fond
Model Checking Contest @ Petri Nets 2016
6th edition, Toruń, Poland, June 21, 2016
Execution of r209su-blw3-146445824900165
Last Updated
June 30, 2016

About the Execution of Marcie for AutoFlight-PT-01a

Execution Summary
Max Memory
Used (MB)
Time wait (ms) CPU Usage (ms) I/O Wait (ms) Computed Result Execution
Status
5416.310 5787.00 5020.00 10.20 TTTTFFFTFTFFTFTF normal

Execution Chart

We display below the execution chart for this examination (boot time has been removed).

Trace from the execution

Waiting for the VM to be ready (probing ssh)
........
=====================================================================
Generated by BenchKit 2-2979
Executing tool marcie
Input is AutoFlight-PT-01a, examination is CTLCardinality
Time confinement is 3600 seconds
Memory confinement is 16384 MBytes
Number of cores is 1
Run identifier is r209su-blw3-146445824900165
=====================================================================


--------------------
content from stdout:

=== Data for post analysis generated by BenchKit (invocation template)

The expected result is a vector of booleans
BOOL_VECTOR

here is the order used to build the result vector(from text file)
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-0
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-1
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-10
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-11
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-12
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-13
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-14
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-15
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-2
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-3
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-4
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-5
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-6
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-7
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-8
FORMULA_NAME AutoFlight-PT-01a-CTLCardinality-9

=== Now, execution of the tool begins

BK_START 1464681633663


Marcie rev. 8535M (built: crohr on 2016-04-27)
A model checker for Generalized Stochastic Petri nets

authors: Alex Tovchigrechko (IDD package and CTL model checking)

Martin Schwarick (Symbolic numerical analysis and CSL model checking)

Christian Rohr (Simulative and approximative numerical model checking)

marcie@informatik.tu-cottbus.de

called as: marcie --net-file=model.pnml --mcc-file=CTLCardinality.xml --mcc-mode --memory=6 --suppress

parse successfull
net created successfully

Net: AutoFlight_PT_01a
(NrP: 32 NrTr: 30 NrArc: 100)

net check time: 0m 0.000sec

parse formulas
formulas created successfully
place and transition orderings generation:0m 0.000sec

init dd package: 0m 4.136sec


RS generation: 0m 0.002sec


-> reachability set: #nodes 150 (1.5e+02) #states 253



starting MCC model checker
--------------------------

checking: 1<=p5
normalized: 1<=p5

abstracting: (1<=p5) states: 68
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-2 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: AX [~ [AF [3<=p19]]]
normalized: ~ [EX [~ [EG [~ [3<=p19]]]]]

abstracting: (3<=p19) states: 0

EG iterations: 0
.-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-3 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: p14<=p11
normalized: p14<=p11

abstracting: (p14<=p11) states: 241
-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-1 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: A [1<=p18 U AX [2<=p19]]
normalized: [~ [EG [EX [~ [2<=p19]]]] & ~ [E [EX [~ [2<=p19]] U [~ [1<=p18] & EX [~ [2<=p19]]]]]]

abstracting: (2<=p19) states: 0
.abstracting: (1<=p18) states: 12
abstracting: (2<=p19) states: 0
.abstracting: (2<=p19) states: 0
..........
EG iterations: 9
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-4 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.011sec

checking: p30<=p29
normalized: p30<=p29

abstracting: (p30<=p29) states: 253
-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-6 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: p1<=p30
normalized: p1<=p30

abstracting: (p1<=p30) states: 165
-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-10 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: p27<=p17
normalized: p27<=p17

abstracting: (p27<=p17) states: 253
-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-11 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: AF [[EX [3<=p28] | 1<=p16]]
normalized: ~ [EG [~ [[1<=p16 | EX [3<=p28]]]]]

abstracting: (3<=p28) states: 0
.abstracting: (1<=p16) states: 18
.
EG iterations: 1
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-13 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: p7<=p26
normalized: p7<=p26

