
This form is a summary description of the model entitled "SmallOperatingSystem" proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

### Description

This Petri net models a simplified Operating System handling the execution of tasks on a machine with several so-called "memory segments", Disk controller units, and cores. The typical lifecycle of a task is the following:

- 1 A ask is loaded from disk to memory (requires a segment and a disk controller),
- 2 When the task is ready to execute, it can get a core, be suspended and get a core again as long as its execution is not finished. It can also be removed from the memory if some is needed otherwise
- 3 When the execution finishes, the task is saved back on the disk.

The system has several scaling parameters: M (memory segments), T (tasks), D (Disk controllers) and C (cores). However, to simplify this in the MCC, we reduce it to two parameters, MT and DC with the following correspondence: M = T = MT, D = DC and  $C = 2 \times DC$ .



Graphical representation for MT16 and DC = 8

# Scaling parameter

Origin: Academic

| Parameter name | Parameter description                       | Chosen parameter values                 |  |  |
|----------------|---------------------------------------------|-----------------------------------------|--|--|
| MT and $DC$    | MT to compute available tasks and mem-      | (MT=16, DC=8), (MT=32, DC=8), (MT=32,   |  |  |
|                | ory and $DC$ to compute available disk con- | DC=16), (MT=64, DC=16), (MT=64, DC=32), |  |  |
|                | trollers and cores                          | (MT=128, DC=32), (MT=128, DC=64),       |  |  |
|                |                                             | (MT=256, DC=64), (MT=256, DC=128),      |  |  |
|                |                                             | (MT=512, DC=128), (MT=512, DC=256),     |  |  |
|                |                                             | (MT=1024, DC=256), (MT=1024, DC=512),   |  |  |
|                |                                             | (MT=2048, DC=512), (MT=2048, DC=1024),  |  |  |
|                |                                             | (MT=4096, DC=1024), (MT=4096, DC=2048), |  |  |
|                |                                             | (MT=8192, DC=2048), (MT=8192, DC=4096)  |  |  |

#### Size of the model

Although the model is parameterized, its size does not depend on parameter values.

number of places: 9 number of transitions: 8 number of arcs: 27

## Structural properties

| ordinary — all arcs have multiplicity one                                                                   |              |
|-------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                             | <b>X</b> (a) |
|                                                                                                             | <b>X</b> (b) |
|                                                                                                             | <b>X</b> (c) |
|                                                                                                             | <b>X</b> (d) |
| connected — there is an undirected path between every two nodes (places or transitions)                     | <b>/</b> (e) |
| strongly connected — there is a directed path between every two nodes (places or transitions)               | <b>(</b> f)  |
| source place(s) — one or more places have no input transitions                                              | <b>X</b> (g) |
| sink place(s) — one or more places have no output transitions                                               | <b>X</b> (h) |
| source transition(s) — one or more transitions have no input places                                         | <b>X</b> (i) |
| sink transitions(s) — one or more transitions have no output places                                         | <b>X</b> (j) |
| loop-free — no transition has an input place that is also an output place                                   | <b>(</b> k)  |
| conservative — for each transition, the number of input arcs equals the number of output arcs               | <b>X</b> (1) |
| subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs | <b>(</b> m)  |
| nested units — places are structured into hierarchically nested sequential units (n)                        | <b>X</b>     |

<sup>(</sup>a) 9 arcs are not simple free choice, e.g., the arc from place "TaskOnDisk" (which has 2 outgoing transitions) to transition "startLoading" (which has 3 input places).

<sup>(</sup>b) transitions "startLoading" and "startUnload" share a common input place "TaskOnDisk", but only the former transition has input place "FreeMemSegment".

<sup>(</sup>c) 7 transitions are not of a state machine, e.g., transition "startLoading".

<sup>(</sup>d) 6 places are not of a marked graph, e.g., place "TaskOnDisk".

<sup>(</sup>e) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>f) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>g) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>h) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>i) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>j) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>k) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(1) 7</sup> transitions are not conservative, e.g., transition "startLoading".

<sup>(</sup>m) 3 transitions are not subconservative, e.g., transition "endLoading".

<sup>(</sup>n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php

Type: P/T Net Origin: Academic

# Behavioural properties

| safe — in every reachable marking, there is no more than one token on a place                            | <b>(</b> o |
|----------------------------------------------------------------------------------------------------------|------------|
| deadlock — there exists a reachable marking from which no transition can be fired                        | . <b>X</b> |
| reversible — from every reachable marking, there is a transition path going back to the initial marking  |            |
| quasi-live — for every transition t, there exists a reachable marking in which t can fire                | <b>(</b> p |
| live — for every transition t, from every reachable marking, one can reach a marking in which t can fire |            |

