fond
Model Checking Contest @ Petri Nets 2017
7th edition, Zaragoza, Spain, June 27, 2017
Execution of r031-blw7-149440474000268
Last Updated
June 27, 2017

About the Execution of MARCIE for NeoElection-PT-2

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
2209.210 2658.00 2010.00 19.80 FFTFFFTTTFTFTTFT normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
......
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is NeoElection-PT-2, examination is ReachabilityCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r031-blw7-149440474000268
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-0
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-1
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-10
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-11
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-12
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-13
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-14
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-15
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-2
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-3
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-4
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-5
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-6
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-7
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-8
FORMULA_NAME NeoElection-COL-2-ReachabilityCardinality-9

=== Now, execution of the tool begins

BK_START 1494459605471

timeout --kill-after=10s --signal=SIGINT 1m for testing only

Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=ReachabilityCardinality.xml --memory=6

parse successfull
net created successfully

Net: NeoElection_PT_2
(NrP: 438 NrTr: 357 NrArc: 1998)

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.004sec

net check time: 0m 0.000sec

init dd package: 0m 1.130sec


RS generation: 0m 0.013sec


-> reachability set: #nodes 219 (2.2e+02) #states 241



starting MCC model checker
--------------------------

checking: EF [1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]
normalized: E [true U 1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0)]

abstracting: (1<=sum(P_poll__pollEnd_2, P_poll__pollEnd_1, P_poll__pollEnd_0))
states: 116
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-9 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.033sec

checking: AG [3<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]
normalized: ~ [E [true U ~ [3<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)]]]

abstracting: (3<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0))
states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.025sec

checking: AG [sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]
normalized: ~ [E [true U ~ [sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)]]]

abstracting: (sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0))
states: 241
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-7 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.015sec

checking: EF [sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]
normalized: E [true U sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]

abstracting: (sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-0 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.016sec

checking: EF [[[[sum(P_dead_2, P_dead_1, P_dead_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0) & 2<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)] & 1<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)] & 3<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG)]]
normalized: E [true U [3<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG) & [1<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) & [sum(P_dead_2, P_dead_1, P_dead_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0) & 2<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]]

abstracting: (2<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0))
states: 0
abstracting: (sum(P_dead_2, P_dead_1, P_dead_0)<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 241
abstracting: (1<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0))
states: 129
abstracting: (3<=sum(P_stage_2_SEC, P_stage_2_PRIM, P_stage_2_NEG, P_stage_1_SEC, P_stage_1_PRIM, P_stage_1_NEG, P_stage_0_SEC, P_stage_0_PRIM, P_stage_0_NEG))
states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.065sec

checking: EF [~ [[[1<=sum(P_polling_2, P_polling_1, P_polling_0) & 3<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)] & ~ [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)]]]]
normalized: E [true U ~ [[~ [sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_crashed_2, P_crashed_1, P_crashed_0)] & [1<=sum(P_polling_2, P_polling_1, P_polling_0) & 3<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)]]]]

abstracting: (3<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
abstracting: (1<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 129
abstracting: (sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 0
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.056sec

checking: EF [[~ [[2<=sum(P_crashed_2, P_crashed_1, P_crashed_0) | 2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]] & ~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]
normalized: E [true U [~ [[2<=sum(P_crashed_2, P_crashed_1, P_crashed_0) | 2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]] & ~ [sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]

abstracting: (sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0))
states: 241
abstracting: (2<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0))
states: 241
abstracting: (2<=sum(P_crashed_2, P_crashed_1, P_crashed_0))
states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.056sec

checking: AG [~ [[[sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | 2<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & ~ [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]]
normalized: ~ [E [true U [[sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) | 2<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)] & ~ [sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]]

abstracting: (sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0))
states: 241
abstracting: (2<=sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0))
states: 0
abstracting: (sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1))
states: 4
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.052sec

checking: EF [sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]
normalized: E [true U sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]

abstracting: (sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 112
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-14 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.041sec

checking: AG [~ [~ [[2<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]]]]
normalized: ~ [E [true U ~ [[2<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]]]]

abstracting: (sum(P_crashed_2, P_crashed_1, P_crashed_0)<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0))
states: 241
abstracting: (2<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0))
states: 25
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.084sec

checking: EF [~ [[[sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_dead_2, P_dead_1, P_dead_0)] | 1<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]
normalized: E [true U ~ [[[sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0) | sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_dead_2, P_dead_1, P_dead_0)] | 1<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0)]]]

abstracting: (1<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0))
states: 0
abstracting: (sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0)<=sum(P_dead_2, P_dead_1, P_dead_0))
states: 241
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_poll__handlingMessage_2, P_poll__handlingMessage_1, P_poll__handlingMessage_0))
states: 241
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.054sec

checking: AG [~ [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]]
normalized: ~ [E [true U sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)]]

abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0))
states: 241
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.036sec

checking: EF [~ [[~ [3<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & [2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) | sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]]
normalized: E [true U ~ [[[2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0) | sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)] & ~ [3<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]]

abstracting: (3<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
abstracting: (sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0))
states: 0
abstracting: (2<=sum(P_electedPrimary_2, P_electedPrimary_1, P_electedPrimary_0))
states: 0
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.070sec

checking: EF [[~ [[1<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) | 3<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]] & [~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)] & [3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE) & 1<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]]
normalized: E [true U [~ [[1<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0) | 3<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]] & [[3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE) & 1<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)] & ~ [sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0)]]]]

abstracting: (sum(P_sendAnnPs__broadcasting_2_2, P_sendAnnPs__broadcasting_2_1, P_sendAnnPs__broadcasting_1_2, P_sendAnnPs__broadcasting_1_1, P_sendAnnPs__broadcasting_0_2, P_sendAnnPs__broadcasting_0_1)<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0))
states: 241
abstracting: (1<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 0
abstracting: (3<=sum(P_negotiation_2_2_DONE, P_negotiation_2_2_CO, P_negotiation_2_2_NONE, P_negotiation_2_1_DONE, P_negotiation_2_1_CO, P_negotiation_2_1_NONE, P_negotiation_2_0_DONE, P_negotiation_2_0_CO, P_negotiation_2_0_NONE, P_negotiation_1_2_DONE, P_negotiation_1_2_CO, P_negotiation_1_2_NONE, P_negotiation_1_1_DONE, P_negotiation_1_1_CO, P_negotiation_1_1_NONE, P_negotiation_1_0_DONE, P_negotiation_1_0_CO, P_negotiation_1_0_NONE, P_negotiation_0_2_DONE, P_negotiation_0_2_CO, P_negotiation_0_2_NONE, P_negotiation_0_1_DONE, P_negotiation_0_1_CO, P_negotiation_0_1_NONE, P_negotiation_0_0_DONE, P_negotiation_0_0_CO, P_negotiation_0_0_NONE))
states: 241
abstracting: (3<=sum(P_masterList_2_2_2, P_masterList_2_2_1, P_masterList_2_2_0, P_masterList_2_1_2, P_masterList_2_1_1, P_masterList_2_1_0, P_masterList_1_2_2, P_masterList_1_2_1, P_masterList_1_2_0, P_masterList_1_1_2, P_masterList_1_1_1, P_masterList_1_1_0, P_masterList_0_2_2, P_masterList_0_2_1, P_masterList_0_2_0, P_masterList_0_1_2, P_masterList_0_1_1, P_masterList_0_1_0))
states: 0
abstracting: (1<=sum(P_electedSecondary_2, P_electedSecondary_1, P_electedSecondary_0))
states: 0
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-8 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.080sec

checking: AG [sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]
normalized: ~ [E [true U ~ [sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)]]]

abstracting: (sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)<=sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0))
states: 13
-> the formula is FALSE

