__networl_4_6_RP_7 + P-poll__networl_4_6_RP_8 + P-poll__networl_5_7_RI_4 + P-poll__networl_5_7_RI_3 + P-poll__networl_5_7_RI_2 + P-poll__networl_5_7_RI_1 + P-poll__networl_5_7_RI_0 + P-poll__networl_5_4_AI_8 + P-poll__networl_5_4_AI_7 + P-poll__networl_5_4_AI_6 + P-poll__networl_5_4_AI_5 + P-poll__networl_5_4_AI_4 + P-poll__networl_5_4_AI_3 + P-poll__networl_5_5_AskP_0 + P-poll__networl_5_5_AskP_1 + P-poll__networl_5_5_AskP_2 + P-poll__networl_5_5_AskP_3 + P-poll__networl_5_5_AskP_4 + P-poll__networl_5_5_AskP_5 + P-poll__networl_5_5_AskP_6 + P-poll__networl_5_5_AskP_7 + P-poll__networl_5_5_AskP_8 + P-poll__networl_5_4_AI_2 + P-poll__networl_5_4_AI_1 + P-poll__networl_5_4_AI_0 + P-poll__networl_6_5_RP_0 + P-poll__networl_6_5_RP_1 + P-poll__networl_6_5_RP_2 + P-poll__networl_6_5_RP_3 + P-poll__networl_6_5_RP_4 + P-poll__networl_6_5_RP_5 + P-poll__networl_6_5_RP_6 + P-poll__networl_6_5_RP_7 + P-poll__networl_6_5_RP_8 + P-poll__networl_2_3_AnsP_0 + P-poll__networl_2_2_AskP_8 + P-poll__networl_2_2_AskP_7 + P-poll__networl_1_7_AI_0 + P-poll__networl_1_7_AI_1 + P-poll__networl_1_7_AI_2 + P-poll__networl_1_7_AI_3 + P-poll__networl_1_7_AI_4 + P-poll__networl_1_7_AI_5 + P-poll__networl_1_7_AI_6 + P-poll__networl_1_7_AI_7 + P-poll__networl_1_7_AI_8 + P-poll__networl_2_2_AskP_6 + P-poll__networl_2_2_AskP_5 + P-poll__networl_2_6_AnnP_0 + P-poll__networl_2_6_AnnP_1 + P-poll__networl_2_6_AnnP_2 + P-poll__networl_2_6_AnnP_3 + P-poll__networl_2_6_AnnP_4 + P-poll__networl_2_6_AnnP_5 + P-poll__networl_2_6_AnnP_6 + P-poll__networl_2_6_AnnP_7 + P-poll__networl_2_6_AnnP_8 + P-poll__networl_2_2_AskP_4 + P-poll__networl_3_0_AskP_0 + P-poll__networl_3_0_AskP_1 + P-poll__networl_3_0_AskP_2 + P-poll__networl_3_0_AskP_3 + P-poll__networl_3_0_AskP_4 + P-poll__networl_3_0_AskP_5 + P-poll__networl_3_0_AskP_6 + P-poll__networl_3_0_AskP_7 + P-poll__networl_3_0_AskP_8 + P-poll__networl_8_4_RP_0 + P-poll__networl_8_4_RP_1 + P-poll__networl_8_4_RP_2 + P-poll__networl_8_4_RP_3 + P-poll__networl_8_4_RP_4 + P-poll__networl_8_4_RP_5 + P-poll__networl_8_4_RP_6 + P-poll__networl_8_4_RP_7 + P-poll__networl_8_4_RP_8 + P-poll__networl_1_1_RP_0 + P-poll__networl_1_1_RP_1 + P-poll__networl_1_1_RP_2 + P-poll__networl_1_1_RP_3 + P-poll__networl_1_1_RP_4 + P-poll__networl_1_1_RP_5 + P-poll__networl_1_1_RP_6 + P-poll__networl_1_1_RP_7 + P-poll__networl_1_1_RP_8 + P-poll__networl_2_2_AskP_3 + P-poll__networl_3_6_AI_0 + P-poll__networl_3_6_AI_1 + P-poll__networl_3_6_AI_2 + P-poll__networl_3_6_AI_3 + P-poll__networl_3_6_AI_4 + P-poll__networl_3_6_AI_5 + P-poll__networl_3_6_AI_6 + P-poll__networl_3_6_AI_7 + P-poll__networl_3_6_AI_8 + P-poll__networl_2_2_AskP_2 + P-poll__networl_2_2_AskP_1 + P-poll__networl_2_2_AskP_0 + P-poll__networl_1_8_AnnP_8 + P-poll__networl_0_1_AnnP_0 + P-poll__networl_0_1_AnnP_1 + P-poll__networl_0_1_AnnP_2 + P-poll__networl_0_1_AnnP_3 + P-poll__networl_0_1_AnnP_4 + P-poll__networl_0_1_AnnP_5 + P-poll__networl_0_1_AnnP_6 + P-poll__networl_0_1_AnnP_7 + P-poll__networl_0_1_AnnP_8 + P-poll__networl_3_0_RP_0 + P-poll__networl_3_0_RP_1 + P-poll__networl_3_0_RP_2 + P-poll__networl_3_0_RP_3 + P-poll__networl_3_0_RP_4 + P-poll__networl_3_0_RP_5 + P-poll__networl_3_0_RP_6 + P-poll__networl_3_0_RP_7 + P-poll__networl_3_0_RP_8 + P-poll__networl_1_8_AnnP_7 + P-poll__networl_1_7_AnsP_0 + P-poll__networl_1_8_AnnP_6 + P-poll__networl_1_8_AnnP_5 + P-poll__networl_1_8_AnnP_4 + P-poll__networl_1_8_AnnP_3 + P-poll__networl_1_8_AnnP_2 + P-poll__networl_1_8_AnnP_1 + P-poll__networl_1_8_AnnP_0 + P-poll__networl_8_6_AnsP_0 + P-poll__networl_5_5_AI_0 + P-poll__networl_5_5_AI_1 + P-poll__networl_5_5_AI_2 + P-poll__networl_5_5_AI_3 + P-poll__networl_5_5_AI_4 + P-poll__networl_5_5_AI_5 + P-poll__networl_5_5_AI_6 + P-poll__networl_5_5_AI_7 + P-poll__networl_5_5_AI_8 + P-poll__networl_5_8_RI_0 + P-poll__networl_5_8_RI_1 + P-poll__networl_5_8_RI_2 + P-poll__networl_5_8_RI_3 + P-poll__networl_5_8_RI_4 + P-poll__networl_5_8_RI_5 + P-poll__networl_5_8_RI_6 + P-poll__networl_5_8_RI_7 + P-poll__networl_5_8_RI_8 + P-poll__networl_7_0_AnnP_8 + P-poll__networl_7_0_AnnP_7 + P-poll__networl_7_2_AnnP_0 + P-poll__networl_7_2_AnnP_1 + P-poll__networl_7_2_AnnP_2 + P-poll__networl_7_2_AnnP_3 + P-poll__networl_7_2_AnnP_4 + P-poll__networl_7_2_AnnP_5 + P-poll__networl_7_2_AnnP_6 + P-poll__networl_7_2_AnnP_7 + P-poll__networl_7_2_AnnP_8 + P-poll__networl_7_0_AnnP_6 + P-poll__networl_8_8_AnsP_0 + P-poll__networl_7_0_AnnP_5 + P-poll__networl_7_0_AnnP_4 + P-poll__networl_7_0_AnnP_3 + P-poll__networl_7_0_AnnP_2 + P-poll__networl_7_0_AnnP_1 + P-poll__networl_7_0_AnnP_0 + P-poll__networl_3_8_RI_8 + P-poll__networl_3_8_RI_7 + P-poll__networl_3_8_RI_6 + P-poll__networl_3_8_RI_5 + P-poll__networl_3_8_RI_4 + P-poll__networl_3_8_RI_3 + P-poll__networl_3_8_RI_2 + P-poll__networl_3_8_RI_1 + P-poll__networl_3_8_RI_0 + P-poll__networl_3_5_AI_8 + P-poll__networl_3_5_AI_7 + P-poll__networl_2_4_AskP_0 + P-poll__networl_2_4_AskP_1 + P-poll__networl_2_4_AskP_2 + P-poll__networl_2_4_AskP_3 + P-poll__networl_2_4_AskP_4 + P-poll__networl_2_4_AskP_5 + P-poll__networl_2_4_AskP_6 + P-poll__networl_2_4_AskP_7 + P-poll__networl_2_4_AskP_8 + P-poll__networl_3_5_AI_6 + P-poll__networl_3_5_AI_5 + P-poll__networl_3_5_AI_4 + P-poll__networl_7_4_AI_0 + P-poll__networl_7_4_AI_1 + P-poll__networl_7_4_AI_2 + P-poll__networl_7_4_AI_3 + P-poll__networl_7_4_AI_4 + P-poll__networl_7_4_AI_5 + P-poll__networl_7_4_AI_6 + P-poll__networl_7_4_AI_7 + P-poll__networl_7_4_AI_8 + P-poll__networl_0_1_AI_0 + P-poll__networl_0_1_AI_1 + P-poll__networl_0_1_AI_2 + P-poll__networl_0_1_AI_3 + P-poll__networl_0_1_AI_4 + P-poll__networl_0_1_AI_5 + P-poll__networl_0_1_AI_6 + P-poll__networl_0_1_AI_7 + P-poll__networl_0_1_AI_8 + P-poll__networl_7_7_RI_0 + P-poll__networl_7_7_RI_1 + P-poll__networl_7_7_RI_2 + P-poll__networl_7_7_RI_3 + P-poll__networl_7_7_RI_4 + P-poll__networl_7_7_RI_5 + P-poll__networl_7_7_RI_6 + P-poll__networl_7_7_RI_7 + P-poll__networl_7_7_RI_8 + P-poll__networl_0_4_RI_0 + P-poll__networl_0_4_RI_1 + P-poll__networl_0_4_RI_2 + P-poll__networl_0_4_RI_3 + P-poll__networl_0_4_RI_4 + P-poll__networl_0_4_RI_5 + P-poll__networl_0_4_RI_6 + P-poll__networl_0_4_RI_7 + P-poll__networl_0_4_RI_8 + P-poll__networl_3_5_AI_3 + P-poll__networl_3_5_AI_2 + P-poll__networl_3_5_AI_1 + P-poll__networl_6_3_AnsP_0 + P-poll__networl_3_5_AI_0 + P-poll__networl_1_5_AnsP_0 + P-poll__networl_2_0_AI_0 + P-poll__networl_2_0_AI_1 + P-poll__networl_2_0_AI_2 + P-poll__networl_2_0_AI_3 + P-poll__networl_2_0_AI_4 + P-poll__networl_2_0_AI_5 + P-poll__networl_2_0_AI_6 + P-poll__networl_2_0_AI_7 + P-poll__networl_2_0_AI_8 + P-poll__networl_2_3_RI_0 + P-poll__networl_2_3_RI_1 + P-poll__networl_2_3_RI_2 + P-poll__networl_2_3_RI_3 + P-poll__networl_2_3_RI_4 + P-poll__networl_2_3_RI_5 + P-poll__networl_2_3_RI_6 + P-poll__networl_2_3_RI_7 + P-poll__networl_2_3_RI_8 + P-poll__networl_1_0_RP_8 + P-poll__networl_1_0_RP_7 + P-poll__networl_6_6_AnnP_0 + P-poll__networl_6_6_AnnP_1 + P-poll__networl_6_6_AnnP_2 + P-poll__networl_6_6_AnnP_3 + P-poll__networl_6_6_AnnP_4 + P-poll__networl_6_6_AnnP_5 + P-poll__networl_6_6_AnnP_6 + P-poll__networl_6_6_AnnP_7 + P-poll__networl_6_6_AnnP_8 + P-poll__networl_1_0_RP_6 + P-poll__networl_7_0_AskP_0 + P-poll__networl_7_0_AskP_1 + P-poll__networl_7_0_AskP_2 + P-poll__networl_7_0_AskP_3 + P-poll__networl_7_0_AskP_4 + P-poll__networl_7_0_AskP_5 + P-poll__networl_7_0_AskP_6 + P-poll__networl_7_0_AskP_7 + P-poll__networl_7_0_AskP_8 + P-poll__networl_1_0_RP_5 + P-poll__networl_1_0_RP_4 + P-poll__networl_1_0_RP_3 + P-poll__networl_1_0_RP_2 + P-poll__networl_1_0_RP_1 + P-poll__networl_1_0_RP_0 + P-poll__networl_8_3_RP_8 + P-poll__networl_8_3_RP_7 + P-poll__networl_8_3_RP_6 + P-poll__networl_8_3_RP_5 + P-poll__networl_8_3_RP_4 + P-poll__networl_1_8_AskP_0 + P-poll__networl_1_8_AskP_1 + P-poll__networl_1_8_AskP_2 + P-poll__networl_1_8_AskP_3 + P-poll__networl_1_8_AskP_4 + P-poll__networl_1_8_AskP_5 + P-poll__networl_1_8_AskP_6 + P-poll__networl_1_8_AskP_7 + P-poll__networl_1_8_AskP_8 + P-poll__networl_8_3_RP_3 + P-poll__networl_4_2_RI_0 + P-poll__networl_4_2_RI_1 + P-poll__networl_4_2_RI_2 + P-poll__networl_4_2_RI_3 + P-poll__networl_4_2_RI_4 + P-poll__networl_4_2_RI_5 + P-poll__networl_4_2_RI_6 + P-poll__networl_4_2_RI_7 + P-poll__networl_4_2_RI_8 + P-poll__networl_8_3_RP_2 + P-poll__networl_8_3_RP_1 + P-poll__networl_8_3_RP_0 + P-poll__networl_4_1_AnnP_0 + P-poll__networl_4_1_AnnP_1 + P-poll__networl_4_1_AnnP_2 + P-poll__networl_4_1_AnnP_3 + P-poll__networl_4_1_AnnP_4 + P-poll__networl_4_1_AnnP_5 + P-poll__networl_4_1_AnnP_6 + P-poll__networl_4_1_AnnP_7 + P-poll__networl_4_1_AnnP_8 + P-poll__networl_5_7_AnsP_0 + P-poll__networl_4_7_AskP_8 + P-poll__networl_4_7_AskP_7 + P-poll__networl_4_7_AskP_6 + P-poll__networl_4_7_AskP_5 + P-poll__networl_4_7_AskP_4 + P-poll__networl_4_7_AskP_3 + P-poll__networl_4_7_AskP_2 + P-poll__networl_4_7_AskP_1 + P-poll__networl_4_7_AskP_0 + P-poll__networl_6_1_RI_0 + P-poll__networl_6_1_RI_1 + P-poll__networl_6_1_RI_2 + P-poll__networl_3_8_RP_0 + P-poll__networl_6_1_RI_3 + P-poll__networl_3_8_RP_1 + P-poll__networl_6_1_RI_4 + P-poll__networl_3_8_RP_2 + P-poll__networl_6_1_RI_5 + P-poll__networl_3_8_RP_3 + P-poll__networl_6_1_RI_6 + P-poll__networl_3_8_RP_4 + P-poll__networl_6_1_RI_7 + P-poll__networl_3_8_RP_5 + P-poll__networl_6_1_RI_8 + P-poll__networl_3_8_RP_6 + P-poll__networl_3_8_RP_7 + P-poll__networl_3_8_RP_8 + P-poll__networl_6_4_AskP_0 + P-poll__networl_6_4_AskP_1 + P-poll__networl_6_4_AskP_2 + P-poll__networl_6_4_AskP_3 + P-poll__networl_6_4_AskP_4 + P-poll__networl_6_4_AskP_5 + P-poll__networl_6_4_AskP_6 + P-poll__networl_6_4_AskP_7 + P-poll__networl_6_4_AskP_8 + P-poll__networl_3_2_AnsP_0 + P-poll__networl_1_6_AI_8 + P-poll__networl_1_6_AI_7 + P-poll__networl_1_6_AI_6 + P-poll__networl_1_6_AI_5 + P-poll__networl_1_6_AI_4 + P-poll__networl_1_6_AI_3 + P-poll__networl_8_0_RI_0 + P-poll__networl_8_0_RI_1 + P-poll__networl_8_0_RI_2 + P-poll__networl_5_7_RP_0 + P-poll__networl_8_0_RI_3 + P-poll__networl_5_7_RP_1 + P-poll__networl_8_0_RI_4 + P-poll__networl_5_7_RP_2 + P-poll__networl_8_0_RI_5 + P-poll__networl_5_7_RP_3 + P-poll__networl_8_0_RI_6 + P-poll__networl_5_7_RP_4 + P-poll__networl_8_0_RI_7 + P-poll__networl_5_7_RP_5 + P-poll__networl_8_0_RI_8 + P-poll__networl_5_7_RP_6 + P-poll__networl_5_7_RP_7 + P-poll__networl_5_7_RP_8 + P-poll__networl_1_6_AI_2 + P-poll__networl_1_6_AI_1 + P-poll__networl_1_6_AI_0 + P-poll__networl_3_5_AnnP_0 + P-poll__networl_3_5_AnnP_1 + P-poll__networl_3_5_AnnP_2 + P-poll__networl_3_5_AnnP_3 + P-poll__networl_3_5_AnnP_4 + P-poll__networl_3_5_AnnP_5 + P-poll__networl_3_5_AnnP_6 + P-poll__networl_3_5_AnnP_7 + P-poll__networl_3_5_AnnP_8 + P-poll__networl_7_6_RP_0 + P-poll__networl_7_6_RP_1 + P-poll__networl_7_6_RP_2 + P-poll__networl_7_6_RP_3 + P-poll__networl_7_6_RP_4 + P-poll__networl_7_6_RP_5 + P-poll__networl_7_6_RP_6 + P-poll__networl_7_6_RP_7 + P-poll__networl_7_6_RP_8 + P-poll__networl_0_3_RP_0 + P-poll__networl_0_3_RP_1 + P-poll__networl_0_3_RP_2 + P-poll__networl_0_3_RP_3 + P-poll__networl_0_3_RP_4 + P-poll__networl_0_3_RP_5 + P-poll__networl_0_3_RP_6 + P-poll__networl_0_3_RP_7 + P-poll__networl_0_3_RP_8 + P-poll__networl_2_8_AI_0 + P-poll__networl_2_8_AI_1 + P-poll__networl_2_8_AI_2 + P-poll__networl_2_8_AI_3 + P-poll__networl_2_8_AI_4 + P-poll__networl_2_8_AI_5 + P-poll__networl_2_8_AI_6 + P-poll__networl_2_8_AI_7 + P-poll__networl_2_8_AI_8 + P-poll__networl_6_4_RP_8 + P-poll__networl_6_4_RP_7 + P-poll__networl_6_4_RP_6 + P-poll__networl_6_4_RP_5 + P-poll__networl_6_4_RP_4 + P-poll__networl_6_4_RP_3 + P-poll__networl_6_4_RP_2 + P-poll__networl_6_4_RP_1 + P-poll__networl_6_4_RP_0 + P-poll__networl_5_8_AskP_0 + P-poll__networl_5_8_AskP_1 + P-poll__networl_5_8_AskP_2 + P-poll__networl_5_8_AskP_3 + P-poll__networl_5_8_AskP_4 + P-poll__networl_5_8_AskP_5 + P-poll__networl_5_8_AskP_6 + P-poll__networl_5_8_AskP_7 + P-poll__networl_5_8_AskP_8 + P-poll__networl_1_0_AnnP_0 + P-poll__networl_1_0_AnnP_1 + P-poll__networl_1_0_AnnP_2 + P-poll__networl_1_0_AnnP_3 + P-poll__networl_1_0_AnnP_4 + P-poll__networl_1_0_AnnP_5 + P-poll__networl_1_0_AnnP_6 + P-poll__networl_1_0_AnnP_7 + P-poll__networl_1_0_AnnP_8 + P-poll__networl_2_2_RP_0 + P-poll__networl_2_2_RP_1 + P-poll__networl_2_2_RP_2 + P-poll__networl_2_2_RP_3 + P-poll__networl_2_2_RP_4 + P-poll__networl_2_2_RP_5 + P-poll__networl_2_2_RP_6 + P-poll__networl_2_2_RP_7 + P-poll__networl_2_2_RP_8 + P-poll__networl_2_6_AnsP_0 + P-poll__networl_4_7_AI_0 + P-poll__networl_4_7_AI_1 + P-poll__networl_4_7_AI_2 + P-poll__networl_4_7_AI_3 + P-poll__networl_4_7_AI_4 + P-poll__networl_4_7_AI_5 + P-poll__networl_4_7_AI_6 + P-poll__networl_4_7_AI_7 + P-poll__networl_4_7_AI_8 + P-poll__networl_8_1_AnnP_0 + P-poll__networl_8_1_AnnP_1 + P-poll__networl_8_1_AnnP_2 + P-poll__networl_8_1_AnnP_3 + P-poll__networl_8_1_AnnP_4 + P-poll__networl_8_1_AnnP_5 + P-poll__networl_8_1_AnnP_6 + P-poll__networl_8_1_AnnP_7 + P-poll__networl_8_1_AnnP_8 + P-poll__networl_2_4_AnnP_8 + P-poll__networl_2_4_AnnP_7 + P-poll__networl_2_4_AnnP_6 + P-poll__networl_2_4_AnnP_5 + P-poll__networl_2_4_AnnP_4 + P-poll__networl_2_4_AnnP_3 + P-poll__networl_2_4_AnnP_2 + P-poll__networl_2_4_AnnP_1 + P-poll__networl_3_3_AskP_0 + P-poll__networl_3_3_AskP_1 + P-poll__networl_3_3_AskP_2 + P-poll__networl_3_3_AskP_3 + P-poll__networl_3_3_AskP_4 + P-poll__networl_3_3_AskP_5 + P-poll__networl_3_3_AskP_6 + P-poll__networl_3_3_AskP_7 + P-poll__networl_3_3_AskP_8 + P-poll__networl_4_1_RP_0 + P-poll__networl_4_1_RP_1 + P-poll__networl_4_1_RP_2 + P-poll__networl_4_1_RP_3 + P-poll__networl_4_1_RP_4 + P-poll__networl_4_1_RP_5 + P-poll__networl_4_1_RP_6 + P-poll__networl_4_1_RP_7 + P-poll__networl_4_1_RP_8 + P-poll__networl_2_4_AnnP_0 + P-poll__networl_6_6_AI_0 + P-poll__networl_6_6_AI_1 + P-poll__networl_6_6_AI_2 + P-poll__networl_6_6_AI_3 + P-poll__networl_6_6_AI_4 + P-poll__networl_6_6_AI_5 + P-poll__networl_6_6_AI_6 + P-poll__networl_6_6_AI_7 + P-poll__networl_6_6_AI_8 + P-poll__networl_0_1_AnsP_0 + P-poll__networl_7_2_AnsP_0 + P-poll__networl_0_4_AnnP_0 + P-poll__networl_0_4_AnnP_1 + P-poll__networl_0_4_AnnP_2 + P-poll__networl_0_4_AnnP_3 + P-poll__networl_0_4_AnnP_4 + P-poll__networl_0_4_AnnP_5 + P-poll__networl_0_4_AnnP_6 + P-poll__networl_0_4_AnnP_7 + P-poll__networl_0_4_AnnP_8 + P-poll__networl_6_0_RP_0 + P-poll__networl_6_0_RP_1 + P-poll__networl_6_0_RP_2 + P-poll__networl_6_0_RP_3 + P-poll__networl_6_0_RP_4 + P-poll__networl_6_0_RP_5 + P-poll__networl_6_0_RP_6 + P-poll__networl_6_0_RP_7 + P-poll__networl_6_0_RP_8 + P-poll__networl_8_5_AI_0 + P-poll__networl_8_5_AI_1 + P-poll__networl_8_5_AI_2 + P-poll__networl_8_5_AI_3 + P-poll__networl_8_5_AI_4 + P-poll__networl_8_5_AI_5 + P-poll__networl_8_5_AI_6 + P-poll__networl_8_5_AI_7 + P-poll__networl_8_5_AI_8 + P-poll__networl_1_2_AI_0 + P-poll__networl_1_2_AI_1 + P-poll__networl_1_2_AI_2 + P-poll__networl_1_2_AI_3 + P-poll__networl_1_2_AI_4 + P-poll__networl_1_2_AI_5 + P-poll__networl_1_2_AI_6 + P-poll__networl_1_2_AI_7 + P-poll__networl_1_2_AI_8 + P-poll__networl_8_8_RI_0 + P-poll__networl_8_8_RI_1 + P-poll__networl_8_8_RI_2 + P-poll__networl_8_8_RI_3 + P-poll__networl_8_8_RI_4 + P-poll__networl_8_8_RI_5 + P-poll__networl_8_8_RI_6 + P-poll__networl_8_8_RI_7 + P-poll__networl_8_8_RI_8 + P-poll__networl_1_5_RI_0 + P-poll__networl_1_5_RI_1 + P-poll__networl_1_5_RI_2 + P-poll__networl_1_5_RI_3 + P-poll__networl_1_5_RI_4 + P-poll__networl_1_5_RI_5 + P-poll__networl_1_5_RI_6 + P-poll__networl_1_5_RI_7 + P-poll__networl_1_5_RI_8 + P-poll__networl_7_5_AnnP_0 + P-poll__networl_7_5_AnnP_1 + P-poll__networl_7_5_AnnP_2 + P-poll__networl_7_5_AnnP_3 + P-poll__networl_7_5_AnnP_4 + P-poll__networl_7_5_AnnP_5 + P-poll__networl_7_5_AnnP_6 + P-poll__networl_7_5_AnnP_7 + P-poll__networl_7_5_AnnP_8 + P-poll__networl_2_1_AnsP_0 + P-poll__networl_4_5_RP_8 + P-poll__networl_4_5_RP_7 + P-poll__networl_4_5_RP_6 + P-poll__networl_4_5_RP_5 + P-poll__networl_4_5_RP_4 + P-poll__networl_4_5_RP_3 + P-poll__networl_4_5_RP_2 + P-poll__networl_4_5_RP_1 + P-poll__networl_4_5_RP_0 + P-poll__networl_2_7_AskP_0 + P-poll__networl_2_7_AskP_1 + P-poll__networl_2_7_AskP_2 + P-poll__networl_2_7_AskP_3 + P-poll__networl_2_7_AskP_4 + P-poll__networl_2_7_AskP_5 + P-poll__networl_2_7_AskP_6 + P-poll__networl_2_7_AskP_7 + P-poll__networl_2_7_AskP_8 + P-poll__networl_3_1_AI_0 + P-poll__networl_3_1_AI_1 + P-poll__networl_3_1_AI_2 + P-poll__networl_3_1_AI_3 + P-poll__networl_3_1_AI_4 + P-poll__networl_3_1_AI_5 + P-poll__networl_3_1_AI_6 + P-poll__networl_3_1_AI_7 + P-poll__networl_3_1_AI_8 + P-poll__networl_3_4_RI_0 + P-poll__networl_3_4_RI_1 + P-poll__networl_3_4_RI_2 + P-poll__networl_3_4_RI_3 + P-poll__networl_3_4_RI_4 + P-poll__networl_3_4_RI_5 + P-poll__networl_3_4_RI_6 + P-poll__networl_3_4_RI_7 + P-poll__networl_3_4_RI_8 + P-poll__networl_5_0_AnnP_0 + P-poll__networl_5_0_AnnP_1 + P-poll__networl_5_0_AnnP_2 + P-poll__networl_5_0_AnnP_3 + P-poll__networl_5_0_AnnP_4 + P-poll__networl_5_0_AnnP_5 + P-poll__networl_5_0_AnnP_6 + P-poll__networl_5_0_AnnP_7 + P-poll__networl_5_0_AnnP_8 + P-poll__networl_6_6_AnsP_0 + P-poll__networl_5_3_AskP_8 + P-poll__networl_5_3_AskP_7 + P-poll__networl_5_3_AskP_6 + P-poll__networl_5_3_AskP_5 + P-poll__networl_5_3_AskP_4 + P-poll__networl_5_3_AskP_3 + P-poll__networl_5_3_AskP_2 + P-poll__networl_5_3_AskP_1 + P-poll__networl_5_0_AI_0 + P-poll__networl_5_0_AI_1 + P-poll__networl_5_0_AI_2 + P-poll__networl_5_0_AI_3 + P-poll__networl_5_0_AI_4 + P-poll__networl_5_0_AI_5 + P-poll__networl_5_0_AI_6 + P-poll__networl_5_3_AskP_0 + P-poll__networl_5_0_AI_7 + P-poll__networl_5_0_AI_8 + P-poll__networl_0_2_AskP_0 + P-poll__networl_0_2_AskP_1 + P-poll__networl_0_2_AskP_2 + P-poll__networl_0_2_AskP_3 + P-poll__networl_0_2_AskP_4 + P-poll__networl_0_2_AskP_5 + P-poll__networl_0_2_AskP_6 + P-poll__networl_0_2_AskP_7 + P-poll__networl_0_2_AskP_8 + P-poll__networl_5_3_RI_0 + P-poll__networl_5_3_RI_1 + P-poll__networl_5_3_RI_2 + P-poll__networl_5_3_RI_3 + P-poll__networl_5_3_RI_4 + P-poll__networl_5_3_RI_5 + P-poll__networl_5_3_RI_6 + P-poll__networl_5_3_RI_7 + P-poll__networl_5_3_RI_8 + P-poll__networl_2_6_RP_8 + P-poll__networl_2_6_RP_7 + P-poll__networl_2_6_RP_6 + P-poll__networl_2_6_RP_5 + P-poll__networl_2_6_RP_4 + P-poll__networl_2_6_RP_3 + P-poll__networl_2_6_RP_2 + P-poll__networl_2_6_RP_1 + P-poll__networl_2_6_RP_0 + P-poll__networl_7_3_AskP_0 + P-poll__networl_7_3_AskP_1 + P-poll__networl_7_3_AskP_2 + P-poll__networl_7_3_AskP_3 + P-poll__networl_7_3_AskP_4 + P-poll__networl_7_3_AskP_5 + P-poll__networl_7_3_AskP_6 + P-poll__networl_7_3_AskP_7 + P-poll__networl_7_3_AskP_8 + P-poll__networl_4_6_AnsP_0 + P-poll__networl_4_1_AnsP_0 + P-poll__networl_7_2_RI_0 + P-poll__networl_7_2_RI_1 + P-poll__networl_7_2_RI_2 + P-poll__networl_7_2_RI_3 + P-poll__networl_7_2_RI_4 + P-poll__networl_7_2_RI_5 + P-poll__networl_7_2_RI_6 + P-poll__networl_7_2_RI_7 + P-poll__networl_7_2_RI_8 + P-poll__networl_4_4_AnnP_0 + P-poll__networl_4_4_AnnP_1 + P-poll__networl_4_4_AnnP_2 + P-poll__networl_4_4_AnnP_3 + P-poll__networl_4_4_AnnP_4 + P-poll__networl_4_4_AnnP_5 + P-poll__networl_4_4_AnnP_6 + P-poll__networl_4_4_AnnP_7 + P-poll__networl_4_4_AnnP_8 + P-poll__networl_3_0_AnnP_8 + P-poll__networl_3_0_AnnP_7 + P-poll__networl_3_0_AnnP_6 + P-poll__networl_3_0_AnnP_5 + P-poll__networl_3_0_AnnP_4 + P-poll__networl_3_0_AnnP_3 + P-poll__networl_3_0_AnnP_2 + P-poll__networl_3_0_AnnP_1 + P-poll__networl_3_0_AnnP_0 + P-poll__networl_7_8_AskP_8 + P-poll__networl_7_8_AskP_7 + P-poll__networl_7_8_AskP_6 + P-poll__networl_7_8_AskP_5 + P-poll__networl_6_8_RP_0 + P-poll__networl_6_8_RP_1 + P-poll__networl_6_8_RP_2 + P-poll__networl_6_8_RP_3 + P-poll__networl_6_8_RP_4 + P-poll__networl_6_8_RP_5 + P-poll__networl_6_8_RP_6 + P-poll__networl_6_8_RP_7 + P-poll__networl_6_8_RP_8 + P-poll__networl_7_8_AskP_4 + P-poll__networl_7_8_AskP_3 + P-poll__networl_7_8_AskP_2 + P-poll__networl_7_8_AskP_1 + P-poll__networl_7_8_AskP_0 + P-poll__networl_0_7_RP_8 + P-poll__networl_0_7_RP_7 + P-poll__networl_0_7_RP_6 + P-poll__networl_3_0_RI_8 + P-poll__networl_0_7_RP_5 + P-poll__networl_3_0_RI_7 + P-poll__networl_0_7_RP_4 + P-poll__networl_6_7_AskP_0 + P-poll__networl_6_7_AskP_1 + P-poll__networl_6_7_AskP_2 + P-poll__networl_6_7_AskP_3 + P-poll__networl_6_7_AskP_4 + P-poll__networl_6_7_AskP_5 + P-poll__networl_6_7_AskP_6 + P-poll__networl_6_7_AskP_7 + P-poll__networl_6_7_AskP_8 + P-poll__networl_3_0_RI_6 + P-poll__networl_0_7_RP_3 + P-poll__networl_3_5_AnsP_0 + P-poll__networl_3_0_RI_5 + P-poll__networl_0_7_RP_2 + P-poll__networl_3_0_RI_4 + P-poll__networl_0_7_RP_1 + P-poll__networl_3_0_RI_3 + P-poll__networl_0_7_RP_0 + P-poll__networl_3_0_RI_2 + P-poll__networl_3_0_RI_1 + P-poll__networl_3_0_RI_0 + P-poll__networl_8_7_RP_0 + P-poll__networl_8_7_RP_1 + P-poll__networl_8_7_RP_2 + P-poll__networl_8_7_RP_3 + P-poll__networl_8_7_RP_4 + P-poll__networl_8_7_RP_5 + P-poll__networl_8_7_RP_6 + P-poll__networl_8_7_RP_7 + P-poll__networl_8_7_RP_8 + P-poll__networl_1_4_RP_0 + P-poll__networl_1_4_RP_1 + P-poll__networl_1_4_RP_2 + P-poll__networl_1_4_RP_3 + P-poll__networl_1_4_RP_4 + P-poll__networl_1_4_RP_5 + P-poll__networl_1_4_RP_6 + P-poll__networl_1_4_RP_7 + P-poll__networl_1_4_RP_8 + P-poll__networl_3_8_AnnP_0 + P-poll__networl_3_8_AnnP_1 + P-poll__networl_3_8_AnnP_2 + P-poll__networl_3_8_AnnP_3 + P-poll__networl_3_8_AnnP_4 + P-poll__networl_3_8_AnnP_5 + P-poll__networl_3_8_AnnP_6 + P-poll__networl_3_8_AnnP_7 + P-poll__networl_3_8_AnnP_8 + P-poll__networl_4_2_AskP_0 + P-poll__networl_4_2_AskP_1 + P-poll__networl_4_2_AskP_2 + P-poll__networl_4_2_AskP_3 + P-poll__networl_4_2_AskP_4 + P-poll__networl_4_2_AskP_5 + P-poll__networl_4_2_AskP_6 + P-poll__networl_4_2_AskP_7 + P-poll__networl_4_2_AskP_8 + P-poll__networl_3_3_RP_0 + P-poll__networl_3_3_RP_1 + P-poll__networl_3_3_RP_2 + P-poll__networl_3_3_RP_3 + P-poll__networl_3_3_RP_4 + P-poll__networl_3_3_RP_5 + P-poll__networl_3_3_RP_6 + P-poll__networl_3_3_RP_7 + P-poll__networl_3_3_RP_8 + P-poll__networl_1_0_AnsP_0 + P-poll__networl_0_7_AskP_8 + P-poll__networl_0_7_AskP_7 + P-poll__networl_0_7_AskP_6 + P-poll__networl_0_7_AskP_5 + P-poll__networl_0_7_AskP_4 + P-poll__networl_5_8_AI_0 + P-poll__networl_5_8_AI_1 + P-poll__networl_5_8_AI_2 + P-poll__networl_5_8_AI_3 + P-poll__networl_5_8_AI_4 + P-poll__networl_5_8_AI_5 + P-poll__networl_5_8_AI_6 + P-poll__networl_5_8_AI_7 + P-poll__networl_5_8_AI_8 + P-poll__networl_0_7_AskP_3 + P-poll__networl_8_1_AnsP_0 + P-poll__networl_0_7_AskP_2 + P-poll__networl_0_7_AskP_1 + P-poll__networl_0_7_AskP_0 + P-poll__networl_1_3_AnnP_0 + P-poll__networl_1_3_AnnP_1 + P-poll__networl_1_3_AnnP_2 + P-poll__networl_1_3_AnnP_3 + P-poll__networl_1_3_AnnP_4 + P-poll__networl_1_3_AnnP_5 + P-poll__networl_1_3_AnnP_6 + P-poll__networl_1_3_AnnP_7 + P-poll__networl_1_3_AnnP_8 + P-poll__networl_5_2_RP_0 + P-poll__networl_5_2_RP_1 + P-poll__networl_5_2_RP_2 + P-poll__networl_5_2_RP_3 + P-poll__networl_5_2_RP_4 + P-poll__networl_5_2_RP_5 + P-poll__networl_5_2_RP_6 + P-poll__networl_5_2_RP_7 + P-poll__networl_5_2_RP_8 + P-poll__networl_7_7_AI_0 + P-poll__networl_7_7_AI_1 + P-poll__networl_7_7_AI_2 + P-poll__networl_7_7_AI_3 + P-poll__networl_7_7_AI_4 + P-poll__networl_7_7_AI_5 + P-poll__networl_7_7_AI_6 + P-poll__networl_7_7_AI_7 + P-poll__networl_7_7_AI_8 + P-poll__networl_0_4_AI_0 + P-poll__networl_0_4_AI_1 + P-poll__networl_0_4_AI_2 + P-poll__networl_0_4_AI_3 + P-poll__networl_0_4_AI_4 + P-poll__networl_0_4_AI_5 + P-poll__networl_0_4_AI_6 + P-poll__networl_0_4_AI_7 + P-poll__networl_0_4_AI_8 + P-poll__networl_0_7_RI_0 + P-poll__networl_0_7_RI_1 + P-poll__networl_0_7_RI_2 + P-poll__networl_0_7_RI_3 + P-poll__networl_0_7_RI_4 + P-poll__networl_0_7_RI_5 + P-poll__networl_0_7_RI_6 + P-poll__networl_0_7_RI_7 + P-poll__networl_0_7_RI_8 + P-poll__networl_8_4_AnnP_0 + P-poll__networl_8_4_AnnP_1 + P-poll__networl_8_4_AnnP_2 + P-poll__networl_8_4_AnnP_3 + P-poll__networl_8_4_AnnP_4 + P-poll__networl_8_4_AnnP_5 + P-poll__networl_8_4_AnnP_6 + P-poll__networl_8_4_AnnP_7 + P-poll__networl_8_4_AnnP_8 + P-poll__networl_3_6_AskP_0 + P-poll__networl_3_6_AskP_1 + P-poll__networl_3_6_AskP_2 + P-poll__networl_3_6_AskP_3 + P-poll__networl_3_6_AskP_4 + P-poll__networl_3_6_AskP_5 + P-poll__networl_3_6_AskP_6 + P-poll__networl_3_6_AskP_7 + P-poll__networl_3_6_AskP_8 + P-poll__networl_7_1_RP_0 + P-poll__networl_7_1_RP_1 + P-poll__networl_7_1_RP_2 + P-poll__networl_7_1_RP_3 + P-poll__networl_7_1_RP_4 + P-poll__networl_7_1_RP_5 + P-poll__networl_7_1_RP_6 + P-poll__networl_7_1_RP_7 + P-poll__networl_7_1_RP_8 + P-poll__networl_2_3_AI_0 + P-poll__networl_2_3_AI_1 + P-poll__networl_2_3_AI_2 + P-poll__networl_0_4_AnsP_0 + P-poll__networl_2_3_AI_3 + P-poll__networl_2_3_AI_4 + P-poll__networl_2_3_AI_5 + P-poll__networl_2_3_AI_6 + P-poll__networl_2_3_AI_7 + P-poll__networl_2_3_AI_8 + P-poll__networl_2_6_RI_0 + P-poll__networl_2_6_RI_1 + P-poll__networl_2_6_RI_2 + P-poll__networl_2_6_RI_3 + P-poll__networl_2_6_RI_4 + P-poll__networl_2_6_RI_5 + P-poll__networl_2_6_RI_6 + P-poll__networl_2_6_RI_7 + P-poll__networl_2_6_RI_8 + P-poll__networl_5_5_AnnP_8 + P-poll__networl_5_5_AnnP_7 + P-poll__networl_5_5_AnnP_6 + P-poll__networl_5_5_AnnP_5 + P-poll__networl_5_5_AnnP_4 + P-poll__networl_5_5_AnnP_3 + P-poll__networl_5_5_AnnP_2 + P-poll__networl_5_5_AnnP_1 + P-poll__networl_5_5_AnnP_0 + P-poll__networl_1_1_RI_8 + P-poll__networl_1_1_RI_7 + P-poll__networl_7_5_AnsP_0 + P-poll__networl_1_1_RI_6 + P-poll__networl_1_1_RI_5 + P-poll__networl_1_1_RI_4 + P-poll__networl_1_1_RI_3 + P-poll__networl_1_1_RI_2 + P-poll__networl_1_1_RI_1 + P-poll__networl_1_1_RI_0 + P-poll__networl_8_4_RI_8 + P-poll__networl_0_7_AnnP_0 + P-poll__networl_0_7_AnnP_1 + P-poll__networl_0_7_AnnP_2 + P-poll__networl_0_7_AnnP_3 + P-poll__networl_0_7_AnnP_4 + P-poll__networl_0_7_AnnP_5 + P-poll__networl_0_7_AnnP_6 + P-poll__networl_0_7_AnnP_7 + P-poll__networl_0_7_AnnP_8 + P-poll__networl_8_4_RI_7 + P-poll__networl_8_4_RI_6 + P-poll__networl_8_4_RI_5 + P-poll__networl_8_4_RI_4 + P-poll__networl_8_4_RI_3 + P-poll__networl_8_4_RI_2 + P-poll__networl_8_4_RI_1 + P-poll__networl_8_4_RI_0 + P-poll__networl_1_1_AskP_0 + P-poll__networl_1_1_AskP_1 + P-poll__networl_1_1_AskP_2 + P-poll__networl_1_1_AskP_3 + P-poll__networl_1_1_AskP_4 + P-poll__networl_1_1_AskP_5 + P-poll__networl_1_1_AskP_6 + P-poll__networl_1_1_AskP_7 + P-poll__networl_1_1_AskP_8 + P-poll__networl_4_2_AI_0 + P-poll__networl_4_2_AI_1 + P-poll__networl_4_2_AI_2 + P-poll__networl_4_2_AI_3 + P-poll__networl_4_2_AI_4 + P-poll__networl_4_2_AI_5 + P-poll__networl_4_2_AI_6 + P-poll__networl_4_2_AI_7 + P-poll__networl_4_2_AI_8 + P-poll__networl_4_5_RI_0 + P-poll__networl_4_5_RI_1 + P-poll__networl_4_5_RI_2 + P-poll__networl_4_5_RI_3 + P-poll__networl_4_5_RI_4 + P-poll__networl_4_5_RI_5 + P-poll__networl_4_5_RI_6 + P-poll__networl_4_5_RI_7 + P-poll__networl_4_5_RI_8 + P-poll__networl_7_8_AnnP_0 + P-poll__networl_7_8_AnnP_1 + P-poll__networl_7_8_AnnP_2 + P-poll__networl_7_8_AnnP_3 + P-poll__networl_7_8_AnnP_4 + P-poll__networl_7_8_AnnP_5 + P-poll__networl_7_8_AnnP_6 + P-poll__networl_7_8_AnnP_7 + P-poll__networl_7_8_AnnP_8 + P-poll__networl_8_1_AI_8 + P-poll__networl_8_1_AI_7 + P-poll__networl_8_1_AI_6 + P-poll__networl_8_1_AI_5 + P-poll__networl_8_1_AI_4 + P-poll__networl_8_1_AI_3 + P-poll__networl_8_2_AskP_0 + P-poll__networl_8_2_AskP_1 + P-poll__networl_8_2_AskP_2 + P-poll__networl_8_2_AskP_3 + P-poll__networl_8_2_AskP_4 + P-poll__networl_8_2_AskP_5 + P-poll__networl_8_2_AskP_6 + P-poll__networl_8_2_AskP_7 + P-poll__networl_8_2_AskP_8 + P-poll__networl_8_1_AI_2 + P-poll__networl_5_0_AnsP_0 + P-poll__networl_8_1_AI_1 + P-poll__networl_8_1_AI_0 + P-poll__networl_5_2_AnsP_0 + P-poll__networl_6_1_AI_0 + P-poll__networl_6_1_AI_1 + P-poll__networl_6_1_AI_2 + P-poll__networl_6_1_AI_3 + P-poll__networl_6_1_AI_4 + P-poll__networl_6_1_AI_5 + P-poll__networl_6_1_AI_6 + P-poll__networl_6_1_AI_7 + P-poll__networl_6_1_AI_8 + P-poll__networl_6_4_RI_0 + P-poll__networl_6_4_RI_1 + P-poll__networl_6_4_RI_2 + P-poll__networl_6_4_RI_3 + P-poll__networl_6_4_RI_4 + P-poll__networl_6_4_RI_5 + P-poll__networl_6_4_RI_6 + P-poll__networl_6_4_RI_7 + P-poll__networl_6_4_RI_8 + P-poll__networl_5_3_AnnP_0 + P-poll__networl_5_3_AnnP_1 + P-poll__networl_5_3_AnnP_2 + P-poll__networl_5_3_AnnP_3 + P-poll__networl_5_3_AnnP_4 + P-poll__networl_5_3_AnnP_5 + P-poll__networl_5_3_AnnP_6 + P-poll__networl_5_3_AnnP_7 + P-poll__networl_5_3_AnnP_8 + P-poll__networl_8_4_AskP_8 + P-poll__networl_8_4_AskP_7 + P-poll__networl_8_0_AI_0 + P-poll__networl_8_0_AI_1 + P-poll__networl_8_0_AI_2 + P-poll__networl_8_0_AI_3 + P-poll__networl_8_0_AI_4 + P-poll__networl_8_0_AI_5 + P-poll__networl_8_0_AI_6 + P-poll__networl_8_0_AI_7 + P-poll__networl_8_4_AskP_6 + P-poll__networl_8_0_AI_8 + P-poll__networl_8_4_AskP_5 + P-poll__networl_8_4_AskP_4 + P-poll__networl_8_4_AskP_3 + P-poll__networl_8_4_AskP_2 + P-poll__networl_8_4_AskP_1 + P-poll__networl_0_5_AskP_0 + P-poll__networl_8_4_AskP_0 + P-poll__networl_0_5_AskP_1 + P-poll__networl_0_5_AskP_2 + P-poll__networl_0_5_AskP_3 + P-poll__networl_0_5_AskP_4 + P-poll__networl_0_5_AskP_5 + P-poll__networl_0_5_AskP_6 + P-poll__networl_0_5_AskP_7 + P-poll__networl_0_5_AskP_8 + P-poll__networl_8_3_RI_0 + P-poll__networl_8_3_RI_1 + P-poll__networl_8_3_RI_2 + P-poll__networl_8_3_RI_3 + P-poll__networl_8_3_RI_4 + P-poll__networl_8_3_RI_5 + P-poll__networl_8_3_RI_6 + P-poll__networl_8_3_RI_7 + P-poll__networl_8_3_RI_8 + P-poll__networl_1_0_RI_0 + P-poll__networl_1_0_RI_1 + P-poll__networl_1_0_RI_2 + P-poll__networl_1_0_RI_3 + P-poll__networl_1_0_RI_4 + P-poll__networl_1_0_RI_5 + P-poll__networl_1_0_RI_6 + P-poll__networl_1_0_RI_7 + P-poll__networl_1_0_RI_8 + P-poll__networl_6_5_RI_8 + P-poll__networl_6_5_RI_7 + P-poll__networl_6_5_RI_6 + P-poll__networl_6_5_RI_5 + P-poll__networl_6_5_RI_4 + P-poll__networl_7_6_AskP_0 + P-poll__networl_7_6_AskP_1 + P-poll__networl_7_6_AskP_2 + P-poll__networl_7_6_AskP_3 + P-poll__networl_7_6_AskP_4 + P-poll__networl_7_6_AskP_5 + P-poll__networl_7_6_AskP_6 + P-poll__networl_7_6_AskP_7 + P-poll__networl_7_6_AskP_8 + P-poll__networl_6_5_RI_3 + P-poll__networl_6_5_RI_2 + P-poll__networl_6_5_RI_1 + P-poll__networl_4_4_AnsP_0 + P-poll__networl_6_5_RI_0 + P-poll__networl_6_2_AI_8 + P-poll__networl_6_2_AI_7 + P-poll__networl_6_2_AI_6 + P-poll__networl_6_2_AI_5 + P-poll__networl_6_2_AI_4 + P-poll__networl_6_2_AI_3 + P-poll__networl_6_2_AI_2 + P-poll__networl_6_2_AI_1 + P-poll__networl_0_6_RP_0 + P-poll__networl_0_6_RP_1 + P-poll__networl_0_6_RP_2 + P-poll__networl_0_6_RP_3 + P-poll__networl_0_6_RP_4 + P-poll__networl_0_6_RP_5 + P-poll__networl_0_6_RP_6 + P-poll__networl_0_6_RP_7 + P-poll__networl_0_6_RP_8 + P-poll__networl_6_2_AI_0 + P-poll__networl_1_3_AskP_8 + P-poll__networl_4_7_AnnP_0 + P-poll__networl_4_7_AnnP_1 + P-poll__networl_4_7_AnnP_2 + P-poll__networl_4_7_AnnP_3 + P-poll__networl_4_7_AnnP_4 + P-poll__networl_4_7_AnnP_5 + P-poll__networl_4_7_AnnP_6 + P-poll__networl_4_7_AnnP_7 + P-poll__networl_4_7_AnnP_8 + P-poll__networl_1_3_AskP_7 + P-poll__networl_1_3_AskP_6 + P-poll__networl_1_3_AskP_5 + P-poll__networl_1_3_AskP_4 + P-poll__networl_1_3_AskP_3 + P-poll__networl_1_3_AskP_2 + P-poll__networl_1_3_AskP_1 + P-poll__networl_1_3_AskP_0 + P-poll__networl_5_1_AskP_0 + P-poll__networl_5_1_AskP_1 + P-poll__networl_5_1_AskP_2 + P-poll__networl_5_1_AskP_3 + P-poll__networl_5_1_AskP_4 + P-poll__networl_5_1_AskP_5 + P-poll__networl_5_1_AskP_6 + P-poll__networl_5_1_AskP_7 + P-poll__networl_5_1_AskP_8 + P-poll__networl_7_7_AnsP_0 + P-poll__networl_2_5_RP_0 + P-poll__networl_2_5_RP_1 + P-poll__networl_2_5_RP_2 + P-poll__networl_2_5_RP_3 + P-poll__networl_2_5_RP_4 + P-poll__networl_2_5_RP_5 + P-poll__networl_2_5_RP_6 + P-poll__networl_2_5_RP_7 + P-poll__networl_2_5_RP_8 + P-poll__networl_2_2_AnnP_0 + P-poll__networl_2_2_AnnP_1 + P-poll__networl_2_2_AnnP_2 + P-poll__networl_2_2_AnnP_3 + P-poll__networl_2_2_AnnP_4 + P-poll__networl_2_2_AnnP_5 + P-poll__networl_2_2_AnnP_6 + P-poll__networl_2_2_AnnP_7 + P-poll__networl_2_2_AnnP_8 + P-poll__networl_3_8_AnsP_0 + P-poll__networl_6_1_AnnP_8 + P-poll__networl_6_1_AnnP_7 + P-poll__networl_6_1_AnnP_6 + P-poll__networl_6_1_AnnP_5 + P-poll__networl_6_1_AnnP_4 + P-poll__networl_6_1_AnnP_3 + P-poll__networl_6_1_AnnP_2 + P-poll__networl_6_1_AnnP_1 + P-poll__networl_4_4_RP_0 + P-poll__networl_4_4_RP_1 + P-poll__networl_4_4_RP_2 + P-poll__networl_4_4_RP_3 + P-poll__networl_4_4_RP_4 + P-poll__networl_4_4_RP_5 + P-poll__networl_4_4_RP_6 + P-poll__networl_4_4_RP_7 + P-poll__networl_4_4_RP_8 + P-poll__networl_6_1_AnnP_0 + P-poll__networl_4_6_RI_8 + P-poll__networl_4_5_AskP_0 + P-poll__networl_4_5_AskP_1 + P-poll__networl_4_5_AskP_2 + P-poll__networl_4_5_AskP_3 + P-poll__networl_4_5_AskP_4 + P-poll__networl_4_5_AskP_5 + P-poll__networl_4_5_AskP_6 + P-poll__networl_4_5_AskP_7 + P-poll__networl_4_5_AskP_8 + P-poll__networl_4_6_RI_7 + P-poll__networl_4_6_RI_6 + P-poll__networl_6_3_RP_0 + P-poll__networl_6_3_RP_1 + P-poll__networl_6_3_RP_2 + P-poll__networl_6_3_RP_3 + P-poll__networl_6_3_RP_4 + P-poll__networl_6_3_RP_5 + P-poll__networl_6_3_RP_6 + P-poll__networl_6_3_RP_7 + P-poll__networl_6_3_RP_8 + P-poll__networl_4_6_RI_5 + P-poll__networl_4_6_RI_4 + P-poll__networl_1_3_AnsP_0 + P-poll__networl_4_6_RI_3 + P-poll__networl_4_6_RI_2 + P-poll__networl_4_6_RI_1 + P-poll__networl_4_6_RI_0 + P-poll__networl_4_3_AI_8 + P-poll__networl_4_3_AI_7 + P-poll__networl_4_3_AI_6 + P-poll__networl_4_3_AI_5 + P-poll__networl_8_8_AI_0 + P-poll__networl_8_8_AI_1 + P-poll__networl_8_8_AI_2 + P-poll__networl_8_8_AI_3 + P-poll__networl_8_8_AI_4 + P-poll__networl_8_8_AI_5 + P-poll__networl_8_8_AI_6 + P-poll__networl_8_8_AI_7 + P-poll__networl_8_8_AI_8 + P-poll__networl_1_5_AI_0 + P-poll__networl_1_5_AI_1 + P-poll__networl_1_5_AI_2 + P-poll__networl_1_5_AI_3 + P-poll__networl_1_5_AI_4 + P-poll__networl_1_5_AI_5 + P-poll__networl_1_5_AI_6 + P-poll__networl_1_5_AI_7 + P-poll__networl_1_5_AI_8 + P-poll__networl_4_3_AI_4 + P-poll__networl_1_8_RI_0 + P-poll__networl_1_8_RI_1 + P-poll__networl_1_8_RI_2 + P-poll__networl_1_8_RI_3 + P-poll__networl_1_8_RI_4 + P-poll__networl_1_8_RI_5 + P-poll__networl_1_8_RI_6 + P-poll__networl_1_8_RI_7 + P-poll__networl_1_8_RI_8 + P-poll__networl_4_3_AI_3 + P-poll__networl_0_6_AnsP_0 + P-poll__networl_8_4_AnsP_0 + P-poll__networl_4_3_AI_2 + P-poll__networl_4_3_AI_1 + P-poll__networl_4_3_AI_0 + P-poll__networl_1_6_AnnP_0 + P-poll__networl_1_6_AnnP_1 + P-poll__networl_1_6_AnnP_2 + P-poll__networl_1_6_AnnP_3 + P-poll__networl_1_6_AnnP_4 + P-poll__networl_1_6_AnnP_5 + P-poll__networl_1_6_AnnP_6 + P-poll__networl_1_6_AnnP_7 + P-poll__networl_1_6_AnnP_8 + P-poll__networl_8_2_RP_0 + P-poll__networl_8_2_RP_1 + P-poll__networl_8_2_RP_2 + P-poll__networl_8_2_RP_3 + P-poll__networl_8_2_RP_4 + P-poll__networl_8_2_RP_5 + P-poll__networl_8_2_RP_6 + P-poll__networl_8_2_RP_7 + P-poll__networl_8_2_RP_8 + P-poll__networl_2_0_AskP_0 + P-poll__networl_2_0_AskP_1 + P-poll__networl_2_0_AskP_2 + P-poll__networl_2_0_AskP_3 + P-poll__networl_2_0_AskP_4 + P-poll__networl_2_0_AskP_5 + P-poll__networl_2_0_AskP_6 + P-poll__networl_2_0_AskP_7 + P-poll__networl_2_0_AskP_8 + P-poll__networl_3_4_AI_0 + P-poll__networl_3_4_AI_1 + P-poll__networl_3_4_AI_2 + P-poll__networl_3_4_AI_3 + P-poll__networl_3_4_AI_4 + P-poll__networl_3_4_AI_5 + P-poll__networl_3_4_AI_6 + P-poll__networl_3_4_AI_7 + P-poll__networl_3_4_AI_8 + P-poll__networl_3_7_RI_0 + P-poll__networl_3_7_RI_1 + P-poll__networl_3_7_RI_2 + P-poll__networl_3_7_RI_3 + P-poll__networl_3_7_RI_4 + P-poll__networl_3_7_RI_5 + P-poll__networl_3_7_RI_6 + P-poll__networl_3_7_RI_7 + P-poll__networl_3_7_RI_8 + P-poll__networl_8_7_AnnP_0 + P-poll__networl_8_7_AnnP_1 + P-poll__networl_8_7_AnnP_2 + P-poll__networl_8_7_AnnP_3 + P-poll__networl_8_7_AnnP_4 + P-poll__networl_8_7_AnnP_5 + P-poll__networl_8_7_AnnP_6 + P-poll__networl_8_7_AnnP_7 + P-poll__networl_8_7_AnnP_8 + P-poll__networl_3_8_AskP_8 + P-poll__networl_3_8_AskP_7 + P-poll__networl_3_8_AskP_6 + P-poll__networl_3_8_AskP_5 + P-poll__networl_5_3_AI_0 + P-poll__networl_5_3_AI_1 + P-poll__networl_5_3_AI_2 + P-poll__networl_0_7_AnsP_0 + P-poll__networl_5_3_AI_3 + P-poll__networl_3_8_AskP_4 + P-poll__networl_5_3_AI_4 + P-poll__networl_3_8_AskP_3 + P-poll__networl_5_3_AI_5 + P-poll__networl_3_8_AskP_2 + P-poll__networl_5_3_AI_6 + P-poll__networl_3_8_AskP_1 + P-poll__networl_5_3_AI_7 + P-poll__networl_3_8_AskP_0 + P-poll__networl_5_3_AI_8 + P-poll__networl_5_6_RI_0 + P-poll__networl_5_6_RI_1 + P-poll__networl_5_6_RI_2 + P-poll__networl_5_6_RI_3 + P-poll__networl_5_6_RI_4 + P-poll__networl_5_6_RI_5 + P-poll__networl_5_6_RI_6 + P-poll__networl_5_6_RI_7 + P-poll__networl_5_6_RI_8 + P-poll__networl_6_2_AnnP_0 + P-poll__networl_6_2_AnnP_1 + P-poll__networl_6_2_AnnP_2 + P-poll__networl_6_2_AnnP_3 + P-poll__networl_6_2_AnnP_4 + P-poll__networl_6_2_AnnP_5 + P-poll__networl_6_2_AnnP_6 + P-poll__networl_6_2_AnnP_7 + P-poll__networl_6_2_AnnP_8 + P-poll__networl_7_8_AnsP_0 + P-poll__networl_8_6_AnnP_8 + P-poll__networl_8_6_AnnP_7 + P-poll__networl_8_6_AnnP_6 + P-poll__networl_8_6_AnnP_5 + P-poll__networl_8_6_AnnP_4 + P-poll__networl_8_6_AnnP_3 + P-poll__networl_8_6_AnnP_2 + P-poll__networl_8_6_AnnP_1 + P-poll__networl_8_6_AnnP_0 + P-poll__networl_2_7_RI_8 + P-poll__networl_2_7_RI_7 + P-poll__networl_2_7_RI_6 + P-poll__networl_2_7_RI_5 + P-poll__networl_2_7_RI_4 + P-poll__networl_2_7_RI_3 + P-poll__networl_1_4_AskP_0 + P-poll__networl_1_4_AskP_1 + P-poll__networl_1_4_AskP_2 + P-poll__networl_1_4_AskP_3 + P-poll__networl_1_4_AskP_4 + P-poll__networl_1_4_AskP_5 + P-poll__networl_1_4_AskP_6 + P-poll__networl_1_4_AskP_7 + P-poll__networl_1_4_AskP_8 + P-poll__networl_7_2_AI_0 + P-poll__networl_7_2_AI_1 + P-poll__networl_7_2_AI_2 + P-poll__networl_7_2_AI_3 + P-poll__networl_7_2_AI_4 + P-poll__networl_7_2_AI_5 + P-poll__networl_7_2_AI_6 + P-poll__networl_7_2_AI_7 + P-poll__networl_7_2_AI_8 + P-poll__networl_7_5_RI_0 + P-poll__networl_7_5_RI_1 + P-poll__networl_7_5_RI_2 + P-poll__networl_7_5_RI_3 + P-poll__networl_7_5_RI_4 + P-poll__networl_7_5_RI_5 + P-poll__networl_7_5_RI_6 + P-poll__networl_7_5_RI_7 + P-poll__networl_7_5_RI_8 + P-poll__networl_0_2_RI_0 + P-poll__networl_0_2_RI_1 + P-poll__networl_0_2_RI_2 + P-poll__networl_0_2_RI_3 + P-poll__networl_0_2_RI_4 + P-poll__networl_0_2_RI_5 + P-poll__networl_0_2_RI_6 + P-poll__networl_0_2_RI_7 + P-poll__networl_0_2_RI_8 + P-poll__networl_2_7_RI_2 + P-poll__networl_2_7_RI_1 + P-poll__networl_8_5_AskP_0 + P-poll__networl_8_5_AskP_1 + P-poll__networl_8_5_AskP_2 + P-poll__networl_8_5_AskP_3 + P-poll__networl_8_5_AskP_4 + P-poll__networl_8_5_AskP_5 + P-poll__networl_8_5_AskP_6 + P-poll__networl_8_5_AskP_7 + P-poll__networl_8_5_AskP_8 + P-poll__networl_2_7_RI_0 + P-poll__networl_2_4_AI_8 + P-poll__networl_5_3_AnsP_0 + P-poll__networl_2_4_AI_7 + P-poll__networl_2_4_AI_6 + P-poll__networl_2_4_AI_5 + P-poll__networl_2_4_AI_4 + P-poll__networl_2_4_AI_3 + P-poll__networl_2_4_AI_2 + P-poll__networl_2_4_AI_1 + P-poll__networl_2_4_AI_0 + P-poll__networl_2_1_RI_0 + P-poll__networl_2_1_RI_1 + P-poll__networl_2_1_RI_2 + P-poll__networl_2_1_RI_3 + P-poll__networl_2_1_RI_4 + P-poll__networl_2_1_RI_5 + P-poll__networl_2_1_RI_6 + P-poll__networl_2_1_RI_7 + P-poll__networl_2_1_RI_8 + P-poll__networl_5_6_AnnP_0 + P-poll__networl_5_6_AnnP_1 + P-poll__networl_5_6_AnnP_2 + P-poll__networl_5_6_AnnP_3 + P-poll__networl_5_6_AnnP_4 + P-poll__networl_5_6_AnnP_5 + P-poll__networl_5_6_AnnP_6 + P-poll__networl_5_6_AnnP_7 + P-poll__networl_5_6_AnnP_8 + P-poll__networl_6_0_AskP_0 + P-poll__networl_6_0_AskP_1 + P-poll__networl_6_0_AskP_2 + P-poll__networl_6_0_AskP_3 + P-poll__networl_6_0_AskP_4 + P-poll__networl_6_0_AskP_5 + P-poll__networl_6_0_AskP_6 + P-poll__networl_6_0_AskP_7 + P-poll__networl_6_0_AskP_8 + P-poll__networl_7_2_RP_8 + P-poll__networl_7_2_RP_7 + P-poll__networl_7_2_RP_6 + P-poll__networl_7_2_RP_5 + P-poll__networl_7_2_RP_4 + P-poll__networl_7_2_RP_3 + P-poll__networl_7_2_RP_2 + P-poll__networl_0_8_AskP_0 + P-poll__networl_0_8_AskP_1 + P-poll__networl_0_8_AskP_2 + P-poll__networl_0_8_AskP_3 + P-poll__networl_0_8_AskP_4 + P-poll__networl_0_8_AskP_5 + P-poll__networl_0_8_AskP_6 + P-poll__networl_0_8_AskP_7 + P-poll__networl_0_8_AskP_8 + P-poll__networl_7_2_RP_1 + P-poll__networl_4_0_RI_0 + P-poll__networl_4_0_RI_1 + P-poll__networl_4_0_RI_2 + P-poll__networl_1_7_RP_0 + P-poll__networl_4_0_RI_3 + P-poll__networl_1_7_RP_1 + P-poll__networl_4_0_RI_4 + P-poll__networl_1_7_RP_2 + P-poll__networl_4_0_RI_5 + P-poll__networl_1_7_RP_3 + P-poll__networl_4_0_RI_6 + P-poll__networl_1_7_RP_4 + P-poll__networl_4_0_RI_7 + P-poll__networl_1_7_RP_5 + P-poll__networl_4_0_RI_8 + P-poll__networl_1_7_RP_6 + P-poll__networl_1_7_RP_7 + P-poll__networl_1_7_RP_8 + P-poll__networl_7_2_RP_0 + P-poll__networl_3_1_AnnP_0 + P-poll__networl_3_1_AnnP_1 + P-poll__networl_3_1_AnnP_2 + P-poll__networl_3_1_AnnP_3 + P-poll__networl_3_1_AnnP_4 + P-poll__networl_3_1_AnnP_5 + P-poll__networl_3_1_AnnP_6 + P-poll__networl_3_1_AnnP_7 + P-poll__networl_3_1_AnnP_8 + P-poll__networl_4_7_AnsP_0 + P-poll__networl_1_5_AnnP_8 + P-poll__networl_1_5_AnnP_7 + P-poll__networl_1_5_AnnP_6 + P-poll__networl_1_5_AnnP_5 + P-poll__networl_1_5_AnnP_4 + P-poll__networl_1_5_AnnP_3 + P-poll__networl_1_5_AnnP_2 + P-poll__networl_1_5_AnnP_1 + P-poll__networl_1_5_AnnP_0 + P-poll__networl_8_3_AnsP_0 + P-poll__networl_3_6_RP_0 + P-poll__networl_3_6_RP_1 + P-poll__networl_3_6_RP_2 + P-poll__networl_3_6_RP_3 + P-poll__networl_3_6_RP_4 + P-poll__networl_3_6_RP_5 + P-poll__networl_3_6_RP_6 + P-poll__networl_3_6_RP_7 + P-poll__networl_3_6_RP_8 + P-poll__networl_0_8_RI_8 + P-poll__networl_5_4_AskP_0 + P-poll__networl_5_4_AskP_1 + P-poll__networl_5_4_AskP_2 + P-poll__networl_5_4_AskP_3 + P-poll__networl_5_4_AskP_4 + P-poll__networl_5_4_AskP_5 + P-poll__networl_5_4_AskP_6 + P-poll__networl_5_4_AskP_7 + P-poll__networl_5_4_AskP_8 + P-poll__networl_0_8_RI_7 + P-poll__networl_0_8_RI_6 + P-poll__networl_5_5_RP_0 + P-poll__networl_5_5_RP_1 + P-poll__networl_5_5_RP_2 + P-poll__networl_5_5_RP_3 + P-poll__networl_5_5_RP_4 + P-poll__networl_5_5_RP_5 + P-poll__networl_5_5_RP_6 + P-poll__networl_5_5_RP_7 + P-poll__networl_5_5_RP_8 + P-poll__networl_2_2_AnsP_0 + P-poll__networl_0_8_RI_5 + P-poll__networl_0_8_RI_4 + P-poll__networl_0_8_RI_3 + P-poll__networl_0_8_RI_2 + P-poll__networl_0_8_RI_1 + P-poll__networl_0_8_RI_0 + P-poll__networl_0_5_AI_8 + P-poll__networl_0_5_AI_7 + P-poll__networl_0_5_AI_6 + P-poll__networl_0_5_AI_5 + P-poll__networl_0_7_AI_0 + P-poll__networl_0_7_AI_1 + P-poll__networl_0_7_AI_2 + P-poll__networl_0_7_AI_3 + P-poll__networl_0_7_AI_4 + P-poll__networl_0_7_AI_5 + P-poll__networl_0_7_AI_6 + P-poll__networl_0_7_AI_7 + P-poll__networl_0_7_AI_8 + P-poll__networl_0_5_AI_4 + P-poll__networl_0_5_AI_3 + P-poll__networl_2_5_AnnP_0 + P-poll__networl_2_5_AnnP_1 + P-poll__networl_2_5_AnnP_2 + P-poll__networl_2_5_AnnP_3 + P-poll__networl_2_5_AnnP_4 + P-poll__networl_2_5_AnnP_5 + P-poll__networl_2_5_AnnP_6 + P-poll__networl_2_5_AnnP_7 + P-poll__networl_2_5_AnnP_8 + P-poll__networl_0_5_AI_2 + P-poll__networl_0_5_AI_1 + P-poll__networl_7_4_RP_0 + P-poll__networl_7_4_RP_1 + P-poll__networl_7_4_RP_2 + P-poll__networl_7_4_RP_3 + P-poll__networl_7_4_RP_4 + P-poll__networl_7_4_RP_5 + P-poll__networl_7_4_RP_6 + P-poll__networl_7_4_RP_7 + P-poll__networl_7_4_RP_8 + P-poll__networl_0_1_RP_0 + P-poll__networl_0_1_RP_1 + P-poll__networl_0_1_RP_2 + P-poll__networl_0_1_RP_3 + P-poll__networl_0_1_RP_4 + P-poll__networl_0_1_RP_5 + P-poll__networl_0_1_RP_6 + P-poll__networl_0_1_RP_7 + P-poll__networl_0_1_RP_8 + P-poll__networl_0_5_AI_0 + P-poll__networl_2_6_AI_0 + P-poll__networl_2_6_AI_1 + P-poll__networl_2_6_AI_2 + P-poll__networl_2_6_AI_3 + P-poll__networl_2_6_AI_4 + P-poll__networl_2_6_AI_5 + P-poll__networl_2_6_AI_6 + P-poll__networl_2_6_AI_7 + P-poll__networl_2_6_AI_8 + P-poll__networl_7_8_AI_8 + P-poll__networl_7_8_AI_7 + P-poll__networl_7_8_AI_6 + P-poll__networl_7_8_AI_5 + P-poll__networl_7_8_AI_4 + P-poll__networl_7_8_AI_3 + P-poll__networl_7_8_AI_2 + P-poll__networl_7_8_AI_1 + P-poll__networl_7_8_AI_0 + P-poll__networl_1_2_AnsP_0 + P-poll__networl_4_8_AskP_0 + P-poll__networl_4_8_AskP_1 + P-poll__networl_4_8_AskP_2 + P-poll__networl_4_8_AskP_3 + P-poll__networl_4_8_AskP_4 + P-poll__networl_4_8_AskP_5 + P-poll__networl_4_8_AskP_6 + P-poll__networl_4_8_AskP_7 + P-poll__networl_4_8_AskP_8 + P-poll__networl_0_0_AnnP_0 + P-poll__networl_0_0_AnnP_1 + P-poll__networl_0_0_AnnP_2 + P-poll__networl_0_0_AnnP_3 + P-poll__networl_0_0_AnnP_4 + P-poll__networl_0_0_AnnP_5 + P-poll__networl_0_0_AnnP_6 + P-poll__networl_0_0_AnnP_7 + P-poll__networl_0_0_AnnP_8 + P-poll__networl_2_0_RP_0 + P-poll__networl_2_0_RP_1 + P-poll__networl_2_0_RP_2 + P-poll__networl_2_0_RP_3 + P-poll__networl_2_0_RP_4 + P-poll__networl_2_0_RP_5 + P-poll__networl_2_0_RP_6 + P-poll__networl_2_0_RP_7 + P-poll__networl_2_0_RP_8 + P-poll__networl_1_6_AnsP_0 + P-poll__networl_5_3_RP_8 + P-poll__networl_5_3_RP_7 + P-poll__networl_5_3_RP_6 + P-poll__networl_4_5_AI_0 + P-poll__networl_4_5_AI_1 + P-poll__networl_4_5_AI_2 + P-poll__networl_4_5_AI_3 + P-poll__networl_4_5_AI_4 + P-poll__networl_4_5_AI_5 + P-poll__networl_4_5_AI_6 + P-poll__networl_4_5_AI_7 + P-poll__networl_4_5_AI_8 + P-poll__networl_4_8_RI_0 + P-poll__networl_4_8_RI_1 + P-poll__networl_4_8_RI_2 + P-poll__networl_4_8_RI_3 + P-poll__networl_4_8_RI_4 + P-poll__networl_4_8_RI_5 + P-poll__networl_4_8_RI_6 + P-poll__networl_4_8_RI_7 + P-poll__networl_4_8_RI_8 + P-poll__networl_5_3_RP_5 + P-poll__networl_7_1_AnnP_0 + P-poll__networl_7_1_AnnP_1 + P-poll__networl_7_1_AnnP_2 + P-poll__networl_7_1_AnnP_3 + P-poll__networl_7_1_AnnP_4 + P-poll__networl_7_1_AnnP_5 + P-poll__networl_7_1_AnnP_6 + P-poll__networl_7_1_AnnP_7 + P-poll__networl_7_1_AnnP_8 + P-poll__networl_5_3_RP_4 + P-poll__networl_8_7_AnsP_0 + P-poll__networl_5_3_RP_3 + P-poll__networl_5_3_RP_2 + P-poll__networl_5_3_RP_1 + P-poll__networl_5_3_RP_0 + P-poll__networl_2_3_AskP_0 + P-poll__networl_2_3_AskP_1 + P-poll__networl_2_3_AskP_2 + P-poll__networl_2_3_AskP_3 + P-poll__networl_2_3_AskP_4 + P-poll__networl_2_3_AskP_5 + P-poll__networl_2_3_AskP_6 + P-poll__networl_2_3_AskP_7 + P-poll__networl_2_3_AskP_8 + P-poll__networl_6_4_AI_0 + P-poll__networl_6_4_AI_1 + P-poll__networl_6_4_AI_2 + P-poll__networl_6_4_AI_3 + P-poll__networl_6_4_AI_4 + P-poll__networl_6_4_AI_5 + P-poll__networl_6_4_AI_6 + P-poll__networl_6_4_AI_7 + P-poll__networl_6_4_AI_8 + P-poll__networl_4_4_AskP_8 + P-poll__networl_4_4_AskP_7 + P-poll__networl_4_4_AskP_6 + P-poll__networl_4_4_AskP_5 + P-poll__networl_4_4_AskP_4 + P-poll__networl_4_4_AskP_3 + P-poll__networl_6_7_RI_0 + P-poll__networl_6_7_RI_1 + P-poll__networl_6_7_RI_2 + P-poll__networl_6_7_RI_3 + P-poll__networl_6_7_RI_4 + P-poll__networl_6_7_RI_5 + P-poll__networl_6_7_RI_6 + P-poll__networl_6_7_RI_7 + P-poll__networl_6_7_RI_8 + P-poll__networl_4_4_AskP_2 + P-poll__networl_6_2_AnsP_0 + P-poll__networl_4_4_AskP_1 + P-poll__networl_4_4_AskP_0 + P-poll__networl_8_3_AI_0 + P-poll__networl_8_3_AI_1 + P-poll__networl_8_3_AI_2 + P-poll__networl_8_3_AI_3 + P-poll__networl_8_3_AI_4 + P-poll__networl_8_3_AI_5 + P-poll__networl_8_3_AI_6 + P-poll__networl_8_3_AI_7 + P-poll__networl_8_3_AI_8 + P-poll__networl_1_0_AI_0 + P-poll__networl_1_0_AI_1 + P-poll__networl_1_0_AI_2 + P-poll__networl_1_0_AI_3 + P-poll__networl_1_0_AI_4 + P-poll__networl_1_0_AI_5 + P-poll__networl_1_0_AI_6 + P-poll__networl_1_0_AI_7 + P-poll__networl_1_0_AI_8 + P-poll__networl_8_6_RI_0 + P-poll__networl_8_6_RI_1 + P-poll__networl_8_6_RI_2 + P-poll__networl_8_6_RI_3 + P-poll__networl_8_6_RI_4 + P-poll__networl_8_6_RI_5 + P-poll__networl_8_6_RI_6 + P-poll__networl_8_6_RI_7 + P-poll__networl_8_6_RI_8 + P-poll__networl_1_3_RI_0 + P-poll__networl_1_3_RI_1 + P-poll__networl_1_3_RI_2 + P-poll__networl_1_3_RI_3 + P-poll__networl_1_3_RI_4 + P-poll__networl_1_3_RI_5 + P-poll__networl_1_3_RI_6 + P-poll__networl_1_3_RI_7 + P-poll__networl_1_3_RI_8 + P-poll__networl_6_5_AnnP_0 + P-poll__networl_6_5_AnnP_1 + P-poll__networl_6_5_AnnP_2 + P-poll__networl_6_5_AnnP_3 + P-poll__networl_6_5_AnnP_4 + P-poll__networl_6_5_AnnP_5 + P-poll__networl_6_5_AnnP_6 + P-poll__networl_6_5_AnnP_7 + P-poll__networl_6_5_AnnP_8 + P-poll__networl_3_4_RP_8 + P-poll__networl_3_4_RP_7 + P-poll__networl_3_4_RP_6 + P-poll__networl_3_4_RP_5 + P-poll__networl_3_4_RP_4 + P-poll__networl_1_7_AskP_0 + P-poll__networl_1_7_AskP_1 + P-poll__networl_1_7_AskP_2 + P-poll__networl_1_7_AskP_3 + P-poll__networl_1_7_AskP_4 + P-poll__networl_1_7_AskP_5 + P-poll__networl_1_7_AskP_6 + P-poll__networl_1_7_AskP_7 + P-poll__networl_1_7_AskP_8 + P-poll__networl_3_2_RI_0 + P-poll__networl_3_2_RI_1 + P-poll__networl_3_2_RI_2 + P-poll__networl_3_2_RI_3 + P-poll__networl_3_2_RI_4 + P-poll__networl_3_2_RI_5 + P-poll__networl_3_2_RI_6 + P-poll__networl_3_2_RI_7 + P-poll__networl_3_2_RI_8 + P-poll__networl_3_4_RP_3 + P-poll__networl_3_4_RP_2 + P-poll__networl_3_4_RP_1 + P-poll__networl_8_8_AskP_0 + P-poll__networl_8_8_AskP_1 + P-poll__networl_8_8_AskP_2 + P-poll__networl_8_8_AskP_3 + P-poll__networl_8_8_AskP_4 + P-poll__networl_8_8_AskP_5 + P-poll__networl_8_8_AskP_6 + P-poll__networl_8_8_AskP_7 + P-poll__networl_8_8_AskP_8 + P-poll__networl_4_0_AnnP_0 + P-poll__networl_4_0_AnnP_1 + P-poll__networl_4_0_AnnP_2 + P-poll__networl_4_0_AnnP_3 + P-poll__networl_4_0_AnnP_4 + P-poll__networl_4_0_AnnP_5 + P-poll__networl_4_0_AnnP_6 + P-poll__networl_4_0_AnnP_7 + P-poll__networl_4_0_AnnP_8 + P-poll__networl_3_4_RP_0 + P-poll__networl_5_6_AnsP_0 + P-poll__networl_3_7_AnsP_0 + P-poll__networl_2_1_AnnP_8 + P-poll__networl_2_1_AnnP_7 + P-poll__networl_5_1_RI_0 + P-poll__networl_5_1_RI_1 + P-poll__networl_5_1_RI_2 + P-poll__networl_2_8_RP_0 + P-poll__networl_5_1_RI_3 + P-poll__networl_2_8_RP_1 + P-poll__networl_5_1_RI_4 + P-poll__networl_2_8_RP_2 + P-poll__networl_5_1_RI_5 + P-poll__networl_2_8_RP_3 + P-poll__networl_5_1_RI_6 + P-poll__networl_2_8_RP_4 + P-poll__networl_5_1_RI_7 + P-poll__networl_2_8_RP_5 + P-poll__networl_5_1_RI_8 + P-poll__networl_2_8_RP_6 + P-poll__networl_2_8_RP_7 + P-poll__networl_2_8_RP_8 + P-poll__networl_2_1_AnnP_6 + P-poll__networl_2_1_AnnP_5 + P-poll__networl_2_1_AnnP_4 + P-poll__networl_2_1_AnnP_3 + P-poll__networl_2_1_AnnP_2 + P-poll__networl_2_1_AnnP_1 + P-poll__networl_2_1_AnnP_0 + P-poll__networl_6_3_AskP_0 + P-poll__networl_6_3_AskP_1 + P-poll__networl_6_3_AskP_2 + P-poll__networl_6_3_AskP_3 + P-poll__networl_6_3_AskP_4 + P-poll__networl_6_3_AskP_5 + P-poll__networl_6_3_AskP_6 + P-poll__networl_6_3_AskP_7 + P-poll__networl_6_3_AskP_8 + P-poll__networl_3_1_AnsP_0 + P-poll__networl_7_0_RI_0 + P-poll__networl_7_0_RI_1 + P-poll__networl_7_0_RI_2 + P-poll__networl_4_7_RP_0 + P-poll__networl_7_0_RI_3 + P-poll__networl_4_7_RP_1 + P-poll__networl_7_0_RI_4 + P-poll__networl_4_7_RP_2 + P-poll__networl_7_0_RI_5 + P-poll__networl_4_7_RP_3 + P-poll__networl_7_0_RI_6 + P-poll__networl_4_7_RP_4 + P-poll__networl_7_0_RI_7 + P-poll__networl_4_7_RP_5 + P-poll__networl_7_0_RI_8 + P-poll__networl_4_7_RP_6 + P-poll__networl_4_7_RP_7 + P-poll__networl_4_7_RP_8 + P-poll__networl_3_4_AnnP_0 + P-poll__networl_3_4_AnnP_1 + P-poll__networl_3_4_AnnP_2 + P-poll__networl_3_4_AnnP_3 + P-poll__networl_3_4_AnnP_4 + P-poll__networl_3_4_AnnP_5 + P-poll__networl_3_4_AnnP_6 + P-poll__networl_3_4_AnnP_7 + P-poll__networl_3_4_AnnP_8 + P-poll__networl_1_5_RP_8 + P-poll__networl_1_5_RP_7 + P-poll__networl_6_6_RP_0 + P-poll__networl_6_6_RP_1 + P-poll__networl_6_6_RP_2 + P-poll__networl_6_6_RP_3 + P-poll__networl_6_6_RP_4 + P-poll__networl_6_6_RP_5 + P-poll__networl_6_6_RP_6 + P-poll__networl_6_6_RP_7 + P-poll__networl_6_6_RP_8 + P-poll__networl_1_5_RP_6 + P-poll__networl_1_8_AI_0 + P-poll__networl_1_8_AI_1 + P-poll__networl_1_8_AI_2 + P-poll__networl_1_8_AI_3 + P-poll__networl_1_8_AI_4 + P-poll__networl_1_8_AI_5 + P-poll__networl_1_8_AI_6 + P-poll__networl_1_8_AI_7 + P-poll__networl_1_8_AI_8 + P-poll__networl_1_5_RP_5 + P-poll__networl_1_5_RP_4 + P-poll__networl_1_5_RP_3 + P-poll__networl_1_5_RP_2 + P-poll__networl_1_5_RP_1 + P-poll__networl_1_5_RP_0 + P-poll__networl_8_8_RP_8 + P-poll__networl_8_8_RP_7 + P-poll__networl_8_8_RP_6 + P-poll__networl_8_8_RP_5 + P-poll__networl_8_8_RP_4 + P-poll__networl_8_8_RP_3 + P-poll__networl_5_7_AskP_0 + P-poll__networl_5_7_AskP_1 + P-poll__networl_5_7_AskP_2 + P-poll__networl_5_7_AskP_3 + P-poll__networl_5_7_AskP_4 + P-poll__networl_5_7_AskP_5 + P-poll__networl_5_7_AskP_6 + P-poll__networl_5_7_AskP_7 + P-poll__networl_5_7_AskP_8 + P-poll__networl_8_8_RP_2 + P-poll__networl_8_8_RP_1 + P-poll__networl_8_5_RP_0 + P-poll__networl_8_5_RP_1 + P-poll__networl_8_5_RP_2 + P-poll__networl_8_5_RP_3 + P-poll__networl_8_5_RP_4 + P-poll__networl_8_5_RP_5 + P-poll__networl_8_5_RP_6 + P-poll__networl_8_5_RP_7 + P-poll__networl_8_5_RP_8 + P-poll__networl_1_2_RP_0 + P-poll__networl_1_2_RP_1 + P-poll__networl_1_2_RP_2 + P-poll__networl_1_2_RP_3 + P-poll__networl_1_2_RP_4 + P-poll__networl_1_2_RP_5 + P-poll__networl_1_2_RP_6 + P-poll__networl_1_2_RP_7 + P-poll__networl_1_2_RP_8 + P-poll__networl_2_5_AnsP_0 + P-poll__networl_8_8_RP_0 + P-poll__networl_3_7_AI_0 + P-poll__networl_3_7_AI_1 + P-poll__networl_3_7_AI_2 + P-poll__networl_3_7_AI_3 + P-poll__networl_3_7_AI_4 + P-poll__networl_3_7_AI_5 + P-poll__networl_3_7_AI_6 + P-poll__networl_3_7_AI_7 + P-poll__networl_3_7_AI_8 + P-poll__networl_8_0_AnnP_0 + P-poll__networl_8_0_AnnP_1 + P-poll__networl_8_0_AnnP_2 + P-poll__networl_8_0_AnnP_3 + P-poll__networl_8_0_AnnP_4 + P-poll__networl_8_0_AnnP_5 + P-poll__networl_8_0_AnnP_6 + P-poll__networl_8_0_AnnP_7 + P-poll__networl_8_0_AnnP_8 + P-poll__networl_5_0_AskP_8 + P-poll__networl_5_0_AskP_7 + P-poll__networl_2_8_AnnP_0 + P-poll__networl_2_8_AnnP_1 + P-poll__networl_2_8_AnnP_2 + P-poll__networl_2_8_AnnP_3 + P-poll__networl_2_8_AnnP_4 + P-poll__networl_2_8_AnnP_5 + P-poll__networl_2_8_AnnP_6 + P-poll__networl_2_8_AnnP_7 + P-poll__networl_2_8_AnnP_8 + P-poll__networl_5_0_AskP_6 + P-poll__networl_5_0_AskP_5 + P-poll__networl_5_0_AskP_4 + P-poll__networl_5_0_AskP_3 + P-poll__networl_5_0_AskP_2 + P-poll__networl_5_0_AskP_1 + P-poll__networl_5_0_AskP_0 + P-poll__networl_3_2_AskP_0 + P-poll__networl_3_2_AskP_1 + P-poll__networl_3_2_AskP_2 + P-poll__networl_3_2_AskP_3 + P-poll__networl_3_2_AskP_4 + P-poll__networl_3_2_AskP_5 + P-poll__networl_3_2_AskP_6 + P-poll__networl_3_2_AskP_7 + P-poll__networl_3_2_AskP_8 + P-poll__networl_3_1_RP_0 + P-poll__networl_3_1_RP_1 + P-poll__networl_3_1_RP_2 + P-poll__networl_3_1_RP_3 + P-poll__networl_3_1_RP_4 + P-poll__networl_3_1_RP_5 + P-poll__networl_3_1_RP_6 + P-poll__networl_3_1_RP_7 + P-poll__networl_3_1_RP_8 + P-poll__networl_5_6_AI_0 + P-poll__networl_5_6_AI_1 + P-poll__networl_5_6_AI_2 + P-poll__networl_5_6_AI_3 + P-poll__networl_5_6_AI_4 + P-poll__networl_5_6_AI_5 + P-poll__networl_5_6_AI_6 + P-poll__networl_5_6_AI_7 + P-poll__networl_5_6_AI_8 + P-poll__networl_0_0_AnsP_0 + P-poll__networl_4_6_AnnP_8 + P-poll__networl_4_6_AnnP_7 + P-poll__networl_4_6_AnnP_6 + P-poll__networl_4_6_AnnP_5 + P-poll__networl_7_1_AnsP_0 + P-poll__networl_4_6_AnnP_4 + P-poll__networl_4_6_AnnP_3 + P-poll__networl_4_6_AnnP_2 + P-poll__networl_4_6_AnnP_1 + P-poll__networl_4_6_AnnP_0 + P-poll__networl_0_3_AnnP_0 + P-poll__networl_0_3_AnnP_1 + P-poll__networl_0_3_AnnP_2 + P-poll__networl_0_3_AnnP_3 + P-poll__networl_0_3_AnnP_4 + P-poll__networl_0_3_AnnP_5 + P-poll__networl_0_3_AnnP_6 + P-poll__networl_0_3_AnnP_7 + P-poll__networl_0_3_AnnP_8 + P-poll__networl_5_0_RP_0 + P-poll__networl_5_0_RP_1 + P-poll__networl_5_0_RP_2 + P-poll__networl_5_0_RP_3 + P-poll__networl_5_0_RP_4 + P-poll__networl_5_0_RP_5 + P-poll__networl_5_0_RP_6 + P-poll__networl_5_0_RP_7 + P-poll__networl_5_0_RP_8 + P-poll__networl_7_5_AI_0 + P-poll__networl_7_5_AI_1 + P-poll__networl_7_5_AI_2 + P-poll__networl_7_5_AI_3 + P-poll__networl_7_5_AI_4 + P-poll__networl_7_5_AI_5 + P-poll__networl_7_5_AI_6 + P-poll__networl_7_5_AI_7 + P-poll__networl_7_5_AI_8 + P-poll__networl_0_2_AI_0 + P-poll__networl_0_2_AI_1 + P-poll__networl_0_2_AI_2 + P-poll__networl_0_2_AI_3 + P-poll__networl_0_2_AI_4 + P-poll__networl_0_2_AI_5 + P-poll__networl_0_2_AI_6 + P-poll__networl_0_2_AI_7 + P-poll__networl_0_2_AI_8 + P-poll__networl_7_8_RI_0 + P-poll__networl_7_8_RI_1 + P-poll__networl_7_8_RI_2 + P-poll__networl_7_8_RI_3 + P-poll__networl_7_8_RI_4 + P-poll__networl_7_8_RI_5 + P-poll__networl_7_8_RI_6 + P-poll__networl_7_8_RI_7 + P-poll__networl_7_8_RI_8 + P-poll__networl_0_5_RI_0 + P-poll__networl_0_5_RI_1 + P-poll__networl_0_5_RI_2 + P-poll__networl_0_5_RI_3 + P-poll__networl_0_5_RI_4 + P-poll__networl_0_5_RI_5 + P-poll__networl_0_5_RI_6 + P-poll__networl_0_5_RI_7 + P-poll__networl_0_5_RI_8 + P-poll__networl_7_4_AnnP_0 + P-poll__networl_7_4_AnnP_1 + P-poll__networl_7_4_AnnP_2 + P-poll__networl_7_4_AnnP_3 + P-poll__networl_7_4_AnnP_4 + P-poll__networl_7_4_AnnP_5 + P-poll__networl_7_4_AnnP_6 + P-poll__networl_7_4_AnnP_7 + P-poll__networl_7_4_AnnP_8 + P-poll__networl_2_6_AskP_0 + P-poll__networl_2_6_AskP_1 + P-poll__networl_2_6_AskP_2 + P-poll__networl_2_6_AskP_3 + P-poll__networl_2_6_AskP_4 + P-poll__networl_2_6_AskP_5 + P-poll__networl_2_6_AskP_6 + P-poll__networl_2_6_AskP_7 + P-poll__networl_2_6_AskP_8 + P-poll__networl_2_1_AI_0 + P-poll__networl_4_3_AnsP_0 + P-poll__networl_2_1_AI_1 + P-poll__networl_2_1_AI_2 + P-poll__networl_2_1_AI_3 + P-poll__networl_2_1_AI_4 + P-poll__networl_2_1_AI_5 + P-poll__networl_2_1_AI_6 + P-poll__networl_2_1_AI_7 + P-poll__networl_2_1_AI_8 + P-poll__networl_2_4_RI_0 + P-poll__networl_2_4_RI_1 + P-poll__networl_2_4_RI_2 + P-poll__networl_2_4_RI_3 + P-poll__networl_2_4_RI_4 + P-poll__networl_2_4_RI_5 + P-poll__networl_2_4_RI_6 + P-poll__networl_2_4_RI_7 + P-poll__networl_2_4_RI_8 + P-poll__networl_6_5_AnsP_0 + P-poll__networl_4_0_AI_0 + P-poll__networl_4_0_AI_1 + P-poll__networl_4_0_AI_2 + P-poll__networl_4_0_AI_3 + P-poll__networl_4_0_AI_4 + P-poll__networl_4_0_AI_5 + P-poll__networl_4_0_AI_6 + P-poll__networl_4_0_AI_7 + P-poll__networl_4_0_AI_8 + P-poll__networl_0_1_AskP_0 + P-poll__networl_0_1_AskP_1 + P-poll__networl_0_1_AskP_2 + P-poll__networl_0_1_AskP_3 + P-poll__networl_0_1_AskP_4 + P-poll__networl_0_1_AskP_5 + P-poll__networl_0_1_AskP_6 + P-poll__networl_0_1_AskP_7 + P-poll__networl_0_1_AskP_8 + P-poll__networl_4_3_RI_0 + P-poll__networl_4_3_RI_1 + P-poll__networl_4_3_RI_2 + P-poll__networl_4_3_RI_3 + P-poll__networl_4_3_RI_4 + P-poll__networl_4_3_RI_5 + P-poll__networl_4_3_RI_6 + P-poll__networl_4_3_RI_7 + P-poll__networl_4_3_RI_8 + P-poll__networl_6_8_AnnP_0 + P-poll__networl_6_8_AnnP_1 + P-poll__networl_6_8_AnnP_2 + P-poll__networl_6_8_AnnP_3 + P-poll__networl_6_8_AnnP_4 + P-poll__networl_6_8_AnnP_5 + P-poll__networl_6_8_AnnP_6 + P-poll__networl_6_8_AnnP_7 + P-poll__networl_6_8_AnnP_8 + P-poll__networl_7_5_AskP_8 + P-poll__networl_7_5_AskP_7 + P-poll__networl_7_5_AskP_6 + P-poll__networl_7_5_AskP_5 + P-poll__networl_7_2_AskP_0 + P-poll__networl_7_2_AskP_1 + P-poll__networl_7_2_AskP_2 + P-poll__networl_7_2_AskP_3 + P-poll__networl_7_2_AskP_4 + P-poll__networl_7_2_AskP_5 + P-poll__networl_7_2_AskP_6 + P-poll__networl_7_2_AskP_7 + P-poll__networl_7_2_AskP_8 + P-poll__networl_4_0_AnsP_0 + P-poll__networl_7_5_AskP_4 + P-poll__networl_7_5_AskP_3 + P-poll__networl_7_5_AskP_2 + P-poll__networl_7_5_AskP_1 + P-poll__networl_6_2_RI_0 + P-poll__networl_6_2_RI_1 + P-poll__networl_6_2_RI_2 + P-poll__networl_6_2_RI_3 + P-poll__networl_6_2_RI_4 + P-poll__networl_6_2_RI_5 + P-poll__networl_6_2_RI_6 + P-poll__networl_6_2_RI_7 + P-poll__networl_6_2_RI_8 + P-poll__networl_7_5_AskP_0 + P-poll__networl_0_0_RI_8 + P-poll__networl_0_0_RI_7 + P-poll__networl_0_0_RI_6 + P-poll__networl_0_0_RI_5 + P-poll__networl_0_0_RI_4 + P-poll__networl_0_0_RI_3 + P-poll__networl_0_0_RI_2 + P-poll__networl_4_3_AnnP_0 + P-poll__networl_4_3_AnnP_1 + P-poll__networl_4_3_AnnP_2 + P-poll__networl_4_3_AnnP_3 + P-poll__networl_4_3_AnnP_4 + P-poll__networl_4_3_AnnP_5 + P-poll__networl_4_3_AnnP_6 + P-poll__networl_4_3_AnnP_7 + P-poll__networl_4_3_AnnP_8 + P-poll__networl_0_0_RI_1 + P-poll__networl_0_0_RI_0 + P-poll__networl_7_3_RI_8 + P-poll__networl_7_3_RI_7 + P-poll__networl_7_3_RI_6 + P-poll__networl_7_3_RI_5 + P-poll__networl_7_3_RI_4 + P-poll__networl_7_3_RI_3 + P-poll__networl_7_3_RI_2 + P-poll__networl_7_3_RI_1 + P-poll__networl_7_3_RI_0 + P-poll__networl_0_4_AskP_8 + P-poll__networl_0_4_AskP_7 + P-poll__networl_8_1_RI_0 + P-poll__networl_8_1_RI_1 + P-poll__networl_8_1_RI_2 + P-poll__networl_5_8_RP_0 + P-poll__networl_8_1_RI_3 + P-poll__networl_5_8_RP_1 + P-poll__networl_8_1_RI_4 + P-poll__networl_5_8_RP_2 + P-poll__networl_8_1_RI_5 + P-poll__networl_5_8_RP_3 + P-poll__networl_8_1_RI_6 + P-poll__networl_5_8_RP_4 + P-poll__networl_8_1_RI_7 + P-poll__networl_5_8_RP_5 + P-poll__networl_8_1_RI_8 + P-poll__networl_5_8_RP_6 + P-poll__networl_5_8_RP_7 + P-poll__networl_5_8_RP_8 + P-poll__networl_0_4_AskP_6 + P-poll__networl_0_4_AskP_5 + P-poll__networl_0_4_AskP_4 + P-poll__networl_0_4_AskP_3 + P-poll__networl_0_4_AskP_2 + P-poll__networl_0_4_AskP_1 + P-poll__networl_0_4_AskP_0 + P-poll__networl_7_0_AI_8 + P-poll__networl_7_0_AI_7 + P-poll__networl_7_0_AI_6 + P-poll__networl_7_0_AI_5 + P-poll__networl_7_0_AI_4 + P-poll__networl_7_0_AI_3 + P-poll__networl_7_0_AI_2 + P-poll__networl_7_0_AI_1 + P-poll__networl_7_0_AI_0 + P-poll__networl_6_6_AskP_0 + P-poll__networl_6_6_AskP_1 + P-poll__networl_6_6_AskP_2 + P-poll__networl_6_6_AskP_3 + P-poll__networl_6_6_AskP_4 + P-poll__networl_6_6_AskP_5 + P-poll__networl_6_6_AskP_6 + P-poll__networl_6_6_AskP_7 + P-poll__networl_6_6_AskP_8 + P-poll__networl_3_4_AnsP_0 + P-poll__networl_7_7_RP_0 + P-poll__networl_7_7_RP_1 + P-poll__networl_7_7_RP_2 + P-poll__networl_7_7_RP_3 + P-poll__networl_7_7_RP_4 + P-poll__networl_7_7_RP_5 + P-poll__networl_7_7_RP_6 + P-poll__networl_7_7_RP_7 + P-poll__networl_7_7_RP_8 + P-poll__networl_0_4_RP_0 + P-poll__networl_0_4_RP_1 + P-poll__networl_0_4_RP_2 + P-poll__networl_0_4_RP_3 + P-poll__networl_0_4_RP_4 + P-poll__networl_0_4_RP_5 + P-poll__networl_0_4_RP_6 + P-poll__networl_0_4_RP_7 + P-poll__networl_0_4_RP_8 + P-poll__networl_3_7_AnnP_0 + P-poll__networl_3_7_AnnP_1 + P-poll__networl_3_7_AnnP_2 + P-poll__networl_3_7_AnnP_3 + P-poll__networl_3_7_AnnP_4 + P-poll__networl_3_7_AnnP_5 + P-poll__networl_3_7_AnnP_6 + P-poll__networl_3_7_AnnP_7 + P-poll__networl_3_7_AnnP_8 + P-poll__networl_6_8_AnsP_0 + P-poll__networl_4_1_AskP_0 + P-poll__networl_4_1_AskP_1 + P-poll__networl_4_1_AskP_2 + P-poll__networl_4_1_AskP_3 + P-poll__networl_4_1_AskP_4 + P-poll__networl_4_1_AskP_5 + P-poll__networl_4_1_AskP_6 + P-poll__networl_4_1_AskP_7 + P-poll__networl_4_1_AskP_8 + P-poll__networl_5_2_AnnP_8 + P-poll__networl_2_3_RP_0 + P-poll__networl_2_3_RP_1 + P-poll__networl_2_3_RP_2 + P-poll__networl_2_3_RP_3 + P-poll__networl_2_3_RP_4 + P-poll__networl_2_3_RP_5 + P-poll__networl_2_3_RP_6 + P-poll__networl_2_3_RP_7 + P-poll__networl_2_3_RP_8 + P-poll__networl_5_2_AnnP_7 + P-poll__networl_5_2_AnnP_6 + P-poll__networl_5_2_AnnP_5 + P-poll__networl_5_2_AnnP_4 + P-poll__networl_5_2_AnnP_3 + P-poll__networl_5_2_AnnP_2 + P-poll__networl_5_2_AnnP_1 + P-poll__networl_4_8_AI_0 + P-poll__networl_4_8_AI_1 + P-poll__networl_4_8_AI_2 + P-poll__networl_4_8_AI_3 + P-poll__networl_4_8_AI_4 + P-poll__networl_4_8_AI_5 + P-poll__networl_4_8_AI_6 + P-poll__networl_4_8_AI_7 + P-poll__networl_4_8_AI_8 + P-poll__networl_5_2_AnnP_0 + P-poll__networl_8_0_AnsP_0 + P-poll__networl_5_4_RI_8 + P-poll__networl_5_4_RI_7 + P-poll__networl_5_4_RI_6 + P-poll__networl_5_4_RI_5 + P-poll__networl_5_4_RI_4 + P-poll__networl_5_4_RI_3 + P-poll__networl_5_4_RI_2 + P-poll__networl_5_4_RI_1 + P-poll__networl_1_2_AnnP_0 + P-poll__networl_1_2_AnnP_1 + P-poll__networl_1_2_AnnP_2 + P-poll__networl_1_2_AnnP_3 + P-poll__networl_1_2_AnnP_4 + P-poll__networl_1_2_AnnP_5 + P-poll__networl_1_2_AnnP_6 + P-poll__networl_1_2_AnnP_7 + P-poll__networl_1_2_AnnP_8 + P-poll__networl_5_4_RI_0 + P-poll__networl_4_2_RP_0 + P-poll__networl_4_2_RP_1 + P-poll__networl_4_2_RP_2 + P-poll__networl_4_2_RP_3 + P-poll__networl_4_2_RP_4 + P-poll__networl_4_2_RP_5 + P-poll__networl_4_2_RP_6 + P-poll__networl_4_2_RP_7 + P-poll__networl_2_8_AnsP_0 + P-poll__networl_4_2_RP_8 + P-poll__networl_5_1_AI_8 + P-poll__networl_6_7_AI_0 + P-poll__networl_6_7_AI_1 + P-poll__networl_6_7_AI_2 + P-poll__networl_6_7_AI_3 + P-poll__networl_6_7_AI_4 + P-poll__networl_6_7_AI_5 + P-poll__networl_6_7_AI_6 + P-poll__networl_6_7_AI_7 + P-poll__networl_6_7_AI_8 + P-poll__networl_8_3_AnnP_0 + P-poll__networl_8_3_AnnP_1 + P-poll__networl_8_3_AnnP_2 + P-poll__networl_8_3_AnnP_3 + P-poll__networl_8_3_AnnP_4 + P-poll__networl_8_3_AnnP_5 + P-poll__networl_8_3_AnnP_6 + P-poll__networl_8_3_AnnP_7 + P-poll__networl_8_3_AnnP_8 + P-poll__networl_5_1_AI_7 + P-poll__networl_5_1_AI_6 + P-poll__networl_5_1_AI_5 + P-poll__networl_5_1_AI_4 + P-poll__networl_5_1_AI_3 + P-poll__networl_5_1_AI_2 + P-poll__networl_5_1_AI_1 + P-poll__networl_5_1_AI_0 + P-poll__networl_3_5_AskP_0 + P-poll__networl_3_5_AskP_1 + P-poll__networl_3_5_AskP_2 + P-poll__networl_3_5_AskP_3 + P-poll__networl_3_5_AskP_4 + P-poll__networl_3_5_AskP_5 + P-poll__networl_3_5_AskP_6 + P-poll__networl_3_5_AskP_7 + P-poll__networl_3_5_AskP_8 + P-poll__networl_6_1_RP_0 + P-poll__networl_6_1_RP_1 + P-poll__networl_6_1_RP_2 + P-poll__networl_6_1_RP_3 + P-poll__networl_6_1_RP_4 + P-poll__networl_6_1_RP_5 + P-poll__networl_6_1_RP_6 + P-poll__networl_6_1_RP_7 + P-poll__networl_6_1_RP_8 + P-poll__networl_8_6_AI_0 + P-poll__networl_8_6_AI_1 + P-poll__networl_8_6_AI_2 + P-poll__networl_8_6_AI_3 + P-poll__networl_8_6_AI_4 + P-poll__networl_8_6_AI_5 + P-poll__networl_8_6_AI_6 + P-poll__networl_8_6_AI_7 + P-poll__networl_8_6_AI_8 + P-poll__networl_1_3_AI_0 + P-poll__networl_1_3_AI_1 + P-poll__networl_1_3_AI_2 + P-poll__networl_0_3_AnsP_0 + P-poll__networl_1_3_AI_3 + P-poll__networl_1_3_AI_4 + P-poll__networl_1_3_AI_5 + P-poll__networl_1_3_AI_6 + P-poll__networl_8_1_AskP_8 + P-poll__networl_1_3_AI_7 + P-poll__networl_8_1_AskP_7 + P-poll__networl_1_3_AI_8 + P-poll__networl_8_1_AskP_6 + P-poll__networl_1_6_RI_0 + P-poll__networl_1_6_RI_1 + P-poll__networl_1_6_RI_2 + P-poll__networl_1_6_RI_3 + P-poll__networl_1_6_RI_4 + P-poll__networl_1_6_RI_5 + P-poll__networl_1_6_RI_6 + P-poll__networl_1_6_RI_7 + P-poll__networl_1_6_RI_8 + P-poll__networl_8_1_AskP_5 + P-poll__networl_7_4_AnsP_0 + P-poll__networl_8_1_AskP_4 + P-poll__networl_8_1_AskP_3 + P-poll__networl_8_1_AskP_2 + P-poll__networl_8_1_AskP_1 + P-poll__networl_0_6_AnnP_0 + P-poll__networl_0_6_AnnP_1 + P-poll__networl_0_6_AnnP_2 + P-poll__networl_0_6_AnnP_3 + P-poll__networl_0_6_AnnP_4 + P-poll__networl_0_6_AnnP_5 + P-poll__networl_0_6_AnnP_6 + P-poll__networl_0_6_AnnP_7 + P-poll__networl_0_6_AnnP_8 + P-poll__networl_8_0_RP_0 + P-poll__networl_8_0_RP_1 + P-poll__networl_8_0_RP_2 + P-poll__networl_8_0_RP_3 + P-poll__networl_8_0_RP_4 + P-poll__networl_8_0_RP_5 + P-poll__networl_8_0_RP_6 + P-poll__networl_8_0_RP_7 + P-poll__networl_8_0_RP_8 + P-poll__networl_8_1_AskP_0 + P-poll__networl_1_0_AskP_0 + P-poll__networl_1_0_AskP_1 + P-poll__networl_1_0_AskP_2 + P-poll__networl_1_0_AskP_3 + P-poll__networl_1_0_AskP_4 + P-poll__networl_1_0_AskP_5 + P-poll__networl_1_0_AskP_6 + P-poll__networl_1_0_AskP_7 + P-poll__networl_1_0_AskP_8 + P-poll__networl_3_2_AI_0 + P-poll__networl_3_2_AI_1 + P-poll__networl_3_2_AI_2 + P-poll__networl_3_2_AI_3 + P-poll__networl_3_2_AI_4 + P-poll__networl_3_2_AI_5 + P-poll__networl_3_2_AI_6 + P-poll__networl_3_2_AI_7 + P-poll__networl_3_2_AI_8 + P-poll__networl_3_5_RI_0 + P-poll__networl_3_5_RI_1 + P-poll__networl_3_5_RI_2 + P-poll__networl_3_5_RI_3 + P-poll__networl_3_5_RI_4 + P-poll__networl_3_5_RI_5 + P-poll__networl_3_5_RI_6 + P-poll__networl_3_5_RI_7 + P-poll__networl_3_5_RI_8 + P-poll__networl_7_7_AnnP_0 + P-poll__networl_7_7_AnnP_1 + P-poll__networl_7_7_AnnP_2 + P-poll__networl_7_7_AnnP_3 + P-poll__networl_7_7_AnnP_4 + P-poll__networl_7_7_AnnP_5 + P-poll__networl_7_7_AnnP_6 + P-poll__networl_7_7_AnnP_7 + P-poll__networl_7_7_AnnP_8 <= P-masterList_8_4_0 + P-masterList_8_4_1 + P-masterList_8_4_2 + P-masterList_8_4_3 + P-masterList_8_4_4 + P-masterList_8_4_5 + P-masterList_8_4_6 + P-masterList_8_4_7 + P-masterList_8_4_8 + P-masterList_0_3_8 + P-masterList_0_3_7 + P-masterList_0_3_6 + P-masterList_5_6_0 + P-masterList_5_6_1 + P-masterList_5_6_2 + P-masterList_5_6_3 + P-masterList_5_6_4 + P-masterList_5_6_5 + P-masterList_5_6_6 + P-masterList_5_6_7 + P-masterList_5_6_8 + P-masterList_0_3_5 + P-masterList_0_3_4 + P-masterList_0_3_3 + P-masterList_0_3_2 + P-masterList_0_3_1 + P-masterList_0_3_0 + P-masterList_2_8_0 + P-masterList_2_8_1 + P-masterList_2_8_2 + P-masterList_2_8_3 + P-masterList_2_8_4 + P-masterList_2_8_5 + P-masterList_2_8_6 + P-masterList_2_8_7 + P-masterList_2_8_8 + P-masterList_3_2_0 + P-masterList_3_2_1 + P-masterList_3_2_2 + P-masterList_3_2_3 + P-masterList_3_2_4 + P-masterList_3_2_5 + P-masterList_3_2_6 + P-masterList_3_2_7 + P-masterList_3_2_8 + P-masterList_3_1_8 + P-masterList_3_1_7 + P-masterList_3_1_6 + P-masterList_3_1_5 + P-masterList_3_1_4 + P-masterList_3_1_3 + P-masterList_0_4_0 + P-masterList_0_4_1 + P-masterList_0_4_2 + P-masterList_0_4_3 + P-masterList_0_4_4 + P-masterList_0_4_5 + P-masterList_3_1_2 + P-masterList_0_4_6 + P-masterList_3_1_1 + P-masterList_0_4_7 + P-masterList_3_1_0 + P-masterList_0_4_8 + P-masterList_8_5_0 + P-masterList_8_5_1 + P-masterList_8_5_2 + P-masterList_8_5_3 + P-masterList_2_7_8 + P-masterList_8_5_4 + P-masterList_2_7_7 + P-masterList_8_5_5 + P-masterList_2_7_6 + P-masterList_8_5_6 + P-masterList_2_7_5 + P-masterList_8_5_7 + P-masterList_2_7_4 + P-masterList_8_5_8 + P-masterList_2_7_3 + P-masterList_2_7_2 + P-masterList_2_7_1 + P-masterList_2_7_0 + P-masterList_5_7_0 + P-masterList_5_7_1 + P-masterList_5_7_2 + P-masterList_5_7_3 + P-masterList_5_7_4 + P-masterList_5_7_5 + P-masterList_5_7_6 + P-masterList_5_7_7 + P-masterList_5_7_8 + P-masterList_6_1_0 + P-masterList_6_1_1 + P-masterList_6_1_2 + P-masterList_6_1_3 + P-masterList_6_1_4 + P-masterList_6_1_5 + P-masterList_6_1_6 + P-masterList_6_1_7 + P-masterList_6_1_8 + P-masterList_3_3_0 + P-masterList_3_3_1 + P-masterList_3_3_2 + P-masterList_3_3_3 + P-masterList_3_3_4 + P-masterList_3_3_5 + P-masterList_3_3_6 + P-masterList_3_3_7 + P-masterList_3_3_8 + P-masterList_5_5_8 + P-masterList_5_5_7 + P-masterList_5_5_6 + P-masterList_5_5_5 + P-masterList_0_5_0 + P-masterList_0_5_1 + P-masterList_0_5_2 + P-masterList_0_5_3 + P-masterList_0_5_4 + P-masterList_0_5_5 + P-masterList_0_5_6 + P-masterList_0_5_7 + P-masterList_0_5_8 + P-masterList_5_5_4 + P-masterList_5_5_3 + P-masterList_5_5_2 + P-masterList_5_5_1 + P-masterList_5_5_0 + P-masterList_8_3_8 + P-masterList_8_3_7 + P-masterList_8_3_6 + P-masterList_8_3_5 + P-masterList_8_3_4 + P-masterList_8_3_3 + P-masterList_8_3_2 + P-masterList_8_3_1 + P-masterList_8_6_0 + P-masterList_8_6_1 + P-masterList_8_6_2 + P-masterList_8_6_3 + P-masterList_8_6_4 + P-masterList_8_6_5 + P-masterList_8_6_6 + P-masterList_8_6_7 + P-masterList_8_6_8 + P-masterList_8_3_0 + P-masterList_5_8_0 + P-masterList_5_8_1 + P-masterList_5_8_2 + P-masterList_5_8_3 + P-masterList_5_8_4 + P-masterList_5_8_5 + P-masterList_5_8_6 + P-masterList_5_8_7 + P-masterList_5_8_8 + P-masterList_6_2_0 + P-masterList_6_2_1 + P-masterList_6_2_2 + P-masterList_6_2_3 + P-masterList_6_2_4 + P-masterList_6_2_5 + P-masterList_6_2_6 + P-masterList_6_2_7 + P-masterList_6_2_8 + P-masterList_3_4_0 + P-masterList_3_4_1 + P-masterList_3_4_2 + P-masterList_3_4_3 + P-masterList_3_4_4 + P-masterList_3_4_5 + P-masterList_3_4_6 + P-masterList_3_4_7 + P-masterList_3_4_8 + P-masterList_0_6_0 + P-masterList_0_6_1 + P-masterList_0_6_2 + P-masterList_0_6_3 + P-masterList_0_6_4 + P-masterList_0_6_5 + P-masterList_0_6_6 + P-masterList_0_6_7 + P-masterList_0_6_8 + P-masterList_8_7_0 + P-masterList_8_7_1 + P-masterList_8_7_2 + P-masterList_8_7_3 + P-masterList_8_7_4 + P-masterList_8_7_5 + P-masterList_8_7_6 + P-masterList_8_7_7 + P-masterList_8_7_8 + P-masterList_6_3_0 + P-masterList_6_3_1 + P-masterList_6_3_2 + P-masterList_6_3_3 + P-masterList_6_3_4 + P-masterList_6_3_5 + P-masterList_6_3_6 + P-masterList_6_3_7 + P-masterList_6_3_8 + P-masterList_3_5_0 + P-masterList_3_5_1 + P-masterList_3_5_2 + P-masterList_3_5_3 + P-masterList_3_5_4 + P-masterList_3_5_5 + P-masterList_3_5_6 + P-masterList_3_5_7 + P-masterList_3_5_8 + P-masterList_0_2_8 + P-masterList_0_2_7 + P-masterList_0_2_6 + P-masterList_0_2_5 + P-masterList_0_2_4 + P-masterList_0_2_3 + P-masterList_0_2_2 + P-masterList_0_2_1 + P-masterList_0_2_0 + P-masterList_0_7_0 + P-masterList_0_7_1 + P-masterList_0_7_2 + P-masterList_0_7_3 + P-masterList_0_7_4 + P-masterList_0_7_5 + P-masterList_0_7_6 + P-masterList_0_7_7 + P-masterList_0_7_8 + P-masterList_1_1_0 + P-masterList_1_1_1 + P-masterList_1_1_2 + P-masterList_1_1_3 + P-masterList_1_1_4 + P-masterList_1_1_5 + P-masterList_1_1_6 + P-masterList_1_1_7 + P-masterList_1_1_8 + P-masterList_8_8_0 + P-masterList_8_8_1 + P-masterList_8_8_2 + P-masterList_8_8_3 + P-masterList_8_8_4 + P-masterList_8_8_5 + P-masterList_8_8_6 + P-masterList_8_8_7 + P-masterList_8_8_8 + P-masterList_6_4_0 + P-masterList_6_4_1 + P-masterList_6_4_2 + P-masterList_6_4_3 + P-masterList_6_4_4 + P-masterList_6_4_5 + P-masterList_6_4_6 + P-masterList_6_4_7 + P-masterList_6_4_8 + P-masterList_3_6_0 + P-masterList_3_6_1 + P-masterList_3_6_2 + P-masterList_3_6_3 + P-masterList_3_6_4 + P-masterList_3_6_5 + P-masterList_3_6_6 + P-masterList_3_6_7 + P-masterList_3_6_8 + P-masterList_2_6_8 + P-masterList_2_6_7 + P-masterList_2_6_6 + P-masterList_2_6_5 + P-masterList_2_6_4 + P-masterList_2_6_3 + P-masterList_2_6_2 + P-masterList_2_6_1 + P-masterList_2_6_0 + P-masterList_0_8_0 + P-masterList_0_8_1 + P-masterList_0_8_2 + P-masterList_0_8_3 + P-masterList_0_8_4 + P-masterList_0_8_5 + P-masterList_0_8_6 + P-masterList_0_8_7 + P-masterList_0_8_8 + P-masterList_1_2_0 + P-masterList_1_2_1 + P-masterList_1_2_2 + P-masterList_1_2_3 + P-masterList_1_2_4 + P-masterList_1_2_5 + P-masterList_1_2_6 + P-masterList_1_2_7 + P-masterList_1_2_8 + P-masterList_5_4_8 + P-masterList_5_4_7 + P-masterList_5_4_6 + P-masterList_5_4_5 + P-masterList_5_4_4 + P-masterList_5_4_3 + P-masterList_5_4_2 + P-masterList_5_4_1 + P-masterList_5_4_0 + P-masterList_6_5_0 + P-masterList_6_5_1 + P-masterList_6_5_2 + P-masterList_6_5_3 + P-masterList_6_5_4 + P-masterList_6_5_5 + P-masterList_6_5_6 + P-masterList_6_5_7 + P-masterList_6_5_8 + P-masterList_8_2_8 + P-masterList_8_2_7 + P-masterList_8_2_6 + P-masterList_8_2_5 + P-masterList_8_2_4 + P-masterList_8_2_3 + P-masterList_8_2_2 + P-masterList_8_2_1 + P-masterList_8_2_0 + P-masterList_3_7_0 + P-masterList_3_7_1 + P-masterList_3_7_2 + P-masterList_3_7_3 + P-masterList_3_7_4 + P-masterList_3_7_5 + P-masterList_3_7_6 + P-masterList_3_7_7 + P-masterList_3_7_8 + P-masterList_4_1_0 + P-masterList_4_1_1 + P-masterList_4_1_2 + P-masterList_4_1_3 + P-masterList_4_1_4 + P-masterList_4_1_5 + P-masterList_4_1_6 + P-masterList_4_1_7 + P-masterList_4_1_8 + P-masterList_1_3_0 + P-masterList_1_3_1 + P-masterList_1_3_2 + P-masterList_1_3_3 + P-masterList_1_3_4 + P-masterList_1_3_5 + P-masterList_1_3_6 + P-masterList_1_3_7 + P-masterList_1_3_8 + P-masterList_7_8_8 + P-masterList_7_8_7 + P-masterList_7_8_6 + P-masterList_7_8_5 + P-masterList_7_8_4 + P-masterList_7_8_3 + P-masterList_7_8_2 + P-masterList_7_8_1 + P-masterList_7_8_0 + P-masterList_6_6_0 + P-masterList_6_6_1 + P-masterList_6_6_2 + P-masterList_6_6_3 + P-masterList_6_6_4 + P-masterList_6_6_5 + P-masterList_6_6_6 + P-masterList_6_6_7 + P-masterList_6_6_8 + P-masterList_3_8_0 + P-masterList_3_8_1 + P-masterList_3_8_2 + P-masterList_3_8_3 + P-masterList_3_8_4 + P-masterList_3_8_5 + P-masterList_3_8_6 + P-masterList_3_8_7 + P-masterList_3_8_8 + P-masterList_4_2_0 + P-masterList_4_2_1 + P-masterList_4_2_2 + P-masterList_4_2_3 + P-masterList_4_2_4 + P-masterList_4_2_5 + P-masterList_4_2_6 + P-masterList_4_2_7 + P-masterList_4_2_8 + P-masterList_1_4_0 + P-masterList_1_4_1 + P-masterList_1_4_2 + P-masterList_1_4_3 + P-masterList_1_4_4 + P-masterList_1_4_5 + P-masterList_1_4_6 + P-masterList_1_4_7 + P-masterList_1_4_8 + P-masterList_0_1_8 + P-masterList_0_1_7 + P-masterList_0_1_6 + P-masterList_0_1_5 + P-masterList_0_1_4 + P-masterList_0_1_3 + P-masterList_0_1_2 + P-masterList_0_1_1 + P-masterList_0_1_0 + P-masterList_6_7_0 + P-masterList_6_7_1 + P-masterList_6_7_2 + P-masterList_6_7_3 + P-masterList_6_7_4 + P-masterList_6_7_5 + P-masterList_6_7_6 + P-masterList_6_7_7 + P-masterList_6_7_8 + P-masterList_7_1_0 + P-masterList_7_1_1 + P-masterList_7_1_2 + P-masterList_7_1_3 + P-masterList_7_1_4 + P-masterList_7_1_5 + P-masterList_7_1_6 + P-masterList_7_1_7 + P-masterList_7_1_8 + P-masterList_4_3_0 + P-masterList_4_3_1 + P-masterList_4_3_2 + P-masterList_4_3_3 + P-masterList_4_3_4 + P-masterList_4_3_5 + P-masterList_4_3_6 + P-masterList_4_3_7 + P-masterList_4_3_8 + P-masterList_2_5_8 + P-masterList_2_5_7 + P-masterList_2_5_6 + P-masterList_2_5_5 + P-masterList_1_5_0 + P-masterList_1_5_1 + P-masterList_1_5_2 + P-masterList_1_5_3 + P-masterList_1_5_4 + P-masterList_1_5_5 + P-masterList_1_5_6 + P-masterList_1_5_7 + P-masterList_1_5_8 + P-masterList_2_5_4 + P-masterList_2_5_3 + P-masterList_2_5_2 + P-masterList_2_5_1 + P-masterList_2_5_0 + P-masterList_5_3_8 + P-masterList_5_3_7 + P-masterList_5_3_6 + P-masterList_5_3_5 + P-masterList_5_3_4 + P-masterList_5_3_3 + P-masterList_5_3_2 + P-masterList_5_3_1 + P-masterList_5_3_0 + P-masterList_6_8_0 + P-masterList_6_8_1 + P-masterList_6_8_2 + P-masterList_6_8_3 + P-masterList_6_8_4 + P-masterList_6_8_5 + P-masterList_6_8_6 + P-masterList_6_8_7 + P-masterList_6_8_8 + P-masterList_7_2_0 + P-masterList_7_2_1 + P-masterList_7_2_2 + P-masterList_7_2_3 + P-masterList_7_2_4 + P-masterList_7_2_5 + P-masterList_7_2_6 + P-masterList_7_2_7 + P-masterList_7_2_8 + P-masterList_4_4_0 + P-masterList_4_4_1 + P-masterList_4_4_2 + P-masterList_4_4_3 + P-masterList_4_4_4 + P-masterList_4_4_5 + P-masterList_4_4_6 + P-masterList_4_4_7 + P-masterList_4_4_8 + P-masterList_8_1_8 + P-masterList_8_1_7 + P-masterList_8_1_6 + P-masterList_8_1_5 + P-masterList_8_1_4 + P-masterList_8_1_3 + P-masterList_8_1_2 + P-masterList_8_1_1 + P-masterList_8_1_0 + P-masterList_1_6_0 + P-masterList_1_6_1 + P-masterList_1_6_2 + P-masterList_1_6_3 + P-masterList_1_6_4 + P-masterList_1_6_5 + P-masterList_1_6_6 + P-masterList_1_6_7 + P-masterList_1_6_8 + P-masterList_7_7_8 + P-masterList_7_7_7 + P-masterList_7_7_6 + P-masterList_7_7_5 + P-masterList_7_7_4 + P-masterList_7_7_3 + P-masterList_7_7_2 + P-masterList_7_7_1 + P-masterList_7_7_0 + P-masterList_7_3_0 + P-masterList_7_3_1 + P-masterList_7_3_2 + P-masterList_7_3_3 + P-masterList_7_3_4 + P-masterList_7_3_5 + P-masterList_7_3_6 + P-masterList_7_3_7 + P-masterList_7_3_8 + P-masterList_4_5_0 + P-masterList_4_5_1 + P-masterList_4_5_2 + P-masterList_4_5_3 + P-masterList_4_5_4 + P-masterList_4_5_5 + P-masterList_4_5_6 + P-masterList_4_5_7 + P-masterList_4_5_8 + P-masterList_1_7_0 + P-masterList_1_7_1 + P-masterList_1_7_2 + P-masterList_1_7_3 + P-masterList_1_7_4 + P-masterList_1_7_5 + P-masterList_1_7_6 + P-masterList_1_7_7 + P-masterList_1_7_8 + P-masterList_2_1_0 + P-masterList_2_1_1 + P-masterList_2_1_2 + P-masterList_2_1_3 + P-masterList_2_1_4 + P-masterList_2_1_5 + P-masterList_2_1_6 + P-masterList_2_1_7 + P-masterList_2_1_8 + P-masterList_7_4_0 + P-masterList_7_4_1 + P-masterList_7_4_2 + P-masterList_7_4_3 + P-masterList_7_4_4 + P-masterList_7_4_5 + P-masterList_7_4_6 + P-masterList_7_4_7 + P-masterList_7_4_8 + P-masterList_4_6_0 + P-masterList_4_6_1 + P-masterList_4_6_2 + P-masterList_4_6_3 + P-masterList_4_6_4 + P-masterList_4_6_5 + P-masterList_4_6_6 + P-masterList_4_6_7 + P-masterList_4_6_8 + P-masterList_1_8_0 + P-masterList_1_8_1 + P-masterList_1_8_2 + P-masterList_1_8_3 + P-masterList_1_8_4 + P-masterList_1_8_5 + P-masterList_1_8_6 + P-masterList_1_8_7 + P-masterList_1_8_8 + P-masterList_2_2_0 + P-masterList_2_2_1 + P-masterList_2_2_2 + P-masterList_2_2_3 + P-masterList_2_2_4 + P-masterList_2_2_5 + P-masterList_2_2_6 + P-masterList_2_2_7 + P-masterList_2_2_8 + P-masterList_2_4_8 + P-masterList_2_4_7 + P-masterList_2_4_6 + P-masterList_2_4_5 + P-masterList_2_4_4 + P-masterList_2_4_3 + P-masterList_2_4_2 + P-masterList_2_4_1 + P-masterList_2_4_0 + P-masterList_7_5_0 + P-masterList_7_5_1 + P-masterList_7_5_2 + P-masterList_7_5_3 + P-masterList_7_5_4 + P-masterList_7_5_5 + P-masterList_7_5_6 + P-masterList_7_5_7 + P-masterList_7_5_8 + P-masterList_4_7_0 + P-masterList_4_7_1 + P-masterList_4_7_2 + P-masterList_4_7_3 + P-masterList_4_7_4 + P-masterList_4_7_5 + P-masterList_4_7_6 + P-masterList_4_7_7 + P-masterList_4_7_8 + P-masterList_5_1_0 + P-masterList_5_1_1 + P-masterList_5_1_2 + P-masterList_5_1_3 + P-masterList_5_1_4 + P-masterList_5_1_5 + P-masterList_5_1_6 + P-masterList_5_1_7 + P-masterList_5_1_8 + P-masterList_5_2_8 + P-masterList_5_2_7 + P-masterList_5_2_6 + P-masterList_5_2_5 + P-masterList_5_2_4 + P-masterList_5_2_3 + P-masterList_5_2_2 + P-masterList_5_2_1 + P-masterList_5_2_0 + P-masterList_2_3_0 + P-masterList_2_3_1 + P-masterList_2_3_2 + P-masterList_2_3_3 + P-masterList_2_3_4 + P-masterList_2_3_5 + P-masterList_2_3_6 + P-masterList_2_3_7 + P-masterList_2_3_8 + P-masterList_4_8_8 + P-masterList_4_8_7 + P-masterList_4_8_6 + P-masterList_4_8_5 + P-masterList_4_8_4 + P-masterList_4_8_3 + P-masterList_4_8_2 + P-masterList_4_8_1 + P-masterList_4_8_0 + P-masterList_7_6_0 + P-masterList_7_6_1 + P-masterList_7_6_2 + P-masterList_7_6_3 + P-masterList_7_6_4 + P-masterList_7_6_5 + P-masterList_7_6_6 + P-masterList_7_6_7 + P-masterList_7_6_8))))))
lola: processed formula: A (G (G (G (F ((P-poll__networl_7_4_AnsP_8 + P-poll__networl_7_4_AnsP_7 + P-poll__networl_7_4_AnsP_6 + P-poll__networl_7_4_AnsP_5 + P-poll__networl_7_4_AnsP_4 + P-poll__networl_7_4_AnsP_3 + P-poll__networl_7_4_AnsP_2 + P-poll__networl_7_4_AnsP_1 + P-poll__networl_0_3_AnsP_8 + P-poll__networl_0_3_AnsP_7 + P-poll__networl_0_3_AnsP_6 + P-poll__networl_0_3_AnsP_5 + P-poll__networl_0_3_AnsP_4 + P-poll_... (shortened)
lola: processed formula length: 136100
lola: 0 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: using ltl preserving stubborn set method (--stubborn)
lola: SEARCH
lola: RUNNING
lola: 5532 markings, 7557 edges, 1106 markings/sec, 0 secs
lola: 10700 markings, 16327 edges, 1034 markings/sec, 5 secs
lola: 16951 markings, 25236 edges, 1250 markings/sec, 10 secs
lola: 22285 markings, 32809 edges, 1067 markings/sec, 15 secs
lola: 27841 markings, 41833 edges, 1111 markings/sec, 20 secs
lola: 34859 markings, 51946 edges, 1404 markings/sec, 25 secs
lola: 40509 markings, 60976 edges, 1130 markings/sec, 30 secs
lola: 45632 markings, 69266 edges, 1025 markings/sec, 35 secs
lola: 51610 markings, 78277 edges, 1196 markings/sec, 40 secs
lola: 56973 markings, 86863 edges, 1073 markings/sec, 45 secs
lola: 63880 markings, 97203 edges, 1381 markings/sec, 50 secs
lola: 69420 markings, 106308 edges, 1108 markings/sec, 55 secs
lola: 75382 markings, 115992 edges, 1192 markings/sec, 60 secs
lola: 81889 markings, 126713 edges, 1301 markings/sec, 65 secs
lola: 87700 markings, 136954 edges, 1162 markings/sec, 70 secs
lola: 93858 markings, 147505 edges, 1232 markings/sec, 75 secs
lola: 98920 markings, 157012 edges, 1012 markings/sec, 80 secs
lola: 104084 markings, 167566 edges, 1033 markings/sec, 85 secs
lola: 110193 markings, 181395 edges, 1222 markings/sec, 90 secs
lola: 116895 markings, 193252 edges, 1340 markings/sec, 95 secs
lola: 122236 markings, 202524 edges, 1068 markings/sec, 100 secs
lola: 127564 markings, 212641 edges, 1066 markings/sec, 105 secs
lola: 134009 markings, 226300 edges, 1289 markings/sec, 110 secs
lola: 142013 markings, 240388 edges, 1601 markings/sec, 115 secs
lola: 147577 markings, 252320 edges, 1113 markings/sec, 120 secs
lola: 153914 markings, 263103 edges, 1267 markings/sec, 125 secs
lola: 160479 markings, 272541 edges, 1313 markings/sec, 130 secs
lola: 166762 markings, 282589 edges, 1257 markings/sec, 135 secs
lola: 174571 markings, 295051 edges, 1562 markings/sec, 140 secs
lola: 182252 markings, 306303 edges, 1536 markings/sec, 145 secs
lola: 189055 markings, 315962 edges, 1361 markings/sec, 150 secs
lola: 195473 markings, 326325 edges, 1284 markings/sec, 155 secs
lola: 203880 markings, 339955 edges, 1681 markings/sec, 160 secs
lola: 212466 markings, 352716 edges, 1717 markings/sec, 165 secs
lola: 218733 markings, 362797 edges, 1253 markings/sec, 170 secs
lola: 223709 markings, 369999 edges, 995 markings/sec, 175 secs
lola: 228505 markings, 377038 edges, 959 markings/sec, 180 secs
lola: 234045 markings, 385637 edges, 1108 markings/sec, 185 secs
lola: 239599 markings, 393378 edges, 1111 markings/sec, 190 secs
lola: 244700 markings, 401023 edges, 1020 markings/sec, 195 secs
lola: 251734 markings, 411924 edges, 1407 markings/sec, 200 secs
lola: 257738 markings, 420969 edges, 1201 markings/sec, 205 secs
lola: 263221 markings, 429041 edges, 1097 markings/sec, 210 secs
lola: 268814 markings, 437913 edges, 1119 markings/sec, 215 secs
lola: 274772 markings, 446534 edges, 1192 markings/sec, 220 secs
lola: 281300 markings, 456986 edges, 1306 markings/sec, 225 secs
lola: 287187 markings, 466070 edges, 1177 markings/sec, 230 secs
lola: 292805 markings, 475244 edges, 1124 markings/sec, 235 secs
lola: 298832 markings, 485016 edges, 1205 markings/sec, 240 secs
lola: 304901 markings, 494764 edges, 1214 markings/sec, 245 secs
lola: 310870 markings, 505131 edges, 1194 markings/sec, 250 secs
lola: 315869 markings, 513606 edges, 1000 markings/sec, 255 secs
lola: 320692 markings, 522247 edges, 965 markings/sec, 260 secs
lola: 325418 markings, 532161 edges, 945 markings/sec, 265 secs
lola: 332302 markings, 545515 edges, 1377 markings/sec, 270 secs
lola: 338877 markings, 557146 edges, 1315 markings/sec, 275 secs
lola: 344315 markings, 566661 edges, 1088 markings/sec, 280 secs
lola: 349085 markings, 576641 edges, 954 markings/sec, 285 secs
lola: 356179 markings, 590334 edges, 1419 markings/sec, 290 secs
lola: 363251 markings, 603183 edges, 1414 markings/sec, 295 secs
lola: 368597 markings, 614219 edges, 1069 markings/sec, 300 secs
lola: 376220 markings, 626159 edges, 1525 markings/sec, 305 secs
lola: 384328 markings, 637995 edges, 1622 markings/sec, 310 secs
lola: 391563 markings, 649731 edges, 1447 markings/sec, 315 secs
lola: 400484 markings, 663664 edges, 1784 markings/sec, 320 secs
lola: 409329 markings, 676639 edges, 1769 markings/sec, 325 secs
lola: 416895 markings, 687512 edges, 1513 markings/sec, 330 secs
lola: 424411 markings, 699141 edges, 1503 markings/sec, 335 secs
lola: 432556 markings, 712915 edges, 1629 markings/sec, 340 secs
lola: 442789 markings, 727976 edges, 2047 markings/sec, 345 secs
lola: 451032 markings, 740941 edges, 1649 markings/sec, 350 secs
lola: 457994 markings, 751502 edges, 1392 markings/sec, 355 secs
lola: 463284 markings, 759801 edges, 1058 markings/sec, 360 secs
lola: 468448 markings, 768359 edges, 1033 markings/sec, 365 secs
lola: 473218 markings, 778102 edges, 954 markings/sec, 370 secs
lola: 479297 markings, 787755 edges, 1216 markings/sec, 375 secs
lola: 484967 markings, 796401 edges, 1134 markings/sec, 380 secs
lola: 490367 markings, 805072 edges, 1080 markings/sec, 385 secs
lola: 495826 markings, 815611 edges, 1092 markings/sec, 390 secs
lola: 503803 markings, 828399 edges, 1595 markings/sec, 395 secs
lola: 509410 markings, 837513 edges, 1121 markings/sec, 400 secs
lola: 515315 markings, 847812 edges, 1181 markings/sec, 405 secs
lola: 520266 markings, 855872 edges, 990 markings/sec, 410 secs
lola: 525834 markings, 864310 edges, 1114 markings/sec, 415 secs
lola: 530800 markings, 872096 edges, 993 markings/sec, 420 secs
lola: 537623 markings, 882410 edges, 1365 markings/sec, 425 secs
lola: 543136 markings, 891221 edges, 1103 markings/sec, 430 secs
lola: 548868 markings, 900570 edges, 1146 markings/sec, 435 secs
lola: 555237 markings, 910621 edges, 1274 markings/sec, 440 secs
lola: 560831 markings, 920538 edges, 1119 markings/sec, 445 secs
lola: 566960 markings, 931118 edges, 1226 markings/sec, 450 secs
lola: 572120 markings, 940680 edges, 1032 markings/sec, 455 secs
lola: 577574 markings, 953577 edges, 1091 markings/sec, 460 secs
lola: 584384 markings, 966243 edges, 1362 markings/sec, 465 secs
lola: 589810 markings, 976260 edges, 1085 markings/sec, 470 secs
lola: 595964 markings, 989522 edges, 1231 markings/sec, 475 secs
lola: 603318 markings, 1003120 edges, 1471 markings/sec, 480 secs
lola: 609414 markings, 1015905 edges, 1219 markings/sec, 485 secs
lola: 615875 markings, 1025455 edges, 1292 markings/sec, 490 secs
lola: 623005 markings, 1037710 edges, 1426 markings/sec, 495 secs
lola: 630730 markings, 1049043 edges, 1545 markings/sec, 500 secs
lola: 636978 markings, 1058337 edges, 1250 markings/sec, 505 secs
lola: 643356 markings, 1069696 edges, 1276 markings/sec, 510 secs
lola: 651145 markings, 1081229 edges, 1558 markings/sec, 515 secs
lola: 657951 markings, 1092132 edges, 1361 markings/sec, 520 secs
lola: 663622 markings, 1100655 edges, 1134 markings/sec, 525 secs
lola: 669816 markings, 1110349 edges, 1239 markings/sec, 530 secs
lola: 675099 markings, 1118479 edges, 1057 markings/sec, 535 secs
lola: 682225 markings, 1129280 edges, 1425 markings/sec, 540 secs
lola: 687680 markings, 1137743 edges, 1091 markings/sec, 545 secs
lola: 693435 markings, 1146840 edges, 1151 markings/sec, 550 secs
lola: 699598 markings, 1156595 edges, 1233 markings/sec, 555 secs
lola: 704923 markings, 1165787 edges, 1065 markings/sec, 560 secs
lola: 711089 markings, 1176280 edges, 1233 markings/sec, 565 secs
lola: 715767 markings, 1184525 edges, 936 markings/sec, 570 secs
lola: 720976 markings, 1195621 edges, 1042 markings/sec, 575 secs
lola: 727635 markings, 1208355 edges, 1332 markings/sec, 580 secs
lola: 732905 markings, 1217776 edges, 1054 markings/sec, 585 secs