abstracting: (p7<=p26) states: 19
-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-15 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: [p22<=p21 & 3<=p17]
normalized: [p22<=p21 & 3<=p17]

abstracting: (3<=p17) states: 0
abstracting: (p22<=p21) states: 235
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-7 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: AG [AF [[p2<=p10 & p29<=p8]]]
normalized: ~ [E [true U EG [~ [[p2<=p10 & p29<=p8]]]]]

abstracting: (p29<=p8) states: 172
abstracting: (p2<=p10) states: 253
.
EG iterations: 1
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-5 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.009sec

checking: [EG [EF [2<=p15]] & [AF [~ [2<=p7]] & p19<=p2]]
normalized: [[p19<=p2 & ~ [EG [2<=p7]]] & EG [E [true U 2<=p15]]]

abstracting: (2<=p15) states: 0
.
EG iterations: 1
abstracting: (2<=p7) states: 0
.
EG iterations: 1
abstracting: (p19<=p2) states: 245
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-14 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: EG [[~ [[3<=p19 & p15<=p10]] & p4<=p2]]
normalized: EG [[p4<=p2 & ~ [[3<=p19 & p15<=p10]]]]

abstracting: (p15<=p10) states: 253
abstracting: (3<=p19) states: 0
abstracting: (p4<=p2) states: 185
.........
EG iterations: 9
-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-0 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.008sec

checking: [[EG [[p15<=p23 | 1<=p13]] & AF [2<=p17]] & ~ [EF [[2<=p12 & 1<=p12]]]]
normalized: [~ [E [true U [2<=p12 & 1<=p12]]] & [~ [EG [~ [2<=p17]]] & EG [[p15<=p23 | 1<=p13]]]]

abstracting: (1<=p13) states: 12
abstracting: (p15<=p23) states: 253

EG iterations: 0
abstracting: (2<=p17) states: 0

EG iterations: 0
abstracting: (1<=p12) states: 12
abstracting: (2<=p12) states: 0
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-9 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.000sec

checking: [~ [[[~ [1<=p15] | p26<=p13] | [[2<=p26 | 2<=p13] & ~ [2<=p21]]]] & EX [[3<=p27 & [1<=p31 & p18<=p14]]]]
normalized: [~ [[[[2<=p26 | 2<=p13] & ~ [2<=p21]] | [p26<=p13 | ~ [1<=p15]]]] & EX [[3<=p27 & [1<=p31 & p18<=p14]]]]

abstracting: (p18<=p14) states: 241
abstracting: (1<=p31) states: 234
abstracting: (3<=p27) states: 0
.abstracting: (1<=p15) states: 12
abstracting: (p26<=p13) states: 235
abstracting: (2<=p21) states: 0
abstracting: (2<=p13) states: 0
abstracting: (2<=p26) states: 0
-> the formula is FALSE

FORMULA AutoFlight-PT-01a-CTLCardinality-12 FALSE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.001sec

checking: [~ [[[~ [p20<=p31] & [2<=p8 & p14<=p26]] & [[p1<=p28 | p17<=p1] | [2<=p8 & p10<=p2]]]] & AX [[~ [p30<=p19] | [3<=p26 & 1<=p5]]]]
normalized: [~ [EX [~ [[~ [p30<=p19] | [3<=p26 & 1<=p5]]]]] & ~ [[[[2<=p8 & p10<=p2] | [p1<=p28 | p17<=p1]] & [[2<=p8 & p14<=p26] & ~ [p20<=p31]]]]]

abstracting: (p20<=p31) states: 253
abstracting: (p14<=p26) states: 241
abstracting: (2<=p8) states: 0
abstracting: (p17<=p1) states: 137
abstracting: (p1<=p28) states: 165
abstracting: (p10<=p2) states: 65
abstracting: (2<=p8) states: 0
abstracting: (1<=p5) states: 68
abstracting: (3<=p26) states: 0
abstracting: (p30<=p19) states: 235
.-> the formula is TRUE