FORMULA NeoElection-COL-2-ReachabilityCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.085sec

checking: EF [[~ [~ [2<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0)]] & [[sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0) | sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_polling_2, P_polling_1, P_polling_0)] & sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1)]]]
normalized: E [true U [2<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0) & [sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1) & [sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0) | sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_polling_2, P_polling_1, P_polling_0)]]]]

abstracting: (sum(P_poll__waitingMessage_2, P_poll__waitingMessage_1, P_poll__waitingMessage_0)<=sum(P_polling_2, P_polling_1, P_polling_0))
states: 241
abstracting: (sum(P_poll__networl_2_2_RP_2, P_poll__networl_2_2_RP_1, P_poll__networl_2_2_RP_0, P_poll__networl_2_2_AnnP_2, P_poll__networl_2_2_AnnP_1, P_poll__networl_2_2_AnnP_0, P_poll__networl_2_2_AI_2, P_poll__networl_2_2_AI_1, P_poll__networl_2_2_AI_0, P_poll__networl_2_2_RI_2, P_poll__networl_2_2_RI_1, P_poll__networl_2_2_RI_0, P_poll__networl_2_2_AnsP_2, P_poll__networl_2_2_AnsP_1, P_poll__networl_2_2_AnsP_0, P_poll__networl_2_2_AskP_2, P_poll__networl_2_2_AskP_1, P_poll__networl_2_2_AskP_0, P_poll__networl_2_1_RP_2, P_poll__networl_2_1_RP_1, P_poll__networl_2_1_RP_0, P_poll__networl_2_1_AnnP_2, P_poll__networl_2_1_AnnP_1, P_poll__networl_2_1_AnnP_0, P_poll__networl_2_1_AI_2, P_poll__networl_2_1_AI_1, P_poll__networl_2_1_AI_0, P_poll__networl_2_1_RI_2, P_poll__networl_2_1_RI_1, P_poll__networl_2_1_RI_0, P_poll__networl_2_1_AnsP_2, P_poll__networl_2_1_AnsP_1, P_poll__networl_2_1_AnsP_0, P_poll__networl_2_1_AskP_2, P_poll__networl_2_1_AskP_1, P_poll__networl_2_1_AskP_0, P_poll__networl_2_0_RP_2, P_poll__networl_2_0_RP_1, P_poll__networl_2_0_RP_0, P_poll__networl_2_0_AnnP_2, P_poll__networl_2_0_AnnP_1, P_poll__networl_2_0_AnnP_0, P_poll__networl_2_0_AI_2, P_poll__networl_2_0_AI_1, P_poll__networl_2_0_AI_0, P_poll__networl_2_0_RI_2, P_poll__networl_2_0_RI_1, P_poll__networl_2_0_RI_0, P_poll__networl_2_0_AnsP_2, P_poll__networl_2_0_AnsP_1, P_poll__networl_2_0_AnsP_0, P_poll__networl_2_0_AskP_2, P_poll__networl_2_0_AskP_1, P_poll__networl_2_0_AskP_0, P_poll__networl_1_2_RP_2, P_poll__networl_1_2_RP_1, P_poll__networl_1_2_RP_0, P_poll__networl_1_2_AnnP_2, P_poll__networl_1_2_AnnP_1, P_poll__networl_1_2_AnnP_0, P_poll__networl_1_2_AI_2, P_poll__networl_1_2_AI_1, P_poll__networl_1_2_AI_0, P_poll__networl_1_2_RI_2, P_poll__networl_1_2_RI_1, P_poll__networl_1_2_RI_0, P_poll__networl_1_2_AnsP_2, P_poll__networl_1_2_AnsP_1, P_poll__networl_1_2_AnsP_0, P_poll__networl_1_2_AskP_2, P_poll__networl_1_2_AskP_1, P_poll__networl_1_2_AskP_0, P_poll__networl_1_1_RP_2, P_poll__networl_1_1_RP_1, P_poll__networl_1_1_RP_0, P_poll__networl_1_1_AnnP_2, P_poll__networl_1_1_AnnP_1, P_poll__networl_1_1_AnnP_0, P_poll__networl_1_1_AI_2, P_poll__networl_1_1_AI_1, P_poll__networl_1_1_AI_0, P_poll__networl_1_1_RI_2, P_poll__networl_1_1_RI_1, P_poll__networl_1_1_RI_0, P_poll__networl_1_1_AnsP_2, P_poll__networl_1_1_AnsP_1, P_poll__networl_1_1_AnsP_0, P_poll__networl_1_1_AskP_2, P_poll__networl_1_1_AskP_1, P_poll__networl_1_1_AskP_0, P_poll__networl_1_0_RP_2, P_poll__networl_1_0_RP_1, P_poll__networl_1_0_RP_0, P_poll__networl_1_0_AnnP_2, P_poll__networl_1_0_AnnP_1, P_poll__networl_1_0_AnnP_0, P_poll__networl_1_0_AI_2, P_poll__networl_1_0_AI_1, P_poll__networl_1_0_AI_0, P_poll__networl_1_0_RI_2, P_poll__networl_1_0_RI_1, P_poll__networl_1_0_RI_0, P_poll__networl_1_0_AnsP_2, P_poll__networl_1_0_AnsP_1, P_poll__networl_1_0_AnsP_0, P_poll__networl_1_0_AskP_2, P_poll__networl_1_0_AskP_1, P_poll__networl_1_0_AskP_0, P_poll__networl_0_2_RP_2, P_poll__networl_0_2_RP_1, P_poll__networl_0_2_RP_0, P_poll__networl_0_2_AnnP_2, P_poll__networl_0_2_AnnP_1, P_poll__networl_0_2_AnnP_0, P_poll__networl_0_2_AI_2, P_poll__networl_0_2_AI_1, P_poll__networl_0_2_AI_0, P_poll__networl_0_2_RI_2, P_poll__networl_0_2_RI_1, P_poll__networl_0_2_RI_0, P_poll__networl_0_2_AnsP_2, P_poll__networl_0_2_AnsP_1, P_poll__networl_0_2_AnsP_0, P_poll__networl_0_2_AskP_2, P_poll__networl_0_2_AskP_1, P_poll__networl_0_2_AskP_0, P_poll__networl_0_1_RP_2, P_poll__networl_0_1_RP_1, P_poll__networl_0_1_RP_0, P_poll__networl_0_1_AnnP_2, P_poll__networl_0_1_AnnP_1, P_poll__networl_0_1_AnnP_0, P_poll__networl_0_1_AI_2, P_poll__networl_0_1_AI_1, P_poll__networl_0_1_AI_0, P_poll__networl_0_1_RI_2, P_poll__networl_0_1_RI_1, P_poll__networl_0_1_RI_0, P_poll__networl_0_1_AnsP_2, P_poll__networl_0_1_AnsP_1, P_poll__networl_0_1_AnsP_0, P_poll__networl_0_1_AskP_2, P_poll__networl_0_1_AskP_1, P_poll__networl_0_1_AskP_0, P_poll__networl_0_0_RP_2, P_poll__networl_0_0_RP_1, P_poll__networl_0_0_RP_0, P_poll__networl_0_0_AnnP_2, P_poll__networl_0_0_AnnP_1, P_poll__networl_0_0_AnnP_0, P_poll__networl_0_0_AI_2, P_poll__networl_0_0_AI_1, P_poll__networl_0_0_AI_0, P_poll__networl_0_0_RI_2, P_poll__networl_0_0_RI_1, P_poll__networl_0_0_RI_0, P_poll__networl_0_0_AnsP_2, P_poll__networl_0_0_AnsP_1, P_poll__networl_0_0_AnsP_0, P_poll__networl_0_0_AskP_2, P_poll__networl_0_0_AskP_1, P_poll__networl_0_0_AskP_0)<=sum(P_electionFailed_2, P_electionFailed_1, P_electionFailed_0))
