About the Execution of MARCIE for LamportFastMutEx-PT-2
Execution Summary | |||||
Max Memory Used (MB) |
Time wait (ms) | CPU Usage (ms) | I/O Wait (ms) | Computed Result | Execution Status |
2206.330 | 2499.00 | 2000.00 | 30.00 | TFTFTFFFTFTTTFTF | normal |
Execution Chart
We display below the execution chart for this examination (boot time has been removed).
Trace from the execution
Waiting for the VM to be ready (probing ssh)
.......
=====================================================================
Generated by BenchKit 2-3254
Executing tool marcie
Input is LamportFastMutEx-PT-2, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r031-blw7-149440473900174
=====================================================================
--------------------
content from stdout:
=== Data for post analysis generated by BenchKit (invocation template)
The expected result is a vector of booleans
BOOL_VECTOR
here is the order used to build the result vector(from text file)
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-0
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-1
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-10
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-11
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-12
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-13
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-14
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-15
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-2
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-3
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-4
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-5
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-6
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-7
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-8
FORMULA_NAME LamportFastMutEx-COL-2-CTLCardinality-9
=== Now, execution of the tool begins
BK_START 1494455892796
timeout --kill-after=10s --signal=SIGINT 1m for testing only
Marcie rev. 8852M (built: crohr on 2017-05-03)
A model checker for Generalized Stochastic Petri nets
authors: Alex Tovchigrechko (IDD package and CTL model checking)
Martin Schwarick (Symbolic numerical analysis and CSL model checking)
Christian Rohr (Simulative and approximative numerical model checking)
marcie@informatik.tu-cottbus.de
called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --memory=6
parse successfull
net created successfully
Net: LamportFastMutEx_PT_2
(NrP: 69 NrTr: 96 NrArc: 402)
parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec
net check time: 0m 0.000sec
init dd package: 0m 1.102sec
RS generation: 0m 0.008sec
-> reachability set: #nodes 221 (2.2e+02) #states 380
starting MCC model checker
--------------------------
checking: 1<=sum(P_await_13_2, P_await_13_1, P_await_13_0)
normalized: 1<=sum(P_await_13_2, P_await_13_1, P_await_13_0)
abstracting: (1<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 112
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-1 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.016sec
checking: AG [2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]
normalized: ~ [E [true U ~ [2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]
abstracting: (2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-3 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.023sec
checking: 3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)
normalized: 3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)
abstracting: (3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.016sec
checking: 3<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)
normalized: 3<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)
abstracting: (3<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 0
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-15 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.016sec
checking: EF [AX [sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]
normalized: E [true U ~ [EX [~ [sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]]]
abstracting: (sum(P_await_13_2, P_await_13_1, P_await_13_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 276
.-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-5 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.026sec
checking: ~ [sum(y_2, y_1, y_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]
normalized: ~ [sum(y_2, y_1, y_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]
abstracting: (sum(y_2, y_1, y_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 32
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.016sec
checking: AG [sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]
normalized: ~ [E [true U ~ [sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)]]]
abstracting: (sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false)<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.000sec
checking: E [2<=sum(P_start_1_2, P_start_1_1, P_start_1_0) U [1<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]
normalized: E [2<=sum(P_start_1_2, P_start_1_1, P_start_1_0) U [1<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false) & 1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]
abstracting: (1<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 42
abstracting: (1<=sum(P_b_2_true, P_b_2_false, P_b_1_true, P_b_1_false, P_b_0_true, P_b_0_false))
states: 380
abstracting: (2<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 3
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.051sec
checking: EG [[EG [2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)] & ~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & 2<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]]]]
normalized: EG [[~ [[sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0) & 2<=sum(P_awaity_2, P_awaity_1, P_awaity_0)]] & EG [2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)]]]
abstracting: (2<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
.
EG iterations: 1
abstracting: (2<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 0
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_start_1_2, P_start_1_1, P_start_1_0))
states: 308
.