lola: 738053 markings, 1228943 edges, 1030 markings/sec, 590 secs
lola: 745900 markings, 1243574 edges, 1569 markings/sec, 595 secs
lola: 751562 markings, 1255289 edges, 1132 markings/sec, 600 secs
lola: 758759 markings, 1266663 edges, 1439 markings/sec, 605 secs
lola: 765805 markings, 1277735 edges, 1409 markings/sec, 610 secs
lola: 774783 markings, 1292421 edges, 1796 markings/sec, 615 secs
lola: 782826 markings, 1304077 edges, 1609 markings/sec, 620 secs
lola: 790610 markings, 1316310 edges, 1557 markings/sec, 625 secs
lola: 800855 markings, 1332899 edges, 2049 markings/sec, 630 secs
lola: 810033 markings, 1347195 edges, 1836 markings/sec, 635 secs
lola: 817367 markings, 1358619 edges, 1467 markings/sec, 640 secs
lola: 822490 markings, 1367175 edges, 1025 markings/sec, 645 secs
lola: 828333 markings, 1378286 edges, 1169 markings/sec, 650 secs
lola: 834419 markings, 1387964 edges, 1217 markings/sec, 655 secs
lola: 839357 markings, 1396303 edges, 988 markings/sec, 660 secs
lola: 845449 markings, 1407431 edges, 1218 markings/sec, 665 secs
lola: 851870 markings, 1417945 edges, 1284 markings/sec, 670 secs
lola: 857675 markings, 1428188 edges, 1161 markings/sec, 675 secs
lola: 863543 markings, 1437929 edges, 1174 markings/sec, 680 secs
lola: 870012 markings, 1448342 edges, 1294 markings/sec, 685 secs
lola: 875603 markings, 1458302 edges, 1118 markings/sec, 690 secs
lola: 882018 markings, 1469319 edges, 1283 markings/sec, 695 secs
lola: 887139 markings, 1480000 edges, 1024 markings/sec, 700 secs
lola: 893899 markings, 1494347 edges, 1352 markings/sec, 705 secs
lola: 899403 markings, 1506080 edges, 1101 markings/sec, 710 secs
lola: 906724 markings, 1520636 edges, 1464 markings/sec, 715 secs
lola: 913034 markings, 1533171 edges, 1262 markings/sec, 720 secs
lola: 920003 markings, 1545224 edges, 1394 markings/sec, 725 secs
lola: 927628 markings, 1556757 edges, 1525 markings/sec, 730 secs
lola: 935039 markings, 1569478 edges, 1482 markings/sec, 735 secs
lola: 943345 markings, 1582832 edges, 1661 markings/sec, 740 secs
lola: 949415 markings, 1592824 edges, 1214 markings/sec, 745 secs
lola: 955243 markings, 1602134 edges, 1166 markings/sec, 750 secs
lola: 961855 markings, 1612566 edges, 1322 markings/sec, 755 secs
lola: 967633 markings, 1622974 edges, 1156 markings/sec, 760 secs
lola: 973624 markings, 1633201 edges, 1198 markings/sec, 765 secs
lola: 979412 markings, 1645991 edges, 1158 markings/sec, 770 secs
lola: 985691 markings, 1658059 edges, 1256 markings/sec, 775 secs
lola: 992360 markings, 1672451 edges, 1334 markings/sec, 780 secs
lola: 998761 markings, 1685463 edges, 1280 markings/sec, 785 secs
lola: 1006656 markings, 1698355 edges, 1579 markings/sec, 790 secs
lola: 1016231 markings, 1714093 edges, 1915 markings/sec, 795 secs
lola: 1024393 markings, 1727176 edges, 1632 markings/sec, 800 secs
lola: 1034901 markings, 1743909 edges, 2102 markings/sec, 805 secs
lola: 1043125 markings, 1757248 edges, 1645 markings/sec, 810 secs
lola: 1048525 markings, 1767520 edges, 1080 markings/sec, 815 secs
lola: 1054889 markings, 1778401 edges, 1273 markings/sec, 820 secs
lola: 1060563 markings, 1789384 edges, 1135 markings/sec, 825 secs
lola: 1067486 markings, 1800837 edges, 1385 markings/sec, 830 secs
lola: 1073571 markings, 1812103 edges, 1217 markings/sec, 835 secs
lola: 1079877 markings, 1822992 edges, 1261 markings/sec, 840 secs
lola: 1085895 markings, 1836958 edges, 1204 markings/sec, 845 secs
lola: 1092354 markings, 1851427 edges, 1292 markings/sec, 850 secs
lola: 1098881 markings, 1864979 edges, 1305 markings/sec, 855 secs
lola: 1106469 markings, 1878179 edges, 1518 markings/sec, 860 secs
lola: 1114823 markings, 1892454 edges, 1671 markings/sec, 865 secs
lola: 1121470 markings, 1904189 edges, 1329 markings/sec, 870 secs
lola: 1127815 markings, 1914985 edges, 1269 markings/sec, 875 secs
lola: 1133815 markings, 1928440 edges, 1200 markings/sec, 880 secs
lola: 1140191 markings, 1942745 edges, 1275 markings/sec, 885 secs
lola: 1147097 markings, 1956842 edges, 1381 markings/sec, 890 secs
lola: 1156311 markings, 1972432 edges, 1843 markings/sec, 895 secs
lola: 1166135 markings, 1988936 edges, 1965 markings/sec, 900 secs
lola: 1174018 markings, 2002162 edges, 1577 markings/sec, 905 secs
lola: 1180273 markings, 2014146 edges, 1251 markings/sec, 910 secs
lola: 1187072 markings, 2026955 edges, 1360 markings/sec, 915 secs
lola: 1193244 markings, 2040987 edges, 1234 markings/sec, 920 secs
lola: 1199819 markings, 2057633 edges, 1315 markings/sec, 925 secs
lola: 1208326 markings, 2073477 edges, 1701 markings/sec, 930 secs
lola: 1214969 markings, 2089318 edges, 1329 markings/sec, 935 secs
lola: 1222382 markings, 2106310 edges, 1483 markings/sec, 940 secs
lola: 1232697 markings, 2124549 edges, 2063 markings/sec, 945 secs
lola: 1239713 markings, 2139338 edges, 1403 markings/sec, 950 secs
lola: 1245802 markings, 2150634 edges, 1218 markings/sec, 955 secs
lola: 1251028 markings, 2160370 edges, 1045 markings/sec, 960 secs
lola: 1255940 markings, 2171450 edges, 982 markings/sec, 965 secs
lola: 1262053 markings, 2184259 edges, 1223 markings/sec, 970 secs
lola: 1268133 markings, 2195012 edges, 1216 markings/sec, 975 secs
lola: 1273596 markings, 2204545 edges, 1093 markings/sec, 980 secs
lola: 1278572 markings, 2214951 edges, 995 markings/sec, 985 secs
lola: 1285340 markings, 2228160 edges, 1354 markings/sec, 990 secs
lola: 1292271 markings, 2240838 edges, 1386 markings/sec, 995 secs
lola: 1297697 markings, 2252549 edges, 1085 markings/sec, 1000 secs
lola: 1302988 markings, 2262963 edges, 1058 markings/sec, 1005 secs
lola: 1308258 markings, 2275214 edges, 1054 markings/sec, 1010 secs
lola: 1314599 markings, 2287494 edges, 1268 markings/sec, 1015 secs
lola: 1319955 markings, 2297067 edges, 1071 markings/sec, 1020 secs
lola: 1325250 markings, 2309035 edges, 1059 markings/sec, 1025 secs
lola: 1332741 markings, 2322414 edges, 1498 markings/sec, 1030 secs
lola: 1338208 markings, 2334363 edges, 1093 markings/sec, 1035 secs
lola: 1343278 markings, 2345709 edges, 1014 markings/sec, 1040 secs
lola: 1349496 markings, 2358532 edges, 1244 markings/sec, 1045 secs
lola: 1354813 markings, 2370007 edges, 1063 markings/sec, 1050 secs
lola: 1361744 markings, 2383433 edges, 1386 markings/sec, 1055 secs
lola: 1367275 markings, 2395812 edges, 1106 markings/sec, 1060 secs
lola: 1373172 markings, 2409096 edges, 1179 markings/sec, 1065 secs
lola: 1379601 markings, 2422883 edges, 1286 markings/sec, 1070 secs
lola: 1385326 markings, 2436998 edges, 1145 markings/sec, 1075 secs
lola: 1391603 markings, 2451742 edges, 1255 markings/sec, 1080 secs
lola: 1396588 markings, 2464584 edges, 997 markings/sec, 1085 secs
lola: 1401488 markings, 2477741 edges, 980 markings/sec, 1090 secs
lola: 1406747 markings, 2492911 edges, 1052 markings/sec, 1095 secs
lola: 1412503 markings, 2511725 edges, 1151 markings/sec, 1100 secs
lola: 1418996 markings, 2527525 edges, 1299 markings/sec, 1105 secs
lola: local time limit reached - aborting
lola: Child process aborted or communication problem between parent and child process
lola: subprocess 15 will run for 1115 seconds at most (--localtimelimit=-1)
lola: ========================================
lola: ...considering subproblem: A (F (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7... (shortened)
lola: ========================================
lola: SUBTASK
lola: checking LTL
lola: transforming LTL-Formula into a Büchi-Automaton
lola: processed formula: A (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 + P-sendAnnPs__broadcasting_7_4 + P-sendAnnPs__broadcasting_7_3 + P-sendAnnPs__broadcasting_7_2 + P-sendAnnPs__broadcasting_7_1 + P-sendAnnPs__broadcasting_6_8 + P-sendAnnPs__broadcasting_6_7 + P-sendAnnPs__broadcasting_6_6 + P-sendAnnPs__broadcasting_6_5 + P-sendAnnPs__broadcasting_6_4 + P-sendAnnPs__broadcasting_6_3 + P-sendAnnPs__broadcasting_6_2 + P-sendAnnPs__broadcasting_6_1 + P-sendAnnPs__broadcasting_5_8 + P-sendAnnPs__broadcasting_5_7 + P-sendAnnPs__broadcasting_5_6 + P-sendAnnPs__broadcasting_5_5 + P-sendAnnPs__broadcasting_5_4 + P-sendAnnPs__broadcasting_5_3 + P-sendAnnPs__broadcasting_5_2 + P-sendAnnPs__broadcasting_5_1 + P-sendAnnPs__broadcasting_4_8 + P-sendAnnPs__broadcasting_4_7 + P-sendAnnPs__broadcasting_4_6 + P-sendAnnPs__broadcasting_4_5 + P-sendAnnPs__broadcasting_4_4 + P-sendAnnPs__broadcasting_4_3 + P-sendAnnPs__broadcasting_4_2 + P-sendAnnPs__broadcasting_4_1 + P-sendAnnPs__broadcasting_3_8 + P-sendAnnPs__broadcasting_3_7 + P-sendAnnPs__broadcasting_3_6 + P-sendAnnPs__broadcasting_3_5 + P-sendAnnPs__broadcasting_3_4 + P-sendAnnPs__broadcasting_3_3 + P-sendAnnPs__broadcasting_3_2 + P-sendAnnPs__broadcasting_3_1 + P-sendAnnPs__broadcasting_2_8 + P-sendAnnPs__broadcasting_2_7 + P-sendAnnPs__broadcasting_2_6 + P-sendAnnPs__broadcasting_2_5 + P-sendAnnPs__broadcasting_2_4 + P-sendAnnPs__broadcasting_2_3 + P-sendAnnPs__broadcasting_2_2 + P-sendAnnPs__broadcasting_2_1 + P-sendAnnPs__broadcasting_1_8 + P-sendAnnPs__broadcasting_1_7 + P-sendAnnPs__broadcasting_1_6 + P-sendAnnPs__broadcasting_1_5 + P-sendAnnPs__broadcasting_1_4 + P-sendAnnPs__broadcasting_1_3 + P-sendAnnPs__broadcasting_1_2 + P-sendAnnPs__broadcasting_1_1 + P-sendAnnPs__broadcasting_0_8 + P-sendAnnPs__broadcasting_0_7 + P-sendAnnPs__broadcasting_0_6 + P-sendAnnPs__broadcasting_0_5 + P-sendAnnPs__broadcasting_0_4 + P-sendAnnPs__broadcasting_0_3 + P-sendAnnPs__broadcasting_0_2 + P-sendAnnPs__broadcasting_0_1)))))
lola: processed formula: A (F (G (X ((3 <= P-sendAnnPs__broadcasting_8_8 + P-sendAnnPs__broadcasting_8_7 + P-sendAnnPs__broadcasting_8_6 + P-sendAnnPs__broadcasting_8_5 + P-sendAnnPs__broadcasting_8_4 + P-sendAnnPs__broadcasting_8_3 + P-sendAnnPs__broadcasting_8_2 + P-sendAnnPs__broadcasting_8_1 + P-sendAnnPs__broadcasting_7_8 + P-sendAnnPs__broadcasting_7_7 + P-sendAnnPs__broadcasting_7_6 + P-sendAnnPs__broadcasting_7_5 ... (shortened)
lola: processed formula length: 2324
lola: 1 rewrites
lola: formula mentions 0 of 10062 places; total mentions: 0
lola: closed formula file NeoElection-COL-8-LTLCardinality.task
lola: the resulting Büchi automaton has 2 states
lola: STORE
lola: using a bit-perfect encoder (--encoder=bit)
lola: using 288 bytes per marking, with 7 unused bits
lola: using a prefix tree store (--store=prefix)
lola: Formula contains X operator; stubborn sets not applicable
lola: SEARCH
lola: RUNNING
lola: SUBRESULT
lola: result: no
lola: produced by: LTL model checker
lola: The net does not satisfy the given formula (language of the product automaton is nonempty).
lola: RESULT
lola:
SUMMARY: yes yes yes yes yes yes unknown no unknown yes no unknown yes no unknown no
lola: ========================================
FORMULA NeoElection-COL-8-LTLCardinality-0 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-1 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-2 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-3 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-4 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-5 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-6 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-7 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-8 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-9 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-10 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-11 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-12 TRUE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-13 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-14 CANNOT_COMPUTE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
FORMULA NeoElection-COL-8-LTLCardinality-15 FALSE TECHNIQUES COLLATERAL_PROCESSING EXPLICIT STATE_COMPRESSION STUBBORN_SETS TOPOLOGICAL USE_NUPN
----- Kill lola and sara stdout -----
----- Finished stdout -----
BK_STOP 1494645273170
--------------------
content from stderr:
----- Start make prepare stderr -----
----- Start make result stderr -----
----- Start make result stderr -----
----- Kill lola and sara stderr -----
----- Finished stderr -----
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-8"
export BK_EXAMINATION="LTLCardinality"
export BK_TOOL="lola"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-8.tgz
mv NeoElection-PT-8 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool lola"
echo " Input is NeoElection-PT-8, examination is LTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 4"
echo " Run identifier is r038-blw7-149440484800293"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "LTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "LTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "LTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property LTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "LTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;