states: 241
abstracting: (sum(P_masterState_2_T_2, P_masterState_2_T_1, P_masterState_2_T_0, P_masterState_2_F_2, P_masterState_2_F_1, P_masterState_2_F_0, P_masterState_1_T_2, P_masterState_1_T_1, P_masterState_1_T_0, P_masterState_1_F_2, P_masterState_1_F_1, P_masterState_1_F_0, P_masterState_0_T_2, P_masterState_0_T_1, P_masterState_0_T_0, P_masterState_0_F_2, P_masterState_0_F_1, P_masterState_0_F_0)<=sum(P_startNeg__broadcasting_2_2, P_startNeg__broadcasting_2_1, P_startNeg__broadcasting_1_2, P_startNeg__broadcasting_1_1, P_startNeg__broadcasting_0_2, P_startNeg__broadcasting_0_1))
states: 4
abstracting: (2<=sum(P_network_2_2_RP_2, P_network_2_2_RP_1, P_network_2_2_RP_0, P_network_2_2_AnnP_2, P_network_2_2_AnnP_1, P_network_2_2_AnnP_0, P_network_2_2_AI_2, P_network_2_2_AI_1, P_network_2_2_AI_0, P_network_2_2_RI_2, P_network_2_2_RI_1, P_network_2_2_RI_0, P_network_2_2_AnsP_2, P_network_2_2_AnsP_1, P_network_2_2_AnsP_0, P_network_2_2_AskP_2, P_network_2_2_AskP_1, P_network_2_2_AskP_0, P_network_2_1_RP_2, P_network_2_1_RP_1, P_network_2_1_RP_0, P_network_2_1_AnnP_2, P_network_2_1_AnnP_1, P_network_2_1_AnnP_0, P_network_2_1_AI_2, P_network_2_1_AI_1, P_network_2_1_AI_0, P_network_2_1_RI_2, P_network_2_1_RI_1, P_network_2_1_RI_0, P_network_2_1_AnsP_2, P_network_2_1_AnsP_1, P_network_2_1_AnsP_0, P_network_2_1_AskP_2, P_network_2_1_AskP_1, P_network_2_1_AskP_0, P_network_2_0_RP_2, P_network_2_0_RP_1, P_network_2_0_RP_0, P_network_2_0_AnnP_2, P_network_2_0_AnnP_1, P_network_2_0_AnnP_0, P_network_2_0_AI_2, P_network_2_0_AI_1, P_network_2_0_AI_0, P_network_2_0_RI_2, P_network_2_0_RI_1, P_network_2_0_RI_0, P_network_2_0_AnsP_2, P_network_2_0_AnsP_1, P_network_2_0_AnsP_0, P_network_2_0_AskP_2, P_network_2_0_AskP_1, P_network_2_0_AskP_0, P_network_1_2_RP_2, P_network_1_2_RP_1, P_network_1_2_RP_0, P_network_1_2_AnnP_2, P_network_1_2_AnnP_1, P_network_1_2_AnnP_0, P_network_1_2_AI_2, P_network_1_2_AI_1, P_network_1_2_AI_0, P_network_1_2_RI_2, P_network_1_2_RI_1, P_network_1_2_RI_0, P_network_1_2_AnsP_2, P_network_1_2_AnsP_1, P_network_1_2_AnsP_0, P_network_1_2_AskP_2, P_network_1_2_AskP_1, P_network_1_2_AskP_0, P_network_1_1_RP_2, P_network_1_1_RP_1, P_network_1_1_RP_0, P_network_1_1_AnnP_2, P_network_1_1_AnnP_1, P_network_1_1_AnnP_0, P_network_1_1_AI_2, P_network_1_1_AI_1, P_network_1_1_AI_0, P_network_1_1_RI_2, P_network_1_1_RI_1, P_network_1_1_RI_0, P_network_1_1_AnsP_2, P_network_1_1_AnsP_1, P_network_1_1_AnsP_0, P_network_1_1_AskP_2, P_network_1_1_AskP_1, P_network_1_1_AskP_0, P_network_1_0_RP_2, P_network_1_0_RP_1, P_network_1_0_RP_0, P_network_1_0_AnnP_2, P_network_1_0_AnnP_1, P_network_1_0_AnnP_0, P_network_1_0_AI_2, P_network_1_0_AI_1, P_network_1_0_AI_0, P_network_1_0_RI_2, P_network_1_0_RI_1, P_network_1_0_RI_0, P_network_1_0_AnsP_2, P_network_1_0_AnsP_1, P_network_1_0_AnsP_0, P_network_1_0_AskP_2, P_network_1_0_AskP_1, P_network_1_0_AskP_0, P_network_0_2_RP_2, P_network_0_2_RP_1, P_network_0_2_RP_0, P_network_0_2_AnnP_2, P_network_0_2_AnnP_1, P_network_0_2_AnnP_0, P_network_0_2_AI_2, P_network_0_2_AI_1, P_network_0_2_AI_0, P_network_0_2_RI_2, P_network_0_2_RI_1, P_network_0_2_RI_0, P_network_0_2_AnsP_2, P_network_0_2_AnsP_1, P_network_0_2_AnsP_0, P_network_0_2_AskP_2, P_network_0_2_AskP_1, P_network_0_2_AskP_0, P_network_0_1_RP_2, P_network_0_1_RP_1, P_network_0_1_RP_0, P_network_0_1_AnnP_2, P_network_0_1_AnnP_1, P_network_0_1_AnnP_0, P_network_0_1_AI_2, P_network_0_1_AI_1, P_network_0_1_AI_0, P_network_0_1_RI_2, P_network_0_1_RI_1, P_network_0_1_RI_0, P_network_0_1_AnsP_2, P_network_0_1_AnsP_1, P_network_0_1_AnsP_0, P_network_0_1_AskP_2, P_network_0_1_AskP_1, P_network_0_1_AskP_0, P_network_0_0_RP_2, P_network_0_0_RP_1, P_network_0_0_RP_0, P_network_0_0_AnnP_2, P_network_0_0_AnnP_1, P_network_0_0_AnnP_0, P_network_0_0_AI_2, P_network_0_0_AI_1, P_network_0_0_AI_0, P_network_0_0_RI_2, P_network_0_0_RI_1, P_network_0_0_RI_0, P_network_0_0_AnsP_2, P_network_0_0_AnsP_1, P_network_0_0_AnsP_0, P_network_0_0_AskP_2, P_network_0_0_AskP_1, P_network_0_0_AskP_0))
states: 144
-> the formula is TRUE