# Size of the marking graphs

| Parameter        | Number of reach-          | Number of tran-            | Max. number of   | Max. number of             |
|------------------|---------------------------|----------------------------|------------------|----------------------------|
|                  | able markings             | sition firings             | tokens per place | tokens per marking         |
| MT=16, DC=8      | 16 587 <sup>(q)</sup>     | 100 896 <sup>(r)</sup>     | ?                | $\geq 56^{\text{(s)}}$     |
| MT=32, DC=8      | 166 515 <sup>(t)</sup>    | 1 112 454 <sup>(u)</sup>   | ?                | ≥ 88 <sup>(v)</sup>        |
| MT=32, DC=16     | 354 501 <sup>(w)</sup>    | 2 451 264 <sup>(x)</sup>   | ?                | ≥ 112 <sup>(y)</sup>       |
| MT=64, DC=16     | $7245654^{(z)}$           | 29 675 132 <sup>(aa)</sup> | ?                | ≥ 176 <sup>(ab)</sup>      |
| MT=64, DC=32     | 9 133 641 <sup>(ac)</sup> | 67 762 816 <sup>(ad)</sup> | ?                | ≥ 224 <sup>(ae)</sup>      |
| MT=128, DC=32    | ?                         | ?                          | ?                | $\geq 352^{({\rm af})}$    |
| MT=128, DC=64    | ?                         | ?                          | ?                | ≥ 448 <sup>(ag)</sup>      |
| MT=256, DC=64    | ?                         | ?                          | ?                | ≥ 704 (ah)                 |
| MT=256, DC=128   | ?                         | ?                          | ?                | ≥ 896 <sup>(ai)</sup>      |
| MT=512, DC=128   | ?                         | ?                          | ?                | ≥ 1408 <sup>(aj)</sup>     |
| MT=512, DC=256   | ?                         | ?                          | ?                | ≥ 1792 <sup>(ak)</sup>     |
| MT=1024, DC=256  | ?                         | ?                          | ?                | ≥ 2816 <sup>(al)</sup>     |
| MT=1024, DC=512  | ?                         | ?                          | ?                | ≥ 3584 <sup>(am)</sup>     |
| MT=2048, DC=512  | ?                         | ?                          | ?                | ≥ 5632 <sup>(an)</sup>     |
| MT=2048, DC=1024 | ?                         | ?                          | ?                | ≥ 7168 <sup>(ao)</sup>     |
| MT=4096, DC=1024 | ?                         | ?                          | ?                | ≥ 11264 <sup>(ap)</sup>    |
| MT=4096, DC=2048 | ?                         | ?                          | ?                | ≥ 14336 <sup>(aq)</sup>    |
| MT=8192, DC=2048 | ?                         | ?                          | ?                | $\geq 22528^{(ar)}$        |
| MT=8192, DC=4096 | ?                         | ?                          | ?                | $\geq 28672^{\text{(as)}}$ |

<sup>(</sup>MT=32, DC=8), etc.). (MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>p) stated by CÆSAR.BDD version 2.6 on all 19 instances ((MT=16, DC=8), (MT=32, DC=8), etc.).

<sup>(</sup>q) computed by PROD in March 2015.

<sup>(</sup>r) computed by PROD in March 2015.

<sup>(</sup>s) lower bound given by the number of initial tokens.

 $<sup>^{\</sup>rm (t)}$  computed by PROD in March 2015.

<sup>(</sup>u) computed by PROD in March 2015.

<sup>(</sup>v) lower bound given by the number of initial tokens.

<sup>(</sup>w) computed by PROD in March 2015.

<sup>(</sup>x) computed by PROD in March 2015.

<sup>(</sup>y) lower bound given by the number of initial tokens.

<sup>(</sup>z) computed by PROD in March 2015.

<sup>(</sup>aa) computed by PROD in March 2015.

<sup>(</sup>ab) lower bound given by the number of initial tokens.

<sup>(</sup>ac) computed by PROD in March 2015.

<sup>(</sup>ad) computed by PROD in March 2015.

<sup>(</sup>ae) lower bound given by the number of initial tokens.

<sup>(</sup>af) lower bound given by the number of initial tokens.

<sup>(</sup>ag) lower bound given by the number of initial tokens.

<sup>(</sup>ah) lower bound given by the number of initial tokens.

<sup>(</sup>ai) lower bound given by the number of initial tokens.
(aj) lower bound given by the number of initial tokens.

<sup>(</sup>ak) lower bound given by the number of initial tokens.

<sup>(</sup>al) lower bound given by the number of initial tokens.

<sup>(</sup>am) lower bound given by the number of initial tokens.

<sup>(</sup>an) lower bound given by the number of initial tokens.

Model: SmallOperatingSystem

Type: P/T Net Origin: Academic

 $egin{array}{c} ext{since} \ ext{MCC 2015} \end{array}$ 

Fabrice Kordon Fabrice.Kordon@lip6.fr

 $<sup>^{\</sup>mathrm{(ao)}}$  lower bound given by the number of initial tokens.

<sup>(</sup>ap) lower bound given by the number of initial tokens.

 $<sup>^{(</sup>aq)}$  lower bound given by the number of initial tokens.

 $<sup>^{(</sup>ar)}$  lower bound given by the number of initial tokens.

 $<sup>^{(</sup>as)}$  lower bound given by the number of initial tokens.