FORMULA AutoFlight-PT-01a-CTLCardinality-8 TRUE TECHNIQUES SEQUENTIAL_PROCESSING DECISION_DIAGRAMS UNFOLDING_TO_PT

MC time: 0m 0.002sec


Total processing time: 0m 5.754sec


BK_STOP 1464681639450

--------------------
content from stderr:

check for maximal unmarked siphon
ok
check if there are places and transitions
ok
check if there are transitions without pre-places
ok
check if at least one transition is enabled in m0
ok
check if there are transitions that can never fire
ok


initing FirstDep: 0m 0.000sec


iterations count:284 (9), effective:41 (1)

initing FirstDep: 0m 0.000sec


iterations count:33 (1), effective:1 (0)

iterations count:341 (11), effective:54 (1)

Sequence of Actions to be Executed by the VM

This is useful if one wants to reexecute the tool in the VM from the submitted image disk.

set -x
# this is for BenchKit: configuration of major elements for the test
export BK_INPUT="AutoFlight-PT-01a"
export BK_EXAMINATION="CTLCardinality"
export BK_TOOL="marcie"
export BK_RESULT_DIR="/home/hulinhub/BK_RESULTS/OUTPUTS"
export BK_TIME_CONFINEMENT="3600"
export BK_MEMORY_CONFINEMENT="16384"

# this is specific to your benchmark or test

export BIN_DIR="$HOME/BenchKit/bin"

# remove the execution directoty if it exists (to avoid increse of .vmdk images)
if [ -d execution ] ; then
rm -rf execution
fi

tar xzf /home/mcc/BenchKit/INPUTS/AutoFlight-PT-01a.tgz
mv AutoFlight-PT-01a execution

# this is for BenchKit: explicit launching of the test

cd execution
echo "====================================================================="
echo " Generated by BenchKit 2-2979"
echo " Executing tool marcie"
echo " Input is AutoFlight-PT-01a, examination is CTLCardinality"
echo " Time confinement is $BK_TIME_CONFINEMENT seconds"
echo " Memory confinement is 16384 MBytes"
echo " Number of cores is 1"
echo " Run identifier is r209su-blw3-146445824900165"
echo "====================================================================="
echo
echo "--------------------"
echo "content from stdout:"
echo
echo "=== Data for post analysis generated by BenchKit (invocation template)"
echo
if [ "CTLCardinality" = "UpperBounds" ] ; then
echo "The expected result is a vector of positive values"
echo NUM_VECTOR
elif [ "CTLCardinality" != "StateSpace" ] ; then
echo "The expected result is a vector of booleans"
echo BOOL_VECTOR
else
echo "no data necessary for post analysis"
fi
echo
if [ -f "CTLCardinality.txt" ] ; then
echo "here is the order used to build the result vector(from text file)"
for x in $(grep Property CTLCardinality.txt | cut -d ' ' -f 2 | sort -u) ; do
echo "FORMULA_NAME $x"
done
elif [ -f "CTLCardinality.xml" ] ; then # for cunf (txt files deleted;-)
echo echo "here is the order used to build the result vector(from xml file)"
for x in $(grep '' CTLCardinality.xml | cut -d '>' -f 2 | cut -d '<' -f 1 | sort -u) ; do
echo "FORMULA_NAME $x"
done
fi
echo
echo "=== Now, execution of the tool begins"
echo
echo -n "BK_START "
date -u +%s%3N
echo
timeout -s 9 $BK_TIME_CONFINEMENT bash -c "/home/mcc/BenchKit/BenchKit_head.sh 2> STDERR ; echo ; echo -n \"BK_STOP \" ; date -u +%s%3N"
if [ $? -eq 137 ] ; then
echo
echo "BK_TIME_CONFINEMENT_REACHED"
fi
echo
echo "--------------------"
echo "content from stderr:"
echo
cat STDERR ;