FORMULA NeoElection-COL-2-ReachabilityCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.100sec

totally nodes used: 297935(3.0e+05)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 62331 145530 207861
used/not used/entry size/cache size: 129251 66979613 16 1024MB
basic ops cache: hits/miss/sum: 210022 286140 496162
used/not used/entry size/cache size: 720152 16057064 12 192MB
unary ops cache: hits/miss/sum: 0 66 66
used/not used/entry size/cache size: 66 8388542 8 64MB
abstract ops cache: hits/miss/sum: 0 319392 319392
used/not used/entry size/cache size: 6 8388602 12 96MB
state nr cache: hits/miss/sum: 312 543 855
used/not used/entry size/cache size: 543 2096609 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 66811439
1 296920
2 500
3 5
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0

Total processing time: 0m 2.625sec


BK_STOP 1494459608129

--------------------
content from stderr:

check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_poll__networl_1_1_AnsP_0
P_electedSecondary_0
P_crashed_1
P_crashed_2
P_poll__networl_2_2_AskP_0
P_poll__networl_2_1_RP_1
P_poll__networl_2_1_RP_2
P_poll__networl_2_1_AnsP_0
P_poll__networl_2_1_AskP_2
P_poll__networl_2_1_AnnP_2
P_poll__networl_2_1_RP_0
P_poll__networl_2_1_AnnP_0
P_poll__networl_2_1_AnnP_1
P_poll__networl_2_1_AskP_1
P_poll__networl_2_1_AI_1
P_poll__networl_2_1_AI_2
P_poll__networl_2_1_AskP_0
P_poll__networl_2_0_RP_2
P_poll__networl_2_0_RP_1
P_poll__networl_2_0_RP_0
P_poll__networl_2_1_RI_2
P_poll__networl_2_1_AI_0
P_poll__networl_2_1_RI_0
P_poll__networl_2_1_RI_1
P_poll__networl_0_0_AI_2
P_poll__networl_2_2_AskP_2
P_poll__networl_2_1_AnsP_2
P_poll__networl_2_1_AnsP_1
P_poll__networl_1_1_RI_2
P_poll__networl_2_2_AI_0
P_poll__networl_2_2_AI_1
P_poll__networl_2_0_AnnP_2
P_poll__networl_2_0_AnnP_1
P_negotiation_1_0_DONE
P_poll__networl_2_0_AnnP_0
P_poll__networl_2_0_AI_2
P_poll__networl_2_0_AI_1
P_stage_2_SEC
P_startNeg__broadcasting_0_1
P_startNeg__broadcasting_0_2
P_poll__networl_2_0_AI_0
P_poll__networl_2_0_RI_2
P_stage_1_SEC
P_stage_2_PRIM
P_poll__networl_2_0_RI_1
P_stage_0_PRIM
P_stage_0_SEC
P_stage_1_PRIM
P_poll__networl_2_0_RI_0
P_poll__networl_2_0_AnsP_2
P_sendAnnPs__broadcasting_2_2
P_stage_0_NEG
P_poll__networl_2_0_AnsP_1
P_poll__networl_2_0_AnsP_0
P_poll__networl_2_0_AskP_2
P_poll__networl_2_0_AskP_1
P_poll__networl_2_0_AskP_0
P_poll__networl_1_2_RP_2
P_sendAnnPs__broadcasting_1_2
P_sendAnnPs__broadcasting_2_1
P_poll__networl_1_2_RP_1
P_sendAnnPs__broadcasting_0_2
P_sendAnnPs__broadcasting_1_1
P_poll__networl_1_2_RP_0
P_poll__networl_1_2_AnnP_2
P_poll__networl_1_2_AnnP_1
P_poll__networl_1_2_AnnP_0
P_sendAnnPs__broadcasting_0_1
P_poll__waitingMessage_2
P_polling_0
P_poll__networl_1_2_AI_2
P_poll__pollEnd_0
P_poll__networl_1_1_RI_1
P_poll__networl_1_2_AI_1
P_network_0_2_RI_1
P_poll__networl_1_2_AI_0
P_poll__networl_1_2_RI_2
P_poll__networl_1_1_RI_0
P_poll__networl_2_2_AnsP_0
P_poll__networl_2_2_RI_2
P_poll__networl_1_2_RI_1
P_poll__networl_1_2_RI_0
P_poll__networl_1_2_AnsP_2
P_poll__networl_2_2_AnnP_2
P_poll__networl_2_2_RP_0
P_poll__networl_1_2_AnsP_1
P_poll__networl_1_2_AnsP_0
P_poll__networl_1_2_AskP_2
P_poll__networl_1_2_AskP_1
P_poll__networl_2_2_RI_1
P_poll__networl_2_2_AI_2
P_poll__networl_2_2_RI_0
P_poll__networl_1_1_AnsP_2
P_poll__networl_1_2_AskP_0
P_poll__networl_1_1_RP_2
P_poll__networl_1_1_AnsP_1
P_poll__networl_1_1_RP_1
P_poll__networl_1_1_RP_0
P_poll__networl_1_1_AnnP_2
P_poll__networl_1_1_AnnP_1
P_poll__networl_2_2_AnsP_1
P_poll__networl_2_2_AnsP_2
P_poll__networl_2_2_RP_1
P_poll__networl_2_2_RP_2
P_poll__networl_1_1_AnnP_0
P_poll__networl_1_1_AI_2
P_poll__waitingMessage_0
P_poll__waitingMessage_1
P_poll__networl_1_1_AI_1
P_poll__networl_1_1_AI_0
P_network_0_2_RI_0
P_poll__networl_2_2_AnnP_0
P_poll__networl_2_2_AnnP_1
P_poll__networl_2_2_AskP_1
P_electedPrimary_2
P_electedPrimary_1
P_electedPrimary_0
P_dead_0
P_dead_1
P_network_0_2_AnsP_2
P_dead_2
P_crashed_0
P_masterList_2_2_0
P_network_0_0_RI_2
P_network_0_2_AnsP_0
P_network_0_0_AskP_0
P_negotiation_2_2_CO
P_network_0_1_AI_2
P_negotiation_2_2_NONE
P_network_0_0_AI_2
P_masterState_0_T_2
P_negotiation_2_0_DONE
P_network_0_1_AnnP_2
P_network_0_1_AnsP_0
P_negotiation_2_0_CO
P_negotiation_2_0_NONE
P_network_0_1_AskP_2
P_masterState_1_T_1
P_negotiation_1_0_NONE
P_negotiation_0_2_DONE
P_negotiation_0_2_CO
P_negotiation_0_1_CO
P_negotiation_0_1_NONE
P_negotiation_0_0_DONE
P_negotiation_1_0_CO
P_network_0_0_AnsP_2
P_masterState_2_T_2
P_masterState_2_T_1
P_masterState_2_F_2
P_masterState_2_F_1
P_masterState_2_F_0
P_negotiation_0_0_CO
P_masterState_1_T_2
P_network_0_0_AI_1
P_negotiation_0_0_NONE
P_masterState_1_F_2
P_masterState_0_T_1
P_network_0_2_AskP_0
P_network_0_0_AnsP_1
P_network_0_1_AI_1
P_network_0_2_AskP_2
P_network_0_0_AnnP_0
P_network_0_1_RP_0
P_network_0_1_RI_0
P_network_0_1_AskP_0
P_network_0_0_RI_0
P_network_0_1_RI_2
P_network_0_0_RI_1
P_network_0_0_AI_0
P_network_0_0_RP_2
P_network_0_0_RP_0
P_network_0_2_AskP_1
P_masterState_1_F_1
P_network_0_1_AnnP_0
P_network_0_0_AskP_1