EG iterations: 1
-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-11 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.036sec
checking: ~ [[EX [[sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(x_2, x_1, x_0) & 3<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] | 2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]
normalized: ~ [[EX [[sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(x_2, x_1, x_0) & 3<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0)]] | 2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)]]
abstracting: (2<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 2
abstracting: (3<=sum(P_wait_2_2, P_wait_2_1, P_wait_2_0, P_wait_1_2, P_wait_1_1, P_wait_1_0, P_wait_0_2, P_wait_0_1, P_wait_0_0))
states: 0
abstracting: (sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)<=sum(x_2, x_1, x_0))
states: 380
.-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-12 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.051sec
checking: [EF [EF [sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]] & AX [[~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] & [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) & 1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
normalized: [~ [EX [~ [[~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] & [sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) & 1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]] & E [true U E [true U sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 356
abstracting: (1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 74
abstracting: (sum(P_awaity_2, P_awaity_1, P_awaity_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 344
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 332
.-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.075sec
checking: [A [1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) U [sum(y_2, y_1, y_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | 3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] | AX [[sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & ~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]]
normalized: [~ [EX [~ [[sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0) & ~ [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0)]]]]] | [~ [EG [~ [[sum(y_2, y_1, y_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | 3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]] & ~ [E [~ [[sum(y_2, y_1, y_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | 3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] U [~ [1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)] & ~ [[sum(y_2, y_1, y_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | 3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]]]
abstracting: (3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 74
abstracting: (1<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 70
abstracting: (3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 74
abstracting: (3<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 74
.........................
EG iterations: 25
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(P_fordo_12_2, P_fordo_12_1, P_fordo_12_0))
states: 330
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 314
.-> the formula is FALSE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.110sec
checking: [AX [~ [[1<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_2, x_1, x_0)]]] | ~ [[sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | [sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0) | 3<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]]]
normalized: [~ [[sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0) | [sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0) & [sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0) | 3<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]]] | ~ [EX [[1<=sum(P_awaity_2, P_awaity_1, P_awaity_0) & sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_2, x_1, x_0)]]]]
abstracting: (sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)<=sum(x_2, x_1, x_0))
states: 376
abstracting: (1<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 42
.abstracting: (3<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 0
abstracting: (sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)<=sum(P_awaity_2, P_awaity_1, P_awaity_0))
states: 328
abstracting: (sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)<=sum(P_sety_9_2, P_sety_9_1, P_sety_9_0))
states: 315
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0))
states: 352
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-2 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.108sec
checking: ~ [[[~ [[sum(y_2, y_1, y_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) & sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]] & [sum(y_2, y_1, y_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) | [2<=sum(y_2, y_1, y_0) | 2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]]] & AX [[3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | 3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]]
normalized: ~ [[~ [EX [~ [[3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0) | 3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0)]]]] & [[sum(y_2, y_1, y_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) | [2<=sum(y_2, y_1, y_0) | 2<=sum(P_await_13_2, P_await_13_1, P_await_13_0)]] & ~ [[sum(y_2, y_1, y_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0) & sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)]]]]]
abstracting: (sum(P_ifxi_10_2, P_ifxi_10_1, P_ifxi_10_0)<=sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0))
states: 314
abstracting: (sum(y_2, y_1, y_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 58
abstracting: (2<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 0
abstracting: (2<=sum(y_2, y_1, y_0))
states: 0
abstracting: (sum(y_2, y_1, y_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 69
abstracting: (3<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 0
abstracting: (3<=sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0))
states: 0
.-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-4 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.092sec
checking: E [[~ [3<=sum(y_2, y_1, y_0)] & [sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(x_2, x_1, x_0) | 3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)]] U [~ [sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] | [1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]
normalized: E [[[sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(x_2, x_1, x_0) | 3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)] & ~ [3<=sum(y_2, y_1, y_0)]] U [~ [sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)] | [1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0) | sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0)]]]
abstracting: (sum(P_start_1_2, P_start_1_1, P_start_1_0)<=sum(P_setbi_5_2, P_setbi_5_1, P_setbi_5_0))
states: 315
abstracting: (1<=sum(P_setbi_24_2, P_setbi_24_1, P_setbi_24_0))
states: 74
abstracting: (sum(P_setbi_11_2, P_setbi_11_1, P_setbi_11_0)<=sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0))
states: 352
abstracting: (3<=sum(y_2, y_1, y_0))
states: 0
abstracting: (3<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 0
abstracting: (sum(P_sety_9_2, P_sety_9_1, P_sety_9_0)<=sum(x_2, x_1, x_0))
states: 378
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.075sec
checking: A [[[sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & [1<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) | sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]] U sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]
normalized: [~ [EG [~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]] & ~ [E [~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)] U [~ [[[sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0) & sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0)] & [1<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0) | sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0)]]] & ~ [sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0)]]]]]
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 320
abstracting: (sum(P_ifyi_15_2, P_ifyi_15_1, P_ifyi_15_0)<=sum(P_CS_21_2, P_CS_21_1, P_CS_21_0))
states: 358
abstracting: (1<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 69
abstracting: (sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0)<=sum(P_await_13_2, P_await_13_1, P_await_13_0))
states: 356
abstracting: (sum(y_2, y_1, y_0)<=sum(P_done_2_2, P_done_2_1, P_done_2_0, P_done_1_2, P_done_1_1, P_done_1_0, P_done_0_2, P_done_0_1, P_done_0_0))
states: 80
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 320
abstracting: (sum(P_ify0_4_2, P_ify0_4_1, P_ify0_4_0)<=sum(P_setx_3_2, P_setx_3_1, P_setx_3_0))
states: 320
........
