This form is a summary description of the model entitled “Neo election protocol” proposed for the Model Checking Contest @ Petri Nets. Models can be given in several instances parameterized by scaling parameters. Colored nets can be accompanied by one or many equivalent, unfolded P/T nets. Models are given together with property files (possibly, one per model instance) giving a set of properties to be checked on the model.

Description

The Neo protocol aims at managing large distributed databases on clusters of workstations. The machines on the cluster may have several roles. This model focuses on master nodes which handle the communications between all nodes, and in particular requests for accessing database objects. Prior to that all master nodes agree on a primary master which will be the operating one, the other master nodes being secondary, waiting to replace the primary master if needed.

The Petri net of this case study models the election protocol which has the particularity of allowing dynamic joining and leaving the cluster. The sub-net represented in the figure models a part of the procedure used by network nodes to handle incoming messages.

A detailed description is given in the referenced paper.

References

Scaling parameter

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter description</th>
<th>Chosen parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>number of network nodes participating to the election</td>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10</td>
</tr>
</tbody>
</table>

Size of the colored net model

- number of places: 18
- number of transitions: 22
- number of arcs: 98
Size of the derived P/T model instances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of places</th>
<th>Number of transitions</th>
<th>Number of arcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 2)</td>
<td>438</td>
<td>357</td>
<td>1998</td>
</tr>
<tr>
<td>(N = 3)</td>
<td>972</td>
<td>1016</td>
<td>5840</td>
</tr>
<tr>
<td>(N = 4)</td>
<td>1830</td>
<td>2340</td>
<td>13565</td>
</tr>
<tr>
<td>(N = 5)</td>
<td>3090</td>
<td>4674</td>
<td>27162</td>
</tr>
<tr>
<td>(N = 6)</td>
<td>4830</td>
<td>8435</td>
<td>49028</td>
</tr>
<tr>
<td>(N = 7)</td>
<td>7128</td>
<td>14112</td>
<td>81968</td>
</tr>
<tr>
<td>(N = 8)</td>
<td>10062</td>
<td>22266</td>
<td>129195</td>
</tr>
<tr>
<td>(N = 9)</td>
<td>13710</td>
<td>35530</td>
<td>194330</td>
</tr>
<tr>
<td>(N = 10)</td>
<td>18150</td>
<td>48609</td>
<td>281402</td>
</tr>
</tbody>
</table>

Structural properties

- ordinary — all arcs have multiplicity one
- simple free choice — all transitions sharing a common input place have no other input place
- extended free choice — all transitions sharing a common input place have the same input places
- state machine — every transition has exactly one input place and exactly one output place
- marked graph — every place has exactly one input transition and exactly one output transition
- connected — there is an undirected path between every two nodes (places or transitions)
- strongly connected — there is a directed path between every two nodes (places or transitions)
- source place(s) — one or more places have no input transitions
- sink place(s) — one or more places have no output transitions
- source transition(s) — one or more transitions have no input places
- sink transition(s) — one or more transitions have no output places
- loop-free — no transition has an input place that is also an output place
- conservative — for each transition, the number of input arcs equals the number of output arcs
- subconservative — for each transition, the number of input arcs equals or exceeds the number of output arcs
- nested units — places are structured into hierarchically nested sequential units

Behavioural properties

- safe — in every reachable marking, there is no more than one token on a place
- deadlock — there exists a reachable marking from which no transition can be fired
- reversible — from every reachable marking, there is a transition path going back to the initial marking
- quasi-live — for every transition \(t\), there exists a reachable marking in which \(t\) can fire

(a) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(b) stated by CÆSAR.BDD version 2.6 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(c) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(d) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(e) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(f) the net is not connected and, thus, not strongly connected.
(g) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(h) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(i) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(j) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(k) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(l) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(m) stated by CÆSAR.BDD version 1.7 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
(n) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php.
(o) stated by CÆSAR.BDD version 2.0 to be true on 2 instance(s) out of 9, and unknown on the remaining 7 instance(s); confirmed at MCC’2014.
(p) stated by CÆSAR.BDD version 2.0 to be true on 2 instance(s) out of 9, and unknown on the remaining 7 instance(s).
(q) the marking graph has deadlocks and contains more than one reachable marking.
(r) stated by CÆSAR.BDD version 2.0 on all 9 instances (2, 3, 4, 5, 6, 7, 8, 9, and 10).
live — for every transition t, from every reachable marking, one can reach a marking in which t can fire \(X^{(s)} \)

Size of the marking graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of reachable markings</th>
<th>Number of transition firings</th>
<th>Max. number of tokens per place</th>
<th>Max. number of tokens per marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 2$</td>
<td>241 (^{(1)})</td>
<td>448 (^{(1)})</td>
<td>1 (^{(1)})</td>
<td>14 (^{(1)})</td>
</tr>
<tr>
<td>$N = 3$</td>
<td>974 325 (^{(2)})</td>
<td>3.5991E+6 (^{(3)})</td>
<td>1 (^{(2)})</td>
<td>30 (^{(2)})</td>
</tr>
<tr>
<td>$N = 4$</td>
<td>2.9191E+11 (^{(4)})</td>
<td>?</td>
<td>1 (^{(4)})</td>
<td>52 (^{(4)})</td>
</tr>
<tr>
<td>$N = 5$</td>
<td>6.3570E+18 (^{(5)})</td>
<td>?</td>
<td>?</td>
<td>? (\geq 60)</td>
</tr>
<tr>
<td>$N = 6$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>? (\geq 84)</td>
</tr>
<tr>
<td>$N = 7$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>? (\geq 112)</td>
</tr>
<tr>
<td>$N = 8$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>? (\geq 144)</td>
</tr>
</tbody>
</table>

Other properties

When analyzing the unfolded place-transition nets, the CÆSAR.BDD tool found a high number of source places, of sink places, of places that never get a token in any reachable marking, and of transitions that are not quasi-live. This is due to the particular tool that has been used to produce these unfolded nets.

\(^{(1)}\) the net is not quasi-live and, thus, not live.

\(^{(1)}\) computed at MCC’2013 by Alpina, ITS-Tools, Marcie, Neco, and PNXDD; confirmed by CÆSAR.BDD 1.8; confirmed at MCC’2014 by Helena on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD; Stratagem, and Tapaal on the P/T net instance.

\(^{(2)}\) computed at MCC’2014 by Helena on the colored net instance, and by Marcie on the P/T net instance.

\(^{(3)}\) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.

\(^{(4)}\) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.

\(^{(5)}\) computed at MCC’2013 by Alpina, ITS-Tools, Marcie, and PNXDD; confirmed by CÆSAR.BDD 1.8; confirmed at MCC’2014 by Helena on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD; Stratagem, and Tapaal on the P/T net instance.

\(^{(6)}\) computed at MCC’2014 by Helena on the colored net instance, and by Marcie on the P/T net instance.

\(^{(7)}\) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and PNXDD.

\(^{(8)}\) computed at MCC’2014 by GreatSPN, Marcie, and PNMC.

\(^{(9)}\) computed at MCC’2014 by GreatSPN, Marcie, and PNMC.

\(^{(10)}\) computed at MCC’2014 by GreatSPN, ITS-Tools, and PNXDD; confirmed at MCC’2014 by PNMC and PNXDD.

\(^{(11)}\) computed at MCC’2014 by PNMC.

\(^{(12)}\) computed at MCC’2014 by PNMC.

\(^{(13)}\) computed at MCC’2014 by PNMC.