P_network_0_0_AnsP_0
P_negotiation_0_2_NONE
P_negotiation_0_1_DONE
P_network_0_1_RP_2
P_network_0_1_RP_1
P_network_0_1_AnsP_2
P_network_0_1_AI_0
P_network_0_1_AnnP_1
P_network_0_0_AnnP_1
P_network_0_1_AnsP_1
P_network_0_1_AskP_1
P_network_0_0_AskP_2
P_network_0_0_AnnP_2
P_network_0_2_AnsP_1
P_network_0_0_RP_1
P_network_0_1_RI_1
P_electedSecondary_1
P_electedSecondary_2
P_electionFailed_0
P_poll__networl_1_1_AskP_2
P_poll__networl_1_1_AskP_0
P_electionFailed_1
P_poll__networl_1_1_AskP_1
P_poll__networl_1_0_RP_2
P_poll__networl_1_0_RP_1
P_poll__networl_1_0_RP_0
P_poll__networl_1_0_AnnP_2
P_poll__networl_1_0_AnnP_1
P_network_1_1_RP_1
P_poll__networl_1_0_AnnP_0
P_masterList_0_2_0
P_masterList_2_2_2
P_poll__networl_1_0_RI_2
P_masterList_0_2_1
P_masterState_0_T_0
P_masterList_0_2_2
P_masterState_0_F_0
P_poll__networl_1_0_RI_1
P_masterList_1_1_0
P_network_0_2_AnnP_0
P_masterList_1_1_1
P_masterList_2_2_1
P_poll__networl_1_0_RI_0
P_masterState_0_F_1
P_masterList_1_2_0
P_poll__networl_1_0_AnsP_2
P_masterList_1_2_1
P_negotiation_1_1_NONE
P_masterList_1_2_2
P_negotiation_1_1_CO
P_poll__networl_1_0_AnsP_1
P_masterList_2_1_0
P_masterState_0_F_2
P_electionFailed_2
P_poll__networl_1_0_AnsP_0
P_masterList_2_1_2
P_network_2_2_AskP_0
P_network_2_0_RP_0
P_network_2_2_AnsP_0
P_network_2_2_AnsP_1
P_network_1_2_RP_0
P_network_2_0_AnsP_1
P_network_2_2_RP_2
P_network_2_2_AI_0
P_network_1_2_AnnP_2
P_network_2_2_AnnP_0
P_poll__networl_1_0_AI_2
P_poll__networl_1_0_AI_1
P_poll__networl_1_0_AI_0
P_network_1_0_AI_1
P_network_2_2_RI_1
P_network_2_2_AI_1
P_network_2_2_RP_1
P_network_2_0_RI_2
P_network_2_1_AskP_2
P_network_2_2_AskP_2
P_network_2_1_AskP_1
P_network_2_1_AnnP_0
P_network_1_0_RP_0
P_poll__handlingMessage_0
P_network_2_1_AnnP_1
P_network_1_0_AskP_0
P_network_1_1_RI_0
P_poll__networl_0_0_AskP_0
P_network_1_2_AnsP_2
P_network_1_2_AnnP_0
P_network_2_1_AI_2
P_network_1_0_AnnP_2
P_network_2_1_RI_1
P_network_1_2_AskP_1
P_network_1_1_RP_2
P_network_1_1_AnnP_2
P_network_2_0_RP_1
P_network_1_2_RI_2
P_network_1_1_AnnP_0
P_network_1_1_AI_2
P_network_1_1_AI_1
P_network_1_1_AnsP_2
P_network_1_1_AnsP_0
P_network_1_1_AskP_2
P_network_1_1_AskP_1
P_network_0_2_AI_2
P_network_2_0_AI_0
P_network_2_2_RP_0
P_network_1_1_RP_0
P_network_1_0_AnnP_0
P_network_1_0_AI_2
P_network_2_0_AskP_0
P_network_1_0_AI_0
P_network_1_0_RI_2
P_network_2_2_AnsP_2
P_network_1_0_RI_1
P_network_1_0_AnnP_1
P_network_2_0_AnsP_0
P_network_1_2_AI_2
P_network_2_1_RP_1
P_network_1_0_RP_2
P_network_2_0_AI_1
P_network_2_2_AnnP_2
P_network_1_0_RI_0
P_network_1_0_AnsP_1
P_network_2_1_RP_0
P_network_1_0_AnsP_0
P_network_1_0_AskP_2
P_network_1_1_AskP_0
P_network_2_2_AskP_1
P_network_1_0_AskP_1
P_network_1_1_AnsP_1
P_network_1_1_AI_0
P_network_0_2_RP_2
P_network_0_2_RP_1
P_network_1_2_AskP_2
P_network_0_2_AnnP_2
P_network_1_0_AnsP_2
P_network_1_2_AnnP_1
P_network_2_1_AnnP_2
P_network_0_2_AnnP_1
P_network_0_2_RP_0
P_network_1_2_RP_2
P_network_1_1_RI_2
P_network_0_2_AI_1
P_network_2_0_AnnP_2
P_network_0_2_AI_0
P_network_2_0_AnsP_2
P_network_0_2_RI_2
P_poll__networl_0_0_AnsP_1
P_poll__networl_0_0_RI_0
P_poll__networl_0_0_RI_1
P_poll__networl_0_0_RI_2
P_poll__networl_0_0_AI_0
P_poll__networl_0_0_AI_1
P_poll__networl_0_0_AnnP_0
P_poll__networl_0_0_AnnP_1
P_poll__networl_0_0_AnnP_2
P_poll__networl_0_0_RP_0
P_poll__networl_0_0_AskP_1
P_network_2_1_AI_1
P_poll__networl_0_0_RP_1
P_poll__networl_0_0_RP_2
P_poll__networl_0_1_AskP_0
P_network_1_1_RI_1
P_network_1_0_RP_1
P_poll__networl_0_1_AskP_2
P_poll__networl_0_1_AnsP_0
P_poll__networl_0_1_AnsP_1
P_poll__networl_0_1_AnsP_2
P_poll__networl_0_1_RI_0
P_poll__networl_0_1_RI_1
P_network_2_2_RI_2
P_poll__networl_0_1_AI_0
P_poll__networl_0_1_AI_2
P_poll__networl_0_1_AnnP_1
P_poll__networl_0_1_RI_2
P_poll__networl_0_1_AnnP_2
P_network_2_0_RI_1
P_network_2_0_AnnP_1
P_network_2_1_RI_2
P_poll__networl_0_1_AskP_1
P_poll__networl_0_1_RP_0
P_poll__networl_0_1_RP_1
P_poll__networl_0_1_RP_2
P_poll__networl_0_2_AskP_0
P_poll__networl_0_2_AskP_1
P_network_1_2_AI_1
P_poll__networl_0_2_AskP_2
P_network_2_0_AskP_2
P_poll__networl_0_2_AnsP_0
P_network_2_1_AnsP_2
P_poll__networl_0_0_AnsP_0
P_poll__networl_0_2_AnsP_1
P_poll__networl_0_2_AnsP_2
P_poll__networl_0_2_RI_0
P_poll__networl_0_2_RI_1
P_network_2_2_AnnP_1
P_network_2_0_AskP_1
P_poll__networl_0_2_AI_0
P_poll__networl_0_0_AnsP_2
P_network_2_2_RI_0
P_poll__networl_0_2_AI_1
P_poll__networl_0_2_AI_2
P_network_2_1_AnsP_1
P_poll__networl_0_2_AnnP_0
P_poll__networl_0_1_AnnP_0
P_poll__networl_0_2_AnnP_1
P_poll__networl_0_2_AnnP_2
P_network_1_1_AnnP_1
P_poll__networl_0_2_RP_0
P_network_2_0_AI_2
P_electionInit_0
P_network_1_2_AnsP_1
P_network_2_0_AnnP_0
P_poll__networl_0_2_RP_1
P_network_2_2_AI_2
P_poll__networl_0_2_RP_2
P_network_2_0_RI_0
P_poll__networl_0_0_AskP_2
P_poll__networl_1_0_AskP_0
P_network_2_0_RP_2
P_network_2_1_RP_2
P_poll__networl_0_1_AI_1
P_network_1_2_RI_1
P_poll__networl_1_0_AskP_1
P_poll__networl_1_0_AskP_2
P_poll__networl_0_2_RI_2
P_network_1_2_RP_1
P_masterList_0_1_0
P_masterList_0_1_1
P_masterList_0_1_2