EG iterations: 8
-> the formula is TRUE
FORMULA LamportFastMutEx-COL-2-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT
MC time: 0m 0.078sec
totally nodes used: 56472(5.6e+04)
number of garbage collections: 0
fire ops cache: hits/miss/sum: 90545 180063 270608
used/not used/entry size/cache size: 156902 66951962 16 1024MB
basic ops cache: hits/miss/sum: 34728 101094 135822
used/not used/entry size/cache size: 206995 16570221 12 192MB
unary ops cache: hits/miss/sum: 0 15 15
used/not used/entry size/cache size: 15 8388593 8 64MB
abstract ops cache: hits/miss/sum: 0 18371 18371
used/not used/entry size/cache size: 7 8388601 12 96MB
state nr cache: hits/miss/sum: 1011 1437 2448
used/not used/entry size/cache size: 1437 2095715 32 64MB
max state cache: hits/miss/sum: 0 0 0
used/not used/entry size/cache size: 0 8388608 32 256MB
uniqueHash elements/entry size/size: 67108864 4 256MB
0 67052426
1 56404
2 34
3 0
4 0
5 0
6 0
7 0
8 0
9 0
>= 10 0
Total processing time: 0m 2.471sec
BK_STOP 1494455895295
--------------------
content from stderr:
check for maximal unmarked siphon
found
The net has a maximal unmarked siphon:
P_setbi_11_0
P_ifxi_10_0
P_sety_9_0
P_ify0_4_0
P_setbi_5_0
P_setx_3_0
P_b_0_true
P_b_0_false
P_start_1_0
P_wait_0_0
P_fordo_12_0
P_awaity_0
P_setbi_24_0
P_CS_21_0
P_done_2_0
P_done_0_0
P_done_0_1
P_wait_0_1
P_wait_0_2
P_wait_1_0
P_wait_2_0
P_await_13_0
P_done_0_2
P_done_1_0
P_ifyi_15_0
The net has transition(s) that can never fire:
T_ynei_15_3
T_yeqi_15_1
T_xeqi_10_1
T_sety0_23_1
T_sety0_23_2
T_sety0_23_3
T_setbi_24_1
T_setbi_24_2
T_setx_3_3
T_setx_3_1
T_setx_3_2
T_setbi_2_1
T_forod_13_1
T_xnei_10_2
T_xnei_10_3
T_yne0_4_3
T_yeq0_4_1
T_yne0_4_2
T_awaity_1
T_sety_9_3
T_sety_9_1
T_sety_9_2
T_ynei_15_2
T_await_13_7
T_setbi_5_2
T_setbi_5_1
T_setbi_2_2
T_setbi_11_1
T_setbi_11_2
T_fordo_12_1
T_await_13_1
T_await_13_2
T_await_13_3
T_await_13_4
check for constant places
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok
initing FirstDep: 0m 0.000sec
iterations count:1779 (18), effective:98 (1)
initing FirstDep: 0m 0.000sec
iterations count:96 (1), effective:0 (0)
iterations count:739 (7), effective:34 (0)
iterations count:96 (1), effective:0 (0)
iterations count:208 (2), effective:8 (0)
iterations count:96 (1), effective:0 (0)
iterations count:187 (1), effective:4 (0)
iterations count:585 (6), effective:30 (0)
iterations count:135 (1), effective:2 (0)
Sequence of Actions to be Executed by the VM
This is useful if one wants to reexecute the tool in the VM from the submitted image disk.
set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="LamportFastMutEx-PT-2"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/tmp/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"
# this is specific to your benchmark or test
export BIN_DIR="$HOME/BenchKit/bin"
# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi
tar xzf /home/mcc/BenchKit/INPUTS/LamportFastMutEx-PT-2.tgz
mv LamportFastMutEx-PT-2 execution
# this is for BenchKit: explicit launching of the test
cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-3254"
echo " Executing tool marcie"
echo " Input is LamportFastMutEx-PT-2, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r031-blw7-149440473900174"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;