Description

Management of resources with the declaration of all resources to be used in a critical section. When process p enters a critical section (transition enter) it locks all the resources needed to be used in the critical section (4 max). Then, it can release a subset of these resources, max 2 at a time (and then stay in the critical section) or exit the critical section, thus releasing all the remaining resources it locks.

References

From a book on operating systems by Sacha Krakowiak. The model is presented and explained in the reference below:

Scaling parameter

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Parameter description</th>
<th>Chosen parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cardinality of Proc and Res classes)</td>
<td>see description</td>
<td>((n, 2 \times n)) with (n \in {3, 5, 6, 7, 9, 10, 11})</td>
</tr>
</tbody>
</table>

Size of the colored net model

- number of places: 5
- number of transitions: 7
- number of arcs: 29

Size of the derived P/T model instances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of places</th>
<th>Number of transitions</th>
<th>Number of arcs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 3)</td>
<td>33</td>
<td>4791</td>
<td>38652</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>75</td>
<td>56105</td>
<td>492760</td>
</tr>
<tr>
<td>(n = 6)</td>
<td>102</td>
<td>136662</td>
<td>1226388</td>
</tr>
</tbody>
</table>

Structural properties

- **ordinary** — all arcs have multiplicity one
- **simple free choice** — all transitions sharing a common input place have no other input place
- **extended free choice** — all transitions sharing a common input place have the same input places
- **state machine** — every transition has exactly one input place and exactly one output place
- **marked graph** — every place has exactly one input transition and exactly one output transition
- **connected** — there is an undirected path between every two nodes (places or transitions)
- **strongly connected** — there is a directed path between every two nodes (places or transitions)
- **source place(s)** — one or more places have no input transitions
- **sink place(s)** — one or more places have no output transitions
- **source transition(s)** — one or more transitions have no input places
- **sink transition(s)** — one or more transitions have no output places
- **loop-free** — no transition has an input place that is also an output place
- **conservative** — for each transition, the number of input arcs equals the number of output arcs
- **subconservative** — for each transition, the number of input arcs equals or exceeds the number of output arcs
- **nested units** — places are structured into hierarchically nested sequential units

\(^{(a)}\) the net is not ordinary in all its 3 instances (3, 5, and 6).
\(^{(b)}\) the net is not ordinary in all its 3 instances (3, 5, and 6).
\(^{(c)}\) the net is not ordinary in all its 3 instances (3, 5, and 6).
\(^{(d)}\) the net is not ordinary in all its 3 instances (3, 5, and 6).
\(^{(e)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(f)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(g)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(h)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(i)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(j)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(k)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(l)}\) stated by CÆSAR.BDD version 1.7 on all 3 instances (3, 5, and 6).
\(^{(m)}\) stated by PNML2NUPN 1.3.0 on all 3 instances (3, 5, and 6).
\(^{(n)}\) the definition of Nested-Unit Petri Nets (NUPN) is available from http://mcc.lip6.fr/nupn.php
Behavioural properties

safe — in every reachable marking, there is no more than one token on a place
deadlock — there exists a reachable marking from which no transition can be fired
reversible — from every reachable marking, there is a transition path going back to the initial marking
quasi-live — for every transition \(t \), there exists a reachable marking in which \(t \) can fire
live — for every transition \(t \), from every reachable marking, one can reach a marking in which \(t \) can fire

Size of the marking graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of reachable markings</th>
<th>Number of transition firings</th>
<th>Max. number of tokens per place</th>
<th>Max. number of tokens per marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 3)</td>
<td>6320 (^{(p)})</td>
<td>116178 (^{(q)})</td>
<td>4 (^{(r)})</td>
<td>18 (^{(s)})</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>1.0660E+8 (^{(t)})</td>
<td>?</td>
<td>?</td>
<td>(\geq 15)</td>
</tr>
<tr>
<td>(n = 6)</td>
<td>2.5725E+10 (^{(o)})</td>
<td>?</td>
<td>?</td>
<td>(\geq 18)</td>
</tr>
<tr>
<td>(n = 7)</td>
<td>8.5698E+12 (^{(u)})</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>(n = 9)</td>
<td>2.1185E+18 (^{(w)})</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

\(^{(o)} \) checked by the Crocodile tool in 2012, see reference 1; confirmed at MCC’2014 by GreatSPN, Lola, PNXDD, and Tapaal on one P/T instance \((N = 3) \).
\(^{(p)} \) computed at MCC’2014 by GreatSPN, ITS-Tools, Marcie, and PNXDD; confirmed at MCC’2014 by GreatSPN on the colored net instance, and by GreatSPN, Marcie, PNMC, PNXDD, Stratagem, and Tapaal.
\(^{(q)} \) computed at MCC’2014 by Marcie.
\(^{(r)} \) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.
\(^{(s)} \) computed at MCC’2014 by GreatSPN, Marcie, PNMC, and Tapaal.
\(^{(t)} \) computed at MCC’2013 by ITS-Tools; confirmed at MCC’2014 by GreatSPN on the colored net instance.
\(^{(u)} \) computed at MCC’2013 by ITS-Tools; confirmed at MCC’2014 by GreatSPN on the colored net instance.
\(^{(v)} \) computed at MCC’2014 by GreatSPN on the colored net instance.
\(^{(w)} \) computed at MCC’2014 by GreatSPN on the colored net instance.