The net has transition(s) that can never fire:
T_poll__handleAnsP3_99
T_poll__handleAnsP3_102
T_poll__handleAnsP3_104
T_poll__handleAnsP3_107
T_poll__handleAnnP1_25
T_poll__handleAI2_67
T_sendAnnPs__send_15
T_sendAnnPs__start_1
T_sendAnnPs__start_2
T_poll__handleAnsP3_120
T_poll__handleAnsP3_117
T_poll__handleAnnP1_36
T_sendAnnPs__start_3
T_startNeg__end_1
T_startNeg__send_1
T_startNeg__send_2
T_startNeg__send_3
T_startNeg__send_7
T_startNeg__send_8
T_startNeg__send_13
T_startNeg__send_15
T_startNeg__start_1
T_startSec_1
T_startSec_2
T_startSec_3
T_poll__handleAskP_29
T_poll__handleAskP_31
T_poll__handleAskP_32
T_poll__handleAskP_33
T_poll__handleAskP_34
T_poll__handleAskP_35
T_poll__handleAskP_36
T_poll__handleAskP_37
T_poll__handleAskP_38
T_poll__handleAskP_39
T_poll__handleAskP_42
T_poll__handleAskP_43
T_poll__handleAskP_44
T_poll__handleAskP_45
T_poll__handleAskP_46
T_poll__handleAskP_48
T_poll__handleAskP_49
T_poll__handleAskP_50
T_poll__handleAskP_51
T_poll__handleAskP_52
T_poll__handleAskP_53
T_poll__handleAskP_54
T_poll__handleRI_1
T_poll__handleRI_2
T_poll__handleAnsP2_12
T_poll__handleAnsP2_15
T_poll__handleAnsP3_63
T_poll__handleAnsP3_66
T_poll__handleAnsP3_68
T_poll__handleAnsP3_71
T_poll__handleAnnP2_6
T_poll__handleAnnP2_7
T_poll__handleAI1_10
T_poll__handleAI2_28
T_poll__handleAnnP1_43
T_poll__handleAI2_16
T_poll__handleAI1_3
T_poll__handleAI1_22
T_poll__handleAI2_49
T_poll__handleAI2_87
T_poll__handleAnnP1_22
T_poll__handleAnsP2_17
T_poll__handleAI2_104
T_poll__handleAI2_90
T_poll__handleAI2_18
T_poll__handleAI2_68
T_poll__handleAI2_52
T_poll__handleAI2_27
T_poll__handleAI2_53
T_poll__handleAI2_26
T_poll__handleAI2_51
T_poll__handleAnsP2_4
T_poll__handleAnsP2_23
T_poll__handleAnsP2_24
T_poll__handleAnsP2_27
T_poll__handleAnsP2_35
T_poll__handleAnsP2_36
T_poll__handleAnsP4_51
T_poll__handleAnsP4_52
T_poll__handleAnsP4_53
T_poll__handleAnsP4_54
T_poll__handleAskP_1
T_poll__handleAskP_2
T_poll__handleAnsP3_12
T_poll__handleAnsP3_14
T_poll__handleAnsP3_17
T_poll__handleAskP_11
T_poll__handleAskP_12
T_poll__handleAskP_13
T_poll__handleAskP_14
T_poll__handleAskP_15
T_poll__handleAskP_16
T_poll__handleAskP_17
T_poll__handleAskP_18
T_poll__handleAnsP4_4
T_poll__handleAnsP4_5
T_poll__handleAnsP4_6
T_poll__handleAnsP4_9
T_poll__handleAnsP4_22
T_poll__handleAnsP4_23
T_poll__handleAnsP4_24
T_poll__handleAnsP4_27
T_poll__handleAnsP4_28
T_poll__handleAnsP4_29
T_poll__handleAskP_19
T_poll__handleAskP_20
T_poll__handleAskP_23
T_poll__handleAskP_24
T_poll__handleAnsP4_40
T_poll__handleAnsP4_41
T_poll__handleAnsP4_42
T_poll__handleAnsP4_45
T_poll__handleAnsP4_46
T_poll__handleAnsP4_47
T_poll__handleAnsP4_48
T_poll__handleAI2_54
T_poll__handleAnnP1_49
T_poll__handleAnnP1_50
T_poll__handleAnnP1_52
T_poll__handleAI2_34
T_poll__handleAnsP2_10
T_poll__handleAnsP2_11
T_poll__handleAskP_40
T_poll__handleAskP_41
T_poll__handleAnsP2_51
T_poll__handleAI2_36
T_poll__handleAnsP3_45
T_poll__handleAnsP3_48
T_poll__handleAnsP3_50
T_poll__handleAnsP3_53
T_poll__handleAnsP4_21
T_poll__handleAnsP2_9
T_poll__handleAI2_31
T_poll__handleAI2_32
T_poll__handleAnnP1_33
T_poll__handleAnnP1_34
T_poll__handleAnsP4_16
T_poll__handleAnsP4_17
T_poll__handleAnsP4_18
T_poll__handleAnnP2_1
T_poll__handleAnnP2_2
T_poll__handleAnsP3_153
T_poll__handleAnsP3_156
T_poll__handleAnsP3_158
T_poll__handleAnsP3_161
T_poll__handleAnsP4_3
T_poll__handleAI2_47
T_poll__handleAskP_3
T_poll__handleAskP_4
T_poll__handleAskP_5
T_poll__handleAskP_6
T_poll__handleAskP_7
T_poll__handleAskP_8
T_poll__handleAskP_9
T_poll__handleAskP_10
T_poll__handleAnnP1_17
T_poll__handleAnnP1_18
T_poll__handleAnsP2_46
T_poll__handleAnsP2_47
T_poll__handleAnsP2_48
T_poll__handleAnnP1_6
T_poll__handleAnsP2_41
T_poll__handleAnsP2_42
T_poll__handleAnsP2_45
T_poll__handleAskP_22
T_poll__handleAnsP2_3
T_poll__handleAnsP2_52
T_poll__handleAnsP2_53
T_poll__handleAnsP3_9
T_poll__handleAnsP2_54
T_poll__handleAnsP1_1
T_poll__handleAnsP1_2
T_poll__handleAnsP2_18
T_poll__handleAnsP3_27
T_poll__handleAnsP3_30
T_poll__handleAnsP3_32
T_poll__handleAnsP3_35
T_poll__handleAI2_12
T_poll__handleAnsP2_39
T_poll__handleAnsP2_40
T_poll__handleAI2_17
T_poll__handleAnsP3_135
T_poll__handleAnsP3_138
T_poll__handleAnsP3_140
T_poll__handleAnsP3_143
T_poll__handleAnsP3_81
T_poll__handleAnsP3_84
T_poll__handleAnsP3_86
T_poll__handleAnsP3_89
T_poll__handleAnnP1_37
T_poll__handleAskP_27
T_poll__handleAskP_28
T_poll__handleAnnP1_41
T_poll__handleAnsP4_10
T_poll__handleAnsP4_11
T_poll__handleAnsP4_12
T_poll__handleAnsP4_15
T_poll__handleAnsP3_122
T_poll__handleAnsP3_125
T_poll__handleAskP_25
T_poll__handleAskP_26
T_poll__handleAI2_33
T_poll__handleAnnP2_8
T_poll__handleAnnP2_9
T_poll__handleAnnP1_53
T_poll__handleAnnP2_4
T_poll__handleAnnP2_5
T_poll__handleAnnP1_31
T_poll__handleAnnP1_21
T_poll__handleAI2_70
T_poll__handleAI2_13
T_poll__handleAnnP1_2
T_poll__handleAI2_10
T_poll__handleAI1_2
T_poll__handleAI1_1
T_poll__handleAI2_15
T_poll__handleAnnP1_38
T_poll__handleAnnP1_40
T_poll__handleAI1_21
T_poll__handleAnnP1_5
T_poll__handleAnnP1_11
T_poll__handleAI2_46
T_poll__handleAnnP1_3
T_poll__handleAnsP2_30
T_poll__handleAnsP2_33
T_poll__handleAnsP2_34
T_poll__handleAnsP1_7
T_poll__handleAnsP1_9
T_poll__handleAnnP1_14
T_poll__handleAnnP2_3
T_poll__handleAnnP1_12
T_poll__handleAI2_45
T_poll__handleAnsP2_21
T_poll__handleAnsP2_22
T_poll__handleAnnP1_15
T_poll__handleAnnP1_8
T_poll__handleAnnP1_9
T_poll__handleAnsP1_5
T_poll__handleAI2_35
T_poll__handleAnsP2_5
T_poll__handleAnsP2_6
T_poll__handleAI2_9
T_poll__handleAI2_72
T_poll__handleAI2_30
T_poll__handleAnnP1_47
T_poll__handleAI2_50
T_poll__handleAI2_71
T_poll__handleAnnP1_30
T_poll__handleAI2_43
T_poll__handleAI2_11
T_poll__handleAI2_85
T_poll__handleAI2_44
T_poll__handleAI2_14
T_poll__handleAI2_108
T_poll__handleAI1_27
T_poll__handleAnnP1_27
T_poll__handleAnnP1_28
T_poll__handleAI2_86
T_poll__handleAnsP2_16
T_poll__handleAnnP1_24
T_poll__handleAI2_105
T_poll__handleAI2_8
T_poll__handleAI2_69
T_poll__handleAI2_107
T_poll__handleAnnP1_19
T_poll__handleAnsP4_30
T_poll__handleAnsP4_33
T_poll__handleAnsP4_34
T_poll__handleAnsP4_35
T_poll__handleAnsP4_36
T_poll__handleAnsP4_39
T_poll__handleAnsP1_3
T_poll__handleAnsP1_4
T_poll__handleAI2_88
T_poll__handleAI2_48
T_poll__handleAI2_7
T_poll__handleAI1_25
T_poll__handleAI1_19
T_poll__handleAI1_11
T_poll__handleAI2_29
T_poll__handleAI1_15
T_poll__handleAI1_26
T_poll__handleAI1_14
T_poll__handleAI1_20
T_poll__handleAI1_24
T_poll__handleAI1_13
T_poll__handleAI1_12
T_poll__handleAI2_89
T_poll__handleAI2_25
T_poll__handleRI_3
T_poll__handleRI_4
T_poll__handleRI_5
T_poll__handleRI_7
T_poll__handleRI_9
T_poll__handleRP_1
T_poll__handleRP_2
T_poll__handleRP_3
T_poll__handleRP_4
T_poll__handleRP_5
T_poll__handleRP_6
T_poll__handleRP_7
T_poll__handleRP_8
T_poll__handleRP_9
T_poll__iAmPrimary_1
T_poll__iAmPrimary_2
T_poll__iAmPrimary_3
T_poll__iAmSecondary_1
T_poll__iAmSecondary_2
T_poll__iAmSecondary_3
T_poll__iAmSecondary_4
T_poll__iAmSecondary_5
T_poll__iAmSecondary_6
T_poll__iAmSecondary_7
T_poll__iAmSecondary_8
T_poll__iAmSecondary_9
T_poll__start_1
T_sendAnnPs__end_1
T_sendAnnPs__end_2
T_sendAnnPs__end_3
T_sendAnnPs__send_1
T_sendAnnPs__send_2
T_sendAnnPs__send_3
T_sendAnnPs__send_7
T_sendAnnPs__send_8
T_sendAnnPs__send_9
T_sendAnnPs__send_13
T_sendAnnPs__send_14
T_poll__handleAnsP2_28
T_poll__handleAnsP2_29
T_poll__handleAnnP1_44
T_poll__handleAnnP1_46
T_poll__end_1

check for constant places
P_crashed_0
P_crashed_1
P_crashed_2
P_dead_0
P_dead_1
P_dead_2
P_electionFailed_0
P_electionFailed_1
P_electionFailed_2
P_masterList_0_1_0
P_masterList_0_1_1
P_masterList_0_1_2
P_masterList_0_2_0
P_masterList_0_2_1
P_masterList_0_2_2
P_masterList_1_1_0
P_masterList_1_1_1
P_masterList_1_1_2
P_masterList_1_2_0
P_masterList_1_2_1
P_masterList_1_2_2
P_masterList_2_1_0
P_masterList_2_1_1
P_masterList_2_1_2
P_masterList_2_2_0
P_masterList_2_2_1
P_masterList_2_2_2
P_network_0_0_AskP_1
P_network_0_0_AskP_2
P_network_0_0_RI_1
P_network_0_0_RI_2
P_network_0_0_AI_1
P_network_0_0_AI_2
P_network_0_0_AnnP_1
P_network_0_0_AnnP_2
P_network_0_0_RP_1
P_network_0_0_RP_2
P_network_0_1_AskP_1
P_network_0_1_AskP_2
P_network_0_1_RI_1
P_network_0_1_RI_2
P_network_0_1_AI_1
P_network_0_1_AI_2
P_network_0_1_AnnP_1
P_network_0_1_AnnP_2
P_network_0_1_RP_1
P_network_0_1_RP_2
P_network_0_2_AskP_1
P_network_0_2_AskP_2
P_network_0_2_RI_1
P_network_0_2_RI_2
P_network_0_2_AI_1
P_network_0_2_AI_2
P_network_0_2_AnnP_1
P_network_0_2_AnnP_2
P_network_0_2_RP_1
P_network_0_2_RP_2
P_network_1_0_AskP_1
P_network_1_0_AskP_2
P_network_1_0_RI_1
P_network_1_0_RI_2
P_network_1_0_AI_1
P_network_1_0_AI_2
P_network_1_0_AnnP_1
P_network_1_0_AnnP_2
P_network_1_0_RP_1
P_network_1_0_RP_2
P_network_1_1_AskP_1
P_network_1_1_AskP_2
P_network_1_1_RI_1
P_network_1_1_RI_2
P_network_1_1_AI_1
P_network_1_1_AI_2
P_network_1_1_AnnP_1
P_network_1_1_AnnP_2
P_network_1_1_RP_1
P_network_1_1_RP_2
P_network_1_2_AskP_1
P_network_1_2_AskP_2
P_network_1_2_RI_1
P_network_1_2_RI_2
P_network_1_2_AI_1
P_network_1_2_AI_2
P_network_1_2_AnnP_1
P_network_1_2_AnnP_2
P_network_1_2_RP_1
P_network_1_2_RP_2
P_network_2_0_AskP_1
P_network_2_0_AskP_2
P_network_2_0_RI_1
P_network_2_0_RI_2
P_network_2_0_AI_1
P_network_2_0_AI_2
P_network_2_0_AnnP_1
P_network_2_0_AnnP_2
P_network_2_0_RP_1
P_network_2_0_RP_2
P_network_2_1_AskP_1
P_network_2_1_AskP_2
P_network_2_1_RI_1
P_network_2_1_RI_2
P_network_2_1_AI_1
P_network_2_1_AI_2
P_network_2_1_AnnP_1
P_network_2_1_AnnP_2
P_network_2_1_RP_1
P_network_2_1_RP_2
P_network_2_2_AskP_1
P_network_2_2_AskP_2
P_network_2_2_RI_1
P_network_2_2_RI_2
P_network_2_2_AI_1
P_network_2_2_AI_2
P_network_2_2_AnnP_1
P_network_2_2_AnnP_2
P_network_2_2_RP_1
P_network_2_2_RP_2
P_poll__networl_0_0_AskP_0
P_poll__networl_0_0_AskP_1
P_poll__networl_0_0_AskP_2
P_poll__networl_0_0_AnsP_0
P_poll__networl_0_0_RI_0
P_poll__networl_0_0_RI_1
P_poll__networl_0_0_RI_2
P_poll__networl_0_0_AI_0
P_poll__networl_0_0_AI_1
P_poll__networl_0_0_AI_2
P_poll__networl_0_0_AnnP_0
P_poll__networl_0_0_AnnP_1
P_poll__networl_0_0_AnnP_2
P_poll__networl_0_0_RP_0
P_poll__networl_0_0_RP_1
P_poll__networl_0_0_RP_2
P_poll__networl_0_1_AskP_0
P_poll__networl_0_1_AskP_1
P_poll__networl_0_1_AskP_2
P_poll__networl_0_1_AnsP_0
P_poll__networl_0_1_RI_0
P_poll__networl_0_1_RI_1
P_poll__networl_0_1_RI_2
P_poll__networl_0_1_AI_0
P_poll__networl_0_1_AI_1
P_poll__networl_0_1_AI_2
P_poll__networl_0_1_AnnP_0
P_poll__networl_0_1_AnnP_1
P_poll__networl_0_1_AnnP_2
P_poll__networl_0_1_RP_0
P_poll__networl_0_1_RP_1
P_poll__networl_0_1_RP_2
P_poll__networl_0_2_AskP_0
P_poll__networl_0_2_AskP_1
P_poll__networl_0_2_AskP_2
P_poll__networl_0_2_AnsP_0
P_poll__networl_0_2_RI_0
P_poll__networl_0_2_RI_1
P_poll__networl_0_2_RI_2
P_poll__networl_0_2_AI_0
P_poll__networl_0_2_AI_1
P_poll__networl_0_2_AI_2
P_poll__networl_0_2_AnnP_0
P_poll__networl_0_2_AnnP_1
P_poll__networl_0_2_AnnP_2
P_poll__networl_0_2_RP_0
P_poll__networl_0_2_RP_1
P_poll__networl_0_2_RP_2
P_poll__networl_1_0_AskP_0
P_poll__networl_1_0_AskP_1
P_poll__networl_1_0_AskP_2
P_poll__networl_1_0_AnsP_0
P_poll__networl_1_0_RI_0
P_poll__networl_1_0_RI_1
P_poll__networl_1_0_RI_2
P_poll__networl_1_0_AI_0
P_poll__networl_1_0_AI_1
P_poll__networl_1_0_AI_2
P_poll__networl_1_0_AnnP_0
P_poll__networl_1_0_AnnP_1
P_poll__networl_1_0_AnnP_2
P_poll__networl_1_0_RP_0
P_poll__networl_1_0_RP_1
P_poll__networl_1_0_RP_2
P_poll__networl_1_1_AskP_0
P_poll__networl_1_1_AskP_1
P_poll__networl_1_1_AskP_2
P_poll__networl_1_1_AnsP_0
P_poll__networl_1_1_RI_0
P_poll__networl_1_1_RI_1
P_poll__networl_1_1_RI_2
P_poll__networl_1_1_AI_0
P_poll__networl_1_1_AI_1
P_poll__networl_1_1_AI_2
P_poll__networl_1_1_AnnP_0
P_poll__networl_1_1_AnnP_1
P_poll__networl_1_1_AnnP_2
P_poll__networl_1_1_RP_0
P_poll__networl_1_1_RP_1
P_poll__networl_1_1_RP_2
P_poll__networl_1_2_AskP_0
P_poll__networl_1_2_AskP_1
P_poll__networl_1_2_AskP_2
P_poll__networl_1_2_AnsP_0
P_poll__networl_1_2_RI_0
P_poll__networl_1_2_RI_1
P_poll__networl_1_2_RI_2
P_poll__networl_1_2_AI_0
P_poll__networl_1_2_AI_1
P_poll__networl_1_2_AI_2
P_poll__networl_1_2_AnnP_0
P_poll__networl_1_2_AnnP_1
P_poll__networl_1_2_AnnP_2
P_poll__networl_1_2_RP_0
P_poll__networl_1_2_RP_1
P_poll__networl_1_2_RP_2
P_poll__networl_2_0_AskP_0
P_poll__networl_2_0_AskP_1
P_poll__networl_2_0_AskP_2
P_poll__networl_2_0_AnsP_0
P_poll__networl_2_0_RI_0
P_poll__networl_2_0_RI_1
P_poll__networl_2_0_RI_2
P_poll__networl_2_0_AI_0
P_poll__networl_2_0_AI_1
P_poll__networl_2_0_AI_2
P_poll__networl_2_0_AnnP_0
P_poll__networl_2_0_AnnP_1
P_poll__networl_2_0_AnnP_2
P_poll__networl_2_0_RP_0
P_poll__networl_2_0_RP_1
P_poll__networl_2_0_RP_2
P_poll__networl_2_1_AskP_0
P_poll__networl_2_1_AskP_1
P_poll__networl_2_1_AskP_2
P_poll__networl_2_1_AnsP_0
P_poll__networl_2_1_RI_0
P_poll__networl_2_1_RI_1
P_poll__networl_2_1_RI_2
P_poll__networl_2_1_AI_0
P_poll__networl_2_1_AI_1
P_poll__networl_2_1_AI_2
P_poll__networl_2_1_AnnP_0
P_poll__networl_2_1_AnnP_1
P_poll__networl_2_1_AnnP_2
P_poll__networl_2_1_RP_0
P_poll__networl_2_1_RP_1
P_poll__networl_2_1_RP_2
P_poll__networl_2_2_AskP_0
P_poll__networl_2_2_AskP_1
P_poll__networl_2_2_AskP_2
P_poll__networl_2_2_AnsP_0
P_poll__networl_2_2_RI_0
P_poll__networl_2_2_RI_1
P_poll__networl_2_2_RI_2
P_poll__networl_2_2_AI_0
P_poll__networl_2_2_AI_1
P_poll__networl_2_2_AI_2
P_poll__networl_2_2_AnnP_0
P_poll__networl_2_2_AnnP_1
P_poll__networl_2_2_AnnP_2
P_poll__networl_2_2_RP_0
P_poll__networl_2_2_RP_1
P_poll__networl_2_2_RP_2
found 261 constant places
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.001sec


iterations count:576 (1), effective:32 (0)

initing FirstDep: 0m 0.001sec


iterations count:525 (1), effective:24 (0)

iterations count:357 (1), effective:0 (0)

iterations count:357 (1), effective:0 (0)

iterations count:600 (1), effective:34 (0)

iterations count:357 (1), effective:0 (0)

iterations count:357 (1), effective:0 (0)

iterations count:363 (1), effective:2 (0)

iterations count:371 (1), effective:4 (0)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="NeoElection-PT-2"
export BK_EXAMINATION="ReachabilityCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/NeoElection-PT-2.tgz
mv NeoElection-PT-2 execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is NeoElection-PT-2, examination is ReachabilityCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r031-blw7-149440474000268"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "ReachabilityCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "ReachabilityCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "ReachabilityCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property ReachabilityCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "ReachabilityCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' ReachabilityCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;